FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Wallace, L Lucieer, A Malenovsky, Z Turner, D Vopenka, P AF Wallace, Luke Lucieer, Arko Malenovsky, Zbynek Turner, Darren Vopenka, Petr TI Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds SO FORESTS LA English DT Article DE digital terrain model; tree height; canopy cover; forest structure; unmanned aerial vehicle (UAV); LIDAR airborne laser scanning; structure from motion ID UNMANNED AERIAL VEHICLE; TREE DETECTION; INVENTORY; IMAGERY; LIDAR; CANOPY; SYSTEM; BIODIVERSITY; COMPLEXITY; METRICS AB This study investigates the potential of unmanned aerial vehicles (UAVs) to measure and monitor structural properties of forests. Two remote sensing techniques, airborne laser scanning (ALS) and structure from motion (SfM) were tested to capture three-dimensional structural information from a small multi-rotor UAV platform. A case study is presented through the analysis of data collected from a 30 x 50 m plot in a dry sclerophyll eucalypt forest with a spatially varying canopy cover. The study provides an insight into the capabilities of both technologies for assessing absolute terrain height, the horizontal and vertical distribution of forest canopy elements, and information related to individual trees. Results indicate that both techniques are capable of providing information that can be used to describe the terrain surface and canopy properties in areas of relatively low canopy closure. However, the SfM photogrammetric technique underperformed ALS in capturing the terrain surface under increasingly denser canopy cover, resulting in point density of less than 1 ground point per m(2) and mean difference from ALS terrain surface of 0.12 m. This shortcoming caused errors that were propagated into the estimation of canopy properties, including the individual tree height (root mean square error of 0.92 m for ALS and 1.30 m for SfM). Differences were also seen in the estimates of canopy cover derived from the SfM (50%) and ALS (63%) pointclouds. Although ALS is capable of providing more accurate estimates of the vertical structure of forests across the larger range of canopy densities found in this study, SfM was still found to be an adequate low-cost alternative for surveying of forest stands. C1 [Wallace, Luke; Lucieer, Arko; Malenovsky, Zbynek; Turner, Darren] Univ Tasmania, Sch Land & Food, Hobart, Tas 7001, Australia. [Wallace, Luke] RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3000, Australia. [Malenovsky, Zbynek] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vopenka, Petr] Czech Univ Life Sci Prague, Fac Forestry & Wood Sci, Dept Forest Management, Prague 6, Czech Republic. RP Wallace, L (reprint author), Univ Tasmania, Sch Land & Food, Hobart, Tas 7001, Australia.; Wallace, L (reprint author), RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3000, Australia. EM Luke.Wallace2@rmit.edu.au; Arko.Lucieer@utas.edu.au; zbynek.malenovsky@gmail.com; Darren.Turner@utas.edu.au; vopenka@fld.czu.cz RI Malenovsky, Zbynek/A-7819-2011; OI Malenovsky, Zbynek/0000-0002-1271-8103; Turner, Darren/0000-0002-3029-6717 FU ARC Discovery project "airLIFT" [DP140101488]; National Agency for Agriculture Research project [QJ1520187]; Winifred Violet Scott Trust; Australian Antarctic Science Grant scheme FX The contribution of Z. Malenovsky was supported by the ARC Discovery project "airLIFT" (DP140101488). The contribution of P. Vopenka was supported by the National Agency for Agriculture Research project (No. QJ1520187). The authors would like to acknowledge Ben Van der Jagt for assistance in collecting field data. The Winifred Violet Scott Trust and Australian Antarctic Science Grant scheme are acknowledged for providing funding to purchase the infrastructure used in this project. We thank Tony Veness, the UTAS Central Science Laboratory, the UTAS Engineering workshop, and the Australian Antarctic Division workshop for their assistance in the sensor integration. NR 38 TC 10 Z9 11 U1 22 U2 51 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1999-4907 J9 FORESTS JI Forests PD MAR PY 2016 VL 7 IS 3 DI 10.3390/f7030062 PG 16 WC Forestry SC Forestry GA DI7RX UT WOS:000373700800018 ER PT J AU Thomas, BF Behrangi, A Famiglietti, JS AF Thomas, Brian F. Behrangi, Ali Famiglietti, James S. TI Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States SO WATER LA English DT Article DE sustainable groundwater management; groundwater recharge; climate change; precipitation intensity ID CLIMATE-CHANGE IMPACTS; NORTH-AMERICAN MONSOON; MURRAY-DARLING BASIN; SENSITIVITY-ANALYSIS; EPISODIC RECHARGE; ARID REGIONS; WATER; FLOW; AUSTRALIA; AQUIFER AB Episodic recharge as a result of infrequent, high intensity precipitation events comprises the bulk of groundwater recharge in arid environments. Climate change and shifts in precipitation intensity will affect groundwater continuity, thus altering groundwater recharge. This study aims to identify changes in the ratio of groundwater recharge and precipitation, the R:P ratio, in the arid southwestern United States to characterize observed changes in groundwater recharge attributed to variations in precipitation intensity. Our precipitation metric, precipitation intensity magnification, was used to investigate the relationship between the R:P ratio and precipitation intensity. Our analysis identified significant changes in the R:P ratio concurrent with decreases in precipitation intensity. The results illustrate the importance of precipitation intensity in relation to groundwater recharge in arid regions and provide further insights for groundwater management in nonrenewable groundwater systems and in a changing climate. C1 [Thomas, Brian F.; Behrangi, Ali; Famiglietti, James S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. RP Thomas, BF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Brian.F.Thomas@jpl.nasa.gov; Ali.Behrangi@jpl.nasa.gov; James.Famiglietti@jpl.nasa.gov OI Thomas, Brian/0000-0003-0080-7958 FU National Aeronautics and Space Administration; GRACE Science Team; Jet Propulsion Laboratory Research and Technology Development programs FX The authors wish to thank state water resource agencies in the study area for data access. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Support from the GRACE Science Team and the Jet Propulsion Laboratory Research and Technology Development programs is gratefully acknowledged. NR 85 TC 3 Z9 3 U1 6 U2 10 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4441 J9 WATER-SUI JI Water PD MAR PY 2016 VL 8 IS 3 DI 10.3390/w8030090 PG 15 WC Water Resources SC Water Resources GA DI7OR UT WOS:000373691200030 ER PT J AU Harrold, ZR Skidmore, ML Hamilton, TL Desch, L Amada, K van Gelder, W Glover, K Roden, EE Boyd, ES AF Harrold, Zoe R. Skidmore, Mark L. Hamilton, Trinity L. Desch, Libby Amada, Kirina van Gelder, Will Glover, Kevin Roden, Eric E. Boyd, Eric S. TI Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HAUT-GLACIER-DAROLLA; ANTARCTIC ICE-SHEET; HIGH ARCTIC GLACIER; PYRITE OXIDATION; MICROBIAL COMMUNITIES; OXIDIZING BACTERIA; SULFIDE OXIDATION; SP-NOV; BENEATH; ENVIRONMENTS AB Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O32-), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O32- that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO42-) several orders of magnitude higher than those of S2O32-. Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O32-, CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O32- as the electron donor was lower at 5.1 degrees C than 14.4 degrees C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O32--oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O32- by RG5- like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. C1 [Harrold, Zoe R.; Skidmore, Mark L.; van Gelder, Will; Glover, Kevin] Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA. [Hamilton, Trinity L.] Univ Cincinnati, Dept Biol Sci, Cincinnati, OH USA. [Desch, Libby; Amada, Kirina; Boyd, Eric S.] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA. [Roden, Eric E.] Univ Wisconsin, Dept Geosci, Madison, WI USA. [Roden, Eric E.; Boyd, Eric S.] NASA, Astrobiol Inst, Mountain View, CA USA. RP Boyd, ES (reprint author), Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA.; Boyd, ES (reprint author), NASA, Astrobiol Inst, Mountain View, CA USA. EM eboyd@montana.edu FU National Aeronautics and Space Administration (NASA) [NNX10AT31G, NNA15BB02A] FX National Aeronautics and Space Administration (NASA) provided funding to Mark L. Skidmore and Eric S. Boyd under grant number NNX10AT31G. NASA provided funding to Eric S. Boyd under grant number NNA15BB02A. NR 50 TC 3 Z9 3 U1 6 U2 21 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2016 VL 82 IS 5 BP 1486 EP 1495 DI 10.1128/AEM.03398-15 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DI2PL UT WOS:000373338800013 ER PT J AU Wang, YM Zhou, ZJ Zhang, J Liu, K Liu, R Shen, CL Chamberlin, PC AF Wang, Yuming Zhou, Zhenjun Zhang, Jie Liu, Kai Liu, Rui Shen, Chenglong Chamberlin, Phillip C. TI THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS: TECHNIQUES AND FIRST RESULTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: UV radiation ID CORONAL MASS EJECTIONS; ULTRAVIOLET LATE-PHASE; ATOMIC DATABASE; EMISSION-LINES; VARIABILITY; IRRADIANCE; ERUPTION; CHIANTI; PLASMA AB The Solar Dynamics Observatory (SDO)/EUV. Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could. potentially be useful for. extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on. distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0. class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares. the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which. unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections. C1 [Wang, Yuming; Zhou, Zhenjun; Liu, Kai; Liu, Rui; Shen, Chenglong] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. [Wang, Yuming; Shen, Chenglong] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. [Zhang, Jie] George Mason Univ, Sch Phys Astron & Computat Sci, 4400 Univ Dr,MSN 6A2, Fairfax, VA 22030 USA. [Liu, Rui] Collaborat Innovat Ctr Astronaut Sci & Technol, Hefei 230026, Peoples R China. [Chamberlin, Phillip C.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Heliophys Div, Greenbelt, MD 20771 USA. RP Wang, YM (reprint author), Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China.; Wang, YM (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. EM ymwang@ustc.edu.cn RI Chamberlin, Phillip/C-9531-2012; Liu, Rui/B-4107-2012; Liu, Kai/I-3999-2016; Wang, Yuming/A-8968-2012; Shen, Chenglong/P-8093-2015; shen, Chenglong/C-7588-2013 OI Chamberlin, Phillip/0000-0003-4372-7405; Liu, Rui/0000-0003-4618-4979; Wang, Yuming/0000-0002-8887-3919; shen, Chenglong/0000-0002-3577-5223 FU NSFC [41131065, 41574165, 41421063, 41274173, 41222031, 41404134, 41474151]; CAS (Key Research Program) [KZZD-EW-01]; CAS (100-Talent Program); MOST 973 key project [2011CB811403]; fundamental research funds for the central universities; NASA FX We acknowledge use of data from the SDO, STEREO, SOHO, and GOES spacecraft. SDO is a mission of NASA's Living With a Star Program, STEREO is the third mission in NASA's Solar Terrestrial Probes program, and SOHO is a mission of international cooperation between ESA and NASA. The TDS charts for all the events involved in this study could be found at http://space.ustc.edu.cn/dreams/shm/tds (the MEGS-A-only TDS) and http://space.ustc.edu.cn/dreams/shm/tds-c09 (the extended TDS). This work is supported by grants from the NSFC (41131065, 41574165, 41421063, 41274173, 41222031, 41404134, and 41474151), CAS (Key Research Program KZZD-EW-01 and 100-Talent Program), MOST 973 key project (2011CB811403), and the fundamental research funds for the central universities. NR 34 TC 0 Z9 0 U1 13 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2016 VL 223 IS 1 AR 4 DI 10.3847/0067-0049/223/1/4 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI0TB UT WOS:000373208900004 ER PT J AU Snyder, J Son, AR Hamid, Q Wu, HL Sun, W AF Snyder, Jessica Son, Ae Rin Hamid, Qudus Wu, Honglu Sun, Wei TI Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system SO BIOFABRICATION LA English DT Article DE bioprinting; heterogeneous co-culture; rotary cell culture system; in vitro liver model; cell-laden droplet ID IN-VITRO; SIMULATED MICROGRAVITY; FREEFORM FABRICATION; ENDOTHELIAL-CELLS; COCULTURE SYSTEM; LIVER; SCAFFOLDS; HEPATOCYTES; NANOPARTICLES; PROLIFERATION AB Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 mu m, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy. C1 [Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Sun, Wei] Drexel Univ, Mech Engn & Mech, Philadelphia, PA 19104 USA. [Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Sun, Wei] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China. RP Sun, W (reprint author), Drexel Univ, Mech Engn & Mech, Philadelphia, PA 19104 USA.; Sun, W (reprint author), Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China. EM sunwei@drexel.edu RI Son, Aerin/D-4520-2017 FU National Space Biomedical Research Institute's Summer Intern Program FX With sincere respect and gratitude, the authors acknowledge the National Space Biomedical Research Institute's Summer Intern Program for support of this collaboration. NR 56 TC 1 Z9 1 U1 17 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1758-5082 EI 1758-5090 J9 BIOFABRICATION JI Biofabrication PD MAR PY 2016 VL 8 IS 1 AR 015002 DI 10.1088/1758-5090/8/1/015002 PG 15 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA DI1WZ UT WOS:000373289000006 PM 26759993 ER PT J AU Harrivel, AR Weissman, DH Noll, DC Huppert, T Peltier, SJ AF Harrivel, Angela R. Weissman, Daniel H. Noll, Douglas C. Huppert, Theodore Peltier, Scott J. TI Dynamic filtering improves attentional state prediction with fNIRS SO BIOMEDICAL OPTICS EXPRESS LA English DT Article ID NEAR-INFRARED SPECTROSCOPY; MULTISOURCE INTERFERENCE TASK; FUNCTIONAL CONNECTIVITY; BRAIN ACTIVATION; DEFAULT-MODE; SLEEP-DEPRIVATION; CEREBRAL HEMODYNAMICS; OPTICAL TOMOGRAPHY; RESTING BRAIN; FOCAL CHANGES AB Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%). (C)2016 Optical Society of America C1 [Harrivel, Angela R.] NASA, Langley Res Ctr, Crew Syst & Aviat Operat Branch, Hampton, VA 23681 USA. [Harrivel, Angela R.; Noll, Douglas C.; Peltier, Scott J.] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA. [Harrivel, Angela R.; Noll, Douglas C.; Peltier, Scott J.] Univ Michigan, Funct MRI Lab, Ann Arbor, MI 48109 USA. [Weissman, Daniel H.] Univ Michigan, Dept Psychol, Ann Arbor, MI 48109 USA. [Huppert, Theodore] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA. RP Harrivel, AR (reprint author), NASA, Langley Res Ctr, Crew Syst & Aviat Operat Branch, Hampton, VA 23681 USA.; Harrivel, AR (reprint author), Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA.; Harrivel, AR (reprint author), Univ Michigan, Funct MRI Lab, Ann Arbor, MI 48109 USA. EM angela.r.harrivel@nasa.gov FU University of Michigan fMRI Laboratory; Vehicle Systems Safety Technologies Project FX This work was supported by the University of Michigan fMRI Laboratory and the Vehicle Systems Safety Technologies Project, led by the Langley Research Center, in NASA's Aviation Safety Program. Colleagues at the NASA Glenn and Langley Research Centers are appreciated, especially Jeffrey Mackey, Daniel Gotti (who drew Fig. 3) and Padetha Tin for head probe design and assembly. NR 95 TC 0 Z9 0 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2156-7085 J9 BIOMED OPT EXPRESS JI Biomed. Opt. Express PD MAR 1 PY 2016 VL 7 IS 3 BP 979 EP 1002 DI 10.1364/BOE.7.000979 PG 24 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA DG4JR UT WOS:000372039000020 PM 27231602 ER PT J AU McKenna-Lawlor, S Ip, W Jackson, B Odstrcil, D Nieminen, P Evans, H Burch, J Mandt, K Goldstein, R Richter, I Dryer, M AF McKenna-Lawlor, S. Ip, W. Jackson, B. Odstrcil, D. Nieminen, P. Evans, H. Burch, J. Mandt, K. Goldstein, R. Richter, I. Dryer, M. TI Space Weather at Comet 67P/Churyumov-Gerasimenko Before its Perihelion SO EARTH MOON AND PLANETS LA English DT Article DE Interplanetary scintillation technique; ENLIL modelling; Coronal mass ejections; Comet Churyumov-Gerasimenko; Rosetta Mission ID CORONAL MASS EJECTIONS; ROSETTA PLASMA CONSORTIUM; 3-DIMENSIONAL PROPAGATION; SOLAR; MISSION; SODIUM; MOON; ACCELERATION; TOMOGRAPHY; STREAMER AB Interplanetary scintillation observations, as well as the ENLIL 3D-MHD model when employed either separately or in combination with the observations, enable the making of predictions of the solar wind density and speed at locations in the inner heliosphere. Both methods are utilized here to predict the arrival at the Rosetta spacecraft and its adjacent comet 67P/Churyumov-Gerasimenko of, flare related, interplanetary propagating shocks and coronal mass ejections in September 2014. The predictions of density and speed variations at the comet are successfully matched with signatures recorded by the magnetometer and the ion and electron sensor instruments in the Rosetta Plasma Package, thereby providing confidence that the signatures recorded aboard the spacecraft were solar related. The plasma perturbations which were detected some 9-10 days after significant flaring in September 2014 are interpreted to have been signatures of the arrivals of three coronal mass ejection related shocks at the comet. Also, a solar energetic particle event was recorded at 3.7 AU within similar to 30 min of the onset of a flare by the Standard Radiation Monitor aboard Rosetta. C1 [McKenna-Lawlor, S.] NUI Maynooth, Space Technol Ireland Ltd, Maynooth, Kildare, Ireland. [Ip, W.] Natl Cent Univ, 300 Chung Da Rd, Chungli 32054, Taiwan. [Jackson, B.] Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Odstrcil, D.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Nieminen, P.; Evans, H.] ESAs European Space Res & Technol Ctr, Noordwijk, Netherlands. [Burch, J.; Mandt, K.; Goldstein, R.] SW Res Inst, 6220 Culebra Rd, San Antonio, TX USA. [Richter, I.] Tech Univ Carolo Wilhelmina Braunschweig, Mendelssohnstr 3, D-38116 Braunschweig, Germany. [Dryer, M.] NOAA, Space Weather Predict Ctr RET, Boulder, CO 80305 USA. RP McKenna-Lawlor, S (reprint author), NUI Maynooth, Space Technol Ireland Ltd, Maynooth, Kildare, Ireland. EM stil@nuim.ie OI Mandt, Kathleen/0000-0001-8397-3315 NR 48 TC 2 Z9 2 U1 2 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-9295 EI 1573-0794 J9 EARTH MOON PLANETS JI Earth Moon Planets PD MAR PY 2016 VL 117 IS 1 BP 1 EP 22 DI 10.1007/s11038-015-9479-5 PG 22 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Geology GA DI0DY UT WOS:000373166500001 ER PT J AU Morton, DC Noojipady, P Macedo, MM Gibbs, H Victoria, DC Bolfe, EL AF Morton, Douglas C. Noojipady, Praveen Macedo, Marcia M. Gibbs, Holly Victoria, Daniel C. Bolfe, Edson L. TI Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon SO GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS LA English DT Article DE Zoning; Utilization; Amazon; Soya; Potentially available cropland (PAC) ID LAND-USE; SOY MORATORIUM; DEFORESTATION; INTENSIFICATION; GLOBALIZATION; DETERMINANTS; AMERICA; POLICY; COVER; BASIN AB Agricultural suitability maps are a key input for land use zoning and projections of cropland expansion. Suitability assessments typically consider edaphic conditions, climate, crop characteristics, and sometimes incorporate accessibility to transportation and market infrastructure. However, correct weighting among these disparate factors is challenging, given rapid development of new crop varieties, irrigation, and road networks, as well as changing, global demand for agricultural commodities. Here, we compared three independent assessments of cropland suitability to spatial and temporal dynamics of agricultural expansion in the Brazilian state of Mato Grosso during 2001-2012. We found that areas of recent cropland expansion identified using satellite data were generally designated as low to moderate suitability for rainfed crop production. Our analysis highlighted the abrupt nature of suitability boundaries, rather than smooth gradients of agricultural potential, with little additional cropland expansion beyond the extent of the flattest areas (0-2% slope). Satellite-based estimates of the interannual variability in the use of existing crop areas also provided an alternate means to assess suitability. On average, cropland areas in the Cerrado biome had higher utilization (84%) than croplands in the Amazon region of northern Mato Grosso (74%). Areas of more recent expansion had lower utilization than croplands established before 2002, providing empirical evidence for lower suitability or alternative management strategies (e.g., pasture-soya rotations) for lands undergoing more recent land use transitions. This unplanted reserve constitutes a large area of potentially available cropland (PAC) without further expansion, within the management limits imposed for pest management and fallow cycles. Using two key constraints on future cropland expansion, slope and restrictions on further deforestation of Amazon or Cerrado vegetation, we found little available flat land for further legal expansion of crop production in Mato Grosso. Dynamics of cropland expansion from more than a decade of satellite observations indicated narrow ranges of suitability criteria, restricting PAC under current policy conditions, and emphasizing the advantages of field-scale information to assess suitability and utilization. Published by Elsevier Ltd. C1 [Morton, Douglas C.; Noojipady, Praveen] NASA, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA. [Noojipady, Praveen] Univ Maryland, College Pk, MD 20742 USA. [Noojipady, Praveen] Natl Wildlife Federat, Nat Advocacy Ctr, Washington, DC 20006 USA. [Macedo, Marcia M.] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Gibbs, Holly] Univ Wisconsin, Madison, WI 53706 USA. [Victoria, Daniel C.] Brazilian Agr Res Corp Embrapa, Satellite Monitoring, BR-13070115 Campinas, SP, Brazil. [Bolfe, Edson L.] Brazilian Agr Res Corp Embrapa, Secretariat Intelligence & Macrostrategy, BR-70770901 Brasilia, DF, Brazil. RP Morton, DC (reprint author), NASA, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA. EM douglas.morton@nasa.gov RI Morton, Douglas/D-5044-2012 FU NASA; Norwegian Agency for Development Cooperation (NORAD) [QZA-0465, QZA-13/0075]; Science Without Borders Visiting Scientist Fellowship FX Funding for this study was provided by NASA, the Norwegian Agency for Development Cooperation (NORAD, Grants QZA-0465 and QZA-13/0075), and a Science Without Borders Visiting Scientist Fellowship (D.C. Morton), administered by the Brazilian National Counsel of Scientific and Technological Development (CNPq) for the Brazilian Ministry of Science, Technology, and Innovation (MCTI). We are grateful to Drs. Britaldo Soares-Filho and Laura Hess for their willingness to share data on crop suitability and land cover. NR 46 TC 1 Z9 1 U1 6 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-3780 EI 1872-9495 J9 GLOBAL ENVIRON CHANG JI Glob. Environ. Change-Human Policy Dimens. PD MAR PY 2016 VL 37 BP 92 EP 101 DI 10.1016/j.gloenvcha.2016.02.001 PG 10 WC Environmental Sciences; Environmental Studies; Geography SC Environmental Sciences & Ecology; Geography GA DH4NL UT WOS:000372762600008 ER PT J AU Benjamins, VR Bobrow, D Doyle, R Hendler, J Kambhampati, S Raphael, B Wang, FY AF Benjamins, V. Richard Bobrow, Dan Doyle, Richard Hendler, James Kambhampati, Subbarao Raphael, Bert Wang, Fei-Yue TI Marvin Minsky, 9 August 1927-24 January 2016 IN MEMORIAM SO IEEE INTELLIGENT SYSTEMS LA English DT Biographical-Item C1 [Benjamins, V. Richard] Univ Amsterdam, Standard Part Artificial Intelligence Cognit Sci, NL-1012 WX Amsterdam, Netherlands. [Doyle, Richard] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hendler, James] Rensselaer Polytech Inst, Troy, NY 12181 USA. [Kambhampati, Subbarao] Arizona State Univ, Tempe, AZ 85287 USA. RP Benjamins, VR (reprint author), Univ Amsterdam, Standard Part Artificial Intelligence Cognit Sci, NL-1012 WX Amsterdam, Netherlands. NR 1 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1541-1672 EI 1941-1294 J9 IEEE INTELL SYST JI IEEE Intell. Syst. PD MAR-APR PY 2016 VL 31 IS 2 BP 3 EP 5 PG 3 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DH8DI UT WOS:000373023300001 ER PT J AU Krieger, G Moreira, A Zink, M Shimada, M Hensley, S AF Krieger, Gerhard Moreira, Alberto Zink, Manfred Shimada, Masanobu Hensley, Scott TI Foreword to the Special Issue on Synthetic Aperture Radar (SAR): New Techniques, Missions and Applications SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Editorial Material C1 [Krieger, Gerhard; Moreira, Alberto; Zink, Manfred] German Aerosp Ctr DLR, Microwaves & Radar Inst, D-82234 Wessling, Germany. [Shimada, Masanobu] Tokyo Denki Univ, Sch Sci & Engn, Hiki, Saitama 3500394, Japan. [Hensley, Scott] Jet Prop Lab, Pasadena, CA 91109 USA. RP Krieger, G (reprint author), German Aerosp Ctr DLR, Microwaves & Radar Inst, D-82234 Wessling, Germany. RI Moreira, Alberto/C-1147-2013 OI Moreira, Alberto/0000-0002-3436-9653 NR 28 TC 0 Z9 0 U1 4 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD MAR PY 2016 VL 9 IS 3 SI SI BP 967 EP 970 DI 10.1109/JSTARS.2016.2524918 PG 4 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DH8ON UT WOS:000373054100001 ER PT J AU Milillo, P Riel, B Minchew, B Yun, SH Simons, M Lundgren, P AF Milillo, Pietro Riel, Bryan Minchew, Brent Yun, Sang-Ho Simons, Mark Lundgren, Paul TI On the Synergistic Use of SAR Constellations' Data Exploitation for Earth Science and Natural Hazard Response SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article; Proceedings Paper CT 10th European Conference on Synthetic Aperture Radar (EUSAR) CY JUN 02-06, 2014 CL Berlin, GERMANY SP ITG, VDE, DLR, Airbus Def & Space, Fraunhofer, EUREL, URSI, DGON, IEEE GRSS, IEEE AESS DE COSMO-SkyMed (CSK); Earth science; interferometric SAR (InSAR); natural hazards ID ANTARCTIC ICE-SHEET; CALDERA; INTERFEROMETRY; COLLAPSE; STRESS; AREAS; SHELF; FLOW AB Several current and expected future SAR satellites missions (e.g., TanDEM-X (TDX)/PAZ, COSMO-SkyMed (CSK), and Sentinel-1A/B) are designed as constellations of SAR sensors. Relative to single satellite systems, such constellations can provide greater spatial coverage and temporal sampling, thereby enabling better control on interferometric decorrelation and lower latency data access. These improvements lead to more effective near real-time disaster monitoring, assessment and response, and a greater ability to constrain dynamically changing physical processes. Using observations from the CSK system, we highlight examples of the potential for such imaging capabilities to enable advances in Earth science and natural hazards response. C1 [Milillo, Pietro; Riel, Bryan; Minchew, Brent; Simons, Mark] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Milillo, Pietro] Univ Basilicata, Sch Engn, I-85100 Potenza, Italy. [Yun, Sang-Ho; Lundgren, Paul] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Milillo, P (reprint author), CALTECH, Seismol Lab, Pasadena, CA 91125 USA.; Milillo, P (reprint author), Univ Basilicata, Sch Engn, I-85100 Potenza, Italy. EM pietro.milillo@unibas.it OI Milillo, Pietro/0000-0002-1171-3976; Simons, Mark/0000-0003-1412-6395 FU California Institute of Technology under National Aeronautics and Space Administration FX COSMO-SkyMed data products processed at JPL under license from ASI as part of a collaborative project between CIDOT and JPL/Caltech. Original COSMO-SkyMed product-ASI-Agenzia Spaziale Italiana-(2014-2015). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The work of P. Milillo was done while he was a Special Student at Caltech. NR 39 TC 6 Z9 6 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD MAR PY 2016 VL 9 IS 3 SI SI BP 1095 EP 1100 DI 10.1109/JSTARS.2015.2465166 PG 6 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DH8ON UT WOS:000373054100013 ER PT J AU Boyce, BL Kramer, SLB Bosiljevac, TR Corona, E Moore, JA Elkhodary, K Simha, CHM Williams, BW Cerrone, AR Nonn, A Hochhalter, JD Bomarito, GF Warner, JE Carter, BJ Warner, DH Ingraffea, AR Zhang, T Fang, X Lua, J Chiaruttini, V Maziere, M Feld-Payet, S Yastrebov, VA Besson, J Chaboche, JL Lian, J Di, Y Wu, B Novokshanov, D Vajragupta, N Kucharczyk, P Brinnel, V Dobereiner, B Munstermann, S Neilsen, MK Dion, K Karlson, KN Foulk, JW Brown, AA Veilleux, MG Bignell, JL Sanborn, SE Jones, CA Mattie, PD Pack, K Wierzbicki, T Chi, SW Lin, SP Mahdavi, A Predan, J Zadravec, J Gross, AJ Ravi-Chandar, K Xue, L AF Boyce, B. L. Kramer, S. L. B. Bosiljevac, T. R. Corona, E. Moore, J. A. Elkhodary, K. Simha, C. H. M. Williams, B. W. Cerrone, A. R. Nonn, A. Hochhalter, J. D. Bomarito, G. F. Warner, J. E. Carter, B. J. Warner, D. H. Ingraffea, A. R. Zhang, T. Fang, X. Lua, J. Chiaruttini, V. Maziere, M. Feld-Payet, S. Yastrebov, V. A. Besson, J. Chaboche, J. -L. Lian, J. Di, Y. Wu, B. Novokshanov, D. Vajragupta, N. Kucharczyk, P. Brinnel, V. Doebereiner, B. Muenstermann, S. Neilsen, M. K. Dion, K. Karlson, K. N. Foulk, J. W., III Brown, A. A. Veilleux, M. G. Bignell, J. L. Sanborn, S. E. Jones, C. A. Mattie, P. D. Pack, K. Wierzbicki, T. Chi, S. -W. Lin, S. -P. Mahdavi, A. Predan, J. Zadravec, J. Gross, A. J. Ravi-Chandar, K. Xue, L. TI The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article DE Fracture; Rupture; Tearing; Deformation; Plasticity; Metal; Alloy; Simulation; rediction; Modeling ID POLYCRYSTALLINE AL 6061-T6; KERNEL PARTICLE METHODS; STRENGTH STEEL SHEETS; HIGH-STRAIN-RATE; CRACK-PROPAGATION; ROOM-TEMPERATURE; DAMAGE; MODEL; BEHAVIOR; DEFORMATION AB Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5-68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti-6Al-4V sheet under both quasi-static and modest-rate dynamic loading (failure in 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the 'state-of-the-art' in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods. C1 [Boyce, B. L.; Kramer, S. L. B.; Bosiljevac, T. R.; Corona, E.; Neilsen, M. K.; Bignell, J. L.; Sanborn, S. E.; Jones, C. A.; Mattie, P. D.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Moore, J. A.] Northwestern Univ, Evanston, IL USA. [Elkhodary, K.] Amer Univ Cairo, New Cairo, Egypt. [Simha, C. H. M.; Williams, B. W.] Nat Resources Canada, CanmetMAT, Hamilton, ON, Canada. [Cerrone, A. R.] GE Global Res Ctr, Niskayuna, NY USA. [Nonn, A.] Ostbayer Tech Hsch, Regensburg, Germany. [Hochhalter, J. D.; Bomarito, G. F.; Warner, J. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Carter, B. J.; Warner, D. H.; Ingraffea, A. R.] Cornell Univ, Ithaca, NY USA. [Zhang, T.; Fang, X.; Lua, J.] Global Engn & Mat Inc, Princeton, NJ USA. [Chiaruttini, V.; Feld-Payet, S.; Chaboche, J. -L.] Univ Paris Saclay, Onera, Chatillon, France. [Maziere, M.; Yastrebov, V. A.; Besson, J.] PSL Res Univ, MINES ParisTech, Ctr Mat, CNRS UMR 7633, Evry, France. [Lian, J.; Di, Y.; Wu, B.; Novokshanov, D.; Vajragupta, N.; Kucharczyk, P.; Brinnel, V.; Doebereiner, B.; Muenstermann, S.] Rhein Westfal TH Aachen, Aachen, Germany. [Dion, K.; Karlson, K. N.; Foulk, J. W., III; Brown, A. A.; Veilleux, M. G.] Sandia Natl Labs, Livermore, CA USA. [Pack, K.; Wierzbicki, T.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Chi, S. -W.; Lin, S. -P.; Mahdavi, A.] Univ Illinois, Chicago, IL USA. [Predan, J.; Zadravec, J.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Gross, A. J.; Ravi-Chandar, K.] Univ Texas Austin, Austin, TX 78712 USA. [Xue, L.] Thinkviewer LLC, Sugar Land, TX USA. RP Boyce, BL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM blboyce@sandia.gov; slkrame@sandia.gov; trbosil@sandia.gov; ecorona@sandia.gov; johnallanmoore@gmail.com; khalile@aucegypt.edu; Hari.Simha@NRCan-RNCan.gc.ca; Bruce.Williams@NRCan-RNCan.gc.ca; albert.cerrone@ge.com; aida.nonn@oth-regensburg.de; jacob.d.hochhalter@nasa.gov; geoffrey.f.bomarito@nasa.gov; james.e.warner@nasa.gov; bjc21@cornell.edu; reddhw52@cornell.edu; ari1@cornell.edu; tzhang@gem-innovation.com; xfang@gem-innovation.com; jlua@gem-innovation.com; vincent.chiaruttini@onera.fr; matthieu.maziere@mines-paristech.fr; sylvia.feld-payet@onera.fr; vladislav.yastrebov@mines-paristech.fr; jacques.besson@mines-paristech.fr; jean-louis.chaboche@onera.fr; junhe.lian@iehk.rwth-aachen.de; yidu.di@iehk.rwth-aachen.de; bo.wu@iehk.rwth-aachen.de; denis.novokshanov@iehk.rwth-aachen.de; napat.vajragupta@iehk.rwth-aachen.de; pawel.kucharczyk@iehk.rwth-aachen.de; victoria.brinnel@iehk.rwth-aachen.de; benedikt.doebereiner@iehk.rwth-aachen.de; sebastian.muenstermann@iehk.rwth-aachen.de; mkneils@sandia.gov; kdion@sandia.gov; knkarls@sandia.gov; jwfoulk@sandia.gov; aabrown@sandia.gov; mgveill@sandia.gov; jbignel@sandia.gov; sesanbo@sandia.gov; cajone@sandia.gov; pdmatti@sandia.gov; kpack@mit.edu; wierz@mit.edu; swchi@uic.edu; slin46@ford.com; amahda2@uic.edu; jozef.predan@um.si; zadravec.jozef@gmail.com; andrew.gross@mail.utexas.edu; ravi@utexas.edu; xue@alum.mit.edu RI Besson, Jacques/A-4144-2008; Munstermann, Sebastian/E-5480-2012; Xue, Liang/A-1266-2007; Warner, Derek/A-2303-2012; Lian, Junhe/C-5492-2009 OI Besson, Jacques/0000-0003-1975-2408; Munstermann, Sebastian/0000-0002-6251-2429; Xue, Liang/0000-0003-0468-0624; Lian, Junhe/0000-0003-0323-3486 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Office of Naval Research: MURI [N00014-06-1-0505-A00001]; Office of Naval Research: FNC Project [N00014-08-1-0189]; Office of Naval Research [N00014-11-C-0487]; National Science Foundation [CMMI-1532528] FX BLB and HEF would like to thank Dr. James Redmond for managing Sandia's role in this work through the DOE Advanced Scientific Computing program. SLBK and TRB would like to thank Dr. Dennis Croessmann and Dr. David Epp for their management role supporting the experimental efforts at Sandia for this work through the NNSA Weapon System Engineering and Assessment Technology Engineering Campaign. JLB, SES, and CAJ would like to thank DOE/NE and Ryan Bechtel for partially supporting their participation in this challenge. The Sandia authors would like to thank the follow-ing individuals for providing laboratory support of the experiments: Thomas Crenshaw, John Laing, Jhana Gearhart, Mathew Ingraham, Artis Jackson, Darren Pendley, Jack Heister, and Alice Kilgo. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The work of AJG and KRC at the University of Texas was performed during the course of an investigation into ductile failure under two related research programs funded by the Office of Naval Research: MURI Project N00014-06-1-0505-A00001 and FNC Project: N00014-08-1-0189; this support is gratefully acknowledged. The authors from GEM are grateful for the support provided by the Office of Naval Research (N00014-11-C-0487) for which Dr. Paul Hess and Dr. Ken Nahshon serve as the technical monitors. KP and TW are grateful to Dr. Borja Erice at Ecole Polytechnique for the development of the user material subroutine; thanks are also due to Dr. Christian C. Roth at MIT for a valuable discussion. The authors gratefully acknowledge financial support from the National Science Foundation (Grant Number CMMI-1532528, "Summit on Predictive Modeling of Ductile Failure") towards holding a Summit to discuss and distill the results reported in this article. NR 68 TC 8 Z9 8 U1 14 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 EI 1573-2673 J9 INT J FRACTURE JI Int. J. Fract. PD MAR PY 2016 VL 198 IS 1-2 BP 5 EP 100 DI 10.1007/s10704-016-0089-7 PG 96 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA DH4KV UT WOS:000372755800002 ER PT J AU Cerrone, AR Nonn, A Hochhalter, JD Bomarito, GF Warner, JE Carter, BJ Warner, DH Ingraffea, AR AF Cerrone, A. R. Nonn, A. Hochhalter, J. D. Bomarito, G. F. Warner, J. E. Carter, B. J. Warner, D. H. Ingraffea, A. R. TI Predicting failure of the Second Sandia Fracture Challenge geometry with a real-world, time constrained, over-the-counter methodology SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article DE Ti-6Al-4V; Failure locus curve; Sandia Fracture Challenge; Anisotropic yielding ID DUCTILE FRACTURE; GROWTH AB An over-the-counter methodology to predict fracture initiation and propagation in the challenge specimen of the Second Sandia Fracture Challenge is detailed herein. This pragmatic approach mimics that of an engineer subjected to real-world time constraints and unquantified uncertainty. First, during the blind prediction phase of the challenge, flow and failure locus curves were calibrated for Ti-6Al-4V with provided tensile and shear test data for slow (0.0254 mm/s) and fast (25.4 mm/s) loading rates. Thereafter, these models were applied to a 3D finite-element mesh of the non-standardized challenge geometry with nominal dimensions to predict, among other items, crack path and specimen response. After the blind predictions were submitted to Sandia National Labs, they were improved upon by addressing anisotropic yielding, damage initiation under shear dominance, and boundary condition selection. C1 [Cerrone, A. R.] GE Global Res Ctr, Niskayuna, NY USA. [Nonn, A.] Ostbayer Tech Hsch, Regensburg, Germany. [Hochhalter, J. D.; Bomarito, G. F.; Warner, J. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Carter, B. J.; Warner, D. H.; Ingraffea, A. R.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. RP Cerrone, AR (reprint author), GE Global Res Ctr, Niskayuna, NY USA. EM Albert.Cerrone@ge.com RI Warner, Derek/A-2303-2012 NR 12 TC 1 Z9 1 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 EI 1573-2673 J9 INT J FRACTURE JI Int. J. Fract. PD MAR PY 2016 VL 198 IS 1-2 BP 117 EP 126 DI 10.1007/s10704-016-0086-x PG 10 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA DH4KV UT WOS:000372755800004 ER PT J AU Kerr, JE Arndt, GD Byerly, DL Rubinovitz, R Theriot, CA Stangel, I AF Kerr, J. E. Arndt, G. D. Byerly, D. L. Rubinovitz, R. Theriot, C. A. Stangel, I. TI FT-Raman Spectroscopy Study of the Remineralization of Microwave-Exposed Artificial Caries SO JOURNAL OF DENTAL RESEARCH LA English DT Article DE dental caries; tooth remineralization; in vitro techniques; microbiology; Raman spectroscopy; x-ray computerized tomography ID STREPTOCOCCUS-MUTANS; MILLIMETER WAVES; DENTAL DIAGNOSIS; ENAMEL; ADULTS; LESIONS; MODEL AB Dental caries is a microbially mediated disease that can result in significant tooth structure degradation. Although the preponderance of lesions is treated by surgical intervention, various strategies have been developed for its noninvasive management. Here, we use a novel approach for noninvasive treatment based on killing Streptococcus mutans with high-frequency microwave energy (ME). The rationale for this approach is based on modulating the pH of caries to a physiological state to enable spontaneous tooth remineralization from exogenous sources. In the present study, after demonstrating that ME kills > 99% of S. mutans in planktonic cultures, 8 enamel slabs were harvested from a single tooth. Baseline mineral concentration at each of 12 points per slab was obtained using Fourier transform (FT)-Raman spectroscopy. Surface demineralization was subsequently promoted by subjecting all samples to an S. mutans acidic biofilm for 6 d. Half of the samples were then exposed to high-frequency ME, and the other half were used as controls. All samples were next subjected to a remineralization protocol consisting of two 45-min exposures per 24-h period in tryptic soy broth followed by immersion in a remineralizing solution for the remaining period. After 10 d, samples were removed and cleaned. FT-Raman spectra were again obtained at the same 12 points per sample, and the mineral concentration was determined. The effect of the remineralization protocol on the demineralized slabs was expressed as a percentage of mineral loss or gain relative to baseline. The mineral concentration of the microwave-exposed group collectively approached 100% of baseline values, while that of the control group was in the order of 40%. Differences between groups were significant (P = 0.001, Mann-Whitney U test). We concluded that killing of S. mutans by ME promotes effective remineralization of S. mutans-demineralized enamel compared with controls. C1 [Kerr, J. E.] Notre Dame Maryland Univ, Dept Biol, Baltimore, MD USA. [Arndt, G. D.; Byerly, D. L.] NASA, Biomed Engn Explorat Space Technol Lab, Engn Lab, Lyndon B Johnson Space Ctr, Houston, TX USA. [Rubinovitz, R.] Thermo Fisher Sci, Lanham, MD USA. [Theriot, C. A.] Univ Texas Med Branch, Dept Prevent Med & Community Hlth, Galveston, TX 77555 USA. [Stangel, I.] BioMat Sci, 5612 Glenwood Rd, Bethesda, MD 20817 USA. RP Stangel, I (reprint author), BioMat Sci, 5612 Glenwood Rd, Bethesda, MD 20817 USA. EM stangel@biomatsciences.com FU National Science Foundation [1215100]; Notre Dame of Maryland University Council for Faculty Research and Development [CFRD1001] FX This research was funded by National Science Foundation grant #1215100 and Notre Dame of Maryland University Council for Faculty Research and Development grant #CFRD1001 (J.E. Kerr). The authors further acknowledge Micro Photonics (Allentown, PA, USA) for its work in generating the micro-computed tomography image used in this publication. G.D. Arndt, D. Byerly, and I. Stangel have a filed patent application based on the work reported in this article. The authors declare no other potential conflicts of interest with respect to the authorship and/or publication of this article. NR 36 TC 0 Z9 0 U1 2 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-0345 EI 1544-0591 J9 J DENT RES JI J. Dent. Res. PD MAR PY 2016 VL 95 IS 3 BP 342 EP 348 DI 10.1177/0022034515619370 PG 7 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA DH8YJ UT WOS:000373082500013 PM 26647390 ER PT J AU Harris, HS Benson, SR James, MC Martin, KJ Stacy, BA Daoust, PY Rist, PM Work, TM Balazs, GH Seminoff, JA AF Harris, Heather S. Benson, Scott R. James, Michael C. Martin, Kelly J. Stacy, Brian A. Daoust, Pierre-Yves Rist, Paul M. Work, Thierry M. Balazs, George H. Seminoff, Jeffrey A. TI VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA) SO JOURNAL OF ZOO AND WILDLIFE MEDICINE LA English DT Article DE Body condition; Dermochelys coriacea; fat; health; leatherback sea turtle; ultrasound ID THICKNESS; LIPIDS AB Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-908) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species. C1 [Harris, Heather S.; Benson, Scott R.; Seminoff, Jeffrey A.] Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA. [James, Michael C.] Fisheries & Oceans Canada, Bedford Inst Oceanog, 1 Challenger Dr, Dartmouth, NS B2Y 4A2, Canada. [Martin, Kelly J.] Loggerhead Marinelife Ctr, 14200 US Highway 1, Juno Beach, FL 33408 USA. [Stacy, Brian A.] Natl Marine Fisheries Serv, Off Protected Resources, POB 110885, Gainesville, FL 32611 USA. [Daoust, Pierre-Yves; Rist, Paul M.] Univ Prince Edward Isl, Atlantic Vet Coll, 550 Univ Ave, Charlottetown, PE C1A 4P3, Canada. [Work, Thierry M.] US Geol Survey, Natl Wildlife Hlth Ctr, Honolulu Field Stn, 300 Ala Moana Blvd,Room 5231, Honolulu, HI 96850 USA. [Balazs, George H.] Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd, Honolulu, HI 96818 USA. [Martin, Kelly J.] Project Leatherback Inc, 3330 Fairchild Gardens Ave 31061, Palm Beach Gardens, FL 33410 USA. RP Harris, HS (reprint author), Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA. EM heathersharris@gmail.com FU California Department of Fish and Wildlife's Oil Spill Response Trust Fund through the Oiled Wildlife Care Network at the Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis FX This project was supported in part by the California Department of Fish and Wildlife's Oil Spill Response Trust Fund through the Oiled Wildlife Care Network at the Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis. Field work was conducted under permits from the National Oceanic and Atmospheric Administration (NOAA) (1596-01, 1596-03, and 15634), the Florida Fish and Wildlife Conservation Commission Marine Turtle Permit (157), and Fisheries and Oceans Canada License 332697. All live animal procedures were approved by Institutional Animal Care and Use Committee (IACUC) through Moss Landing Marine Laboratories/San Jose State University Research Foundation (974). The authors thank C. Harms, M. Boor, J. Mellish, and C. Harvey-Clark for valuable scientific input; C. Fahy from the NOAA West Coast Regional Office; J. Douglas from the Moss Landing Marine Laboratories; the in-water capture and aerial teams from NOAA Southwest Fisheries Science Center and Canadian Sea Turtle Network; the necropsy teams from the California Department of Fish and Wildlife's Marine Wildlife Veterinary Care and Research Center, Atlantic Veterinary College, and NOAA Pacific Islands Fisheries Science Center, especially T. Jones; C. Innis, J. Cavin, and the New England Aquarium Departments of Animal Health and Rescue and Rehabilitation; C. Johnson and the leatherback field research team from the Loggerhead Marinelife Center; marine wildlife stranding networks in the United States and Canada; and the NOAA Pacific Islands longline fisheries observer program. NR 15 TC 0 Z9 0 U1 2 U2 3 PU AMER ASSOC ZOO VETERINARIANS PI YULEE PA 581705 WHITE OAK ROAD, YULEE, FL 32097 USA SN 1042-7260 EI 1937-2825 J9 J ZOO WILDLIFE MED JI J. Zoo Wildl. Med. PD MAR PY 2016 VL 47 IS 1 BP 275 EP 279 PG 5 WC Veterinary Sciences SC Veterinary Sciences GA DI0TU UT WOS:000373211000031 PM 27010287 ER PT J AU Freissinet, C Getty, SA Trainer, MG Glavin, DP Mahaffy, PR McLain, HL Benna, M AF Freissinet, C. Getty, S. A. Trainer, M. G. Glavin, D. P. Mahaffy, P. R. McLain, H. L. Benna, M. TI Evaluation of the robustness of chromatographic columns in a simulated highly radiative Jovian environment SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Capillary columns stationary phases; Radiations; Electrons; Icy moons; Gas chromatography mass spectrometry; Organics ID IN-SITU ANALYSIS; GAS-CHROMATOGRAPHY; COMETARY NUCLEUS AB Gas chromatography mass spectrometry (GCMS) is currently the most widely used analytical method for in situ investigation of organic molecules in space environments. Various types of GC column stationary phases have been, are currently, or will be used at the different solar system bodies including Mars, the Moon, Titan and comets. However, GCMS use in highly radiative environments such as Jupiter and its moons has never been explored and raises questions on the robustness of GC columns and stationary phases to extreme radiation. In this study, several types of GC columns were irradiated by high-energy electrons and protons in order to simulate the harsh conditions of a journey through Jupiter's radiation belts. Post-irradiation characterization shows that the three types of columns investigated, DB-5MS, CP-Chirasil-Dex CB and GS-GasPro, maintained their peak resolution and general separation performance after the radiation exposure. These results demonstrate that GCMS techniques can be applied to study the space environment of Jupiter's icy moons with no need for substantial radiation shielding of the columns. (c) 2016 Elsevier Ltd. All rights reserved. C1 [Freissinet, C.; Getty, S. A.; Trainer, M. G.; Glavin, D. P.; Mahaffy, P. R.; McLain, H. L.; Benna, M.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. [Freissinet, C.] Oak Ridge Associated Univ, NASA, Postdoctoral Program, Oak Ridge, TN 37830 USA. [Benna, M.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. RP Freissinet, C (reprint author), NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. EM caroline.freissinet@nasa.gov RI Benna, Mehdi/F-3489-2012; Glavin, Daniel/D-6194-2012 OI Glavin, Daniel/0000-0001-7779-7765 NR 14 TC 1 Z9 1 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAR PY 2016 VL 122 BP 38 EP 45 DI 10.1016/j.pss.2016.01.004 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH4RS UT WOS:000372773700004 ER PT J AU Litvak, ML Mitrofanov, IG Sanin, AB Bakhtin, BN Bodnarik, JG Boynton, WV Chin, G Evans, LG Harshman, K Livengood, TA Malakhov, A Mokrousov, MI McClanahan, TP Sagdeev, R Starr, R AF Litvak, M. L. Mitrofanov, I. G. Sanin, A. B. Bakhtin, B. N. Bodnarik, J. G. Boynton, W. V. Chin, G. Evans, L. G. Harshman, K. Livengood, T. A. Malakhov, A. Mokrousov, M. I. McClanahan, T. P. Sagdeev, R. Starr, R. TI The variations of neutron component of lunar radiation background from LEND/LRO observations SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Neutrons; Moon; LEND ID DETECTOR EXPERIMENT LEND; MARS-ODYSSEY; RECONNAISSANCE ORBITER; GAMMA-RAY; INSTRUMENT SUITE; SOLAR MODULATION; COSMIC-RAYS; WATER ICE; HYDROGEN; MOON AB Lunar neutron flux data measured by the Lunar Exploration Neutron Detector (LEND) onboard NASA's Lunar Reconnaissance Orbiter (LRO) were analyzed for the period 2009-2014. We have re-evaluated the instrument's collimation capability and re-estimated the neutron counting rate measured in the Field of View (FOV) of the LEND collimated detectors, and found it to be 1.0 +/- 0.1 counts per second. We derived the spectral density of the neutron flux for various lunar regions using our comprehensive numerical model of orbital measurements. This model takes into account the location of the LEND instrument onboard LRO to calculate the surface leakage neutron flux and its propagation to the instrument detectors. Based on this we have determined the lunar neutron flux at the surface to be similar to 2 neutrons/[cm(2) sec] in the epithermal energy range, 0.4 eV to 1 key. We have also found variations of the lunar neutron leakage flux with amplitude as large as a factor of two, by using multi-year observations to explore variations in the Galactic Cosmic Ray (GCR) flux during the 23rd-24th solar cycles. (c) 2016 Elsevier Ltd. All rights reserved. C1 [Litvak, M. L.; Mitrofanov, I. G.; Sanin, A. B.; Bakhtin, B. N.; Malakhov, A.; Mokrousov, M. I.] RAS, Space Res Inst, Profsouznaya St 84-32, Moscow 117997, Russia. [Bodnarik, J. G.; Boynton, W. V.; Harshman, K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Chin, G.; Evans, L. G.; Livengood, T. A.; McClanahan, T. P.; Starr, R.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Evans, L. G.] Comp Sci Corp, Lanham, MD 20706 USA. [Livengood, T. A.; Sagdeev, R.] Univ Maryland, College Pk, MD 20742 USA. [Starr, R.] Catholic Univ Amer, Washington, DC 20064 USA. RP Litvak, ML (reprint author), RAS, Space Res Inst, Profsouznaya St 84-32, Moscow 117997, Russia. EM mlitvak.iki@gmail.com FU Russian Science Foundation [14-22-00249] FX This work is supported by the Grant# 14-22-00249 from Russian Science Foundation. NR 40 TC 2 Z9 3 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAR PY 2016 VL 122 BP 53 EP 65 DI 10.1016/j.pss.2016.01.006 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH4RS UT WOS:000372773700006 ER PT J AU Ajello, M Albert, A Atwood, WB Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bottacini, E Brandt, TJ Bregeon, J Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caputo, R Caragiulo, M Carave, PA Cecchi, C Chekhtman, A Chiang, J Chiaro, G Ciprini, S Cohen-Tanugi, J Cominsky, LR Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Desiante, R Di Venere, L Drell, PS Favuzzi, C Ferrara, EC Fusco, P Gargano, F Gasparrini, D Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Gomez-Vargas, GA Grenier, IA Guiriec, S Gustafsson, M Harding, AK Hewitt, JW Hill, AB Horan, D Jogler, T Johannesson, G Johnson, AS Kamae, T Karwin, C Knodlseder, J Kuss, M Larsson, S Latronico, L Li, J Li, L Longo, F Loparco, F Lovellette, MN Lubrano, P Magill, J Maldera, S Malyshev, D Manfreda, A Mayer, M Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Pesce-Rollins, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Sanchez-Conde, M Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Spada, F Spandre, G Spinelli, P Suson, DJ Tajima, H Takahashi, H Thayer, JB Torres, DF Tosti, G Troja, E Uchiyama, Y Vianello, G Winer, BL Wood, KS Zaharijas, G Zimmer, S AF Ajello, M. Albert, A. Atwood, W. B. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bottacini, E. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caputo, R. Caragiulo, M. Carave, P. A. Cecchi, C. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Desiante, R. Di Venere, L. Drell, P. S. Favuzzi, C. Ferrara, E. C. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Gomez-Vargas, G. A. Grenier, I. A. Guiriec, S. Gustafsson, M. Harding, A. K. Hewitt, J. W. Hill, A. B. Horan, D. Jogler, T. Johannesson, G. Johnson, A. S. Kamae, T. Karwin, C. Knoedlseder, J. Kuss, M. Larsson, S. Latronico, L. Li, J. Li, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Magill, J. Maldera, S. Malyshev, D. Manfreda, A. Mayer, M. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Sanchez-Conde, M. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Spada, F. Spandre, G. Spinelli, P. Suson, D. J. Tajima, H. Takahashi, H. Thayer, J. B. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Vianello, G. Winer, B. L. Wood, K. S. Zaharijas, G. Zimmer, S. TI FERMI-LAT OBSERVATIONS OF HIGH-ENERGY gamma-RAY EMISSION TOWARD THE GALACTIC CENTER SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; Galaxy: center; gamma-rays: general; gamma-rays: ISM; radiation mechanisms: non-thermal ID LARGE-AREA TELESCOPE; RADIAL-DISTRIBUTION; DARK-MATTER; COSMIC-RAYS; SOURCE CATALOG; SUPERNOVA-REMNANTS; EGRET OBSERVATIONS; OUTER GALAXY; CONSTRAINTS; GRADIENT AB The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a 15 degrees x 15 degrees region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the.-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner similar to 1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15 degrees x 15 degrees region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with gamma-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM. C1 [Ajello, M.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Drell, P. S.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Drell, P. S.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Caputo, R.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Caputo, R.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Barbiellini, G.; Longo, F.; Zaharijas, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Zaharijas, G.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bechtol, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bechtol, K.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Bellazzini, R.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34059 Montpellier, France. [Bruel, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Buehler, R.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Carave, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy. [Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Sanchez-Conde, M.; Zimmer, S.] Stockholm Univ, Dept Phys, Alballova, SE-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Li, L.; Sanchez-Conde, M.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, Alballova, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, Box 50005, SE-10405 Stockholm, Sweden. [D'Ammando, F.; Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Dept Fis, Ave Vicuna Mackenna 4860, Santiago, Chile. [Grenier, I. A.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Gustafsson, M.] Univ Gottingen, Inst Theoret Phys, Fac Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. [Hewitt, J. W.] Univ N Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland. [Kamae, T.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Karwin, C.; Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Larsson, S.; Li, L.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] CSIC, Inst Space Sci IEEC, Campus UAB, E-08193 Barcelona, Spain. [Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mitthumsiri, W.] Mahidol Univ, Dept Phys, Fac Sci, Bangkok 10400, Thailand. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ohno, M.; Takahashi, H.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ormes, J. F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Razzano, M.] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Parkinson, P. M. Saz] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, BP120, F-33175 Gradignan, France. [Siskind, E. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Smith, D. A.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Suson, D. J.] ICREA, Barcelona, Spain. [Tajima, H.] 3-34-1 Nishi Ikebukuro,Toshima Ku, Tokyo 1718501, Japan. [Torres, D. F.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Uchiyama, Y.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Uchiyama, Y.] Univ Trieste, I-34127 Trieste, Italy. [Winer, B. L.] Univ Nova Gorica, Lab Astroparticle Phys, Vipayska 13, SI-5000 Nova Gorica, Slovenia. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. RP Murgia, S; Porter, TA (reprint author), Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA.; Porter, TA (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.; Porter, TA (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.; Murgia, S (reprint author), Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. EM smurgia@uci.edu; tporter@stanford.edu RI Moskalenko, Igor/A-1301-2007; Bissaldi, Elisabetta/K-7911-2016; Reimer, Olaf/A-3117-2013; Orlando, E/R-5594-2016; Bonino, Raffaella/S-2367-2016; Torres, Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017; OI Moskalenko, Igor/0000-0001-6141-458X; Bissaldi, Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385; Torres, Diego/0000-0002-1522-9065; Di Venere, Leonardo/0000-0003-0703-824X; Sgro', Carmelo/0000-0001-5676-6214; Zaharijas, Gabrijela/0000-0001-8484-7791; Hill, Adam/0000-0003-3470-4834; Ajello, Marco/0000-0002-6584-1703 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; NASA [NNX 09AC15G, NNX 10AE78G, NNX 13AC47G] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; GALPROP development is partially funded via NASA grants NNX 09AC15G, NNX 10AE78G, and NNX 13AC47G. NR 67 TC 50 Z9 50 U1 9 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 44 DI 10.3847/0004-637X/819/1/44 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400044 ER PT J AU Arcavi, I Wolf, WM Howell, DA Bildsten, L Leloudas, G Hardin, D Prajs, S Perley, DA Svirski, G Gal-Yam, A Katz, B McCully, C Cenko, SB Lidman, C Sullivan, M Valenti, S Astier, P Balland, C Carlberg, RG Conley, A Fouchez, D Guy, J Pain, R Palanque-Delabrouille, N Perrett, K Pritchet, CJ Regnault, N Rich, J Ruhlmann-Kleider, V AF Arcavi, Iair Wolf, William M. Howell, D. Andrew Bildsten, Lars Leloudas, Giorgos Hardin, Delphine Prajs, Szymon Perley, Daniel A. Svirski, Gilad Gal-Yam, Avishay Katz, Boaz McCully, Curtis Cenko, S. Bradley Lidman, Chris Sullivan, Mark Valenti, Stefano Astier, Pierre Balland, Cristophe Carlberg, Ray G. Conley, Alex Fouchez, Dominique Guy, Julien Pain, Reynald Palanque-Delabrouille, Nathalie Perrett, Kathy Pritchet, Chris J. Regnault, Nicolas Rich, James Ruhlmann-Kleider, Vanina TI RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA-SUPERLUMINOUS SUPERNOVA GAP SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: individual (PTF10iam, SNLS04D4ec, SNLS05D2bk, SNLS06D1hc, Dougie) ID WHITE-DWARF MODELS; CORE-COLLAPSE SUPERNOVAE; GAMMA-RAY BURSTS; EXPANDING PHOTOSPHERE METHOD; STAR-FORMING GALAXIES; TIME LIGHT CURVES; SHOCK-BREAKOUT; IA SUPERNOVAE; LEGACY SURVEY; CIRCUMSTELLAR INTERACTION AB We present observations of four rapidly rising (t(rise) approximate to 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M-peak approximate to-20)-one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Ha emission, but an unusual absorption feature, which can be interpreted as either high velocity Ha (though deeper than in previously known cases) or Si II (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a "Type 1.5 SN" scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature. C1 [Arcavi, Iair; Howell, D. Andrew] Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA. [Arcavi, Iair; Bildsten, Lars; McCully, Curtis; Valenti, Stefano] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Wolf, William M.; Howell, D. Andrew; Bildsten, Lars; McCully, Curtis; Valenti, Stefano] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Leloudas, Giorgos; Perley, Daniel A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Manes Vej 30, DK-2100 Copenhagen, Denmark. [Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Guy, Julien; Pain, Reynald; Regnault, Nicolas] CNRS, IN2P3, LPNHE, F-75005 Paris, France. [Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Guy, Julien; Pain, Reynald; Regnault, Nicolas] Univ Paris 06, F-75005 Paris, France. [Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Guy, Julien; Pain, Reynald; Regnault, Nicolas] Univ Paris 07, F-75005 Paris, France. [Prajs, Szymon; Sullivan, Mark] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Svirski, Gilad] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Cenko, S. Bradley] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Lidman, Chris] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. [Carlberg, Ray G.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H8, Canada. [Conley, Alex] Univ Colorado, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. [Fouchez, Dominique] Aix Marseille Univ, CNRS, IN2P3, CPPM UMR 7346, F-13288 Marseille, France. [Palanque-Delabrouille, Nathalie; Rich, James; Ruhlmann-Kleider, Vanina] CEA Saclay, DSM, IRFU, SPP, F-91191 Gif Sur Yvette, France. [Perrett, Kathy] DRDC Ottawa, 3701 Carling Ave, Ottawa, ON K1A 0Z4, Canada. [Pritchet, Chris J.] Univ Victoria, Dept Phys & Astron, POB 3055, Victoria, BC V8W 3P6, Canada. RP Arcavi, I (reprint author), Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA.; Arcavi, I (reprint author), Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. EM iarcavi@lcogt.net OI Wolf, William/0000-0002-6828-0630; Sullivan, Mark/0000-0001-9053-4820 FU ESO program [176. A-0589]; National Science Foundation [1313484, PHY 11-25915, AST 11-09174]; Israeli Science Foundation; EU/FP7/ERC grant; BSF; GIF; Minerva; "Quantum universe" I-Core program of the planning and budgeting committee; ISF; Kimmel Investigator award; Danish National Research Foundation; W. M. Keck Foundation; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We thank J. Silverman and J. Johansson for helpful discussions and S. Sim and M. Kromer for sharing their white dwarf detonation models. This paper is based on observations obtained at the Cerro Paranal Observatory (ESO program 176. A-0589) and with the Samuel Oschin Telescope as part of the Palomar Transient Factory project. We are grateful for the assistance of the staffs at the various observatories where data were obtained. This work made use of the astronomy & astrophysics package for Matlab (Ofek 2014). Some of the work presented here is supported by the National Science Foundation under Grant No. 1313484. I.A. and A.G. acknowledge support by the Israeli Science Foundation and an EU/FP7/ERC grant. A.G. further acknowledges grants from the BSF, GIF, and Minerva, as well as the "Quantum universe" I-Core program of the planning and budgeting committee and the ISF, and a Kimmel Investigator award. The work of W.M.W. and L.B. was supported by the National Science Foundation under grants PHY 11-25915 and AST 11-09174. The Dark Cosmology Centre is funded by the Danish National Research Foundation. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some data are based on observations obtained at the Gemini Observatory processed using the Gemini IRAF package, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina). This work made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 138 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 35 DI 10.3847/0004-637X/819/1/35 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400035 ER PT J AU Civano, F Marchesi, S Comastri, A Urry, MC Elvis, M Cappelluti, N Puccetti, S Brusa, M Zamorani, G Hasinger, G Aldcroft, T Alexander, DM Allevato, V Brunner, H Capak, P Finoguenov, A Fiore, F Fruscione, A Gilli, R Glotfelty, K Griffiths, RE Hao, H Harrison, FA Jahnke, K Kartaltepe, J Karim, A LaMassa, SM Lanzuisi, G Miyaji, T Ranalli, P Salvato, M Sargent, M Scoville, NJ Schawinski, K Schinnerer, E Silverman, J Smolcic, V Stern, D Toft, S Trakhenbrot, B Treister, E Vignali, C AF Civano, F. Marchesi, S. Comastri, A. Urry, M. C. Elvis, M. Cappelluti, N. Puccetti, S. Brusa, M. Zamorani, G. Hasinger, G. Aldcroft, T. Alexander, D. M. Allevato, V. Brunner, H. Capak, P. Finoguenov, A. Fiore, F. Fruscione, A. Gilli, R. Glotfelty, K. Griffiths, R. E. Hao, H. Harrison, F. A. Jahnke, K. Kartaltepe, J. Karim, A. LaMassa, S. M. Lanzuisi, G. Miyaji, T. Ranalli, P. Salvato, M. Sargent, M. Scoville, N. J. Schawinski, K. Schinnerer, E. Silverman, J. Smolcic, V. Stern, D. Toft, S. Trakhenbrot, B. Treister, E. Vignali, C. TI THE CHANDRA COSMOS LEGACY SURVEY: OVERVIEW AND POINT SOURCE CATALOG SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; cosmology: observations; galaxies: evolution; quasars: general; surveys; X-rays: general ID WIDE-FIELD SURVEY; ACTIVE GALACTIC NUCLEI; EVOLUTION SURVEY COSMOS; MS SOURCE CATALOGS; X-RAY SURVEY; XMM-NEWTON; BLACK-HOLE; NUMBER COUNTS; STRIPE 82; LOG S AB The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg(2) of the COSMOS field with an effective exposure of similar or equal to 160 ks over the central 1.5 deg(2) and of similar or equal to 80 ks in the remaining area. The survey is the combination of 56 new observations obtained as an X-ray Visionary Project with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2 x 10(-5). We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft, and hard band). The limiting depths are 2.2 x 10(-16), 1.5 x 10(-15), and 8.9 x 10(-16) erg cm(-2) s(-1)in the 0.5-2, 2-10, and 0.5-10 keV bands, respectively. The observed fraction of obscured active galactic nuclei with a column density >10(22) cm(-2) from the hardness ratio (HR) is similar to 50(-16)(+17)%. Given the large sample we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5%-10%. For the first time we compute number counts for obscured (HR > -0.2) and unobscured (HR < -0.2) sources and find significant differences between the two populations in the soft band. Due to the unprecedent large exposure, COSMOS-Legacy area is three times larger than surveys at similar depths and its depth is three times fainter than surveys covering similar areas. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come. C1 [Civano, F.; Marchesi, S.; Urry, M. C.; LaMassa, S. M.] Yale Univ, Ctr Astron & Astrophys, 260 Whitney Ave, New Haven, CT 06520 USA. [Civano, F.; Marchesi, S.; Elvis, M.; Aldcroft, T.; Fruscione, A.; Glotfelty, K.; Hao, H.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Marchesi, S.; Brusa, M.; Lanzuisi, G.; Vignali, C.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Comastri, A.; Cappelluti, N.; Brusa, M.; Zamorani, G.; Gilli, R.; Lanzuisi, G.; Vignali, C.] INAF Osservatorio Astronom Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Puccetti, S.] ASDC ASI, Via Politecn, I-00133 Rome, Italy. [Hasinger, G.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Alexander, D. M.] Univ Durham, Dept Phys, Ctr Extragalact Astron, South Rd, Durham DH1 3LE, England. [Allevato, V.; Finoguenov, A.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FI-00014 Helsinki, Finland. [Brunner, H.; Salvato, M.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Capak, P.] IPAC, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Capak, P.; Scoville, N. J.] CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Fiore, F.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Griffiths, R. E.] Univ Hawaii, Div Nat Sci, Dept Phys & Astron, 200 W Kawili St, Hilo, HI 96720 USA. [Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, 1216 E Calif Blvd, Pasadena, CA 91125 USA. [Jahnke, K.; Schinnerer, E.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Kartaltepe, J.] Natl Opt Astron Observ, 950N Cherry Ave, Tucson, AZ 85719 USA. [Kartaltepe, J.] Rochester Inst Technol, Sch Phys & Astron, 84 Lomb Mem Dr, Rochester, NY 14623 USA. [Karim, A.] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany. [Miyaji, T.] Univ Nacl Autonoma Mexico, Inst Astron Sede Ensenada, Km 103,Carret Tijunana Ensenada, Ensenada, Baja California, Mexico. [Miyaji, T.] Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Ranalli, P.] Natl Observ Athens, AASARS, Penteli 15236, Greece. [Sargent, M.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Schawinski, K.; Trakhenbrot, B.] Swiss Fed Inst Technol, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Schinnerer, E.] Natl Radio Astron Observ, Pete V Domenici Sci Operat Ctr, 1003 Lopezville Rd, Socorro, NM 87801 USA. [Silverman, J.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan. [Smolcic, V.] Univ Zagreb, Dept Phys, Bijeniaa Cesta 32, HR-10000 Zagreb, Croatia. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Toft, S.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Mariesvej 30, DK-2100 Copenhagen, Denmark. [Treister, E.] Univ Concepcion, Dept Astron, Casilla 160-C, Concepcion, Chile. RP Civano, F (reprint author), Yale Univ, Ctr Astron & Astrophys, 260 Whitney Ave, New Haven, CT 06520 USA. RI Ranalli, Piero/K-6363-2013; OI Ranalli, Piero/0000-0003-3956-755X; Lanzuisi, Giorgio/0000-0001-9094-0984; Cappelluti, Nico/0000-0002-1697-186X; Zamorani, Giovanni/0000-0002-2318-301X; Urry, Meg/0000-0002-0745-9792; Trakhtenbrot, Benny/0000-0002-3683-7297; Schinnerer, Eva/0000-0002-3933-7677 FU NASA [G07-8136A, NAS8-03060, NNX15AE61G]; PRIN-INAF; FP7 Career Integration Grant "eEASy" [CIG 321913]; UNAM-DGAPA [PAPIIT IN104113]; CONACyT [179662]; Collaborative Research Council [956]; Deutsche Forschungsgemeinschaft; Greek General Secretariat of Research and Technology; Science and Technology Facilities Council [ST/I001573/1]; Swiss National Science Foundation [PP00P2_138979/1]; Center of Excellence in Astrophysics and Associated Technologies [PFB 06]; FONDECYT [1120061]; CONICYT [ACT1101]; European Union [337595, 333654]; Danish National Research Foundation FX This work was supported in part by NASA Chandra grant number G07-8136A (F.C., S.M., V.A., M.E., H.S.); PRIN-INAF 2014 "Windy Black Holes combing galaxy evolution" (A.C., M.B., G.L. and C.V.); the FP7 Career Integration Grant "eEASy": "Supermassive blackholes through cosmic time: from current surveys to eROSITA-Euclid Synergies"(CIG 321913; M.B. and G.L.); UNAM-DGAPA Grant PAPIIT IN104113 and CONACyT Grant Cientifica Basica #179662 (T.M.); Collaborative Research Council 956, sub-project A1, funded by the Deutsche Forschungsgemeinschaft (A.K.); NASA contract NAS8-03060 (T.A., A.F., K.G.); the Greek General Secretariat of Research and Technology in the framework of the Programme of Support of Postdoctoral Researchers (P.R.); NASA award NNX15AE61G (R.G.); the Science and Technology Facilities Council through grant code ST/I001573/1 (D.M.A.); the Swiss National Science Foundation Grant PP00P2_138979/1 (K.S.); the Center of Excellence in Astrophysics and Associated Technologies (PFB 06), by the FONDECYT regular grant 1120061 and by the CONICYT Anillo project ACT1101 (E.T.); the European Union's Seventh Framework Programme under grant agreements 337595 (ERC Starting Grant, "CoSMass") and 333654 (CIG, AGN feedback; V.S.). S.T. is part of The Dark Cosmology Centre, funded by the Danish National Research Foundation. B.T. is a Zwicky Fellow. NR 64 TC 18 Z9 18 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 62 DI 10.3847/0004-637X/819/1/62 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400062 ER PT J AU Cromartie, HT Camilo, F Kerr, M Deneva, JS Ransom, SM Ray, PS Ferrara, EC Michelson, PF Wood, KS AF Cromartie, H. T. Camilo, F. Kerr, M. Deneva, J. S. Ransom, S. M. Ray, P. S. Ferrara, E. C. Michelson, P. F. Wood, K. S. TI SIX NEW MILLISECOND PULSARS FROM ARECIBO SEARCHES OF FERMI GAMMA-RAY SOURCES SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (PSR J0251+26, PSR J1048+2339, PSR, J1805+06, PSR J1824+10, PSR J1909+21, PSR J2052+1218) ID LARGE-AREA TELESCOPE; SOURCE CATALOG; BINARY; DETECTABILITY AB We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) four year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period <= 8.1 hr), while the sixth is a more typical neutron star-white dwarf binary with an 83 day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo's large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched. C1 [Cromartie, H. T.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Kerr, M.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Deneva, J. S.; Ray, P. S.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ransom, S. M.] NRAO, Charlottesville, VA 22903 USA. [Ferrara, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Michelson, P. F.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Michelson, P. F.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. RP Cromartie, HT (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. EM thankful@virginia.edu OI Ray, Paul/0000-0002-5297-5278 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Fermi LAT Collaboration FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the KA Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 30 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 34 DI 10.3847/0004-637X/819/1/34 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400034 ER PT J AU Garcia, JA Grinberg, V Steiner, JF McClintock, JE Pottschmidt, K Rothschild, RE AF Garcia, Javier A. Grinberg, Victoria Steiner, James F. McClintock, Jeffrey E. Pottschmidt, Katja Rothschild, Richard E. TI AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE HEXTE SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: detectors; space vehicles: instruments; X-rays: individual (Crab, XTE J1752-223, GX 339-4) ID RAY-TIMING-EXPLORER; HARD X-RAY; CRAB-NEBULA AB We have developed a correction tool to improve the quality of Rossi X-ray Timing Explorer (RXTE) High Energy X-ray Timing Experiment (HEXTE) spectra by employing the same method we used earlier to improve the quality of RXTE Proportional Counter Array (PCA) spectra. We fit all of the hundreds of HEXTE spectra of the Crab individually to a simple power-law model, some 37. million counts in total for Cluster. A and 39. million counts for Cluster. B, and we create for each cluster a combined spectrum of residuals. We find that the residual spectrum of Cluster. A is free of instrumental artifacts while that of Cluster B contains significant features with amplitudes similar to 1%; the most prominent is in the energy range 30-50 keV, which coincides with the iodine K edge. Starting with the residual spectrum for Cluster. B, via an iterative procedure we created the calibration tool HEXBCORR for correcting any Cluster. B spectrum of interest. We demonstrate the efficacy of the tool by applying it to Cluster. B spectra of two bright black holes, which contain several million counts apiece. For these spectra, application of the tool significantly improves the goodness of fit, while affecting only slightly the broadband fit parameters. The tool may be important for the study of spectral features, such as cyclotron lines, a topic that is beyond the scope of this paper. C1 [Garcia, Javier A.; Steiner, James F.; McClintock, Jeffrey E.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Grinberg, Victoria; Steiner, James F.] MIT, MIT Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA. [Pottschmidt, Katja] UMBC, Dept Phys, Baltimore, MD 21250 USA. [Pottschmidt, Katja] UMBC, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pottschmidt, Katja] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rothschild, Richard E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Garcia, JA; Steiner, JF; McClintock, JE (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.; Grinberg, V; Steiner, JF (reprint author), MIT, MIT Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA.; Pottschmidt, K (reprint author), UMBC, Dept Phys, Baltimore, MD 21250 USA.; Pottschmidt, K (reprint author), UMBC, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.; Pottschmidt, K (reprint author), CRESST, Greenbelt, MD 20771 USA.; Pottschmidt, K (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Rothschild, RE (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. EM javier@head.cfa.harvard.edu; grinberg@space.mit.edu; jsteiner@mit.edu; jem@cfa.harvard.edu; katja@milkyway.gsfc.nasa.gov; rrothschild@ucsd.edu FU CGPS grant from Smithsonian Institution; NASA Hubble Fellowship [HST-HF-51315.01]; NASA Einstein Fellowship [PF5-160144]; NASA through Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA [NAS8-03060] FX We thank an anonymous referee for several helpful comments. J.G. and J.E.M. acknowledge the support of a CGPS grant from the Smithsonian Institution. J.F.S. has been supported by NASA Hubble Fellowship grant HST-HF-51315.01 and NASA Einstein Fellowship grant PF5-160144. V.G. acknowledges support provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for support of the Chandra X-Ray Center (CXC) and Science Instruments; CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060. NR 15 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 76 DI 10.3847/0004-637X/819/1/76 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400076 ER PT J AU Guiriec, S Gonzalez, MM Sacahui, JR Kouveliotou, C Gehrels, N McEnery, J AF Guiriec, S. Gonzalez, M. M. Sacahui, J. R. Kouveliotou, C. Gehrels, N. McEnery, J. TI CGRO/BATSE DATA SUPPORT THE NEW PARADIGM FOR GRB PROMPT EMISSION AND THE NEW L-i(nTh)-E-peak,i(nTh,rest) RELATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; black hole physics; distance scale; gamma-ray burst: general; radiation mechanisms: non-thermal; radiation mechanisms: thermal ID GAMMA-RAY BURSTS; SYNCHROTRON SHOCK MODEL; SPECTRAL COMPONENT; FERMI OBSERVATIONS; PEAK ENERGY; LUMINOSITY RELATION; COSMIC FIREBALLS; THERMAL EMISSION; EVOLUTION; BATSE AB The paradigm for gamma-ray burst (GRB) prompt emission is changing. Since early in the Compton Gamma Ray Observatory (CGRO) era, the empirical Band function has been considered a good description of the keV-MeV.-ray prompt emission spectra despite the fact that its shape was very often inconsistent with the theoretical predictions, especially those expected in pure synchrotron emission scenarios. We have recently established a new observational model analyzing data of the NASA Fermi Gamma-ray Space Telescope. In this model, GRB prompt emission would be a combination of three main emission components: (i) a thermal-like component that we have interpreted so far as emission from the jet photosphere, (ii) a non-thermal component that we have interpreted so far as either synchrotron radiation from the propagating and accelerated charged particles within the jet or reprocessed jet photospheric emission, and (iii) an additional non-thermal (cutoff) power law (PL) extending from low to high energies in gamma-rays and most likely of inverse Compton origin. In this article we reanalyze some of the bright GRBs, namely GRBs 941017, 970111, and 990123, observed with the Burst And Transient Source Experiment (BATSE) on board CGRO with the new model. We conclude that BATSE data for these three GRBs are fully consistent with the recent results obtained with Fermi: some bright BATSE GRBs exhibit three separate components during the prompt phase with similar spectral parameters as those reported from Fermi data. In addition, the analysis of the BATSE GRBs with the new prompt emission model results in a relation between the time-resolved energy flux of the non-thermal component, F-i(nTh), and its corresponding nu F-nu spectral peak energy, E-peak,i(nTh) (i.e., F-i(nTh)-E-peak,i(nTh)), which has a similar index-when fitted to a PL-as the one initially derived from Fermi data. For GRBs with known redshifts (z) this results in a possible universal relation between the luminosity of the non-thermal component, L-i(nTh), and its corresponding nu F nu spectral peak energy in the rest frame, E-peak,i(NT,rest) (i.e., L-i(nTh)-E-peak,i(NT,rest)). We estimated the redshifts of GRBs 941017 and 970111 using GRB 990123-with z = 1.61-as a reference. The estimated redshift for GRB 941017 is typical for long GRBs and the estimated redshift for GRB 970111 is right in the range of the expected values for this burst. C1 [Guiriec, S.; Gehrels, N.; McEnery, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Guiriec, S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Guiriec, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guiriec, S.] CRESST, Los Angeles, CA USA. [Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Sacahui, J. R.] INPE, Ave Astronautas 1758, BR-12227010 So Jos Dos Campos, SP, Brazil. [Kouveliotou, C.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Sacahui, J. R.] Univ San Carlos, Escuela Ciencias Fis & Matemat, Ciudad Univ,Zona 12, Guatemala City, Guatemala. [Guiriec, S.] NASA, Postdoctoral Program, Greenbelt, MD 20771 USA. RP Guiriec, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Guiriec, S (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA.; Guiriec, S (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Guiriec, S (reprint author), CRESST, Los Angeles, CA USA.; Guiriec, S (reprint author), NASA, Postdoctoral Program, Greenbelt, MD 20771 USA. EM sylvain.guiriec@nasa.gov FU NASA Postdoctoral Program (NPP) at the NASA/Goddard Space Flight Center; NASA [NNH11ZDA001N, NNH13ZDA001N]; DGAPA UNAM [IG100414-3] FX S.G. was supported by the NASA Postdoctoral Program (NPP) at the NASA/Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, as well as by the NASA grants NNH11ZDA001N and NNH13ZDA001N, awarded to S.G. during cycles 5 and 7 of the NASA Fermi Guest Investigator Program. M.M.G. was supported by DGAPA UNAM grant number IG100414-3. NR 60 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 79 DI 10.3847/0004-637X/819/1/79 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400079 ER PT J AU He, CC Keek, L AF He, C. -C. Keek, L. TI ANISOTROPY OF X-RAY BURSTS FROM NEUTRON STARS WITH CONCAVE ACCRETION DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: neutron; X-rays: binaries; X-rays: bursts ID THERMONUCLEAR BURSTS; ANGULAR-DISTRIBUTION; SPECTRAL EVOLUTION; LIGHT CURVES; BLACK-HOLES; MASS; REFLECTION; BINARIES; SUPERBURST; DISCOVERY AB Emission from neutron stars and accretion disks in low-mass X-ray binaries is anisotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk make the observed flux dependent on the inclination angle of the disk with respect to the line of sight. This is of importance for the interpretation of thermonuclear X-ray bursts from neutron stars. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star's equation of state. Previous predictions of the anisotropy factors assumed a geometrically flat disk. Detailed observations of two so-called superbursts allowed for the direct and the reflected burst fluxes to each be measured separately. The reflection fraction was much higher than what the anisotropies of a flat disk can account for. We create numerical models to calculate the anisotropy factors for different disk shapes, including concave disks. We present the anisotropy factors of the direct and reflected burst fluxes separately, as well as the anisotropy of the persistent flux. Reflection fractions substantially larger than unity are produced in the case where the inner accretion disk increases steeply in height, such that part of the star is blocked from view. Such a geometry could possibly be induced by the X-ray burst if X-ray heating causes the inner disk to puff up. C1 [He, C. -C.] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China. [Keek, L.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Keek, L.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Keek, L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP He, CC (reprint author), Jilin Univ, Coll Phys, Changchun 130012, Peoples R China. EM jordanhe1994@gmail.com OI He, Chong-Chong/0000-0002-2332-8178 FU Undergraduate Education Office of Jilin University in Changchun, China; NASA [NNG06E090A] FX The authors thank D. Ballantyne and T. Strohmayer for helpful discussions, and acknowledge the Center for Relativistic Astrophysics at Georgia Institute of Technology, where this study was initiated. C.C.H. is supported by the Undergraduate Education Office of Jilin University in Changchun, China, which also supports this publication. L.K. is supported by NASA under award number NNG06E090A. L.K. thanks the International Space Science Institute in Bern, Switzerland for hosting an International Team on X-ray bursts. NR 59 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 47 DI 10.3847/0004-637X/819/1/47 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400047 ER PT J AU Kopparapu, RK Wolf, ET Haqq-Misra, J Yang, J Kasting, JF Meadows, V Terrien, R Mahadevan, S AF Kopparapu, Ravi Kumar Wolf, Eric T. Haqq-Misra, Jacob Yang, Jun Kasting, James F. Meadows, Victoria Terrien, Ryan Mahadevan, Suvrath TI THE INNER EDGE OF THE HABITABLE ZONE FOR SYNCHRONOUSLY ROTATING PLANETS AROUND LOW-MASS STARS USING GENERAL CIRCULATION MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: terrestrial planets ID MAIN-SEQUENCE STARS; SUPER-EARTHS; M DWARFS; ATMOSPHERIC CIRCULATION; EVOLUTION; SIMULATIONS; PARAMETERS; DEPENDENCE; LIMIT; 667C AB Terrestrial planets at the inner edge of the habitable zone (HZ) of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the HZ for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar cloud deck are sensitive to the precise rotation rate of the planet. Around mid-to-late M-dwarf stars with low metallicity, planetary rotation rates at the inner edge of the HZ become faster, and the inner edge of the HZ is farther away from the host stars than in previous GCM studies. For an Earth-sized planet, the dynamical regime of the substellar clouds begins to transition as the rotation rate approaches similar to 10 days. These faster rotation rates produce stronger zonal winds that encircle the planet and smear the substellar clouds around it, lowering the planetary albedo, and causing the onset of the water-vapor greenhouse climatic instability to occur at up to similar to 25% lower incident stellar fluxes than found in previous GCM studies. For mid-to-late M-dwarf stars with high metallicity and for mid-K to early-M stars, we agree with previous studies. C1 [Kopparapu, Ravi Kumar; Kasting, James F.] Penn State Univ, Dept Geosci, 443 Deike Bldg, University Pk, PA 16802 USA. [Kopparapu, Ravi Kumar] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Mail Stop 699-0 Bldg 34, Greenbelt, MD 20771 USA. [Kopparapu, Ravi Kumar; Haqq-Misra, Jacob; Kasting, James F.; Meadows, Victoria] NASA, Astrobiol Inst, Virtual Planetary Lab, POB 351580, Seattle, WA 98195 USA. [Kopparapu, Ravi Kumar; Kasting, James F.; Terrien, Ryan; Mahadevan, Suvrath] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Kopparapu, Ravi Kumar; Haqq-Misra, Jacob] Blue Marble Space Inst Sci, 1001 4th Ave,Suite 3201, Seattle, WA 98154 USA. [Wolf, Eric T.] Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, Campus Box 392, Boulder, CO 80309 USA. [Yang, Jun] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Meadows, Victoria] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Terrien, Ryan; Mahadevan, Suvrath] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. RP Kopparapu, RK (reprint author), Penn State Univ, Dept Geosci, 443 Deike Bldg, University Pk, PA 16802 USA.; Kopparapu, RK (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Mail Stop 699-0 Bldg 34, Greenbelt, MD 20771 USA.; Kopparapu, RK (reprint author), NASA, Astrobiol Inst, Virtual Planetary Lab, POB 351580, Seattle, WA 98195 USA.; Kopparapu, RK (reprint author), Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA.; Kopparapu, RK (reprint author), Blue Marble Space Inst Sci, 1001 4th Ave,Suite 3201, Seattle, WA 98154 USA. FU NASA Astrobiology Institute's Virtual Planetary Laboratory; NASA [NNH05ZDA001C]; Virtual Planetary Laboratory [NNX11AC95G,S03]; NASA Planetary Atmospheres Program [NNH13ZDA001N-PATM]; NSF [AST 1006676, AST 1126413, AST 1310885]; Center for Exoplanets and Habitable Worlds; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium; Penn State Astrobiology Research Center; National Aeronautics and Space Administration (NASA) Astrobiology Institute; National Science Foundation [CNS-0821794]; University of Colorado at Boulder FX The authors would like to thank Daniel Koll and Dorian Abbot for kindly providing the aquaplanet patch for CESM, and responding to our inquiries, that enabled us to accomplish this work. The authors appreciate constructive comments and suggestions from an anonymous reviewer that improved the manuscript. The authors also thank Michael Way and Tony Del Ginio from NASA GISS for providing detailed comments on an earlier version of the manuscript. RK, JFK and VM gratefully acknowledge funding from NASA Astrobiology Institute's Virtual Planetary Laboratory lead team, supported by NASA under cooperative agreement NNH05ZDA001C. JH-M acknowledges support from the Virtual Planetary Laboratory under award NNX11AC95G,S03. ETW thanks NASA Planetary Atmospheres Program award NNH13ZDA001N-PATM. SM and RT acknowledge support from NSF grants AST 1006676, AST 1126413, and AST 1310885. This work was partially supported by funding from the Center for Exoplanets and Habitable Worlds. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. This work was also partially supported by the Penn State Astrobiology Research Center and the National Aeronautics and Space Administration (NASA) Astrobiology Institute. The authors acknowledge the Research Computing and Cyberinfrastructure unit of Information Technology Services at The Pennsylvania State University for providing advanced computing resources and services that have contributed to the research results reported in this paper. http://rcc.its.psu.edu. This work was also facilitated through the use of advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system, supported in part by the University of Washington eScience Institute. This work also utilized the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794) and the University of Colorado at Boulder. NR 40 TC 11 Z9 11 U1 4 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 84 DI 10.3847/0004-637X/819/1/84 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400084 ER PT J AU Levan, AJ Tanvir, NR Brown, GC Metzger, BD Page, KL Cenko, SB O'Brien, PT Lyman, JD Wiersema, K Stanway, ER Fruchter, AS Perley, DA Bloom, JS AF Levan, A. J. Tanvir, N. R. Brown, G. C. Metzger, B. D. Page, K. L. Cenko, S. B. O'Brien, P. T. Lyman, J. D. Wiersema, K. Stanway, E. R. Fruchter, A. S. Perley, D. A. Bloom, J. S. TI LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; supernovae: general ID TIDAL DISRUPTION EVENT; MASSIVE BLACK-HOLE; CORE-COLLAPSE SUPERNOVAE; LIGHT CURVES; SUPERLUMINOUS-SUPERNOVA; RELATIVISTIC JET; GALACTIC NUCLEI; DWARF GALAXY; HOST GALAXY; BURSTS AB We present late time multi-wavelength observations of Swift J1644+ 57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to > 4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t(-70). Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L-X similar to 5 x 10(42) erg s(-1) and are marginally inconsistent with a continuing decay of t(-5/3), similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M-BH = 3 x 10(6) M-circle dot, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of M-R similar to -22 to -23. The luminosity of the bump is significantly higher than seen in other, nonrelativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares. C1 [Levan, A. J.; Brown, G. C.; Lyman, J. D.; Stanway, E. R.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Tanvir, N. R.; Page, K. L.; O'Brien, P. T.; Wiersema, K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Metzger, B. D.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Fruchter, A. S.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Perley, D. A.] CALTECH, Dept Astron, MC 249-17,1200 East Calif Blvd, Pasadena, CA 91125 USA. [Perley, D. A.] Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Bloom, J. S.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. RP Levan, AJ (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM A.J.Levan@warwick.ac.uk OI Stanway, Elizabeth/0000-0002-8770-809X FU STFC; NASA [NAS 5-26555]; HST programs [GO 12447, 12378, 12764]; ESA Member States; NASA; UK Space Agency; [12900486]; [13708437]; [15700509] FX We thank the referee for constructive comments on the paper. A. J. L., N. R. T., K. W., and P. T. O. thank STFC for support. K. L. P. thanks the UK Space Agency. We thank Matt Mountain, Harvey Tannenbaum, and Norbert Schartel and the teams from STScI, CXC, and ESAC for the approval and rapid scheduling of DDT observations with HST, Chandra and XMM-Newton respectively.; Based on observations made with the NASA/ESA Hubble Space Telescope, obtained [from the Data Archive] at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with HST programs GO 12447, 12378 and 12764.; The scientific results reported in this article are based to a significant degree on observations made by the Chandra X-ray Observatory. The observations reported are from program numbers 12900486, 13708437, and 15700509.; Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.; This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester, funded by the UK Space Agency. NR 97 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 51 DI 10.3847/0004-637X/819/1/51 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400051 ER PT J AU Olshevsky, V Deca, J Divin, A Peng, IB Markidis, S Innocenti, ME Cazzola, E Lapenta, G AF Olshevsky, Vyacheslav Deca, Jan Divin, Andrey Peng, Ivy Bo Markidis, Stefano Innocenti, Maria Elena Cazzola, Emanuele Lapenta, Giovanni TI MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; planets and satellites: magnetic fields; plasmas ID HYBRID DRIFT INSTABILITY; LUNAR-PROSPECTOR; KINEMATIC RECONNECTION; FIELD TOPOLOGY; CURRENT SHEET; SOLAR-WIND; SURFACE; MOON; MAGNETOPAUSE; MAGNETOSPHERE AB We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind,. and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross. sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data. C1 [Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni] Katholieke Univ Leuven, Ctr Math Plasma Astrophys CmPA, Leuven, Belgium. [Deca, Jan] Univ Colorado, LASP, Boulder, CO 80309 USA. [Divin, Andrey] St Petersburg State Univ, St Petersburg 199034, Russia. [Peng, Ivy Bo; Markidis, Stefano] KTH Royal Inst Technol, High Performance Comp & Visualizat HPCViz, Stockholm, Sweden. [Olshevsky, Vyacheslav] NAS, Main Astron Observ, Kiev, Ukraine. [Deca, Jan] NASA, Inst Modeling Plasma Atmospheres & Cosm Dust, SSERVI, Boulder, CO USA. RP Olshevsky, V (reprint author), Katholieke Univ Leuven, Ctr Math Plasma Astrophys CmPA, Leuven, Belgium.; Olshevsky, V (reprint author), NAS, Main Astron Observ, Kiev, Ukraine. EM sya@mao.kiev.ua RI Divin, Andrey/E-4501-2015; OI Divin, Andrey/0000-0002-5579-3066; Lapenta, Giovanni/0000-0002-3123-4024 FU Onderzoekfonds KU Leuven (Research Fund KU Leuven); Air Force Office of Scientific Research; Air Force Materiel Command; USAF [FA9550-14-1-0375]; NASA's Solar System Exploration Research Virtual Institutess (SSERVI) Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT); FWO (Fonds Wetenschappelijk Onderzoek Vlaanderen) [12O5215N]; NASA MMS Grant [NNX08AO84G]; European Commission [ICT-610476]; PRACE [2011050747, 2013091928] FX The work is supported by the Onderzoekfonds KU Leuven (Research Fund KU Leuven). V.O. is supported by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF under Award No. FA9550-14-1-0375. J.D. is supported by NASA's Solar System Exploration Research Virtual Institutess (SSERVI) Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT). M.E.I. is supported by the FWO (Fonds Wetenschappelijk Onderzoek Vlaanderen) postdoctoral fellowship (12O5215N). G.L. acknowledges support from the NASA MMS Grant No. NNX08AO84G. This research has received funding from the European Commission's FP7 Program with the grant agreement DEEP-ER (project ICT-610476, http://www.deep-er.eu/) The simulations were conducted on the computational resources provided by the PRACE Tier-0 projects 2011050747 (Curie) and 2013091928 (SuperMUC). A great part of this work was done during the Nordita program on Magnetic Reconnection in Plasmas 2015. Authors are thankful to Mikhail Sitnov for useful discussions. NR 83 TC 2 Z9 2 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 52 DI 10.3847/0004-637X/819/1/52 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400052 ER PT J AU Opitz, D Tinney, CG Faherty, JK Sweet, S Gelino, CR Kirkpatrick, JD AF Opitz, Daniela Tinney, C. G. Faherty, Jacqueline K. Sweet, Sarah Gelino, Christopher R. Kirkpatrick, J. Davy TI SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS) SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; brown dwarfs; methods: observational; stars: low-mass; techniques: image processing ID HUBBLE-SPACE-TELESCOPE; INFRARED-SURVEY-EXPLORER; LOW-MASS BINARY; BROWN DWARF; L/T TRANSITION; T/Y TRANSITION; T-DWARFS; WIDE; DISCOVERY; WISE AB The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L-and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L-and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than similar to 0.5-1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10(42) erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs. C1 [Opitz, Daniela; Tinney, C. G.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Opitz, Daniela; Tinney, C. G.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Faherty, Jacqueline K.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Faherty, Jacqueline K.] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10034 USA. [Sweet, Sarah] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Gelino, Christopher R.; Kirkpatrick, J. Davy] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Gelino, Christopher R.] CALTECH, NASA, Exoplanet Sci Inst, MS 100-22, Pasadena, CA 91125 USA. RP Opitz, D (reprint author), Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia.; Opitz, D (reprint author), Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. EM daniela.opitz@student.unsw.edu.au OI Opitz, Daniela/0000-0003-4960-1248; Tinney, Christopher/0000-0002-7595-0970 FU ARC Australian Professorial Fellowship [DP0774000]; ARC [DP130102695]; CONICYT Becas Chile [72130434]; Guaranteed Time program [GS-2014B-C-1]; [GS-2014A-Q-4]; [GS-2013B-Q-26] FX We gratefully acknowledge the support of ARC Australian Professorial Fellowship grant DP0774000 and ARC Discovery Outstanding Researcher Award DP130102695. D.O. is also supported by CONICYT Becas Chile 72130434. This paper is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). Time has been awarded through Australia and USA via programs GS-2014A-Q-4, GS-2013B-Q-26 and also via Guaranteed Time program GS-2014B-C-1. We would like to acknowledge the high standard of support offered by the Gemini queue observing team who acquired most of the data used in this paper. The authors would like to especially acknowledge the extraordinary quality of the instrument delivered for use by our team (and others) by the GSAOI Principal Investigator Professor Peter McGregor and his team at the Australian National University. We thank Dr. R. Sharp for his assistance in acquiring data for this program during GSAOI Guaranteed Time. We also thank Dr. D. Wright for helpful comments and suggestions on this manuscript. NR 50 TC 2 Z9 2 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 17 DI 10.3847/0004-637X/819/1/17 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400017 ER PT J AU Ricci, C Bauer, FE Treister, E Romero-Canizales, C Arevalo, P Iwasawa, K Privon, GC Sanders, DB Schawinski, K Stern, D Imanishi, M AF Ricci, C. Bauer, F. E. Treister, E. Romero-Canizales, C. Arevalo, P. Iwasawa, K. Privon, G. C. Sanders, D. B. Schawinski, K. Stern, D. Imanishi, M. TI NuSTAR UNVEILS A HEAVILY OBSCURED LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS IN THE LUMINOUS INFRARED GALAXY NGC 6286 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: interactions; infrared: galaxies; X-rays: galaxies; X-rays: general ID MU-M SPECTROSCOPY; EMISSION-LINE SPECTRA; SKY LIRG SURVEY; SIMILAR-TO 2; HARD X-RAY; SPITZER-SPACE-TELESCOPE; PHOTON IMAGING CAMERA; COMPTON-THICK AGN; DEEP-FIELD-SOUTH; XMM-NEWTON AB We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (N-H similar or equal to(0.95-1.32) x 10(24) cm(-2)) with a column density consistent with being Compton-thick (CT, log (N-H/cm(-2)) >= 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV similar to 3 -20 x 10(41) erg s(-1)) and contributes less than or similar to 1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations. C1 [Ricci, C.; Bauer, F. E.; Romero-Canizales, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Ricci, C.; Bauer, F. E.; Treister, E.] EMBIGGEN Anillo, Santiago, Chile. [Bauer, F. E.; Romero-Canizales, C.] Millennium Inst Astrophys, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Treister, E.; Privon, G. C.] Univ Concepcion, Dept Astron, Casilla 160-C, Concepcion, Chile. [Arevalo, P.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Gran Bretana N 1111, Valparaiso, Chile. [Iwasawa, K.] Univ Barcelona, IEEC UB, ICREA, Marti & Franques 1, E-08028 Barcelona, Spain. [Iwasawa, K.] Univ Barcelona, IEEC UB, Inst Ciencies Cosmos, Marti & Franques 1, E-08028 Barcelona, Spain. [Privon, G. C.; Sanders, D. B.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Schawinski, K.] Swiss Fed Inst Technol, Inst Astron, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Imanishi, M.] Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Imanishi, M.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Imanishi, M.] Grad Univ Adv Studies SOKENDAI, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan. RP Ricci, C (reprint author), Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile.; Ricci, C (reprint author), EMBIGGEN Anillo, Santiago, Chile. EM cricci@astro.puc.cl FU CONICYT-Chile ["EMBIGGEN" Anillo ACT1101]; FONDECYT [1141218, 315238, 3150361]; Basal-CATA [PFB-06/2007]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; Swiss National Science Foundation [PP00P2_138979/1]; JSPS KAKENHI [23540273, 15K05030] FX We thank the anonymous referee for comments that helped us to improve the quality of our manuscript, and the NuSTAR Cycle 1 TAC for the NuSTAR data on which this paper is based. C. R. acknowledges C. S. Chang, H. Inami, P. Gandhi and S. Satyapal for their useful discussions. We thank Adam Block (Mount Lemmon SkyCenter/University of Arizona) for allowing us to publish his optical image of NGC 6286/NGC 6285. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (Caltech, USA), and of the NASA/IPAC Infrared Science Archive and NASA/IPAC Extragalactic Database (NED), which are operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We acknowledge financial support from the CONICYT-Chile grants "EMBIGGEN" Anillo ACT1101 (C. R., F. E. B., E. T.), FONDECYT 1141218 (C. R., F. E. B.), FONDECYT 315238 (C. R. C.), FONDECYT 3150361 (G. P.), Basal-CATA PFB-06/2007 (C. R., F. E. B., E. T.), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (F. E. B., C. R. C.). K. S. gratefully acknowledges support from Swiss National Science Foundation Grant PP00P2_138979/1. M. I. was supported by JSPS KAKENHI Grant Number 23540273 and 15K05030. NR 145 TC 3 Z9 3 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 4 DI 10.3847/0004-637X/819/1/4 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400004 ER PT J AU Rutkowski, MJ Scarlata, C Haardt, F Siana, B Henry, A Rafelski, M Hayes, M Salvato, M Pahl, AJ Mehta, V Beck, M Malkan, M Teplitz, HI AF Rutkowski, Michael J. Scarlata, Claudia Haardt, Francesco Siana, Brian Henry, Alaina Rafelski, Marc Hayes, Matthew Salvato, Mara Pahl, Anthony J. Mehta, Vihang Beck, Melanie Malkan, Matthew Teplitz, Harry I. TI LYMAN CONTINUUM ESCAPE FRACTION OF STAR-FORMING DWARF GALAXIES AT z similar to 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: starburst; galaxies: star formation; ultraviolet: galaxies ID HUBBLE-SPACE-TELESCOPE; SPECTROSCOPIC PARALLEL SURVEY; DUST INFRARED-EMISSION; HIGH-REDSHIFT; LY-ALPHA; LUMINOSITY FUNCTION; STARBURST GALAXIES; INTERGALACTIC MEDIUM; COSMIC REIONIZATION; RADIATIVE-TRANSFER AB To date, no direct detection of Lyman continuum emission has been measured for intermediate-redshift (z similar to 1) star-forming galaxies. We combine Hubble Space Telescope grism spectroscopy with GALEX UV and ground-based optical imaging to extend the search for escaping Lyman continuum to a large (similar to 600) sample of z similar to 1 low-mass (log((M) over bar) similar or equal to 9.3M(circle dot)), moderately star-forming ((Psi) over bar less than or similar to 10M(circle dot) yr(-1)) galaxies selected initially on H alpha emission. The characteristic escape fraction of LyC from star-forming galaxies (SFGs) that populate this parameter space remains weakly constrained by previous surveys, but these faint (sub-L-star) SFGs are assumed to play a significant role in the reionization of neutral hydrogen in the intergalactic medium (IGM) at high redshift z > 6. We do not make an unambiguous detection of escaping LyC radiation from this z similar to 1 sample, individual non-detections to constrain the absolute Lyman continuum escape fraction, f(esc) < 2.1% (3 sigma). We measure an upper limit of f(esc) < 9.6% from a sample of SFGs selected on high H alpha equivalent width (EW > 200 angstrom), which are thought to be close analogs of high redshift sources of reionization. For reference, we also present an emissivity-weighted escape fraction that is useful for measuring the general contribution SFGs to the ionizing UV background. In the discussion, we consider the implications of these intermediate redshift constraints for the reionization of hydrogen in the IGM at high (z > 6) redshift. If we assume our z similar to 1 SFGs, for which we measure this emissivity-weighted f(esc), are analogs to the high redshift sources of reionization, we find it is difficult to reconcile reionization by faint (MUV less than or similar to -13) SFGs with a low escape fraction (f(esc) < 3%), with constraints from independent high redshift observations. If f(esc) evolves with redshift, reionization by SFGs may be consistent with observations from Planck. C1 [Rutkowski, Michael J.; Scarlata, Claudia; Pahl, Anthony J.; Mehta, Vihang; Beck, Melanie] Univ Minnesota, Minnesota Inst Astrophys, 116 Church St SE, Minneapolis, MN 55455 USA. [Haardt, Francesco] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy. [Siana, Brian] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Henry, Alaina; Rafelski, Marc] Goddard Space Flight Ctr, Astrophys Sci Div, Code 665, Greenbelt, MD 20771 USA. [Hayes, Matthew] Stockholm Univ, Alballova Univ Ctr, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Salvato, Mara] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Salvato, Mara] Excellence Cluster, D-85748 Garching, Germany. [Malkan, Matthew] Univ Calif Los Angeles, Astron Div, Los Angeles, CA 90095 USA. [Teplitz, Harry I.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Henry, Alaina; Rafelski, Marc] NASA, Postdoctoral Program, Washington, DC USA. RP Rutkowski, MJ (reprint author), Univ Minnesota, Minnesota Inst Astrophys, 116 Church St SE, Minneapolis, MN 55455 USA. EM rutkowsk@astro.umn.edu FU Swedish Research Council (Vetenskapsradet); Swedish National Space Board (SNSB); Knut and Alice Wallenberg Foundation; NASA [NNX13AI55G, NAS5-26555]; HST-AR Program [12821.01]; NASA/ESA HST [GO 12177, 12328]; NASA Office of Space Science [NNX13AC07G] FX We thank the referee, B. Robertson, for helpful comments that improved the discussion and conclusions presented in this work. We also thank S. Finkelstein for helpful discussion. M.H. acknowledges the support of the Swedish Research Council (Vetenskapsradet), the Swedish National Space Board (SNSB), and the Knut and Alice Wallenberg Foundation. This research was supported by NASA NNX13AI55G and HST-AR Program #12821.01, using observations taken by the 3D-HST Treasury program (GO 12177 & 12328) with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. GALEX and HST data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST) maintained by the STScI. Support for MAST for non HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts. This research has made use of NASA's Astrophysics Data System Bibliographic Services. NR 106 TC 8 Z9 8 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 81 DI 10.3847/0004-637X/819/1/81 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400081 ER PT J AU Schnittman, JD Krolik, JH Noble, SC AF Schnittman, Jeremy D. Krolik, Julian H. Noble, Scott C. TI DISK EMISSION FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF SPINNING BLACK HOLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; X-rays: binaries ID CONTINUUM-FITTING METHOD; X-RAY-POLARIZATION; ACCRETION DISK; CYGNUS X-1; RADIATION; BINARIES; EXTREME; SPECTRA; MODELS; FLOWS AB We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R similar to 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin. C1 [Schnittman, Jeremy D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krolik, Julian H.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Noble, Scott C.] Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA. RP Schnittman, JD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Krolik, JH (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.; Noble, SC (reprint author), Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA. EM jeremy.schnittman@nasa.gov; jhk@pha.jhu.edu; scott-noble@utulsa.edu FU NASA [NNX14AB43G, ATP12-0139]; NSF [AST-0908336] FX We would like to thank T. Kallman for helpful discussions. This work was partially supported by NASA grants NNX14AB43G and ATP12-0139 and NSF grant AST-0908336. NR 42 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 48 DI 10.3847/0004-637X/819/1/48 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400048 ER PT J AU Stock, DJ Choi, WDY Moya, LGV Otaguro, JN Sorkhou, S Allamandola, LJ Tielens, AGGM Peeters, E AF Stock, D. J. Choi, W. D. -Y. Moya, L. G. V. Otaguro, J. N. Sorkhou, S. Allamandola, L. J. Tielens, A. G. G. M. Peeters, E. TI POLYCYCLIC AROMATIC HYDROCARBON EMISSION IN SPITZER/IRS MAPS. I. CATALOG AND SIMPLE DIAGNOSTICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; H II regions; infrared: ISM; ISM: molecules; photon-dominated region (PDR) ID PHOTON-DOMINATED REGION; MU-M EMISSION; ULTRACOMPACT HII-REGIONS; BLIND SIGNAL SEPARATION; H-II REGIONS; PHOTODISSOCIATION REGIONS; SPECTROSCOPIC DATABASE; INTERSTELLAR-MEDIUM; RECOMBINATION LINE; INFRARED OBSERVATIONS AB We present a sample of resolved galactic H. II regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5-15 mu m. For each object we have spectral maps at a spatial resolution of similar to 4 '' in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 mu m, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 mu m. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H. II regions and the second the reflection nebulae (RNe). Three sources-the reflection nebula NGC. 7023, the Horsehead nebula PDR (an interface between the H. II region IC 434 and the Orion B molecular cloud), and M17-resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC. 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC. 7023 observations. C1 [Stock, D. J.; Choi, W. D. -Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Peeters, E.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Allamandola, L. J.] NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. [Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Peeters, E.] SETI Inst, 189 Bernardo Ave,Suite 100, Mountain View, CA 94043 USA. RP Stock, DJ (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. EM dstock4@uwo.ca FU NSERC; ERC from European Research Council [246976]; Dutch Science Agency, NWO as part of the Dutch Astrochemistry Network; Dutch Science Agency, NWO; NASA FX D.J.S. and E.P. acknowledge support from an NSERC Discovery Grant and an NSERC Discovery Accelerator Grant. W.D.Y.C. and S.S. acknowledge support from NSERC Undergraduate Student Research Awards.; L.J.A. is grateful for an appointment at NASA Ames Research Center through the Bay Area Environmental Research Institute (NNX14AG80A). Studies of interstellar chemistry at Leiden Observatory are supported through advanced-ERC grant 246976 from the European Research Council, through a grant by the Dutch Science Agency, NWO, as part of the Dutch Astrochemistry Network, and through the Spinoza premie from the Dutch Science Agency, NWO.; This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 73 TC 5 Z9 5 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 65 DI 10.3847/0004-637X/819/1/65 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400065 ER PT J AU Wakeford, HR Sing, DK Evans, T Deming, D Mandell, A AF Wakeford, H. R. Sing, D. K. Evans, T. Deming, D. Mandell, A. TI MARGINALIZING INSTRUMENT SYSTEMATICS IN HST WFC3 TRANSIT LIGHT CURVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; planets and satellites: atmospheres; techniques: spectroscopic ID HUBBLE-SPACE-TELESCOPE; TRANSMISSION SPECTRAL SURVEY; FIELD CAMERA 3; SIZED EXOPLANET; WATER-VAPOR; ATMOSPHERE; SPECTROSCOPY; WASP-12B; ABSORPTION; INFERENCE AB Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 mu m probe primarily the H2O absorption band at 1.4 mu m, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as R-p/R-*, which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts delta(lambda)(lambda) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres. C1 [Wakeford, H. R.; Mandell, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wakeford, H. R.; Sing, D. K.; Evans, T.] Univ Exeter, Exeter EX4 4QL, Devon, England. [Deming, D.] Univ Maryland, College Pk, MD 20742 USA. RP Wakeford, HR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Wakeford, HR (reprint author), Univ Exeter, Exeter EX4 4QL, Devon, England. EM hannah.wakeford@nasa.gov OI Sing, David /0000-0001-6050-7645; Wakeford, Hannah/0000-0003-4328-3867 FU European Research Council under European Unions/ERC [336792] FX The authors would like to thank N. Gibson for useful comments and discussions on this paper and the analysis technique presented. H.R. Wakeford acknowledges support by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. H.R. Wakeford, D. K. Sing, and T. Evans acknowledge funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 336792. This work is based on observations made with the NASA/ESA Hubble Space Telescope. This research has made use of NASAs Astrophysics Data System and components of the IDL astronomy library. NR 34 TC 4 Z9 4 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 10 DI 10.3847/0004-637X/819/1/10 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400010 ER PT J AU Weiss, LM Rogers, LA Isaacson, HT Agol, E Marcy, GW Rowe, JF Kipping, D Fulton, BJ Lissauer, JJ Howard, AW Fabrycky, D AF Weiss, Lauren M. Rogers, Leslie A. Isaacson, Howard T. Agol, Eric Marcy, Geoffrey W. Rowe, Jason F. Kipping, David Fulton, Benjamin J. Lissauer, Jack J. Howard, Andrew W. Fabrycky, Daniel TI REVISED MASSES AND DENSITIES OF THE PLANETS AROUND KEPLER-10 SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: composition; planets and satellites: detection; planets and satellites: fundamental parameters; planets and satellites: terrestrial planets; techniques: radial velocities ID SUPER-EARTH; SIZED EXOPLANET; CANDIDATES; ROCKY; SYSTEM; III.; FRAMEWORK; EXOMOONS; COROT-7; ORBITS AB Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014 to 2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b (R-p = 1.47 R-circle plus) has mass 3.72 +/- 0.42 M-circle plus and density 6.46 +/- 0.73 g cm(-3). Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17 +/- 0.11 of the planet mass. For Kepler-10c (R-p = 2.35 R-circle plus) we measure mass 13.98 +/- 1.79 M-circle plus and density 5.94 +/- 0.76 g cm(-3), significantly lower than the mass computed in Dumusque et al. (17.2 +/- 1.9 M-circle plus). Our mass measurement of Kepler-10c rules out a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of hydrogen-helium (0.2% of the mass, 16% of the radius) or super-ionic water (28% of the mass, 29% of the radius). However, we note that analysis of only HIRES data yields a higher mass for planet b and a lower mass for planet c than does analysis of the HARPS-N data alone, with the mass estimates for Kepler-10 c being formally inconsistent at the 3 sigma level. Moreover, dividing the data for each instrument into two parts also leads to somewhat inconsistent measurements for the mass of planet c derived from each observatory. Together, this suggests that time-correlated noise is present and that the uncertainties in the masses of the planets (especially planet c) likely exceed our formal estimates. Transit timing variations (TTVs) of Kepler-10c indicate the likely presence of a third planet in the system, KOI-72. X. The TTVs and RVs are consistent with KOI-72. X having an orbital period of 24, 71, or 101 days, and a mass from 1 to 7 M-circle plus. C1 [Weiss, Lauren M.; Isaacson, Howard T.; Marcy, Geoffrey W.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Rogers, Leslie A.] CALTECH, Div Geol & Planetary Sci, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Agol, Eric] NASA, Astrobiol Inst, Virtual Planetary Lab, Pasadena, CA 91125 USA. [Agol, Eric] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Rowe, Jason F.; Lissauer, Jack J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kipping, David] Harvard Univ, Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Fulton, Benjamin J.; Howard, Andrew W.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Fabrycky, Daniel] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. RP Weiss, LM (reprint author), Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. EM lweiss@berkeley.edu OI Fabrycky, Daniel/0000-0003-3750-0183; /0000-0002-0802-9145 FU National Science Foundation via Dynamics of Exoplanets workshop at the Kavli Institute for Theoretical Physics in Santa Barbara, CA [NSF PHY11-25915] FX LMW gratefully acknowledges support from Kenneth and Gloria Levy. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915 via the Dynamics of Exoplanets workshop at the Kavli Institute for Theoretical Physics in Santa Barbara, CA. We thank Tsevi Mazeh for informative discussions regarding time correlated noise. The authors wish to extend special thanks to those of Hawaiian ancestry on whose sacred mountain of Maunakea we are privileged to be guests. Without their generous hospitality, the Keck observations presented herein would not have been possible. NR 51 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 83 DI 10.3847/0004-637X/819/1/83 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400083 ER PT J AU Wicks, RT Alexander, RL Stevens, M Wilson, LB Moya, PS Vinas, A Jian, LK Roberts, DA O'Modhrain, S Gilbert, JA Zurbuchen, TH AF Wicks, R. T. Alexander, R. L. Stevens, M. Wilson, L. B., III Moya, P. S. Vinas, A. Jian, L. K. Roberts, D. A. O'Modhrain, S. Gilbert, J. A. Zurbuchen, T. H. TI A PROTON-CYCLOTRON WAVE STORM GENERATED BY UNSTABLE PROTON DISTRIBUTION FUNCTIONS IN THE SOLAR WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE instabilities; plasmas; solar wind; waves ID MAGNETIC-FIELD; 1 AU; TEMPERATURE ANISOTROPY; SPECTRAL-ANALYSIS; TURBULENCE; PLASMA; POWER; INSTABILITIES; STEREO; SUN AB We use audification of 0.092 s cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes >0.1 nT near. the ion gyrofrequency (similar to 0.1 Hz) with duration longer than 1 hr during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona. C1 [Wicks, R. T.] UCL, Mullard Space Sci Lab, Gower St, London WC1E 6BT, England. [Alexander, R. L.; O'Modhrain, S.; Gilbert, J. A.; Zurbuchen, T. H.] Univ Michigan, Ann Arbor, MI 48109 USA. [Stevens, M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Wilson, L. B., III; Jian, L. K.; Roberts, D. A.] NASA, Goddard Space Flight Ctr, Code 672, Greenbelt, MD 20771 USA. [Moya, P. S.; Vinas, A.] NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. [Moya, P. S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Jian, L. K.] Univ Maryland, Dept Astron, GPHI, College Pk, MD 20742 USA. RP Wicks, RT (reprint author), UCL, Mullard Space Sci Lab, Gower St, London WC1E 6BT, England. EM r.wicks@ucl.ac.uk RI Wicks, Robert/A-1180-2009; Jian, Lan/B-4053-2010; Moya, Pablo/C-3163-2011; Wilson III, Lynn/D-4425-2012; Gilbert, Jason/I-9020-2012 OI Wicks, Robert/0000-0002-0622-5302; Jian, Lan/0000-0002-6849-5527; Moya, Pablo/0000-0002-9161-0888; Wilson III, Lynn/0000-0002-4313-1970; Gilbert, Jason/0000-0002-3182-7014 FU NASA Postdoctoral Program at the Goddard Space Flight Center; Conicyt-Becas Chile Postdoctoral Fellowship; Heliophysics Guest Investigator grant; NASA [NNX13AI65G] FX R.T.W. was supported by the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities. R.T.W. and D.A.R. acknowledge a Heliophysics Guest Investigator grant to NASA GSFC for support P.S.M. thanks the Conicyt-Becas Chile Postdoctoral Fellowship for financial support. L.K.J. was supported by NASA grant NNX13AI65G. Wind data were obtained from the SPDF Web site http://spdf.gsfc.nasa.gov. The authors thank L. Matteini for useful discussions. NR 42 TC 2 Z9 2 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 6 DI 10.3847/0004-637X/819/1/6 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400006 ER PT J AU Xu, D Li, D Yue, NN Goldsmith, PF AF Xu, Duo Li, Di Yue, Nannan Goldsmith, Paul F. TI EVOLUTION OF OH AND CO-DARK MOLECULAR GAS FRACTION ACROSS A MOLECULAR CLOUD BOUNDARY IN TAURUS SO ASTROPHYSICAL JOURNAL LA English DT Article DE evolution; ISM: clouds; ISM: individual objects (Taurus); ISM: molecules ID INTERSTELLAR DUST CLOUDS; DIFFUSE CLOUDS; MAGNETOHYDRODYNAMIC SHOCKS; LINE EMISSION; EXCITATION; COLLISIONS; HYDROGEN; MASERS; RATIO; CH AB We present observations of (CO)-C-12 J = 1-0, (CO)-C-13 J = 1-0, H I, and all four ground-state transitions of the hydroxyl (OH) radical toward a sharp boundary region of the Taurus molecular cloud. Based on a photodissociation region (PDR) model that reproduces CO and [C I] emission from the same region, we modeled the three OH transitions, 1612, 1665, and 1667 MHz successfully through escape probability non-local thermal equilibrium radiative transfer model calculations. We could not reproduce the 1720 MHz observations, due to unmodeled pumping mechanisms, of which the most likely candidate is a C-shock. The abundance of OH and CO-dark molecular gas is well-constrained. The OH abundance [OH]/[H-2] decreases from 8 x 10(-7) to 1 x 10(-7) as A, increases from 0.4 to 2.7 mag following an empirical law: [OH]/[H-2] = 1.5 x 10(-7) + 9.0 x 10(-7) x exp(-A(v) /0.81), which is higher than PDR model predictions for low-extinction regions by a factor of 80. The overabundance of OH at extinctions at or below 1 mag is likely the result of a C-shock. The dark gas fraction (DGF, defined as the fraction of molecular gas without detectable CO emission) decreases from 80% to 20% following a Gaussian profile: DGF = 0.90 x exp (-(A(v) - 0.79/0.71)(2)). This trend of the DGF is consistent with our understanding that the DGF drops at low visual extinction due to photodissociation of H-2 and drops at high visual extinction due to CO formation. The DGF peaks in the extinction range where H-2 has already formed and achieved self-shielding but (CO)-C-12 has not. Two narrow velocity components with a peak-to-peak spacing of similar to 1 km s(-1) were clearly identified. Their relative intensity and variation in space and frequency suggest colliding streams or gas flows at the boundary region. C1 [Xu, Duo; Li, Di; Yue, Nannan] Chinese Acad Sci, Natl Astron Observ, A20 Datun Rd, Beijing 100012, Peoples R China. [Xu, Duo; Yue, Nannan] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Li, Di] Chinese Acad Sci, Key Lab Radio Astron, Beijing 100012, Peoples R China. [Goldsmith, Paul F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Xu, D; Li, D (reprint author), Chinese Acad Sci, Natl Astron Observ, A20 Datun Rd, Beijing 100012, Peoples R China.; Xu, D (reprint author), Univ Chinese Acad Sci, Beijing 100049, Peoples R China.; Li, D (reprint author), Chinese Acad Sci, Key Lab Radio Astron, Beijing 100012, Peoples R China. EM xuduo117@nao.cas.cn; dili@nao.cas.cn RI Goldsmith, Paul/H-3159-2016; OI Xu, Duo/0000-0001-6216-8931 FU China Ministry of Science and Technology under State Key Development Program for Basic Research (973 program) [2012CB821802]; National Natural Science Foundation of China [11373038, 11373045]; Chinese Academy of Sciences [XDB09010302]; Guizhou Scientific Collaboration Program [20130421] FX This work is partly supported by the China Ministry of Science and Technology under State Key Development Program for Basic Research (973 program) No. 2012CB821802, the National Natural Science Foundation of China No. 11373038, No. 11373045, and the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences, Grant No. XDB09010302. This work was carried out in part at the Jet Propulsion Laboratory, which is operated for NASA by the California Institute of Technology. Di Li acknowledges support from the Guizhou Scientific Collaboration Program (#20130421). We are grateful to Carl Heiles and Z.Y. Ren for their kind and valuable advice and support. We would like to thank the anonymous referee for the careful inspection of the manuscript and constructive comments particularly the important suggestions to add the comparison with PDR model for similar G0 and nH values to improve the quality of this study. NR 38 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 22 DI 10.3847/0004-637X/819/1/22 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400022 ER PT J AU Yusef-Zadeh, F Wardle, M Schodel, R Roberts, DA Cotton, W Bushouse, H Arendt, R Royster, M AF Yusef-Zadeh, F. Wardle, M. Schoedel, R. Roberts, D. A. Cotton, W. Bushouse, H. Arendt, R. Royster, M. TI SGR A* AND ITS ENVIRONMENT: LOW-MASS STAR FORMATION, THE ORIGIN OF X-RAY GAS AND COLLIMATED OUTFLOW SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; Galaxy: center ID SUPERMASSIVE BLACK-HOLE; GALACTIC-CENTER REGION; SUPERNOVA-REMNANT SAGITTARIUS; STELLAR WINDS; PROPER MOTIONS; FLARING ACTIVITY; HIGH-RESOLUTION; CENTRAL PARSEC; IONIZED-GAS; YOUNG STARS AB We present high-resolution multiwavelength radio continuum images of the region within 150 '' of Sgr. A*, revealing a number of new extended features and stellar sources in this region. First, we detect a continuous 2 '' east-west ridge of radio emission, linking Sgr. A* and a cluster of stars associated with IRS 13 N and IRS 13E. The ridge suggests that an outflow of east-west blob-like structures is emerging from Sgr. A*. In particular, we find arc-like radio structures within the ridge with morphologies suggestive of photoevaporative protoplanetary disks. We use infrared K-s and L' fluxes to show that the emission has similar characteristics to those of a protoplanetary disk irradiated by the intense radiation field at the Galactic center. This suggests that star formation has taken place within the S-cluster 2 ''. from Sgr. A*. We suggest that the diffuse X-ray emission associated with Sgr A* is due to an expanding hot wind produced by the mass loss from B-type main sequence stars, and/or the disks of photoevaporation of low mass young stellar objects (YSOs) at a rate of similar to 10(-6) M-circle dot yr(-1). The proposed model naturally reduces the inferred accretion rate and is an alternative to the inflow-outflow style models to explain the underluminous nature of Sgr A*. Second, on a scale of 5. from Sgr A*, we detect new cometary radio and infrared sources at a position angle PA similar to 50 degrees which is similar to that of two other cometary sources X3 and X7, all of which face Sgr A*. In addition, we detect a striking tower of radio emission at a PA similar to 50 degrees-60 degrees along the major axis of the Sgr A East supernova remnant shell on a scale of 150 '' from Sgr A*. We suggest that the cometary sources and the tower feature are tracing interaction sites of a mildly relativistic jet from Sgr A* with the atmosphere of stars and the nonthermal Sgr A East shell at a PA similar to 50 degrees-60 degrees with (M) over dot similar to 1 x 10(-7) M-circle dot yr(-1), and opening angle 10 degrees. Lastly, we suggest that the east-west ridge of radio emission traces an outflow that is potentially associated with past flaring activity from Sgr A*. The position angle of the outflow driven by flaring activity is close to -90 degrees. C1 [Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.] Northwestern Univ, Dept Phys & Astron, CIERA, Evanston, IL 60208 USA. [Wardle, M.] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia. [Schoedel, R.] CSIC, Inst Astrofis Andalucia, Glorieta Astron, E-18008 Granada, Spain. [Cotton, W.] Natl Radio Astron Observ, Edgemont Rd, Charlottesville, VA 22903 USA. [Bushouse, H.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Arendt, R.] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. RP Yusef-Zadeh, F (reprint author), Northwestern Univ, Dept Phys & Astron, CIERA, Evanston, IL 60208 USA. FU NSF [AST-0807400, AST-1517246]; European Research Council under Europeans Unions/ERC [614922] FX This work is partially supported by grants AST-0807400 and AST-1517246 from the NSF. The research leading to these results has also received funding from the European Research Council under the Europeans Unions Seventh Framework Programme (FP/2007-2013)/ERC grant agreement No. 614922. NR 84 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 60 DI 10.3847/0004-637X/819/1/60 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400060 ER PT J AU ZuHone, JA Markevitch, M Zhuravleva, I AF ZuHone, J. A. Markevitch, M. Zhuravleva, I. TI MAPPING THE GAS TURBULENCE IN THE COMA CLUSTER: PREDICTIONS FOR ASTRO-H (vol 817, 110, 2016) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [ZuHone, J. A.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [ZuHone, J. A.; Markevitch, M.] NASA, Astrophys Sci Div, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Zhuravleva, I.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Zhuravleva, I.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. RP ZuHone, JA (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; ZuHone, JA (reprint author), NASA, Astrophys Sci Div, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. NR 1 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2016 VL 819 IS 1 AR 88 DI 10.3847/0004-637X/819/1/88 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZY UT WOS:000372303400088 ER PT J AU Witrisal, K Meissner, P Leitinger, E Shen, Y Gustafson, C Tufvesson, F Haneda, K Dardari, D Molisch, AF Conti, A Win, MZ AF Witrisal, Klaus Meissner, Paul Leitinger, Erik Shen, Yuan Gustafson, Carl Tufvesson, Fredrik Haneda, Katsuyuki Dardari, Davide Molisch, Andreas F. Conti, Andrea Win, Moe Z. TI High-Accuracy Localization for Assisted Living 5G systems will turn multipath channels from foe to friend SO IEEE SIGNAL PROCESSING MAGAZINE LA English DT Article ID WIDE-BAND LOCALIZATION; COOPERATIVE LOCALIZATION; MULTIPATH EXPLOITATION; FUNDAMENTAL LIMITS; PART I; PROPAGATION; ENVIRONMENTS; NETWORKS; CHANNELS; SIGNALS C1 [Witrisal, Klaus] Graz Univ Technol, A-8010 Graz, Austria. [Meissner, Paul] Graz Univ Technol, Signal Proc & Speech Commun Lab, A-8010 Graz, Austria. [Shen, Yuan] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China. [Shen, Yuan] IEEE ComSoc Radio Commun Comm, Beijing, Peoples R China. [Gustafson, Carl; Tufvesson, Fredrik] Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden. [Tufvesson, Fredrik] Lund Univ, Dept Wireless Propagat Grp, S-22100 Lund, Sweden. [Haneda, Katsuyuki] Aalto Univ, Sch Elect Engn, Espoo, Finland. [Dardari, Davide] Univ Bologna, I-40126 Bologna, Italy. [Dardari, Davide; Win, Moe Z.] MIT, Cambridge, MA 02139 USA. [Molisch, Andreas F.] Univ So Calif, Elect Engn, Los Angeles, CA 90089 USA. [Molisch, Andreas F.] Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA. [Molisch, Andreas F.; Win, Moe Z.] Amer Assoc Advancement Sci, Washington, DC USA. [Molisch, Andreas F.; Win, Moe Z.] Inst Engn & Technol, Beijing, Peoples R China. [Molisch, Andreas F.] Natl Acad Inventors, Cambridge, MA USA. [Conti, Andrea] Univ Ferrara, I-44100 Ferrara, Italy. [Win, Moe Z.] Wireless Commun & Network Sci Lab, Boston, MA USA. [Win, Moe Z.] AT&T Res Labs, Middletown, NJ USA. [Win, Moe Z.] Jet Prop Lab, Pasadena, CA USA. [Win, Moe Z.] IEEE, Piscataway, NJ USA. RP Witrisal, K (reprint author), Graz Univ Technol, A-8010 Graz, Austria.; Meissner, P (reprint author), Graz Univ Technol, Signal Proc & Speech Commun Lab, A-8010 Graz, Austria.; Shen, Y (reprint author), Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China.; Shen, Y (reprint author), IEEE ComSoc Radio Commun Comm, Beijing, Peoples R China.; Gustafson, C (reprint author), Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden.; Tufvesson, F (reprint author), Lund Univ, Radio Syst, S-22100 Lund, Sweden.; Tufvesson, F (reprint author), Lund Univ, Dept Wireless Propagat Grp, S-22100 Lund, Sweden.; Haneda, K (reprint author), Aalto Univ, Sch Elect Engn, Espoo, Finland.; Dardari, D (reprint author), Univ Bologna, I-40126 Bologna, Italy.; Dardari, D; Win, MZ (reprint author), MIT, Cambridge, MA 02139 USA.; Molisch, AF (reprint author), Univ So Calif, Elect Engn, Los Angeles, CA 90089 USA.; Molisch, AF (reprint author), Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA.; Molisch, AF; Win, MZ (reprint author), Amer Assoc Advancement Sci, Washington, DC USA.; Molisch, AF; Win, MZ (reprint author), Inst Engn & Technol, Beijing, Peoples R China.; Conti, A (reprint author), Univ Ferrara, I-44100 Ferrara, Italy.; Win, MZ (reprint author), Wireless Commun & Network Sci Lab, Boston, MA USA.; Win, MZ (reprint author), AT&T Res Labs, Middletown, NJ USA.; Win, MZ (reprint author), Jet Prop Lab, Pasadena, CA USA.; Win, MZ (reprint author), IEEE, Piscataway, NJ USA. EM witrisal@tugraz.at; paul.meissner@ieee.org; erik.leitinger@tugraz.at; shenyuan_ee@mail.tsinghua.edu.cn; carl.gustafson@eit.lth.se; fredrik.tufvesson@eit.lth.se; katsuyuki.haneda@aalto.fi; davide.dardari@unibo.it; andreas.molisch@ieee.org; a.conti@ieee.org; moewin@mit.edu RI Shen, Yuan/C-1823-2013 OI Shen, Yuan/0000-0001-8153-1193 FU Austrian Research Promotion Agency (FFG) within project REFlex [845630]; Austrian Research Promotion Agency (FFG) within Austrian COMET Competence Center FTW; Italian MIUR project GRETA [2010WHY5PR]; Office of Naval Research [N00014-11-1-0397]; NSF; KACST FX The work of K. Witrisal, P. Meissner, and E. Leitinger was partly supported by the Austrian Research Promotion Agency (FFG) within the project REFlex (project number 845630) and within the Austrian COMET Competence Center FTW. The work of D. Dardari and A. Conti was supported in part by the Italian MIUR project GRETA under grant 2010WHY5PR. The work of Y. Shen and M.Z. Win was supported in part by the Office of Naval Research under grant N00014-11-1-0397. The work of A.F. Molisch was supported by ONR, NSF, and KACST. NR 47 TC 5 Z9 5 U1 3 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1053-5888 EI 1558-0792 J9 IEEE SIGNAL PROC MAG JI IEEE Signal Process. Mag. PD MAR PY 2016 VL 33 IS 2 BP 59 EP 70 DI 10.1109/MSP.2015.2504328 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA DG9JG UT WOS:000372398000009 ER PT J AU Smith, GL Daniels, J Priestley, K Thomas, S Lee, RB AF Smith, G. Louis Daniels, Janet Priestley, Kory Thomas, Susan Lee, Robert B., III TI Measurement of the Point Response Functions of CERES Scanning Radiometers SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Aqua; calibration; Clouds and the Earth's Radiation Energy System (CERES); Earth radiation budget; National Polar-orbiting Partnersship (NPP); point response function (PRF); point spread function; radiometry; Terra ID RADIANT ENERGY SYSTEM; RADIATION BUDGET; CLOUDS; VALIDATION; PERFORMANCE; SPACECRAFT; SENSORS; TRMM AB Some applications of data from the Clouds and the Earth's Radiant Energy System (CERES) scanning radiometer require the use of the point response function (PRF), which describes the influence of radiance from each point on the measurement. A radiance source for the measurement of the PRF of the CERES instruments was built and installed into the Radiometric Calibration Facility, in which the CERES instruments have been calibrated. The design and application of the PRF source and the computation of the PRF from these measurements are described. In order to compare the PRF based on measurements with the theoretical PRF, it is necessary to account for the finite size of the beam from the source. The use of the PRF source and the analysis of the data are demonstrated by application to the FM-5 instrument. The measured results compare well with theory for the CERES instruments and are presented for FM-5. C1 [Smith, G. Louis; Daniels, Janet; Thomas, Susan] Sci Applicat Int Corp, Hampton, VA 23666 USA. [Priestley, Kory] NASA, Langley Res Ctr, Hampton, VA USA. [Lee, Robert B., III] Hampton Univ, Hampton, VA 23668 USA. RP Smith, GL (reprint author), Sci Applicat Int Corp, Hampton, VA 23666 USA. EM g.l.smith@larc.nasa.gov FU Science Directorate of Langley Research Center; Science Mission Directorate of the Earth Science Division of NASA FX The authors would like to thank M. Frink and T. Evert of TRW Space Technology Division, presently Northrop Grumman Space Division, for the design of the point response function source; the Science Directorate of Langley Research Center and the Science Mission Directorate of the Earth Science Division of NASA, for the support of the CERES Project; and the people of Northrop Grumman Space Technology, under the leadership of S. Carman and T. Evert, for the excellent work performed to achieve the performance that has been demonstrated by the CERES instruments. NR 27 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2016 VL 54 IS 3 BP 1260 EP 1266 DI 10.1109/TGRS.2015.2476759 PG 7 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DG8YL UT WOS:000372369400002 ER PT J AU Aksoy, M Johnson, JT Misra, S Colliander, A O'Dwyer, I AF Aksoy, Mustafa Johnson, Joel T. Misra, Sidharth Colliander, Andreas O'Dwyer, Ian TI L-Band Radio-Frequency Interference Observations During the SMAP Validation Experiment 2012 SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave radiometry; radio-frequency interference (RFI) ID RADIO-FREQUENCY INTERFERENCE; MICROWAVE RADIOMETRY; MITIGATION; RFI; DETECTOR; KURTOSIS; TIME AB Radio-frequency interference (RFI) observations for L-band microwave radiometry during the SMAP Validation Experiment 2012 (SMAPVEX12) airborne campaign are reported in this paper. The soil moisture measurement campaign was conducted in summer 2012 near Winnipeg, MB, Canada, with additional RFI flights over Denver, CO, USA. The Passive Active L-Band sensor (PALS) radiometer of the Jet Propulsion Laboratory was used with a full-bandwidth direct sampling digital backend to measure and store predetection data that is fully resolved in time and frequency. Overviews of SMAPVEX12 and the receiver and digital backend used to collect data are presented, along with the data processing techniques used for RFI detection. Properties of the observed RFI are examined and compared with the results of previous studies. Finally, implications of the results are explained considering current missions such as NASA's Soil Moisture Active Passive Mission. C1 [Aksoy, Mustafa; Johnson, Joel T.] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Aksoy, Mustafa; Johnson, Joel T.] Ohio State Univ, Electrosci Lab, Columbus, OH 43210 USA. [Misra, Sidharth; Colliander, Andreas; O'Dwyer, Ian] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Aksoy, M (reprint author), Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.; Aksoy, M (reprint author), Ohio State Univ, Electrosci Lab, Columbus, OH 43210 USA. EM aksoy.2@osu.edu NR 17 TC 0 Z9 0 U1 4 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2016 VL 54 IS 3 BP 1323 EP 1335 DI 10.1109/TGRS.2015.2477686 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DG8YL UT WOS:000372369400007 ER PT J AU Lei, N Chen, XX Xiong, XX AF Lei, Ning Chen, Xuexia Xiong, Xiaoxiong TI Determination of the SNPP VIIRS SDSM Screen Relative Transmittance From Both Yaw Maneuver and Regular On-Orbit Data SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Bidirectional reflectance distribution function (BRDF) degradation; radiometric calibration; reflective solar bands (RSBs); screen transmittance; Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS); solar diffuser (SD); yaw maneuver ID IMAGING RADIOMETER SUITE; REFLECTIVE SOLAR BANDS; CALIBRATION; PERFORMANCE AB The Visible Infrared Imaging Radiometer Suite aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite performs radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function (BRDF) degradation factor is determined by an onboard SD stability monitor (SDSM), which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor. The degradation-factor-versus-time curves were found to have a number of very large unphysical undulations likely due to the inaccuracy in the prelaunch determined SDSM screen transmittance. To refine the SDSM screen transmittance, satellite yaw maneuvers were carried out. With the SDSM screen relative transmittance determined from the yaw maneuver data, the computed BRDF degradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and a small portion of regular on-orbit data to determine the SDSM screen relative transmittance at a fine angular scale. We determine that the error standard deviation of the calculated relative transmittance ranges from 0.00030 (672 nm) to 0.00092 (926 nm). With the newly determined SDSM screen relative transmittance, the computed BRDF degradation factor behaves much more smoothly over time. C1 [Lei, Ning; Chen, Xuexia] Sigma Space Corp, Lanham, MD 20706 USA. [Lei, Ning; Chen, Xuexia] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Lei, N (reprint author), Sigma Space Corp, Lanham, MD 20706 USA.; Lei, N (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. EM ning.lei@ssaihq.com NR 12 TC 5 Z9 5 U1 2 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2016 VL 54 IS 3 BP 1390 EP 1398 DI 10.1109/TGRS.2015.2480039 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DG8YL UT WOS:000372369400012 ER PT J AU Murphy, JM Le Moigne, J Harding, DJ AF Murphy, James M. Le Moigne, Jacqueline Harding, David J. TI Automatic Image Registration of Multimodal Remotely Sensed Data With Global Shearlet Features SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Harmonic analysis; image registration; lidar; multimodal image analysis; shearlets; wavelets ID MUTUAL INFORMATION; WAVELET TRANSFORM; SENSING IMAGERY; ALGORITHM; REPRESENTATIONS; OPTIMIZATION; COMPRESSION; EIGENMAPS; SIFT AB Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard but are sometimes not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered and then performs least-squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, although approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared with wavelet features alone. C1 [Murphy, James M.] Duke Univ, Dept Math & Informat Initiat Duke, Durham, NC 27708 USA. [Le Moigne, Jacqueline; Harding, David J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Murphy, JM (reprint author), Duke Univ, Dept Math & Informat Initiat Duke, Durham, NC 27708 USA. EM jmmurphy11@gmail.com RI Harding, David/F-5913-2012 NR 48 TC 2 Z9 2 U1 6 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2016 VL 54 IS 3 BP 1685 EP 1704 DI 10.1109/TGRS.2015.2487457 PG 20 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DG8YL UT WOS:000372369400035 ER PT J AU Varonen, M Reeves, R Kangaslahti, P Samoska, L Kooi, JW Cleary, K Gawande, RS Akgiray, A Fung, A Gaier, T Weinreb, S Readhead, ACS Lawrence, C Sarkozy, S Lai, R AF Varonen, Mikko Reeves, Rodrigo Kangaslahti, Pekka Samoska, Lorene Kooi, Jacob W. Cleary, Kieran Gawande, Rohit S. Akgiray, Ahmed Fung, Andy Gaier, Todd Weinreb, Sander Readhead, Anthony C. S. Lawrence, Charles Sarkozy, Stephen Lai, Richard TI An MMIC Low-Noise Amplifier Design Technique SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Cryogenic; InP HEMT; low-noise amplifiers (LNAs); monolithic microwave integrated circuit (MMIC) ID BAND; TEMPERATURE; POWER; GHZ; THZ AB In this paper we discuss the design of low-noise amplifiers (LNAs) for both cryogenic and room-temperature operation in general and take the stability and linearity of the amplifiers into special consideration. Oscillations that can occur within a multi-finger transistor are studied and verified with simulations and measurements. To overcome the stability problem related to the multi-finger transistor design approach a parallel two-finger unit transistor monolithic microwave integrated circuit LNA design technique, which enables the design of wideband and high-linearity LNAs with very stable, predictable, and repeatable operation, is proposed. The feasibility of the proposed design technique is proved by demonstrating a three-stage LNA packaged in a WR10 waveguide housing and fabricated using a 35-nm InP HEMT technology that achieves more than a 20-dB gain from 75 to 116 GHz and 26-33-K noise temperature from 85 to 116 GHz when cryogenically cooled to 27 K. C1 [Varonen, Mikko; Kangaslahti, Pekka; Samoska, Lorene; Kooi, Jacob W.; Gawande, Rohit S.; Fung, Andy; Gaier, Todd; Lawrence, Charles] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Varonen, Mikko] Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland. [Varonen, Mikko] LNAFIN Inc, Helsinki 00550, Finland. [Reeves, Rodrigo; Cleary, Kieran; Readhead, Anthony C. S.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Reeves, Rodrigo] Univ Concepcion, CePIA, Dept Astron, 160-C, Casilla, Chile. [Akgiray, Ahmed; Weinreb, Sander] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. [Akgiray, Ahmed] Ozyegin Univ, Dept Elect Engn, TR-34794 Istanbul, Turkey. [Sarkozy, Stephen; Lai, Richard] Northrop Grumman Corp, Redondo Beach, CA 90278 USA. RP Varonen, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Varonen, M (reprint author), Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland.; Varonen, M (reprint author), LNAFIN Inc, Helsinki 00550, Finland. EM mikko.varonen@aalto.fi FU Jet Propulsion Laboratory, California Institute of Technology; Oak Ridge Associated Universities under NASA Postdoctoral Program (NPP); Academy of Finland; Alfred Kordel Foundation; National Aeronautics and Space Administration FX This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The work of M. Varonen was supported by Oak Ridge Associated Universities under the NASA Postdoctoral Program (NPP), by the Academy of Finland, and by the Alfred Kordel Foundation. NR 30 TC 1 Z9 1 U1 5 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD MAR PY 2016 VL 64 IS 3 BP 826 EP 835 DI 10.1109/TMTT.2016.2521650 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA DH0QL UT WOS:000372488600016 ER PT J AU Coltin, B McMichael, S Smith, T Fong, T AF Coltin, Brian McMichael, Scott Smith, Trey Fong, Terrence TI Automatic boosted flood mapping from satellite data SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID MODIS; RESOLUTION; DERIVATION; SURFACE; CLOUD; MASK AB Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-theart algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions. C1 [Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence] NASA Ames, Intelligent Robot Grp, Moffett Field, CA USA. RP Coltin, B (reprint author), NASA Ames, Intelligent Robot Grp, Moffett Field, CA USA. EM brian.j.coltin@nasa.gov NR 34 TC 1 Z9 1 U1 2 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PD MAR PY 2016 VL 37 IS 5 BP 993 EP 1015 DI 10.1080/01431161.2016.1145366 PG 23 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA DH4ZY UT WOS:000372795700001 ER PT J AU Goldin, D Lukashin, C AF Goldin, D. Lukashin, C. TI Empirical Polarization Distribution Models for CLARREO-Imager Intercalibration SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Spectral analysis/models/distribution; Physical Meteorology and Climatology; Error analysis; Mathematical and statistical techniques; Observational techniques and algorithms; Instrumentation/sensors; Radiances; Satellite observations; Remote sensing ID INTER-CALIBRATION; INSTRUMENT; SCATTERING; OCEAN; LIGHT AB Polarization effects bias the performance of various existing passive spaceborne instruments, such as MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS), as well as geostationary imagers. It is essential to evaluate and correct for these effects in order to achieve the required accuracy of the total reflectance at the top of the atmosphere. In addition to performing highly accurate decadal climate change observations, one of the objectives of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission recommended by the National Research Council for launch by NASA is to provide the on-orbit intercalibration with the imagers over a range of parameters, including polarization. Whenever the on-orbit coincident measurements are not possible, CLARREO will provide the polarization distributions constructed using the adding-doubling radiative transfer model (ADRTM), which will cover the entire reflected solar spectrum. These ADRTM results need to be validated using real data. To this end the empirical polarization distribution models (PDMs) based on the measurements taken by the Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL) mission were developed. Examples of such PDMs for the degree of polarization and the angle of linear polarization for the cloudless ocean scenes are shown here. These PDMs are compared across the three available PARASOL polarization bands, and the effect of aerosols on them is examined. The PDM-derived dependence of the reflectance uncertainty on the degree of polarization for imagers, such as MODIS or VIIRS, after their intercalibration with the CLARREO instrument is evaluated. The influence of the aerosols on the reflectance uncertainty is examined. Finally, the PDMs for the angle of linear polarization is cross-checked against the single-scattering approximation. C1 [Goldin, D.] Sci Syst & Applicat Inc, Hampton, VA USA. [Goldin, D.; Lukashin, C.] NASA, Langley Res Ctr, MS 420, Hampton, VA 23681 USA. RP Goldin, D (reprint author), NASA, Langley Res Ctr, MS 420, Hampton, VA 23681 USA. EM daniel.goldin@nasa.gov RI Richards, Amber/K-8203-2015 FU NASA CLARREO project FX We gratefully acknowledge Francois-Marie Breon for the helpful comments on the PARASOL data and Wenying Su for the discussion of the aerosol-related measurements. We would also like to thank the PARASOL data distribution centers at CNES and ICARE, France, for providing the data and guidance on its use. This study was funded by the NASA CLARREO project. NR 18 TC 0 Z9 0 U1 5 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD MAR PY 2016 VL 33 IS 3 BP 439 EP 451 DI 10.1175/JTECH-D-15-0165.1 PG 13 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DH4VZ UT WOS:000372785000003 ER PT J AU Doelling, DR Sun, M Nguyen, LT Nordeen, ML Haney, CO Keyes, DF Mlynczak, PE AF Doelling, David R. Sun, Moguo Le Trang Nguyen Nordeen, Michele L. Haney, Conor O. Keyes, Dennis F. Mlynczak, Pamela E. TI Advances in Geostationary-Derived Longwave Fluxes for the CERES Synoptic (SYN1deg) Product SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Climate records; Remote sensing; Satellite observations; Observational techniques and algorithms; Instrumentation/sensors; Sampling ID ANGULAR-DISTRIBUTION MODELS; ENERGY SYSTEM INSTRUMENT; TEMPORAL INTERPOLATION; INFRARED CHANNELS; INTER-CALIBRATION; DIURNAL-VARIATION; METEOSAT DATA; PART I; RADIATION; SATELLITE AB The Clouds and the Earth's Radiant Energy System (CERES) project has provided the climate community 15 years of globally observed top-of-the-atmosphere fluxes critical for climate and cloud feedback studies. To accurately monitor the earth's radiation budget, the CERES instrument footprint fluxes must be spatially and temporally averaged properly. The CERES synoptic 1 degrees (SYN1deg) product incorporates derived fluxes from the geostationary satellites (GEOs) to account for the regional diurnal flux variations in between Terra and Aqua CERES measurements. The Edition 4 CERES reprocessing effort has provided the opportunity to reevaluate the derivation of longwave (LW) fluxes from GEO narrowband radiances by examining the improvements from incorporating 1-hourly versus 3-hourly GEO data, additional GEO infrared (IR) channels, and multichannel GEO cloud properties. The resultant GEO LW fluxes need to be consistent across the 16-satellite climate data record. To that end, the addition of the water vapor channel, available on all GEOs, was more effective than using a reanalysis dataset's column-weighted relative humidity combined with the window channel radiance. The benefit of the CERES LW angular directional model to derive fluxes was limited by the inconsistency of the GEO cloud retrievals. Greater success was found in the direct conversion of window and water vapor channel radiances into fluxes. Incorporating 1-hourly GEO fluxes had the greatest impact on improving the accuracy of high-temporal-resolution fluxes, and normalizing the GEO LW fluxes with CERES greatly reduced the monthly regional LW flux bias. C1 [Doelling, David R.] NASA, Langley Res Ctr, 21 Langley Blvd,MS 420, Hampton, VA 23681 USA. [Sun, Moguo; Le Trang Nguyen; Nordeen, Michele L.; Haney, Conor O.; Keyes, Dennis F.; Mlynczak, Pamela E.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Doelling, DR (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,MS 420, Hampton, VA 23681 USA. EM david.r.doelling@nasa.gov FU NASA CERES project FX This work was funded by the NASA CERES project. The validation effort could not have been accomplished without the help of the CERES TISA team. CERES SYN1deg Edition 3 data were obtained from the NASA Langley Research Center EOSDIS Distributed Active Archive Center. GERB Edition 1 Level 2 ARG data were obtained from the GERB Ground Segment Processing System at Rutherford Appleton Laboratory. The GEOS-5 data used in this study/project were provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. NR 35 TC 1 Z9 1 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD MAR PY 2016 VL 33 IS 3 BP 503 EP 521 DI 10.1175/JTECH-D-15-0147.1 PG 19 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DH4XS UT WOS:000372789500001 ER PT J AU Suhir, E Ghaffarian, R Nicolics, J AF Suhir, E. Ghaffarian, R. Nicolics, J. TI Predicted stresses in ball-grid-array (BGA) and column-grid-array (CGA) interconnections in a mirror-like package design SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article AB There is an obvious incentive for using bow-free (temperature change insensitive) assemblies in various areas of engineering, including electron device and electronic packaging fields. The induced stresses in a bow-free assembly could be, however, rather high, considerably higher than in an assembly, whose bow is not restricted. The simplest and trivial case of a bow-free assembly is a tri-component body, in which the inner component is sandwiched between two identical outer components ("mirror" structure), is addressed in our analysis, and a simple and physically meaningful analytical stress model is suggested. It is concluded that if acceptable stresses (below yield stress of the solder material) are achievable, a mirror (bow-free, temperature-change-insensitive) design should be preferred, because it results in an operationally stable performance of the system. C1 [Suhir, E.] Portland State Univ, Portland, OR 97207 USA. [Suhir, E.] Vienna Univ Technol, A-1060 Vienna, Austria. [Suhir, E.] Ariel Univ, Ariel, Israel. [Suhir, E.] ERS Co LLC, 727 Alvina Ct, Los Altos, CA 94024 USA. [Ghaffarian, R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Nicolics, J.] Vienna Univ Technol, Inst Sensor & Actuator Syst, Dept Appl Elect Mat, Gusshausstr 27-29, A-1040 Vienna, Austria. RP Suhir, E (reprint author), Portland State Univ, Portland, OR 97207 USA.; Suhir, E (reprint author), Vienna Univ Technol, A-1060 Vienna, Austria.; Suhir, E (reprint author), Ariel Univ, Ariel, Israel.; Suhir, E (reprint author), ERS Co LLC, 727 Alvina Ct, Los Altos, CA 94024 USA. EM suhire@aol.com; reza.ghaffarian@jpl.nasa.gov; johann.nicolics@tuwien.ac.at NR 23 TC 1 Z9 1 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 EI 1573-482X J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD MAR PY 2016 VL 27 IS 3 BP 2430 EP 2441 DI 10.1007/s10854-015-4042-8 PG 12 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA DG6CW UT WOS:000372170800036 ER PT J AU Kisiel, Z Pszczolkowski, L Bialkowska-Jaworska, E Charnley, SB AF Kisiel, Zbigniew Pszczolkowski, Lech Bialkowska-Jaworska, Ewa Charnley, Steven B. TI Millimetre wave rotational spectrum of glycolic acid SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Rotational spectrum; Millimetre wave spectrum; Excited vibrational states; Interstate perturbations; Coriolis and Fermi resonances ID HOT MOLECULAR CORES; VALENCE FORCE-FIELD; MICROWAVE-SPECTRUM; PYRUVIC-ACID; CARBONACEOUS METEORITES; DIETHYL-ETHER; FORMIC-ACID; LACTIC-ACID; INTERSTELLAR; SPECTROSCOPY AB The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(-1) have been measured and their analysis is reported. The data sets for the ground state, v(21) = I, and v(21) = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v(21) mode is close to 100 cm(-1). The existence of the less stable AAT conformer in the near 50 degrees C sample used in our experiment was also confirmed and additional transitions have been measured. (C) 2016 Elsevier Inc. All rights reserved. C1 [Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa] Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland. [Charnley, Steven B.] NASA, Goddard Space Flight Ctr, Astrochem Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Kisiel, Z (reprint author), Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland. EM kisiel@ifpan.edu.pl RI Kisiel, Zbigniew/K-8798-2016; Bialkowska-Jaworska, Ewa/R-9282-2016; Pszczolkowski, Lech/S-3018-2016 OI Kisiel, Zbigniew/0000-0002-2570-3154; FU Polish National Science Centre [DEC/2011/02/A/ST2/00298]; NASA Goddard Center for Astrobiology FX The Warsaw authors acknowledge financial support from a grant from the Polish National Science Centre, decision number DEC/2011/02/A/ST2/00298. This work was partially supported by the NASA Goddard Center for Astrobiology. NR 51 TC 0 Z9 0 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD MAR PY 2016 VL 321 BP 13 EP 22 DI 10.1016/j.jms.2016.01.014 PG 10 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA DG9DW UT WOS:000372384000003 ER PT J AU Nyquist, LE Shih, CY McCubbin, FM Santos, AR Shearer, CK Peng, ZX Burger, PV Agee, CB AF Nyquist, Laurence E. Shih, Chi-Yu McCubbin, Francis M. Santos, Alison R. Shearer, Charles K. Peng, Zhan X. Burger, Paul V. Agee, Carl B. TI Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID TRACE-ELEMENTS; METEORITE; PETROGENESIS; EVOLUTION; REGOLITH; MAGMAS; CRUST; GEOCHEMISTRY; MICROPROBE; ABUNDANCES AB The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both Sm-147-Nd-143 and Sm-146-Nd-142 age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously similar to 4.44Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35-4.45Ga) for U-Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous-textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb-Sr system was detected, and no age significance could be gleaned from our Rb-Sr data. The disturbance to the Rb-Sr system may be due to a thermal event recorded by bulk-rock K-Ar ages of 1.56Ga and U-Pb ages of phosphates at about 1.35-1.5Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP-rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites. C1 [Nyquist, Laurence E.; McCubbin, Francis M.] NASA, Johnson Space Ctr, Mailcode 11,2101 NASA Pkwy, Houston, TX 77058 USA. [Shih, Chi-Yu; Peng, Zhan X.] NASA, Jacobs, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. [McCubbin, Francis M.; Santos, Alison R.; Shearer, Charles K.; Burger, Paul V.; Agee, Carl B.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Santos, Alison R.; Shearer, Charles K.; Burger, Paul V.; Agee, Carl B.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP McCubbin, FM (reprint author), NASA, Johnson Space Ctr, Mailcode 11,2101 NASA Pkwy, Houston, TX 77058 USA.; McCubbin, FM (reprint author), Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. EM francis.m.mccubbin@nasa.gov FU NASA LASER Program through RTOP [10-LASER10-0054]; Mars Fundamental Research Program [NNX13AG44G]; NASA Cosmochemistry Program [NNX13AH85G, NNX14AI23G] FX This article was improved by reviews from Lars Borg and an anonymous reviewer. We also thank Ian Franchi and Timothy Jull for the editorial handling of the article. LEN and C-YS acknowledge support from the NASA LASER Program during this study through RTOP 10-LASER10-0054 to LEN. FMM acknowledges support from the Mars Fundamental Research Program during this study through grant NNX13AG44G. CKS and PVB acknowledge support from the NASA Cosmochemistry Program during this study through grant NNX13AH85G to CKS. CBA and ARS acknowledge support from the NASA Cosmochemistry Program during this study through grant NNX14AI23G to CBA. NR 46 TC 10 Z9 10 U1 7 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2016 VL 51 IS 3 BP 483 EP 498 DI 10.1111/maps.12606 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DH1PJ UT WOS:000372556800003 ER PT J AU Searby, N Ross, K AF Searby, Nancy Ross, Kenton TI Increasing the Impacts of Capacity Building for Remote Sensing Applications SO PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING LA English DT Editorial Material C1 [Searby, Nancy] NASA Headquarters, NASA Appl Sci Program, Capac Bldg Program, Washington, DC USA. [Ross, Kenton] NASA, Langley Res Ctr, NASA DEVELOP Program, Hampton, VA 23665 USA. RP Searby, N (reprint author), NASA Headquarters, NASA Appl Sci Program, Capac Bldg Program, Washington, DC USA.; Ross, K (reprint author), NASA, Langley Res Ctr, NASA DEVELOP Program, Hampton, VA 23665 USA. EM nancy.d.searby@nasa.gov; kenton.w.ross@nasa.gov NR 0 TC 1 Z9 1 U1 0 U2 3 PU AMER SOC PHOTOGRAMMETRY PI BETHESDA PA 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160 USA SN 0099-1112 J9 PHOTOGRAMM ENG REM S JI Photogramm. Eng. Remote Sens. PD MAR PY 2016 VL 82 IS 3 BP 179 EP 180 PG 2 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA DH1QH UT WOS:000372559500002 ER PT J AU Schultz, KW Sachs, MK Heien, EM Rundle, JB Turcotte, DL Donnellan, A AF Schultz, Kasey W. Sachs, Michael K. Heien, Eric M. Rundle, John B. Turcotte, Don L. Donnellan, Andrea TI Simulating Gravity Changes in Topologically Realistic Driven Earthquake Fault Systems: First Results SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE Numerical simulation; co-seismic gravity changes; virtual California; earthquakes; statistics ID PHYSICAL MODEL; TENSILE FAULTS; HALF-SPACE; DEFORMATION; CALIFORNIA; SHEAR AB Currently, GPS and InSAR measurements are used to monitor deformation produced by slip on earthquake faults. It has been suggested that another method to accomplish many of the same objectives would be through satellite-based gravity measurements. The Gravity Recovery and Climate Experiment (GRACE) mission has shown that it is possible to make detailed gravity measurements from space for climate dynamics and other purposes. To build the groundwork for a more advanced satellite-based gravity survey, we must estimate the level of accuracy needed for precise estimation of fault slip in earthquakes. We turn to numerical simulations of earthquake fault systems and use these to estimate gravity changes. The current generation of Virtual California (VC) simulates faults of any orientation, dip, and rake. In this work, we discuss these computations and the implications they have for accuracies needed for a dedicated gravity monitoring mission. Preliminary results are in agreement with previous results calculated from an older and simpler version of VC. Computed gravity changes are in the range of tens of mu Gal over distances up to a few hundred kilometers, near the detection threshold for GRACE. C1 [Schultz, Kasey W.; Sachs, Michael K.; Rundle, John B.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Heien, Eric M.; Rundle, John B.; Turcotte, Don L.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Heien, Eric M.] Univ Calif Davis, Computat Infrastruct Geodynam, Davis, CA 95616 USA. [Donnellan, Andrea] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Schultz, KW (reprint author), Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. EM kwschultz@ucdavis.edu FU National Aeronautics and Space Administration (NASA) Earth and Space Science [NNX11AL92H] FX This research was supported by National Aeronautics and Space Administration (NASA) Earth and Space Science fellowship Number NNX11AL92H. NR 19 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 0033-4553 EI 1420-9136 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD MAR PY 2016 VL 173 IS 3 SI SI BP 827 EP 838 DI 10.1007/s00024-014-0926-4 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DG8AP UT WOS:000372305100007 ER PT J AU Borucki, WJ AF Borucki, William J. TI KEPLER Mission: development and overview SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review DE Kepler Mission; extrasolar planets; spacecraft instrumentation ID TRANSIT TIMING VARIATIONS; SUN-LIKE STAR; MAIN-SEQUENCE STARS; EXTRA-SOLAR PLANETS; LOW-DENSITY PLANETS; EARTH-SIZE PLANETS; R-CIRCLE-PLUS; 1ST 16 MONTHS; HABITABLE-ZONE; TERRESTRIAL PLANETS AB The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. C1 [Borucki, William J.] NASA, Ames Res Ctr, Sci Directorate, Moffett Field, CA 94035 USA. RP Borucki, WJ (reprint author), NASA, Ames Res Ctr, Sci Directorate, Moffett Field, CA 94035 USA. EM William.J.Borucki@nasa.gov FU NASA's Science Mission Directorate FX Kepler was competitively selected PI-led as the tenth Discovery mission with funding provided by NASA's Science Mission Directorate. Many organizations contributed to the success of the Kepler Mission. They include Ames Research Center, Ball Aerospace and Technologies Corporation, California Institute of Technology, Carnegie Institute of Washington, Harvard-Smithsonian Center for Astrophysics, Jet Propulsion Laboratory, W M Keck Observatory, Laboratory for Atmospheric and Space Physics, Lawrence Hall of Science, Lowell Observatory, NASA Goddard Space Flight Center, NASA Headquarters, NASA Kennedy Spaceflight Center, and NASA Marshall Space Flight Center, SETI Institute, Space Telescope Science Institute, University of California Berkeley, University of Texas Austin, and University of Washington Seattle. At Ames, the dedicated people in Mission Operations, Science Office, and Science Operation Center provided the calibrated data that allowed the worldwide science community to make discoveries that enlightened our view of exoplanets and exoplanet systems. The author wishes to acknowledge the many contributions to this paper from team members; especially to Doug Caldwell, William Chaplin, Edna DeVore, Alan Gould, Jon Jenkins, Sean Seeder, Charlie Sobeck, and Joe Twicken. The comments on the manuscript by Edna DeVore, Jack Lissauer, Mark Marley, Jason Rowe, and two anonymous referees are greatly appreciated. NR 193 TC 4 Z9 4 U1 10 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD MAR PY 2016 VL 79 IS 3 AR 036901 DI 10.1088/0034-4885/79/3/036901 PG 49 WC Physics, Multidisciplinary SC Physics GA DH2BF UT WOS:000372588400003 PM 26863223 ER PT J AU Acar, E Tobe, H Karaca, HE Noebe, RD Chumlyakov, YI AF Acar, E. Tobe, H. Karaca, H. E. Noebe, R. D. Chumlyakov, Y. I. TI Microstructure and shape memory behavior of [111]-oriented NiTiHfPd alloys SO SMART MATERIALS AND STRUCTURES LA English DT Article DE shape memory alloys; microstructure; elastic energy storage; NiTiHfPd; superelasticity ID MARTENSITIC-TRANSFORMATION; SINGLE-CRYSTALS; NI; PSEUDOELASTICITY; PRECIPITATION; DEPENDENCE; STRENGTH; AL AB The relationship between the microstructure and shape memory properties of [111]-oriented Ni45.3Ti29.7Hf20Pd5 (at%) single crystals was explored. In this precipitation-strengthened alloy, the size and volume fraction of precipitates and interparticle distances govern the martensite morphology and the ensuing shape memory responses. Aging of the solution-treated material, leading to a microstructure of fine, closely spaced precipitates, resulted in a material capable of a shape memory strain of 2.15% at 1000 MPa in compression. Larger precipitates formed after aging the as-grown single crystals (without a prior solution treatment) resulting in a shape memory strain of 2.5% at this same stress level in constant-stress thermal cycling experiments. Superelastic strains of 4% in compression without any residual strain were possible under various microstructural conditions and the stress hysteresis could be varied between nearly 500 and 1000 MPa depending on the microstructure. C1 [Acar, E.] Erciyes Univ, Dept Aircraft Engn, TR-38039 Kayseri, Turkey. [Tobe, H.; Karaca, H. E.] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. [Noebe, R. D.] NASA Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA. [Chumlyakov, Y. I.] Tomsk State Univ, Siberian Phys Tech Inst, Tomsk 634050, Russia. RP Karaca, HE (reprint author), Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. EM karacahaluk@uky.edu RI Chumlyakov, Yuriy/R-6496-2016 FU NASA Transformative Aeronautics Concepts Program (TACP) under the Transformational Tools & Technologies Project; NASA EPSCOR program [NNX11AQ31A, KSEF-148-502-15-355, NSF CMMI-1538665]; RSF program [14-29-00012]; Erciyes University FX This work was supported in part by the NASA Transformative Aeronautics Concepts Program (TACP) under the Transformational Tools & Technologies Project, the NASA EPSCOR program under Grant NNX11AQ31A, KSEF-148-502-15-355, NSF CMMI-1538665, RSF program under grant no. 14-29-00012 and Erciyes University. NR 45 TC 0 Z9 0 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 EI 1361-665X J9 SMART MATER STRUCT JI Smart Mater. Struct. PD MAR PY 2016 VL 25 IS 3 AR 035011 DI 10.1088/0964-1726/25/3/035011 PG 9 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA DG8MP UT WOS:000372338600012 ER PT J AU Scheidler, JJ Asnani, VM Dapino, MJ AF Scheidler, Justin J. Asnani, Vivake M. Dapino, Marcelo J. TI Dynamically tuned magnetostrictive spring with electrically controlled stiffness SO SMART MATERIALS AND STRUCTURES LA English DT Article DE dynamic stiffness tuning; dynamic delta-E effect; Galfenol; Terfenol-D; vibration control ID VIBRATION CONTROL; TERFENOL-D; ABSORBER AB This paper presents the design and testing of an electrically controllable magnetostrictive spring that has a dynamically tunable stiffness (i.e., a magnetostrictive Varispring). The device enables in situ stiffness tuning or stiffness switching for vibration control applications. Using a nonlinear electromechanical transducer model and an analytical solution of linear, mechanically induced magnetic diffusion, Terfenol-D is shown to have a faster rise time to stepped voltage inputs and a significantly higher magnetic diffusion cut-off frequency relative to Galfenol. A Varispring is manufactured using a laminated Terfenol-D rod. Further rise time reductions are achieved by minimizing the rod's diameter and winding the electromagnet with larger wire. Dynamic tuning of the Varispring's stiffness is investigated by measuring the Terfenol-D rod's strain response to dynamic, compressive, axial forces in the presence of sinusoidal or square wave control currents. The Varispring's rise time is <1 ms for 1 A current switches. Continuous modulus changes up to 21.9 GPa and 500 Hz and square wave modulus changes (dynamic DE effect) up to 12.3 GPa and 100 Hz are observed. Stiffness tunability and tuning bandwidth can be considerably increased by operating about a more optimal bias stress and improving the control of the electrical input. C1 [Scheidler, Justin J.; Dapino, Marcelo J.] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. [Asnani, Vivake M.] NASA Glenn Res Ctr, Rotating & Dr Syst Branch, Mat & Struct Div, Cleveland, OH 44135 USA. RP Scheidler, JJ; Dapino, MJ (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. EM scheidler.8@osu.edu; dapino.1@osu.edu FU NASA Aeronautics Scholarship Program [NNX14AE24H]; NASA's Revolutionary Vertical Lift Technology (RVLT) Project; member organizations of the Smart Vehicle Concepts Center (www.SmartVehicleCenter.org) a National Science Foundation Industry/University Cooperative Research Center FX This work was supported by the NASA Aeronautics Scholarship Program (grant # NNX14AE24H). Additional support was provided by NASA's Revolutionary Vertical Lift Technology (RVLT) Project and the member organizations of the Smart Vehicle Concepts Center (www.SmartVehicleCenter.org) a National Science Foundation Industry/University Cooperative Research Center. NR 37 TC 3 Z9 3 U1 5 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 EI 1361-665X J9 SMART MATER STRUCT JI Smart Mater. Struct. PD MAR PY 2016 VL 25 IS 3 AR 035007 DI 10.1088/0964-1726/25/3/035007 PG 10 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA DG8MP UT WOS:000372338600008 ER PT J AU Doll, P Douville, H Guntner, A Muller Schmied, H Wada, Y AF Doell, Petra Douville, Herve Guentner, Andreas Mueller Schmied, Hannes Wada, Yoshihide TI Modelling Freshwater Resources at the Global Scale: Challenges and Prospects SO SURVEYS IN GEOPHYSICS LA English DT Review DE Global hydrological model; Climate data; Water abstraction; Model uncertainty; Calibration; Remote sensing data ID CLIMATE-CHANGE IMPACT; HYDROLOGICAL MODEL; LAND-SURFACE; SOIL-MOISTURE; PARAMETER-ESTIMATION; DATA ASSIMILATION; RIVER RUNOFF; GRACE DATA; GROUNDWATER; CYCLE AB Quantification of spatially and temporally resolved water flows and water storage variations for all land areas of the globe is required to assess water resources, water scarcity and flood hazards, and to understand the Earth system. This quantification is done with the help of global hydrological models (GHMs). What are the challenges and prospects in the development and application of GHMs? Seven important challenges are presented. (1) Data scarcity makes quantification of human water use difficult even though significant progress has been achieved in the last decade. (2) Uncertainty of meteorological input data strongly affects model outputs. (3) The reaction of vegetation to changing climate and CO2 concentrations is uncertain and not taken into account in most GHMs that serve to estimate climate change impacts. (4) Reasons for discrepant responses of GHMs to changing climate have yet to be identified. (5) More accurate estimates of monthly time series of water availability and use are needed to provide good indicators of water scarcity. (6) Integration of gradient-based groundwater modelling into GHMs is necessary for a better simulation of groundwater-surface water interactions and capillary rise. (7) Detection and attribution of human interference with freshwater systems by using GHMs are constrained by data of insufficient quality but also GHM uncertainty itself. Regarding prospects for progress, we propose to decrease the uncertainty of GHM output by making better use of in situ and remotely sensed observations of output variables such as river discharge or total water storage variations by multi-criteria validation, calibration or data assimilation. Finally, we present an initiative that works towards the vision of hyperresolution global hydrological modelling where GHM outputs would be provided at a 1-km resolution with reasonable accuracy. C1 [Doell, Petra; Mueller Schmied, Hannes] Goethe Univ Frankfurt, Inst Phys Geog, D-60629 Frankfurt, Germany. [Douville, Herve] Meteo France, Ctr Natl Rech Meteorol, 42 Av Coriolis, F-31057 Toulouse, France. [Guentner, Andreas] German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany. [Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] Univ Utrecht, Fac Geosci, Dept Phys Geog, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands. RP Doll, P (reprint author), Goethe Univ Frankfurt, Inst Phys Geog, D-60629 Frankfurt, Germany. EM p.doell@em.uni-frankfurt.de; herve.douville@meteo.fr; guentner@gfz-potsdam.de; y.wada@uu.nl RI Guntner, Andreas/C-9892-2011; Doll, Petra/A-3784-2009; Muller Schmied, Hannes/K-6231-2013 OI Guntner, Andreas/0000-0001-6233-8478; Doll, Petra/0000-0003-2238-4546; Muller Schmied, Hannes/0000-0001-5330-9923 NR 115 TC 9 Z9 10 U1 15 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD MAR PY 2016 VL 37 IS 2 SI SI BP 195 EP 221 DI 10.1007/s10712-015-9343-1 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DG7OK UT WOS:000372273400002 ER PT J AU Chen, JL Famiglietti, JS Scanlon, BR Rodell, M AF Chen, Jianli Famiglietti, James S. Scanlon, Bridget R. Rodell, Matthew TI Groundwater Storage Changes: Present Status from GRACE Observations SO SURVEYS IN GEOPHYSICS LA English DT Review DE Groundwater; GRACE; Satellite gravity; Groundwater depletion; Land surface model; Well data ID CLIMATE EXPERIMENT GRACE; SATELLITE GRAVITY MEASUREMENTS; HIGH-PLAINS AQUIFER; SEA-LEVEL RISE; LAND SUBSIDENCE; MIDDLE-EAST; ICE-SHEET; DEPLETION; WATER; RECOVERY AB Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray-Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed. C1 [Chen, Jianli] Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA. [Famiglietti, James S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Scanlon, Bridget R.] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78759 USA. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. RP Chen, JL (reprint author), Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA. EM chen@csr.utexas.edu RI Rodell, Matthew/E-4946-2012; Scanlon, Bridget/A-3105-2009 OI Rodell, Matthew/0000-0003-0106-7437; Scanlon, Bridget/0000-0002-1234-4199 FU NASA GRACE Science Program [NNX12AJ97G]; NASA ESI Program [NNX12AM86G]; NSF OPP Program [ANT-1043750] FX This study was supported by the NASA GRACE Science Program (NNX12AJ97G), NASA ESI Program (NNX12AM86G), and NSF OPP Program (under Grants ANT-1043750). NR 70 TC 11 Z9 11 U1 12 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD MAR PY 2016 VL 37 IS 2 SI SI BP 397 EP 417 DI 10.1007/s10712-015-9332-4 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DG7OK UT WOS:000372273400009 ER PT J AU Wada, Y AF Wada, Yoshihide TI Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects SO SURVEYS IN GEOPHYSICS LA English DT Review DE Groundwater depletion (GWD); Climate variability; Socioeconomic development; Water scarcity; Sustainability; Projections ID IRRIGATION WATER REQUIREMENTS; LAND-SURFACE MODEL; SEA-LEVEL RISE; SHARED SOCIOECONOMIC PATHWAYS; NORTH-AMERICAN DROUGHT; US HIGH-PLAINS; CLIMATE-CHANGE; FRESH-WATER; ANTHROPOGENIC IMPACTS; MULTIMODEL ENSEMBLE AB Except for frozen water in ice and glaciers, groundwater is the world's largest distributed store of freshwater and has strategic importance to global food and water security. In this paper, the most recent advances quantifying groundwater depletion (GWD) are comprehensively reviewed. This paper critically evaluates the recently advanced modeling approaches estimating GWD at regional and global scales, and the evidence of feedbacks to the Earth system including sea-level rise associated with GWD. Finally, critical challenges and opportunities in the use of groundwater are identified for the adaption to growing food demand and uncertain climate. C1 [Wada, Yoshihide] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] Univ Utrecht, Dept Phys Geog, Fac Geosci, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands. RP Wada, Y (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.; Wada, Y (reprint author), Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA.; Wada, Y (reprint author), Univ Utrecht, Dept Phys Geog, Fac Geosci, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands. EM y.wada@uu.nl FU Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship [JSPS-2014-878] FX The International Space Science Institute (ISSI) in Bern, Switzerland, and specifically Anny Cazenave and Nicolas Champollion, and acknowledged for hosting the ISSI Workshop on Remote Sensing and Water Resources. I wish to thank two anonymous reviewers for their constructive and thoughtful suggestions, which substantially helped to improve the quality of the manuscript. Y. Wada is supported by Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship (Grant No. JSPS-2014-878). NR 191 TC 4 Z9 4 U1 11 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD MAR PY 2016 VL 37 IS 2 SI SI BP 419 EP 451 DI 10.1007/s10712-015-9347-x PG 33 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DG7OK UT WOS:000372273400010 ER PT J AU Frank, EA Maier, WD Mojzsis, SJ AF Frank, Elizabeth A. Maier, Wolfgang D. Mojzsis, Stephen J. TI Highly siderophile element abundances in Eoarchean komatiite and basalt protoliths SO CONTRIBUTIONS TO MINERALOGY AND PETROLOGY LA English DT Article DE Late Veneer; Komatiites; Highly siderophile elements; Platinum group elements; Mantle evolution; Eoarchean ID NUVVUAGITTUQ SUPRACRUSTAL BELT; PLATINUM-GROUP ELEMENTS; EARLY EARTH DIFFERENTIATION; TUNGSTEN ISOTOPIC EVIDENCE; SOUTHERN WEST GREENLAND; LATE HEAVY BOMBARDMENT; ACASTA GNEISS COMPLEX; GREENSTONE-BELT; GIANT IMPACT; CORE FORMATION AB Plume-derived, Mg-rich, volcanic rocks (komatiites, high-Mg basalts, and their metamorphic equivalents) can record secular changes in the highly siderophile element (HSE) abundances of mantle sources. An apparent secular time-dependent enrichment trend in HSE abundances from Paleoarchean to Paleoproterozoic mantle-derived rocks could represent the protracted homogenization of a Late Veneer chondritic contaminant into the pre-Late Veneer komatiite source. To search for a possible time dependence of a late accretion signature in the Eoarchean mantle, we report new data from rare >3700 Myr-old mafic and ultramafic schists locked in supracrustal belts from the Inukjuak domain (Quebec, Canada) and the Akilia association (West Greenland). Our analysis shows that some of these experienced HSE mobility and/or include a cumulate component (Touboul et al. in Chem Geol 383: 63-75, 2014), whereas several of the oldest samples show some of the most depleted HSE abundances measured for rocks of this composition. We consider these new data for the oldest documented rocks of komatiite protolith in light of the Late Veneer hypothesis. C1 [Frank, Elizabeth A.; Mojzsis, Stephen J.] Univ Colorado, Ctr Lunar Origin & Evolut, Dept Geol Sci, NASA,Lunar Sci Inst, 2200 Colorado Ave,UCB 399, Boulder, CO 80309 USA. [Maier, Wolfgang D.] Cardiff Univ, Sch Earth & Ocean Sci, Main Bldg,Pk Pl, Cardiff CF10 3AR, S Glam, Wales. [Mojzsis, Stephen J.] Hungarian Acad Sci, Inst Geol & Geochem Res, Budaorsi Ut 45, H-1112 Budapest, Hungary. [Frank, Elizabeth A.] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. RP Frank, EA; Mojzsis, SJ (reprint author), Univ Colorado, Ctr Lunar Origin & Evolut, Dept Geol Sci, NASA,Lunar Sci Inst, 2200 Colorado Ave,UCB 399, Boulder, CO 80309 USA.; Mojzsis, SJ (reprint author), Hungarian Acad Sci, Inst Geol & Geochem Res, Budaorsi Ut 45, H-1112 Budapest, Hungary.; Frank, EA (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM efrank@carnegiescience.edu; mojzsis@colorado.edu FU NASA Earth and Space Science Fellowship (NESSF), "Exploring the Darkest of the Dark Ages"; Zonta International Amelia Earhart Fellowship; NASA Lunar Science Institute through Center for Lunar Origin and Evolution (CLOE); NASA Exobiology Program; John Templeton Foundation FX We have benefitted from discussions and debates on the topics presented herein with (in alphabetical order): N. Arndt, W. Bottke, R. Brasser, S. Marchi, A. Morbidelli, R. Walker, S. Werner, and M. Willbold. We further thank N. Arndt for his constructive comments on an earlier version of this manuscript. We also thank S.-J. Barnes and D. Savard at the Universite du Quebec a Chicoutimi for performing the HSE analyses. E.A.F. was supported by a NASA Earth and Space Science Fellowship (NESSF), "Exploring the Darkest of the Dark Ages," and the Zonta International Amelia Earhart Fellowship. S.J.M. acknowledges support from the NASA Lunar Science Institute through the Center for Lunar Origin and Evolution (CLOE) and the NASA Exobiology Program. A substantial portion of this manuscript was completed while S.J.M. held a Distinguished Research Professorship in Budapest at the Research Center for Astronomy and Earth Sciences of the Hungarian Academy of Sciences. This is a contribution of the Collaborative for Research in Origins (CRiO), which is funded by the John Templeton Foundation. NR 95 TC 1 Z9 1 U1 7 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0010-7999 EI 1432-0967 J9 CONTRIB MINERAL PETR JI Contrib. Mineral. Petrol. PD MAR PY 2016 VL 171 IS 3 AR 29 DI 10.1007/s00410-016-1243-y PG 16 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DG7ZB UT WOS:000372301100010 ER PT J AU Hartwig, J Plachta, D AF Hartwig, Jason Plachta, David TI 2015 Space Cryogenics Workshop, June 24-26, 2015, Phoenix, AZ Hosted by NASA Glenn Research Center, Cleveland, OH, USA SO CRYOGENICS LA English DT Editorial Material C1 [Hartwig, Jason; Plachta, David] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Hartwig, J (reprint author), NASA, Glenn Res Ctr, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 2 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 1 EP 1 DI 10.1016/j.cryogenics.2015.12.007 PG 1 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400001 ER PT J AU Shirron, PJ Kimball, MO James, BL Muench, T DiPirro, MJ Letmate, RV Sampson, MA Bialas, TG Sneiderman, GA Porter, FS Kelley, RL AF Shirron, Peter J. Kimball, Mark O. James, Bryan L. Muench, Theodore DiPirro, Michael J. Letmate, Richard V. Sampson, Michael A. Bialas, Tom G. Sneiderman, Gary A. Porter, Frederick S. Kelley, Richard L. TI Operating modes and cooling capabilities of the 3-stage ADR developed for the Soft-X-ray Spectrometer instrument on Astro-H SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Space cryogenics; Adiabatic demagnetization refrigerator; Magnetic refrigeration; Astronomy ID ADIABATIC DEMAGNETIZATION REFRIGERATORS; SINGLE-STAGE; DESIGN; OPTIMIZATION; MULTISTAGE AB A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 x 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes. Published by Elsevier Ltd. C1 [Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Letmate, Richard V.] Bast Technol, 7515 Mission Dr,Suite 300, Lanham, MD 20706 USA. [Sampson, Michael A.] SGT Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA. RP Shirron, PJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Porter, Frederick/D-3501-2012 OI Porter, Frederick/0000-0002-6374-1119 NR 19 TC 3 Z9 3 U1 6 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 2 EP 9 DI 10.1016/j.cryogenics.2015.10.013 PG 8 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400002 PM 28111478 ER PT J AU Yoshida, S Miyaoka, M Kanao, K Tsunematsu, S Otsuka, K Hoshika, S Mitsuda, K Yamasaki, N Takei, Y Fujimoto, R Sato, Y DiPirro, M Shirron, P AF Yoshida, Seiji Miyaoka, Mikio Kanao, Ken'ichi Tsunematsu, Shoji Otsuka, Kiyomi Hoshika, Shunji Mitsuda, Kazuhisa Yamasaki, Noriko Takei, Yoh Fujimoto, Ryuichi Sato, Yoichi DiPirro, Mike Shirron, Peter TI Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Space cryogenics; Cooling system; Joule-Thomson cooler; Stirling cooler AB ASTRO-H is a Japanese X-ray astronomy satellite, scheduled to be launched in fiscal year 2015. The mission includes a soft X-ray spectrometer instrument (SXS), which contains an X-ray micro calorimeter operating at 50 mK by using an adiabatic demagnetization refrigerator (ADR). The heat sink of the ADR is superfluid liquid helium below 1.3 K. The required lifetime of the superfluid helium is 3 years or more. In order to realize this lifetime, we have improved the thermal performance from the engineering model (EM) while maintaining the mechanical performance. Then, we have performed a thermal test of the flight model (FM). The results were that the heat load to the helium tank was reduced to below 0.8 mW in the FM from 1.2 mW in the EM. Therefore, the lifetime of the superfluid helium is more than 3 years with 30 L of liquid helium. In this paper, the thermal design and thermal test results are described. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji] Sumitomo Heavy Ind Ltd, 5-2 Soubiraki Cho, Niihama, Ehime 7928588, Japan. [Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh] JAXA, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Fujimoto, Ryuichi] Kanazawa Univ, Fac Math & Phys, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan. [Sato, Yoichi] JAXA, Aerosp Res & Dev Directorate, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan. [DiPirro, Mike; Shirron, Peter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Yoshida, S (reprint author), Sumitomo Heavy Ind Ltd, 5-2 Soubiraki Cho, Niihama, Ehime 7928588, Japan. RI Yamasaki, Noriko/C-2252-2008 NR 7 TC 8 Z9 8 U1 1 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 10 EP 16 DI 10.1016/j.cryogenics.2015.10.012 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400003 ER PT J AU Ezoe, Y Ishikawa, K Mitsuishi, I Ohashi, T Mitsuda, K Fujimoto, R Murakami, M Kanao, K Yoshida, S Tsunematsu, S DiPirro, M Shirron, P AF Ezoe, Yuichiro Ishikawa, Kumi Mitsuishi, Ikuyuki Ohashi, Takaya Mitsuda, Kazuhisa Fujimoto, Ryuichi Murakami, Masahide Kanao, Kenichi Yoshida, Seiji Tsunematsu, Shoji DiPirro, Michael Shirron, Peter CA SXS Team TI Flight model measurements of the porous plug and film flow suppression system for the ASTRO-H Soft X-ray Spectrometer dewar SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Space cryogenics; X-ray microcalorimeter; Porous plug phase separator; Superfluid film flow AB Flight model measurements of a porous plug phase separator and a film flow suppression system for the ASTRO-H Soft X-ray Spectrometer dewar are described. ASTRO-H is the sixth Japanese astronomy satellite and will be launched in 2016. It carries the Soft X-ray Spectrometer consisting of an X-ray optic and an X-ray microcalorimeter system operated at 50 mK. Superfluid liquid He is employed as a part of the cooling system. A wide range of He flows from 28 mu g/s to 3.2 mg/s in various operation cases must be safely vented under zero gravity. At the same time, superfluid He film flow through the vent line must be suppressed to <2 mu g/s in a nominal case to avoid extra loss of the liquid He. For this purpose, a porous plug phase separator together with a film flow suppression system is installed. To verify its performance, the mass flow rates and the film flow rate of the flight model system were measured at component level. The mass flow rates at various He tank temperatures (1.15, 130, 1.50, and 2.00 K) were obtained and also the film flow rate was measured at 1.15 K. Then, the mass flow rates were measured after installing the whole system into a flight model dewar at the He tank temperature of 1.16, 1.30, 1.50, and 2.00 K. The dewar was tilted so that the porous plug located at the top of the dewar is immersed in the liquid He and the porous plug separates the liquid and vapor He by the thermomechanical effect as in orbit. The obtained mass flow rates and the film flow rate in these tests were confirmed to meet the requirements and to be consistent with each other. No abnormal event such as large mass flow rates was observed. All these experimental results strongly suggest that this flight model of the porous plug and the film flow suppression system will work properly in space. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ezoe, Yuichiro; Ohashi, Takaya] Tokyo Metropolitan Univ, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan. [Ishikawa, Kumi] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Mitsuishi, Ikuyuki] Nagoya Univ, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan. [Mitsuda, Kazuhisa] Japan Aerosp & eXpolorat Agcy JAXA, ISAS, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. [Fujimoto, Ryuichi] Kanazawa Univ, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan. [Murakami, Masahide] Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan. [Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji] Sumitomo Heavy Ind Ltd, 5-2 Soubiraki Cho, Niihama, Ehime 7928588, Japan. [DiPirro, Michael; Shirron, Peter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ezoe, Y (reprint author), Tokyo Metropolitan Univ, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan. EM ezoe@tmu.ac.jp NR 12 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 17 EP 23 DI 10.1016/j.cryogenics.2015.12.004 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400004 ER PT J AU Shirron, PJ Kimball, MO James, BL Muench, T DiPirro, MJ Bialas, TG Sneiderman, GA Porter, FS Kelley, RL AF Shirron, Peter J. Kimball, Mark O. James, Bryan L. Muench, Theodore DiPirro, Michael J. Bialas, Thomas G. Sneiderman, Gary A. Porter, Frederick S. Kelley, Richard L. TI Thermodynamic performance of the 3-stage ADR for the Astro-H Soft-X-ray Spectrometer instrument SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Space cryogenics; Astronomy; Adiabatic demagnetization refrigerator; Magnetic refrigeration; Low temperature detectors ID ADIABATIC DEMAGNETIZATION REFRIGERATORS; DESIGN AB The Soft X-ray Spectrometer (SXS) instrument (Mitsuda et al., 2010) [1] on Astro-H (Takahashi et al., 2010) [2] will use a 3-stage ADR (Shirron et al., 2012) to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at <= 1.20 K as the heat sink (Fujimoto et al., 2010). In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and single-shot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency. Published by Elsevier Ltd. C1 [Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shirron, PJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Porter, Frederick/D-3501-2012 OI Porter, Frederick/0000-0002-6374-1119 NR 16 TC 3 Z9 3 U1 3 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 24 EP 30 DI 10.1016/j.cryogenics.2015.10.011 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400005 ER PT J AU Hartwig, JW Colozza, A Lorenz, RD Oleson, S Landis, G Schmitz, P Paul, M Walsh, J AF Hartwig, J. W. Colozza, A. Lorenz, R. D. Oleson, S. Landis, G. Schmitz, P. Paul, M. Walsh, J. TI Exploring the depths of Kraken Mare - Power, thermal analysis, and ballast control for the Saturn Titan submarine SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Saturn; Titan; Ligeia Mare; Kraken Mare; Cryogenic fluid management; Stirling radioisotope generator; Aerogel; Neon ID TEMPERATURE; SOLUBILITY; EQUILIBRIA; NITROGEN; OCEAN; LAKES AB To explore the depths of the hydrocarbon rich seas on the Saturn moon Titan, a conceptual design of an unmanned submarine concept was recently developed for a Phase I NASA Innovative Advanced Concept (NIAC) study. Data from Cassini Huygens indicates that the Titan polar environment sustains stable seas of variable concentrations of ethane, methane, and nitrogen, with a surface temperature around 93 K. To meet science exploration objectives, the submarine must operate autonomously, study atmosphere/sea exchange, interact with the seabed at pressures up to 10 atm, traverse large distances with limited energy, hover at the surface and at any depth within the sea, and be capable of tolerating multiple different concentration levels of hydrocarbons. Therefore Titan presents many cryogenic design challenges. This paper presents the trade studies with emphasis on the preliminary design of the power, thermal, and ballast control subsystems for the Saturn Titan submarine. Published by Elsevier Ltd. C1 [Hartwig, J. W.; Colozza, A.; Oleson, S.; Landis, G.; Schmitz, P.] NASA, Glenn Res Ctr, M-S 301-3, Cleveland, OH 44135 USA. [Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Space Explorat Sector, Baltimore, MD 21218 USA. [Paul, M.; Walsh, J.] Penn State Appl Res Lab, State Coll, PA USA. RP Hartwig, JW (reprint author), NASA, Glenn Res Ctr, M-S 301-3, Cleveland, OH 44135 USA. EM Jason.W.Hartwig@nasa.gov OI Lorenz, Ralph/0000-0001-8528-4644 NR 32 TC 0 Z9 0 U1 2 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 31 EP 46 DI 10.1016/j.cryogenics.2015.09.009 PG 16 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400006 ER PT J AU Mustafi, S DeLee, C Francis, J Li, X McGuinness, D Nixon, CA Purves, L Willis, W Riall, S Devine, M Hedayat, A AF Mustafi, S. DeLee, C. Francis, J. Li, X. McGuinness, D. Nixon, C. A. Purves, L. Willis, W. Riall, S. Devine, M. Hedayat, A. TI Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Cryogenic; Propulsion; Planetary; Hydrogen; Oxygen AB Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (I-sp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years. Published by Elsevier Ltd. C1 [Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Devine, M.; Hedayat, A.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Mustafi, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Nixon, Conor/A-8531-2009 OI Nixon, Conor/0000-0001-9540-9121 NR 15 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 81 EP 87 DI 10.1016/j.cryogenics.2015.11.009 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400012 ER PT J AU Plachta, DW Johnson, WL Feller, JR AF Plachta, D. W. Johnson, W. L. Feller, J. R. TI Zero boil-off system testing SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Reverse turbo-Brayton cycle cryocooler; Zero boil-off; Cryogenic propellant storage AB Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure. Published by Elsevier Ltd. C1 [Plachta, D. W.; Johnson, W. L.] NASA, Glenn Res Ctr, Washington, DC USA. [Feller, J. R.] NASA, Ames Res Ctr, Washington, DC USA. RP Plachta, DW (reprint author), NASA, Glenn Res Ctr, Washington, DC USA. NR 9 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 88 EP 94 DI 10.1016/j.cryogenics.2015.10.009 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400013 ER PT J AU Hartwig, JW AF Hartwig, J. W. TI Screen channel liquid acquisition device bubble point tests in liquid nitrogen SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Liquid acquisition devices; Liquid nitrogen; Cryogenic fluid management; Subcooled liquid; Fuel depot ID INTERFACIAL-TENSION; PRESSURE-DEPENDENCE; FLUID PHASES; HYDROGEN; MODEL AB The primary parameter for gauging performance of a liquid acquisition device (LAD) is the bubble point pressure, or differential pressure across a screen pore that overcomes the surface tension of the liquid at that pore. Recently, cryogenic bubble point tests were conducted in liquid nitrogen across a parametric trade space to examine the influential factors that govern LAD performance, and 1873 data points were collected. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested over a wide range of liquid temperatures (67-114 K) and pressures (0.032-1.83 MPa), using both autogenous (gaseous nitrogen) and non-condensable (gaseous helium) pressurization schemes. Experimental results in liquid nitrogen are compared to recently reported results in liquid hydrogen, oxygen, and methane. Results indicate a significant gain in performance is achievable over the baseline 325 x 2300 reference bubble point by using a finer mesh, operating at a colder liquid temperature, and pressurizing and sub cooling the liquid with the noncondensable pressurant. Results also show that the cryogenic bubble point is heavily affected by enhanced heating and cooling at the screen liquid/vapor interface by evaporation and condensation. Published by Elsevier Ltd. C1 [Hartwig, J. W.] NASA, Glenn Res Ctr, Cryogen & Fluid Syst Branch, Washington, DC USA. RP Hartwig, JW (reprint author), NASA, Glenn Res Ctr, M-S 301-3, Cleveland, OH 44135 USA. EM Jason.W.Hartwig@nasa.gov NR 44 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 95 EP 105 DI 10.1016/j.cryogenics.2015.09.008 PG 11 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400014 ER PT J AU Hedayat, A Cartagena, W Majumdar, AK LeClair, AC AF Hedayat, A. Cartagena, W. Majumdar, A. K. LeClair, A. C. TI Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Liquid hydrogen; Chilldown; Modeling; Heat transfer AB NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented. Published by Elsevier Ltd. C1 [Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.] Marshall Space Flight Ctr, Prop Syst Dept, Huntsville, AL 35812 USA. RP Hedayat, A (reprint author), Marshall Space Flight Ctr, Prop Syst Dept, Huntsville, AL 35812 USA. EM ali.hedayat-1@nasa.gov NR 4 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 106 EP 112 DI 10.1016/j.cryogenics.2015.11.003 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400015 ER PT J AU Majumdar, A Valenzuela, J LeClair, A Moder, J AF Majumdar, Alok Valenzuela, Juan LeClair, Andre Moder, Jeff TI Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Cryogenic fluid management; Numerical model AB This paper presents a numerical model of a system-level test bed the multipurpose hydrogen test bed (MHTB) using the Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a space transportation vehicle liquid hydrogen propellant tank, and ground-based testing was performed at NASA Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume-based network flow analysis software developed at MSFC and used for thermofluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by the Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger (HEX), and a mixing pump and liquid injector to extract thermal energy from the tank without significant loss of liquid propellant. For the MHTB tank, the HEX and liquid injector are combined into a vertical spray bar assembly. Two GFSSP models (Self Pressurization and TVS) were separately developed and tested and then integrated to simulate the entire system. The Self-Pressurization model consists of multiple ullage nodes, a propellant node, and solid nodes; it computes the heat transfer through multilayer insulation blankets and calculates heat and mass transfer between the ullage and liquid propellant and the ullage and tank wall. A TVS model calculates the flow through a J-T valve, HEX, and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. Results of the integrated models have been compared with MHTB test data at a 50% fill level. Satisfactory comparison was observed between tests and numerical predictions. Published by Elsevier Ltd. C1 [Majumdar, Alok; Valenzuela, Juan; LeClair, Andre] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Moder, Jeff] NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. RP Majumdar, A (reprint author), NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM alok.k.majumdar@nasa.gov NR 6 TC 2 Z9 2 U1 3 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 113 EP 122 DI 10.1016/j.cryogenics.2015.12.001 PG 10 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400016 ER PT J AU Bellur, K Medici, EF Kulshreshtha, M Konduru, V Tyrewala, D Tamilarasan, A McQuillen, J Leao, JB Hussey, DS Jacobson, DL Scherschligt, J Hermanson, JC Choi, CK Allen, JS AF Bellur, K. Medici, E. F. Kulshreshtha, M. Konduru, V. Tyrewala, D. Tamilarasan, A. McQuillen, J. Leao, J. B. Hussey, D. S. Jacobson, D. L. Scherschligt, J. Hermanson, J. C. Choi, C. K. Allen, J. S. TI A new experiment for investigating evaporation and condensation of cryogenic propellants SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Evaporation; Condensation; Liquid hydrogen; Neutron imaging; Contact angle ID THIN-FILM; MASS-TRANSPORT; CAPILLARY-TUBE; HEAT-TRANSFER; MENISCUS; MODEL; PRESSURE; REGION; TANKS; FLOW AB Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Bellur, K.; Medici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Choi, C. K.; Allen, J. S.] Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA. [Tamilarasan, A.; Hermanson, J. C.] Univ Washington, Seattle, WA 98195 USA. [McQuillen, J.] NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH USA. [Leao, J. B.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.] NIST, Gaithersburg, MD 20899 USA. RP Allen, JS (reprint author), Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA. EM jstallen@mtu.edu NR 41 TC 0 Z9 0 U1 3 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 131 EP 137 DI 10.1016/j.cryogenics.2015.10.016 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400018 PM 28154426 ER PT J AU Kassemi, M Kartuzova, O AF Kassemi, Mohammad Kartuzova, Olga TI Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE CFD; Tank pressurization; Cryogenic storage; Turbulence; Interfacial mass transfer; Accommodation coefficient ID EVAPORATION COEFFICIENT; SELF-PRESSURIZATION; MICROGRAVITY AB Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kassemi, Mohammad; Kartuzova, Olga] NASA, Glenn Res Ctr, Natl Ctr Space Explorat Res NCSER, 21000 Brookpk Rd,MS 110-3, Cleveland, OH 44135 USA. RP Kassemi, M (reprint author), NASA, Glenn Res Ctr, Natl Ctr Space Explorat Res NCSER, 21000 Brookpk Rd,MS 110-3, Cleveland, OH 44135 USA. EM Mohammad.Kassemi@nasa.gov NR 50 TC 0 Z9 0 U1 6 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 138 EP 153 DI 10.1016/j.cryogenics.2015.10.018 PG 16 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400019 ER PT J AU Fesmire, JE AF Fesmire, J. E. TI Layered composite thermal insulation system for nonvacuum cryogenic applications SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Thermal insulation; Weathering; Compression; Piping; Valves; Tanks; Space launch vehicles ID TANKS AB A problem common to both space launch applications and cryogenic propulsion test facilities is providing suitable thermal insulation for complex cryogenic piping, tanks, and components that cannot be vacuum jacketed or otherwise be broad-area-covered. To meet such requirements and provide a practical solution to the problem, a layered composite insulation system has been developed for nonvacuum applications and extreme environmental exposure conditions. Layered composite insulation system for extreme conditions (or LCX) is particularly suited for complex piping or tank systems that are difficult or practically impossible to insulate by conventional means. Consisting of several functional layers, the aerogel blanket-based system can be tailored to specific thermal and mechanical performance requirements.. The operational principle of the system is layer-pairs working in combination. Each layer pair is comprised of a primary insulation layer and a compressible radiant barrier layer. Vacuum jacketed piping systems, whether part of the ground equipment or the flight vehicle, typically include numerous terminations, disconnects, umbilical connections, or branches that must be insulated by nonvacuum means. Broad-area insulation systems, such as spray foam or rigid foam panels, are often the lightweight materials of choice for vehicle tanks, but the plumbing elements, feedthroughs, appurtenances, and structural supports all create "hot spot" areas that are not readily insulated by similar means. Finally, the design layouts of valve control skids used for launch pads and test stands can be nearly impossible to insulate because of their complexity and high density of components and instrumentation. Primary requirements for such nonvacuum thermal insulation systems include the combination of harsh conditions, including full weather exposure, vibration, and structural loads. Further requirements include reliability and the right level of system breathability for thermal cycling. The LCX system is suitable for temperatures from approximately 4 K to 400 K and can be designed to insulate liquid hydrogen, liquid nitrogen, liquid oxygen, or liquid methane equipment. Laboratory test data for thermal and mechanical performance are presented. Field demonstration cases and examples in operational cryogenic systems are also given. Published by Elsevier Ltd. C1 [Fesmire, J. E.] NASA, Kennedy Space Ctr, Cryogen Test Lab, UB R1, Kennedy Space Ctr, FL 32899 USA. RP Fesmire, JE (reprint author), NASA, Kennedy Space Ctr, Cryogen Test Lab, UB R1, Kennedy Space Ctr, FL 32899 USA. NR 16 TC 0 Z9 0 U1 10 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 154 EP 165 DI 10.1016/j.cryogenics.2015.10.008 PG 12 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400020 ER PT J AU Tuttle, J Jahromi, A Canavan, E DiPirro, M AF Tuttle, James Jahromi, Amir Canavan, Edgar DiPirro, Michael TI Cryogenic thermal absorptance measurements on small-diameter stainless steel tubing SO CRYOGENICS LA English DT Article; Proceedings Paper CT 26th Space Cryogenics Workshop CY JUN 24-26, 2015 CL NASA Glenn Res Ctr, Phoenix, AZ SP Cryogen Soc Amer HO NASA Glenn Res Ctr DE Absorptance; Cryocooler; Radiation AB The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results. Published by Elsevier Ltd. C1 [Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael] NASA, Goddard Space Flight Ctr, Code 552, Greenbelt, MD 20771 USA. RP Tuttle, J (reprint author), NASA, Goddard Space Flight Ctr, Code 552, Greenbelt, MD 20771 USA. EM james.g.tuttle@nasa.gov NR 7 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD MAR PY 2016 VL 74 BP 166 EP 171 DI 10.1016/j.cryogenics.2015.09.003 PG 6 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DG3BB UT WOS:000371943400021 ER PT J AU Farrahi, AH Verma, SA Kozon, TE AF Farrahi, Amir H. Verma, Savita A. Kozon, Thomas E. TI On the Problem of Pairing Aircraft for Closely Spaced Parallel Approaches SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS LA English DT Article DE Closely spaced parallel runways; parallel approaches; pairing aircraft; scheduling aircraft landing ID LANDINGS; ALGORITHMS AB The problem of scheduling pairs of aircraft for simultaneous landing onto very closely spaced parallel runways is studied. The pair scheduling problem and its generalization group scheduling problem for simultaneous landing onto parallel runways are formulated and shown to be NP-hard, in general. A genetic pairing scheduler algorithm is developed, capable of handling a wide range of constraints, and used in a real-time human-in-the-loop simulation that was carried out to study the operational concept. Experimental data from these simulations and an extensive set of stress tests are presented and analyzed. Results indicate that while the problem is NP-hard in general, practical instances of the algorithm are not necessarily very hard to solve. As such, the proposed algorithm succeeded in finding and suggesting aircraft pairs that met all the problem constraints and thus were accepted by the controllers in over 97% of the cases. High solution quality, scalable runtime, and flexibility of the proposed algorithm in handling different constraints suggest that it is a suitable candidate for use in a real-time application. C1 [Farrahi, Amir H.; Verma, Savita A.; Kozon, Thomas E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Farrahi, AH; Verma, SA; Kozon, TE (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM amir.h.farrahi@nasa.gov; savita.a.verma@nasa.gov; thomas.e.kozon@nasa.gov NR 28 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1524-9050 EI 1558-0016 J9 IEEE T INTELL TRANSP JI IEEE Trans. Intell. Transp. Syst. PD MAR PY 2016 VL 17 IS 3 BP 631 EP 643 DI 10.1109/TITS.2015.2479611 PG 13 WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation Science & Technology SC Engineering; Transportation GA DG3PR UT WOS:000371982600003 ER PT J AU Meixner, T Manning, AH Stonestrom, DA Allen, DM Ajami, H Blasch, KW Brookfield, AE Castro, CL Clark, JF Gochis, DJ Flints, AL Neff, KL Niraula, R Rodell, M Scanlon, BR Singha, K Walvoord, MA AF Meixner, Thomas Manning, Andrew H. Stonestrom, David A. Allen, Diana M. Ajami, Hoori Blasch, Kyle W. Brookfield, Andrea E. Castro, Christopher L. Clark, Jordan F. Gochis, David J. Flints, Alan L. Neff, Kirstin L. Niraula, Rewati Rodell, Matthew Scanlon, Bridget R. Singha, Kamini Walvoord, Michelle A. TI Implications of projected climate change for groundwater recharge in the western United States SO JOURNAL OF HYDROLOGY LA English DT Review DE Groundwater recharge; Recharge mechanisms; Climate change; Western United States ID HIGH-PLAINS AQUIFER; CHANGE IMPACTS; INTENSE PRECIPITATION; ATMOSPHERIC CO2; FUTURE CLIMATE; SOIL-MOISTURE; WATER; SYSTEM; HYDROLOGY; TRENDS AB Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100 longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snow pack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed, process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Meixner, Thomas; Castro, Christopher L.; Neff, Kirstin L.; Niraula, Rewati] Univ Arizona, Tucson, AZ 85721 USA. [Manning, Andrew H.; Walvoord, Michelle A.] US Geol Survey, Box 25046, Denver, CO 80225 USA. [Stonestrom, David A.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Allen, Diana M.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Ajami, Hoori] Univ New S Wales, WRC, Sydney, NSW 2052, Australia. [Blasch, Kyle W.] US Geol Survey, Boise, ID 83702 USA. [Brookfield, Andrea E.] Univ Kansas, Kansas Geol Survey, 1930 Constant Ave, Lawrence, KS 66047 USA. [Clark, Jordan F.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gochis, David J.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Flints, Alan L.] US Geol Survey, Sacramento, CA 95819 USA. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Scanlon, Bridget R.] Univ Texas Austin, Austin, TX 78713 USA. [Singha, Kamini] Colorado Sch Mines, Golden, CO 80401 USA. RP Meixner, T (reprint author), Univ Arizona, Tucson, AZ 85721 USA. EM tmeixner@email.arizona.edu RI Rodell, Matthew/E-4946-2012; Scanlon, Bridget/A-3105-2009; OI Rodell, Matthew/0000-0003-0106-7437; Scanlon, Bridget/0000-0002-1234-4199; Meixner, Thomas/0000-0002-8567-9635; Manning, Andrew/0000-0002-6404-1237 FU USGS; NSF [EAR-1328505]; USGS National Research Program; USGS Office of Groundwater FX The synthesis work reported in this paper is the result of a John Wesley Powell Center group "Potential Impacts of Prospective Climate Change on Groundwater Recharge in the Western United States". The work received support from the USGS and also from the NSF through a concurrent award (EAR-1328505). Additional support to several authors was provided by the USGS National Research Program and the USGS Office of Groundwater. We also wish to thank Jill Baron and the staff of the Powell Center for their assistance in meeting arrangements and their professional attitude and pleasant demeanor. NR 86 TC 11 Z9 12 U1 18 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD MAR PY 2016 VL 534 BP 124 EP 138 DI 10.1016/j.jhydrol.2015.12.027 PG 15 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DG3AC UT WOS:000371940900012 ER PT J AU Bergfors, C Brandner, W Bonnefoy, M Schlieder, J Janson, M Henning, T Chauvin, G AF Bergfors, C. Brandner, W. Bonnefoy, M. Schlieder, J. Janson, M. Henning, Th. Chauvin, G. TI Characterization of close visual binaries from the AstraLux Large M Dwarf Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: visual; stars: fundamental parameters; stars: low-mass; stars: pre-main-sequence ID VERY-LOW MASS; STELLAR KINEMATIC GROUPS; NEAR-INFRARED SPECTRA; PICTORIS MOVING GROUP; SOLAR NEIGHBORHOOD; STAR CANDIDATES; BETA-PICTORIS; BROWN DWARFS; SPECTROSCOPIC BINARIES; FUNDAMENTAL PARAMETERS AB We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI) J, H + K spectra of seven close visual pairs in M dwarf binary/triple systems, discovered or observed by the AstraLux M dwarf survey. We determine the spectral types to within +/- 1.0 subclasses from comparison to template spectra and the strength of K-band water absorption, and derive effective temperatures. The results are compared to optical spectral types of the unresolved binary/multiple systems, and we confirm that our photometric method to derive spectral types in the AstraLux M dwarf survey is accurate. We look for signs of youth such as chromospheric activity and low surface gravity, and find an age in the range 0.25-1 Gyr for the GJ 852 system. Strong Li absorption is detected in optical spectra of the triple system J024902 obtained with the Fiberfed Extended Range Optical Spectrograph (FEROS) at the European Southern Observatory (ESO)-Max-Planck-Gesellschaft (MPG) 2.2 m telescope. The equivalent width of the absorption suggests an age consistent with the beta Pic moving group. However, further observations are needed to establish group membership. Ongoing orbital monitoring will provide dynamical masses and thus calibration of evolutionary models for low mass stars. C1 [Bergfors, C.] UCL, Dept Phys & Astron, 132 Hampstead Rd, London NW1 2PS, England. [Bergfors, C.; Brandner, W.; Henning, Th.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Bonnefoy, M.; Chauvin, G.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bonnefoy, M.; Chauvin, G.] IPAG, CNRS, F-38000 Grenoble, France. [Schlieder, J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA. [Janson, M.] Stockholm Univ, Inst Astron, SE-10691 Stockholm, Sweden. RP Bergfors, C (reprint author), UCL, Dept Phys & Astron, 132 Hampstead Rd, London NW1 2PS, England.; Bergfors, C (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM c.bergfors@ucl.ac.uk NR 68 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2016 VL 456 IS 3 BP 2576 EP 2585 DI 10.1093/mnras/stv2768 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7LG UT WOS:000372265200022 ER PT J AU Friedrich, O Seitz, S Eifler, TF Gruen, D AF Friedrich, O. Seitz, S. Eifler, T. F. Gruen, D. TI Performance of internal covariance estimators for cosmic shear correlation functions SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; methods: statistical; cosmological parameters; large-scale structure of Universe ID ANGULAR-CORRELATION FUNCTION; LARGE-SCALE STRUCTURE; WEAK LENSING SURVEYS; 2-POINT STATISTICS; SURVEY GEOMETRY; POWER SPECTRUM; GALAXY SURVEYS; SIMULATIONS; MATRIX; MODEL AB Data re-sampling methods such as delete-one jackknife, bootstrap or the sub-sample covariance are common tools for estimating the covariance of large-scale structure probes. We investigate different implementations of these methods in the context of cosmic shear two-point statistics. Using lognormal simulations of the convergence field and the corresponding shear field we generate mock catalogues of a known and realistic covariance. For a survey of similar to 5000 deg(2) we find that jackknife, if implemented by deleting sub-volumes of galaxies, provides the most reliable covariance estimates. Bootstrap, in the common implementation of drawing sub-volumes of galaxies, strongly overestimates the statistical uncertainties. In a forecast for the complete 5-yr Dark Energy Survey, we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in the Omega(m)-sigma(8) plane as measured with internally estimated covariance matrices is on average greater than or similar to 85 per cent of the volume derived from the true covariance matrix. The uncertainty on the parameter combination Sigma(8) similar to sigma(8) Omega(0.5)(m) derived from internally estimated covariances is similar to 90 per cent of the true uncertainty. C1 [Friedrich, O.; Seitz, S.; Gruen, D.] Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany. [Friedrich, O.; Seitz, S.; Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Eifler, T. F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Eifler, T. F.] CALTECH, Pasadena, CA 91125 USA. RP Friedrich, O (reprint author), Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany.; Friedrich, O (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. EM oliverf@usm.uni-muenchen.de FU Deutsche Forschungsgemeinschaft (DFG) [SFB-Transregio 33]; DFG Cluster of Excellence 'Origin and Structure of the Universe'; National Aeronautics and Space Administration; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766]; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union including ERC [240672, 291329, 306478] FX This work was supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG). We also acknowledge the support by the DFG Cluster of Excellence 'Origin and Structure of the Universe'. The simulations have been carried out on the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.; Funding for the DES projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329 and 306478. NR 40 TC 6 Z9 6 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2016 VL 456 IS 3 BP 2662 EP 2680 DI 10.1093/mnras/stv2833 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7LG UT WOS:000372265200029 ER PT J AU Puebla, RE Hillier, DJ Zsargo, J Cohen, DH Leutenegger, MA AF Puebla, Raul E. Hillier, D. John Zsargo, Janos Cohen, David H. Leutenegger, Maurice A. TI X-ray, UV and optical analysis of supergiants: epsilon Ori SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: spectroscopic; stars: abundances; stars: individual: epsilon Ori; stars: massive; stars: mass-loss; supergiants ID HOT-STAR WINDS; MASS-LOSS RATES; O-TYPE STARS; EMISSION-LINE-PROFILES; DRIVEN STELLAR WINDS; B-TYPE SUPERGIANTS; LOW METALLICITY ENVIRONMENT; ATMOSPHERIC NLTE-MODELS; HELIUM-LIKE IONS; ZETA PUPPIS AB We present a multi-wavelength (X-ray to optical) analysis, based on non-local thermodynamic equilibrium photospheric+wind models, of the B0 Ia-supergiant: epsilon Ori. The aim is to test the consistency of physical parameters, such as the mass-loss rate and CNO abundances, derived from different spectral bands. The derived mass-loss rate is (M) over dot/root f(infinity) similar to 1.6 x 10(-6) M-circle dot yr(-1) where f(infinity) is the volume filling factor. However, the S IV lambda lambda 1062,1073 profiles are too strong in the models; to fit the observed profiles it is necessary to use f(infinity) < 0.01. This value is a factor of 5 to 10 lower than inferred from other diagnostics, and implies (M) over dot less than or similar to 1 x 10(-7) M-circle dot yr(-1). The discrepancy could be related to porosity-vorosity effects or a problem with the ionization of sulphur in the wind. To fit the UV profiles of NV and O VI it was necessary to include emission from an interclump medium with a density contrast (rho(cl)/rho(ICM)) of similar to 100. X-ray emission in H/He like and Fe L lines was modelled using four plasma components located within the wind. We derive plasma temperatures from 1 x 10(6) to 7 x 10(6) K, with lower temperatures starting in the outer regions (R-0 similar to 3-6 R-*), and a hot component starting closer to the star (R-0 less than or similar to 2.9 R-*). From X-ray line profiles we infer (M) over dot < 4.9 x 10(-7) M-circle dot yr(-1). The X-ray spectrum (>= 0.1 kev) yields an X-ray luminosity L-X similar to 2.0 x 10(-7) L-bol, consistent with the superion line profiles. X-ray abundances are in agreement with those derived from the UV and optical analysis: epsilon Ori is slightly enhanced in nitrogen and depleted in carbon and oxygen, evidence for CNO processed material. C1 [Puebla, Raul E.; Hillier, D. John] Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA. [Puebla, Raul E.; Hillier, D. John] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, 3941 OHara St, Pittsburgh, PA 15260 USA. [Zsargo, Janos] Inst Politecn Nacl, Escuela Super Fis & Matemat, Av Inst Politecn Nacl,Edificio 9, Mexico City 07738, DF, Mexico. [Cohen, David H.] Swarthmore Coll, Dept Phys & Astron, 500 Coll Ave, Swarthmore, PA 19081 USA. [Leutenegger, Maurice A.] Univ Maryland Baltimore Cty, CRESST, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Leutenegger, Maurice A.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Puebla, RE (reprint author), Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA.; Puebla, RE (reprint author), Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, 3941 OHara St, Pittsburgh, PA 15260 USA. EM rep54@pitt.edu FU National Aeronautics and Space Administration [ARO-11002A, NAS8-03060]; NASA Chandra grants [AR2-13001A, AR0-11002B]; STScI theory grant [HST-AR-12640.01]; Chandra [AR2-13001A, AR0-11002B, G02-13002A, AR2-130001B, TM3-14001B]; CONACyT [CB-2011-01, 168632] FX Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number ARO-11002A issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics and Space Administration under contract NAS8-03060. This work was also supported by NASA Chandra grants: AR2-13001A and AR0-11002B. D. John Hillier also acknowledges partial support from STScI theory grant HST-AR-12640.01. MAL also acknowledges the support from Chandra, grants: G02-13002A and AR2-130001B. David Cohen also acknowledges the support from Chandra, grants: TM3-14001B, AR0-11002B and AR2-13001A. We also acknowledge Francisco Najarro for his highly valuable comments and suggestions on this manuscript. We are also grateful to Randall Smith for providing us the source code of APEC and to the Chandra X-ray Center for the use of ATOMDB. JZ acknowledges CONACyT grant CB-2011-01 No. 168632. We also thank the anonymous referee for the valuable comments that helped us to improve this manuscript. NR 123 TC 2 Z9 2 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2016 VL 456 IS 3 BP 2907 EP 2936 DI 10.1093/mnras/stv2783 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7LG UT WOS:000372265200047 ER PT J AU Giannantonio, T Fosalba, P Cawthon, R Omori, Y Crocce, M Elsner, F Leistedt, B Dodelson, S Benoit-Levy, A Gaztanaga, E Holder, G Peiris, HV Percival, WJ Kirk, D Bauer, AH Benson, BA Bernstein, GM Carretero, J Crawford, TM Crittenden, R Huterer, D Jain, B Krause, E Reichardt, CL Ross, AJ Simard, G Soergel, B Stark, A Story, KT Vieira, JD Weller, J Abbott, T Abdalla, FB Allam, S Armstrong, R Banerji, M Bernstein, RA Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Carlstrom, JE Rosell, AC Kind, MC Castander, FJ Chang, CL Cunha, CE da Costa, LN D'Andrea, CB DePoy, DL Desai, S Diehl, HT Dietrich, JP Doel, P Eifler, TF Evrard, AE Neto, AF Fernandez, E Finley, DA Flaugher, B Frieman, J Gerdes, D Gruen, D Gruendl, RA Gutierrez, G Holzapfel, WL Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M March, M Marshall, JL Martini, P Melchior, P Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Rykoff, ES Sako, M Saliwanchik, BR Sanchez, E Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Vikram, V Walker, AR Wechsler, RH Zuntz, J AF Giannantonio, T. Fosalba, P. Cawthon, R. Omori, Y. Crocce, M. Elsner, F. Leistedt, B. Dodelson, S. Benoit-Levy, A. Gaztanaga, E. Holder, G. Peiris, H. V. Percival, W. J. Kirk, D. Bauer, A. H. Benson, B. A. Bernstein, G. M. Carretero, J. Crawford, T. M. Crittenden, R. Huterer, D. Jain, B. Krause, E. Reichardt, C. L. Ross, A. J. Simard, G. Soergel, B. Stark, A. Story, K. T. Vieira, J. D. Weller, J. Abbott, T. Abdalla, F. B. Allam, S. Armstrong, R. Banerji, M. Bernstein, R. A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carlstrom, J. E. Rosell, A. Carnero Kind, M. Carrasco Castander, F. J. Chang, C. L. Cunha, C. E. da Costa, L. N. D'Andrea, C. B. DePoy, D. L. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Eifler, T. F. Evrard, A. E. Fausti Neto, A. Fernandez, E. Finley, D. A. Flaugher, B. Frieman, J. Gerdes, D. Gruen, D. Gruendl, R. A. Gutierrez, G. Holzapfel, W. L. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. March, M. Marshall, J. L. Martini, P. Melchior, P. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Rykoff, E. S. Sako, M. Saliwanchik, B. R. Sanchez, E. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Vikram, V. Walker, A. R. Wechsler, R. H. Zuntz, J. TI CMB lensing tomography with the DES Science Verification galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmic background radiation; gravitational lensing: weak; large-scale structure of Universe ID DIGITAL SKY SURVEY; LARGE-SCALE STRUCTURE; MICROWAVE BACKGROUND ANISOTROPIES; INTEGRATED SACHS-WOLFE; SOUTH-POLE TELESCOPE; CHALLENGE LIGHTCONE SIMULATION; ATACAMA COSMOLOGY TELESCOPE; PRIMORDIAL NON-GAUSSIANITY; ANGULAR POWER SPECTRUM; DARK ENERGY SURVEY AB We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range 0.2 < z(phot) < 1.2, a cross-correlation signal is detected at 6 sigma and 4 sigma with SPT and Planck, respectively. We then divide the DES galaxies into five photometric redshift bins, finding significant (>2 sigma) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the z < 1.2 universe is 0.73 +/- 0.16 times as large as predicted in the Lambda cold dark matter Planck cosmology, a 1.7 sigma deviation. C1 [Giannantonio, T.; Soergel, B.; Banerji, M.] Univ Cambridge, Inst Astron, Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Giannantonio, T.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Giannantonio, T.; Weller, J.; Desai, S.; Dietrich, J. P.; Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Fosalba, P.; Crocce, M.; Gaztanaga, E.; Bauer, A. H.; Carretero, J.] Campus UAB, Fac Ciencies, IEEC CSIC, Inst Ciencies Espai, Torre C5 Par 2, E-08193 Barcelona, Spain. [Cawthon, R.; Dodelson, S.; Benson, B. A.; Crawford, T. M.; Carlstrom, J. E.; Chang, C. L.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Cawthon, R.; Dodelson, S.; Benson, B. A.; Story, K. T.; Carlstrom, J. E.; Chang, C. L.] Kavli Inst Cosmol Phys, 933 East 56th St, Chicago, IL 60637 USA. [Omori, Y.; Holder, G.; Simard, G.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Elsner, F.; Leistedt, B.; Benoit-Levy, A.; Peiris, H. V.; Kirk, D.; Lahav, O.] UCL, Dept Phys & Astron, Astrophys Grp, 132 Hampstead Rd, London NW1 2PS, England. [Dodelson, S.; Benson, B. A.; Buckley-Geer, E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Percival, W. J.; Crittenden, R.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg,Burnaby Rd, Portsmouth PO1 3FX, Hants, England. [Bernstein, G. M.; Jain, B.; Eifler, T. F.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Huterer, D.; Evrard, A. E.; Gerdes, D.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Krause, E.; Cunha, C. E.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Phys Astrophys Bldg,452 Lomita Mall, Stanford, CA 94305 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Ross, A. J.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, 191 West Woodruff Ave, Columbus, OH 43210 USA. [Stark, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 12, Cambridge, MA 02138 USA. [Story, K. T.; Carlstrom, J. E.] Univ Chicago, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Vieira, J. D.; Gruendl, R. A.] Univ Illinois, Dept Astron, MC 221,1002 West Green St, Urbana, IL 61801 USA. [Weller, J.; Desai, S.; Dietrich, J. P.] Excellence Cluster Univ, Boltzmannstr 2, D-85748 Munich, Germany. [Weller, J.; Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Chang, C. L.; Vikram, V.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Burke, D. L.; Roodman, A.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rosell, A. Carnero; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Ogando, R.] Lab Interinstituc E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Rosell, A. Carnero; da Costa, L. N.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Fernandez, E.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Holzapfel, W. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [James, D. J.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.; Suchyta, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Saliwanchik, B. R.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Phys Dept, Cleveland, OH 44106 USA. [Sanchez, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, E-28040 Madrid, Spain. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. RP Giannantonio, T (reprint author), Univ Cambridge, Inst Astron, Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.; Giannantonio, T (reprint author), Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England.; Giannantonio, T (reprint author), Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany.; Fosalba, P (reprint author), Campus UAB, Fac Ciencies, IEEC CSIC, Inst Ciencies Espai, Torre C5 Par 2, E-08193 Barcelona, Spain. EM t.giannantonio@ast.cam.ac.uk; fosalba@ice.cat RI Lima, Marcos/E-8378-2010; Fosalba Vela, Pablo/I-5515-2016; Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Gaztanaga, Enrique/L-4894-2014; OI Stark, Antony/0000-0002-2718-9996; Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Gaztanaga, Enrique/0000-0001-9632-0815; CRAWFORD, THOMAS/0000-0001-9000-5013; Dietrich, Jorg/0000-0002-8134-9591; Weller, Jochen/0000-0002-8282-2010; Carrasco Kind, Matias/0000-0002-4802-3194; Abdalla, Filipe/0000-0003-2063-4345 FU Kavli Foundation; STFC [ST/L000636/1]; Excellence Cluster 'Universe' of Garching, Germany; MareNostrum supercomputer [AECT-2008-1-0009, 2010-1-0007]; Port d'Informacio Cientifica; Cosmo-HUB portal; MINECO [ESP2013-48274-C3-1-P]; European Research Council under the European Union [306478-CosmicDawn, 240672, 291329, 306478]; University of Melbourne; Australian Research Council [DP150103208]; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the DES; National Science Foundation [AST-1138766]; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; NSF Physics Frontier Center grant [PHY-0114422]; Gordon and Betty Moore Foundation through Grant GBMF [947] FX TG thanks Anthony Challinor and George Efstathiou for comments on a draft version of this paper, and James Fergusson, Martin Kilbinger and Ariel Sanchez for useful discussions. TG acknowledges support from the Kavli Foundation, STFC grant ST/L000636/1, and from the Excellence Cluster 'Universe' of Garching, Germany, as well as the Institut de Ciencies de l'Espai, IEEC-CSIC, Universitat Autonoma de Barcelona, for hospitality. PF acknowledges support from the MareNostrum supercomputer (BSC-CNS, http://www.bsc.es), grants AECT-2008-1-0009 to 2010-1-0007, Port d'Informacio Cientifica (http://www.pic.es), and the Cosmo-HUB portal (cosmohub.pic.es), where the MICE simulations were run, stored, and distributed, respectively. PF is funded by MINECO, project ESP2013-48274-C3-1-P. FE, BL and HVP were partially supported by the European Research Council under the European Union's Seventh Framework Programme (PP7/2007-2013) /ERC grant agreement no. 306478-CosmicDawn. CR acknowledges support from the University of Melbourne and from the Australian Research Council's Discovery Projects scheme (DP150103208).r Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.r The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.; r The SPT programme is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to theKavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation through Grant GBMF#947 to the University of Chicago. NR 135 TC 18 Z9 18 U1 1 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2016 VL 456 IS 3 BP 3213 EP 3244 DI 10.1093/mnras/stv2678 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7LG UT WOS:000372265200072 ER PT J AU Hall, A McKay, C Cumbers, J AF Hall, Alexandra McKay, Chris Cumbers, John TI Toward a Low-Cost Lunar Settlement: Preface to the New Space Special Articles SO NEW SPACE LA English DT Editorial Material C1 [Hall, Alexandra; Cumbers, John] NASA Ames, Space Portal Wyle, Bldg 555, Moffett Field, CA 94035 USA. [McKay, Chris] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hall, A (reprint author), NASA Ames, Space Portal Wyle, Bldg 555, Moffett Field, CA 94035 USA. EM alexandra.hall@nasa.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 2 EP 3 DI 10.1089/space.2015.0039 PG 2 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000002 ER PT J AU Hall, A Miller, C AF Hall, Alexandra Miller, Charles TI A Summary of the Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture That Leverages Commercial Space Capabilities and Public-Private Partnerships SO NEW SPACE LA English DT Editorial Material C1 [Hall, Alexandra] NASA Ames, Space Portal, Bldg 555, Moffett Field, CA 94035 USA. NexGen Space LLC, Arlington, VA USA. RP Hall, A (reprint author), NASA Ames, Space Portal, Bldg 555, Moffett Field, CA 94035 USA. EM alexandra.hall@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 4 EP 6 DI 10.1089/space.2015.0037 PG 3 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000003 ER PT J AU Pittman, RB Harper, LD Newfield, ME Rasky, DJ AF Pittman, Robert Bruce Harper, Lynn D. Newfield, Mark E. Rasky, Daniel J. TI Lunar Station: The Next Logical Step in Space Development SO NEW SPACE LA English DT Article C1 [Pittman, Robert Bruce] Space Portal, Moffett Field, CA USA. [Harper, Lynn D.; Newfield, Mark E.; Rasky, Daniel J.] NASA Ames, Space Portal, Moffett Field, CA USA. RP Pittman, RB (reprint author), NASA, Ames Res Ctr, Space Portal Off, MS 555-3, Moffett Field, CA 94035 USA. EM robert.b.pittman@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 7 EP 14 DI 10.1089/space.2015.0031 PG 8 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000004 ER PT J AU Wingo, D AF Wingo, Dennis TI Site Selection for Lunar Industrialization, Economic Development, and Settlement SO NEW SPACE LA English DT Article AB The subject of a lunar landing site/outpost/base implementation has been explored extensively over the past several decades. Due to the cost and complexity involved in the development of off-world facilities, serious efforts have been almost the exclusive domain of government. However, as technology continues to advance and a NewSpace industry has grown in recent years, discussions have turned to exploring something fundamentally differenta commercial lunar development. This article uses a set of input parameters put forth for a privately financed development by a group of thought leaders and venture capitalists that met in August 2014 at a major Silicon Valley venture capital firm. These inputs are used here as the driver for primary site selection criterion to identify a location so that further design and cost estimation efforts can proceed. Such a development would be privately financed in the $5-10 billion range and be operational by the early 2020s. It would be a permanently inhabited installation housing with at least 10 people on extended tours. This commercial lunar development's underlying unifying premise, requirements, and purpose is predicated upon economic development, industrialization, and settlement. Though there have been treatments in the past,none besides Ruzic realistically postulated a dedicated commercial development. A primary candidate site is identified and some further thoughts on its potential and the next steps for validation/verification are explored. It is stressed that this report only covers how factors associated with site selection lower the overall cost of a lunar development. A treatment of the full economic and systems engineering for site development would require a book-level exposition. The intent here is to provide the foundation for further treatment and to pick a single best site, based on our current knowledge, that covers the four most fundamental parameters for an off-world development. These are (1) power availability, (2) low-cost communications over wide areas, (3) availability of possible water (or hydrogen-based molecules) and other resources, and (4) surface mobility. NASA's Lunar Reconnaissance Orbiter has been transformational in this regard, building on earlier missions, and with its multispectral remote sensing instruments and the Lunar Orbiter Laser Altimeter, we have dramatically improved abilities to make detailed site selection analyses. Online resources such as the ACT-REACT map from Dr. Mark Robinson's team at Arizona State University and the Lunar Mapping and Modeling Portal at NASA Ames are tremendous resources aiding such investigations. C1 [Wingo, Dennis] SkyCorp Inc, POB 375,NASA Ames Res Pk, Moffett Field, CA 94035 USA. RP Wingo, D (reprint author), SkyCorp Inc, POB 375,NASA Ames Res Pk, Moffett Field, CA 94035 USA. EM wingod@skycorpinc.com NR 18 TC 0 Z9 0 U1 2 U2 2 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 19 EP 39 DI 10.1089/space.2015.0023 PG 21 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000006 ER PT J AU Harper, LD Neal, CR Poynter, J Schalkwyk, JD Wingo, DR AF Harper, Lynn D. Neal, Clive Ray Poynter, Jane Schalkwyk, James D. Wingo, Dennis Ray TI Life Support for a Low-Cost Lunar Settlement: No Showstoppers SO NEW SPACE LA English DT Article ID SPACE; WHEAT AB In 2014, space experts were challenged to develop strategies that would enable 10 people to live for 1 year on the Moon by 2022 for a total development cost of $5B. This was to be done in a manner that would minimize resupply of consumables from Earth and lead to a permanent lunar settlement of 100 people within 10 years. To sustain small groups on the Moon within this budget, recycling life-support consumables, rather than continuously supplying them from Earth, is required. The International Space Station (ISS) provides existence proof that these technologies are currently available. On the ISS, physicochemical regeneration of air and water reduces resupply of these consumables by more than 80%, increases the resilience of missions, and enhances productivity by enabling science, technology, and commercial payloads to replace life-support consumables. A permanent settlement must also employ bioregenerative strategies where, in addition to providing food, plants also remove carbon dioxide, produce oxygen, and generate potable water from gray water. Food production is only practical if abundant sunlight (or power) provides the light necessary for photosynthesis. Thus, quasicontinuous sunlight, obtainable only near the poles, is the most important resource for meeting time and budget constraints, although regolith constituents and lunar polar hydrogen (presumably ice) deposits are also valuable assets. Although improvements are always beneficial, the technologies needed for life support for the first phase of Lunar Settlement are available now. C1 [Harper, Lynn D.] NASA, Ames Res Ctr, Space Portal, MS 555-3, Moffett Field, CA 94035 USA. [Neal, Clive Ray] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. [Poynter, Jane] World View Enterprises, Tucson, AZ USA. [Schalkwyk, James D.] NASA, Ames Res Ctr, Deltha Crit, Moffett Field, CA 94035 USA. [Wingo, Dennis Ray] Skycorp Inc, NASA Ames Res Pk, Moffett Field, CA USA. RP Harper, LD (reprint author), NASA, Ames Res Ctr, Space Portal, MS 555-3, Moffett Field, CA 94035 USA. EM lynn.d.harper@nasa.gov NR 28 TC 0 Z9 0 U1 6 U2 7 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2016 VL 4 IS 1 BP 40 EP 49 DI 10.1089/space.2015.0029 PG 10 WC Engineering, Aerospace SC Engineering GA DG2JA UT WOS:000371892000007 ER PT J AU Solander, KC Reager, JT Thomas, BF David, CH Famiglietti, JS AF Solander, Kurt C. Reager, John T. Thomas, Brian F. David, Cedric H. Famiglietti, James S. TI Simulating Human Water Regulation: The Development of an Optimal Complexity, Climate-Adaptive Reservoir Management Model for an LSM SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Models and modeling; Feedback; Hydrology; Applications; Physical Meteorology and Climatology; Anthropogenic effects; Adaptive models; Optimization; Model evaluation/performance ID EARTH SYSTEM MODELS; RESOURCE MANAGEMENT; CHANGE SCENARIOS; SURFACE-WATER; PART 1; HYDROLOGY; IMPACTS; REPRESENTATION; WITHDRAWALS; VARIABILITY AB The widespread influence of reservoirs on global rivers makes representations of reservoir outflow and storage essential components of large-scale hydrology and climate simulations across the land surface and atmosphere. Yet, reservoirs have yet to be commonly integrated into earth system models. This deficiency influences model processes such as evaporation and runoff, which are critical for accurate simulations of the coupled climate system. This study describes the development of a generalized reservoir model capable of reproducing realistic reservoir behavior for future integration in a global land surface model (LSM). Equations of increasing complexity relating reservoir inflow, outflow, and storage were tested for 14 California reservoirs that span a range of spatial and climate regimes. Temperature was employed in model equations to modulate seasonal changes in reservoir management behavior and to allow for the evolution of management seasonality as future climate varies. Optimized parameter values for the best-performing model were generalized based on the ratio of winter inflow to storage capacity so a future LSM user can generate reservoirs in any grid location by specifying the given storage capacity. Model performance statistics show good agreement between observed and simulated reservoir storage and outflow for both calibration (mean normalized RMSE = 0.48; mean coefficient of determination = 0.53) and validation reservoirs (mean normalized RMSE = 0.15; mean coefficient of determination = 0.67). The low complexity of model equations that include climate-adaptive operation features combined with robust model performance show promise for simulations of reservoir impacts on hydrology and climate within an LSM. C1 [Solander, Kurt C.; Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall, Irvine, CA 92697 USA. [Reager, John T.; Thomas, Brian F.; David, Cedric H.; Famiglietti, James S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. RP Famiglietti, JS (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall, Irvine, CA 92697 USA. EM jfamigli@uci.edu FU National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship (NESSF); Jenkins Fellowship; Jet Propulsion Laboratory, California Institute of Technology; NASA FX The authors are particularly grateful for the generous financial support received from the National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship (NESSF) and the Jenkins Fellowship for this research. We are also especially thankful for the technical expertise provided by Jacob Edman (Earth and Planetary Sciences, University of California, Berkeley) and Min-Hui Lo (Atmospheric Sciences, National Taiwan University) at the onset of this research. The authors John T. Reager, Brian F. Thomas, Cedric H. David, and James S. Famiglietti were partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 40 TC 0 Z9 0 U1 7 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD MAR PY 2016 VL 17 IS 3 BP 725 EP 744 DI 10.1175/JHM-D-15-0056.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6NN UT WOS:000371472600001 ER PT J AU Nearing, GS Mocko, DM Peters-Lidard, CD Kumar, SV Xia, YL AF Nearing, Grey S. Mocko, David M. Peters-Lidard, Christa D. Kumar, Sujay V. Xia, Youlong TI Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Land surface model; Model evaluation/performance; Models and modeling ID LAND-SURFACE MODELS; INFORMATION; ASSIMILATION; PERFORMANCE; FRAMEWORK; FLUXNET; SYSTEMS; IMPACT; FUTURE; ENERGY AB Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a "large sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. C1 [Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, 8800 Greenbelt Rd,Code 617,Bldg 33,Rm G205, Greenbelt, MD 20771 USA. [Nearing, Grey S.; Mocko, David M.; Kumar, Sujay V.] Sci Applicat Int Corp, Mclean, VA 22102 USA. [Xia, Youlong] NOAA, NCEP, Environm Modeling Ctr, College Pk, MD USA. [Xia, Youlong] IM Syst Grp, Rockville, MD USA. RP Nearing, GS (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, 8800 Greenbelt Rd,Code 617,Bldg 33,Rm G205, Greenbelt, MD 20771 USA. EM grey.s.nearing@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Kumar, Sujay/B-8142-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; FU U.S. Department of Energy's Office of Science; NASA's Earth-Sun System Division FX Thank you to Martyn Clark (NCAR) for his help with organizing the presentation. The NLDAS-2 data used in this study were acquired as part of NASA's Earth-Sun System Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC). Funding for AmeriFlux data resources was provided by the U.S. Department of Energy's Office of Science. NR 49 TC 4 Z9 4 U1 5 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD MAR PY 2016 VL 17 IS 3 BP 745 EP 759 DI 10.1175/JHM-D-15-0063.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6NN UT WOS:000371472600002 ER PT J AU Winter, JM Beckage, B Bucini, G Horton, RM Clemins, PJ AF Winter, Jonathan M. Beckage, Brian Bucini, Gabriela Horton, Radley M. Clemins, Patrick J. TI Development and Evaluation of High-Resolution Climate Simulations over the Mountainous Northeastern United States SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Climate models; North America; Geographic location/entity; Observational techniques and algorithms; Regional effects; Topographic effects; Circulation/ Dynamics; Statistical techniques; Applications; Mathematical and statistical techniques; Surface observations; Models and modeling ID STATISTICAL DOWNSCALING METHODS; HYDROLOGICALLY BASED DATASET; TEMPERATURE LAPSE RATES; LAND-SURFACE FLUXES; MODEL OUTPUTS; PRECIPITATION; CALIFORNIA; IMPACTS; REGIONS; UTILITY AB The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly ~ 1/8 degrees) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30 ''), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled ( 1/8 degrees) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product. C1 [Winter, Jonathan M.] Dartmouth Coll, Dept Geog, Hanover, NH 03755 USA. [Winter, Jonathan M.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. [Beckage, Brian; Bucini, Gabriela] Univ Vermont, Dept Plant Biol, Burlington, VT USA. [Horton, Radley M.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA. [Clemins, Patrick J.] Univ Vermont, Dept Comp Sci, Burlington, VT USA. RP Winter, JM (reprint author), Dartmouth Coll, Dept Earth Sci, Dept Geog, 6017 Fairchild Hall, Hanover, NH 03755 USA. EM jwinter@dartmouth.edu FU Vermont Experimental Program for Stimulating Competitive Research (NSF) [EPS-1101317]; National Science Foundation FX This work was supported by the Vermont Experimental Program for Stimulating Competitive Research (NSF Award EPS-1101317). Many thanks to Levi Brekke, Ed Maurer, and Tom Pruitt for their assistance with BCCA data, as well as Alan Betts for his valuable ideas and insights. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Further, we acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. NR 40 TC 1 Z9 1 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD MAR PY 2016 VL 17 IS 3 BP 881 EP 896 DI 10.1175/JHM-D-15-0052.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6NY UT WOS:000371473700001 ER PT J AU Lee, AG Tarver, WJ Mader, TH Gibson, CR Hart, SF Otto, CA AF Lee, Andrew G. Tarver, William J. Mader, Thomas H. Gibson, Charles Robert Hart, Stephen F. Otto, Christian A. TI Neuro-Ophthalmology of Space Flight SO JOURNAL OF NEURO-OPHTHALMOLOGY LA English DT Review ID HEAD-DOWN TILT; IDIOPATHIC INTRACRANIAL HYPERTENSION; CEREBROSPINAL-FLUID OUTFLOW; COTTON-WOOL SPOTS; OPTIC DISC EDEMA; CHOROIDAL FOLDS; ACQUIRED HYPEROPIA; INTRAOCULAR-PRESSURE; REFRACTIVE CHANGES; RADIAL KERATOTOMY AB Background:To describe the history, clinical findings, and possible pathogenic etiologies of the constellation of neuro-ophthalmic findings discovered in astronauts after long-duration space flight and to discuss the terrestrial implications of such findings.Evidence Acquisition:Retrospective review of published observational, longitudinal examination of neuro-ophthalmic findings in astronauts after long-duration space flight; analysis of postflight questionnaires regarding in-flight vision changes in approximately 300 additional astronauts; and hypothesis generating for developing possible future countermeasures and potential implications for neuro-ophthalmic disorders on Earth. Astronauts with neuro-ophthalmic findings, which were not present at the start of a space flight mission and only seen on return from long-duration space missions to the International Space Station, will be discussed.Results:After 6 months of space flight, 7 astronauts had ophthalmic findings consisting of optic disc edema in 5, globe flattening in 5, choroidal folds in 5, cotton-wool spots in 3, nerve fiber layer thickening detected by optical coherence tomography in 6, and decreased near vision in 6. Five of 7 astronauts with near vision complaints had a hyperopic shift +0.50 diopters (D) between pre-/post-mission spherical equivalent refraction in 1 or both eyes (range, +0.50 to +1.75 D). These 5 astronauts showed globe flattening on magnetic resonance imaging. A total of 6 lumbar punctures have been performed to date (4 in the originally described cohort) and documented opening pressures of 18, 22, 21, 21.5, 28, and 28.5 cm H2O. These were performed at 8, 66, 19, 7, 12, and 57 days after mission, respectively. The 300 postflight questionnaires documented that approximately 29% and 60% of astronauts on short-duration and long-duration missions, respectively, experienced a degradation in distant and near visual acuity. Some of these vision changes remain unresolved for years after flight. Several possible pathogenic mechanisms, as well as potential countermeasures and discussion of possible terrestrial implications, are described.Conclusions:We previously hypothesized that the optic nerve and ocular changes that we described in astronauts may be the result of orbital and cranial cephalad fluid shifts brought about by prolonged microgravity exposure. The findings we reported previously and continue to see in astronauts may represent parts of a spectrum of ocular and cerebral responses to extended microgravity exposure. Future investigations hopefully will lead to countermeasures that can be used to eliminate or lessen the magnitude of these potentially harmful findings before long-duration space flight including the possibility of a manned mission to Mars. C1 [Lee, Andrew G.; Gibson, Charles Robert] Houston Methodist Hosp, Dept Ophthalmol, Houston, TX 77030 USA. [Lee, Andrew G.] Baylor Coll Med, Dept Ophthalmol, Houston, TX 77030 USA. [Lee, Andrew G.] Weill Cornell Med Coll, Dept Ophthalmol, New York, NY USA. [Lee, Andrew G.] Weill Cornell Med Coll, Dept Neurol, New York, NY USA. [Lee, Andrew G.] Weill Cornell Med Coll, Dept Neurosurg, New York, NY USA. [Lee, Andrew G.] Univ Texas Med Branch, Dept Ophthalmol, Galveston, TX 77555 USA. [Lee, Andrew G.] Univ Iowa Hosp & Clin, Dept Ophthalmol, Iowa City, IA 52242 USA. [Lee, Andrew G.] Univ Texas MD Anderson Canc Ctr, Sect Ophthalmol, Houston, TX 77030 USA. [Tarver, William J.; Hart, Stephen F.] NASA, Space Med Div, Washington, DC 20546 USA. [Mader, Thomas H.] US Army, Cooper Landing, AK USA. [Gibson, Charles Robert] Coastal Eye Associates, Webster, TX USA. [Otto, Christian A.] Univ Space Res Assoc, NASA, Washington, DC USA. RP Lee, AG (reprint author), Houston Methodist Hosp, Blanton Eye Inst, Dept Ophthalmol, 6560 Fannin St,Scurlock 450, Houston, TX 77030 USA. EM aglee@houstonmethodist.org NR 60 TC 2 Z9 2 U1 2 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1070-8022 EI 1536-5166 J9 J NEURO-OPHTHALMOL JI J. Neuro-Ophthal. PD MAR PY 2016 VL 36 IS 1 BP 85 EP 91 DI 10.1097/WNO.0000000000000334 PG 7 WC Clinical Neurology; Ophthalmology SC Neurosciences & Neurology; Ophthalmology GA DF7JM UT WOS:000371534000020 PM 26828842 ER PT J AU Mader, TH Gibson, CR Hart, SF Lee, AG AF Mader, Thomas H. Gibson, C. Robert Hart, Stephen F. Lee, Andrew G. TI Asymmetric Papilledema in Idiopathic Intracranial Hypertension: Comment SO JOURNAL OF NEURO-OPHTHALMOLOGY LA English DT Letter ID DURATION SPACE-FLIGHT; OPTIC DISC EDEMA; ASTRONAUT C1 [Mader, Thomas H.] US Army, Moab, UT USA. [Gibson, C. Robert] Coastal Eye Associates, Webster, TX USA. [Hart, Stephen F.] NASA, Div Life Sci, Houston, TX USA. [Lee, Andrew G.] Methodist Hosp, Dept Ophthalmol, 6535 Fannin, Houston, TX 77030 USA. RP Mader, TH (reprint author), US Army, Moab, UT USA. NR 5 TC 0 Z9 0 U1 2 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1070-8022 EI 1536-5166 J9 J NEURO-OPHTHALMOL JI J. Neuro-Ophthal. PD MAR PY 2016 VL 36 IS 1 BP 111 EP 112 PG 2 WC Clinical Neurology; Ophthalmology SC Neurosciences & Neurology; Ophthalmology GA DF7JM UT WOS:000371534000024 PM 26885711 ER PT J AU Qiu, B Chen, SM Klein, P Ubelmann, C Fu, LL Sasaki, H AF Qiu, B. Chen, Shuiming Klein, Patrice Ubelmann, Clement Fu, Lee-Lueng Sasaki, Hideharu TI Reconstructability of Three-Dimensional Upper-Ocean Circulation from SWOT Sea Surface Height Measurements SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article DE Variability; Models and modeling; General circulation models; Vertical motion; Circulation/ Dynamics; Quasigeostrophic models; Mesoscale processes; Observational techniques and algorithms; Oceanic variability; Altimetry ID SATELLITE ALTIMETRY; MESOSCALE EDDIES; DYNAMICS; VARIABILITY; TURBULENCE; IMPACT; FLOW; TEMPERATURE; TRANSITION; SYSTEM AB Utilizing the framework of effective surface quasigeostrophic (eSQG) theory, this study explores the potential of reconstructing the 3D upper-ocean circulation structures, including the balanced vertical velocity w field, from high-resolution sea surface height (SSH) data of the planned Surface Water and Ocean Topography (SWOT) satellite mission. Specifically, the authors utilize the 1/30 degrees, submesoscale-resolving, OFES model output and subject it to the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, this study finds that the eSQG dynamics constitute an effective framework for reconstructing the 3D upper-ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity zeta and w fields are found to reach a correlation of 0.7-0.9 and 0.6-0.7, respectively, in the 1000-m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the zeta and w reconstructions is found to be moderate, 5%-25% for the 3D zeta field and 15%-35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases. C1 [Qiu, B.; Chen, Shuiming] Univ Hawaii Manoa, Dept Oceanog, 1000 Pope Rd, Honolulu, HI 96822 USA. [Klein, Patrice] Ifremer CNRS UBO IRD, Lab Phys Oceans, Plouzane, France. [Ubelmann, Clement; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Sasaki, Hideharu] JAMSTEC, Applicat Lab, Yokohama, Kanagawa, Japan. RP Qiu, B (reprint author), Univ Hawaii Manoa, Dept Oceanog, 1000 Pope Rd, Honolulu, HI 96822 USA. EM bo@soest.hawaii.edu RI 英治, 佐々木/G-2247-2016; Qiu, Bo/D-9569-2017; OI Sasaki, Hideharu/0000-0003-0657-7532 FU NASA SWOT mission; CNRS (France); Agence Nationale pour la Recherche [ANR-09-BLAN-0365-02, ANR-10-LABX-19-01]; SWOT projects; MEXT/JST KAKENHI [25400473]; NASA OSTST mission [NNX13AD91G, NNX13AE51E]; JAMSTEC; Canon Foundation FX We thank Rosemary Morrow and Dudley Chelton for fruitful discussions. Constructive comments made by two anonymous reviewers helped improve an early version of the manuscript. B. Q. and S. C. acknowledge support from NASA SWOT and OSTST missions (NNX13AD91G and NNX13AE51E). P. K. acknowledges the support of CNRS (France) and Agence Nationale pour la Recherche [ANR-09-BLAN-0365-02 (REDHOT) and ANR-10-LABX-19-01 (LabexMER)]. C. U. and L. F.'s research presented in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration. They acknowledge support from the SWOT projects. H. S. is supported by MEXT/JST KAKENHI 25400473. The OFES simulation was conducted by using the Earth Simulator under support of JAMSTEC and the Canon Foundation. NR 44 TC 1 Z9 1 U1 3 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD MAR PY 2016 VL 46 IS 3 BP 947 EP 963 DI 10.1175/JPO-D-15-0188.1 PG 17 WC Oceanography SC Oceanography GA DF6PF UT WOS:000371477000002 ER PT J AU Zheng, Y Alapaty, K Herwehe, JA Del Genio, AD Niyogi, D AF Zheng, Yue Alapaty, Kiran Herwehe, Jerold A. Del Genio, Anthony D. Niyogi, Dev TI Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain-Fritsch Scheme SO MONTHLY WEATHER REVIEW LA English DT Article DE Forecasting; Numerical weather prediction/forecasting; Hindcasts; Forecasting; Operational forecasting ID NONHYDROSTATIC ATMOSPHERIC MODEL; CONVECTIVE PARAMETERIZATION; PART I; CUMULUS PARAMETERIZATION; HORIZONTAL RESOLUTION; CLIMATE SIMULATIONS; MESOSCALE MODEL; TIME-SCALE; PRECIPITATION; SENSITIVITY AB Efforts to improve the prediction accuracy of high-resolution (1-10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at these spatial scales due to uncertainties in initial meteorological conditions and/or grid-scale cloud microphysics schemes. In particular, it is still unclear to what extent a subgrid-scale convection scheme could be modified to bring in scale awareness for improving high-resolution short-term precipitation forecasts in the WRF Model. To address these issues, the authors introduced scale-aware parameterized cloud dynamics for high-resolution forecasts by making several changes to the Kain-Fritsch (KF) convective parameterization scheme in the WRF Model. These changes include subgrid-scale cloud-radiation interactions, a dynamic adjustment time scale, impacts of cloud updraft mass fluxes on grid-scale vertical velocity, and lifting condensation level-based entrainment methodology that includes scale dependency. A series of 48-h retrospective forecasts using a combination of three treatments of convection (KF, updated KF, and the use of no cumulus parameterization), two cloud microphysics schemes, and two types of initial condition datasets were performed over the U.S. southern Great Plains on 9- and 3-km grid spacings during the summers of 2002 and 2010. Results indicate that 1) the source of initial conditions plays a key role in high-resolution precipitation forecasting, and 2) the authors' updated KF scheme greatly alleviates the excessive precipitation at 9-km grid spacing and improves results at 3-km grid spacing as well. Overall, the study found that the updated KF scheme incorporated into a high-resolution model does provide better forecasts for precipitation location and intensity. C1 [Zheng, Yue; Niyogi, Dev] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Alapaty, Kiran; Herwehe, Jerold A.] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Niyogi, Dev] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. RP Alapaty, K (reprint author), US EPA, Mail Code E243-01, Res Triangle Pk, NC 27711 USA. EM alapaty.kiran@epa.gov FU U.S. EPA's Air, Climate, and Energy (ACE) Program; USDA/NIFA Drought Triggers through Texas AM University [2011-67019-20042]; NSF [AGS-1522494, CDSE-1250232]; USDA NIFA Hatch Project at Purdue University [1007699]; U.S. Department of Energy Atmospheric System Research Program FX Parts of the research were funded by the U.S. EPA's Air, Climate, and Energy (ACE) Program, and USDA/NIFA Drought Triggers Grant 2011-67019-20042 through Texas A&M University, NSF Grants AGS-1522494 and CDS&E-1250232, and USDA NIFA Hatch Project 1007699 at Purdue University. Anthony Del Genio acknowledges support from the U.S. Department of Energy Atmospheric System Research Program. Our appreciation goes to Dr. John Kain of NOAA and Dr. Megan Mallard, Mr. Russell Bullock, Dr. Christopher Nolte, and Ms. Tanya Spero of the U.S. EPA for their help in many ways facilitating the research. This research has been subjected to the U.S. EPA's administrative review and approved for publication. The views expressed herein and the contents are solely the responsibility of the authors, and do not necessarily represent the official views of the U.S. EPA. NR 81 TC 8 Z9 8 U1 3 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD MAR PY 2016 VL 144 IS 3 BP 833 EP 860 DI 10.1175/MWR-D-15-0005.1 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6PL UT WOS:000371477600001 ER PT J AU Durack, PJ Lee, T Vinogradova, NT Stammer, D AF Durack, Paul J. Lee, Tong Vinogradova, Nadya T. Stammer, Detlef TI Keeping the lights on for global ocean salinity observation SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID SEA-SURFACE SALINITY; WATER CYCLE; SMOS SATELLITE; AMAZON PLUME C1 [Durack, Paul J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave, Livermore, CA 94550 USA. [Lee, Tong] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Vinogradova, Nadya T.] Atmospher & Environm Res, 131 Hartwell Ave, Lexington, MA 02421 USA. [Stammer, Detlef] Univ Hamburg, Mittelweg 177, D-20148 Hamburg, Germany. RP Durack, PJ (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave, Livermore, CA 94550 USA. EM me@pauldurack.com RI Durack, Paul/A-8758-2010 OI Durack, Paul/0000-0003-2835-1438 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA's Physical Oceanography Program FX The authors would like to thank Dean Roemmich, Susan E. Wijffels, Lynne D. Talley, Gregory C. Johnson and Bernadette M. Sloyan for providing information for the international Argo and GO-SHIP programs respectively. We also thank Mathieu Belbeoch, Argo Coordinator at JCOMMOPS, for providing Argo deployment and active float activity data. The work of P.J.D. from Lawrence Livermore National Laboratory, is a contribution to the US Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program under contract DE-AC52-07NA27344. The work by T.L. was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautic and Space Administration (NASA). The work by N.T.V. was supported by NASA's Physical Oceanography Program. NR 35 TC 1 Z9 1 U1 5 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD MAR PY 2016 VL 6 IS 3 BP 228 EP 231 PG 5 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE9NG UT WOS:000370964000007 ER PT J AU Nayak, M Mauro, D Stupl, J Aziz, J Colaprete, A Dono-Perez, A Frost, C Jonsson, J McKay, C Sears, D Soulage, M Swenson, J Yang, FY AF Nayak, Michael Mauro, David Stupl, Jan Aziz, Jonathan Colaprete, Anthony Dono-Perez, Andres Frost, Chad Jonsson, Jonas McKay, Chris Sears, Derek Soulage, Michael Swenson, Jason Yang, Fan Yang TI The Plume Chaser mission: Two-spacecraft search for organics on the dwarf planet Ceres SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Satellite; Ceres; Plumes; NASA Ames; Solar propulsion; Organic compounds ID VESTA; EVOLUTION; DAWN AB We present a mission concept designed at NASA Ames Research Center for a two-probe mission to the dwarf planet Ceres, utilizing a set of small low-cost spacecraft. The primary spacecraft will carry both a mass and an infrared spectrometer to characterize water vapor detected to be emanating from Ceres. Shortly after its arrival a second identical spacecraft will impact Ceres to create an ejecta "plume" timed to enable a rendezvous and sampling by the primary spacecraft. This enables additional subsurface chemistry, volatile content and material characterization, and new science complementary to the Dawn spacecraft, the first to arrive at Ceres. Science requirements, candidate instruments, rendezvous trajectories, spacecraft design and comparison with Dawn science are detailed. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Nayak, Michael; Mauro, David; Stupl, Jan; Aziz, Jonathan; Colaprete, Anthony; Dono-Perez, Andres; Frost, Chad; Jonsson, Jonas; McKay, Chris; Sears, Derek; Soulage, Michael; Swenson, Jason; Yang, Fan Yang] NASA Ames Res Ctr, Mountain View, CA USA. [Sears, Derek] Bay Area Environm Res Inst, Petaluma, CA USA. [Nayak, Michael] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA. [Mauro, David; Stupl, Jan; Jonsson, Jonas; Soulage, Michael] Stinger Ghaffarian Technol Inc, Greenbelt, MD USA. [Aziz, Jonathan] Univ Colorado, Boulder, CO 80309 USA. [Dono-Perez, Andres; Swenson, Jason] Univ Space Res Assoc, Houston, TX USA. [Nayak, Michael] Red Sky Res LLC, New York, NY USA. [Yang, Fan Yang] Sci & Technol Corp, New York, NY USA. RP Nayak, M (reprint author), Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA. EM mnayak@ucsc.edu OI Frost, Chad/0000-0002-0219-5097; Mauro, David/0000-0002-6192-3592 FU NASA Ames Mission Design Center, Mountain View, California; National Defense Science and Engineering Graduate (NDSEG) Fellowship [32CFR 168a]; Red Sky Research, LLC FX This work was performed at the NASA Ames Mission Design Center, Mountain View, California. The authors acknowledge contributions by Tori Hoehler, Alfonso Davila, Eldar Noe, John Karcz, Andrew Gonzales, Sasha Weston, Benjamin Klamm, Eddie Uribe, Aaron Cohen, Larry Lemke, Hugo Sanchez, Anthony Genova, Brian Lewis and James Bell (Ames Research Center) and Benjamin Longmier and David Hash (University of Michigan). Financial support for Michael Nayak was provided by the National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32CFR 168a, and Red Sky Research, LLC. NR 65 TC 0 Z9 0 U1 4 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 1 PY 2016 VL 57 IS 5 BP 1133 EP 1146 DI 10.1016/j.asr.2015.12.028 PG 14 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DF1LE UT WOS:000371100400001 ER PT J AU Schreiner, SS Dominguez, JA Sibille, L Hoffman, JA AF Schreiner, Samuel S. Dominguez, Jesus A. Sibille, Laurent Hoffman, Jeffrey A. TI Thermophysical property models for lunar regolith SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Lunar regolith; Material property models; Electrical conductivity; Specific heat; Thermal conductivity; In Situ Resource Utilization ID ELECTRICAL-CONDUCTIVITY; THERMAL-CONDUCTIVITY; TEMPERATURE-DEPENDENCE; HEAT; GLASSES; LIQUIDS; VISCOSITY; SYSTEM; MOON AB We present a set of thermophysical property models for lunar regolith. Data from over 25 sources in the literature are integrated and fit with regression models for the following properties: composition, density, specific heat, latent heat of melting/fusion, thermal conductivity, electrical conductivity, optical absorption length, Gibbs Free Energy and Enthalpy of Formation. The models are based on data from Apollo samples and high-temperature molten regolith simulants, extending significantly beyond existing models in the literature. Furthermore, separate regression models are presented for Mare and Highlands regolith to demonstrate the effect of composition and to allow the models to be tailored to a wide range of applications. These models can enable more consistent, informed analysis and design of lunar regolith processing hardware and can also support lunar geological simulations. In addition to regression models for each material property, the raw data are presented to allow for further interpretation and fitting as necessary. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Schreiner, Samuel S.] MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Hoffman, Jeffrey A.] MIT, Dept Aeronaut & Astronaut, Practice, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Dominguez, Jesus A.] NASA Kennedy Space Ctr, VENCORE ESC, Kennedy Space Ctr, FL 32899 USA. [Sibille, Laurent] NASA Kennedy Space Ctr, ESC 5, Surface Syst Grp, Kennedy Space Ctr, FL 32899 USA. RP Schreiner, SS (reprint author), MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM schr0910@umn.edu FU NASA Space Technology Research Fellowship [NNX13AL76H] FX This work was supported by a NASA Space Technology Research Fellowship (Grant #NNX13AL76H). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA. NR 49 TC 1 Z9 1 U1 2 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 1 PY 2016 VL 57 IS 5 BP 1209 EP 1222 DI 10.1016/j.asr.2015.12.035 PG 14 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DF1LE UT WOS:000371100400007 ER PT J AU Kloos, JL Moores, JE Lemmon, M Kass, D Francis, R Juarez, MD Zorzano, MP Martin-Torres, FJ AF Kloos, Jacob L. Moores, John E. Lemmon, Mark Kass, David Francis, Raymond Juarez, Manuel de la Torre Zorzano, Maria-Paz Martin-Torres, F. Javier TI The first Martian year of cloud activity from Mars Science Laboratory (sol 0-800) SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Mars; Clouds; Aphelion cloud belt ID APHELION AB Using images from the Navigation Cameras onboard the Mars Science Laboratory rover Curiosity, atmospheric movies were created to monitor the cloud activity over Gale Crater. Over the course of the first 800 sols of the mission, 133 Zenith Movies and 152 Supra Horizon Movies were acquired which use a mean frame subtraction technique to observe tenuous cloud movement. Moores et al. (2015a) reported on the first 360 sols of observations, representing Ls=150 degrees-5 degrees, and found that movies up to Ls=184 degrees showed visible cloud features with good contrast while subsequent movies were relatively featureless. With the extension of the observations to a full Martian year, more pronounced seasonal changes were observed. Within the Zenith Movie data set, clouds are observed primarily during Ls=3 degrees-170 degrees, when the solar flux is diminished and the aphelion cloud belt is present at equatorial latitudes. Clouds observed in the Supra-Horizon Movie data set also exhibit seasonality, with clouds predominantly observed during Ls=72 degrees-108 degrees. The seasonal occurrence of clouds detected in the atmospheric movies is well correlated with orbital observations of water ice clouds at similar times from the MCS and MARCI instruments on the MRO spacecraft. The observed clouds are tenuous and on average only make up a few hundredths of an optical depth, although more opaque clouds are observed in some of the movies. Additionally, estimates of the phase function calculated using water ice opacity retrievals from MCS are provided to show how Martian clouds scatter sunlight, and thus provide insight into the types of ice crystals that comprise the clouds. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Kloos, Jacob L.] York Univ, Ctr Res Earth & Space Sci, 4700 Keele St, N York, ON M3J 1P3, Canada. [Moores, John E.] York Univ, N York, ON M3J 1P3, Canada. [Lemmon, Mark] Texas A&M, Houston, TX USA. [Kass, David] Jet Prop Lab, Pasadena, CA USA. [Francis, Raymond; Juarez, Manuel de la Torre] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Zorzano, Maria-Paz] Ctr Astrobiol, Madrid, Spain. [Martin-Torres, F. Javier] CSIC UGR, Inst Andaluz Ciencias Tierra, Madrid, Spain. [Zorzano, Maria-Paz; Martin-Torres, F. Javier] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Div Space Technol, Kiruna, Sweden. RP Kloos, JL (reprint author), York Univ, Ctr Res Earth & Space Sci, 4700 Keele St, N York, ON M3J 1P3, Canada. EM jlkloos@yorku.ca; jmoores@yorku.ca; lemmon@tamu.edu; david.kass@jpl.nasa.gov; Raymond.Francis@jpl.nasa.gov; mtj@jpl.nasa.gov; zorzanomm@cab.inta-csic.es; javiermt@iactugr-csic.es RI Lemmon, Mark/E-9983-2010; Zorzano, Maria-Paz/F-2184-2015 OI Lemmon, Mark/0000-0002-4504-5136; Zorzano, Maria-Paz/0000-0002-4492-9650 FU MSL Participating Scientist Program - Canadian Space Agency (CSA) FX JLK acknowledges funding through the MSL Participating Scientist Program funded by the Canadian Space Agency (CSA) as well as contributions from the Natural Sciences and Engineering Research Council (NSERC) of Canada. This text was substantially improved by the anonymous reviewer. NR 23 TC 3 Z9 3 U1 3 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 1 PY 2016 VL 57 IS 5 BP 1223 EP 1240 DI 10.1016/j.asr.2015.12.040 PG 18 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DF1LE UT WOS:000371100400008 ER PT J AU Schubert, M Moore, AJ AF Schubert, Matthew Moore, Andrew J. TI Morphological processing of ultraviolet emissions of electrical corona discharge for analysis and diagnostic use SO APPLIED OPTICS LA English DT Article AB Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore have diagnostic utility. (C) 2016 Optical Society of America C1 [Schubert, Matthew] Analyt Mech Associates Inc, 21 Enterprise Pkwy Suite 300, Hampton, VA 23666 USA. [Moore, Andrew J.] NASA Langley Res Ctr, Electromagnet & Sensors Branch, 8 North Dryden St, Hampton, VA 23681 USA. RP Moore, AJ (reprint author), NASA Langley Res Ctr, Electromagnet & Sensors Branch, 8 North Dryden St, Hampton, VA 23681 USA. EM andrew.j.moore@nasa.gov FU NASA Safe Autonomous Systems Operations Program FX NASA Safe Autonomous Systems Operations Program. NR 6 TC 0 Z9 0 U1 4 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 1 PY 2016 VL 55 IS 7 BP 1571 EP 1572 DI 10.1364/AO.55.001571 PG 2 WC Optics SC Optics GA DF4DH UT WOS:000371297000011 PM 26974615 ER PT J AU Arendt, RG Dwek, E Bouchet, P Danziger, IJ Frank, KA Gehrz, RD Park, S Woodward, CE AF Arendt, Richard G. Dwek, Eli Bouchet, Patrice Danziger, I. John Frank, Kari A. Gehrz, Robert D. Park, Sangwook Woodward, Charles E. TI INFRARED CONTINUUM AND LINE EVOLUTION OF THE EQUATORIAL RING AROUND SN 1987A SO ASTRONOMICAL JOURNAL LA English DT Article DE dust, extinction; infrared: general; supernovae: individual (SN 1987A) ID SPITZER-SPACE-TELESCOPE; INNER CIRCUMSTELLAR RING; SUPERNOVA 1987A; ETA-CARINAE; OPTICAL-PROPERTIES; LIGHT-CURVE; BLAST WAVE; HOT-SPOTS; SHER 25; DUST AB Spitzer observations of SN 1987A have now spanned more than a decade. Since day similar to 4000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6000 to 8000 days after the explosion, Spitzer observations included broadband photometry at 3.6-24 mu m, and low and moderate resolution spectroscopy at 5-35 mu m. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 mu m. These data show that the 3.6 and 4.5 mu m brightness has clearly begun to fade after day similar to 8500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on timescales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe II] and [Si II] lines show different, peculiar velocity structures. C1 [Arendt, Richard G.] CRESST UMBC, Baltimore, MD 21250 USA. [Arendt, Richard G.; Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Bouchet, Patrice] Univ Paris Diderot, CNRS, CEA IRFU SAp, Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France. [Danziger, I. John] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-34143 Trieste, Italy. [Frank, Kari A.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Gehrz, Robert D.; Woodward, Charles E.] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. [Park, Sangwook] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. RP Arendt, RG (reprint author), CRESST UMBC, Baltimore, MD 21250 USA.; Arendt, RG (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. EM richard.g.arendt@nasa.gov FU NASA [12-ADAP12-0145, 13-ADAP13-0094] FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA. This research has made use of NASA's Astrophysics Data System Bibliographic Services. ED was supported by NASA grants 12-ADAP12-0145 and 13-ADAP13-0094. We thank the referee, A. Jones, for useful comments which improved this manuscript. NR 71 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 62 DI 10.3847/0004-6256/151/3/62 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100014 ER PT J AU Kirk, B Conroy, K Prsa, A Abdul-Masih, M Kochoska, A Matijevic, G Hambleton, K Barclay, T Bloemen, S Boyajian, T Doyle, LR Fulton, BJ Hoekstra, AJ Jek, K Kane, SR Kostov, V Latham, D Mazeh, T Orosz, JA Pepper, J Quarles, B Ragozzine, D Shporer, A Southworth, J Stassun, K Thompson, SE Welsh, WF Agol, E Derekas, A Devor, J Fischer, D Green, G Gropp, J Jacobs, T Johnston, C LaCourse, DM Saetre, K Schwengeler, H Toczyski, J Werner, G Garrett, M Gore, J Martinez, AO Spitzer, I Stevick, J Thomadis, PC Vrijmoet, EH Yenawine, M Batalha, N Borucki, W AF Kirk, Brian Conroy, Kyle Prsa, Andrej Abdul-Masih, Michael Kochoska, Angela Matijevic, Gal Hambleton, Kelly Barclay, Thomas Bloemen, Steven Boyajian, Tabetha Doyle, Laurance R. Fulton, B. J. Hoekstra, Abe Johannes Jek, Kian Kane, Stephen R. Kostov, Veselin Latham, David Mazeh, Tsevi Orosz, Jerome A. Pepper, Joshua Quarles, Billy Ragozzine, Darin Shporer, Avi Southworth, John Stassun, Keivan Thompson, Susan E. Welsh, William F. Agol, Eric Derekas, Aliz Devor, Jonathan Fischer, Debra Green, Gregory Gropp, Jeff Jacobs, Tom Johnston, Cole LaCourse, Daryll Matthew Saetre, Kristian Schwengeler, Hans Toczyski, Jacek Werner, Griffin Garrett, Matthew Gore, Joanna Martinez, Arturo O. Spitzer, Isaac Stevick, Justin Thomadis, Pantelis C. Vrijmoet, Eliot Halley Yenawine, Mitchell Batalha, Natalie Borucki, William TI KEPLER ECLIPSING BINARY STARS. VII. THE CATALOG OF ECLIPSING BINARIES FOUND IN THE ENTIRE KEPLER DATA SET SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; catalogs; methods: data analysis; methods: numerical; stars: fundamental parameters; stars: statistics ID SMALL-MAGELLANIC-CLOUD; TRANSITING CIRCUMBINARY PLANET; APSIDAL-MOTION TEST; STELLAR EVOLUTION; CLOSE BINARIES; PHOTOMETRIC SOLUTIONS; DISTANCE INDICATORS; DATA RELEASE; CM DRACONIS; SPACED DATA AB The primary Kepler Mission provided nearly continuous monitoring of similar to 200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg(2) Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets. An online version of this catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu. C1 [Kirk, Brian] North Amer ALMA Sci Ctr, Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Kirk, Brian; Conroy, Kyle; Gropp, Jeff; Johnston, Cole; Werner, Griffin] Villanova Univ, Dept Astrophys & Planetary Sci, 800 E Lancaster Ave, Villanova, PA 19085 USA. [Conroy, Kyle; Prsa, Andrej; Abdul-Masih, Michael; Matijevic, Gal] Vanderbilt Univ, Dept Phys & Astron, VU Stn B 1807, Nashville, TN 37235 USA. [Abdul-Masih, Michael] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. [Kochoska, Angela] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia. [Hambleton, Kelly] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Barclay, Thomas] NASA, Ames Res Ctr, BAER Inst, Moffett Field, CA 94035 USA. [Bloemen, Steven] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Boyajian, Tabetha] Yale Univ, JW Gibbs Lab, 260 Whitney Ave, New Haven, CT 06511 USA. [Doyle, Laurance R.] Principia Coll, IMoP, Elsah, IL 62028 USA. [Doyle, Laurance R.] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Fulton, B. J.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Kane, Stephen R.] San Francisco State Univ, 1600 Holloway Ave, San Francisco, CA 94132 USA. [Kostov, Veselin] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Latham, David] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Mazeh, Tsevi] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Orosz, Jerome A.; Welsh, William F.; Garrett, Matthew; Gore, Joanna; Martinez, Arturo O.; Spitzer, Isaac; Stevick, Justin; Thomadis, Pantelis C.; Vrijmoet, Eliot Halley; Yenawine, Mitchell] San Diego State Univ, 5500 Campanile Dr, San Diego, CA 92182 USA. [Pepper, Joshua] Lehigh Univ, Dept Phys, 16 Mem Dr East, Bethlehem, PA 18015 USA. [Quarles, Billy] NASA, Ames Res Ctr, Astrobiol & Space Sci Div MS 245 3, Moffett Field, CA 94035 USA. [Ragozzine, Darin] Florida Inst Technol, Phys & Space Sci, 150 W Univ Blvd, Melbourne, FL 32901 USA. [Shporer, Avi] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Southworth, John] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Stassun, Keivan] Vanderbilt Univ, Nashville, TN 37240 USA. [Thompson, Susan E.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Derekas, Aliz] ELTE Gothard Astrophys Observ, Szent Imre Herceg U 112, H-9704 Szombathely, Hungary. [Derekas, Aliz] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Konkoly Observ, H-1121 Debrecen, Hungary. [Devor, Jonathan] Tel Aviv Univ, Dept Astrophys, IL-69978 Tel Aviv, Israel. [Fischer, Debra] Yale Univ, New Haven, CT 06520 USA. [Green, Gregory] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 10, Cambridge, MA 02138 USA. [Schwengeler, Hans] Univ Basel, Astron Inst, Venusstr 7, CH-4102 Binningen, Switzerland. [Toczyski, Jacek] Univ Virginia, 4040 Lewis & Clark Dr, Charlottesville, VA 22911 USA. [Batalha, Natalie] San Jose State Univ, One Washington Sq, San Jose, CA 95192 USA. [Borucki, William] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Kirk, B (reprint author), North Amer ALMA Sci Ctr, Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.; Kirk, B (reprint author), Villanova Univ, Dept Astrophys & Planetary Sci, 800 E Lancaster Ave, Villanova, PA 19085 USA. EM bkirk@nrao.edu; kyle.conroy@vanderbilt.edu; aprsa@villanova.edu RI Derekas, Aliz/G-2091-2016; OI Derekas, Aliz/0000-0002-6526-9444; /0000-0002-0802-9145; Pepper, Joshua/0000-0002-3827-8417 FU NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G]; NASAs Science Mission Directorate; NOAO survey program [11A-0022]; NASA/SETI [08-SC-1041]; NSF RUI [AST-05-07542]; Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences; Lendulet Young Researchers Programme of the Hungarian Academy of Sciences; European Communitys Seventh Framework Programme (FP7) [269194 (IRSES/ASK), 312844]; Hungarian National Research, Development and Innovation Office-NKFIH [K-1157709]; [ADAP14-0245]; [ADAP12-0172] FX All of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-Hubble Space Telescope data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. Funding for this Discovery Mission is provided by NASAs Science Mission Directorate. Spectroscopic follow-up data are made available through NOAO survey program 11A-0022. This work is funded in part by the NASA/SETI subcontract 08-SC-1041 and NSF RUI AST-05-07542. B.Q. was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. T.S.B. acknowledges support from ADAP14-0245 and ADAP12-0172. A.D. has been supported by the Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences, the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, Lendulet-2009 Young Researchers Programme of the Hungarian Academy of Sciences, the European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 269194 (IRSES/ASK) and no. 312844 (SPACEINN). A. D. has also been supported by the Hungarian National Research, Development and Innovation Office-NKFIH K-1157709. NR 81 TC 17 Z9 17 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 68 DI 10.3847/0004-6256/151/3/68 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100020 ER PT J AU Shenoy, D Humphreys, RM Jones, TJ Marengo, M Gehrz, RD Helton, LA Hoffmann, WF Skemer, AJ Hinz, PM AF Shenoy, Dinesh Humphreys, Roberta M. Jones, Terry J. Marengo, Massimo Gehrz, Robert D. Helton, L. Andrew Hoffmann, William F. Skemer, Andrew J. Hinz, Philip M. TI SEARCHING FOR COOL DUST IN THE MID-TO-FAR INFRARED: THE MASS-LOSS HISTORIES OF THE HYPERGIANTS mu Cep, VY CMa, IRC+10420, AND rho Cas SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; instrumentation: adaptive optics; stars: individual (mu Cep, VY Canis Majoris, IRC+10420, rho Cas); stars: winds, outflows; supergiants ID SHORT-WAVELENGTH SPECTROMETER; RED SUPERGIANT STARS; CANIS-MAJORIS; ADAPTIVE OPTICS; HIGH-RESOLUTION; EVOLVED STARS; CIRCUMSTELLAR ENVIRONMENT; 3-DIMENSIONAL MORPHOLOGY; MIDINFRARED CAMERA; ARRAY CAMERA AB We present mid- and far-IR imaging of four famous hypergiant stars: the red supergiants mu Cep and VY CMa, and the warm hypergiants IRC + 10420 and rho Cas. Our 11-37 mu m SOFIA/FORCAST imaging probes cool dust not detected in visual and near-IR imaging studies. Adaptive optics 8-12 mu m imaging of mu Cep and IRC + 10420 with MMT/MIRAC reveals extended envelopes that are the likely sources of these stars' strong silicate emission features. We find mu Cep's mass-loss rate to have declined by about a factor of five over a 13,000 year history, ranging from 5 x 10(-6) down to similar to 1x 10(-6) M-circle dot yr(-1). The morphology of VY CMa indicates a cooler dust component coincident with the highly asymmetric reflection nebulae seen in the visual and near-IR. The lack of cold dust at greater distances around VY CMa indicates that its mass-loss history is limited to the last similar to 1200 years, with an average rate of 6 x 10(-4) M-circle dot yr(-1). We find two distinct periods in the mass-loss history of IRC + 10420 with a high rate of 2 x 10(-3) M-circle dot yr(-1) until approximately 2000 years ago, followed by an order of magnitude decrease in the recent past. We interpret this change as evidence of its evolution beyond the RSG stage. Our new infrared photometry of rho Cas is consistent with emission from the expanding dust shell ejected in its 1946 eruption, with no evidence of newer dust formation from its more recent events. C1 [Shenoy, Dinesh; Humphreys, Roberta M.; Jones, Terry J.; Gehrz, Robert D.] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. [Marengo, Massimo] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Helton, L. Andrew] NASA, Ames Res Ctr, USRA SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Hoffmann, William F.; Skemer, Andrew J.; Hinz, Philip M.] Univ Arizona, Steward Observ, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. RP Shenoy, D (reprint author), Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. EM shenoy@astro.umn.edu FU NASA [SOF-0091] FX We thank Dr. Willem-Jan de Wit, Dr. Takuya Fujiyoshi, and the Subaru/COMICS instrument team for consulting on the orientation of mu Cep's nebula as observed at 24.5 mu m. This work has used unpublished data from Michael Schuster's PhD thesis, which is available through the SAO/NASA Astrophysics Data System (ADS) at http://adsabs.harvard.edu/abs/2007PhDT........28S. Financial support for this work was provided by NASA through award # SOF-0091 to R. M. Humphreys issued by USRA. NR 74 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 51 DI 10.3847/0004-6256/151/3/51 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100003 ER PT J AU Stauffer, J Cody, AM Rebull, L Hillenbrand, LA Turner, NJ Carpenter, J Carey, S Terebey, S Morales-Calderon, M Alencar, SHP McGinnis, P Sousa, A Bouvier, J Venuti, L Hartmann, L Calvet, N Micela, G Flaccomio, E Song, I Gutermuth, R Barrado, D Vrba, FJ Covey, K Herbst, W Gillen, E Guimaraes, MM Bouy, H Favata, F AF Stauffer, John Cody, Ann Marie Rebull, Luisa Hillenbrand, Lynne A. Turner, Neal J. Carpenter, John Carey, Sean Terebey, Susan Morales-Calderon, Maria Alencar, Silvia H. P. McGinnis, Pauline Sousa, Alana Bouvier, Jerome Venuti, Laura Hartmann, Lee Calvet, Nuria Micela, Giusi Flaccomio, Ettore Song, Inseok Gutermuth, Rob Barrado, David Vrba, Frederick J. Covey, Kevin Herbst, William Gillen, Edward Guimaraes, Marcelo Medeiros Bouy, Herve Favata, Fabio TI CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; open clusters and associations: individual (NGC 2264); stars: pre-main sequence; stars: protostars; stars: variables: T Tauri, Herbig Ae/Be ID T-TAURI STARS; ORION NEBULA CLUSTER; MAIN-SEQUENCE STARS; LOW-MASS STARS; MAGNETOSPHERIC ACCRETION; STELLAR OBJECTS; POPULATION STARS; DISK ACCRETION; AA TAURI; VARIABILITY AB We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T. Tauri stars in NGC. 2264 whose CoRoT light curves exemplify the "stochastic" light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He I 6678 angstrom emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Ha profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion. C1 [Stauffer, John; Rebull, Luisa; Carey, Sean] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Cody, Ann Marie] NASA, Ames Res Ctr, Kepler Sci Off, Mountain View, CA 94035 USA. [Hillenbrand, Lynne A.; Carpenter, John] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Turner, Neal J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Terebey, Susan] Calif State Univ Los Angeles, Dept Phys & Astron, 5151 State Univ Dr, Los Angeles, CA 90032 USA. [Morales-Calderon, Maria; Barrado, David; Bouy, Herve] INTA CSIC, Dept Astrofis, Ctr Astrobiol, POB 78,ESAC Campus, E-28691 Madrid, Spain. [Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana] Univ Fed Minas Gerais, ICEx, Dept Fis, Ave Antonio Carlos 6627, BR-30270901 Belo Horizonte, MG, Brazil. [Bouvier, Jerome; Venuti, Laura] Univ Grenoble, IPAG, F-38000 Grenoble, France. [Bouvier, Jerome; Venuti, Laura] CNRS, IPAG, F-38000 Grenoble, France. [Hartmann, Lee; Calvet, Nuria] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48105 USA. [Micela, Giusi; Flaccomio, Ettore] Osserv Astron Palermo, INAF, Piazza Parlamento 1, I-90134 Palermo, Italy. [Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Gutermuth, Rob] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Vrba, Frederick J.] US Naval Observ, Flagstaff Stn, 10391 West Naval Observ Rd, Flagstaff, AZ 86001 USA. [Covey, Kevin] Western Washington Univ, Dept Phys & Astron, MS 9164,516 High St, Bellingham, WA 98225 USA. [Herbst, William] Wesleyan Univ, Dept Astron, Middletown, CT 06459 USA. [Gillen, Edward] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England. [Guimaraes, Marcelo Medeiros] Univ Fed Sergipe, Dept Fis, Rod Marechal Rondon, BR-49100000 Sao Cristovao, SE, Brazil. [Favata, Fabio] European Space Agcy, 8-10 Rue Mario Nikis, F-75738 Paris 15, France. RP Stauffer, J (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. EM stauffer@ipac.caltech.edu RI Bouy, Herve/H-2913-2012; Guimaraes, Marcelo/H-5897-2012; McGinnis, Pauline/F-6490-2015; Barrado Navascues, David/C-1439-2017; Morales-Calderon, Maria/C-8384-2017; OI Bouy, Herve/0000-0002-7084-487X; Guimaraes, Marcelo/0000-0002-0517-4507; McGinnis, Pauline/0000-0001-7476-7253; Barrado Navascues, David/0000-0002-5971-9242; Morales-Calderon, Maria/0000-0001-9526-9499; Rebull, Luisa/0000-0001-6381-515X; Covey, Kevin/0000-0001-6914-7797 FU NASA; National Aeronautics and Space Administration; NASA Origins of Solar Systems program [11-OSS11-0074]; NASA ADAP grants [NNX11AD14G, NNX13AF08G]; Caltech/JPL in support of Spitzer Space Telescope observing programs [1373081, 1424329, 1440160]; CNPq; CAPES; Fapemig FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and with the support of the NASA Origins of Solar Systems program via grant 11-OSS11-0074. RG gratefully acknowledges funding support from NASA ADAP grants NNX11AD14G and NNX13AF08G and Caltech/JPL awards 1373081, 1424329, and 1440160 in support of Spitzer Space Telescope observing programs. SHPA, AS and PTM acknowledge support from CNPq, CAPES and Fapemig. NR 65 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 60 DI 10.3847/0004-6256/151/3/60 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100012 ER PT J AU Troup, NW Nidever, DL De Lee, N Carlberg, J Majewski, SR Fernandez, M Covey, K Chojnowski, SD Pepper, J Nguyen, DT Stassun, K Nguyen, DC Wisniewski, JP Fleming, SW Bizyaev, D Frinchaboy, PM Garcia-Hernandez, DA Ge, J Hearty, F Meszaros, S Pan, K Prieto, CA Schneider, DP Shetrone, MD Skrutskie, MF Wilson, J Zamora, O AF Troup, Nicholas W. Nidever, David L. De Lee, Nathan Carlberg, Joleen Majewski, Steven R. Fernandez, Martin Covey, Kevin Chojnowski, S. Drew Pepper, Joshua Nguyen, Duy T. Stassun, Keivan Duy Cuong Nguyen Wisniewski, John P. Fleming, Scott W. Bizyaev, Dmitry Frinchaboy, Peter M. Garcia-Hernandez, D. A. Ge, Jian Hearty, Fred Meszaros, Szabolcs Pan, Kaike Prieto, Carlos Allende Schneider, Donald P. Shetrone, Matthew D. Skrutskie, Michael F. Wilson, John Zamora, Olga TI COMPANIONS TO APOGEE STARS. I. A MILKY WAY-SPANNING CATALOG OF STELLAR AND SUBSTELLAR COMPANION CANDIDATES AND THEIR DIVERSE HOSTS SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: close; binaries: spectroscopic; brown dwarfs; Galaxy: stellar content; planetary systems ID LOW-MASS STELLAR; SOLAR-LIKE STARS; PRECISE RADIAL-VELOCITIES; BROWN DWARF DESERT; GALACTIC EVOLUTION EXPERIMENT; SDSS-III/APOGEE SURVEY; DIGITAL SKY SURVEY; GIANT STARS; SHORT-PERIOD; PLANET SEARCH AB In its three years of operation, the Sloan Digital Sky Survey Apache Point Observatory Galactic Evolution Experiment (APOGEE-1) observed >14,000 stars with enough epochs over a sufficient temporal baseline for the fitting of Keplerian orbits. We present the custom orbit-fitting pipeline used to create this catalog, which includes novel quality metrics that account for the phase and velocity coverage of a fitted Keplerian orbit. With a typical radial velocity precision of similar to 100-200 m s(-1), APOGEE can probe systems with small separation companions down to a few Jupiter masses. Here we present initial results from a catalog of 382 of the most compelling stellar and substellar companion candidates detected by APOGEE, which orbit a variety of host stars in diverse Galactic environments. Of these, 376 have no previously known small separation companion. The distribution of companion candidates in this catalog shows evidence for an extremely truncated brown dwarf (BD) desert with a paucity of BD companions only for systems with a < 0.1-0.2 AU, with no indication of a desert at larger orbital separation. We propose a few potential explanations of this result, some which invoke this catalog's many small separation companion candidates found orbiting evolved stars. Furthermore, 16 BD and planet candidates have been identified around metal-poor ([Fe/H] < -0.5) stars in this catalog, which may challenge the core accretion model for companions >10M(Jup). Finally, we find all types of companions are ubiquitous throughout the Galactic disk with candidate planetary-mass and BD companions to distances of similar to 6 and similar to 16 kpc, respectively. C1 [Troup, Nicholas W.; Majewski, Steven R.; Nguyen, Duy T.; Skrutskie, Michael F.; Wilson, John] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Nidever, David L.] Univ Michigan, 1085 S Univ Ave, Ann Arbor, MI 48109 USA. [Nidever, David L.] Large Synopt Survey Telescope, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Nidever, David L.] Steward Observ, 933 North Cherry Ave, Tucson, AZ 85719 USA. [De Lee, Nathan; Stassun, Keivan] No Kentucky Univ, Dept Phys Geol & Engn Tech, Highland Hts, KY 41099 USA. [De Lee, Nathan] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Carlberg, Joleen] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Fernandez, Martin; Covey, Kevin] Western Washington Univ, Bellingham, WA 98225 USA. [Chojnowski, S. Drew] New Mexico State Univ, Las Cruces, NM 88003 USA. [Pepper, Joshua] Lehigh Univ, Bethlehem, PA 18015 USA. [Duy Cuong Nguyen] Univ Toronto, Toronto, ON, Canada. [Wisniewski, John P.] Univ Oklahoma, Norman, OK 73019 USA. [Fleming, Scott W.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Fleming, Scott W.] Comp Sci Corp, Baltimore, MD USA. [Bizyaev, Dmitry; Pan, Kaike] Apache Point Observ, POB 59, Sunspot, NM 88349 USA. [Bizyaev, Dmitry; Pan, Kaike] New Mexico State Univ, POB 59, Sunspot, NM 88349 USA. [Bizyaev, Dmitry] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. [Frinchaboy, Peter M.] Texas Christian Univ, Dept Phys & Astron, TCU Box 298840, Ft Worth, TX 76129 USA. [Garcia-Hernandez, D. A.; Prieto, Carlos Allende; Zamora, Olga] Inst Astrofis Canarias, Via Lactea S-N, E-38205 Tenerife, Spain. [Garcia-Hernandez, D. A.; Prieto, Carlos Allende; Zamora, Olga] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Ge, Jian] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Hearty, Fred; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Hearty, Fred; Schneider, Donald P.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Meszaros, Szabolcs] ELTE Gothard Astrophys Observ, Szent Imre Herceg St 112, H-9704 Szombathely, Hungary. [Shetrone, Matthew D.] Univ Texas Austin, Austin, TX 78712 USA. RP Troup, NW (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. EM nwt2de@virginia.edu RI Meszaros, Szabolcs/N-2287-2014; OI Meszaros, Szabolcs/0000-0001-8237-5209; Fleming, Scott/0000-0003-0556-027X; Covey, Kevin/0000-0001-6914-7797; Pepper, Joshua/0000-0002-3827-8417 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; McLaughlin Fellowship at the University of Michigan; NASA Postdoctoral Program at the Goddard Space Flight Center; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences; Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2014-56359-P, RYC-201314182, AYA-2014-58082-P] FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; D. L. N. was supported by a McLaughlin Fellowship at the University of Michigan. J. K. C. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Universities Space Research Association through a contract with NASA. Szabolcs Meszaros has been supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. C. A. P., D. A. G. H., and O. Z. acknowledge support provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under grants AYA2014-56359-P, RYC-201314182, and AYA-2014-58082-P. NR 87 TC 4 Z9 4 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2016 VL 151 IS 3 AR 85 DI 10.3847/0004-6256/151/3/85 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MT UT WOS:000371249100037 ER PT J AU Rovai, AS Riul, P Twilley, RR Castaneda-Moya, E Rivera-Monroy, VH Williams, AA Simard, M Cifuentes-Jara, M Lewis, RR Crooks, S Horta, PA Schaeffer-Novelli, Y Cintron, G Pozo-Cajas, M Pagliosa, PR AF Rovai, A. S. Riul, P. Twilley, R. R. Castaneda-Moya, E. Rivera-Monroy, V. H. Williams, A. A. Simard, M. Cifuentes-Jara, M. Lewis, R. R. Crooks, S. Horta, P. A. Schaeffer-Novelli, Y. Cintron, G. Pozo-Cajas, M. Pagliosa, P. R. TI Scaling mangrove aboveground biomass from site-level to continental-scale SO GLOBAL ECOLOGY AND BIOGEOGRAPHY LA English DT Article DE Allometric models; carbon stock; climate change; coastal management policies; macroecology; mangrove forest structure; Neotropics ID NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; FOREST STRUCTURE; CARIBBEAN COAST; PACIFIC COAST; COSTA-RICA; GAZI BAY; ENVIRONMENTAL GRADIENTS; PELLICIERA-RHIZOPHORAE; SECONDARY SUCCESSION AB AimWe developed a set of statistical models to improve spatial estimates of mangrove aboveground biomass (AGB) based on the environmental signature hypothesis (ESH). We hypothesized that higher tidal amplitudes, river discharge, temperature, direct rainfall and decreased potential evapotranspiration explain observed high mangrove AGB. LocationNeotropics and a small portion of the Nearctic region. MethodsA universal forest model based on site-level forest structure statistics was validated to spatially interpolate estimates of mangrove biomass at different locations. Linear models were then used to predict mangrove AGB across the Neotropics. ResultsThe universal forest site-level model was effective in estimating mangrove AGB using pre-existing mangrove forest structure inventories to validate the model. We confirmed our hypothesis that at continental scales higher tidal amplitudes contributed to high forest biomass associated with high temperature and rainfall, and low potential evapotranspiration. Our model explained 20% of the spatial variability in mangrove AGB, with values ranging from 16.6 to 627.0t ha(-1) (mean, 88.7t ha(-1)). Our findings show that mangrove AGB has been overestimated by 25-50% in the Neotropics, underscoring a commensurate bias in current published global estimates using site-level information. Main conclusionsOur analysis show how the ESH significantly explains spatial variability in mangrove AGB at hemispheric scales. This finding is critical to improve and explain site-level estimates of mangrove AGB that are currently used to determine the relative contribution of mangrove wetlands to global carbon budgets. Due to the lack of a conceptual framework explicitly linking environmental drivers and mangrove AGB values during model validation, previous works have significantly overestimated mangrove AGB; our novel approach improved these assessments. In addition, our framework can potentially be applied to other forest-dominated ecosystems by allowing the retrieval of extensive databases at local levels to generate more robust statistical predictive models to estimate continental-scale biomass values. C1 [Rovai, A. S.; Horta, P. A.; Pagliosa, P. R.] Univ Fed Santa Catarina, Dept Ecol & Zool, BR-88040900 Florianopolis, SC, Brazil. [Riul, P.] Univ Fed Paraiba, Dept Engn & Meio Ambiente, BR-58297000 Rio Tinto, PB, Brazil. [Twilley, R. R.; Castaneda-Moya, E.; Rivera-Monroy, V. H.; Williams, A. A.] Louisiana State Univ, Sch Coast & Environm, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA. [Simard, M.] Jet Prop Lab, MS 300-319D,4800 Oak Grove Dr, Pasadena, CA 90039 USA. [Cifuentes-Jara, M.] CATIE, Apdo 70, Turrialba 30501, Cartago, Costa Rica. [Lewis, R. R.] Lewis Environm Serv Inc, POB 5430, Salt Springs, FL 32134 USA. [Crooks, S.] Environm Sci Associates, 550 Kearny St Ste 800, San Francisco, CA 94108 USA. [Horta, P. A.] Univ Fed Santa Catarina, Dept Bot, BR-88010970 Florianopolis, SC, Brazil. [Schaeffer-Novelli, Y.] Univ Sao Paulo, Inst Oceanog, Praca Oceanog 191, BR-05058000 Sao Paulo, SP, Brazil. [Cintron, G.] US Fish & Wildlife Serv, 4401 N Fairfax Dr Rm 11Q, Arlington, VA 22203 USA. [Pozo-Cajas, M.] Escuela Super Politecn Litoral, Fac Ciencias Maritimas, Km 30-5 Via Perimetral, Guayaquil, Ecuador. [Pagliosa, P. R.] Univ Fed Santa Catarina, Dept Geociencias, BR-88040900 Florianopolis, SC, Brazil. RP Rovai, AS (reprint author), Univ Fed Santa Catarina, Dept Ecol & Zool, BR-88040900 Florianopolis, SC, Brazil. EM asrovai@gmail.com RI Simard, Marc/H-3516-2013; Pagliosa, Paulo/E-1948-2013; OI Simard, Marc/0000-0002-9442-4562; Pagliosa, Paulo/0000-0003-0834-2534; , Pablo/0000-0003-4035-1975 FU CAPES; CNPq; Louisiana Sea Grant College Program; School of the Coast and Environment (LSU); Florida Coastal Everglades Long-Term Ecological Research program [DBI-0620409, DEB-1237517]; NASA-JPL project 'Vulnerability Assessment of Mangrove Forest Regions of the Americas' (LSU) [1452878]; [BEX1930/13-3]; [BEX2516/14-04]; [18379/12-5] FX The Brazilian foundations CAPES and CNPq, the Louisiana Sea Grant College Program and the School of the Coast and Environment (LSU) supported this work. The CAPES Science without Borders (PDSE/CsF) and Post-doctoral Senior Programs provided international fellowships for A.S.R., P.R. (grant nos. BEX1930/13-3 and BEX2516/14-04) and P.R.P. (grant no. 18379/12-5). The Florida Coastal Everglades Long-Term Ecological Research program (grant nos. DBI-0620409 and DEB-1237517) and the NASA-JPL project 'Vulnerability Assessment of Mangrove Forest Regions of the Americas' (LSU Subcontract no. 1452878) provided partial funding for V.H.R.M., E.C.M. and A.A.W. We are also grateful to James Hutchison and an anonymous referee for providing insightful comments on an earlier version of this manuscript. NR 255 TC 4 Z9 4 U1 7 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1466-822X EI 1466-8238 J9 GLOBAL ECOL BIOGEOGR JI Glob. Ecol. Biogeogr. PD MAR PY 2016 VL 25 IS 3 BP 286 EP 298 DI 10.1111/geb.12409 PG 13 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA DF6AI UT WOS:000371436200004 ER PT J AU Xu, KM Wong, TM Dong, ST Chen, F Kato, S Taylor, PC AF Xu, Kuan-Man Wong, Takmeng Dong, Shengtao Chen, Feng Kato, Seiji Taylor, Patrick C. TI Cloud Object Analysis of CERES Aqua Observations of Tropical and Subtropical Cloud Regimes: Four-Year Climatology SO JOURNAL OF CLIMATE LA English DT Article DE Climatology; Atm/Ocean Structure/ Phenomena; Boundary layer; Cirrus clouds; Cumulus clouds; Physical Meteorology and Climatology; Radiative fluxes; Convective clouds ID 1998 EL-NINO; COMMUNITY ATMOSPHERE MODEL; ANGULAR-DISTRIBUTION MODELS; DEEP CONVECTIVE SYSTEMS; STATISTICAL-ANALYSES; PART I; INSTRUMENT SIMULATORS; PHYSICAL-PROPERTIES; RESOLVING MODEL; LA-NINA AB Four distinct types of cloud objects-tropical deep convection, boundary layer cumulus, stratocumulus, and overcast stratus-were previously identified from CERES Tropical Rainfall Measuring Mission (TRMM) data. Six additional types of cloud objects-cirrus, cirrocumulus, cirrostratus, altocumulus, transitional altocumulus, and solid altocumulus-are identified from CERES Aqua satellite data in this study. The selection criteria for the 10 cloud object types are based on CERES footprint cloud fraction and cloud-top pressure, as well as cloud optical depth for the high-cloud types. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The data are analyzed according to cloud object types, sizes, regions, and associated environmental conditions. The frequency of occurrence and probability density functions (PDFs) of selected physical properties are produced for the July 2006-June 2010 period. It is found that deep convective and boundary layer types dominate the total population while the six new types other than cirrostratus do not contribute much in the tropics and subtropics. There are pronounced differences in the size spectrum between the types, with the largest ones being of deep convective type and with stratocumulus and overcast types over the ocean basins off west coasts. The summary PDFs of radiative and cloud physical properties differ greatly among the size categories. For boundary layer cloud types, the differences come primarily from the locations of cloud objects: for example, coasts versus open oceans. They can be explained by considerable variations in large-scale environmental conditions with cloud object size, which will be further qualified in future studies. C1 [Xu, Kuan-Man; Wong, Takmeng; Kato, Seiji; Taylor, Patrick C.] NASA, Langley Res Ctr, Climate Sci Branch, Mail Stop 420, Hampton, VA 23681 USA. [Dong, Shengtao; Chen, Feng] Sci Syst & Applicat Inc, Hampton, VA USA. RP Xu, KM (reprint author), NASA, Langley Res Ctr, Climate Sci Branch, Mail Stop 420, Hampton, VA 23681 USA. EM kuan-man.xu@nasa.gov RI Xu, Kuan-Man/B-7557-2013; Taylor, Patrick/D-8696-2015 OI Xu, Kuan-Man/0000-0001-7851-2629; Taylor, Patrick/0000-0002-8098-8447 FU NASA Energy and Water cycle Study (NEWS); Interdisciplinary Study (IDS) programs FX This work has been supported by NASA Energy and Water cycle Study (NEWS) and Interdisciplinary Study (IDS) programs. CERES data are available from NASA Langley Research Center's Atmospheric Science Data Center (http://asdc.larc.nasa.gov). NR 55 TC 2 Z9 2 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR PY 2016 VL 29 IS 5 BP 1617 EP 1638 DI 10.1175/JCLI-D-14-00836.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF4EQ UT WOS:000371301000001 ER PT J AU Kidwell, A Lee, T Jo, YH Yan, XH AF Kidwell, Autumn Lee, Tong Jo, Young-Heon Yan, Xiao-Hai TI Characterization of the Variability of the South Pacific Convergence Zone Using Satellite and Reanalysis Wind Products SO JOURNAL OF CLIMATE LA English DT Article DE Variability; Interannual variability; Satellite observations; Pacific decadal oscillation; Circulation/ Dynamics; Observational techniques and algorithms; Decadal variability; ENSO; Tropical variability ID SEA-SURFACE SALINITY; EL-NINO EVENTS; TROPICAL PACIFIC; EASTERN-PACIFIC; WARM POOL; OSCILLATION; ENSO; IMPACTS; MODEL; OCEAN AB The variability of the South Pacific convergence zone (SPCZ) is evaluated using ocean surface wind products derived from the atmospheric reanalysis ERA-Interim for the period of 1981-2014 and QuickSCAT for the period of 1999-2009. From these products, indices were developed to represent the SPCZ strength, area, and centroid location. Excellent agreement is found between the indices derived from the two wind products during the QuikSCAT period in terms of the spatiotemporal structures of the SPCZ. The longer ERA-Interim product is used to study the variations of SPCZ properties on intraseasonal, seasonal, interannual, and decadal time scales. The SPCZ strength, area, and centroid latitude have a dominant seasonal cycle. In contrast, the SPCZ centroid longitude is dominated by intraseasonal variability due to MJO influence. The SPCZ indices are all correlated with El Nino-Southern Oscillation indices. Interannual and intraseasonal variations of SPCZ strength during strong El Nino are approximately twice as large as the respective seasonal variations. SPCZ strength depends more on the intensity of El Nino rather than the central-Pacific versus eastern-Pacific type. The change from positive to negative Pacific decadal oscillation (PDO) around 1999 results in a westward shift of the SPCZ centroid longitude, a much smaller interannual swing in centroid latitude, and a decrease in SPCZ area. This study improves the understanding of the variations of the SPCZ on multiple time scales and reveals the variations of SPCZ strength not reported previously. The diagnostics analyses can be used to evaluate climate models to gauge their fidelity. C1 [Kidwell, Autumn; Yan, Xiao-Hai] Univ Delaware, Coll Earth Ocean & Environm, 215 Robinson Hall, Newark, DE 19716 USA. [Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Jo, Young-Heon] Pusan Natl Univ, Dept Oceanog, Busan, South Korea. [Yan, Xiao-Hai] Univ Delaware, Xiamen Univ, Joint Inst Coastal Res & Management, Newark, DE 19716 USA. RP Kidwell, A (reprint author), Univ Delaware, Coll Earth Ocean & Environm, 215 Robinson Hall, Newark, DE 19716 USA. EM akidwell@udel.edu FU Delaware Space Grant College and Fellowship Program (NASA) [NNX15AI19H]; "SaTellite remote sensing on west Antarctic ocean Research: STAR'' of the Korea Polar Research Institute, Republic of Korea [PE14040]; Natural Science Foundation of China [NSFC-41476007] FX We thank the Delaware Space Grant College and Fellowship Program (NASA Grant NNX15AI19H) for financial support. This research was, in part, carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This study was also carried out with the support of "SaTellite remote sensing on west Antarctic ocean Research: STAR'' (Project PE14040) of the Korea Polar Research Institute, Republic of Korea. This research was partially supported by the Natural Science Foundation of China (NSFC-41476007). We thank E. Liao, J. Marks, and M. Shatley for Technical Support and Trouble Shooting (TSTS). NR 47 TC 0 Z9 0 U1 4 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR PY 2016 VL 29 IS 5 BP 1717 EP 1732 DI 10.1175/JCLI-D-15-0536.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF4EW UT WOS:000371301600002 ER PT J AU Baker, NC Taylor, PC AF Baker, Noel C. Taylor, Patrick C. TI A Framework for Evaluating Climate Model Performance Metrics SO JOURNAL OF CLIMATE LA English DT Article DE Physical Meteorology and Climatology; Ranking methods; Mathematical and statistical techniques; Models and modeling; Variability; Radiative fluxes; Climate variability; Coupled models; Climate models; Statistical techniques ID CERES; FEEDBACKS AB Given the large amount of climate model output generated from the series of simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), a standard set of performance metrics would facilitate model intercomparison and tracking performance improvements. However, no framework exists for the evaluation of performance metrics. The proposed framework systematically integrates observations into metric assessment to quantitatively evaluate metrics. An optimal metric is defined in this framework as one that measures a behavior that is strongly linked to model quality in representing mean-state present-day climate. The goal of the framework is to objectively and quantitatively evaluate the ability of a performance metric to represent overall model quality. The framework is demonstrated, and the design principles are discussed using a novel set of performance metrics, which assess the simulation of top-of-atmosphere (TOA) and surface radiative flux variance and probability distributions within 34 CMIP5 models against Clouds and the Earth's Radiant Energy System (CERES) observations and GISS Surface Temperature Analysis (GISTEMP). Of the 44 tested metrics, the optimal metrics are found to be those that evaluate global-mean TOA radiation flux variance. C1 [Baker, Noel C.; Taylor, Patrick C.] NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 420, Hampton, VA 23681 USA. RP Baker, NC (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 420, Hampton, VA 23681 USA. EM noel.c.baker@nasa.gov RI Taylor, Patrick/D-8696-2015 OI Taylor, Patrick/0000-0002-8098-8447 FU NASA; Oak Ridge Associated Universities; NASA Langley Research Center FX This study was funded through the NASA Postdoctoral Program with the support of Oak Ridge Associated Universities and NASA Langley Research Center. Observational data products are publicly available online and were obtained from the following websites of the CERES products (http://ceres.larc.nasa.gov/) and GISTEMP temperature datasets (http://data.giss.nasa.gov/gistemp/). The authors appreciate the helpful comments received from Anthony Broccoli and an anonymous reviewer. NR 30 TC 0 Z9 0 U1 3 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR PY 2016 VL 29 IS 5 BP 1773 EP 1782 DI 10.1175/JCLI-D-15-0114.1 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF4EW UT WOS:000371301600005 ER PT J AU Woerner, D AF Woerner, David TI A Progress Report on the eMMRTG SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE eMMRTG; thermoelectric generator; radioisotope generator; radioisotope power system; enhanced MMRTG AB A multimission radioisotope thermoelectric generator (MMRTG), developed by the US Department of Energy for the National Aeronautics and Space Administration, powers the Mars Science Laboratory Curiosity rover on Mars. New thermoelectric couples (TECs) have been developed in recent years that offer significant improvements over the TECs used in the MMRTG. The maturity of the new TECs and the design flexibility of the MMRTG enable a low-risk system upgrade that is predicted to substantially enhance the MMRTG's performance. System design trades are looking at changing the TECs and increasing the hot-side temperature to find the best combination of performance and program cost in this enhanced MMRTG (eMMRTG). Initial studies indicated that a low-risk enhancement would be to use skutterudite (SKD) materials developed at JPL to form TECs for the eMMRTG. Simply replacing the PbTe/TAGS TECs with SKD TECs and making a few low-risk modifications to the MMRTG design could potentially provide a 25% increase in power output at beginning of life (BOL). More important than the BOL power output increase is the end of design life (EODL) power output increase. With the anticipated lower degradation rate of the SKD materials, it is anticipated that the EODL power output will be more than 50% higher than for the MMRTG (with EODL defined as 17 years from fueling). This paper presents an overview of the results of the initial trades leading to the pursuit of the eMMRTG and the progress made since those were concluded. C1 [Woerner, David] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 321-520, Pasadena, CA 91109 USA. RP Woerner, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 321-520, Pasadena, CA 91109 USA. EM david.f.woerner@jpl.nasa.gov NR 6 TC 3 Z9 3 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2016 VL 45 IS 3 BP 1278 EP 1283 DI 10.1007/s11664-015-3998-8 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DF2HO UT WOS:000371163400011 ER PT J AU Vasilevskiy, D Simard, JM Caillat, T Masut, RA Turenne, S AF Vasilevskiy, D. Simard, J. -M. Caillat, T. Masut, R. A. Turenne, S. TI Consistency of ZT-Scanner for Thermoelectric Measurements from 300 K to 700 K: A Comparative Analysis Using Si80Ge20 Polycrystalline Alloys SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Figure of merit; thermoelectric measurements; ZT-Scanner; Harman method ID INTERNATIONAL ROUND-ROBIN; BULK THERMOELECTRICS; TRANSPORT-PROPERTIES AB A Harman-based instrument for the characterization of thermoelectric (TE) materials in a wide temperature range (the ZT-Scanner) was introduced in an earlier publication, with a focus on a two-sample system calibration (2SSC) procedure used for the precise evaluation of thermal losses during the measurements. This technique offers an option to accurately measure the main TE parameters from 300 K to 700 K. We now report the results of ZT-Scanner measurements of p-type Si80Ge20 polycrystalline samples, including the TE figure of merit ZT, Seebeck coefficient, and thermal and electrical conductivities. These samples proved to be extremely stable up to the maximum temperature of measurement, and could eventually serve as a standard for thermoelectric characterization. The measurements were performed using both PbSn solder and conductive silver paste contacts. In all cases, Ni plating was used as a protective barrier between the TE alloys and the contact material. The experimental data has been compared to the typical data measured by the Jet Propulsion Laboratory on similar samples, providing a quantitative estimation of the accuracy of the measurement system, which has been found to be better than 0.015, or 5%, up to 700 K for ZT. The consistency of the TE measurements is evaluated by means of a statistical analysis of repetitive tests on the same and on different samples of identical nature. We also analyze the influence of thermal and electrical contact resistance on the measured properties. C1 [Vasilevskiy, D.; Masut, R. A.; Turenne, S.] Polytech Montreal, Montreal, PQ H3C 3A7, Canada. [Vasilevskiy, D.] TEMTE Inc, Montreal, PQ H4B 2A7, Canada. [Simard, J. -M.] EXAPROM Inc, Blainville, PQ J7B 1X1, Canada. [Caillat, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vasilevskiy, D (reprint author), Polytech Montreal, Montreal, PQ H3C 3A7, Canada.; Vasilevskiy, D (reprint author), TEMTE Inc, Montreal, PQ H4B 2A7, Canada. EM dvasilevskiy@polymtl.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC); National Aeronautics and Space Administration FX We acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC), the infrastructure support provided by the Regroupement Quebecois sur les Materiaux de Pointe, and of the Fonds de Recherche du Quebec Nature et Technologies (FRQNT), Projet de Recherche Orientee en Partenariat. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 16 TC 0 Z9 0 U1 3 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2016 VL 45 IS 3 BP 1540 EP 1547 DI 10.1007/s11664-015-4101-1 PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DF2HO UT WOS:000371163400048 ER PT J AU Hendricks, TJ Yee, S Leblanc, S AF Hendricks, Terry J. Yee, Shannon Leblanc, Saniya TI Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Thermoelectric systems; cost analysis; cost scaling; energy recovery; waste heat recovery AB Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/Wit is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F-opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various TE waste heat recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts. C1 [Hendricks, Terry J.] CALTECH, NASA Jet Prop Lab, Thermal Energy Convers Grp, Power & Sensors Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Yee, Shannon] Georgia Inst Technol, GWW Sch Mech Engn, Atlanta, GA 30332 USA. [Leblanc, Saniya] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA. RP Hendricks, TJ (reprint author), CALTECH, NASA Jet Prop Lab, Thermal Energy Convers Grp, Power & Sensors Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM terry.j.hendricks@jpl.nasa.gov FU NASA [43-17508]; General Motors [43-17508]; U.S. Department of Energy, at the Jet Propulsion Laboratory, California Institute of Technology FX This work was carried out under NASA Space Act Agreement No. 43-17508, a contract between NASA and General Motors with funding from the U.S. Department of Energy, at the Jet Propulsion Laboratory, California Institute of Technology, under a contract to the National Aeronautics and Space Administration. NR 11 TC 2 Z9 2 U1 7 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2016 VL 45 IS 3 BP 1751 EP 1761 DI 10.1007/s11664-015-4201-y PG 11 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DF2HO UT WOS:000371163400076 ER PT J AU Barnes, M Kalberg, K Pan, ML Leung, PS AF Barnes, Michele Kalberg, Kolter Pan, Minling Leung, PingSun TI When is brokerage negatively associated with economic benefits? Ethnic diversity, competition, and common-pool resources SO SOCIAL NETWORKS LA English DT Article DE Brokerage; Social capital; Economic benefits; Ethnic diversity; Natural resource management; Common-pool resources ID SOCIAL NETWORKS; INFORMATION EXCHANGE; TRADE-OFF; PERFORMANCE; KNOWLEDGE; MANAGEMENT; FISHERIES; EMBEDDEDNESS; DYNAMICS; STRENGTH AB There is a growing body of literature positively linking dimensions of social capital to economic benefits. Yet recent research also points to a potential "dark side" of social capital, where over-embeddedness in networks and the pressures associated with brokerage are hypothesized to constrain actors, having a negative effect on economic outcomes. This dichotomy suggests that context is important, yet the overwhelming majority of existing empirical evidence stems from socially homogenous populations in corporate and organizational settings, limiting a broader understanding of when and how context matters. We advance this discourse to a socially fragmented, ethnically diverse common-pool resource system where information is highly valuable and competition is fierce. Merging several unique datasets from Hawaii's pelagic tuna fishery, we find that network prominence, i.e., being well connected locally, has a significant, positive effect on economic productivity. In contrast, we find that brokerage, defined here as ties that bridge either structurally distinct or ethnically distinct groups, has a significant, negative effect. Taken together, our results provide empirical support to widespread claims of the value of information access in common-pool resource systems, yet suggest that in ethnically diverse, competitive environments, brokers may be penalized for sharing information across social divides. Our results thus contribute to an emerging theory on the fragile nature of brokerage that recognizes its potential perils and the importance of context. (C) 2015 Elsevier B.V. All rights reserved. C1 [Barnes, Michele; Leung, PingSun] Univ Hawaii Manoa, Dept Nat Resources & Environm Management, 1910 East West Rd,Sherman 101, Honolulu, HI 96822 USA. [Barnes, Michele; Kalberg, Kolter] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, 1000 Pope Rd,Marine Sci Bldg 312, Honolulu, HI 96822 USA. [Barnes, Michele] James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld 4811, Australia. [Pan, Minling] NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd,Bldg 176, Honolulu, HI 96818 USA. RP Barnes, M (reprint author), James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld 4811, Australia. EM barnesm@hawaii.edu; kolter.kalberg@noaa.gov; minling.pan@noaa.gov; psleung@hawaii.edu FU Joint Institute for Marine and Atmospheric Research [NA11NMF4320128]; National Oceanic and Atmospheric Administration (NOAA); University of Hawaii Graduate Student Organization FX We thank our interpreters, all of the fishers who participated in this project, the National Marine Fisheries Service observer program and Hawaii Division of Aquatic Resources for providing data access, and two anonymous reviewers for their constructive comments. MB also thanks the SOCNET community for their response to her inquiry regarding the dark side of brokerage, and Joey Lecky for the development of Fig. 2. This project was funded by Cooperative Agreement NA11NMF4320128 between the Joint Institute for Marine and Atmospheric Research and the National Oceanic and Atmospheric Administration (NOAA). MB also received funding from the University of Hawaii Graduate Student Organization. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subdivisions. NR 89 TC 2 Z9 2 U1 5 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-8733 EI 1879-2111 J9 SOC NETWORKS JI Soc. Networks PD MAR PY 2016 VL 45 BP 55 EP 65 DI 10.1016/j.socnet.2015.11.004 PG 11 WC Anthropology; Sociology SC Anthropology; Sociology GA DF4ZW UT WOS:000371362600005 ER PT J AU Martin, KM Landau, DF Longuski, JM AF Martin, Kaela M. Landau, Damon F. Longuski, James M. TI Method to maintain artificial gravity during transfer maneuvers for tethered spacecraft SO ACTA ASTRONAUTICA LA English DT Article DE Tethered spacecraft; Artificial gravity; Spinning spacecraft; Human Mars mission ID MOTION SICKNESS; HEAD MOVEMENTS; MICROGRAVITY; COUNTERMEASURE; ENVIRONMENTS; SYSTEM; LEVEL; MARS AB Artificial gravity has long been proposed to limit the harmful effects of the micro-gravity environment on human crews during mission to Mars. A tethered spacecraft spinning at 4 rpm (to avoid motion sickness) provides an attractive configuration. However, if the spacecraft is required to spin down for impulsive maneuvers and then spin up for interplanetary travel, the propellant cost may be unacceptably high. This paper proposes a maneuver that is performed while the spacecraft is spinning thus avoiding additional spin-down and spin-up maneuvers. A control law is provided to achieve the required AV while maintaining spin rate. A hypothetical human mission from Earth to Mars is analyzed using the new maneuver which, in this example, may save over 700 kg of propellant. (C) 2015 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Martin, Kaela M.] Embry Riddle Aeronaut Univ, 3700 Willow Creek Rd, Prescott, AZ 86301 USA. [Landau, Damon F.] CALTECH, Jet Prop Lab, Mail Stop 301-121, Pasadena, CA 91109 USA. [Longuski, James M.] Purdue Univ, 701 West Stadium Ave, W Lafayette, IN 47907 USA. RP Martin, KM (reprint author), Embry Riddle Aeronaut Univ, 3700 Willow Creek Rd, Prescott, AZ 86301 USA. EM Kaela.Martin@erau.edu FU National Science Foundation Graduate Research Fellowship Program [DGE-1333468] FX The first author was supported by the National Science Foundation Graduate Research Fellowship Program under grant number DGE-1333468. NR 30 TC 0 Z9 0 U1 5 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD MAR-APR PY 2016 VL 120 BP 138 EP 153 DI 10.1016/j.actaastro.2015.11.030 PG 16 WC Engineering, Aerospace SC Engineering GA DE8JX UT WOS:000370883400011 ER PT J AU Archibald, RF Gotthelf, EV Ferdman, RD Kaspi, VM Guillot, S Harrison, FA Keane, EF Pivovaroff, MJ Stern, D Tendulkar, SP Tomsick, JA AF Archibald, R. F. Gotthelf, E. V. Ferdman, R. D. Kaspi, V. M. Guillot, S. Harrison, F. A. Keane, E. F. Pivovaroff, M. J. Stern, D. Tendulkar, S. P. Tomsick, J. A. TI A HIGH BRAKING INDEX FOR A PULSAR SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE pulsars: general; pulsars: individual (PSR J1640-4631); stars: neutron ID NEUTRON-STARS; RADIO PULSARS; SPIN-DOWN; MAGNETOSPHERE; RADIATION; EVOLUTION; SIGNALS; MODELS AB We present a phase-coherent timing solution for PSR. J1640-4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR. J1640-4631 to be n = 3.15 +/- 0.03. Using a series of simulations, we argue that this unusually high braking index is not due to timing noise, but is intrinsic to the pulsar's spin-down. We cannot, however, rule out contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking indices greater than three are allowed in nature; hence, other physical mechanisms such as mass or magnetic quadrupoles are important in pulsar spin-down. We also present a 3 sigma upper limit on the pulsed flux at 1.4 GHz of 0.018 mJy. C1 [Archibald, R. F.; Ferdman, R. D.; Kaspi, V. M.; Tendulkar, S. P.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Archibald, R. F.; Ferdman, R. D.; Kaspi, V. M.; Tendulkar, S. P.] McGill Univ, McGill Space Inst, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA. [Guillot, S.] Pontificia Univ Catolica Chile, Inst Astrofis, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile. [Harrison, F. A.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA. [Keane, E. F.] SKA Org, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England. [Pivovaroff, M. J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. RP Archibald, RF (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.; Archibald, RF (reprint author), McGill Univ, McGill Space Inst, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. FU National Aeronautics and Space Administration; Commonwealth of Australia for operation as a National Facility; NSERC Alexander Graham Bell Canada Graduate Scholarship; National Aeronautics and Space Administration through Chandra Award [GO5-16061X]; NSERC Discovery Grant and Accelerator Supplement; Centre de Recherche en Astrophysique du Quebec; R. Howard Webster Foundation Fellowship from the Canadian Institute; Canada Research Chairs Program; Lorne Trottier Chair in Astrophysics and Cosmology; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. Parkes radio telescope is part of the Australia Telescope National Facility, which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. We also thank an anonymous referee for helpful comments that improved the manuscript. R.F.A. acknowledges support from an NSERC Alexander Graham Bell Canada Graduate Scholarship. E.V.G. received support from the National Aeronautics and Space Administration through Chandra Award Number GO5-16061X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. V.M.K. receives support from an NSERC Discovery Grant and Accelerator Supplement, Centre de Recherche en Astrophysique du Quebec, an R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Study, the Canada Research Chairs Program, and the Lorne Trottier Chair in Astrophysics and Cosmology. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 24 TC 13 Z9 13 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2016 VL 819 IS 1 AR L16 DI 10.3847/2041-8205/819/1/L16 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF0QO UT WOS:000371044200016 ER PT J AU Kelly, PL Rodney, SA Treu, T Strolger, LG Foley, RJ Jha, SW Selsing, J Brammer, G Bradac, M Cenko, SB Graur, O Filippenko, AV Hjorth, J McCully, C Molino, A Nonino, M Riess, AG Schmidt, KB Tucker, B von der Linden, A Weiner, BJ Zitrin, A AF Kelly, P. L. Rodney, S. A. Treu, T. Strolger, L-G Foley, R. J. Jha, S. W. Selsing, J. Brammer, G. Bradac, M. Cenko, S. B. Graur, O. Filippenko, A. V. Hjorth, J. McCully, C. Molino, A. Nonino, M. Riess, A. G. Schmidt, K. B. Tucker, B. von der Linden, A. Weiner, B. J. Zitrin, A. TI DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: clusters: general; galaxies: individual (MACS J1149.5+2223); gravitational lensing: strong; supernovae: general; supernovae: individual (SN Refsdal) ID MASSIVE GALAXY CLUSTERS; HUBBLE-SPACE-TELESCOPE; WEAK-LENSING MASSES; GRAVITATIONAL LENS; TIME-DELAY; IA SUPERNOVAE; MULTIPLE IMAGES; CONSTANT; FIELDS; COSMOLOGY AB In Hubble Space Telescope (HST) imaging taken on 2014 November 10, four images of supernova (SN) "Refsdal" (redshift z = 1.49) appeared in an Einstein-cross-like configuration (images S1-S4) around an early-type galaxy in the cluster MACS J1149.5+2223 (z = 0.54). Almost all lens models of the cluster have predicted that the SN should reappear within a year in a second host-galaxy image created by the cluster's potential. In HST observations taken on 2015 December 11, we find a new source at the predicted position of the new image of SN Refsdal approximately 8 ''. from the previous images S1-S4. This marks the first time the appearance of a SN at a particular time and location in the sky was successfully predicted in advance! We use these data and the light curve from the first four observed images of SN Refsdal to place constraints on the relative time delay and magnification of the new image (SX) compared to images S1-S4. This enables us, for the first time, to test "blind" lens model predictions of both magnifications and time delays for a lensed SN. We find that the timing and brightness of the new image are consistent with the blind predictions of a fraction of the models. The reappearance illustrates the discriminatory power of this blind test and its utility to uncover sources of systematic uncertainty. From planned HST photometry, we expect to reach a precision of 1%-2% on the time delay between S1-S4 and SX. C1 [Kelly, P. L.; Filippenko, A. V.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Rodney, S. A.] Univ S Carolina, Dept Phys & Astron, 712 Main St, Columbia, SC 29208 USA. [Treu, T.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Strolger, L-G; Brammer, G.; Riess, A. G.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Foley, R. J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Foley, R. J.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Jha, S. W.] Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. [Selsing, J.; Hjorth, J.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Bradac, M.] Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, MC 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Graur, O.] NYU, Ctr Cosmol & Particle Phys, 550 1St Ave, New York, NY 10003 USA. [Graur, O.] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA. [McCully, C.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [McCully, C.; Schmidt, K. B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Molino, A.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Cidade Univ, BR-05508090 Sao Paulo, Brazil. [Molino, A.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Nonino, M.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-40131 Trieste, Italy. [Riess, A. G.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Schmidt, K. B.] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Tucker, B.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo Observ, Via Cotter Rd, Weston, ACT 2611, Australia. [von der Linden, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Weiner, B. J.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Zitrin, A.] CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA. RP Kelly, PL (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM pkelly@astro.berkeley.edu OI Graur, Or/0000-0002-4391-6137 FU HST [GO-14041]; FrontierSN photometric follow-up program [GO-13386]; Hubble Fellowship - STScI [HF2-51334.001-A]; NASA by Association of Universities for Research in Astronomy, Inc. [NAS 5-26555]; NSF [AST-1518052, AST-1211916]; Christopher R. Redlich Fund; TABASGO Foundation; NSF CAREER award [AST-0847157]; NASA/Keck JPL RSA [1508337, 1520634]; Alfred P. Sloan Foundation; [GO-13459] FX We express our appreciation for the efforts of Program Coordinator Beth Periello and Contact Scientist Norbert Pirzkal of STScI. Support for the analysis in this paper is from HST grant GO-14041. The GLASS program is supported by GO-13459, and the FrontierSN photometric follow-up program has funding through GO-13386. A.Z. is supported by Hubble Fellowship (HF2-51334.001-A) awarded by STScI, which is operated for NASA by the Association of Universities for Research in Astronomy, Inc. under contract NAS 5-26555. R.J.F. gratefully acknowledges support from NSF grant AST-1518052 and the Alfred P. Sloan Foundation. A.V.F.'s group at UC Berkeley has received generous financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. M.N. acknowledges PRIN-INAF 2014 1.05.01.94.02. This supernova research at Rutgers University is supported by NSF CAREER award AST-0847157, as well as NASA/Keck JPL RSA 1508337 and 1520634, to S.W.J. NR 48 TC 6 Z9 6 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2016 VL 819 IS 1 AR L8 DI 10.3847/2041-8205/819/1/L8 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF0QO UT WOS:000371044200008 ER PT J AU Schwieterman, EW Meadows, VS Domagal-Goldman, SD Deming, D Arney, GN Luger, R Harman, CE Misra, A Barnes, R AF Schwieterman, Edward W. Meadows, Victoria S. Domagal-Goldman, Shawn D. Deming, Drake Arney, Giada N. Luger, Rodrigo Harman, Chester E. Misra, Amit Barnes, Rory TI IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO AND O-4 RESULTING FROM ABIOTIC O-2/O-3 PRODUCTION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrobiology; planets and satellites: atmospheres; planets and satellites: terrestrial planets; techniques: spectroscopic ID ABSORPTION CROSS-SECTIONS; LOW-MASS STAR; EARTH OBSERVATIONS; M DWARF; OXYGEN; ATMOSPHERES; EXOPLANETS; OZONE; LIFE; SPECTROSCOPY AB O-2 and O-3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O-2/O-3: CO and O-4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by James Webb Space Telescope (JWST). If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 mu m) in conjunction with CO2 (1.6, 2.0, 4.3 mu m) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O-2 or O-3 might not be biogenic. Strong O-4 bands seen in transmission at 1.06 and 1.27 mu m could be diagnostic of a post-runaway O-2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 mu m, CO2 at 2.0 and 4.3 mu m, and O4 at 1.27 mu m are all stronger features in transmission than O-2/O-3 and could be detected with S/Ns greater than or similar to 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O-4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 mu m) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced. C1 [Schwieterman, Edward W.; Meadows, Victoria S.; Arney, Giada N.; Luger, Rodrigo; Misra, Amit; Barnes, Rory] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Schwieterman, Edward W.; Meadows, Victoria S.; Domagal-Goldman, Shawn D.; Deming, Drake; Arney, Giada N.; Luger, Rodrigo; Harman, Chester E.; Misra, Amit; Barnes, Rory] NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA USA. [Schwieterman, Edward W.; Meadows, Victoria S.; Arney, Giada N.; Luger, Rodrigo; Misra, Amit; Barnes, Rory] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. [Domagal-Goldman, Shawn D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Deming, Drake] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Harman, Chester E.] Penn State Univ, Geosci Dept, University Pk, PA 16802 USA. [Harman, Chester E.] Penn State Univ, Penn State Astrobiol Res Ctr, 2217 Earth & Engn Sci Bldg, University Pk, PA 16802 USA. [Harman, Chester E.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. RP Schwieterman, EW (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA.; Schwieterman, EW (reprint author), NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA USA.; Schwieterman, EW (reprint author), Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. EM eschwiet@uw.edu OI Harman, Chester/0000-0003-2281-1990; Schwieterman, Edward/0000-0002-2949-2163 FU NASA Astrobiology Institute's Virtual Planetary Laboratory Lead Team; NASA Astrobiology Institute [NNH12ZDA002C, NNA13AA93A] FX This work was supported by the NASA Astrobiology Institute's Virtual Planetary Laboratory Lead Team, funded through the NASA Astrobiology Institute under solicitation NNH12ZDA002C and Cooperative Agreement Number NNA13AA93A. This research used the advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system at the University of Washington. This work made use of the NASA Astrophysics Data System. We would like to thank the anonymous reviewer for helpful comments, which improved the manuscript. NR 48 TC 12 Z9 12 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2016 VL 819 IS 1 AR L13 DI 10.3847/2041-8205/819/1/L13 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF0QO UT WOS:000371044200013 ER PT J AU Taylor, SR Vallisneri, M Ellis, JA Mingarelli, CMF Lazio, TJW van Haasteren, R AF Taylor, S. R. Vallisneri, M. Ellis, J. A. Mingarelli, C. M. F. Lazio, T. J. W. van Haasteren, R. TI ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gravitational waves; methods: data analysis; pulsars: general ID BLACK-HOLE BINARIES; RADIATION; SIGNAL AB Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (similar to 10(-15) strain at f = 1 yr(-1)). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates, deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an similar to 80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years. C1 [Taylor, S. R.; Vallisneri, M.; Ellis, J. A.; Mingarelli, C. M. F.; Lazio, T. J. W.; van Haasteren, R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Taylor, S. R.; Vallisneri, M.; Ellis, J. A.; Mingarelli, C. M. F.; Lazio, T. J. W.; van Haasteren, R.] CALTECH, TAPIR Grp, MC 350-17, Pasadena, CA 91125 USA. [Mingarelli, C. M. F.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. RP Taylor, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Taylor, SR (reprint author), CALTECH, TAPIR Grp, MC 350-17, Pasadena, CA 91125 USA. EM Stephen.R.Taylor@jpl.nasa.gov OI Taylor, Stephen/0000-0003-0264-1453 FU NASA; JPL RTD program; NASA through Einstein Fellowship [PF4-150120, PF3-140116]; Marie Curie International Outgoing Fellowship within the European Union Seventh Framework Programme; National Science Foundation Physics Frontier Center [1430284, PHYS-1066293]; National Aeronautics and Space Administration FX It is our pleasure to thank Pablo Rosado, Alberto Sesana, Jonathan Gair, Lindley Lentati, Sarah Burke-Spolaor, Xavier Siemens, Maura McLaughlin, Joseph Romano, and Michael Kramer for very useful suggestions. We also thank the full NANOGrav collaboration for their comments and remarks. S.R.T. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. M.V. acknowledges support from the JPL RTD program. J.A.E. and R.v.H. acknowledge support by NASA through Einstein Fellowship grants PF4-150120 and PF3-140116, respectively. C.M.F.M. was supported by a Marie Curie International Outgoing Fellowship within the European Union Seventh Framework Programme. This work was supported in part by National Science Foundation Physics Frontier Center award No. 1430284 and by grant PHYS-1066293 and the hospitality of the Aspen Center for Physics. This research was performed at the Jet Propulsion Laboratory, under contract with the National Aeronautics and Space Administration. NR 30 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2016 VL 819 IS 1 AR L6 DI 10.3847/2041-8205/819/1/L6 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF0QO UT WOS:000371044200006 ER PT J AU Schiffmacher, EN Becker, JG Lorah, MM Voytek, MA AF Schiffmacher, Emily N. Becker, Jennifer G. Lorah, Michelle M. Voytek, Mary A. TI The effects of co-contaminants and native wetland sediments on the activity and dominant transformation mechanisms of a 1,1,2,2-tetrachloroethane (TeCA)-degrading enrichment culture SO CHEMOSPHERE LA English DT Article DE 1,1,2,2-Tetrachloroethane; Carbon tetrachloride; Tetrachloroethene; Contaminated wetlands; Dehalococcoides; Dehalobacter ID REDUCTIVE DECHLORINATION; CARBON-TETRACHLORIDE; VINYL-CHLORIDE; DEHALOCOCCOIDES-ETHENOGENES; CHLORINATED SOLVENTS; CIS-DICHLOROETHENE; CHLOROFORM; KINETICS; BIOTRANSFORMATION; DICHLOROMETHANE AB Bioremediation strategies, including bioaugmentation with chlorinated ethene-degrading enrichment cultures, have been successfully applied in the cleanup of subsurface environments contaminated with tetrachloroethene (PCE) and/or trichloroethene (TCE). However, these compounds are frequently found in the environment as components of mixtures that may also contain chlorinated ethanes and methanes. Under these conditions, the implementation of bioremediation may be complicated by inhibition effects, particularly when multiple dehalorespirers are present. We investigated the ability of the 1,1,2,2-tetrachloroethane (TeCA)-dechlorinating culture WBC-2 to biotransform TeCA alone, or a mixture of TeCA plus PCE and carbon tetrachloride (CT), in microcosms. The microcosms contained electron donors provided to biostimulate the added culture and sediment collected from a wetland where numerous "hotspots" of contamination with chlorinated solvent mixtures exist. The dominant TeCA biodegradation mechanism mediated by the WBC-2 culture in the microcosms was different in the presence of these wetland sediments than in the sediment-free enrichment culture or in previous WBC-2 bioaugmented microcosms and column tests conducted with wetland sediment collected at nearby sites. The co-contaminants and their daughter products also inhibited TeCA biodegradation by WBC-2. These results highlight the need to conduct biodegradability assays at new sites, particularly when multiple contaminants and dehalorespiring populations are present. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Schiffmacher, Emily N.; Becker, Jennifer G.] Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20742 USA. [Lorah, Michelle M.] US Geol Survey, MD DE DC Water Sci Ctr, 5522 Res Pk Dr, Catonsville, MD 21228 USA. [Voytek, Mary A.] US Geol Survey, Natl Ctr 430, Reston, VA 20192 USA. [Becker, Jennifer G.] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA. [Schiffmacher, Emily N.] US Army Corps Engineers, Baltimore, MD USA. [Voytek, Mary A.] NASA, Sci Mission Directorate, Washington, DC 20546 USA. RP Becker, JG (reprint author), Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA. EM emily.schiffmacher@gmail.com; jgbecker@mtu.edu; mmlorah@usgs.gov; mary.voytek-1@nasa.gov FU United States Geological Survey; U.S. Army Environmental Conservation and Restoration Division Aberdeen Proving Ground; Maryland Water Resources Research Center FX This work was supported, in part, through funding from the United States Geological Survey through a contract with the U.S. Army Environmental Conservation and Restoration Division Aberdeen Proving Ground, and the Maryland Water Resources Research Center, which is sponsored by the United States Geological Survey. Elizabeth J. P. Jones provided the WBC-2 culture and many helpful suggestions and insights throughout this study. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 34 TC 0 Z9 0 U1 3 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 2016 VL 147 BP 239 EP 247 DI 10.1016/j.chemosphere.2015.12.033 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA DE7SD UT WOS:000370836100031 PM 26766361 ER PT J AU Smerdon, JE Coats, S Ault, TR AF Smerdon, Jason E. Coats, Sloan Ault, Toby R. TI Model-dependent spatial skill in pseudoproxy experiments testing climate field reconstruction methods for the Common Era SO CLIMATE DYNAMICS LA English DT Article DE Climate field reconstruction; Pseudoproxy; Last millennium; Climate model; PMIP3; CMIP5 ID PROXY-BASED RECONSTRUCTIONS; PACIFIC SST VARIABILITY; NORTH-AMERICAN DROUGHT; LAST MILLENNIUM; METHODS STOCHASTICITY; EQUATORIAL PACIFIC; SURROGATE ENSEMBLE; PAST CLIMATE; TEMPERATURE VARIABILITY; STATISTICAL FRAMEWORK AB The spatial skill of four climate field reconstruction (CFR) methods is investigated using pseudoproxy experiments (PPEs) based on five last millennium and historical simulations from the Coupled and Paleo Model Intercomparison Projects Phases 5 and 3 (CMIP5/PMIP3) data archives. These simulations are used for the first time in a PPE context, the frameworks of which are constructed to test a recently assembled multiproxy network and multiple CFR techniques. The experiments confirm earlier findings demonstrating consistent methodological performance across the employed methods and spatially dependent reconstruction errors in all of the derived CFRs. Spectral biases in the reconstructed fields demonstrate that CFR methods can alone alter the ratio of spectral power at all locations in the field, independent of whether there are any spectral biases inherent in the underlying pseudoproxy series. The patterns of spectral biases are model dependent and indicate the potential for regions in the derived CFRs to be biased by changes in either low or high-frequency spectral power. CFR methods are also shown to alter the pattern of mean differences in the tropical Pacific during the Medieval Climate Anomaly and the Little Ice Age, with some model experiments indicating that CFR methodologies enhance the statistical likelihood of achieving larger mean differences between independent 300-year periods in the region. All of the characteristics of CFR performance are model dependent, indicating that CFR methods must be evaluated across multiple models and that conclusions from PPEs should be carefully connected to the spatial statistics of real-world climatic fields. C1 [Smerdon, Jason E.; Coats, Sloan] Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9 W,POB 1000, Palisades, NY 10964 USA. [Coats, Sloan] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Ault, Toby R.] Cornell Univ, Ithaca, NY USA. RP Smerdon, JE (reprint author), Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9 W,POB 1000, Palisades, NY 10964 USA. EM jsmerdon@ldeo.columbia.edu RI Smerdon, Jason/F-9952-2011 FU NOAA [NA10OAR4320137, NA11OAR4310166] FX We are grateful for the helpful comments from the reviewer of our manuscript. Supported in part by NOAA grants NA10OAR4320137 and NA11OAR4310166. Supplementary data can be accessed at http://www.ldeo.columbia.edu/similar to jsmerdon/2015_cli-dyn_smerdonetal_supplement.html. LDEO contribution #7903. NR 89 TC 5 Z9 5 U1 6 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD MAR PY 2016 VL 46 IS 5-6 BP 1921 EP 1942 DI 10.1007/s00382-015-2684-0 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF1AD UT WOS:000371069900032 ER PT J AU Kinkar, S Hennessy, M Ray, S AF Kinkar, Shishir Hennessy, Mark Ray, Steven TI An Ontology and Integration Framework for Smart Communities SO JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING LA English DT Article AB This paper describes our work concerning the definition of a neutral, abstract ontology, and framework that supports the vision and diverse contexts of a smart community. This framework is composed of a general, core ontology that supports what many are calling the Internet of Things (IoT), a scalable number of extension ontologies to describe various application perspectives, and a mapping methodology to relate external data and/or schemas to our ontology. Finally, we show why this ontology is scalable and generic enough to support a wide range of smart devices, systems, and people. C1 [Kinkar, Shishir] Carnegie Mellon Univ, Dept Elect & Comp Engn, NASA Ames Res Pk,Bldg 23 MS 23-11,POB 1, Moffett Field, CA 94035 USA. [Hennessy, Mark] Carnegie Mellon Univ, Dept Elect & Comp Engn, Freischuetzstr 106,2 OG, D-81927 Munich, Germany. [Ray, Steven] Carnegie Mellon Univ, Silicon Valley Campus,NASA Ames Res Pk,Bldg 23-11, Moffett Field, CA 94035 USA. RP Ray, S (reprint author), Carnegie Mellon Univ, Silicon Valley Campus,NASA Ames Res Pk,Bldg 23-11, Moffett Field, CA 94035 USA. EM shishir.kinkar@sv.cmu.edu; mhennessy116@gmail.com; steve.ray@sv.cmu.edu FU U.S. National Institute of Standards and Technology [60NANB11D144] FX The work reported on in this paper was generously supported by Grant No. 60NANB11D144 from the U.S. National Institute of Standards and Technology. NR 35 TC 0 Z9 0 U1 7 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1530-9827 EI 1944-7078 J9 J COMPUT INF SCI ENG JI J. Comput. Inf. Sci. Eng. PD MAR PY 2016 VL 16 IS 1 AR 011003 DI 10.1115/1.4032218 PG 7 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing SC Computer Science; Engineering GA DF2BM UT WOS:000371144300003 ER PT J AU Tompson, SR AF Tompson, Sara R. TI The Road Taken: The History and FutUre of America's Infrastructure. SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD MAR 1 PY 2016 VL 141 IS 4 BP 109 EP 110 PG 2 WC Information Science & Library Science SC Information Science & Library Science GA DF1NB UT WOS:000371105400160 ER PT J AU Ramachandran, R Bugbee, K Tilmes, C Privette, AP AF Ramachandran, Rahul Bugbee, Kaylin Tilmes, Curt Privette, Ana Pinheiro TI Climate data initiative: A geocuration effort to support climate resilience SO COMPUTERS & GEOSCIENCES LA English DT Article DE Geocuration; Climate data initiative; Climate change; Geoinformatics; Metadata; Virtual collections AB Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. In this paper, we introduce the concept of geocuration and define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful collection. We present the Climate Data Initiative (CDI) project as a prototypical example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. We describe the geocuration process used in the CDI project, lessons learned, and suggestions to improve similar geocuration efforts in the future. Published by Elsevier Ltd. C1 [Ramachandran, Rahul] NASA, MSFC, Huntsville, AL 35808 USA. [Bugbee, Kaylin] Univ Alabama, Huntsville, AL USA. [Tilmes, Curt; Privette, Ana Pinheiro] NASA, GSFC, Huntsville, AL USA. RP Ramachandran, R (reprint author), NASA, MSFC, Huntsville, AL 35808 USA. EM rahul.ramachandran@nasa.gov RI kiaie, robabeh/I-2157-2016; kiaie, fatemeh/I-6083-2016 OI kiaie, robabeh/0000-0001-5251-3201; NR 17 TC 0 Z9 0 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD MAR PY 2016 VL 88 BP 22 EP 29 DI 10.1016/j.cageo.2015.12.002 PG 8 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA DE2KM UT WOS:000370456200003 ER PT J AU Williford, KH Ushikubo, T Lepot, K Kitajima, K Hallmann, C Spicuzza, MJ Kozdon, R Eigenbrode, JL Summons, RE Valley, JW AF Williford, K. H. Ushikubo, T. Lepot, K. Kitajima, K. Hallmann, C. Spicuzza, M. J. Kozdon, R. Eigenbrode, J. L. Summons, R. E. Valley, J. W. TI Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates SO GEOBIOLOGY LA English DT Article ID MASS-INDEPENDENT FRACTIONATION; ARCHEAN MOLECULAR FOSSILS; MOUNT BRUCE SUPERGROUP; WESTERN-AUSTRALIA; SULFATE REDUCTION; MULTIPLE-SULFUR; HAMERSLEY BASIN; ORGANIC-MATTER; ATMOSPHERIC OXYGEN; JEERINAH FORMATION AB An approach to coordinated, spatially resolved, insitu carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of C-13, S-34, S-33, and S-36 known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS C-13 measurement of organic matter is identified. Small (2-3m) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-m domains of kerogen in a single similar to 0.5cm(3) sample of the similar to 2.7Ga Tumbiana Formation have C-13=-52.3 +/- 0.1 parts per thousand and -34.4 +/- 0.1 parts per thousand, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the similar to 2.6Ga Jeerinah Formation and the similar to 2.5Ga Mount McRae Shale is systematically C-13-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher S-33 and more extreme spatial gradients in S-33 and S-36 than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of S-34, S-33, and S-36, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation (S-MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections between methane and sulfur metabolism affected the production and preservation of S-MIF during the first half of the planet's history. C1 [Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Spicuzza, M. J.; Kozdon, R.; Valley, J. W.] Univ Wisconsin, Dept Geosci, Madison, WI USA. [Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Spicuzza, M. J.; Kozdon, R.; Summons, R. E.; Valley, J. W.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA. [Williford, K. H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hallmann, C.; Summons, R. E.] MIT, Earth Atmospher & Planetary Sci Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Eigenbrode, J. L.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD USA. [Ushikubo, T.] JAMSTEC, Kochi Inst Core Sample Res, Nankoku, Kochi, Japan. [Lepot, K.] Univ Lille, CNRS UMR8187, Lab Oceanol & Geosci, F-59655 Villeneuve Dascq, France. [Hallmann, C.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Kozdon, R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. RP Williford, KH (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI USA.; Williford, KH (reprint author), Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA.; Williford, KH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM kenneth.williford@jpl.nasa.gov RI Kozdon, Reinhard/J-9468-2014; Lepot, Kevin/C-7072-2014 OI Kozdon, Reinhard/0000-0001-6347-456X; Lepot, Kevin/0000-0003-0556-0405 FU National Aeronautics and Space Administration Astrobiology Institute (NAI); Agouron Institute; NASA Astrobiology Institute; Simons Foundation Origins of Life Collaboration; National Aeronautics and Space Administration; [NSF-EAR-1053466]; [NSF-EAR-1355590] FX We acknowledge Noriko Kita, Jim Kern, John Fournelle, Brian Hess, and H.B. Palomo for their essential contributions to this work. Helpful comments by the editors and three anonymous reviewers improved the quality of this manuscript. Major funding for this study came from the National Aeronautics and Space Administration Astrobiology Institute (NAI). WiscSIMS is partly supported by NSF-EAR-1053466, -1355590. Work at MIT was supported by the Agouron Institute, the NASA Astrobiology Institute and the Simons Foundation Origins of Life Collaboration. Part of this research was done at the Jet Propulsion Laboratory, California Institute of Technology, under a grant from the National Aeronautics and Space Administration. KHW and RES serve on the editorial board of Geobiology. NR 94 TC 3 Z9 3 U1 9 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 EI 1472-4669 J9 GEOBIOLOGY JI Geobiology PD MAR PY 2016 VL 14 IS 2 BP 105 EP 128 DI 10.1111/gbi.12163 PG 24 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA DD8MU UT WOS:000370181800001 PM 26498593 ER PT J AU Shi, M Fisher, JB Brzostek, ER Phillips, RP AF Shi, Mingjie Fisher, Joshua B. Brzostek, Edward R. Phillips, Richard P. TI Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in theCommunity Land Model SO GLOBAL CHANGE BIOLOGY LA English DT Article DE carbon cost; Community Land Model; Fixation and Uptake of Nitrogen; mycorrhizal fungi; nitrogen uptake; net primary production ID DYNAMIC VEGETATION MODEL; TERRESTRIAL BIOSPHERE; COMMUNITY LAND; SOIL CARBON; INTERCOMPARISON PROJECT; NUTRIENT AVAILABILITY; FOREST; CLIMATE; LIMITATION; FIXATION AB Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots,N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4Pg C yr(-1) to acquire 1.0 Pg Nyr(-1), and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for similar to 66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2, and warming temperatures) may impact the land C sink. C1 [Shi, Mingjie; Fisher, Joshua B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Shi, Mingjie; Fisher, Joshua B.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Brzostek, Edward R.] W Virginia Univ, Dept Biol, 53 Campus Dr, Morgantown, WV 26506 USA. [Phillips, Richard P.] Indiana Univ, Dept Biol, 702 N Walnut Grove Ave, Bloomington, IN 47405 USA. RP Fisher, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joshua.b.fisher@jpl.nasa.gov OI Fisher, Joshua/0000-0003-4734-9085 FU US Department of Energy Office of Biological and Environmental Research Terrestrial Ecosystem Science Program; US National Science Foundation Ecosystem Science Program FX Funding was provided by the US Department of Energy Office of Biological and Environmental Research Terrestrial Ecosystem Science Program; and the US National Science Foundation Ecosystem Science Program. The computations were performed at the Texas Advanced Computing Center and at NASA Ames Research Center; we acknowledge Dr. Zong-Liang Yang and Dr. Junjie Liu for providing the computational resources. The authors appreciate valuable suggestions from David Schimel, Rosie Fisher, William Wieder, Sam Levis, Jinyun Tang, and Qing Zhu. The authors also want to acknowledge the anonymous reviewers for providing the valuable comments. JBF and MS carried out the research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and at the Joint Institute for Regional Earth System Science and Engineering, University of California at Los Angeles. NR 76 TC 4 Z9 4 U1 14 U2 71 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD MAR PY 2016 VL 22 IS 3 BP 1299 EP 1314 DI 10.1111/gcb.13131 PG 16 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DE2XN UT WOS:000370491400028 PM 26473512 ER PT J AU Tweddle, BE Setterfield, TP Saenz-Otero, A Miller, DW AF Tweddle, Brent E. Setterfield, Timothy P. Saenz-Otero, Alvar Miller, David W. TI An Open Research Facility for Vision-Based Navigation Onboard the International Space Station SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID DOCKING AB This paper describes the VERTIGO Goggles, a hardware upgrade to the SPHERES satellites that enables vision-based navigation research in the 6 degree-of-freedom, microgravity environment of the International Space Station (ISS). The Goggles include stereo cameras, an embedded x86 computer, a high-speed wireless communications system, and the associated electromechanical and software systems. The Goggles were designed to be a modular, expandable, and upgradable open research test bed that have been used for a variety of other experiments by external researchers. In February 2013, the Goggles successfully completed a hardware checkout on the ISS and was used for initial vision-based navigation research. This checkout included a successful camera calibration by an astronaut onboard the ISS. This paper describes the requirements, design, and operation of this test bed as well as the experimental results of its first checkout operations. C1 [Tweddle, Brent E.; Setterfield, Timothy P.; Saenz-Otero, Alvar; Miller, David W.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. RP Tweddle, BE (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM tweddle@alum.mit.edu; tsetterf@mit.edu; alvarso@mit.edu; millerd@mit.edu FU DARPA; NASA; Air Force Space Test Program; NASA Ames; Defense Advanced Research Projects Agency's Integrated Research Experiments (InSPIRE) program [NNH11CC25C] FX The authors would also like to thank DARPA and NASA for their funding and support of this research, and the VERTIGO team at Aurora Flight Sciences for their work on the Goggles, including our support from the Air Force Space Test Program and NASA Ames. This research was funded by the Defense Advanced Research Projects Agency's Integrated Research Experiments (InSPIRE) program under contract NNH11CC25C. NR 39 TC 1 Z9 1 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAR PY 2016 VL 33 IS 2 SI SI BP 157 EP 186 DI 10.1002/rob.21622 PG 30 WC Robotics SC Robotics GA DE4ZV UT WOS:000370640500002 ER PT J AU Altinok, A Thompson, DR Bornstein, B Chien, SA Doubleday, J Bellardo, J AF Altinok, Alphan Thompson, David R. Bornstein, Benjamin Chien, Steve A. Doubleday, Joshua Bellardo, John TI Real-Time Orbital Image Analysis Using Decision Forests, with a Deployment Onboard the IPEX Spacecraft SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID AUTOMATIC CLOUD DETECTION; HYSPIRI MISSION; COVER; MODIS; SKY; ALGORITHM; REGIONS; OCEAN; EO-1 AB Automatic cloud recognition promises significant improvements in Earth science remote sensing. At any time, more than half of Earth's surface is covered by clouds, obscuring images and atmospheric measurements. This is particularly problematic for CubeSats, a new generation of small, low-orbiting spacecraft with very limited communications bandwidth. Such spacecraft can use image analysis to autonomously select clear scenes for prioritized downlink. More agile spacecraft can also benefit from cloud screening by retargeting observations to cloud-free areas. This could significantly improve the science yield of instruments such as the Orbiting Carbon Observatory 3 mission. However, most existing cloud detection algorithms are not suitable for these applications, because they require calibrated and georectified spectral data, which is not typically available onboard. Here, we describe a statistical machine-learning method for real-time autonomous scene interpretation using a visible camera with no radiometric calibration. A random forest classifies cloud and clear pixels based on local patterns of image texture. We report on experimental evaluation of images from the International Space Station (ISS) and present results from a deployment onboard the IPEX spacecraft. This demonstrates actual execution in flight and provides some preliminary lessons learned about operational use. It is a rare example of a machine-learning system deployed to an autonomous spacecraft. To our knowledge, it is also the first instance of significant artificial intelligence deployed on board a CubeSat and the first ever deployment of visible image-based cloud screening onboard any operational spacecraft. C1 [Altinok, Alphan; Thompson, David R.; Bornstein, Benjamin; Chien, Steve A.; Doubleday, Joshua] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Bellardo, John] Calif Polytech State Univ San Luis Obispo, Dept Comp Sci, San Luis Obispo, CA 93407 USA. RP Altinok, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. EM alphan.altinok@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); NASA's Earth Science Technology Office; NASA Astrobiology Science and Technology Instrument Development Program [NNH10ZDA001N-ASTID] FX Random forest code similar to the ground version of the classifier is now available online (Thompson et al., 2014b). Portions of this work were performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The IPEX project was funded by NASA's Earth Science Technology Office. The OCO-3 Project is part of the Earth System Science Pathfinder (ESSP) Program directed by the program director of the NASA Earth Science Division (ESD). Contributors to the TextureCam codebase include Dmitriy Bekker, Brina Bue, Daniel Howarth, Kevin Ortega, and Greydon Foil. The TextureCam project is supported by the NASA Astrobiology Science and Technology Instrument Development Program (NNH10ZDA001N-ASTID). We thank Susan Runco and the HDEV team for their help acquiring and using this imagery. NR 48 TC 0 Z9 0 U1 2 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAR PY 2016 VL 33 IS 2 SI SI BP 187 EP 204 DI 10.1002/rob.21627 PG 18 WC Robotics SC Robotics GA DE4ZV UT WOS:000370640500003 ER PT J AU Righter, K Danielson, LR Pando, KM Shofner, GA Sutton, SR Newville, M Lee, C AF Righter, K. Danielson, L. R. Pando, K. M. Shofner, G. A. Sutton, S. R. Newville, M. Lee, C. -T. TI Valence and metal/silicate partitioning of Mo: Implications for conditions of Earth accretion and core formation SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE siderophile; core formation; mantle; differentiation; accretion; partitioning ID SILICATE MELT COMPOSITION; TERRESTRIAL MAGMA OCEAN; SIDEROPHILE ELEMENTS; OXYGEN FUGACITY; HIGH-PRESSURE; OXIDATION-STATE; STRUCTURAL ENVIRONMENTS; REDOX SYSTEMATICS; METAL; TEMPERATURE AB To better understand and predict the partition coefficient of Mo at the conditions of the deep interior of Earth and other terrestrial planets or bodies, we have undertaken new measurements of the valence and partitioning of Mo. X-ray absorption near edge structure (XANES) K-edge spectra for Mo have been measured in a series of Fe-bearing glasses produced at 1 bar and higher PT conditions. High pressure experiments have been carried out up to 19 GPa in order to better understand the effect of pressure on Mo partitioning. And, finally, a series of experiments at very low fO(2) conditions and high Si content metallic liquids has been carried out to constrain the effect of Si on the partitioning of Mo between metallic liquids and silicate melt. The valence measurements demonstrate that Mo undergoes a transition from 4+ to 6+ near IW-1, in general agreement with previous 1 bar studies on FeO-free silicate melts. High pressure experiments demonstrate a modest pressure dependence of D(Mo) metal/silicate and, combined with previous results, show a significant decrease with pressure that must be quantified in any predictive expression. Finally, the effect of dissolved Si in Fe-rich metallic liquid is to decrease D(Mo) significantly, as suggested by previous work in metallurgical systems. The effect of pressure, temperature, oxygen fugacity, metallic liquid composition, and silicate melt composition can be quantified by using multiple linear regression of available experimental data for Mo. Our XANES results show that Mo will be 4+ at conditions of core formation, so only experiments carried out at fO(2) of IW-1 and lower were used in the regressions. Application of predictive expressions to Earth accretion shows that D(Mo) decreases to values consistent with an equilibrium scenario for early Earth core-mantle. The Mo content of the primitive upper mantle (PUM) can be attained by metal-silicate equilibrium involving S-, C-, and Si-bearing metallic liquid, and peridotite silicate melt along the peridotite liquidus near 45 GPa and 3600 degrees C, late in the accretion process. This conclusion is insensitive to late giant impacts unless the degree of equilibration is very low (<5%). Published by Elsevier B.V. C1 [Righter, K.] NASA, Lyndon B Johnson Space Ctr, Mailcode X12, Houston, TX 77058 USA. [Danielson, L. R.; Pando, K. M.] NASA, Lyndon B Johnson Space Ctr, JETS, Houston, TX 77058 USA. [Shofner, G. A.] Towson Univ, Dept Phys Astron & Geosci, Smith Hall, Towson, MD 21252 USA. [Sutton, S. R.; Newville, M.] Univ Chicago, Ctr Adv Radiat Sources, 5640 S Ellis, Chicago, IL 60637 USA. [Sutton, S. R.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis, Chicago, IL 60637 USA. [Lee, C. -T.] Rice Univ, Dept Earth Sci, MS-126, Houston, TX 77005 USA. RP Righter, K (reprint author), NASA, Lyndon B Johnson Space Ctr, Mailcode X12, Houston, TX 77058 USA. EM kevin.righter-1@nasa.gov OI Righter, Kevin/0000-0002-6075-7908 FU National Science Foundation - Earth Sciences [EAR-1128799]; Department of Energy - GeoSciences [DE-FG02-94ER14466]; U.S. Department of Energy (DOE) Office of Science User Facility [DE-AC02-06CH11357]; NASA Cosmochemistry Program; NSF FX Roger Harrington provided beautiful thin sections of several experimental run products. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and Department of Energy - GeoSciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Research was also supported by an RTOP to KR from the NASA Cosmochemistry Program, and by an NSF grant to Andrew J. Campbell. We thank Nicolas Dauphas and 3 anonymous reviewers for comments that helped improve the manuscript. NR 76 TC 3 Z9 3 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAR 1 PY 2016 VL 437 BP 89 EP 100 DI 10.1016/j.epsl.2015.12.025 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DD7GG UT WOS:000370091100010 ER PT J AU Goertler, PAL Simenstad, CA Bottom, DL Hinton, S Stamatiou, L AF Goertler, Pascale A. L. Simenstad, Charles A. Bottom, Daniel L. Hinton, Susan Stamatiou, Lia TI Estuarine Habitat and Demographic Factors Affect Juvenile Chinook (Oncorhynchus tshawytscha) Growth Variability in a Large Freshwater Tidal Estuary SO ESTUARIES AND COASTS LA English DT Article DE Freshwater tidal estuary; Juvenile Chinook salmon; Growth; Diet; Genetic stock of origin ID COLUMBIA RIVER ESTUARY; BRITISH-COLUMBIA; FOOD WEBS; OTOLITH MICROSTRUCTURE; MARINE SURVIVAL; LIFE-HISTORY; PUGET-SOUND; SALMON; FISH; POPULATION AB Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along similar to 130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but similar to 4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries. C1 [Goertler, Pascale A. L.; Simenstad, Charles A.; Stamatiou, Lia] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Bottom, Daniel L.; Hinton, Susan] NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR USA. RP Goertler, PAL (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. EM pascale.goertler@gmail.com FU US Army Corps of Engineers [EST-P-10-1, W66QKZ20272260]; University of Washington School of Aquatic and Fishery and Sciences (SAFS); Anchor QEA; National Oceanic and Atmospheric Administration FX We would like to thank our funding sources, the US Army Corps of Engineers (Administrative Code EST-P-10-1, MIPR number W66QKZ20272260), University of Washington School of Aquatic and Fishery and Sciences (SAFS), Anchor QEA, and National Oceanic and Atmospheric Administration. We would also like to thank the members of the Columbia River estuary project: Antonio Baptista, Mojgan Rostaminia, Rich Zabel, Mark Scheuerell, Curtis Roegner, Paul Chittaro, Tom Cooney, Kurt Fresh, David Teel, Lance Campbell, George McCabe, Regan McNatt, and Mary Rameriez. We are also appreciative of the many volunteers who have participated in field sampling: Jessica Randall, Meegan Coran, Katria Van Raay, Sterling Hines-Elzinga, and Michael Beakes. We would also like to thank Daniel Schindler, Kerry Naish, and Tim Essington for their time and intellectual contributions, and Jeffery Cordell and Beth Armbrust for their assistance with Table 3. NR 98 TC 2 Z9 2 U1 9 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD MAR PY 2016 VL 39 IS 2 BP 542 EP 559 DI 10.1007/s12237-015-0002-z PG 18 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA DC9GA UT WOS:000369527900017 ER PT J AU Dillon, RL Tinsley, CH Madsen, PM Rogers, EW AF Dillon, Robin L. Tinsley, Catherine H. Madsen, Peter M. Rogers, Edward W. TI Organizational Correctives for Improving Recognition of Near-Miss Events SO JOURNAL OF MANAGEMENT LA English DT Article DE decisions under risk; uncertainty; individual decision making; decision making ID SAFETY CLIMATE; OUTCOME BIAS; JUDGMENT; DECISION; ERRORS; COMMUNICATION; INFORMATION; PERFORMANCE; TECHNOLOGY; ATTENTION AB Despite decades of research on organizational disasters, such events remain too common. Scholars across a wide range of disciplines agree that one of the most viable approaches to preventing such catastrophes is to observe near-misses and use them to identify and eliminate problems before they produce large failures. Unfortunately, these important warning signals are too often ignored because they are perceived as successes rather than near-misses (or near-failures). In this article, we explore the effect of a climate for safety on improving near-miss recognition by observers, hypothesizing that safety climate increases the level of attention that observers pay to the underlying processes that generate an apparently successful outcome. Using a database of anomaly reports for unmanned NASA missions, we show that organizational safety climate and project stakes increase reporting rates of near-misses, both independently and interactively. In follow-up laboratory experiments, we confirm the independence of these effects to improve the likelihood that people differentiate near-miss outcomes from successes. Results suggest organizations can increase the recognition of near-misses with organizational messages that emphasize a positive safety climate. C1 [Dillon, Robin L.; Tinsley, Catherine H.] Georgetown Univ, Washington, DC 20057 USA. [Madsen, Peter M.] Brigham Young Univ, Provo, UT 84602 USA. [Rogers, Edward W.] NASA, Goddard Space Flight Ctr, Washington, DC USA. RP Dillon, RL (reprint author), Georgetown Univ, McDonough Sch Business, Washington, DC 20057 USA. EM rld9@georgetown.edu FU NASA/USRA Center for Program/Project Management Research [05115-C1P1-01]; National Science Foundation [CMS-0555805]; University of Southern California's Center for Risk and Economic Analysis of Terrorism Events [122947] FX This article was accepted under the editorship of Deborah E. Rupp. This study has been funded in part by the NASA/USRA Center for Program/Project Management Research (Sub-agreement 05115-C1P1-01), the National Science Foundation (CMS-0555805), and the University of Southern California's Center for Risk and Economic Analysis of Terrorism Events (Sub-award 122947), whose support is gratefully acknowledged. We would also like to thank the anonymous reviewers and associate editor for providing deep and substantive comments that made this article much better. NR 58 TC 0 Z9 0 U1 10 U2 22 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0149-2063 EI 1557-1211 J9 J MANAGE JI J. Manag. PD MAR PY 2016 VL 42 IS 3 BP 671 EP 697 DI 10.1177/0149206313498905 PG 27 WC Business; Psychology, Applied; Management SC Business & Economics; Psychology GA DD6VL UT WOS:000370062500005 ER PT J AU Swanson, RC Langer, S AF Swanson, R. C. Langer, S. TI Steady-state laminar flow solutions for NACA 0012 airfoil SO COMPUTERS & FLUIDS LA English DT Article DE Navier-Stokes; Steady state; Laminar; Runge-Kutta; Preconditioner ID NAVIER-STOKES EQUATIONS; EULER EQUATIONS; CONVERGENCE ACCELERATION; DIFFERENCE; SCHEMES AB In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 x 10(6) grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Swanson, R. C.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. [Langer, S.] Deutsch Zentrum Luft & Raumfahrt, DLR, Lilienthalpl 7, D-38108 Braunschweig, Germany. RP Swanson, RC (reprint author), NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. EM r.c.swanson10@gmail.com; Stefan.langer@dir.de NR 43 TC 2 Z9 2 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD MAR 1 PY 2016 VL 126 BP 102 EP 128 DI 10.1016/j.compfluid.2015.11.009 PG 27 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA DC8JM UT WOS:000369465700008 ER PT J AU Manne, J Webster, CR AF Manne, Jagadeeshwari Webster, Christopher R. TI Determination of spectral parameters for lines targeted by the Tunable Laser Spectrometer (TLS) on the Mars Curiosity rover SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Tunable diode laser spectroscopy; Self-broadening; Helium broadening; N-2 broadening ID BROADENING COEFFICIENTS; SPECTROSCOPIC DATABASE; MARTIAN ATMOSPHERE; RATIO MEASUREMENTS; ISOTOPE RATIOS; MU-M; CM(-1); POSITIONS; WATER; H2O AB Molecular line parameters of line strengths, self- and foreign-broadening by nitrogen, carbon dioxide and helium gas have been experimentally determined for infrared ro-vibrational spectral lines of water and carbon dioxide at 2.78 mu m targeted by the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover. Good agreement is found by comparison with the line parameters reported in the HITRAN-2012 database. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Manne, Jagadeeshwari; Webster, Christopher R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Manne, J (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM esha.manne@jpl.nasa.gov FU NASA FX The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA J. Manne also acknowledges support from NASA in the form of a postdoctoral fellowship. (C)2015 California Institute of Technology. Government sponsorship acknowledged. NR 42 TC 0 Z9 0 U1 6 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2016 VL 171 BP 28 EP 38 DI 10.1016/j.jqsrt.2015.11.019 PG 11 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DC8KB UT WOS:000369467200004 ER PT J AU Ham, SH Kato, S Rase, FG AF Ham, Seung-Hee Kato, Seiji Rase, Fred G. TI Correction of ocean hemispherical spectral reflectivity for longwave irradiance computations SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Longwave; Irradiance; Directional reflectivity; Hemispherical reflectivity; Reflectivity correction factor ID MODEL SEA-SURFACE; MULTIPLE-SCATTERING; RADIATIVE-TRANSFER; OPTICAL-CONSTANTS; EMISSIVITY; WATER; APPROXIMATION; REFLECTANCE; RECIPROCITY; MEDIA AB This study demonstrates that upward infrared irradiances have negative modeling biases when the ocean hemispherical spectral reflectivity is used. The biases increase with increasing air temperature and with decreasing water vapor amount. Spectral biases in the surface upward longwave irradiance from 4 mu m to 80 mu m are between -0.4 and 0 W m(-2) mu m(-1), while longwave broadband biases are between -2 and -1 W m(-2). The negative biases stem from surface-reflected component because an irradiance radiative transfer model ignores the correlation between the downward radiance and directional reflectivity. Therefore, a positive correction factor to the hemispherical spectral reflectivity for the irradiance radiative transfer model is needed. A simple parameterization using an anisotropic factor for downward radiances is developed to correct reflectivity for various atmospheric conditions. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ham, Seung-Hee; Rase, Fred G.] Sci Syst & Applicat Inc SSAI, Hampton, VA USA. [Ham, Seung-Hee; Kato, Seiji] NASA, Langley Res Ctr, 100 NASA Rd,Mailstop 420, Hampton, VA 23665 USA. RP Ham, SH (reprint author), NASA, Langley Res Ctr, 100 NASA Rd,Mailstop 420, Hampton, VA 23665 USA. EM seung-hee.ham@nasa.gov FU Clouds and the Earth's Radiant Energy System (CERES); NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) project FX This work is supported by the Clouds and the Earth's Radiant Energy System (CERES), and NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) project. NR 25 TC 1 Z9 1 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2016 VL 171 BP 57 EP 65 DI 10.1016/j.jqsrt.2015.12.003 PG 9 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DC8KB UT WOS:000369467200007 ER PT J AU Tavana, M Liu, WR Elmore, P Petry, FE Bourgeois, BS AF Tavana, Madjid Liu, Weiru Elmore, Paul Petry, Frederick E. Bourgeois, Brian S. TI A practical taxonomy of methods and literature for managing uncertain spatial data in geographic information systems SO MEASUREMENT LA English DT Article DE Uncertainty; Spatial data; Geographic information systems; Taxonomy; Literature review ID BELIEF FUNCTIONS; FUZZY-SETS; COMBINATION; FRAMEWORK AB Perfect information is seldom available to man or machines due to uncertainties inherent in real world problems. Uncertainties in geographic information systems (GIS) stem from either vague/ambiguous or imprecise/inaccurate/incomplete information and it is necessary for GIS to develop tools and techniques to manage these uncertainties. There is a widespread agreement in the GIS community that although GIS has the potential to support a wide range of spatial data analysis problems, this potential is often hindered by the lack of consistency and uniformity. Uncertainties come in many shapes and forms, and processing uncertain spatial data requires a practical taxonomy to aid decision makers in choosing the most suitable data modeling and analysis method. In this paper, we: (1) review important developments in handling uncertainties when working with spatial data and GIS applications; (2) propose a taxonomy of models for dealing with uncertainties in GIS; and (3) identify current challenges and future research directions in spatial data analysis and GIS for managing uncertainties. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Tavana, Madjid] La Salle Univ, Distinguished Chair Business Analyt, Business Syst & Analyt Dept, Philadelphia, PA 19141 USA. [Tavana, Madjid] Univ Paderborn, Fac Business Adm & Econ, Business Informat Syst Dept, D-33098 Paderborn, Germany. [Liu, Weiru] Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Belfast, Antrim, North Ireland. [Elmore, Paul; Petry, Frederick E.; Bourgeois, Brian S.] Stennis Space Ctr, Naval Res Lab, Geospatial Sci & Technol Branch, Stennis Space Ctr, MS USA. RP Tavana, M (reprint author), La Salle Univ, Distinguished Chair Business Analyt, Business Syst & Analyt Dept, Philadelphia, PA 19141 USA. EM tavana@lasalle.edu; w.liu@qub.ac.uk; paul.elmore@nrlssc.navy.mil; fred.petry@nrlssc.navy.mil; bsb2@nrlssc.navy.mil FU U.S. Naval Research Laboratory [N000141310505] FX This research is supported in part by the U.S. Naval Research Laboratory grant number N000141310505. The authors would like to thank the anonymous reviewers and the editor for their insightful comments and suggestions. NR 51 TC 3 Z9 3 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-2241 EI 1873-412X J9 MEASUREMENT JI Measurement PD MAR PY 2016 VL 81 BP 123 EP 162 DI 10.1016/j.measurement.2015.12.007 PG 40 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DB1IP UT WOS:000368262100013 ER PT J AU Rubincam, DP AF Rubincam, David Parry TI Tidal friction in the Earth-Moon system and Laplace planes: Darwin redux SO ICARUS LA English DT Article DE Tides; solid body Moon Earth Satellites; dynamics Rotational dynamics ID LUNAR ORBIT; CLIMATE FRICTION; EVOLUTION; DISSIPATION; OBLIQUITY; SATELLITE; ORIGIN; MANTLE; OCEAN; CORE AB The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than similar to 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2 degrees. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages. C1 [Rubincam, David Parry] NASA, Planetary Geodynam Lab, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rubincam, DP (reprint author), NASA, Planetary Geodynam Lab, Solar Syst Explorat Div, Goddard Space Flight Ctr, Code 698,Bldg 34,Room S280, Greenbelt, MD 20771 USA. EM David.P.Rubincam@nasa.gov NR 49 TC 2 Z9 2 U1 2 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 24 EP 43 DI 10.1016/j.icarus.2015.10.024 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300003 ER PT J AU Clancy, RT Wolff, MJ Lefevre, F Cantor, BA Malin, MC Smith, MD AF Clancy, R. Todd Wolff, Michael J. Lefevre, Franck Cantor, Bruce A. Malin, Michael C. Smith, Michael D. TI Daily global mapping of Mars ozone column abundances with MARCI UV band imaging SO ICARUS LA English DT Article DE Mars; atmosphere Photochemistry Ultraviolet observations Atmospheres; chemistry Mars ID ULTRAVIOLET SPECTROMETER EXPERIMENT; GENERAL-CIRCULATION MODEL; TES NADIR DATA; MARTIAN ATMOSPHERE; WATER-VAPOR; MGS TES; NORTHERN-HEMISPHERE; INTERANNUAL VARIABILITY; SEASONAL-VARIATIONS; HYDROGEN-PEROXIDE AB Since November of 2006, The Mars Color Imager (MARCI) onboard the Mars Reconnaissance Orbiter (MRO) has obtained multiple-filter daily global images of Mars centered upon a local time (LT) of 3 pm. Ultraviolet imaging bands placed within (260 nm) and longward (320 nm) of Hartley band (240-300 nm) ozone (O-3) absorption support retrievals of atmospheric ozone columns, with detection limits (similar to 1 mu m-atm) appropriate to mapping elevated O-3 abundances at low latitudes around Mars aphelion, and over mid-to-high latitudes during fall/winter/spring seasons. MARCI O-3 maps for these regions reveal the detailed spatial (similar to 1 degrees lat/long, for 8 x 8 pixel binned resolution) and temporal (daily, with substantial LT coverage at pole) behaviors of water vapor saturation conditions that force large variations in water vapor photolysis products (HOx-OH, HO2, and H) responsible for the catalytic destruction of O-3 in the Mars atmosphere. A detailed description of the MARCI O-3 data set, including measurement and retrieval characteristics, is provided in conjunction with comparisons to Mars Express SPICAM ozone measurements (Perrier, S. et al. [2006].J. Geophys. Res. (Planets) 111) and LMD GCM simulated O-3 abundances (Lefevre, F. 12004].J. Geophys. Res. (Planets) 109). Presented aspects of the MARCI ozone mapping data set include aphelion increases in low latitude O-3, dynamically evolving high latitude O-3 maxima associated with planetary waves and weather fronts during northern early spring, and distinctive winter/spring O-3 and CO increases within the Hellas Basin associated with transport of condensationenhanced south polar air mass. Comparisons of coincident MARC! measurements and LMD simulations for ice cloud and O-3 columns are considered in the context of potential heterogeneous photochemical processes (Lefevre, F. [2008]. Nature 454,971-975), which are not strongly evidenced in the MARCI observations. Modest interannual variations are exhibited, most notably a 20% reduction in aphelion low latitude O-3 columns following the 2007 perihelic global dust storm. (c) 2015 Elsevier Inc. All rights reserved. C1 [Clancy, R. Todd; Wolff, Michael J.] Space Sci Inst, Boulder, CO 80301 USA. [Lefevre, Franck] Lab Atmospheres Milieux Observat Spatiales, Paris, France. [Cantor, Bruce A.; Malin, Michael C.] Malin Space Sci Syst, San Diego, CA 92191 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Clancy, RT (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205,UCB 564, Boulder, CO 80301 USA. EM clancy@spacescience.org FU NASA MRO mission [06-0152] FX We are indebted to the excellent MRO and MARCI operations staff for the collection and processing of UV imaging observations presented here. Contract support for this work was provided by the NASA MRO mission (under MSSS sub-contract 06-0152). NR 74 TC 1 Z9 1 U1 4 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 112 EP 133 DI 10.1016/j.icarus.2015.11.016 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300009 ER PT J AU Dello Russo, N Vervack, RJ Kawakita, H Cochran, A McKay, AJ Harris, WM Weaver, HA Lisse, CM DiSanti, MA Kobayashi, H Biver, N Bockeleee-Morvan, D Crovisier, J Opitom, C Jehin, E AF Dello Russo, N. Vervack, R. J., Jr. Kawakita, H. Cochran, A. McKay, A. J. Harris, W. M. Weaver, H. A. Lisse, C. M. DiSanti, M. A. Kobayashi, H. Biver, N. Bockelee-Morvan, D. Crovisier, J. Opitom, C. Jehin, E. TI The compositional evolution of C/2012 S1 (ISON) from ground-based high-resolution infrared spectroscopy as part of a worldwide observing campaign SO ICARUS LA English DT Article DE Comets; Infrared observations; Spectroscopy ID O1 HALE-BOPP; COMET 103P/HARTLEY 2; HYAKUTAKE C/1996 B2; OORT CLOUD COMETS; ORTHO-PARA RATIO; VOLATILE COMPOSITION; ROTATIONAL TEMPERATURES; CHEMICAL-COMPOSITION; ORGANIC COMPOSITION; WATER PRODUCTION AB Volatile production rates, relative abundances, rotational temperatures, and spatial distributions in the coma were measured in C/2012 S1 (ISON) using long-slit high-dispersion (lambda/triangle lambda similar to 2.5 x 10(4)) infrared spectroscopy as part of a worldwide observing campaign. Spectra were obtained on UT 2013 October 26 and 28 with NIRSPEC at the W.M. Keck Observatory, and UT 2013 November 19 and 20 with CSHELL at the NASA IRTF. H2O was detected on all dates, with production rates increasing markedly from (8.7 +/- 1.5) x 10(27) molecules s(-1) on October 26 (R-h = 1.12 AU) to (3.7 +/- 0.4) x 10(29) molecules s(-1) on November 20 (R-h = 0.43 AU). Short-term variability of H2O production is also seen as observations on November 19 show an increase in H2O production rate of nearly a factor of two over a period of about 6 h. C2H6, CH3OH and CH4 abundances in ISON are slightly depleted relative to H2O when compared to mean values for comets measured at infrared wavelengths. On the November dates, C2H2, HCN and OCS abundances relative to H2O appear to be within the range of mean values, whereas H2CO and NH3 were significantly enhanced. There is evidence that the abundances with respect to H2O increased for some species but not others between October 28 (Rh = 1.07 AU) and November 19 (R-h = 0.46 AU). The high mixing ratios of H2CO/CH3OH and C2H2/C2H6 on November 19, and changes in the mixing ratios of some species with respect to H2O between October 28 to November 19, indicates compositional changes that may be the result of a transition from sampling radiation-processed outer layers in this dynamically new comet to sampling more pristine natal material as the outer processed layer was increasingly eroded and the thermal wave propagated into the nucleus as the comet approached perihelion for the first time. On November 19 and 20, the spatial distribution for dust appears asymmetric and enhanced in the antisolar direction, whereas spatial distributions for volatiles (excepting CN) appear symmetric with their peaks slightly offset in the sunward direction compared to the dust. Spatial distributions for H2O, HCN, C2H6, C2H2, and H2CO on November 19 show no definitive evidence for significant contributions from extended sources; however, broader spatial distributions for NH3 and OCS may be consistent with extended sources for these species. Abundances of HCN and C2H2 on November 19 and 20 are insufficient to account for reported abundances of CN and C-2 in ISON near this time. Differences in HCN and CN spatial distributions are also consistent with HCN as only a minor source of CN in [SON on November 19 as the spatial distribution of CN in the coma suggests a dominant distributed source that is correlated with dust and not volatile release. The spatial distributions for NH3 and NH2 are similar, suggesting that NH3 is the primary source of NH2 with no evidence of a significant dust source of NH2; however, the higher production rates derived for NH3 compared to NH2 on November 19 and 20 remain unexplained. This suggests a more complete analysis that treats NH2 as a distributed source and accounts for its emission mechanism is needed for future work. (c) 2015 Elsevier Inc. All rights reserved. C1 [Dello Russo, N.; Vervack, R. J., Jr.; Weaver, H. A.; Lisse, C. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Kawakita, H.; Kobayashi, H.] Kyoto Sangyo Univ Motoyama, Koyama Astron Observ, Kita Ku, Kyoto 6038555, Japan. [Cochran, A.; McKay, A. J.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Harris, W. M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [DiSanti, M. A.] NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Biver, N.; Bockelee-Morvan, D.; Crovisier, J.] Observ Paris, LESIA, F-92195 Meudon, France. [Opitom, C.; Jehin, E.] Univ Liege, FRS FNRS, Inst Astrophys & Geophys, B-4000 Liege, Belgium. RP Dello Russo, N (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RI Dello Russo, Neil/G-2727-2015; Lisse, Carey/B-7772-2016; Vervack, Ronald/C-2702-2016; Weaver, Harold/D-9188-2016 OI Dello Russo, Neil/0000-0002-8379-7304; Lisse, Carey/0000-0002-9548-1526; Vervack, Ronald/0000-0002-8227-9564; FU NASA Science Mission Directorate, Planetary Astronomy Program [NNX-08AE38A]; W.M. Keck Foundation; NASA PAST Program; NASA PATM Program; NASA SSW Program [NNX15AH29G] FX Data were obtained at the NASA Infrared Telescope Facility operated by the University of Hawaii under cooperative agreement number NNX-08AE38A with the NASA Science Mission Directorate, Planetary Astronomy Program. Data presented herein were also obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. We thank NASA, the Comet ISON Observing Campaign (CIOC), and the IRTF and Keck Observatories for setting aside campaign time for these observations, and the former NASA PAST and PATM Programs for their financial support of this work. MAD thanks the NASA SSW Program, grant NNX15AH29G for support. We note that all raw data from observations presented here are publicly available through IRTF and Keck archives. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 96 TC 3 Z9 3 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 152 EP 172 DI 10.1016/j.icarus.2015.11.030 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300012 ER PT J AU Yin, A Zuza, AV Pappalardo, RT AF Yin, An Zuza, Andrew V. Pappalardo, Robert T. TI Mechanics of evenly spaced strike-slip faults and its implications for the formation of tiger-stripe fractures on Saturn's moon Enceladus SO ICARUS LA English DT Article DE Enceladus; Ices; Mechanical properties; Tectonics ID HIMALAYAN-TIBETAN OROGEN; SOUTH POLAR TERRAIN; TECTONIC EVOLUTION; CRUSTAL RHEOLOGY; SEA-ICE; CASSINI; MODEL; FAILURE; ORIGIN AB We present the first mechanical analysis based on realistic rheology and boundary conditions on the formation of evenly spaced strike-slip faults. Two quantitative models employing the stress-shadow concept, widely used for explaining extensional-joint spacing, are proposed in this study: (1) an empirically based stress-rise-function model that simulates the brittle-deformation process during the formation of evenly spaced parallel strike-slip faults, and (2) an elastic plate model that relates fault spacing to the thickness of the fault-hosting elastic medium. When applying the models for the initiation and development of the tiger-stripe fractures (TSF) in the South Polar Terrain (SPT) of Enceladus, the mutually consistent solutions of the two models, as constrained by the mean spacing of the TSF at similar to 35 km, requires that the brittle ice-shell thickness be similar to 30 km, the elastic thickness be similar to 0.7 km, and the cohesive strength of the SPT ice shell be similar to 30 kPa. However, if the brittle and elastic models are decoupled and if the ice-shell cohesive strength is on the order of similar to 1 MPa, the brittle ice shell would be on the order of similar to 10 km. (c) 2015 Elsevier Inc. All rights reserved. C1 [Yin, An; Zuza, Andrew V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Yin, An; Zuza, Andrew V.] Univ Calif Los Angeles, Inst Planets & Exoplanets, Los Angeles, CA 90095 USA. [Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yin, A (reprint author), Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. EM yin@ess.ucla.edu; Robert.Pappalardo@jpl.nasa.gov OI Zuza, Andrew/0000-0001-6130-5121 FU Tectonics Program, US National Science Foundation; National Aeronautics and Space Administration FX An extremely thorough review and very constructive comments by Stephanie Johnston have greatly improved the scientific content and clarity of the original manuscript. This work also benefits greatly from several stimulating discussions and more importantly encouragement from Dr. Carolyn Porco throughout the project. She careful reading and comments led to further clarification of the concepts and interpretations presented in this study. AY's work on the mechanics of strike-slip fault is supported by a grant from the Tectonics Program, US National Science Foundation. Work by RTP was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 51 TC 2 Z9 2 U1 2 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 204 EP 216 DI 10.1016/j.icarus.2015.10.027 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300015 ER PT J AU McKay, AJ Kelley, MSP Cochran, AL Bodewits, D DiSanti, MA Dello Russo, N Lissee, CM AF McKay, Adam J. Kelley, Michael S. P. Cochran, Anita L. Bodewits, Dennis DiSanti, Michael A. Dello Russo, Neil Lissee, Carey M. TI The CO2 abundance in Comets C/2012 K1 (PanSTARRS), C/2012 K5 (LINEAR), and 290P/Jager as measured with Spitzer SO ICARUS LA English DT Article DE Comets Comets; coma Comets; composition ID FORBIDDEN OXYGEN LINES; CAMERON-BAND EMISSION; MU-M SPECTRUM; SPACE-TELESCOPE; P1 GARRADD; HALE-BOPP; 2011-2012 APPARITION; H2O; 103P/HARTLEY; MOLECULES AB Carbon dioxide is one of the most abundant ices present in comets and is therefore important for understanding cometaiy composition and activity. We present analysis of observations of CO2 and [O I] emission in three comets to measure the CO2 abundance and evaluate the possibility of employing observations of [O I] emission in comets as a proxy for CO2. We obtained NIR imaging sensitive to CO2 of comets C/2012 1(1 (PanSTARRS), C/2012 1(5 (LINEAR), and 290P/Jager with the IRAC instrument on Spitzer. We acquired observations of [O I] emission in these comets with the ARCES echelle spectrometer mounted on the 3.5-m telescope at Apache Point Observatory and observations of OH with the Swift observatory (PanSTARRS) and with Keck HIRES (Jager). The CO2/H2O ratios derived from the Spitzer images are 12.6 +/- 1.3% (PanSTARRS), 28.9 +/- 3.6% (LINEAR), and 31.3 +/- 4.2% (Jager). These abundances are derived under the assumption that contamination from CO emission is negligible. The CO2 abundance for PanSTARRS is close to the average abundance measured in comets at similar heliocentric distance to date, while the abundances measured for LINEAR and Jager are significantly larger than the average abundance. From the coma morphology observed in PanSTARRS and the assumed gas expansion velocity, we derive a rotation period for the nucleus of about 9.2 h. Comparison of H2O production rates derived from ARCES and Swift data, as well as other observations, suggest the possibility of sublimation from icy grains in the inner coma. We evaluate the possibility that the [O I] emission can be employed as a proxy for CO2 by comparing CO2/H2O ratios inferred from the [O I] lines to those measured directly by Spitzer. We find that for PanSTARRS we can reproduce the observed CO2 abundance to an accuracy of similar to 20%. For LINEAR and Jager, we were only able to obtain upper limits on the CO2 abundance inferred from the [O I] lines. These upper limits are consistent with the CO2 abundances measured by Spitzer. (c) 2015 Elsevier Inc. All rights reserved. C1 [McKay, Adam J.; Cochran, Anita L.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Kelley, Michael S. P.; Bodewits, Dennis] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [DiSanti, Michael A.] NASA, Goddard Ctr Astrobiol, GSFC, Greenbelt, MD 20771 USA. [DiSanti, Michael A.] Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Dello Russo, Neil; Lissee, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP McKay, AJ (reprint author), Univ Texas Austin, McDonald Observ, 1 Univ Stn, Austin, TX 78712 USA. EM amckay@astro.as.utexas.edu; msk@astro.umd.edu; anita@astro.as.utexas.edu; dennis@astro.umd.edu; Michael.A.Disanti@nasa.gov; neil.dello.russo@jhuapl.edu; carey.lisse@jhuapl.edu RI Dello Russo, Neil/G-2727-2015; OI Dello Russo, Neil/0000-0002-8379-7304; Lisse, Carey/0000-0002-9548-1526 FU NASA Planetary Atmospheres Program [NNX08A052G]; NASA FX We thank two anonymous reviewers whose comments improved the quality of this manuscript. This work was supported by the NASA Planetary Atmospheres Program through Grant No. NNX08A052G. This work is partially based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. We thank the APO and Keck observing staff for their invaluable help in conducting the observations. We are thankful to Matthew Knight for productive discussions concerning the coma morphology seen at optical wavelengths for C/2012 K1 (PanSTARRS), as well as David Schleicher, Michael Combi, and Erika Gibb for sharing their unpublished production rates. We thank John Barentine, Jurek Krzesinski, Chris Churchill, Pey Lian Lim, Paul Strycker, and Doug Hoffman for developing and optimizing the ARCES IRAF reduction script used to reduce the ARCES data. We would also like to acknowledge the JPL Horizons System, which was used to generate ephemerides for nonsidereal tracking of the comets during the ARCES observations, and the SIMBAD database, which was used for selection of reference stars. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 58 TC 1 Z9 1 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 249 EP 260 DI 10.1016/j.icarus.2015.11.004 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300018 ER PT J AU Poppe, AR Fatemi, S Garrick-Bethell, I Hemingway, D Holmstrom, M AF Poppe, Andrew R. Fatemi, Shahab Garrick-Bethell, Ian Hemingway, Doug Holmstrom, Mats TI Solar wind interaction with the Reiner Gamma crustal magnetic anomaly: Connecting source magnetization to surface weathering SO ICARUS LA English DT Article DE Moon; surface Magnetic fields Solar wind ID LUNAR-PROSPECTOR; MOON; FIELDS; INSTRUMENT; MERCURY; ORIGIN; SWIRLS AB Remanent magnetization has long been known to exist in the lunar crust, yet both the detailed topology and ultimate origin(s) of these fields remains uncertain. Some crustal magnetic fields coincide with surface albedo anomalies, known as lunar swirls, which are thought to be formed by differential surface weathering of the regolith underlying crustal fields due to deflection of incident solar wind protons. Here, we present results from a three-dimensional, self-consistent, plasma hybrid model of the solar wind interaction with two different possible source magnetizations for the Reiner Gamma anomaly. We characterize the plasma interaction with these fields and the resulting spatial distribution of charged-particle weathering of the surface and compare these results to optical albedo measurements of Reiner Gamma. The model results constrain the proposed source magnetizations for Reiner Gamma and suggest that vertical crustal magnetic fields are required to produce the observed "dark lanes." (c) 2015 Elsevier Inc. All rights reserved. C1 [Poppe, Andrew R.; Fatemi, Shahab] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Poppe, Andrew R.; Fatemi, Shahab] NASA, Solar Syst Explorat Res Virtual Inst, Ames Res Ctr, Mountain View, CA 94035 USA. [Garrick-Bethell, Ian; Hemingway, Doug] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Garrick-Bethell, Ian] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi Do, South Korea. [Hemingway, Doug] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Holmstrom, Mats] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. RP Poppe, AR (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM poppe@ssl.berkeley.edu RI Hemingway, Douglas/F-6332-2014 OI Hemingway, Douglas/0000-0001-5617-207X FU NASA's Solar System Exploration Research Virtual Institute [NNX14AG16A]; National Research Foundation (NRF) - Ministry of Education of Korea FX A.R.P. and S.F. gratefully acknowledge support from NASA's Solar System Exploration Research Virtual Institute, grant #NNX14AG16A. This publication is SSERVI contribution #SSERVI-2015-160. The authors acknowledge the International Space Science Institute (ISSI) for hosting a workshop series that in part inspired this work as well as two reviewers for constructive and helpful comments. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This research was conducted using resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N), Umea University, Sweden. The LROC data are publicly available from the NASA PDS Imaging Node (http://pds-imaging.jpl.nasa.gov/). I.G.-B. was partially supported by the BK21 PLUS program through the National Research Foundation (NRF), funded by the Ministry of Education of Korea. NR 47 TC 4 Z9 4 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 261 EP 266 DI 10.1016/j.icarus.2015.11.005 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300019 ER PT J AU Carli, C Roush, TL Pedrazzi, G Capaccioni, F AF Carli, C. Roush, T. L. Pedrazzi, G. Capaccioni, F. TI Visible and Near-Infrared (VNIR) reflectance spectroscopy of glassy igneous material: Spectral variation, retrieving optical constants and particle sizes by Hapke model SO ICARUS LA English DT Article DE Mineralogy; Regoliths; Spectroscopy ID INTERSTELLAR SILICATE MINERALOGY; PLANETARY REGOLITH ANALOGS; BIDIRECTIONAL REFLECTANCE; LABORATORY PHOTOMETRY; VARIABILITY; MIXTURES; DENSITY; MERCURY; STEPS; ICE AB Silicate glasses with igneous compositions can be an important constituent of planetary surface material via effusive volcanism or impact cratering processes. Different planetary surfaces are mapped with hyper-spectrometers in the VNIR, and in this spectral range crystal field absorptions are useful in discriminating iron bearing silicate components. For these reasons studying glassy materials, and their optical constants, is an important effort to better document and understand spectral features of Solar System silicate crusts where glasses are present, but may be difficult to map. In our work we present a set of four different synthetic glasses, produced under terrestrial conditions, with variable composition and in particular an increasing amount of iron. The VNIR spectra show, for all the compositions, two absorptions are present near 1.1 and 1.9 mu m but reflectance, slope and absorption shape varies with composition. We measured the reflectance of different particle sizes of the samples and used radiative transfer models to estimate the optical constants as a function of wavelength. We used the retrieved optical constants to estimate the particle size from the measured reflectances and the results fall within the known sieve range. We qualitatively discuss the effect of the shape and distribution of particles on the application of the model. (c) 2015 Elsevier Inc. All rights reserved. C1 [Carli, C.; Capaccioni, F.] IAPS INAF, Rome, Italy. [Roush, T. L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Pedrazzi, G.] Univ Parma, Biophys & Med Phys Unit, Dept Neurosci, I-43100 Parma, Italy. RP Carli, C (reprint author), IAPS INAF, Rome, Italy. EM cristian.carli@iaps.inaf.it OI carli, cristian/0000-0002-4674-1029 FU Agenzia Spaziale Italiana, SIMBIO-SYS project FX This work was financially supported by Agenzia Spaziale Italiana, SIMBIO-SYS project. NR 42 TC 1 Z9 1 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 267 EP 278 DI 10.1016/j.icarus.2015.10.032 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300020 ER PT J AU Farnocchia, D Chesley, SR Micheli, M Delamere, WA Heyd, RS Tholen, DJ Giorgini, JD Owen, WM Tamppari, LK AF Farnocchia, D. Chesley, S. R. Micheli, M. Delamere, W. A. Heyd, R. S. Tholen, D. J. Giorgini, J. D. Owen, W. M. Tamppari, L. K. TI High precision comet trajectory estimates: The Mars flyby of C/2013 A1 (Siding Spring) SO ICARUS LA English DT Article DE Comets Comets; dynamics Data reduction techniques Orbit determination ID NONGRAVITATIONAL ACCELERATIONS; DISTANCES; CATALOG; FORCES; DUST AB The Mars flyby of C/2013 A1 (Siding Spring) represented a unique opportunity for imaging a long-period comet and resolving its nucleus and rotation state. Because of the small encounter distance and the high relative velocity, the goal of successfully observing C/2013 A1 from the Mars orbiting spacecraft posed strict accuracy requirements on the comet's ephemeris. These requirements were hard to meet, as comets are known for being highly unpredictable: astrometric observations can be significantly biased and nongravitational perturbations affect comet trajectories. Therefore, even prior to the encounter, we remeasured a couple of hundred astrometric images obtained with ground-based and Earth-orbiting telescopes. We also observed the comet with the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera on 2014 October 7. In particular, these HiRISE observations were decisive in securing the trajectory and revealed that out-of-plane nongravitational perturbations were larger than previously assumed. Though the resulting ephemeris predictions for the Mars encounter allowed observations of the comet from the Mars orbiting spacecraft, post-encounter observations show a discrepancy with the pre-encounter trajectory. We reconcile this discrepancy by employing the Rotating Jet Model, which is a higher fidelity model for cometary nongravitational perturbations and provides an estimate of C/2013 A1's spin pole (RA, DEC) = (63 degrees, 14 degrees). (c) 2015 Elsevier Inc. All rights reserved. C1 [Farnocchia, D.; Chesley, S. R.; Giorgini, J. D.; Owen, W. M.; Tamppari, L. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Micheli, M.] ESA NEO Coordinat Ctr, I-00044 Frascati, RM, Italy. [Micheli, M.] SpaceDyS Srl, I-56023 Cascina, PI, Italy. [Micheli, M.] INAF IAPS, I-00133 Rome, RM, Italy. [Delamere, W. A.] Delamere Support Serv, Boulder, CO 80304 USA. [Heyd, R. S.] Univ Arizona, Planetary Image Res Lab, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Tholen, D. J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Farnocchia, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Davide.Farnocchia@jpl.nasa.gov OI Micheli, Marco/0000-0001-7895-8209 FU NASA FX Part of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 29 TC 1 Z9 1 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 279 EP 287 DI 10.1016/j.icarus.2015.10.035 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300021 ER PT J AU Jenniskens, P Nenon, Q Albers, J Gural, PS Haberman, B Holman, D Morales, R Grigsby, BJ Samuels, D Johannink, C AF Jenniskens, P. Nenon, Q. Albers, J. Gural, P. S. Haberman, B. Holman, D. Morales, R. Grigsby, B. J. Samuels, D. Johannink, C. TI The established meteor showers as observed by CAMS SO ICARUS LA English DT Article DE Meteors Comets; dust Interplanetary dust Near-Earth Objects Asteroids ID LONG-PERIOD COMET; TAURID COMPLEX; RADAR OBSERVATIONS; FAINT METEORS; 3200 PHAETHON; ORBIT-RADAR; 2005 UD; STREAM; ORIGIN; ANDROMEDIDS AB Orbital elements are presented for 70 of the 95 meteor showers considered "established" by the International Astronomical Union. From 2010 October 21 until 2013 March 31, the low-light-video based Cameras for Allsky Meteor Surveillance project (CAMS) measured a total of 110,367 meteoroid trajectories and pre-atmospheric orbits from mostly -2 to +4 magnitude meteors with a precision of <2 degrees (median 0.4 degrees) in apparent radiant direction and <10% (median 0.9%) in speed. This paper discusses how the already established showers manifest in this data. Newly resolved components in the radiant distribution shed light on the dynamics and physical lifetime of parent bodies and their meteoroids. Many multicomponent showers have associated parent bodies with nodal lines not much rotated from that of their meteoroids (Encke Complex, Machholz Complex, Phaethon Complex, and now also the 169P/NEAT Complex). These may result from a parent body disruption cascade, with the disruption-generated meteoroids fading on the short timescale of a few hundred to a few thousand years. In particular, the Northern and Southern Taurids of the Encke Complex are decomposed here into 19 individual streams. Seven of these streams can be paired with mostly sub-km sized potential parent body asteroids that move in 2P/Encke-like orbits that span the narrow semi-major axis range of 2.20-2.35 AU. The meteoroids in these Taurid streams do not survive long enough for the nodal line to fully rotate relative to that of their parent body. (c) 2015 Elsevier Inc. All rights reserved. C1 [Jenniskens, P.; Nenon, Q.; Albers, J.; Haberman, B.; Holman, D.; Grigsby, B. J.] SETI Inst, Mountain View, CA 94043 USA. [Jenniskens, P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gural, P. S.] Leidos, Chantilly, VA 20151 USA. [Morales, R.; Samuels, D.] Fremont Peak Observ Assoc, San Juan Bautista, CA 95045 USA. [Grigsby, B. J.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA. [Johannink, C.] Dutch Meteor Soc, D-48599 Gronau, Germany. RP Jenniskens, P (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM Petrus.M.Jenniskens@nasa.gov FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth Object Observation program [NNX12AM14G] FX We thank all CAMS team members for their support of the project: amateur astronomers and students who helped build CAMS, supported CAMS operations over the years and assisted in the ongoing data reduction effort. In particular, we thank Beth Johnson, Kathryn Steakley, and Meridel Phillips of the SETI REU program, who supported the data reduction effort. Michael Borden and Kevin Newman of the NASA Ames Exploration Academy helped develop the CAMS hardware. Fremont Peak State Park and Lick Observatory generously hosted the deployment of the CAMS camera stations. The CAMS project was made possible by grants from NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object Observation (NNX12AM14G) programs. NR 95 TC 7 Z9 7 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 331 EP 354 DI 10.1016/j.icarus.2015.09.013 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300025 ER PT J AU Jenniskens, P Nenon, Q Gural, PS Albers, J Haberman, B Johnson, B Holman, D Morales, R Grigsby, BJ Samuels, D Johannink, C AF Jenniskens, P. Nenon, Q. Gural, P. S. Albers, J. Haberman, B. Johnson, B. Holman, D. Morales, R. Grigsby, B. J. Samuels, D. Johannink, C. TI CAMS confirmation of previously reported meteor showers SO ICARUS LA English DT Article DE Meteors; Comets, dust; Interplanetary dust; Near-Earth objects; Asteroids ID STATISTICAL-MODEL; ORBIT-RADAR; STREAM; CAMERAS; CATALOG; SEARCH AB Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.(c) 2015 Elsevier Inc. All rights reserved. C1 [Jenniskens, P.; Nenon, Q.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Grigsby, B. J.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Jenniskens, P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gural, P. S.] Leidos, Chantily, VA 20151 USA. [Morales, R.; Samuels, D.] Fremont Peak Observ Assoc, San Juan Bautista, CA 95045 USA. [Grigsby, B. J.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA. [Johannink, C.] Dutch Meteor Soc, D-48599 Gronau, Germany. RP Jenniskens, P (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM Petrus.M.Jenniskens@nasa.gov FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth Object Observation program [NNX12AM14G] FX We thank all CAMS team members for their support of the project: amateur astronomers and students who helped build CAMS hardware, supported CAMS operations over the years, and assisted in the ongoing data reduction effort. Fremont Peak State Park and Lick Observatory generously hosted the deployment of the CAMS camera stations. The CAMS project was made possible by grants from NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object Observation (NNX12AM14G) programs. NR 59 TC 4 Z9 4 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 355 EP 370 DI 10.1016/j.icarus.2015.08.014 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300026 ER PT J AU Jenniskens, P Nenon, Q AF Jenniskens, Peter Nenon, Quentin TI CAMS verification of single-linked high-threshold D-criterion detected meteor showers SO ICARUS LA English DT Article DE Meteors; Comets, dust; Interplanetary dust; Near-Earth objects; Asteroids ID STREAM; CAMERAS; RADIANT AB From preliminary 2010-2011 results of the Cameras for Allsky Meteor Surveillance (CAMS) meteoroid orbit survey, which were combined with published 2007-2009 SonotaCo video meteor network data, 55 new meteor showers (##448-502) were identified and added to the IAU Working List on Meteor Showers in 2012. These showers were identified based on an automated single-linked D-SH-criterion analysis of a combined 105,000 orbits with high-threshold (a low D-SH < 0.05), but low acceptable sample size (>= 6 members). Three more years of CAMS and four more years of SonotaCo observations have now increased the meteoroid orbit database four fold. The earlier detections are verified by searching for number density enhancements in drift-corrected radiant and orbital element maps. Twenty showers are detected in both surveys and are now certain to exist. Median orbital elements are presented. Not detected in this manner were 19% of the fast V-g > 40 km/s showers, 54% of the V-g = 18-40 km/s showers, and 90% of the slow V-g < 18 km/s showers.(c) 2015 Elsevier Inc. All rights reserved. C1 [Jenniskens, Peter; Nenon, Quentin] SETI Inst, Mountain View, CA 94043 USA. [Jenniskens, Peter] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Jenniskens, P (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM Petrus.M.Jenniskens@nasa.gov FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth Object Observation program [NNX12AM14G] FX We thank all CAMS team members for their support of the project: amateur astronomers and students who helped build CAMS, supported CAMS operations over the years and assisted in the ongoing data reduction effort. Fremont Peak State Park and Lick Observatory (University of California Santa Cruz) generously hosted the deployment of the CAMS camera stations. The CAMS project was made possible by grants from NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object Observation (NNX12AM14G) programs. NR 28 TC 1 Z9 1 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 371 EP 383 DI 10.1016/j.icarus.2015.10.004 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300027 ER PT J AU Jenniskens, P Nenon, Q Gural, PS Albers, J Haberman, B Johnson, B Morales, R Grigsby, BJ Samuels, D Johannink, C AF Jenniskens, P. Nenon, Q. Gural, P. S. Albers, J. Haberman, B. Johnson, B. Morales, R. Grigsby, B. J. Samuels, D. Johannink, C. TI CAMS newly detected meteor showers and the sporadic background SO ICARUS LA English DT Article DE Meteors; Comets, dust; Interplanetary dust; Near-Earth objects; Asteroids ID RADIANT DISTRIBUTION; ORBITAL DISTRIBUTION; DORMANT COMETS; STREAMS; CAMERAS; CLOUD AB The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from similar to 700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large similar to 7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grun et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 10(4)-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve. The meteors assigned to the various showers are identified in the CAMS Meteoroid Orbit Database 2.0 submitted to the IAU Meteor Data Center, and can be accessed also at http://cams.seti.org.(c) 2015 Published by Elsevier Inc. C1 [Jenniskens, P.; Nenon, Q.; Albers, J.; Haberman, B.; Johnson, B.; Grigsby, B. J.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Jenniskens, P.] NASA, Ames Res Ctr, Moffett Field, CA 95035 USA. [Gural, P. S.] Leidos, Chantilly, VA 20151 USA. [Morales, R.; Samuels, D.] Fremont Peak Observ Assoc, San Juan Bautista, CA 95045 USA. [Grigsby, B. J.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA. [Johannink, C.] Dutch Meteor Soc, D-48599 Gronau, Germany. RP Jenniskens, P (reprint author), Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM Petrus.M.Jenniskens@nasa.gov FU NASA's Planetary Astronomy program [NNX08AO64G]; NASA's Near Earth Object Observation program [NNX12AM14G] FX We thank all CAMS team members for their support of the project: amateur astronomers and students who helped build CAMS, supported CAMS operations over the years, and assisted in the ongoing data reduction effort. We also thank David Nesvorny for helpful discussions during the preparation of this manuscript. Fremont Peak State Park and Lick Observatory generously hosted the deployment of the CAMS camera stations. The CAMS project was made possible by grants from NASA's Planetary Astronomy (NNX08AO64G) and Near Earth Object Observation (NNX12AM14G) programs. NR 48 TC 2 Z9 2 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 384 EP 409 DI 10.1016/j.icarus.2015.11.009 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300028 ER PT J AU Zhang, X West, RA Banfield, D Yung, YL AF Zhang, X. West, R. A. Banfield, D. Yung, Y. L. TI Stratospheric aerosols on Jupiter from Cassini observations (vol 226, pg 159, 2013) SO ICARUS LA English DT Correction C1 [Zhang, X.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [West, R. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Banfield, D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Yung, Y. L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Zhang, X (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM xiz@ucsc.edu NR 1 TC 0 Z9 0 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 1 PY 2016 VL 266 BP 433 EP 434 DI 10.1016/j.icarus.2015.12.002 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7DH UT WOS:000367964300031 ER PT J AU Sainio, S Jiang, H Caro, MA Koehne, J Lopez-Acevedo, O Koskinen, J Meyyappan, M Laurila, T AF Sainio, S. Jiang, H. Caro, M. A. Koehne, J. Lopez-Acevedo, O. Koskinen, J. Meyyappan, M. Laurila, T. TI Structural morphology of carbon nanofibers grown on different substrates SO CARBON LA English DT Article ID AUGMENTED-WAVE METHOD; THIN-FILMS; NANOTUBES; SYSTEM; NANOSTRUCTURES; REASSESSMENT; ELECTRODES; SENSORS; LAYER; NI AB We present a detailed microstructural study comparing conventional carbon nanofibers (CNFs) and novel carbon hybrid CNF materials. The hybrid consists of CNFs grown on top of tetrahedral amorphous carbon (ta-C) thin films on silicon with nickel catalyst and Ti adhesion layers. The conventional CNFs were grown on silicon with nickel catalyst and Cr layers. Even though CNFs can be grown in both systems by tip growth, the micro-and nanoscale features are very different in the two systems. The crystalline structure of the CNF in the hybrid case changes from horizontal alignment to near-vertical alignment from the root to the tip and no bamboo structure is observed. The results show that micro-and nanoscale properties of CNFs grown under the same process conditions can be readily altered by using a sacrificial ta-C layer below the metallic layer to prevent the alloying of Ni with carbide-forming metals used as adhesion promoters and to act as an additional carbon source during the pre-annealing stage. The experimental results are further rationalized with the aid of assessed thermodynamic data and simulations based on density functional theory (DFT) with van der Waals (vdW) corrections. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Sainio, S.; Caro, M. A.; Laurila, T.] Aalto Univ, Sch Elect Engn, Dept Elect Engn & Automat, Espoo, Finland. [Jiang, H.] Aalto Univ, Sch Sci, Dept Appl Phys, Espoo, Finland. [Caro, M. A.; Lopez-Acevedo, O.] Aalto Univ, Sch Sci, Dept Appl Phys, COMP Ctr Excellence Computat Nanosci, Espoo, Finland. [Koskinen, J.] Aalto Univ, Sch Chem Technol, Dept Mat Sci, Espoo, Finland. [Koehne, J.; Meyyappan, M.] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Laurila, T (reprint author), Aalto Univ, Sch Elect Engn, Dept Elect Engn & Automat, Espoo, Finland. EM tomi.laurila@aalto.fi RI Koskinen, Jari/J-3886-2014; Lopez-Acevedo, Olga/B-9349-2009; Laurila, Tomi/B-2076-2013; OI Lopez-Acevedo, Olga/0000-0003-4489-6841; Caro, Miguel A./0000-0001-9304-4261 FU Academy of Finland [285015, 285526]; Finnish Funding Agency for Innovation [211488] FX The authors acknowledge funding from the Academy of Finland (grant numbers 285015 and 285526) and the Finnish Funding Agency for Innovation (grant number 211488). Michael E. Salmon at Evans Analytical is acknowledged for the FIB sample preparation. Dr. V. Protopopova is acknowledged for fabrication of the Ti + ta-C + Ni substrates for the CNF experiments. This work made use of the Aalto University Nanomicroscopy Center facilities. The computational resources for this project were provided by the Finnish Center for Scientific Computing (CSC) through the Sisu supercomputer. M.A.C. would like to thank Torbjorn Bjorkman for discussions regarding the use of van der Waals DFT functionals. NR 45 TC 6 Z9 6 U1 7 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD MAR PY 2016 VL 98 BP 343 EP 351 DI 10.1016/j.carbon.2015.11.021 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CZ6TD UT WOS:000367233000042 ER PT J AU Adirosi, E Baldini, L Roberto, N Gatlin, P Tokay, A AF Adirosi, E. Baldini, L. Roberto, N. Gatlin, P. Tokay, A. TI Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements SO ATMOSPHERIC RESEARCH LA English DT Article DE Precipitation; Drop size distribution; Vertical profile of reflectivity ID DOPPLER RADAR; VELOCITY; PRECIPITATION; AUSTRALIA; DARWIN; REFLECTIVITY; DROPS; CLOUD AB A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the microstructure of rain both in stratiform and convective conditions. (C) 2015 Elsevier B.V. All rights reserved. C1 [Adirosi, E.; Baldini, L.; Roberto, N.] Ist Sci Atmosfera & Clima, CNR, I-00133 Rome, Italy. [Adirosi, E.] Univ Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00185 Rome, Italy. [Gatlin, P.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Tokay, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tokay, A.] Univ Maryland, Baltimore, MD 21201 USA. RP Adirosi, E (reprint author), Ist Sci Atmosfera & Clima, Consiglio Nazl Ric, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM elisa.adirosi@artov.isac.cnr.it RI Measurement, Global/C-4698-2015; OI Baldini, Luca/0000-0001-5217-1205; Gatlin, Patrick/0000-0001-9345-1457 NR 35 TC 2 Z9 2 U1 5 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD MAR 1 PY 2016 VL 169 SI SI BP 404 EP 415 DI 10.1016/j.atmosres.2015.07.002 PN B PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CZ1QA UT WOS:000366879200003 ER PT J AU Thurai, M Gatlin, PN Bringi, VN AF Thurai, M. Gatlin, P. N. Bringi, V. N. TI Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data SO ATMOSPHERIC RESEARCH LA English DT Article DE Stratiform and convective rain; 2D video disdrometer data; Vertically pointing Doppler radar; UHF profiler; GPM ground validation campaign ID DUAL-POLARIZED RADAR; SPECTRA; PROFILER; CLOUDS; PRECIPITATION; PARAMETERS; DSD AB A technique for separating stratiform and convective rain types using the characteristics of two of the main drop size distribution (DSD) parameters is presented. The method was originally developed based on observations from dual-frequency profiler and dual-polarization radar observations in Darwin, Australia. In this paper, we will present the testing of the method using data from 2D video disdrometers (2DVD) from two very different locations, namely, Ontario, Canada, and Huntsville, Alabama, USA One-minute DSDs from 2DVD are used as input to a gamma-fitting procedure and our separation technique uses the fitted values of log(10)(N-W) and D-0 (where N-W is the scaling parameter and Do is the median volume diameter) and an "index" to quantify where the points lie in the log(10)(N-W) versus D-0 domain. For the Ontario location, the output of the classification is compared with simultaneous observations from a collocated, vertically pointing, X-band Doppler radar. A "bright-band" detection algorithm is used to classify each height profile as either stratiform or convective, depending on whether or not a clearly defined melting layer is present at an expected height. If present, the maximum reflectivity within the melting layer and the corresponding height are determined. Similar testing is carried out for two events in Huntsville and compared with observations from a collocated UHF profiler (with Doppler capability). Additional case studies are required, but these results indicate our separation technique seems to be applicable to many different locations and climatologies based on previously published data. (C) 2015 Elsevier B.V. All rights reserved. C1 [Thurai, M.; Bringi, V. N.] Colorado State Univ, Ft Collins, CO 80523 USA. [Gatlin, P. N.] NASA, MSFC, Huntsville, AL USA. RP Thurai, M (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM merhala@engr.colostate.edu RI Measurement, Global/C-4698-2015; OI Gatlin, Patrick/0000-0001-9345-1457 FU NASA Precipitation Measurement Mission (PMM), NASA [NNX10AJ11G] FX We wish to thank Dr. David Hudak and Peter Rodriguez of Environment Canada for supplying the VertiX data from Ontario and to Dr. Kevin Knupp for the UHF profiler data at the University of Alabama in Huntsville. The bright-band detection software for the VertiX data was written by Dr. C. Williams. Support for this work was provided by the NASA Precipitation Measurement Mission (PMM), NASA Grant Award, NNX10AJ11G. NR 32 TC 4 Z9 4 U1 1 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD MAR 1 PY 2016 VL 169 SI SI BP 416 EP 423 DI 10.1016/j.atmosres.2015.04.011 PN B PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CZ1QA UT WOS:000366879200004 ER PT J AU Li, X Tang, W Reynolds, AP Tayon, WA Brice, CA AF Li, X. Tang, W. Reynolds, A. P. Tayon, W. A. Brice, C. A. TI Strain and texture in friction extrusion of aluminum wire SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY LA English DT Article DE Friction extrusion; Marker insert technique; Aluminum; Crystallographic texture ID MATERIAL FLOW; METAL FLOW; CHIPS; STRENGTH AB Friction extrusion is a solid-state process that can produce high quality, fully consolidated wire or rod directly from metal chips, powder or billet. However, little is understood regarding the variation in material flow or extrusion strain with changes in processing parameters. Extrusion strain level may be of great import in determining whether or not the charge is fully consolidated. In order to explore the material deformation behavior during this process, flow visualization experiments were conducted using AA6061 billets with AA2195 as a marker insert. Variations in material flow during a single extrusion were documented and correlated with changes in grain size, which has previously been correlated with extrusion temperature. Marker shape was used to make an approximation of imposed strain during the extrusion as a function of relative extrusion temperature. Also, tests using various extrusion forces and die rotation speeds were conducted. The influence of extrusion parameters on deformation evolution was elucidated and discussed. Grain orientation analysis conducted using electron backscatter diffraction showed a fully recrystallized microstructure with weak texture indicating that recrystallization was likely a static process occurring after passage of the wire through the die. Key findings include: (1) longitudinal strain is solely a function of overall reduction (2) in plane shear strain decreases with increasing extrusion temperature, and (3) with increasing extrusion temperature, friction extrusion becomes similar to normal extrusion. (C) 2015 Elsevier B.V. All rights reserved. C1 [Li, X.; Tang, W.; Reynolds, A. P.] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Tayon, W. A.; Brice, C. A.] NASA Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. RP Li, X (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM li292@email.sc.edu; tangw@ornl.gov; craig.a.brice@lmco.com RI Tang, Wei/E-3613-2017; OI Tang, Wei/0000-0002-9274-9574; Li, Xiao/0000-0003-2096-298X FU NASA-EPSCoR grant [520879-USC]; NSF [CMMI-1266043] FX This work was supported by NASA-EPSCoR grant #520879-USC and NSF Grant CMMI-1266043. NR 24 TC 0 Z9 0 U1 2 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-0136 J9 J MATER PROCESS TECH JI J. Mater. Process. Technol. PD MAR PY 2016 VL 229 BP 191 EP 198 DI 10.1016/j.jmatprotec.2015.09.012 PG 8 WC Engineering, Industrial; Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA CZ4XJ UT WOS:000367106000019 ER PT J AU Halekas, JS Brain, DA Ruhunusiri, S McFadden, JP Mitchell, DL Mazelle, C Connerney, JEP Harada, Y Hara, T Espley, JR DiBraccio, GA Jakosky, BM AF Halekas, J. S. Brain, D. A. Ruhunusiri, S. McFadden, J. P. Mitchell, D. L. Mazelle, C. Connerney, J. E. P. Harada, Y. Hara, T. Espley, J. R. DiBraccio, G. A. Jakosky, B. M. TI Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID WIND MAGNETOSHEATH RELEASES; AMPTE ARTIFICIAL COMET; MARTIAN MAGNETOSPHERE; MAGNETIC-FIELD; VENUS; OSCILLATIONS; SIMULATIONS; DYNAMICS; FLUXES; IONS AB We present initial Mars Atmosphere and Volatile EvolutioN (MAVEN) observations and preliminary interpretation of bulk plasma loss from Mars. MAVEN particle and field measurements show that planetary heavy ions derived from the Martian atmosphere can escape in the form of discrete coherent structures or "clouds." The ions in these clouds are unmagnetized or weakly magnetized, have velocities well above the escape speed, and lie directly downstream from magnetic field amplifications, suggesting a "snowplow" effect. This postulated escape process, similar to that successfully used to explain the dynamics of active gas releases in the solar wind and terrestrial magnetosheath, relies on momentum transfer from the shocked solar wind protons to the planetary heavy ions, with the electrons and magnetic field acting as intermediaries. Fluxes of planetary ions on the order of 10(7) cm(-2) s(-1) can escape by this process, and if it operates regularly, it could contribute 10-20% of the current ion escape from Mars. C1 [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA USA. [Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [McFadden, J. P.; Mitchell, D. L.; Harada, Y.; Hara, T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mazelle, C.] Inst Rech Astrophys & Planetol, Toulouse, France. [Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Halekas, JS (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA USA. EM jasper-halekas@uiowa.edu OI Halekas, Jasper/0000-0001-5258-6128 FU NASA; Mars Exploration Program; CNES FX We thank NASA and the Mars Exploration Program for supporting the MAVEN mission and this research. Analysis of SWEA data was partially supported by CNES. A portion of the research at NASA GSFC was supported by the NASA postdoctoral program. The MAVEN data used in this study are all archived in the Planetary Data System. NR 34 TC 2 Z9 2 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2016 VL 43 IS 4 BP 1426 EP 1434 DI 10.1002/2016GL067752 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DH9IF UT WOS:000373109000003 ER PT J AU Oberlander-Hayn, S Gerber, EP Abalichin, J Akiyoshi, H Kerschbaumer, A Kubin, A Kunze, M Langematz, U Meul, S Michou, M Morgenstern, O Oman, LD AF Oberlaender-Hayn, Sophie Gerber, Edwin P. Abalichin, Janna Akiyoshi, Hideharu Kerschbaumer, Andreas Kubin, Anne Kunze, Markus Langematz, Ulrike Meul, Stefanie Michou, Martine Morgenstern, Olaf Oman, Luke D. TI Is the Brewer-Dobson circulation increasing or moving upward? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID STRATOSPHERIC WATER-VAPOR; CHEMISTRY-CLIMATE MODEL; CHANGING CLIMATE; GENERAL-CIRCULATION; TROPOPAUSE HEIGHT; SIMULATIONS; OZONE; TROPOSPHERE; AIR; AGE AB The meridional circulation of the stratosphere, or Brewer-Dobson circulation (BDC), is projected to accelerate with increasing greenhouse gas (GHG) concentrations. The acceleration is typically quantified by changes in the tropical upward mass flux (F-trop) across a given pressure surface. Simultaneously, models project a lifting of the entire atmospheric circulation in response to GHGs; notably, the tropopause rises about a kilometer over this century. In this study, it is shown that most of the BDC trend is associated with the rise in the circulation. Using a chemistry-climate model (CCM), F-trop trends across 100 hPa are contrasted with those across the tropopause: while F-trop at 100 hPa increases 1-2 %/decade, the mass flux entering the atmosphere above the tropopause actually decreases. Similar results are found for other CCMs, suggesting that changes in the BDC may better be described as an upward shift of the circulation, as opposed to an increase, with implications for the mechanism and stratosphere-troposphere exchange. C1 [Oberlaender-Hayn, Sophie; Abalichin, Janna; Kerschbaumer, Andreas; Kubin, Anne; Kunze, Markus; Langematz, Ulrike; Meul, Stefanie] Free Univ Berlin, Inst Meteorol, Berlin, Germany. [Gerber, Edwin P.] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USA. [Akiyoshi, Hideharu] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan. [Kerschbaumer, Andreas] Senatsverwaltung Stadtentwicklung & Umwelt, Berlin, Germany. [Kubin, Anne] Leibniz Inst Tropospharenforsch TROPOS, Leipzig, Germany. [Michou, Martine] Ctr Natl Rech Meteorol, Meteofrance, GAME CNRM, Toulouse, France. [Morgenstern, Olaf] Natl Inst Water & Atmospher Res, Wellington, New Zealand. [Oman, Luke D.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. RP Oberlander-Hayn, S (reprint author), Free Univ Berlin, Inst Meteorol, Berlin, Germany. EM sophie.oberlaender@met.fu-berlin.de RI Oman, Luke/C-2778-2009; OI Oman, Luke/0000-0002-5487-2598; Kunze, Markus/0000-0002-9608-1823; Morgenstern, Olaf/0000-0002-9967-9740 FU DFG Research Unit [FOR 1095, LA1025/13-2, LA1025/14-2, LA1025/15-2]; DFG [LA 1025/19-1]; BMBF MiKlip project [01LP1168A]; project StratoClim [603557]; U.S. NSF [AGS-1264195]; Royal Society Marsden Fund; NIWA; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [2-1303] FX This work was supported by the DFG Research Unit FOR 1095 (SHARP) grants LA1025/13-2, LA1025/14-2, and LA1025/15-2, the DFG project ISOLAA (LA 1025/19-1), the BMBF MiKlip project (01LP1168A), the project StratoClim (603557), and the U.S. NSF (AGS-1264195). We thank the North-German Supercomputing Alliance (HLRN) and ECMWF computing center, the modeling groups, and the WCRP SPARC/IGAC CCMI for organizing and coordinating the model activity. O.M. acknowledges funding by the Royal Society Marsden Fund and by NIWA under its Government-funded, core research. NIES' research was supported by the Environment Research and Technology Development Fund (2-1303) of the Ministry of the Environment, Japan. Data for this paper are available at the Freie Universitat Berlin SHARP data archive under GRL_BDC_increase_or_shift_Oberlaender-Hayn_2015.tar. NR 38 TC 3 Z9 3 U1 3 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2016 VL 43 IS 4 BP 1772 EP 1779 DI 10.1002/2015GL067545 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DH9IF UT WOS:000373109000047 ER PT J AU Li, JLF Lee, WL Waliser, D Wang, YH Yu, JY Jiang, XN L'Ecuyer, T Chen, YC Kubar, T Fetzer, E Mahakur, M AF Li, J. -L. F. Lee, Wei-Liang Waliser, Duane Wang, Yi-Hui Yu, Jia-Yuh Jiang, Xianan L'Ecuyer, Tristan Chen, Yi-Chun Kubar, Terry Fetzer, Eric Mahakur, M. TI Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using A-Train observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cloud radiation; GCM; heating rate; dynamics ID COMMUNITY ATMOSPHERE MODEL; MADDEN-JULIAN OSCILLATION; FORECAST SYSTEM; PART I; PARAMETERIZATION; SENSITIVITY; FORMULATION; SIMULATION; DESIGN; CLOUDS AB This study characterizes biases in water vapor, dynamics, shortwave (SW) and longwave (LW) radiative properties in contemporary global climate models (GCMs) against observations over tropical Pacific Ocean. The observations are based on Atmospheric Infrared Sounder for water vapor, CloudSat 2B-FLXHR-LIDAR for LW and SW radiative heating profiles, and radiative flux from Clouds and the Earth's Radiant Energy System products. The model radiative heating profiles are adopted from the coupled and uncoupled National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) and joint Year of Tropical Convection (YOTC)/Madden Julian Oscillation (MJO) Task Force-Global Energy and Water Cycle Experiment Atmospheric System Studies (GASS) Multi-Model Physical Processes Experiment (YOTC-GASS). The results from the model evaluation for YOTC-GASS and NCAR CESM1 demonstrate a number of systematic radiative biases. These biases include excessive outgoing LW radiation and excessive SW surface radiative fluxes, in conjunction with a radiatively unstable atmosphere with excessive LW cooling in the upper troposphere over convectively active areas, such as the Intertropical Convergence Zone/South Pacific Convergence Zone (ITCZ/SPCZ) and warm pool. Using sensitivity experiments with the NCAR-uncoupled/NCAR-coupled CESM1, we infer that these biases partly result from the interactions between falling snow and radiation that are missing in most contemporary GCMs (e.g., YOTC-GASS, Coupled Model Intercomparison Project 3 (CMIP)3, and Atmospheric Model Intercomparison Project 5 (AMIP5)/CMIP5). A number of biases in the YOTC-GASS model simulations are consistent with model biases in CMIP3, AMIP5/CMIP5, and NCAR-uncoupled/NCAR-coupled model simulation without snow-radiation interactions. These include excessive upper level convection and low level downward motion with outflow from ITCZ/SPCZ. This generates weaker low-level trade winds and excessive precipitation in the Central Pacific Trade wind regions. The excessive LW radiative cooling in NCAR-coupled/NCAR-uncoupled GCM simulations is reduced by 10-20% with snow-radiative effects considered. C1 [Li, J. -L. F.; Waliser, Duane; Wang, Yi-Hui; Chen, Yi-Chun; Fetzer, Eric] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lee, Wei-Liang] Acad Sinica, RCEC, Taipei 115, Taiwan. [Yu, Jia-Yuh] Natl Cent Univ, Dept Atmospher Sci, Taoyuan, Taiwan. [Jiang, Xianan; Kubar, Terry] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [L'Ecuyer, Tristan] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA. [Mahakur, M.] Indian Inst Trop Meteorol, Pune, Maharashtra, India. RP Li, JLF (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM Juilin.F.Li@jpl.nasa.gov RI L'Ecuyer, Tristan/E-5607-2012 OI L'Ecuyer, Tristan/0000-0002-7584-4836 FU National Aeronautics and Space Administration (NASA) [NNH12ZDA001N ROSES, NNH12ZDA001NCCST]; NASA; National Science Council [NSC100-2119-M-001-029-MY5, NSC102-2111-M-001-009]; NASA [NAS5-99327]; NASA Jet Propulsion Laboratory [1439268] FX We thank Jiundar Chern (GSFC/NASA), Graeme Stephens, and Qing Yue at Jet Propulsion Laboratory for the useful comments and discussions. The contribution by J.L.L. and D.E.W. to this study was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under contracts of NNH12ZDA001N ROSES 2012, Earth Science Program, the Modeling, Analysis, and Prediction (MAP), and ATMOS COMP 2013 (NNH12ZDA001NCCST) with the National Aeronautics and Space Administration (NASA). This work has been supported in part by the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) programs. The second author (W.L.L.) was supported by National Science Council under contracts NSC100-2119-M-001-029-MY5 and NSC102-2111-M-001-009. The development of the 2B-FLXHR-LIDAR algorithm (TSL) was supported through NASA research grant NAS5-99327 and by CloudSat subaward 1439268 from the NASA Jet Propulsion Laboratory. The 2B-FLXHR-LIDAR flux and heating rate algorithm [L'Ecuyer et al., 2011; Henderson et al., 1997] makes use of liquid and ice water content estimates from the CloudSat cloud profiling radar (CPR) [http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-flxhr- lidar]. The most up-to-date Radiative Longwave Upward at TOA (RLUT) and Radiative Shortwave Upward at TOA (RSUT) fluxes are available from the CERES Energy Balanced and Filled (EBAF) product (CERES_EBAF-TOA_Ed2.6r) [Loeb et al., 2012, 2008]. The CERES EBAF product includes the latest instrument calibration improvements, algorithm enhancements, and other updates. CERES TOA SW and LW fluxes in the EBAF product are used for the average global TOA fluxes in this study. The data can be found at http://ceres.larc.nasa.gov/order_data.php. Specific Humidity Profile: The AIRS L3 products used here are monthly averaged, gridded Level 2 (L2) retrievals [Olsen et al., 2012] of specific humidity profiles with 1 degrees x 1 degrees horizontal resolution. The AIRS is available at http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings. The long-term mean precipitation is obtained from the Global Precipitation Climatology Project (GPCP) [Huffman et al., 2002]. As it is a merging of several satellite observations (e.g., infrared and microwave) and in situ measurements, it is representative of the late twentieth century. The GPCP data are available at http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html. The dynamical fields are from the European Centre for Medium-Range Forecasts (ECMWF) Interim reanalysis [Dee and Uppala, 2008] and can be downloaded at http://www.ecmwf.int/products/data/archive/descriptions/ei/. All the data are also available at obs4MIPs at https://www.earthsystemcog.org/projects/obs4mips/satellite_products. NR 55 TC 0 Z9 0 U1 4 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 1621 EP 1636 DI 10.1002/2015JD023587 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900016 ER PT J AU Khatri, P Takamura, T Nakajima, T Estelles, V Irie, H Kuze, H Campanelli, M Sinyuk, A Lee, SM Sohn, BJ Pandithurai, G Kim, SW Yoon, SC Martinez-Lozano, JA Hashimoto, M Devara, PCS Manago, N AF Khatri, P. Takamura, T. Nakajima, T. Estelles, V. Irie, H. Kuze, H. Campanelli, M. Sinyuk, A. Lee, S. -M. Sohn, B. J. Pandithurai, G. Kim, S. -W. Yoon, S. C. Martinez-Lozano, J. A. Hashimoto, M. Devara, P. C. S. Manago, N. TI Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE single scattering albedo ID OPTICAL-PROPERTIES; RADIANCE MEASUREMENTS; MICROPHYSICAL PROPERTIES; INVERSION ALGORITHM; RETRIEVAL; RADIOMETER; SUN; CALIBRATION; IRRADIANCE; IMPACTS AB SKYNET and Aerosol Robotic Network (AERONET) retrieved aerosol single scattering albedo (SSA) values of four sites, Chiba (Japan), Pune (India), Valencia (Spain), and Seoul (Korea), were compared to understand the factors behind often noted large SSA differences between them. SKYNET and AERONET algorithms are found to produce nearly same SSAs for similarity in input data, suggesting that SSA differences between them are primarily due to quality of input data due to different calibration and/or observation protocols as well as difference in quality assurance criteria. The most plausible reason for high SSAs in SKYNET is found to be underestimated calibration constant for sky radiance (). The disk scan method (scan area: 1 degrees x1 degrees area of solar disk) of SKYNET is noted to produce stable wavelength-dependent values in comparison to those determined from the integrating sphere used by AERONET to calibrate sky radiance. Aerosol optical thickness (AOT) difference between them can be the next important factor for their SSA difference, if AOTs between them are not consistent. Inconsistent values of surface albedo while analyzing data of SKYNET and AERONET can also bring SSA difference between them, but the effect of surface albedo is secondary. The aerosol nonsphericity effect is found to be less important for SSA difference between these two networks. C1 [Khatri, P.; Takamura, T.; Irie, H.; Kuze, H.; Manago, N.] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan. [Nakajima, T.; Hashimoto, M.] JAXA, Earth Observat Res Ctr, Tsukuba, Ibaraki, Japan. [Estelles, V.; Martinez-Lozano, J. A.] Univ Valencia, Dept Earth Phys & Thermodynam, E-46100 Burjassot, Spain. [Campanelli, M.] CNR, Inst Atmospher Sci & Climate, Rome, Italy. [Sinyuk, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lee, S. -M.; Sohn, B. J.; Kim, S. -W.; Yoon, S. C.] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea. [Pandithurai, G.] Indian Inst Trop Meteorol, Pune, Maharashtra, India. [Devara, P. C. S.] Univ Haryana, Amity Ctr Ocean Atmospher Sci & Technol, Gurgaon, India. RP Khatri, P (reprint author), Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan. EM pradeep@restaff.chiba-u.jp RI MARTINEZ-LOZANO, JOSE ANTONIO/B-6986-2015; Nakajima, Teruyuki/H-2370-2013 OI MARTINEZ-LOZANO, JOSE ANTONIO/0000-0002-5158-5112; Nakajima, Teruyuki/0000-0002-9042-504X FU JST/CREST/EMS, Japan; MEXT, Japan; Japan Society for the promotion of science (JSPS) [24510007]; European Regional Development Fund [GV/2014/046, CGL2011-24290, CGL2010-18782, CGL2012-33294, PROMETEUII/2014/058] FX This research was supported by "Improvement of Terrestrial Science Data Availability and Development of the Energy Demand Models for a Cooperative Distributed Energy Management System" project of JST/CREST/EMS, Japan, "Virtual Laboratory for Diagnosing the Earth's Climate System" program of MEXT, Japan, and the Japan Society for the promotion of science (JSPS) research grant (grant 24510007). The participation of the University of Valencia was possible thanks to projects from the Valencia Autonomous Government, the Spanish Ministry of Economy and Competitiveness, and the European Regional Development Fund (GV/2014/046, CGL2011-24290, CGL2010-18782, CGL2012-33294, and PROMETEUII/2014/058). All AERONET data used in this study are available at http://aeronet.gsfc.nasa.gov/. SKYNET data of Chiba (Japan), Pune (India), and Seoul (Korea) corresponding to Skyrad. pack (version 4.2) are available at http://atmos2.cr.chiba-u.jp/skynet, and those for Valencia (Spain) at http://www.euroskyrad.net/index.html. SKYNET data corresponding to other versions of Skyrad. pack can be available from the first author upon request (pradeep@restaff.chiba-u.jp). Thanks to the three reviewers for their constructive comments and suggestions on an earlier version of the manuscript. NR 37 TC 1 Z9 1 U1 4 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 1859 EP 1877 DI 10.1002/2015JD023976 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900030 ER PT J AU Zhang, YZ Wang, YH Chen, G Smeltzer, C Crawford, J Olson, J Szykman, J Weinheimer, AJ Knapp, DJ Montzka, DD Wisthaler, A Mikoviny, T Fried, A Diskin, G AF Zhang, Yuzhong Wang, Yuhang Chen, Gao Smeltzer, Charles Crawford, James Olson, Jennifer Szykman, James Weinheimer, Andrew J. Knapp, David J. Montzka, Denise D. Wisthaler, Armin Mikoviny, Tomas Fried, Alan Diskin, Glenn TI Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE NOx; 1-D model; boundary layer; vertical distribution; ozone production rate; satellite retrieval ID OZONE MONITORING INSTRUMENT; TROPOSPHERIC NO2; ATMOSPHERIC OXIDATION; CONVECTIVE-TRANSPORT; SATELLITE RETRIEVALS; COLUMN RETRIEVAL; LIGHTNING NOX; NORTH-AMERICA; CLOSURE-MODEL; MEXICO-CITY AB An often used assumption in air pollution studies is a well-mixed boundary layer (BL), where pollutants are evenly distributed. Because of the difficulty in obtaining vertically resolved measurements, the validity of the assumption has not been thoroughly evaluated. In this study, we use more than 200 vertical profiles observed in the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) aircraft campaign in July 2011 to examine the vertical distributions of pollutants over the Washington-Baltimore area. While many long-lived species are well mixed in daytime, the observed average vertical profile of NOx shows a large negative gradient with increasing altitude in the BL. Our analysis suggests that the magnitude of the NOx gradient is highly sensitive to atmospheric stability. We investigate how parameterizations of the BL and land-surface processes impact vertical profiles in a 1-D chemical transport model, using three BL schemes (Asymmetric Convective Model version 2 (ACM2), Yonsei University (YSU), and Mellor-Yamada-Janjic (MYJ)) and two land-surface schemes (Noah and Rapid Update Cycle (RUC)). The model reasonably reproduces the median vertical profiles of NOx under different BL stability conditions within 30% of observations, classified based on potential temperature gradient and BL height. Comparisons with NOx observations for individual vertical profiles reveal that while YSU performs better in the turbulent and deep BL case, in general, ACM2 (RMSE=2.0ppbv) outperforms YSU (RMSE=2.5ppbv) and MYJ (RMSE=2.2ppbv). Results also indicate that the land-surface schemes in the Weather Research and Forecasting (WRF) model have a small impact on the NOx gradient. Using model simulations, we analyze the impact of BL NOx gradient on the calculation of the ozone production rate and satellite NO2 retrieval. We show that using surface measurements and the well-mixed BL assumption causes a similar to 45% high bias in the estimated BL ozone production rate and that the variability of NO2 vertical profiles is responsible for 5-10% variability in the retrieved NO2 tropospheric vertical columns. C1 [Zhang, Yuzhong; Wang, Yuhang; Smeltzer, Charles] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Chen, Gao; Crawford, James; Olson, Jennifer; Szykman, James; Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Szykman, James] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [Weinheimer, Andrew J.; Knapp, David J.; Montzka, Denise D.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Wisthaler, Armin] Univ Innsbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria. [Wisthaler, Armin; Mikoviny, Tomas] Univ Oslo, Dept Chem, Oslo, Norway. [Mikoviny, Tomas] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Fried, Alan] Univ Colorado, Boulder, CO 80309 USA. RP Zhang, YZ (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM yzhang425@gatech.edu FU NASA ACMAP program; NASA DISCOVER-AQ program; NASA Postdoctoral Program at the Langley Research Center; NASA FX The data for this paper are available at the DISCOVER-AQ data archive (http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html). The research was supported by the NASA ACMAP and DISCOVER-AQ programs. We thank David Parrish for his discussion with Y.W. that led to the analyses reported here. PTR-MS measurements of VOCs were supported by the Austrian Federal Ministry for Transport, Innovation, and Technology (BMVIT) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). The work of T.M. was supported by an appointment to the NASA Postdoctoral Program at the Langley Research Center administered by Oak Ridge Associated Universities through a contract with NASA. NR 66 TC 4 Z9 4 U1 8 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 1922 EP 1934 DI 10.1002/2015JD024203 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900034 ER PT J AU Aydin, M Campbell, JE Fudge, TJ Cuffey, KM Nicewonger, MR Verhulst, KR Saltzman, ES AF Aydin, M. Campbell, J. E. Fudge, T. J. Cuffey, K. M. Nicewonger, M. R. Verhulst, K. R. Saltzman, E. S. TI Changes in atmospheric carbonyl sulfide over the last 54,000years inferred from measurements in Antarctic ice cores SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE carbonyl sulfide; COS; ice cores; ice core gas records; gross primary productivity ID CYCLE CHANGES; GAS-EXCHANGE; CO2; HOLOCENE; RECORD; SYNCHRONIZATION; CONSTRAINTS; CIRCULATION; METHANE; MODEL AB We measured carbonyl sulfide (COS) in air extracted from ice core samples from the West Antarctic Ice Sheet (WAIS) Divide, Antarctica, with the deepest sample dated to 54,300years before present. These are the first ice core COS measurements spanning the Last Glacial Maximum (LGM), the last glacial/interglacial transition, and the early Holocene. The WAIS Divide measurements from the LGM and the last transition are the first COS measurements in air extracted from full clathrate (bubble-free) ice. This study also includes new COS measurements from Taylor Dome, Antarctica, including some in bubbly glacial ice that are concurrent with the WAIS Divide data from clathrate glacial ice. COS hydrolyzes in ice core air bubbles, and the recovery of an atmospheric record requires correcting for this loss. The data presented here suggest that the in situ hydrolysis of COS is significantly slower in clathrate ice than in bubbly ice. The clathrate ice measurements are corrected for the hydrolysis loss during the time spent as bubbly ice only. The corrected WAIS Divide record indicates that atmospheric COS was 250-300parts per trillion (ppt) during the LGM and declined by 80-100ppt during the last glacial/interglacial transition to a minimum of 160-210ppt at the beginning of the Holocene. This decline was likely caused by an increase in the gross primary productivity of terrestrial plants, with a possible contribution from a reduction in ocean sources. COS levels were above 300ppt in the late Holocene, indicating that large changes in the COS biogeochemical cycle occurred during the Holocene. C1 [Aydin, M.; Nicewonger, M. R.; Verhulst, K. R.; Saltzman, E. S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Campbell, J. E.] Univ Calif, Environm Engn, Merced, CA USA. [Fudge, T. J.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Cuffey, K. M.] Univ Calif Berkeley, Dept Geol, Berkeley, CA 94720 USA. [Verhulst, K. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Aydin, M (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. EM maydin@uci.edu FU NSF Division of Polar Programs [PLR-1043780, PLR-0944197]; NASA FX We thank Gary Clow for borehole temperature measurements at Taylor Dome and WAIS Divide. We thank the scientists, the drillers, and the support personnel that contributed to the realization of the drilling projects at Taylor Dome and WAIS Divide. We thank UCI undergraduates Spencer Hernandez, Tina Ho, Vincent Hong, Mihai Leonte, Nancy Phu, and Michael Mori for their help with ice core gas extraction and analysis. We thank the three anonymous reviewers for their valuable comments. This work was supported by the NSF Division of Polar Programs grant PLR-1043780 for M.A., M.R.N., K.R.V., and E.S.S., and PLR-0944197 for T.J.F. T.J.F. also received support form the NASA Earth and Space Science Fellowship. Data presented in this paper can be accessed via the Antarctic Glaciological Data Center (https://nsidc.org/agdc). NR 38 TC 4 Z9 4 U1 3 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 1943 EP 1954 DI 10.1002/2015JD024235 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900036 ER PT J AU Pollack, IB Homeyer, CR Ryerson, TB Aikin, KC Peischl, J Apel, EC Campos, T Flocke, F Hornbrook, RS Knapp, DJ Montzka, DD Weinheimer, AJ Riemer, D Diskin, G Sachse, G Mikoviny, T Wisthaler, A Bruning, E MacGorman, D Cummings, KA Pickering, KE Huntrieser, H Lichtenstern, M Schlager, H Barth, MC AF Pollack, I. B. Homeyer, C. R. Ryerson, T. B. Aikin, K. C. Peischl, J. Apel, E. C. Campos, T. Flocke, F. Hornbrook, R. S. Knapp, D. J. Montzka, D. D. Weinheimer, A. J. Riemer, D. Diskin, G. Sachse, G. Mikoviny, T. Wisthaler, A. Bruning, E. MacGorman, D. Cummings, K. A. Pickering, K. E. Huntrieser, H. Lichtenstern, M. Schlager, H. Barth, M. C. TI Airborne quantification of upper tropospheric NOx production from lightning in deep convective storms over the United States Great Plains SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Lightning; nitrogen oxides; NOx production per flash; Deep Convective Clouds and Chemistry Experiment; upper tropospheric chemistry ID NITROGEN-FIXATION; RADAR OBSERVATIONS; TRANSPORT MODELS; HIGH-SENSITIVITY; BOUNDARY-LAYER; NEW-MEXICO; JULY 10; THUNDERSTORMS; SYSTEM; OZONE AB The reported range for global production of nitrogen oxides (NOx=NO+NO2) by lightning remains large (e.g., 32 to 664mol NOx flash(-1)), despite incorporating results from over 30 individual laboratory, theoretical, and field studies since the 1970s. Airborne and ground-based observations from the Deep Convective Clouds and Chemistry experiment in May and June 2012 provide a new data set for calculating moles of NOx produced per lightning flash, P(NOx), in thunderstorms over the United States Great Plains. This analysis utilizes a combination of in situ observations of storm inflow and outflow from three instrumented aircraft, three-dimensional spatial information from ground-based radars and satellite observations, and spatial and temporal information for intracloud and cloud-to-ground lightning flashes from ground-based lightning mapping arrays. Evaluation of two analysis methods (e.g., a volume-based approach and a flux-based approach) for converting enhancements in lightning-produced NOx from volume-based mixing ratios to moles NOx flash(-1) suggests that both methods equally approximate P(NOx) for storms with elongated anvils, while the volume-based approach better approximates P(NOx) for storms with circular-shaped anvils. Results from the more robust volume-based approach for three storms sampled over Oklahoma and Colorado during DC3 suggest a range of 142 to 291 (average of 194) moles NOx flash(-1) (or 117-332mol NOx flash(-1) including uncertainties). Although not vastly different from the previously reported range for storms occurring in the Great Plains (e.g., 21-465mol NOx flash(-1)), results from this analysis of DC3 storms offer more constrained upper and lower limits for P(NOx) in this geographical region. C1 [Pollack, I. B.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Homeyer, C. R.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Ryerson, T. B.; Aikin, K. C.; Peischl, J.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Aikin, K. C.; Peischl, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Apel, E. C.; Campos, T.; Flocke, F.; Hornbrook, R. S.; Knapp, D. J.; Montzka, D. D.; Weinheimer, A. J.; Barth, M. C.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Riemer, D.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. [Diskin, G.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Sachse, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Mikoviny, T.] Univ Oslo, Dept Chem, Oslo, Norway. [Wisthaler, A.] Inst Ionenphys & Angew Phys, Innsbruck, Austria. [Bruning, E.] Texas Tech Univ, Dept Geosci, Lubbock, TX 79409 USA. [MacGorman, D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Cummings, K. A.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Pickering, K. E.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Huntrieser, H.; Lichtenstern, M.; Schlager, H.] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Atmospher Phys, Oberpfaffenhofen, Germany. RP Pollack, IB (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. EM ipollack@rams.colostate.edu RI Peischl, Jeff/E-7454-2010; Pollack, Ilana/F-9875-2012; Homeyer, Cameron/D-5034-2013; Pickering, Kenneth/E-6274-2012; Aikin, Kenneth/I-1973-2013; Manager, CSD Publications/B-2789-2015 OI MacGorman, Donald/0000-0002-2395-8196; Peischl, Jeff/0000-0002-9320-7101; Homeyer, Cameron/0000-0002-4883-6670; FU U.S. National Science Foundation (NSF); National Aeronautics and Space Administration (NASA); National Oceanic and Atmospheric Administration (NOAA); Deutsches Zentrum fuer Luft- und Raumfahrt (DLR); NASA [NNH12AT30I] FX The Deep Convective Clouds and Chemistry (DC3) experiment is sponsored by the U.S. National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR). Archived field data can be accessed from http://data.eol.ucar.edu/ or http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs. NLDN data are collected by Vaisala, Inc. and archived at NASA Marshall Space Flight Center for NASA-related Earth Science research. Data provided by NCAR/EOL are supported by the National Science Foundation. Support for NOAA chemiluminescence-based measurements of O3, NO, NO2, and NOy aboard the NASA DC-8 during DC3 comes from NASA grant NNH12AT30I. Acetone/propanal measurements aboard the DC-8 during DC3 were supported by the Austrian Federal Ministry for Transport, Innovation, and Technology (BMVIT) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). The authors acknowledge R.C. Cohen and B. Nault (University of California, Berkeley) for TD-LIF NO2 measurements aboard the DC-8 aircraft, O. Cooper (NOAA) for digested images from the GOES satellite, SPEC Inc. for cloud probe measurements aboard the DC-8, K. Froyd (NOAA) and M. Markovic (Environment Canada) for providing a visual-based cloud indicator for DC-8 flights, A. Minikin and D. Fuetterer (DLR) for providing cloud probe data from the Falcon aircraft, and J. Jensen and J. Stith (NCAR/EOL) for cloud data products from the G-V. The authors appreciate discussions with S.A. Rutledge, B. Fuchs, and B. Basarab (Colorado State University) and helpful comments on the manuscript from B.A. Ridley (NCAR-emeritus) and M. Trainer (NOAA). NR 73 TC 3 Z9 3 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2016 VL 121 IS 4 BP 2002 EP 2028 DI 10.1002/2015JD023941 PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7MK UT WOS:000372977900039 ER PT J AU Aasi, J Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Ain, A Ajith, P Allen, B Allocca, A Amariutei, DV Andersen, M Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Ashton, G Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Bartlett, J Barton, MA Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Behnke, B Bejger, M Belczynski, C Bell, AS Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, D Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bojtos, P Bond, C Bondu, F Bonnand, R Bork, R Born, M Boschi, V Bose, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Branco, V Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, D Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Bustillo, JC Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Celerier, C Cella, G Cepeda, C Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chao, S Charlton, P Chassande-Mottin, E Chen, X Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Colombini, M Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Damjanic, MD Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Dia, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Dominguez, E Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Edwards, M Effler, A Eggenstein, HB Ehrens, P Eichholz, JM Eikenberry, SS Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fairhurst, S Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Feldbaum, D Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fisher, RP Flaminio, R Fournier, JD Franco, S Frasca, S Frasconi, F Frede, M Frei, Z Freise, A Frey, R Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A Gergely, LA Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gleason, JR Goetz, E Goetz, R Gondan, L Gonzalez, G Gonzalez, J Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Groot, P Grote, H Grover, K Grunewald, S Guidi, GM Guido, CJ Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammer, D Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hoelscher-Obermaier, J Hofman, D Hollitt, SE Holt, K Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh, M Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Islas, G Isler, JC Isogai, T Iyer, BR Izumi, K Jacobson, MB Jang, H Jaranowski, P Jawahar, S Ji, Y Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Karlen, JL Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kerrigan, J Key, JS Khalili, FY Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, JT Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, A Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, J Lee, JP Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Lewis, JB Li, TGF Libson, A Lin, AC Littenberg, TB Lockerbie, NA Lockett, V Lodhia, D Logue, J Lombardi, AL Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lubinski, MJ Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y Macarthur, J Macdonald, EP MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Madden-Fong, DX Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mangini, NM Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Ma, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Mastrogiovanni, S Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McWilliams, ST Meacher, D Meadors, GD Mehmet, M Meidam, J Meinders, M Melatos, A Mendell, G Mercer, RA Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, A Mukherjee, S Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nagy, MF Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Newton, G Nguyen, TT Nielsen, AB Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Okounkova, M Oppermann, P Oram, R O'Reilly, B Ortega, WE O'Shaughnessy, R Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Padilla, CT Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pan, Y Pankow, C Pannarale, F Pant, BC Paoletti, F Papa, MA Paris, HR Pasqualetti, A Passaquieti, R Passuello, D Patrick, Z Pedraza, M Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Pickenpack, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poeld, JH Poggiani, R Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rodger, AS Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosins, D Rowan, S Rud, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Sammut, L Sanchez, E Sandberg, V Sanders, JR Santiago-Prieto, I Sassolas, B Sathyaprakash, BS Saulson, PR Savage, R Sawadsky, A Schale, P Schilling, R Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Sevigny, A Shaddock, DA Shaffery, P Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, R Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Steplewski, S Stevenson, SP Stone, R Strain, KA Straniero, N Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tap, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Travasso, F Traylor, G Trifiro, D Tringali, MC Tse, M Turconi, M Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M Van Bakel, N Van Beuzekom, M Van den Brand, JFJ Van den Broeck, C Van der Schaaf, L Van der Sluys, MV Eijningen, JV Eggel, AAV Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Vousden, WD Vyatchanin, SP Wade, AR Wade, M Wade, LE Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Williams, KJ Williams, L Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Yablon, J Yakushin, I Yam, W Yamamoto, H Yancey, CC Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Aasi, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Ain, A. Ajith, P. Allen, B. Allocca, A. Amariutei, D. V. Andersen, M. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Ashton, G. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Bartlett, J. Barton, M. A. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, Sukanta Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Branco, V. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Bustillo, J. Calderon Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Celerier, C. Cella, G. Cepeda, C. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, X. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Colombini, M. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Damjanic, M. D. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. Debra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Dia, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Dominguez, E. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Edwards, M. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. M. Eikenberry, S. S. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fairhurst, S. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Feldbaum, D. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fisher, R. P. Flaminio, R. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frede, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. Gergely, L. A. Germain, V. Ghosh, A. Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gleason, J. R. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gonzalez, J. Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Groot, P. Grote, H. Grover, K. Grunewald, S. Guidi, G. M. Guido, C. J. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammer, D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hoelscher-Obermaier, J. Hofman, D. Hollitt, S. E. Holt, K. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh, M. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Islas, G. Isler, J. C. Isogai, T. Iyer, B. R. Izumi, K. Jacobson, M. B. Jang, H. Jaranowski, P. Jawahar, S. Ji, Y. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Karlen, J. L. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kerrigan, J. Key, J. S. Khalili, F. Y. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, K. Kim, N. G. Kim, N. Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. T. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, A. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, J. Lee, J. P. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Lewis, J. B. Li, T. G. F. Libson, A. Lin, A. C. Littenberg, T. B. Lockerbie, N. A. Lockett, V. Lodhia, D. Logue, J. Lombardi, A. L. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lubinski, M. J. Luck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. Macarthur, J. Macdonald, E. P. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Madden-Fong, D. X. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mangini, N. M. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Ma, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Mastrogiovanni, S. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McWilliams, S. T. Meacher, D. Meadors, G. D. Mehmet, M. Meidam, J. Meinders, M. Melatos, A. Mendell, G. Mercer, R. A. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, A. Mukherjee, S. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nagy, M. F. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Newton, G. Nguyen, T. T. Nielsen, A. B. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Okounkova, M. Oppermann, P. Oram, R. O'Reilly, B. Ortega, W. E. O'Shaughnessy, R. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Padilla, C. T. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pan, Y. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Papa, M. A. Paris, H. R. Pasqualetti, A. Passaquieti, R. Passuello, D. Patrick, Z. Pedraza, M. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Pickenpack, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poeld, J. H. Poggiani, R. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Purrer, M. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rodger, A. S. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosins, D. Rowan, S. Rud, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Saleem, M. Salemi, F. Sammut, L. Sanchez, E. Sandberg, V. Sanders, J. R. Santiago-Prieto, I. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Savage, R. Sawadsky, A. Schale, P. Schilling, R. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schonbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Sevigny, A. Shaddock, D. A. Shaffery, P. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, R. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Steplewski, S. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tap, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Tse, M. Turconi, M. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. Van Bakel, N. Van Beuzekom, M. Van den Brand, J. F. J. Van den Broeck, C. Van der Schaaf, L. Van der Sluys, M. V. Eijningen, J. V. Eggel, A. A. V. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinet, J-Y Vitale, S. Vo, T. Vocca, H. Vorvick, C. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, M. Wade, L. E. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Williams, K. J. Williams, L. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Yablon, J. Yakushin, I. Yam, W. Yamamoto, H. Yancey, C. C. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zhang, Fan Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Sci Collaboration Virgo TI First low frequency all-sky search for continuous gravitational wave signals SO PHYSICAL REVIEW D LA English DT Article ID PERIODIC SOURCES; HIERARCHICAL SEARCH; NEUTRON-STARS; EMISSION AB In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 x 10(-10) and +1.5 x 10(-11) Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the Frequency Hough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the Frequency Hough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10(-24) and 2 x 10(-23) at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of similar to 2 with respect to the results of previous all-sky searches at frequencies below 80 Hz. C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Dooley, K. L.; Drever, R. W. P.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M. B.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Amariutei, D. V.; Brown, D.; Ciani, G.; Eichholz, J. M.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J. R.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; Doravari, S.; Evans, T. M.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO Livingston Observ Livingston, Livingston, LA 70754 USA. [Adams, T.; Coughlin, S. B.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Macdonald, E. P.; Ohme, F.; Pannarale, F.; Predoi, V.; Purrer, M.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.] INFN, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bock, O.; Born, M.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Damjanic, M. D.; Danzmann, K.; Denker, T.; Dent, T.; Eggenstein, H. -B.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Goetz, E.; Gossler, S.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Koehlenbeck, S. M.; Korobko, M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Luck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mehmet, M.; Meinders, M.; Mossavi, K.; Nielsen, A. B.; Oppermann, P.; Pal-Singh, A.; Pickenpack, M.; Poeld, J. H.; Post, A.; Prix, R.; Puncken, O.; Rud, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schonbeck, A.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Vahlbruch, H.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bertolini, A.; Bloemen, S.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Shah, S.; Van Bakel, N.; Van Beuzekom, M.; Van den Brand, J. F. J.; Van den Broeck, C.; Van der Schaaf, L.; Van der Sluys, M. V.; Eijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Lee, J. P.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Zhang, Fan; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Paulo, Brazil. [Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, A.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Hammer, D.; Huynh, M.; Kline, J. T.; Manske, M.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, M.; Wade, L. E.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Danzmann, K.; Hoelscher-Obermaier, J.; Kaufer, S.; Krueger, C.; Luck, H.; Sawadsky, A.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.] Univ Siena, I-53100 Siena, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez, J.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Razzano, M.; Tonelli, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Andersen, M.; Bassiri, R.; Byer, R. L.; Celerier, C.; Debra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Madden-Fong, D. X.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Lockett, V.; Padilla, C. T.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, IN2P3, CNRS, LAL, F-91898 Orsay, France. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Majorana, E.; Mangano, V.; Mastrogiovanni, S.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Ming, J.; Papa, M. A.; Privitera, S.; Raymond, V.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Colombini, M.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Pillant, G.; Prijatelj, M.; Ruggi, P.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, J. C.; Kelley, D. B.; Lackey, B. D.; Lough, J. D.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Craig, K.; Cumming, A.; Cunningham, L.; Davies, G. S.; Douglas, R.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Jones, R.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rodger, A. S.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Eggel, A. A. V.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Clara, F.; Cook, D.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barone, F.; Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, CEA Irfu, Observ Paris,APC,CNRS,IN2P3, F-75205 Paris 13, France. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Ma, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez, J.; Passaquieti, R.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Bejger, M.; Rosins, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Grover, K.; Haster, C. -J.; Lodhia, D.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Sidery, T. L.; Stevenson, S. P.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D.; Chen, X.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Shah, S.; Van der Sluys, M. V.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y; Wei, L. -W.] Univ Nice Sophia Antipolis, CNRS, ARTEMIS, F-06304 Nice, France. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y; Wei, L. -W.] Observ Cote Azur, F-06304 Nice, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, Sukanta; Hall, B. R.; Magee, R. M.; Mazumder, N.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Branco, V.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chen, X.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.] ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, F-75005 Paris, France. [Bulten, H. J.; Van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Lyon, France. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears, IEEC, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Graff, P. B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Guo, X.; Ji, Y.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Re, V.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Gossan, S. E.; Okounkova, M.; Ott, C. D.; Thorne, K. S.; Vallisneri, M.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Chow, J. H.; Mansell, G. L.; McClelland, D. E.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Coccia, E.; Fafone, V.; Lorenzini, M.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Leaci, P.; Mangano, V.; Mastrogiovanni, S.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Lasky, P. D.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Dia, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Nagy, M. F.; Racz, I.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Dominguez, E.; Ortega, W. E.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Everett, R.; Hanna, C.; Idrisy, A.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Farr, B.] Univ Chicago, Chicago, IL 60637 USA. [Gair, J. R.; Principe, M.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Tap, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Gupta, M. K.; Khan, Z.; Kumar, A.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Karlen, J. L.; Kerrigan, J.; Lombardi, A. L.; Mangini, N. M.; McIver, J.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Kalogera, V.; Littenberg, T. B.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, K.; Lee, H. K.; Lee, J.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.; Shaffery, P.] Seoul Natl Univ, Seoul 151742, South Korea. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.; Williams, K. J.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.; Williams, K. J.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil. [Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 280 Boyer Ave, Walla Walla, WA 9936 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosins, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Aasi, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Costa, Cesar/G-7588-2012; Puppo, Paola/J-4250-2012; Iyer, Bala R./E-2894-2012; Strain, Kenneth/D-5236-2011; prodi, giovanni/B-4398-2010; Gorodetsky, Michael/C-5938-2008; Gemme, Gianluca/C-7233-2008; Strigin, Sergey/I-8337-2012; Rocchi, Alessio/O-9499-2015; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Bell, Angus/E-7312-2011; Nelemans, Gijs/D-3177-2012; Piccinni, Ornella Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Zhu, Xingjiang/E-1501-2016; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Groot, Paul/K-4391-2016; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Garufi, Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; OI Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Berry, Christopher/0000-0003-3870-7215; Kanner, Jonah/0000-0001-8115-0577; Tokmakov, Kirill/0000-0002-2808-6593; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Zhang, Liang/0000-0002-6317-0395; Collette, Christophe/0000-0002-4430-3703; Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315; Mastrogiovanni, Simone/0000-0003-1606-4183; Naticchioni, Luca/0000-0003-2918-0730; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Puppo, Paola/0000-0003-4677-5015; Iyer, Bala R./0000-0002-4141-5179; Strain, Kenneth/0000-0002-2066-5355; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Gemme, Gianluca/0000-0002-1127-7406; Rocchi, Alessio/0000-0002-1382-9016; Heidmann, Antoine/0000-0002-0784-5175; Bell, Angus/0000-0003-1523-0821; Nelemans, Gijs/0000-0002-0752-2974; Piccinni, Ornella Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793; Zhu, Xingjiang/0000-0001-7049-6468; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Groot, Paul/0000-0002-4488-726X; Lazzaro, Claudia/0000-0001-5993-3372; De Laurentis, Martina/0000-0002-3815-4078; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Garufi, Fabio/0000-0003-1391-6168; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Swinkels, Bas/0000-0002-3066-3601; O'Shaughnessy, Richard/0000-0001-5832-8517; Dolique, Vincent/0000-0001-5644-9905; Boschi, Valerio/0000-0001-8665-2293; Gatto, Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431 FU Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science and Engineering Research Board, India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat; Cultura i Universitats of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter - Netherlands Organisation for Scientific Research; National Science Centre of Poland; European Union; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Hungarian Scientific Research Fund; Lyon Institute of Origins; National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Brazilian Ministry of Science, Technology, and Innovation; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; Conselleria d'Educacio FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max Planck Society (MPS), and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the French Centre National de la Recherche Scientifique (CNRS) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Australian Research Council; the International Science Linkages program of the Commonwealth of Australia; the Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science and Engineering Research Board, India; Ministry of Human Resource Development, India; the Spanish Ministerio de Economia y Competitividad; the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research; the National Science Centre of Poland; the European Union; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the National Aeronautics and Space Administration; the Hungarian Scientific Research Fund; the Lyon Institute of Origins; the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the National Science and Engineering Research Council Canada; the Brazilian Ministry of Science, Technology, and Innovation; the Carnegie Trust; the Leverhulme Trust; the David and Lucile Packard Foundation; the Research Corporation; and the Alfred P. Sloan Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/ Germany for the provision of computational resources. The authors are also grateful to the anonymous referees for their comments, which helped to improve the clarity of the paper. NR 29 TC 5 Z9 5 U1 9 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 25 PY 2016 VL 93 IS 4 AR 042007 DI 10.1103/PhysRevD.93.042007 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DE7HT UT WOS:000370807300001 ER PT J AU Barkett, K Scheel, MA Haas, R Ott, CD Bernuzzi, S Brown, DA Szilagyi, B Kaplan, JD Lippuner, J Muhlberger, CD Foucart, F Duez, MD AF Barkett, Kevin Scheel, Mark A. Haas, Roland Ott, Christian D. Bernuzzi, Sebastiano Brown, Duncan A. Szilagyi, Bela Kaplan, Jeffrey D. Lippuner, Jonas Muhlberger, Curran D. Foucart, Francois Duez, Matthew D. TI Gravitational waveforms for neutron star binaries from binary black hole simulations SO PHYSICAL REVIEW D LA English DT Article AB Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of <1 radian over similar to 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter lambda. C1 [Barkett, Kevin; Scheel, Mark A.; Haas, Roland; Ott, Christian D.; Bernuzzi, Sebastiano; Kaplan, Jeffrey D.; Lippuner, Jonas] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Pasadena, CA 91125 USA. [Haas, Roland] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Potsdam, Germany. [Bernuzzi, Sebastiano] Univ Parma, DiFeST, I-43124 Parma, Italy. [Bernuzzi, Sebastiano] INFN Parma, I-43124 Parma, Italy. [Brown, Duncan A.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Szilagyi, Bela] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Muhlberger, Curran D.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Foucart, Francois] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Foucart, Francois] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. [Duez, Matthew D.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. RP Barkett, K (reprint author), CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Pasadena, CA 91125 USA. EM kbarkett@caltech.edu RI Ott, Christian/G-2651-2011; OI Ott, Christian/0000-0003-4993-2055; Lippuner, Jonas/0000-0002-5936-3485 FU Sherman Fairchild Foundation; NASA through Einstein Postdoctoral Fellowship [PF4-150122]; NASA [NAS8-03060]; NSF [PHY-0960291, PHY-1404569, AST-1333520, AST-1333142, PHY-1306125, AST-1333129]; NSF XSEDE network [TG-PHY990007N]; NSF PRAC Grant [ACI-1440083]; Canada Foundation for Innovation (CFI) under the Compute Canada; Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; University of Toronto FX We thank Harald Pfeiffer and Sanjay Reddy for helpful discussions. This work was supported in part by the Sherman Fairchild Foundation and NSF Grants No. PHY-1404569 and No. AST-1333520 at Caltech, NSF Grant No. AST-1333142 at Syracuse University, the Sherman Fairchild Foundation and NSF Grants No. PHY-1306125 and No. AST-1333129 at Cornell University and by NASA through Einstein Postdoctoral Fellowship Grant No. PF4-150122 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under Contract No. NAS8-03060. Computations were performed on the Zwicky cluster at Caltech, which is supported by the Sherman Fairchild Foundation and by NSF Grant No. PHY-0960291; on the NSF XSEDE network under Grant No. TG-PHY990007N; on the NSF/NCSA Blue Waters at the University of Illinois with allocation jr6 under NSF PRAC Grant No. ACI-1440083; and on the GPC supercomputer at the SciNet HPC Consortium [60]; SciNet is funded by the Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; and the University of Toronto. NR 58 TC 3 Z9 3 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 24 PY 2016 VL 93 IS 4 AR 044064 DI 10.1103/PhysRevD.93.044064 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DE7HP UT WOS:000370806900005 ER PT J AU Turyshev, SG Yu, N Toth, VT AF Turyshev, Slava G. Yu, Nan Toth, Viktor T. TI General relativistic observables for the ACES experiment SO PHYSICAL REVIEW D LA English DT Article ID TIME TRANSFER; LASER LINK AB We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light-time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient J(2) and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudoinertial at the level of accuracy required by the experiment. We construct a Doppler-canceled science observable representing the gravitational redshift. We derive accuracy requirements for ISS navigation. The improved model is accurate up to < 1 ps and similar to 4 x 10(-17) for time and frequency transfers, correspondingly. These limits are determined by the higher-order harmonics in Earth's gravitational potential. C1 [Turyshev, Slava G.; Yu, Nan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Toth, Viktor/D-3502-2009 OI Toth, Viktor/0000-0003-3651-9843 NR 48 TC 1 Z9 1 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 23 PY 2016 VL 93 IS 4 AR 045027 DI 10.1103/PhysRevD.93.045027 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DE7HJ UT WOS:000370806200010 ER PT J AU Flanigan, D McCarrick, H Jones, G Johnson, BR Abitbol, MH Ade, P Araujo, D Bradford, K Cantor, R Che, G Day, P Doyle, S Kjellstrand, CB Leduc, H Limon, M Luu, V Mauskopf, P Miller, A Mroczkowski, T Tucker, C Zmuidzinas, J AF Flanigan, D. McCarrick, H. Jones, G. Johnson, B. R. Abitbol, M. H. Ade, P. Araujo, D. Bradford, K. Cantor, R. Che, G. Day, P. Doyle, S. Kjellstrand, C. B. Leduc, H. Limon, M. Luu, V. Mauskopf, P. Miller, A. Mroczkowski, T. Tucker, C. Zmuidzinas, J. TI Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID FLUCTUATIONS AB We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP approximate to 2 x 10(-17) WH z(-1/2), referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP proportional to P for broadband (chaotic) illumination and NEP proportional to P-1/2 for continuous-wave (coherent) illumination. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Araujo, D.; Kjellstrand, C. B.; Limon, M.; Luu, V.; Miller, A.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Ade, P.; Doyle, S.; Mauskopf, P.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bradford, K.; Mauskopf, P.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Cantor, R.] STAR Cryoelect, Santa Fe, NM 87508 USA. [Che, G.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Day, P.; Leduc, H.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mroczkowski, T.] US Navy, Res Lab, Washington, DC 20375 USA. [Zmuidzinas, J.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. RP Flanigan, D (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM daniel.flanigan@columbia.edu OI Limon, Michele/0000-0002-5900-2698; Mroczkowski, Tony/0000-0003-3816-5372 FU NASA; National Research Council Fellowship; Research Initiatives for Science and Engineering program at Columbia University; internal Columbia University FX R.C. is both an author and the owner of STAR Cryoelectronics. H.M. is supported by a NASA Earth and Space Sciences Fellowship. T.M. is supported by a National Research Council Fellowship. This research is supported, in part, by a grant from the Research Initiatives for Science and Engineering program at Columbia University to B.R.J. and by internal Columbia University funding to A.M. We thank the Xilinx University Program for their donation of FPGA hardware and software tools used in the readout system. We thank the anonymous reviewers for thoughtful and helpful comments. NR 18 TC 2 Z9 2 U1 6 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 22 PY 2016 VL 108 IS 8 AR 083504 DI 10.1063/1.4942804 PG 5 WC Physics, Applied SC Physics GA DH8PO UT WOS:000373057000055 ER PT J AU Galametz, M Hony, S Albrecht, M Galliano, F Cormier, D Lebouteiller, V Lee, MY Madden, SC Bolatto, A Bot, C Hughes, A Israel, F Meixner, M Oliviera, JM Paradis, D Pellegrini, E Roman-Duval, J Rubio, M Sewilo, M Fukui, Y Kawamura, A Onishi, T AF Galametz, M. Hony, S. Albrecht, M. Galliano, F. Cormier, D. Lebouteiller, V. Lee, M. Y. Madden, S. C. Bolatto, A. Bot, C. Hughes, A. Israel, F. Meixner, M. Oliviera, J. M. Paradis, D. Pellegrini, E. Roman-Duval, J. Rubio, M. Sewilo, M. Fukui, Y. Kawamura, A. Onishi, T. TI The dust properties and physical conditions of the interstellar medium in the LMC massive star-forming complex N11 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE ISM: general; galaxies: dwarf; galaxies: ISM; Magellanic Clouds; infrared: ISM; submillimetre: ISM ID LARGE-MAGELLANIC-CLOUD; SPECTRAL ENERGY-DISTRIBUTION; SPITZER-SPACE-TELESCOPE; GIANT MOLECULAR CLOUDS; H-II REGIONS; MULTIBAND IMAGING PHOTOMETER; CO-TO-H-2 CONVERSION FACTOR; GALAXY EVOLUTION SAGE; INFRARED ARRAY CAMERA; ABSOLUTE CALIBRATION AB We combine Spitzer and Herschel data of the star-forming region N11 in the Large Magellanic Cloud (LMC) to produce detailed maps of the dust properties in the complex and study their variations with the interstellar-medium conditions. We also compare Atacama Pathfinder EXperiment/Large APEX Bolometer Camera (APEX/LABOCA) 870 mu m observations with our model predictions in order to decompose the 870 mu m emission into dust and non-dust [free-free emission and CO(3-2) line] contributions. We find that in N11, the 870 mu m can be fully accounted for by these three components. The dust surface density map of N11 is combined with H I and CO observations to study local variations in the gas-to-dust mass ratios. Our analysis leads to values lower than those expected from the LMC low-metallicity as well as to a decrease of the gas-to-dustmass ratio with the dust surface density. We explore potential hypotheses that could explain the low 'observed' gas-to-dust mass ratios (variations in the XCO factor, presence of CO-dark gas or of optically thick H I or variations in the dust abundance in the dense regions). We finally decompose the local spectral energy distributions (SEDs) using a principal component analysis (i.e. with no a priori assumption on the dust composition in the complex). Our results lead to a promising decomposition of the local SEDs in various dust components (hot, warm, cold) coherent with that expected for the region. Further analysis on a larger sample of galaxies will follow in order to understand how unique this decomposition is or how it evolves from one environment to another. C1 [Galametz, M.] European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Hony, S.; Cormier, D.; Pellegrini, E.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69120 Heidelberg, Germany. [Albrecht, M.] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany. [Galliano, F.; Lebouteiller, V.; Lee, M. Y.; Madden, S. C.] Univ Paris Diderot, IRFU Serv Astrophys, Lab AIM, CEA, Bat 709, F-91191 Gif Sur Yvette, France. [Bolatto, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bolatto, A.] Univ Maryland, Lab Millimeter Wave Astron, College Pk, MD 20742 USA. [Bot, C.] Univ Strasbourg, Observ Astron Strasbourg, UMR 7550, 11 Rue Univ, F-67000 Strasbourg, France. [Hughes, A.; Paradis, D.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Israel, F.] Leiden Univ, Sterrewacht Leiden, POB 9513, NL-2300 RA Leiden, Netherlands. [Meixner, M.; Roman-Duval, J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Meixner, M.] Johns Hopkins Univ, Dept Phys & Astron, Bloomberg Ctr 366, 3400 N Charles St, Baltimore, MD 21218 USA. [Oliviera, J. M.] Keele Univ, Lennard Jones Labs, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Paradis, D.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. [Pellegrini, E.] Univ Toledo, Dept Phys Astron, Mail Drop 111,2801 West Bancroft St, Toledo, OH 43606 USA. [Rubio, M.] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile. [Sewilo, M.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Sewilo, M.] ORAU, Oak Ridge, TN 37831 USA. [Fukui, Y.; Kawamura, A.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya 4648602, Japan. [Onishi, T.] Osaka Prefecture Univ, Dept Phys Sci, Gakuen 1-1, Sakai, Osaka 5998531, Japan. RP Galametz, M (reprint author), European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM maud.galametz@eso.org OI Bot, Caroline/0000-0001-6118-2985; Lebouteiller, Vianney/0000-0002-7716-6223 FU NASA Herschel Science Center, JPL [1381522, 1381650, 1350371]; NASA [NNX14AN06G]; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); UKSA (UK); NASA (USA) FX We would like to first thank the referee for his/her careful reading of this paper and useful suggestions. We would also like to thank Karl Gordon for providing us with the reprocessed Herschel maps and the MegaSAGE consortium for our motivating collaboration and meetings. We acknowledge financial support from the NASA Herschel Science Center, JPL contracts no. 1381522, no. 1381650 and no. 1350371. Meixner acknowledges support from NASA grant, NNX14AN06G, for this work. This publication is based on data acquired with the Herschel Space Observatory. The Herschel/PACS instrument has been developed by MPE (Germany); UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). The Herschel/SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including the following: University of Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); and Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). This publication is also based on data acquired with the APEX. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory and the Onsala Space Observatory. NR 107 TC 3 Z9 3 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 21 PY 2016 VL 456 IS 2 BP 1767 EP 1790 DI 10.1093/mnras/stv2773 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7KW UT WOS:000372264200046 ER PT J AU Marchetti, L Vaccari, M Franceschini, A Arumugam, V Aussel, H Bethermin, M Bock, J Boselli, A Buat, V Burgarella, D Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Farrah, D Feltre, A Glenn, J Griffin, M Hatziminaoglou, E Heinis, S Ibar, E Ivison, RJ Nguyen, HT O'Halloran, B Oliver, SJ Page, MJ Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rigopoulou, D Roseboom, IG Rowan-Robinson, M Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Symeonidis, M Valtchanov, I Viero, M Wang, L Wardlow, J Xu, CK Zemcov, M AF Marchetti, L. Vaccari, M. Franceschini, A. Arumugam, V. Aussel, H. Bethermin, M. Bock, J. Boselli, A. Buat, V. Burgarella, D. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Farrah, D. Feltre, A. Glenn, J. Griffin, M. Hatziminaoglou, E. Heinis, S. Ibar, E. Ivison, R. J. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Page, M. J. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rigopoulou, D. Roseboom, I. G. Rowan-Robinson, M. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Symeonidis, M. Valtchanov, I. Viero, M. Wang, L. Wardlow, J. Xu, C. K. Zemcov, M. TI The HerMES submillimetre local and low-redshift luminosity functions SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: luminosity function, mass function; galaxies: statistics; submillimetre: galaxies ID STAR-FORMATION RATE; ACTIVE GALACTIC NUCLEI; EXTRAGALACTIC LEGACY SURVEY; STELLAR MASS FUNCTION; PHOTOMETRIC REDSHIFTS; FORMATION HISTORY; SOURCE EXTRACTION; FORMING GALAXIES; DEEP-FIELD; SPECTROSCOPIC SURVEY AB We used wide-area surveys over 39 deg(2) by the HerMES (Herschel Multi-tiered Extragalactic Survey) collaboration, performed with the Herschel Observatory SPIRE multiwavelength camera, to estimate the low-redshift, 0.02 < z < 0.5, monochromatic luminosity functions (LFs) of galaxies at 250, 350 and 500 mu m. Within this redshift interval, we detected 7087 sources in five independent sky areas, similar to 40 per cent of which have spectroscopic redshifts, while for the remaining objects photometric redshifts were used. The SPIRE LFs in different fields did not show any field-to-field variations beyond the small differences to be expected from cosmic variance. SPIRE flux densities were also combined with Spitzer photometry and multiwavelength archival data to perform a complete spectral energy distribution fitting analysis of SPIRE detected sources to calculate precise k-corrections, as well as the bolometric infrared (IR; 8-1000 mu m) LFs and their low-z evolution from a combination of statistical estimators. Integration of the latter prompted us to also compute the local luminosity density and the comoving star formation rate density (SFRD) for our sources, and to compare them with theoretical predictions of galaxy formation models. The LFs show significant and rapid luminosity evolution already at low redshifts, 0.02 < z < 0.2, with L-IR* proportional to (1 + z)(6.0 +/- 0.4) and Phi(IR)* proportional to (1 + z)(-2.1 +/- 0.4), L-250* (1 + z)(5.3 +/- 0.2) and Phi(250)* proportional to (1 + z)(-0.6 +/- 0.4) estimated using the IR bolometric and the 250 mu m LFs, respectively. Converting our IR LD estimate into an SFRD assuming a standard Salpeter initial mass function and including the unobscured contribution based on the UV dust-uncorrected emission from local galaxies, we estimate an SFRD scaling of SFRD0 + 0.08z, where SFRD0 similar or equal to (1.9 +/- 0.03) x 10(-2) [M-circle dot Mpc(-3)] is our total SFRD estimate at z similar to 0.02. C1 [Marchetti, L.; Pearson, C. P.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Marchetti, L.; Vaccari, M.; Franceschini, A.] Univ Padua, Dipartimento Fis & Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy. [Vaccari, M.] Univ Western Cape, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Cape Town, South Africa. [Vaccari, M.] INAF Ist Radioastron, Via Gobetti 101, I-40129 Bologna, Italy. [Arumugam, V.; Ivison, R. J.; Roseboom, I. G.] Univ Edinburgh, Royal Observ, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Aussel, H.; Bethermin, M.] Univ Paris Diderot, CE Saclay, CNRS, Lab AIM Paris Saclay,CEA,DSM,Irfu, Pt Courrier 131, F-91191 Gif Sur Yvette, France. [Bethermin, M.] Univ Paris 11, IAS, Batiment 121, F-91405 Orsay, France. [Bethermin, M.] CNRS, UMR 8617, Batiment 121, F-91405 Orsay, France. [Bethermin, M.; Hatziminaoglou, E.] ESO, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Bock, J.; Cooray, A.; Dowell, C. D.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Viero, M.; Xu, C. K.; Zemcov, M.] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.; Heinis, S.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Clements, D. L.; O'Halloran, B.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Conley, A.; Glenn, J.] Univ Colorado, Ctr Astrophys & Space Astron UCB 389, Boulder, CO 80309 USA. [Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, E-28691 Madrid, Spain. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Feltre, A.] Univ Paris 04, UPMC CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA UCB 389, Boulder, CO 80309 USA. [Griffin, M.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Queens Buildings, Cardiff CF24 3AA, S Glam, Wales. [Ibar, E.] Univ Valparaiso, Inst Fis & Astron, Avda Gran Bretana 1111, Valparaiso, Chile. [Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Oliver, S. J.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Perez-Fournon, I.] IAC, E-38200 Tenerife, Spain. [Perez-Fournon, I.] ULL, Dept Astrofis, E-38205 Tenerife, Spain. [Rigopoulou, D.] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. [Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Jet Prop Lab, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Scott, Douglas] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Seymour, N.] Curtin Univ, Int Ctr Radio Astron Res, Perth, WA 6102, Australia. [Wang, L.] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England. [Wang, L.] SRON Netherlands Inst Space Res, Landleven 12, NL-9747 AD Groningen, Netherlands. [Wardlow, J.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. RP Marchetti, L (reprint author), Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.; Marchetti, L (reprint author), Univ Padua, Dipartimento Fis & Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy. EM marchetti.lu@gmail.com RI Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Wardlow, Julie/C-9903-2015; OI Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Wardlow, Julie/0000-0003-2376-8971; Scott, Douglas/0000-0002-6878-9840; Seymour, Nicholas/0000-0003-3506-5536 FU Science and Technology Facilities Council (STFC) [ST/J001597/1]; ASI [I/005/07/1, I/005/11/0]; Danish National Research Foundation; Square Kilometre Array South Africa project; South African National Research Foundation; Department of Science and Technology [DST/CON 0134/2014]; European Commission Research Executive Agency [FP7-SPACE-2013-1 GA 607254]; Italian Ministry for Foreign Affairs and International Cooperation [PGR GA ZA14GR02]; ARC; ERC [321323-NEOGAL]; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX Lucia Marchetti (LM) acknowledges support from the Science and Technology Facilities Council (STFC) under grant ST/J001597/1. Lucia Marchetti, Mattia Vaccari and Alberto Franceschini acknowledge support from ASI 'Herschel Science' Contracts I/005/07/1 and I/005/11/0. Mattia Negrello produced additional predictions based on his models. Julie Wardlow acknowledges the Dark Cosmology Centre funded by the Danish National Research Foundation. Mattia Vaccari acknowledges support from the Square Kilometre Array South Africa project, the South African National Research Foundation and Department of Science and Technology (DST/CON 0134/2014), the European Commission Research Executive Agency (FP7-SPACE-2013-1 GA 607254) and the Italian Ministry for Foreign Affairs and International Cooperation (PGR GA ZA14GR02). Nicholas Seymour is the recipient of an ARC Future Fellowship. Anna Feltre acknowledges support from the ERC via an Advanced Grant under grant agreement no. 321323-NEOGAL. This work makes use of STILTS http://www.starlink.ac.uk/stilts/and TOPCAT (Taylor 2005). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). The authors would like to thank the anonymous referee for helpful comments. NR 98 TC 4 Z9 4 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 21 PY 2016 VL 456 IS 2 BP 1999 EP 2023 DI 10.1093/mnras/stv2717 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7KW UT WOS:000372264200063 ER PT J AU Agol, E Deck, K AF Agol, Eric Deck, Katherine TI TRANSIT TIMING TO FIRST ORDER IN ECCENTRICITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: detection; planets and satellites: dynamical evolution and stability; planets and satellites: fundamental parameters ID MULTIPLE-PLANET SYSTEMS; LOW-DENSITY PLANETS; KEPLER PLANETS; TERRESTRIAL PLANETS; EXTRASOLAR PLANETS; LOW-MASS; CONFIRMATION; VALIDATION; EXOPLANETS; MODELS AB Characterization of transiting planets with transit timing variations (TTVs) requires understanding how to translate the observed TTVs into masses and orbital elements of the planets. This can be challenging in multi-planet transiting systems, but fortunately these systems tend to be nearly plane-parallel and low eccentricity. Here we present a novel derivation of analytic formulae for TTVs that are accurate to first order in the planet-star mass ratios and in the orbital eccentricities. These formulae are accurate in proximity to first-order resonances, as well as away from resonance, and compare well with more computationally expensive N-body integrations in the low-eccentricity, low mass-ratio regime when applied to simulated and to actual multi-transiting Kepler planet systems. We make code available for implementing these formulae. C1 [Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Agol, Eric] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Agol, Eric] NASA, Astrobiol Inst Virtual Planetary Lab, Seattle, WA 98195 USA. [Deck, Katherine] CALTECH, Div Geol & Planetary Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA. RP Agol, E (reprint author), Univ Washington, Dept Astron, Seattle, WA 98195 USA.; Agol, E (reprint author), Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.; Agol, E (reprint author), NASA, Astrobiol Inst Virtual Planetary Lab, Seattle, WA 98195 USA. EM agol@uw.edu OI /0000-0002-0802-9145 FU NASA [NNX13AF20G, NNX13AF62G, NNH05ZDA001C]; NASA Astrobiology Institutes Virtual Planetary Laboratory; National Science Foundation [NSF PHY11-25915]; Joint Center for Planetary Astronomy fellowship FX E.A. acknowledges support from NASA grants NNX13AF20G, NNX13AF62G, and NASA Astrobiology Institutes Virtual Planetary Laboratory, supported by NASA under cooperative agreement NNH05ZDA001C. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915. E.A. thanks the Kavli Institute for Theoretical Physics and the organizers of the "Dynamics and Evolution of Earth-like Planets" workshop, where a portion of this work was completed; this manuscript is preprint number NSF-KITP-15-132. K.D. acknowledges support from the Joint Center for Planetary Astronomy fellowship. We thank Jack Wisdom for sharing laplace.c, which computes Laplace coefficients and their derivatives with series summation; we thank Eric Ford for advice on implementation of the formula in Julia; and we thank Brett Morris and Ethan Kruse for advice on implementation of the formula in Python (requested by the referee). NR 53 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 177 DI 10.3847/0004-637X/818/2/177 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800076 ER PT J AU Basu-Zych, AR Lehmer, B Fragos, T Hornschemeier, A Yukita, M Zezas, A Ptak, A AF Basu-Zych, Antara R. Lehmer, Bret Fragos, Tassos Hornschemeier, Ann Yukita, Mihoko Zezas, Andreas Ptak, Andy TI EXPLORING THE OVERABUNDANCE OF ULXs IN METAL- AND DUST-POOR LOCAL LYMAN BREAK ANALOGS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: individual (Haro 11, VV 114); galaxies: starburst; X-rays: binaries; X-rays: galaxies ID X-RAY SOURCES; STAR-FORMATION RATE; MASS-METALLICITY RELATION; CHANDRA MONITORING OBSERVATIONS; ULTRAVIOLET-LUMINOUS GALAXIES; NEARBY STARBURST GALAXIES; COMPACT OBJECT FORMATION; UV-SELECTED GALAXIES; BLACK-HOLE BINARIES; MERGER VV 114 AB We have studied high-mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z > 2) Lyman break galaxies and, within the larger sample of Lyman break analogs (LBAs), they are sufficiently nearby (<87 Mpc) to be spatially resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV. luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12 + log[O/H] = 8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e.,. neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this paper, we have performed an in-depth study of the only two LBAs that have spatially resolved 2-10 keV. emission with Chandra. to present the bright end of the X-ray luminosity distribution of HMXBs (L-X greater than or similar to 10(39) erg s(-1); ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on eight detected ULXs. Compared with the star-forming galaxy X-ray luminosity function (XLF) presented by Mineo et al., Haro 11 and VV 114 host approximate to 4 times more L-X > 10(40) erg s(-1). sources than expected given their SFRs. We simulate the effects of source blending from crowded lower-luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. We find that these LBAs have a shallower bright-end slope (gamma(2) = 1.90) than the standard XLF (gamma(2) = 2.73). If we conservatively assume that the brightest X-ray source from each galaxy is powered by an accreting supermassive black hole rather than an HMXB and eliminate these sources from consideration, the luminosity distribution becomes poorly constrained but does appear to be consistent with a standard XLF. C1 [Basu-Zych, Antara R.; Lehmer, Bret; Hornschemeier, Ann; Yukita, Mihoko; Ptak, Andy] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Basu-Zych, Antara R.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Lehmer, Bret] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA. [Lehmer, Bret] Univ Arkansas, Dept Phys, 825 West Dickson St, Fayetteville, AR 72701 USA. [Fragos, Tassos] Univ Geneva, Observ Geneva, Chemin Maillettes 51, CH-1290 Sauverny, Switzerland. [Yukita, Mihoko] Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. [Zezas, Andreas] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Zezas, Andreas] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. [Zezas, Andreas] Univ Crete, Inst Theoret & Computat Phys, Iraklion 71003, Crete, Greece. [Zezas, Andreas] Fdn Res & Technol Hellas, Iraklion 71110, Crete, Greece. RP Basu-Zych, AR (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.; Basu-Zych, AR (reprint author), Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RI Yukita, Mihoko/E-4135-2017; Zezas, Andreas/C-7543-2011; Fragos, Tassos/A-3581-2016 OI Zezas, Andreas/0000-0001-8952-676X; Fragos, Tassos/0000-0003-1474-1523 FU NASA Astrophysics Data Analysis Program (ADAP) [09-ADP09-0071]; Swiss National Science Foundation [PZ00P2_148123]; European Research Council under the European Union/ERC [617001]; NASA/ADAP [NNX12AN05G] FX We thank the referee for helpful suggestions that improved the manuscript. A.R.B. and A.H. gratefully acknowledge the NASA Astrophysics Data Analysis Program (ADAP grant 09-ADP09-0071, PI: A. Hornschemeier) for providing financial support. T.F. acknowledges support from the Ambizione Fellowship of the Swiss National Science Foundation (grant PZ00P2_148123). A.Z. acknowledges funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 617001 and financial support from NASA/ADAP grant NNX12AN05G. NR 97 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 140 DI 10.3847/0004-637X/818/2/140 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800039 ER PT J AU Burlaga, LF Ness, NF Richardson, JD Decker, RB Krimigis, SM AF Burlaga, L. F. Ness, N. F. Richardson, J. D. Decker, R. B. Krimigis, S. M. TI HELIOSHEATH MAGNETIC FIELD AND PLASMA OBSERVED BY VOYAGER 2 DURING 2012 IN THE RISING PHASE OF SOLAR CYCLE 24 SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; plasmas; Sun: heliosphere ID WIND TERMINATION SHOCK; 3-DIMENSIONAL FEATURES; INTERACTION REGIONS; OUTER HELIOSPHERE; CURRENT SHEETS; 1 AU; HELIOPAUSE; FLOWS; TRANSITION; BOUNDARY AB We discuss magnetic field and plasma observations of the heliosheath made by Voyager 2 (V2) during 2012, when V2 was observing the effects of increasing solar activity following the solar minimum in 2009. The average magnetic field strength B was 0.14 nT and B reached 0.29 nT on day 249. V2 was in a unipolar region in which the magnetic polarity was directed away from the Sun along the Parker spiral 88% of the time, indicating that V2 was poleward of the heliospheric current sheet throughout most of 2012. The magnetic flux at V2 during 2012 was constant. A merged interaction region (MIR) was observed, and the flow speed increased as the MIR moved past V2. The MIR caused a decrease in the > 70 MeV nuc(-1) cosmic-ray intensity. The increments of B can be described by a q-Gaussian distribution with q = 1.2 +/- 0.1 for daily averages and q = 1.82 +/- 0.03 for hour averages. Eight isolated current sheets ("PBLs") and four closely spaced pairs of current sheets were observed. The average change of B across the current sheets was a factor of approximate to 2, and B increased or decreased with equal probability. Magnetic holes and magnetic humps were also observed. The characteristic size of the PBLs was approximate to 6 R-L, where R-L is the Larmor radius of protons, and the characteristic sizes of the magnetic holes and humps were approximate to 38 R-L and approximate to 11 R-L, respectively. C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Ness, N. F.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Richardson, J. D.] MIT, Kavli Ctr Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Decker, R. B.; Krimigis, S. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. FU NASA [NNX12A63G, NNG14PN24P]; NASA from JPL [959203]; Voyager Interstellar Mission under NASA [NNX07AB02G] FX This work was partially supported by NASA grant NNX12A63G to N.F. Ness at Catholic University of America. L.F.B. was supported by NASA grant NNG14PN24P. J.D.R. was supported under NASA contract 959203 from JPL to MIT. R.B.D. and S.M.K. were supported by the Voyager Interstellar Mission under NASA Contract NNX07AB02G McClanahan and S. Kramer carried out the processing of the data. The calibration tables were computed by D. Berdichevsky using data from the magrols and the magcals. We thank Edward Stone and his co-investigators on the CRS experiment on V2 for making their data available for distribution on COHOweb. NR 69 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 147 DI 10.3847/0004-637X/818/2/147 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800046 ER PT J AU Burns, E Connaughton, V Zhang, BB Lien, A Briggs, MS Goldstein, A Pelassa, V Troja, E AF Burns, Eric Connaughton, Valerie Zhang, Bin-Bin Lien, Amy Briggs, Michael S. Goldstein, Adam Pelassa, Veronique Troja, Eleonora TI DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS? SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID MERGING NEUTRON-STARS; LONG; MERGERS; GRB; CLASSIFICATION; ERA AB Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors. C1 [Burns, Eric; Briggs, Michael S.] Univ Alabama, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Connaughton, Valerie] Univ Space Res Assoc, Inst Sci & Technol, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Zhang, Bin-Bin] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Lien, Amy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Goldstein, Adam] NASA, Postdoctoral Program, Space Sci Off, Marshall Space Flight Ctr, VP62, Huntsville, AL 35812 USA. [Pelassa, Veronique] Smithsonian Astrophys Observ, POB 97, Amado, AZ 85645 USA. [Troja, Eleonora] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Burns, E (reprint author), Univ Alabama, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM eb0016@uah.edu FU GBM [NNM11AA01A/MSFC]; NASA Swift GI grant [NNX15AC05G] FX We would like to acknowledge the contributions of two people. David Palmer who generated BAT lightcurves, allowing us to further investigate GBM SGRBs as viewed by the BAT, and Hans Krimm who compiled continuous attitude files for Swift, saving us a great deal of time. We additionally recognize the efforts of the HEASARC in providing the searchable databases that were the source of our data. The GBM members acknowledge support from GBM through NNM11AA01A/MSFC. Eric Burns acknowledges support through NASA Swift GI grant NNX15AC05G. NR 34 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 110 DI 10.3847/0004-637X/818/2/110 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800009 ER PT J AU Chenevez, J Galloway, DK in 't Zand, JJM Tomsick, JA Barret, D Chakrabarty, D Fuerst, F Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Romano, P Stern, D Zhang, WW AF Chenevez, J. Galloway, D. K. in 't Zand, J. J. M. Tomsick, J. A. Barret, D. Chakrabarty, D. Fuerst, F. Boggs, S. E. Christensen, F. E. Craig, W. W. Hailey, C. J. Harrison, F. A. Romano, P. Stern, D. Zhang, W. W. TI A SOFT X-RAY SPECTRAL EPISODE FOR THE CLOCKED BURSTER, GS 1826-24 AS MEASURED BY SWIFT AND NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: close; stars: neutron; X-rays: bursts; X-rays: individual (GS 1826-24) ID ACCRETING NEUTRON-STARS; TIMING-EXPLORER; AQUILA X-1; MISSION; MASS; BINARIES; TELESCOPE; GS-1826-238; EVOLUTION; GEOMETRY AB We report on NuSTAR and Swift observations of a soft state of the neutron star low-mass X-ray binary GS 1826-24, commonly known as the "clocked" burster. The transition to the soft state was recorded in 2014 June through an increase of the 2-20 keV source intensity measured by MAXI, simultaneous with a decrease of the 15-50 keV intensity measured by Swift/BAT. The episode lasted approximately two months, after which the source returned to its usual hard state. We analyze the broadband spectrum measured by Swift/XRT and NuSTAR. and estimate the accretion rate during the soft episode to be approximate to 13% (m) over dot(Edd), within the range of previous observations. However, the best-fit spectral model, adopting the double Comptonization used previously, exhibits significantly softer components. We detect seven type-I X-ray bursts, all significantly weaker (and with shorter rise and decay times) than observed previously. The burst profiles and recurrence times vary significantly, ruling out the regular bursts that are typical for this source. One burst exhibited photospheric radius expansion. and we estimate the source distance as (5.7 +/- 0.2) xi(-1/2)(b) kpc, where xi(b) parameterizes the possible anisotropy of the burst emission. The observed soft state may most likely be interpreted as a change in accretion geometry at about similar bolometric luminosity as in the hard state. The different burst behavior can therefore be attributed to this change in accretion flow geometry, but the fundamental cause and process for this effect remain unclear. C1 [Chenevez, J.; Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327-328, DK-2800 Lyngby, Denmark. [Galloway, D. K.] Monash Univ, Sch Phys Astron, Clayton, Vic 3800, Australia. [Galloway, D. K.] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [in 't Zand, J. J. M.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [in 't Zand, J. J. M.] Univ Utrecht, Astron Inst, POB 80000, NL-3508 TA Utrecht, Netherlands. [Tomsick, J. A.; Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Barret, D.] Inst Rech Astrophys & Planetol, 9 Ave Colonel Roche, F-31028 Toulouse, France. [Chakrabarty, D.] MIT, Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA. [Fuerst, F.; Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Romano, P.] INAF IASF Palermo, I-90146 Palermo, Italy. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chenevez, J (reprint author), Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327-328, DK-2800 Lyngby, Denmark. EM jerome@space.dtu.dk RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Galloway, Duncan/0000-0002-6558-5121 FU ESA/PRODEX [90057]; National Aeronautics and Space Administration; Australian Academy of Science; Australian Research Council; [ASI-INAF I/004/11/0]; [ASI-INAF I/037/12/0] FX J.C. would like to thank Niels Jorgen Westergaard for useful discussions. J.C. acknowledges financial support from ESA/PRODEX Nr. 90057. P.R. acknowledges financial contribution from contract ASI-INAF I/004/11/0 and ASI-INAF I/037/12/0. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR and Swift Operations teams for executing the ToO observations. and the Software and Calibration teams for analysis support. This research has used the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). The MAXI data are provided by RIKEN, JAXA, and the MAXI team. Swift/BAT transient monitor results are provided by the Swift/BAT team. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. This paper utilizes preliminary analysis results from the Multi-INstrument Burst ARchive (MINBAR), which is supported under the Australian Academy of Science's Scientific Visits to Europe program, and the Australian Research Council's Discovery Projects and Future Fellowship funding schemes. NR 59 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 135 DI 10.3847/0004-637X/818/2/135 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800034 ER PT J AU Estrada, PR Cuzzi, JN Morgan, DA AF Estrada, Paul R. Cuzzi, Jeffrey N. Morgan, Demitri A. TI GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; planets and satellites: formation; protoplanetary disks ID SPECTRAL ENERGY-DISTRIBUTIONS; INDUCED RELATIVE VELOCITY; PROTOPLANETARY DISKS IMPLICATIONS; VERTICAL SHEAR INSTABILITY; PRIMORDIAL SOLAR NEBULA; T-TAURI STARS; PLANETESIMAL FORMATION; DUST GROWTH; SOLID PARTICLES; ACCRETION DISKS AB We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at "evaporation fronts" (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 x 10(5) years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) "lucky" large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter. SEDs and the. inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the. enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter's core. C1 [Estrada, Paul R.] SETI Inst, Carl Sagan Ctr, 189 N Bernardo Ave 100, Mountain View, CA 94043 USA. [Cuzzi, Jeffrey N.] NASA, Ames Res Ctr, Mail Stop 245-3, Moffett Field, CA 94035 USA. [Morgan, Demitri A.] NASA, Ames Res Ctr, USRA, Mail Stop 245-3, Moffett Field, CA 94035 USA. RP Estrada, PR (reprint author), SETI Inst, Carl Sagan Ctr, 189 N Bernardo Ave 100, Mountain View, CA 94043 USA. EM Paul.R.Estrada@nasa.gov FU NASA's Origins of Solar Systems program FX We thank Fred Ciesla, Sandy Davis, Steve Desch, Pascale Garaud, Uma Gorti, Phil Marcus, and Orkan Umurhan for helpful conversations. We especially thank Chris Ormel for bringing our attention to a flaw in our diffusion model. in an initial version of the paper. We also. thank an anonymous reviewer for pointing out several aspects that will lead to the improvement of our models. We thank Cameron Wehrfritz for his help in the preparation of this manuscript. This work was supported by a grant from NASA's Origins of Solar Systems program and a large amount of cpu time awarded through NASA's HEC program, whose consultants also helped with parallelizing the code. NR 182 TC 2 Z9 2 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 200 DI 10.3847/0004-637X/818/2/200 PG 41 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800099 ER PT J AU Katagiri, H Yoshida, K Ballet, J Grondin, MH Hanabata, Y Hewitt, JW Kubo, H Lemoine-Goumard, M AF Katagiri, H. Yoshida, K. Ballet, J. Grondin, M. -H. Hanabata, Y. Hewitt, J. W. Kubo, H. Lemoine-Goumard, M. TI FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF THE HB 3 SUPERNOVA REMNANT SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; cosmic rays; gamma rays: ISM; ISM: individual objects ( HB 3, W3); ISM: supernova remnants ID LARGE-AREA TELESCOPE; GALACTIC PLANE SURVEY; COSMIC-RAY; SYNCHROTRON-RADIATION; SPACE-TELESCOPE; MILKY-WAY; CATALOG; GAS; ACCELERATION; ORIGIN AB We report the discovery of extended gamma-ray emission measured by the Large Area Telescope. (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant. (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright (CO)-C-12 (J = 1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3. C1 [Katagiri, H.; Yoshida, K.] Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan. [Ballet, J.] Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Grondin, M. -H.; Lemoine-Goumard, M.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, CNRS, BP120, F-33175 Gradignan, France. [Hanabata, Y.] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Hewitt, J. W.] CRESST, Greenbelt, MD 20771 USA. [Hewitt, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kubo, H.] Kyoto Univ, Dept Phys, Grad Sch Sci, Kyoto 606, Japan. RP Katagiri, H; Yoshida, K (reprint author), Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan. EM hideaki.katagiri.sci@vc.ibaraki.ac.jp; 13nm169s@gmail.com NR 34 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 114 DI 10.3847/0004-637X/818/2/114 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800013 ER PT J AU Lau, RM Hankins, MJ Herter, TL Morris, MR Mills, EAC Ressler, ME AF Lau, R. M. Hankins, M. J. Herter, T. L. Morris, M. R. Mills, E. A. C. Ressler, M. E. TI AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; dust, extinction; ISM: jets and outflows; stars: massive; stars: mass-loss ID HIGH ROTATIONAL VELOCITY; LUMINOUS BLUE VARIABLES; SPITZER-SPACE-TELESCOPE; PASCHEN-ALPHA SURVEY; GAMMA-RAY BURSTS; GALACTIC-CENTER; AG CARINAE; STELLAR PARAMETERS; DATA REDUCTION; ARRAY CAMERA AB Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid-to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical "helix" of warm dust (similar to 180 K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, tau(p) similar to 1.4 x 10(4) yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P less than or similar to 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems. C1 [Lau, R. M.; Hankins, M. J.; Herter, T. L.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Lau, R. M.; Ressler, M. E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astron, 430 Portola Plaza, Los Angeles, CA 90095 USA. [Mills, E. A. C.] Natl Radio Astron Observ, POB O 1009,Lopezville Dr, Socorro, NM 87801 USA. RP Lau, RM (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.; Lau, RM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Science Foundation [DGE-1144153]; NASA; National Aeronautics and Space Administration; NASA [NAS2-97001]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901]; NASA - USRA [8500-98-014] FX We would like to thank the rest of the FORCAST team, Joe Adams, George Gull, Justin Schoenwald, and Chuck Henderson, the USRA Science and Mission Ops teams, and the entire SOFIA staff. R.L. would like to thank Dong Lai, Selma de Mink, Nathan Smith, and the anonymous referee for the valuable feedback and discussion on binaries and massive stars. R.L. would also like to thank Martin Steinke and Lida Oskinova for the insightful exchanges on WR102c. This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) and on work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144153. This work is also based in part on observations obtained at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between the California Institute of Technology, NASA/JPL, Oxford University, Yale University, and the National Astronomical Observatories of China, as well as work in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. SOFIA science mission operations are conducted jointly by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. Financial support for FORCAST was provided by NASA through award 8500-98-014 issued by USRA. NR 77 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 117 DI 10.3847/0004-637X/818/2/117 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800016 ER PT J AU Levin, L McLaughlin, MA Jones, G Cordes, JM Stinebring, DR Chatterjee, S Dolch, T Lam, MT Lazio, TJW Palliyaguru, N Arzoumanian, Z Crowter, K Demorest, PB Ellis, JA Ferdman, RD Fonseca, E Gonzalez, ME Jones, ML Nice, DJ Pennucci, TT Ransom, SM Stairs, IH Stovall, K Swiggum, JK Zhu, WW AF Levin, Lina McLaughlin, Maura A. Jones, Glenn Cordes, James M. Stinebring, Daniel R. Chatterjee, Shami Dolch, Timothy Lam, Michael T. Lazio, T. Joseph W. Palliyaguru, Nipuni Arzoumanian, Zaven Crowter, Kathryn Demorest, Paul B. Ellis, Justin A. Ferdman, Robert D. Fonseca, Emmanuel Gonzalez, Marjorie E. Jones, Megan L. Nice, David J. Pennucci, Timothy T. Ransom, Scott M. Stairs, Ingrid H. Stovall, Kevin Swiggum, Joseph K. Zhu, Weiwei TI THE NANOGRAV NINE-YEAR DATA SET: MONITORING INTERSTELLAR SCATTERING DELAYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; ISM: general; methods: data analysis; pulsars: general ID MILLISECOND PULSAR; RADIO PULSARS; SPACE VELOCITIES; SCINTILLATION; PRECISION; PLASMA; PROPAGATION; SPECTRUM; EVENTS; WAVES AB We report on an effort to extract and monitor interstellar scintillation parameters in regular timing observations collected for the North American Nanohertz Observatory for Gravitational Waves pulsar timing array. Scattering delays are measured by creating dynamic spectra for each pulsar and observing epoch of wide-band observations centered near 1500 MHz and carried out at the Green Bank Telescope and the Arecibo Observatory. The similar to 800 MHz wide frequency bands imply dramatic changes in scintillation bandwidth across the bandpass, and a stretching routine has been included to account for this scaling. For most of the 10 pulsars for which the scaling has been measured, the bandwidths scale with frequency less steeply than expected for a Kolmogorov medium. We find estimated scattering delay values that vary with time by up to an order of magnitude. The mean measured scattering delays are similar to previously published values and are slightly higher than predicted by interstellar medium models. We investigate the possibility of increasing the timing precision by mitigating timing errors introduced by the scattering delays. For most of the pulsars, the uncertainty in the time of arrival of a single timing point is much larger than the maximum variation of the scattering delay, suggesting that diffractive scintillation remains as only a negligible part of their noise budget. C1 [Levin, Lina; McLaughlin, Maura A.; Palliyaguru, Nipuni; Jones, Megan L.; Swiggum, Joseph K.] W Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26505 USA. [Levin, Lina] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Jones, Glenn] Columbia Univ, Dept Phys, 550 W 120th St, New York, NY 10027 USA. [Cordes, James M.; Chatterjee, Shami; Dolch, Timothy; Lam, Michael T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Stinebring, Daniel R.] Oberlin Coll, Dept Phys & Astron, Oberlin, OH 44074 USA. [Dolch, Timothy] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA. [Lazio, T. Joseph W.; Ellis, Justin A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91106 USA. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Code 662, Greenbelt, MD 20771 USA. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, XRay Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. [Crowter, Kathryn; Fonseca, Emmanuel; Gonzalez, Marjorie E.; Stairs, Ingrid H.; Zhu, Weiwei] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Demorest, Paul B.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA. [Ferdman, Robert D.; Stairs, Ingrid H.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Gonzalez, Marjorie E.] Vancouver Coastal Hlth Author, Dept Nucl Med, Vancouver, BC V5Z 1M9, Canada. [Nice, David J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Pennucci, Timothy T.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Ransom, Scott M.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Stovall, Kevin] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Zhu, Weiwei] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. RP Levin, L (reprint author), W Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26505 USA. OI Fonseca, Emmanuel/0000-0001-8384-5049 FU National Science Foundation (NSF) PIRE program award [0968296]; NSERC; Canadian Institute for Advanced Research FX The NANOGrav project receives support from the National Science Foundation (NSF) PIRE program award number 0968296. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the NSF (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association. NANOGrav research at UBC is funded by an NSERC Discovery Grant and Discovery Accelerator Supplement and by the Canadian Institute for Advanced Research. NR 40 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 166 DI 10.3847/0004-637X/818/2/166 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800065 ER PT J AU Lionello, R Alexander, CE Winebarger, AR Linker, JA Mikic, Z AF Lionello, Roberto Alexander, Caroline E. Winebarger, Amy R. Linker, Jon A. Mikic, Zoran TI CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING? SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: UV radiation ID ACTIVE-REGION LOOPS; EXTREME-ULTRAVIOLET OBSERVATIONS; EUV IMAGING SPECTROMETER; ATOMIC DATABASE; EMISSION-LINES; SOLAR CORONA; TEMPERATURE; DIAGNOSTICS; CHIANTI; DENSITY AB The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%-26% (depending on the channel pair) of the pixels where a trustworthy, positive time delay is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored. C1 [Lionello, Roberto; Linker, Jon A.; Mikic, Zoran] Predict Sci Inc, 9990 Mesa Rim Rd,Ste 170, San Diego, CA 92121 USA. [Alexander, Caroline E.; Winebarger, Amy R.] NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35805 USA. RP Lionello, R; Linker, JA; Mikic, Z (reprint author), Predict Sci Inc, 9990 Mesa Rim Rd,Ste 170, San Diego, CA 92121 USA.; Alexander, CE; Winebarger, AR (reprint author), NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35805 USA. EM lionel@predsci.com; caroline.alexander@nasa.gov; amy.r.winebarger@nasa.gov; linkerj@predsci.com; mikicz@predsci.com FU NASA; NASA SRT program FX The authors are grateful to the referee for many helpful comments. The authors thank Drs. Ron Moore and Alphonse Sterling for providing many comments and discussions on the early text. R.L. thanks Dr. Ronald Caplan for helpful elucidations. C.E.A. is supported by appointments to the NASA Postdoctoral Program at the NASA/MSFC, administered by ORAU through a contract with NASA. A.R.W. is supported by a grant from NASA SR&T program. This work was supported by the NASA Heliophysics Theory and Living With a Star programs. NR 56 TC 4 Z9 4 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 129 DI 10.3847/0004-637X/818/2/129 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800028 ER PT J AU Liu, XM Shemansky, DE Yoshii, J Johnson, PV Malone, CP Ajello, JM AF Liu, Xianming Shemansky, Donald E. Yoshii, Jean Johnson, Paul V. Malone, Charles P. Ajello, Joseph M. TI SPECTRA, EMISSION YIELDS, CROSS SECTIONS, AND KINETIC ENERGY DISTRIBUTIONS OF HYDROGEN ATOMS FROM H-2 X (1)Sigma(+)(g)- d (3)Pi(u) EXCITATION BY ELECTRON IMPACT SO ASTROPHYSICAL JOURNAL LA English DT Article DE molecular data; molecular processes ID QUANTUM-DEFECT THEORY; INFRARED-LASER SPECTROSCOPY; ANGULAR-MOMENTUM STATES; TRIPLET GERADE COMPLEX; AB-INITIO CALCULATION; MOLECULAR-HYDROGEN; HIGH-RESOLUTION; FINE-STRUCTURE; TRANSITION MOMENTS; DISSOCIATIVE DECAY AB Electron-impact excitation of H2 triplet states plays an important role in the heating of outer planet upper thermospheres. The d (3)Pi(u) state is the third ungerade triplet state, and the d (3)Pi(u)-a (3)Sigma(+)(g) emission is the largest cascade channel for the a (3)Sigma(+)(g) state. Accurate energies of the d (3)Pi(-)(u)(v, J) levels are calculated from an ab initio potential energy curve. Radiative lifetimes of the d (3)Pi(u)(v, J) levels are obtained by an accurate evaluation of the d (3)Pi(u)-a (3)Sigma(+)(g) transition probabilities. The emission yields are determined from experimental lifetimes and calculated radiative lifetimes and are further verified by comparing experimental and synthetic d (3)Pi(u)-a (3)Sigma(+)(g) spectra at 20 eV impact energy. Spectral analysis revealed that multipolar components beyond the dipolar term are required to model the X (1)Sigma(+)(g)-d (3)Pi(u) excitation, and significant cascade excitation occurs at the d (3)Pi(u)(v = 0,1) levels. Kinetic energy (E-k) distributions of H atoms produced via predissociation of the d (3)Pi(u) state and the d (3)Pi(u)-a (3)Sigma(+)(g)-b (3)Sigma u(+) cascade dissociative emission are obtained. Predissociation of the d (3)Pi(u) state produces H atoms with an average E-k of 2.3 +/- 0.4 eV/atom, while the E-k distribution of the d (3)Pi(u)-a (3)Sigma(+)(g)-b (3)Sigma(+)(u) channel is similar to that of the X (1)Sigma(+)(g)-a (3)Sigma(+)(g)-b (3)Sigma(+)(u) channel and produces H(1s) atoms with an average E-k of 1.15 +/- 0.05 eV/atom. On average, each H-2 excited to the d (3)Pi(u) state in an H-2-dominated atmosphere deposits 3.3 +/- 0.4 eV into the atmosphere, while each H-2 directly excited to the a (3)Sigma(+)(g) state gives 2.2-2.3 eV to the atmosphere. The spectral distribution of the calculated a (3)Sigma(+)(g)-b (3)Sigma(+)(u) continuum emission due to the X (1)Sigma(+)(g)-d (3)Pi(u) excitation is significantly different from that of direct a (3)Sigma(+)(g) excitation. C1 [Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean] Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA. [Johnson, Paul V.; Malone, Charles P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Ajello, Joseph M.] Univ Colorado, Lab Atmosphere & Space Phys, Boulder, CO 80303 USA. RP Liu, XM (reprint author), Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA. EM xliu@spacewx.com RI Johnson, Paul/D-4001-2009 OI Johnson, Paul/0000-0002-0186-8456 FU National Aeronautics and Space Administration (NASA); NASA; National Science Foundation [1518304]; Cassini UVIS contract; University of Colorado FX The analysis described in this paper was carried out at Space Environment Technologies. A portion of the work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). We gratefully acknowledge financial support through NASA's Planetary Atmospheres (PATM) and Astrophysics Research and Analysis (APRA) programs, through the National Science Foundation's AST program (#1518304), and through a Cassini UVIS contract with the University of Colorado. NR 127 TC 1 Z9 1 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 120 DI 10.3847/0004-637X/818/2/120 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800019 ER PT J AU Meyer, ET Sparks, WB Georganopoulos, M Anderson, J van der Marel, R Biretta, J Sohn, ST Chiaberge, M Perlman, E Norman, C AF Meyer, Eileen T. Sparks, William B. Georganopoulos, Markos Anderson, Jay van der Marel, Roeland Biretta, John Sohn, Sangmo Tony Chiaberge, Marco Perlman, Eric Norman, Colin TI AN HST PROPER-MOTION STUDY OF THE LARGE-SCALE JET OF 3C273 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; proper motions; quasars: individual (3C 273); radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; HUBBLE-SPACE-TELESCOPE; X-RAY-EMISSION; CHARGE-TRANSFER EFFICIENCY; HIGH-ENERGY EMISSION; BASE-LINE ARRAY; SUPERLUMINAL MOTION; M87 JET; 3C 273; BLACK-HOLE AB The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15c observed by very long baseline interferometry. In contrast, we find that the kiloparsec-scale knots are compatible with being stationary, with a mean speed of -0.2 +/- 0.5c over the whole jet. Assuming the knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor Gamma < 2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kiloparsec scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer & Georganopoulos which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits. C1 [Meyer, Eileen T.; Sparks, William B.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Meyer, Eileen T.; Georganopoulos, Markos] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Anderson, Jay; van der Marel, Roeland; Biretta, John; Chiaberge, Marco; Norman, Colin] Space Telescope Sci Inst, Baltimore, MD 21210 USA. [Sohn, Sangmo Tony; Norman, Colin] Johns Hopkins Univ, Baltimore, MD 21210 USA. [Perlman, Eric] Florida Inst Technol, Melbourne, FL 32901 USA. [Georganopoulos, Markos] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Meyer, ET (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM meyer@stsci.edu FU HST Grant [GO-13327]; NASA [14-ADAP14-0122] FX E.T.M. acknowledges HST Grant GO-13327. E.T.M. and M.G. also acknolwedge NASA grant 14-ADAP14-0122. NR 60 TC 0 Z9 0 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 195 DI 10.3847/0004-637X/818/2/195 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800094 ER PT J AU Miller, NJ Chuss, DT Marriage, TA Wollack, EJ Appel, JW Bennett, CL Eimer, J Essinger-Hileman, T Fixsen, DJ Harrington, K Moseley, SH Rostem, K Switzer, ER Watts, DJ AF Miller, N. J. Chuss, D. T. Marriage, T. A. Wollack, E. J. Appel, J. W. Bennett, C. L. Eimer, J. Essinger-Hileman, T. Fixsen, D. J. Harrington, K. Moseley, S. H. Rostem, K. Switzer, E. R. Watts, D. J. TI RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; methods: data analysis ID MICROWAVE BACKGROUND POLARIZATION; B-MODE POLARIZATION; MAPS; TEMPERATURE; EMISSION; RADIOMETERS; RADIATION; QUAD AB Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls. C1 [Miller, N. J.; Marriage, T. A.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Harrington, K.; Rostem, K.; Watts, D. J.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Miller, N. J.; Wollack, E. J.; Fixsen, D. J.; Moseley, S. H.; Rostem, K.; Switzer, E. R.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Chuss, D. T.] Villanova Univ, Dept Phys, 800 E Lancaster, Villanova, PA 19085 USA. RP Miller, NJ (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.; Miller, NJ (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. EM Nathan.J.Miller@nasa.gov RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Watts, Duncan/0000-0002-5437-6121 FU NASA; NASA Space Technology Research Fellowship [NNX14AM49H]; National Science Foundation [0959349, 1429236] FX NJM's research was supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. K. Harrington was supported by a NASA Space Technology Research Fellowship (NNX14AM49H). Support for CLASS has been provided by the National Science Foundation under grant numbers 0959349 and 1429236. NR 61 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 151 DI 10.3847/0004-637X/818/2/151 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800050 ER PT J AU Mooley, KP Hallinan, G Bourke, S Horesh, A Myers, ST Frail, DA Kulkarni, SR Levitan, DB Kasliwal, MM Cenko, SB Cao, Y Bellm, E Laher, RR AF Mooley, K. P. Hallinan, G. Bourke, S. Horesh, A. Myers, S. T. Frail, D. A. Kulkarni, S. R. Levitan, D. B. Kasliwal, M. M. Cenko, S. B. Cao, Y. Bellm, E. Laher, R. R. TI THE CALTECH-NRAO STRIPE 82 SURVEY (CNSS) PAPER. I. THE PILOT RADIO TRANSIENT SURVEY IN 50 DEG(2) SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; galaxies: active; radio continuum: galaxies; stars: activity; supernovae: general; surveys ID ACTIVE GALACTIC NUCLEI; GAMMA-RAY BURST; DIGITAL SKY SURVEY; DEEP FIELD-SOUTH; ACCRETION-INDUCED COLLAPSE; NICKEL-RICH OUTFLOWS; FALSE-DISCOVERY RATE; X-RAY; 1.4 GHZ; LARGE ARRAY AB We have commenced a multiyear program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the Sloan Digital Sky Survey Stripe 82 region. The CNSS will deliver five epochs over the entire similar to 270 deg(2) of Stripe 82, an eventual deep combined map with an rms noise of similar to 40 mu Jy and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3 ''. This first paper presents the results from an initial pilot survey of a 50 deg2 region of Stripe 82, involving four epochs spanning logarithmic timescales between 1 week and 1.5 yr, with the combined map having a median rms noise of 35 mu Jy. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg2 survey. Data editing, calibration, imaging, source extraction, cataloging, and transient identification were completed in a semi-automated fashion within 6 hr of completion of each epoch of observations, using dedicated computational hardware at the NRAO in Socorro and custom-developed data reduction and transient detection pipelines. Classification of variable and transient sources relied heavily on the wealth of multiwavelength legacy survey data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Transient Factory. A total of 3.9(-0.9)(+0.5)% of the few thousand detected point sources were found to vary by greater than 30%, consistent with similar studies at 1.4 and 5 GHz. Multiwavelength photometric data and light curves suggest that the variability is mostly due to shock-induced flaring in the jets of active galactic nuclei (AGNs). Although this was only a pilot survey, we detected two bona fide transients, associated with an RS CVn binary and a dKe star. Comparison with existing legacy survey data (FIRST, VLA-Stripe 82) revealed additional highly variable and transient sources on timescales between 5 and 20 yr, largely associated with renewed AGN activity. The rates of such AGNs possibly imply episodes of enhanced accretion and jet activity occurring once every similar to 40,000 yr in these galaxies. We compile the revised radio transient rates and make recommendations for future transient surveys and joint radio-optical experiments. C1 [Mooley, K. P.; Hallinan, G.; Bourke, S.; Kulkarni, S. R.; Cao, Y.; Bellm, E.] CALTECH, Cahill Ctr Astron, MC 249-17, Pasadena, CA 91125 USA. [Mooley, K. P.; Myers, S. T.; Frail, D. A.] Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA. [Horesh, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, Fac Phys, IL-76100 Rehovot, Israel. [Levitan, D. B.] Microsoft, Bellevue, WA USA. [Kasliwal, M. M.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Cenko, S. B.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Laher, R. R.] CALTECH, Spitzer Sci Ctr, M-S 314-6, Pasadena, CA 91125 USA. [Mooley, K. P.] Oxford Ctr Astrophys Surveys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. RP Mooley, KP (reprint author), CALTECH, Cahill Ctr Astron, MC 249-17, Pasadena, CA 91125 USA.; Mooley, KP (reprint author), Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA.; Mooley, KP (reprint author), Oxford Ctr Astrophys Surveys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. EM kunal@astro.caltech.edu RI Horesh, Assaf/O-9873-2016 OI Horesh, Assaf/0000-0002-5936-1156 FU NRAO; NASA; NSF; W. M. Keck Foundation FX The authors extend sincere thanks to Joan Wrobel and other scheduling staff at the NRAO in Socorro for extensive help with the scheduling of the VLA observations, and to James Robnett and other computing staff for their untiring assistance with the data storage and allocation of computing resources. The authors also wish to thank Luis Ho, Branimir Sesar, Eran Ofek, Sanjay Bhatnagar, Urvashi Rau, Kumar Golap, Vivek Dhawan, Craig Walker, Talvikki Hovatta, Tim Pearson, Anthony Readhead, Chuck Steidel, and Allison Strom for insightful discussions. The contribution of PTF collaboration members to optical data processing and optical follow-up observations relevant for this project is acknowledged. K.P.M. is grateful to NRAO for the Grote Reber Fellowship, and to Yamini Jangir for going over this manuscript and providing useful suggestions. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. S.R.K.'s research in part is supported by NASA and NSF. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California, Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This research has made extensive use of ADS, CDS (Vizier and SIMBAD), NED, SDSS, and IRSA. We thank the anonymous referee for comments that helped in improving certain parts of the manuscript. NR 142 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 105 DI 10.3847/0004-637X/818/2/105 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800004 ER PT J AU Neeleman, M Prochaska, JX Ribaudo, J Lehner, N Howk, JC Rafelski, M Kanekar, N AF Neeleman, Marcel Prochaska, J. Xavier Ribaudo, Joseph Lehner, Nicolas Howk, J. Christopher Rafelski, Marc Kanekar, Nissim TI THE H I CONTENT OF THE UNIVERSE OVER THE PAST 10 GYR SO ASTROPHYSICAL JOURNAL LA English DT Article DE evolution; galaxies: evolution; galaxies: ISM; intergalactic medium; quasars: absorption lines ID LY-ALPHA SYSTEMS; DAMPED LYMAN-ALPHA; HUBBLE-SPACE-TELESCOPE; DIGITAL SKY SURVEY; COSMOLOGICAL MASS DENSITY; STAR-FORMING GALAXIES; SIMILAR-TO 5; Z LESS-THAN; ABSORPTION SYSTEMS; INTERMEDIATE REDSHIFT AB We use the Hubble Space Telescope (HST) archive of ultraviolet (UV) quasar spectroscopy to conduct the first blind survey for damped Ly alpha absorbers (DLAs) at low redshift (z < 1.6). Our statistical sample includes 463 quasars with spectral coverage spanning a total redshift path Delta z = 123.3 or an absorption path Delta X = 229.7. Within this survey path, we identify 4 DLAs defined as absorbers with H I column density N-H I >= 10(20.3) cm(-2), which implies an incidence per absorption length l(DLA) (X) = 0.017(-0.008)(+0.014) at a median survey path redshift of z = 0.623. While our estimate of l(DLA) (X) is lower than earlier estimates at z approximate to 0 from H I 21 cm emission studies, the results are consistent within the measurement uncertainties. Our data set is too small to properly sample the N-H I frequency distribution function f (N-H I, X), but the observed distribution agrees with previous estimates at z > 2. Adopting the z > 2 shape of f (N-H I, X), we infer an H I mass density at z similar to 0.6 of rho(DLA)(H I) = 0.25(-0.12)(+0.20) x 10(8)M(circle dot) Mpc(-3). This is significantly lower than previous estimates from targeted DLA surveys with the HST, but consistent with results from low-z H I. 21 cm observations, and suggests that the neutral gas density of the universe has been decreasing over the past 10 Gyr. C1 [Neeleman, Marcel] UCSD, Dept Phys, La Jolla, CA 92093 USA. [Neeleman, Marcel] UCSD, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Neeleman, Marcel; Prochaska, J. Xavier] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA. [Ribaudo, Joseph] Utica Coll, Dept Phys, 1600 Burrstone Rd, Utica, NY 13502 USA. [Lehner, Nicolas; Howk, J. Christopher] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Rafelski, Marc] NASA, Postdoctoral Program Fellow, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Kanekar, Nissim] Pune Univ, Natl Ctr Radio Astrophys, Tata Inst Fundamental Res, Pune 411007, Maharashtra, India. RP Neeleman, M (reprint author), UCSD, Dept Phys, La Jolla, CA 92093 USA.; Neeleman, M (reprint author), UCSD, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.; Neeleman, M (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA. EM marcel@ucsc.edu FU NASA from the STScI [HST-AR-12854, HST-AR-12645]; NASA [HST-AR-12854, NAS 5-26555]; NSF [AST-1109452, AST-1212012]; Department of Science and Technology [DST/SJF/PSA-01/2012-13] FX This research would not have been possible without the guidance and insights of the late A.M. Wolfe during the initial phases of the project. He will be sorely missed. We thank R. Sanchez-Ramirez for providing their results before publication, and the referee for helpful comments that improved the manuscript. This work was based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute (STScI). The COS G130M/G160M data presented in this work were obtained from the COS-CGM Legacy database, which is funded by NASA through grant HST-AR-12854 from the STScI. Finally, support for this work was provided by NASA through grant HST-AR-12645 from the STScI. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. M.N. and J.X.P. further acknowledge support from NSF award AST-1109452. N.L. acknowledges support provided by NASA through grant HST-AR-12854. J.C.H. and N.L. acknowledge support from NSF award AST-1212012. M.R. acknowledges support from an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center. N.K. acknowledges support from the Department of Science and Technology via a Swarnajayanti Fellowship (DST/SJF/PSA-01/2012-13). NR 63 TC 7 Z9 7 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 113 DI 10.3847/0004-637X/818/2/113 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800012 ER PT J AU Smith, RK Valencic, LA Corrales, L AF Smith, Randall K. Valencic, Lynne A. Corrales, Lia TI THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; methods: data analysis; X-rays: ISM ID INTERSTELLAR DUST GRAINS; XMM-NEWTON; BINARY EXO-0748-676; NEUTRON-STAR; EXO 0748-676; SCATTERING; HALOS; ASTROPHYSICS; ABSORPTION AB Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model as a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction. C1 [Smith, Randall K.] Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA. [Valencic, Lynne A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Valencic, Lynne A.] Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr,3400 N Charles St, Baltimore, MD 21218 USA. [Corrales, Lia] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave,37-241, Cambridge, MA 02139 USA. RP Valencic, LA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Valencic, LA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr,3400 N Charles St, Baltimore, MD 21218 USA. EM lynne.a.valencic@nasa.gov FU Chandra grant [TM4-15002X] FX The authors thank the anonymous referee for prompt and helpful comments that significantly improved the work. We also thank Sebastian Heinz for reviewing the xscat code and helping to debug it. Randall Smith gratefully acknowledges helpful discussions and overall inspiration to work on X-ray scattering from Eli Dwek. Financial support for this work was made possible by Chandra grant TM4-15002X. NR 37 TC 3 Z9 3 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 143 DI 10.3847/0004-637X/818/2/143 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800042 ER PT J AU Wang, YM Warren, HP Muglach, K AF Wang, Y. -M. Warren, H. P. Muglach, K. TI CONVERGING SUPERGRANULAR FLOWS AND THE FORMATION OF CORONAL PLUMES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: magnetic fields; Sun: UV radiation ID POLAR PLUMES; SOLAR-WIND; NETWORK ACTIVITY; SUNSPOTS AB Earlier studies have suggested that coronal plumes are energized by magnetic reconnection between unipolar flux concentrations and nearby bipoles, even though magnetograms sometimes show very little minority-polarity flux near the footpoints of plumes. Here we use high-resolution extreme-ultraviolet (EUV) images and magnetograms from the Solar Dynamics Observatory (SDO) to clarify the relationship between plume emission and the underlying photospheric field. We find that plumes form where unipolar network elements inside coronal holes converge to form dense clumps, and fade as the clumps disperse again. The converging flows also carry internetwork fields of both polarities. Although the minority-polarity flux is sometimes barely visible in the magnetograms, the corresponding EUV images almost invariably show loop-like features in the core of the plumes, with the fine structure changing on timescales of minutes or less. We conclude that the SDO observations are consistent with a model in which plume emission originates from interchange reconnection in converging flows, with the plume lifetime being determined by the similar to 1 day evolutionary timescale of the supergranular network. Furthermore, the presence of large EUV bright points and/or ephemeral regions is not a necessary precondition for the formation of plumes, which can be energized even by the weak, mixed-polarity internetwork fields swept up by converging flows. C1 [Wang, Y. -M.; Warren, H. P.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Muglach, K.] NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA. [Muglach, K.] Catholic Univ Amer, Washington, DC 20064 USA. RP Wang, YM; Warren, HP (reprint author), Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.; Muglach, K (reprint author), NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA. EM yi.wang@nrl.navy.mil; harry.warren@nrl.navy.mil; karin.muglach@nasa.gov NR 22 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 203 DI 10.3847/0004-637X/818/2/203 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800102 ER PT J AU Zhou, YF Apai, D Schneider, GH Marley, MS Showman, AP AF Zhou, Yifan Apai, Daniel Schneider, Glenn H. Marley, Mark S. Showman, Adam P. TI DISCOVERY OF ROTATIONAL MODULATIONS IN THE PLANETARY-MASS COMPANION 2M1207b: INTERMEDIATE ROTATION PERIOD AND HETEROGENEOUS CLOUDS IN A LOW GRAVITY ATMOSPHERE SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; planets and satellites: atmospheres; planets and satellites: individual (2M1207b); techniques: photometric ID HUBBLE-SPACE-TELESCOPE; YOUNG BROWN DWARF; ORBITING HR 8799; EDGE-ON DISK; MODEL ATMOSPHERES; EXTRASOLAR PLANET; GIANT PLANETS; LIGHT CURVES; T DWARFS; MU-M AB Rotational modulations of brown dwarfs have recently provided powerful constraints on the properties of ultra-cool atmospheres, including longitudinal and vertical cloud structures and cloud evolution. Furthermore, periodic light curves directly probe the rotational periods of ultra-cool objects. We present here, for the first time, time-resolved high-precision photometric measurements of a planetary-mass companion, 2M1207b. We observed the binary system with Hubble Space Telescope/Wide Field Camera 3 in two bands and with two spacecraft roll angles. Using point-spread function-based photometry, we reach a nearly photon-noise limited accuracy for both the primary and the secondary. While the primary is consistent with a flat light curve, the secondary shows modulations that are clearly detected in the combined light curve as well as in different subsets of the data. The amplitudes are 1.36% in the F125W and 0.78% in the F160W filters, respectively. By fitting sine waves to the light curves, we find a consistent period of 10.7(0.6)(+1.2) hr and similar phases in both bands. The J- and H-band amplitude ratio of 2M1207b is very similar to a field brown dwarf that has identical spectral type but different J-H color. Importantly, our study also measures, for the first time, the rotation period for a directly imaged extra-solar planetary-mass companion. C1 [Zhou, Yifan; Apai, Daniel; Schneider, Glenn H.] Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Apai, Daniel; Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, 1640 E Univ Blvd, Tucson, AZ 85718 USA. [Apai, Daniel] NASA, Nexus Exoplanet Syst Sci, Earths Other Solar Syst Team, Washington, DC 20546 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Naval Air Stn, Moffett Field, CA 94035 USA. RP Zhou, YF (reprint author), Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM yifzhou@email.arizona.edu OI Marley, Mark/0000-0002-5251-2943; Zhou, Yifan/0000-0003-2969-6040 FU NASA through Space Telescope Science Institute [13418]; NASA [NAS5-26555]; NASA's Science Mission Directorate; NASA Astrophysics Theory Program; NSF [AST1313444] FX We thank the anonymous referee for valuable comments that helped improve the manuscript. Support for program number 13418 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The results reported herein benefited from collaborations and/or information exchange within NASA's Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA's Science Mission Directorate. M.S.M. acknowledges support from the NASA Astrophysics Theory Program. A.P.S. acknowledges support from NSF grant AST1313444. NR 52 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2016 VL 818 IS 2 AR 176 DI 10.3847/0004-637X/818/2/176 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DG7ZS UT WOS:000372302800075 ER PT J AU Lin, ZY Li, W Gatebe, C Poudyal, R Stamnes, K AF Lin, Zhenyi Li, Wei Gatebe, Charles Poudyal, Rajesh Stamnes, Knut TI Radiative transfer simulations of the two-dimensional ocean glint reflectance and determination of the sea surface roughness SO APPLIED OPTICS LA English DT Article ID WATER-LEAVING RADIANCES; SUN-GLINT; ATMOSPHERIC CORRECTION; LAYERED MEDIA; SYSTEM; RETRIEVAL; AEROSOL; ALGORITHM; SEAWIFS; MODELS AB An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications. (C) 2016 Optical Society of America C1 [Lin, Zhenyi; Li, Wei; Stamnes, Knut] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA. [Gatebe, Charles] Univ Space Res Assoc, Columbia, MD 20146 USA. [Poudyal, Rajesh] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Gatebe, Charles; Poudyal, Rajesh] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lin, ZY (reprint author), Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA. EM lzhenyi@stevens.edu RI Gatebe, Charles/G-7094-2011 OI Gatebe, Charles/0000-0001-9261-2239 FU National Aeronautics and Space Administration (NASA) as part of the GEO-CAPE Oceans studies [613] FX National Aeronautics and Space Administration (NASA) as part of the GEO-CAPE Oceans studies managed by Paula Bontempi and Jassim Al-Saadi (NASA: Cloud Absorption Radiometer (CAR)-Code 613). NR 45 TC 1 Z9 1 U1 1 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD FEB 20 PY 2016 VL 55 IS 6 BP 1206 EP 1215 DI 10.1364/AO.55.001206 PG 10 WC Optics SC Optics GA DE2GP UT WOS:000370445400003 PM 26906570 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Belczynski, C Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Gonzalez Castro, JM Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lueck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magna-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, J McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Puerrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH RosiNska, D Rowan, S Ruediger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, S Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schoenbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stevenson, SP Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifir, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Van Bakel, N Van Beuzekom, M Van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC Van der Schaaf, L Van Heijningen, JV Van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. Calderon Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P-F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J-P Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. Debra, D. Debreczeni, G. Degallaix, J. De Laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. DeRosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H-B Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gonzalez Castro, J. M. Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J-M Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y-M King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magna-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. RosiNska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifir, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Van Bakel, N. Van Beuzekom, M. Van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. Van der Schaaf, L. Van Heijningen, J. V. Van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J-Y Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L-W Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J-P Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA Ligo Sci Collaboration Virgo Collaboration TI ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gravitational waves; stars: black holes; stars: massive ID GRAVITATIONAL-WAVE DETECTION; COMPACT-OBJECT BINARIES; YOUNG STAR-CLUSTERS; X-RAY BINARIES; GLOBULAR-CLUSTERS; MASSIVE STARS; NEUTRON-STAR; LOCAL UNIVERSE; MAXIMUM MASS; CYGNUS X-1 AB The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" BHs (greater than or similar to 25M(circle dot)) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (greater than or similar to 1 Gpc(-3) yr(-1)) from both types of formation models. The low measured redshift (z similar or equal to 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; DeRosa, R. T.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.] Univ Savoie Mt Blanc, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H-B; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez Castro, J. M.; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez Castro, J. M.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifir, D.] Univ Mississippi, Oxford, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris Saclay, Univ Paris Sud, CNRS, LAL,IN2P3, Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Chennai, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Singh, A.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, APC,AstroParticule & Cosmol,IN2P3,CEA,Irfu, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magna-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.] RMKI, Wigner RCP, Konkoly Thege Mikos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; RosiNska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Stevenson, S. P.; Thomas, E. G.; Toyra, D.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, MP, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.] Univ Cote Azur, Artemis, CNRS, Observ Cote Azur, F-34229 Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P-F.; Deleglise, S.; Heidmann, A.; Isac, J-M; Jacqmin, T.] UPMC, Sorbonne Univ, Lab Kastler Brossel, CNRS,ENS,PSL Res Uni,Coll France, F-75005 Paris, France. [Bulten, H. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC, IAC3, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De Laurentis, M.; DeRosa, R. T.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.] Northwestern Univ, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; McIver, J.; Nedkova, K.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y-M; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lange, J.; O'Shaughnessy, R.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] ESPCI, CNRS, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [RosiNska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. Univ Washington, Seattle, WA 98195 USA. Kenyon Coll, Gambier, OH 43022 USA. [Sammut, L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Conti, Livia/F-8565-2013; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino, Fiodor/M-6662-2016; Garufi, Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Costa, Cesar/G-7588-2012; Iyer, Bala R./E-2894-2012; Nelemans, Gijs/D-3177-2012; Piccinni, Ornella Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016; Gammaitoni, Luca/B-5375-2009; Bell, Angus/E-7312-2011; Hild, Stefan/A-3864-2010; Rocchi, Alessio/O-9499-2015; Zhu, Xingjiang/E-1501-2016; Strain, Kenneth/D-5236-2011; prodi, giovanni/B-4398-2010; Gemme, Gianluca/C-7233-2008; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Harms, Jan/J-4359-2012; Howell, Eric/H-5072-2014; OI Murphy, David/0000-0002-8538-815X; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Gendre, Bruce/0000-0002-9077-2025; Allen, Bruce/0000-0003-4285-6256; Granata, Massimo/0000-0003-3275-1186; Berry, Christopher/0000-0003-3870-7215; Leavey, Sean/0000-0001-8253-0272; Mitra, Sanjit/0000-0002-0800-4626; Khan, Sebastian/0000-0003-4953-5754; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; De Laurentis, Martina/0000-0002-3815-4078; Conti, Livia/0000-0003-2731-2656; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Garufi, Fabio/0000-0003-1391-6168; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179; Nelemans, Gijs/0000-0002-0752-2974; Piccinni, Ornella Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980; Gammaitoni, Luca/0000-0002-4972-7062; Bell, Angus/0000-0003-1523-0821; Rocchi, Alessio/0000-0002-1382-9016; Zhu, Xingjiang/0000-0001-7049-6468; Strain, Kenneth/0000-0002-2066-5355; prodi, giovanni/0000-0001-5256-915X; Gemme, Gianluca/0000-0002-1127-7406; Gorodetsky, Michael/0000-0002-5159-2742; Heidmann, Antoine/0000-0002-0784-5175; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431; Collette, Christophe/0000-0002-4430-3703; Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315; Naticchioni, Luca/0000-0003-2918-0730; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Howell, Eric/0000-0001-7891-2817; Boschi, Valerio/0000-0001-8665-2293; Gatto, Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; MaxPlanck- Society (MPS); State of Niedersachsen/Germany [GEO600]; Australian Research Council; Netherlands Organisation for Scientific Research; EGO consortium; Council of Scientific and Industrial Research of India, Department of Science and Technology, India; Science AMP; Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Union; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Lyon Institute of Origins (LIO); National Research Foundation of Korea, Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Brazilian Ministry of Science, Technology, and Innovation; Leverhulme Trust; Research Corporation, Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; NSF; STFC; MPS; INFN; CNRS; State of Niedersachsen/Germany FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the MaxPlanck- Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Union, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Brazilian Ministry of Science, Technology, and Innovation, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. NR 142 TC 104 Z9 104 U1 30 U2 90 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L22 DI 10.3847/2041-8205/818/2/L22 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800001 ER PT J AU Abeysekara, AU Archambault, S Archer, A Benbow, W Bird, R Buchovecky, M Buckley, JH Byrum, K Cardenzana, JV Cerruti, M Chen, X Christiansen, JL Ciupik, L Cui, W Dickinson, HJ Eisch, JD Errando, M Falcone, A Fegan, DJ Feng, Q Finley, JP Fleischhack, H Fortin, P Fortson, L Furniss, A Gillanders, GH Griffin, S Grube, J Gyuk, G Hutten, M Hakansson, N Hanna, D Holder, J Humensky, TB Johnson, CA Kaaret, P Kar, P Kelley-Hoskins, N Kertzman, M Kieda, D Krause, M Krennrich, F Kumar, S Lang, MJ Lin, TTY Maier, G McArthur, S McCann, A Meagher, K Moriarty, P Mukherjee, R Nieto, D O'Brien, S de Bhroithe, AO Ong, RA Otte, AN Park, N Perkins, JS Petrashyk, A Pohl, M Popkow, A Pueschel, E Quinn, J Ragan, K Ratliff, G Reynolds, PT Richards, GT Roache, E Santander, M Sembroski, GH Shahinyan, K Staszak, D Telezhinsky, I Tucci, JV Tyler, J Vincent, S Wakely, SP Weiner, OM Weinstein, A Williams, DA Zitzer, B AF Abeysekara, A. U. Archambault, S. Archer, A. Benbow, W. Bird, R. Buchovecky, M. Buckley, J. H. Byrum, K. Cardenzana, J. V. Cerruti, M. Chen, X. Christiansen, J. L. Ciupik, L. Cui, W. Dickinson, H. J. Eisch, J. D. Errando, M. Falcone, A. Fegan, D. J. Feng, Q. Finley, J. P. Fleischhack, H. Fortin, P. Fortson, L. Furniss, A. Gillanders, G. H. Griffin, S. Grube, J. Gyuk, G. Huetten, M. Hakansson, N. Hanna, D. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kelley-Hoskins, N. Kertzman, M. Kieda, D. Krause, M. Krennrich, F. Kumar, S. Lang, M. J. Lin, T. T. Y. Maier, G. McArthur, S. McCann, A. Meagher, K. Moriarty, P. Mukherjee, R. Nieto, D. O'Brien, S. de Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Park, N. Perkins, J. S. Petrashyk, A. Pohl, M. Popkow, A. Pueschel, E. Quinn, J. Ragan, K. Ratliff, G. Reynolds, P. T. Richards, G. T. Roache, E. Santander, M. Sembroski, G. H. Shahinyan, K. Staszak, D. Telezhinsky, I. Tucci, J. V. Tyler, J. Vincent, S. Wakely, S. P. Weiner, O. M. Weinstein, A. Williams, D. A. Zitzer, B. TI A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrobiology; extraterrestrial intelligence; methods: observational; stars: individual ( KIC 8462852); techniques: photometric ID EXTRATERRESTRIAL INTELLIGENCE; TELESCOPES; SPECTRA; STARS; VERITAS; BURSTS; SYSTEM; OSETI AB The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general. C1 [Abeysekara, A. U.; Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Archambault, S.; Griffin, S.; Hanna, D.; Lin, T. T. Y.; McCann, A.; Ragan, K.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Archer, A.; Buckley, J. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; Fegan, D. J.; O'Brien, S.; Pueschel, E.; Quinn, J.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Buchovecky, M.; Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Byrum, K.; Zitzer, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Hakansson, N.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Chen, X.; Fleischhack, H.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Vincent, S.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Christiansen, J. L.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Ciupik, L.; Grube, J.; Gyuk, G.; Ratliff, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Tucci, J. V.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Errando, M.; Mukherjee, R.; Santander, M.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Fortson, L.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Furniss, A.] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA. [Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway, Ireland. [Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Kumar, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Holder, J.] Florida Inst Technol, Dept Phys & Space Sci, W Melbourne, FL 32901 USA. [Humensky, T. B.; Nieto, D.; Petrashyk, A.; Weiner, O. M.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA. [Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Phys Sci, Cork, Ireland. RP Dickinson, HJ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.; Holder, J (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.; Holder, J (reprint author), Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.; Holder, J (reprint author), Florida Inst Technol, Dept Phys & Space Sci, W Melbourne, FL 32901 USA. EM hughd@iastate.edu; jholder@physics.udel.edu RI Nieto, Daniel/J-7250-2015; OI Nieto, Daniel/0000-0003-3343-0755; Pueschel, Elisa/0000-0002-0529-1973; Krause, Maria/0000-0001-7595-0914; Bird, Ralph/0000-0002-4596-8563 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation, and the Smithsonian Institution, and by NSERC in Canada. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics. and for his interest in the wider applications of IACTs, which made this study possible. NR 40 TC 3 Z9 3 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L33 DI 10.3847/2041-8205/818/2/L33 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800012 ER PT J AU Cenko, SB Cucchiara, A Roth, N Veilleux, S Prochaska, JX Yan, L Guillochon, J Maksym, WP Arcavi, I Butler, NR Filippenko, AV Fruchter, AS Gezari, S Kasen, D Levan, AJ Miller, JM Pasham, DR Ramirez-Ruiz, E Strubbe, LE Tanvir, NR Tombesi, F AF Cenko, S. Bradley Cucchiara, Antonino Roth, Nathaniel Veilleux, Sylvain Prochaska, J. Xavier Yan, Lin Guillochon, James Maksym, W. Peter Arcavi, Iair Butler, Nathaniel R. Filippenko, Alexei V. Fruchter, Andrew S. Gezari, Suvi Kasen, Daniel Levan, Andrew J. Miller, Jon M. Pasham, Dheeraj R. Ramirez-Ruiz, Enrico Strubbe, Linda E. Tanvir, Nial R. Tombesi, Francesco TI AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; stars: flare; ultraviolet: general ID DIGITAL SKY SURVEY; NITROGEN-ENRICHED QUASARS; SUPERMASSIVE BLACK-HOLE; MAIN-SEQUENCE STAR; DATA RELEASE; LY-ALPHA; GALAXIES; PS1-10JH; EVENTS; ABSORPTION AB We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with T-UV 3.5 x 10(4) K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry). Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (similar to 2000-8000 km s(-1)) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Delta nu = -(250-400) km s(-1). Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], NIV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and "N-rich" quasars. C1 [Cenko, S. Bradley; Cucchiara, Antonino; Pasham, Dheeraj R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. Bradley; Veilleux, Sylvain; Pasham, Dheeraj R.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Cucchiara, Antonino; Fruchter, Andrew S.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Roth, Nathaniel; Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Veilleux, Sylvain; Gezari, Suvi; Tombesi, Francesco] Univ Maryland, Dept Astron, Stadium Dr, College Pk, MD 20742 USA. [Prochaska, J. Xavier; Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Yan, Lin] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Guillochon, James] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, 60 Garden St, Cambridge, MA 02138 USA. [Maksym, W. Peter] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Maksym, W. Peter] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Arcavi, Iair] Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA. [Arcavi, Iair] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Butler, Nathaniel R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Filippenko, Alexei V.; Kasen, Daniel] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Levan, Andrew J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Miller, Jon M.] Univ Michigan, Dept Astron, 1085 South Univ Ave, Ann Arbor, MI 48103 USA. [Strubbe, Linda E.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Strubbe, Linda E.] Univ British Columbia, Carl Wieman Sci Educ Initiat, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Tanvir, Nial R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Tombesi, Francesco] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Cenko, SB (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. EM brad.cenko@nasa.gov OI Roth, Nathaniel/0000-0002-6485-2259; Maksym, Walter/0000-0002-2203-7889; Guillochon, James/0000-0002-9809-8215 FU Aspen Center for Physics; NSF [1066293, AST-1211916]; TABASGO Foundation; Christopher R. Redlich Fund; Association of Universities for Research in Astronomy, Inc., under NASA [NAS 5-26555] FX We thank R. Chornock, M. Eracleous, P. Hall, and C. Kochanek for valuable discussions, and the HST staff for the prompt scheduling of these ToO observations. S.B.C. acknowledges the Aspen Center for Physics and NSF Grant #1066293 for hospitality. AVF's research was funded by NSF grant AST-1211916, the TABASGO Foundation, and the Christopher R. Redlich Fund.; Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 50 TC 5 Z9 5 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L32 DI 10.3847/2041-8205/818/2/L32 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800011 ER PT J AU Konishi, M Grady, CA Schneider, G Shibai, H McElwain, MW Nesvold, ER Kuchner, MJ Carson, J Debes, JH Gaspar, A Henning, TK Hines, DC Hinz, PM Jang-Condell, H Moro-Martin, A Perrin, M Rodigas, TJ Serabyn, E Silverstone, MD Stark, CC Tamura, M Weinberger, AJ Wisniewski, JP AF Konishi, Mihoko Grady, Carol A. Schneider, Glenn Shibai, Hiroshi McElwain, Michael W. Nesvold, Erika R. Kuchner, Marc J. Carson, Joseph Debes, John. H. Gaspar, Andras Henning, Thomas K. Hines, Dean C. Hinz, Philip M. Jang-Condell, Hannah Moro-Martin, Amaya Perrin, Marshall Rodigas, Timothy J. Serabyn, Eugene Silverstone, Murray D. Stark, Christopher C. Tamura, Motohide Weinberger, Alycia J. Wisniewski, John. P. TI DISCOVERY OF AN INNER DISK COMPONENT AROUND HD 141569 A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; stars: imaging; stars: individual (HD 141569 A) ID CIRCUMSTELLAR DISK; DEBRIS DISK; MOLECULAR GAS; HD-141569; ASYMMETRIES; STARS; EXOPLANETS; REDUCTION; EMISSION; IMAGES AB We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0 25, and can be traced from 0 ''.4 (similar to 46 AU) to 1 ''.0 (similar to 116 AU) after deprojection using i = 55 degrees. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of similar to 6 AU, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2 ''(similar to 232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 +/- 3 M-J is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 M-J, which is broadly consistent with previous estimates. C1 [Konishi, Mihoko; Shibai, Hiroshi] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka, Japan. [Grady, Carol A.; Silverstone, Murray D.] Eureka Sci, Oakland, CA USA. [Grady, Carol A.; McElwain, Michael W.; Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Schneider, Glenn; Gaspar, Andras; Hinz, Philip M.] Univ Arizona, Tucson, AZ USA. [Nesvold, Erika R.; Rodigas, Timothy J.] Carnegie Inst Sci, Washington, DC 20005 USA. [Carson, Joseph] Coll Charleston, Charleston, SC 29401 USA. [Debes, John. H.; Hines, Dean C.; Moro-Martin, Amaya; Perrin, Marshall; Stark, Christopher C.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Henning, Thomas K.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Jang-Condell, Hannah] Univ Wyoming, Laramie, WY 82071 USA. [Serabyn, Eugene] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tamura, Motohide] Univ Tokyo, Tokyo, Japan. [Wisniewski, John. P.] Univ Oklahoma, Norman, OK 73019 USA. RP Konishi, M (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka, Japan. EM konishi@iral.ess.sci.osaka-u.ac.jp OI Perrin, Marshall/0000-0002-3191-8151 FU NASA through a grant from STScI [13786]; NASA exchange program; Osaka University Scholarship; South Carolina Space Grant Consortium REAP Program FX This study is based on observations made with the NASA/ESA HST, obtained at STScI, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 13786. Support for program No. 13786 was provided by NASA through a grant from STScI. We thank the anonymous referee for helpful suggestions. M.K. acknowledges the support of the NASA exchange program operated by Universities Space Research Association and of the Osaka University Scholarship for Overseas Research Activities 2015. J.C. acknowledges support from the South Carolina Space Grant Consortium REAP Program. NR 39 TC 3 Z9 3 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L23 DI 10.3847/2041-8205/818/2/L23 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800002 ER PT J AU Mo, WL Gonzalez, A Jee, MJ Massey, R Rhodes, J Brodwin, M Eisenhardt, P Marrone, DP Stanford, SA Zeimann, GR AF Mo, Wenli Gonzalez, Anthony Jee, M. James Massey, Richard Rhodes, Jason Brodwin, Mark Eisenhardt, Peter Marrone, Daniel P. Stanford, S. A. Zeimann, Gregory R. TI IDCS J1426.5+3508: WEAK LENSING ANALYSIS OF A MASSIVE GALAXY CLUSTER AT z=1.75 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; dark matter; galaxies: clusters: individual (IDCS J1426.5+3508); gravitational lensing: weak ID HUBBLE-SPACE-TELESCOPE; CHARGE-TRANSFER INEFFICIENCY; POINT-SPREAD FUNCTION; GREATER-THAN 1.5; STAR-FORMATION; ADVANCED CAMERA; SCALING RELATIONS; COSMOLOGY; RESOLUTION; UNIVERSE AB We present a weak lensing study of the galaxy cluster IDCS. J1426.5+3508 at z = 1.75, which is the highest-redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, and F606W observations with the Hubble Space Telescope, we detect tangential shear at 2 sigma significance. Fitting a Navarro-Frenk-White mass profile to the shear with a theoretical median mass-concentration relation, we derive a mass M-200,M-crit 2.3(-1.4)(+2.1)x10(14) M circle dot. This mass is consistent with previous mass estimates from the Sunyaev-Zel'dovich (SZ) effect, X-ray, and strong lensing. The cluster lies on the local SZ-weak lensing mass scaling relation observed at low redshift, indicative of minimal evolution in this relation. C1 [Mo, Wenli; Gonzalez, Anthony] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [Jee, M. James] Yonsei Univ, Dept Astron, 50 Yonsei Ro, Seoul 03722, South Korea. [Jee, M. James] Yonsei Univ, Ctr Galaxy Evolut Res, 50 Yonsei Ro, Seoul 03722, South Korea. [Massey, Richard] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England. [Rhodes, Jason; Eisenhardt, Peter] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Rhodes, Jason] CALTECH, Pasadena, CA 91125 USA. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, 5110 Rockhill Rd, Kansas City, MO 64110 USA. [Marrone, Daniel P.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Zeimann, Gregory R.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Zeimann, Gregory R.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Zeimann, Gregory R.] Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA. RP Mo, WL (reprint author), Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. FU NASA through a grant from the Space Telescope Science Institute [11663, 12203, 12994]; National Science Foundation Graduate Research Fellowship [DGE-1315138]; NRF of Korea; Royal Society University Research Fellowship; JPL; Caltech under a contract for NASA FX The authors thank the anonymous referee and Daniel Stern for their insightful suggestions and Audrey Galametz for her help with the CANDELS-UDS data. Support for HST GO-program 11663, 12203, and 12994 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. We also acknowledge funding received from the National Science Foundation Graduate Research Fellowship under grant No. DGE-1315138 (W.M.), NRF of Korea to CGER (M.J.J.), and Royal Society University Research Fellowship (R.M.). J.R. is supported by JPL, which is run by Caltech under a contract for NASA. NR 47 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2016 VL 818 IS 2 AR L25 DI 10.3847/2041-8205/818/2/L25 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2GK UT WOS:000370444800004 ER PT J AU Yamamoto, M Shiokawa, K Nakamura, T Gopalswamy, N AF Yamamoto, Mamoru Shiokawa, Kazuo Nakamura, Takuji Gopalswamy, Nat TI Special issue "International CAWSES-II Symposium" SO EARTH PLANETS AND SPACE LA English DT Editorial Material DE Sun-Earth system; Solar-terrestrial physics; International program; CAWSES-II; SCOSTEP ID SOLAR-CYCLE 24; UPPER-ATMOSPHERE; IONOSPHERE; THERMOSPHERE; TIDES; IRREGULARITIES; PERSPECTIVES; VARIABILITY; PARAMETERS; PROGRESS AB This special issue gathered papers from the International CAWSES-II Symposium (November 18-22, 2013 at Nagoya University, Japan). Climate and Weather of the Sun-Earth System II (CAWSES-II) is an international scientific program sponsored by Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) that continued from 2009 to 2013. The program was established with the aim of significantly enhancing our understanding of the space environment and its impacts on life and society. The International CAWSES-II Symposium was successful with 388 presentations; and from that, 38 papers were published in this special issue. In this preface, we briefly discuss the contents of the special issue as well as the CAWSES-II review papers published in Progress in Earth and Planetary Science (PEPS) in 2014-2015. C1 [Yamamoto, Mamoru] Kyoto Univ, RISH, Uji, Kyoto 6110011, Japan. [Shiokawa, Kazuo] Nagoya Univ, Inst Space Earth Environm Res ISEE, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan. [Nakamura, Takuji] Nat Inst Polar Res, 10 3 Midori Cho, Tachikawa, Tokyo 1908518, Japan. [Gopalswamy, Nat] NASA, Goddard Space Flight Ctr, Heliophys Div, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. RP Yamamoto, M (reprint author), Kyoto Univ, RISH, Uji, Kyoto 6110011, Japan. EM yamamoto@rish.kyoto-u.ac.jp NR 44 TC 0 Z9 0 U1 1 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1880-5981 J9 EARTH PLANETS SPACE JI Earth Planets Space PD FEB 19 PY 2016 VL 68 AR 26 DI 10.1186/s40623-016-0392-6 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DE2QH UT WOS:000370471300001 ER PT J AU Kumarasinghe, CS Premaratne, M Gunapala, SD Agrawal, GP AF Kumarasinghe, Chathurangi S. Premaratne, Malin Gunapala, Sarath D. Agrawal, Govind P. TI Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry SO SCIENTIFIC REPORTS LA English DT Article ID METAL NANOPARTICLES; SEMICONDUCTOR ELECTRODE; PHOTOCURRENT DIRECTION; SURFACE-PLASMONS; TIO2 FILMS; SPECTROSCOPY; QUANTUM; TRANSPORT; DYNAMICS; CARRIERS AB We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. C1 [Kumarasinghe, Chathurangi S.; Premaratne, Malin] Monash Univ, Dept Elect & Comp Syst Engn, Adv Comp & Simulat Lab AxL, Clayton, Vic 3800, Australia. [Gunapala, Sarath D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Agrawal, Govind P.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. RP Kumarasinghe, CS (reprint author), Monash Univ, Dept Elect & Comp Syst Engn, Adv Comp & Simulat Lab AxL, Clayton, Vic 3800, Australia. EM chathurangi.kumarasinghe@monash.edu RI Agrawal, Govind/D-5380-2013; OI Agrawal, Govind/0000-0003-4486-8533; Premaratne, Malin/0000-0002-2419-4431 FU Monash University Institute of Graduate Research; Australian Research Council [DP140100883] FX The work of C.S.K. is supported by the Monash University Institute of Graduate Research. The work of M.P., S.D.G. and G.P.A. are supported by the Australian Research Council, through its Discovery Grant DP140100883. NR 70 TC 3 Z9 3 U1 8 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 18 PY 2016 VL 6 AR 21470 DI 10.1038/srep21470 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DE0XD UT WOS:000370348000001 PM 26887286 ER PT J AU Williams, J Chiow, SW Yu, N Muller, H AF Williams, Jason Chiow, Sheng-wey Yu, Nan Mueller, Holger TI Quantum test of the equivalence principle and space-time aboard the International Space Station SO NEW JOURNAL OF PHYSICS LA English DT Article DE equivalence principle; atom interferometry; microgravity ID ATOM-INTERFEROMETRY; PRECISION-MEASUREMENT; GENERAL-RELATIVITY; COOLING ATOMS; MATTER WAVES; DARK-MATTER; BALANCE; ENERGY; GRAVITATION; PARTICLES AB We describe the Quantum Test of the Equivalence principle and Space Time (QTEST), a concept for an atom interferometry mission on the International Space Station (ISS). The primary science objective of the mission is a test of Einstein's equivalence principle with two rubidium isotope gases at a precision of better than 10(-15), a 100-fold improvement over the current limit on equivalence principle violations, and over 1,000,000 fold improvement over similar quantum experiments demonstrated in laboratories. Distinct from the classical tests is the use of quantum wave packets and their expected large spatial separation in the QTEST experiment. This dual species atom interferometer experiment will also be sensitive to time-dependent equivalence principle violations that would be signatures for ultralight dark-matter particles. In addition, QTEST will be able to perform photon recoil measurements to better than 10(-11) precision. This improves upon terrestrial experiments by a factor of 100, enabling an accurate test of the standard model of particle physics and contributing to mass measurement, in the proposed new international system of units (SI), with significantly improved precision. The predicted high measurement precision of QTEST comes from the microgravity environment on ISS, offering extended free fall times in a well-controlled environment. QTEST plans to use high-flux, dual-species atom sources, and advanced cooling schemes, for N > 10(6) non-condensed atoms of each species at temperatures below 1 nK. Suppression of systematic errors by use of symmetric interferometer configurations and rejection of common-mode errors drives the QTEST design. It uses Bragg interferometry with a single laser beam at the 'magic' wavelength, where the two isotopes have the same polarizability, for mitigating sensitivities to vibrations and laser noise, imaging detection for correcting cloud initial conditions and maintaining contrast, modulation of the atomic hyperfine states for reduced sensitivity to magnetic field gradients, two source-regions for simultaneous time reversal measurements and redundancy, and modulation of the gravity vector using a rotating platform to reduce otherwise difficult systematics to below 10(-16). C1 [Williams, Jason; Chiow, Sheng-wey; Yu, Nan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Yu, N (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM Nan.Yu@jpl.nasa.gov; hm@berkeley.edu FU National Aeronautics and Space Administration (NASA); NASA FX The authors wish to acknowledge useful discussions with Rob Thompson, Ernst Rasel, Markus Krutzik, Justin Khoury, Jay Tasson, and Eric Copenhaver. We are especially appreciative of assistance from Surjeet Rajendran for contributing the ultralight dark matter study. We also want to thank Jason Hogan and David Johnson for use of their software package, which was originally developed and validated by the Kasevich team at Stanford University, and was modified for QTEST. Government sponsorship is acknowledged. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). HM acknowledges support from NASA. Copyright 2015. All rights reserved. NR 129 TC 7 Z9 7 U1 15 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 17 PY 2016 VL 18 AR 025018 DI 10.1088/1367-2630/18/2/025018 PG 25 WC Physics, Multidisciplinary SC Physics GA DH0JQ UT WOS:000372470900002 ER PT J AU Aasi, J Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Ain, A Ajith, P Allen, B Allocca, A Amariutei, DV Andersen, M Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Ashton, G Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Bartlett, J Barton, MA Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Behnke, B Bejger, M Belczynski, C Bell, AS Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, D Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bojtos, P Bond, C Bondu, F Bonnand, R Bork, R Born, M Boschi, V Bose, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Branco, V Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, D Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Bustillo, JC Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Celerier, C Cella, G Cepeda, C Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chao, S Charlton, P Chassande-Mottin, E Chen, X Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Colombini, M Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Creighton, T Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Damjanic, MD Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Dominguez, E Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Edwards, M Effler, A Eggenstein, HB Ehrens, P Eichholz, JM Eikenberry, SS Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fairhurst, S Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Feldbaum, D Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fisher, RP Flaminio, R Fournier, JD Franco, S Frasca, S Frasconi, F Frede, M Frei, Z Freise, A Frey, R Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A Gergely, LA Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gleason, JR Goetz, E Goetz, R Gondan, L Gonzalez, G Gonzalez, J Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Groot, P Grote, H Grover, K Grunewald, S Guidi, GM Guido, CJ Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammer, D Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hoelscher-Obermaier, J Hofman, D Hollitt, SE Holt, K Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh, M Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Islas, G Isler, JC Isogai, T Iyer, BR Izumi, K Jacobson, MB Jang, H Jaranowski, P Jawahar, S Ji, Y Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Karlen, JL Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelecsenyi, N Kelley, DB Kells, W Kerrigan, J Key, JS Khalili, FY Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, JT Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, A Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, J Lee, JP Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Lewis, JB Li, TGF Libson, A Lin, AC Littenberg, TB Lockerbie, NA Lockett, V Lodhia, D Logue, J Lombardi, AL Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lubinski, MJ Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y Macarthur, J Macdonald, EP MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Madden-Fong, DX Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mangini, NM Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McWilliams, ST Meacher, D Meadors, GD Mehmet, M Meidam, J Meinders, M Melatos, A Mendell, G Mercer, RA Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, A Mukherjee, S Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nagy, MF Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Newton, G Nguyen, TT Nielsen, AB Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Okounkova, M Oppermann, P Oram, R O'Reilly, B Ortega, WE O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Padilla, CT Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pan, Y Pankow, C Pannarale, F Pant, BC Paoletti, F Papa, MA Paris, HR Pasqualetti, A Passaquieti, R Passuello, D Patrick, Z Pedraza, M Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Pickenpack, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poeld, JH Poggiani, R Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rodger, AS Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Sammut, L Sanchez, E Sandberg, V Sanders, JR Santiago-Prieto, I Sassolas, B Saulson, PR Savage, R Sawadsky, A Schale, P Schilling, R Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Sevigny, A Shaddock, DA Shaffery, P Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, R Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Souradeep, T Srivastava, AK Staley, A Stebbins, J Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Steplewski, S Stevenson, SP Stone, R Strain, KA Straniero, N Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Travasso, F Traylor, G Trifiro, D Tringali, MC Tse, M Turconi, M Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M van Bakel, N van Beuzekom, M van den Brand, JFJ van den Broeck, C van der Schaaf, L van der Sluys, MV van Heijningen, J van Veggel, AA Vansuch, G Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Vousden, WD Vyatchanin, SP Wade, AR Wade, M Wade, LE Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, KJ Williams, L Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Yablon, J Yakushin, I Yam, W Yamamoto, H Yancey, CC Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Aasi, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Ain, A. Ajith, P. Allen, B. Allocca, A. Amariutei, D. V. Andersen, M. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Ashton, G. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Bartlett, J. Barton, M. A. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, Sukanta Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Branco, V. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calderon Bustillo, J. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Celerier, C. Cella, G. Cepeda, C. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, X. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Colombini, M. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Creighton, T. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Damjanic, M. D. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. DeBra, D. Debreczeni, G. Degallaix, J. De Laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Dominguez, E. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Edwards, M. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. M. Eikenberry, S. S. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fairhurst, S. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Feldbaum, D. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fisher, R. P. Flaminio, R. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frede, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. Gergely, L. A. Germain, V. Ghosh, A. Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gleason, J. R. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gonzalez, J. Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Groot, P. Grote, H. Grover, K. Grunewald, S. Guidi, G. M. Guido, C. J. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammer, D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hoelscher-Obermaier, J. Hofman, D. Hollitt, S. E. Holt, K. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh, M. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Islas, G. Isler, J. C. Isogai, T. Iyer, B. R. Izumi, K. Jacobson, M. B. Jang, H. Jaranowski, P. Jawahar, S. Ji, Y. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Karlen, J. L. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelecsenyi, N. Kelley, D. B. Kells, W. Kerrigan, J. Key, J. S. Khalili, F. Y. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, K. Kim, N. G. Kim, N. Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. T. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, A. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, J. Lee, J. P. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Lewis, J. B. Li, T. G. F. Libson, A. Lin, A. C. Littenberg, T. B. Lockerbie, N. A. Lockett, V. Lodhia, D. Logue, J. Lombardi, A. L. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lubinski, M. J. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. Macarthur, J. Macdonald, E. P. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Madden-Fong, D. X. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mangini, N. M. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McWilliams, S. T. Meacher, D. Meadors, G. D. Mehmet, M. Meidam, J. Meinders, M. Melatos, A. Mendell, G. Mercer, R. A. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, A. Mukherjee, S. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nagy, M. F. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Newton, G. Nguyen, T. T. Nielsen, A. B. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Okounkova, M. Oppermann, P. Oram, R. O'Reilly, B. Ortega, W. E. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Padilla, C. T. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pan, Y. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Papa, M. A. Paris, H. R. Pasqualetti, A. Passaquieti, R. Passuello, D. Patrick, Z. Pedraza, M. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Pickenpack, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poeld, J. H. Poggiani, R. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rodger, A. S. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Saleem, M. Salemi, F. Sammut, L. Sanchez, E. Sandberg, V. Sanders, J. R. Santiago-Prieto, I. Sassolas, B. Saulson, P. R. Savage, R. Sawadsky, A. Schale, P. Schilling, R. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Sevigny, A. Shaddock, D. A. Shaffery, P. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, R. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Souradeep, T. Srivastava, A. K. Staley, A. Stebbins, J. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Steplewski, S. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Tse, M. Turconi, M. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. van den Broeck, C. van der Schaaf, L. van der Sluys, M. V. van Heijningen, J. van Veggel, A. A. Vansuch, G. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, M. Wade, L. E. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, K. J. Williams, L. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Yablon, J. Yakushin, I. Yam, W. Yamamoto, H. Yancey, C. C. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zhang, Fan Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. TI Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers SO PHYSICAL REVIEW D LA English DT Article ID PULSAR AB We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87 degrees in diameter and centered on 20(h)10(m)54.71(s) + 33 degrees 33'25.29 '', and the other (B) is 7.45 degrees in diameter and centered on 8(h)35(m)20.61(s) - 46 degrees 49'25.151 ''. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5 x 10(-9) Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h(0) of 6.3 x 10(-25), while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 x 10(-24) for all polarizations and sky locations. C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Dooley, K. L.; Drever, R. W. P.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M. B.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Sez Napoli, Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Ackley, K.; Amariutei, D. V.; Brown, D.; Ciani, G.; Eichholz, J. M.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J. R.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; Doravari, S.; Evans, T. M.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Colla, A.; Coughlin, S. B.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Macdonald, E. P.; Ohme, F.; Pannarale, F.; Predoi, V.; Puerrer, M.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bock, O.; Born, M.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Damjanic, M. D.; Danzmann, K.; Denker, T.; Dent, T.; Eggenstein, H. -B.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Goetz, E.; Gossler, S.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Koehlenbeck, S. M.; Korobko, M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mehmet, M.; Meinders, M.; Mossavi, K.; Nielsen, A. B.; Oppermann, P.; Pal-Singh, A.; Pickenpack, M.; Poeld, J. H.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schoenbeck, A.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Vahlbruch, H.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bertolini, A.; Bloemen, S.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J.] NIKHEF H, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Lee, J. P.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Yam, W.; Zhang, Fan; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.; Weiss, R.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, A.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Ain, A.; Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Hammer, D.; Huynh, M.; Kline, J. T.; Manske, M.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, M.; Wade, L. E.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Danzmann, K.; Hoelscher-Obermaier, J.; Kaufer, S.; Krueger, C.; Lueck, H.; Sawadsky, A.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez, J.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Razzano, M.; Tonelli, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Andersen, M.; Bassiri, R.; Byer, R. L.; Celerier, C.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Madden-Fong, D. X.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.; Stebbins, J.] Stanford Univ, Stanford, CA 94305 USA. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Lockett, V.; Padilla, C. T.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Majorana, E.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Ming, J.; Papa, M. A.; Privitera, S.; Raymond, V.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Colombini, M.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Basti, A.; Bavigadda, V.; Bitossi, M.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Pillant, G.; Prijatelj, M.; Ruggi, P.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, J. C.; Kelley, D. B.; Lackey, B. D.; Lough, J. D.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Craig, K.; Cumming, A.; Cunningham, L.; Davies, G. S.; Douglas, R.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Jones, R.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rodger, A. S.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Clara, F.; Cook, D.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, F-75205 Paris 13, France. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez, J.; Passaquieti, R.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Grover, K.; Haster, C. -J.; Lodhia, D.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Sidery, T. L.; Stevenson, S. P.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D.; Chen, X.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Shah, S.; van der Sluys, M. V.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Nice Sophia Antipolis, ARTEMIS, CNRS, F-06304 Nice, France. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Observ Cote Azur, F-06304 Nice, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Kelecsenyi, N.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bose, Sukanta; Hall, B. R.; Magee, R. M.; Mazumder, N.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Branco, V.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chen, X.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.] ENS PSL Res Univ, CNRS, Coll France, Lab Kastler Brossel,UPMC Sorbonne Univ, F-75005 Paris, France. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Clark, J. A.; Lazzaro, C.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, LMA, CNRS, IN2P3, F-69622 Lyon, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears IEEC, E-07122 Palma de Mallorca, Spain. [Calloni, E.; De Laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Graff, P. B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Guo, X.; Ji, Y.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Re, V.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Gossan, S. E.; Okounkova, M.; Thorne, K. S.; Vallisneri, M.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Chow, J. H.; Mansell, G. L.; McClelland, D. E.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Coccia, E.; Fafone, V.; Lorenzini, M.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Leaci, P.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Lasky, P. D.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Creighton, T.; Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Nagy, M. F.; Racz, I.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Dominguez, E.; Ortega, W. E.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trent, Dipartimento Fis, I-38123 Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy. [Everett, R.; Hanna, C.; Idrisy, A.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Farr, B.] Univ Chicago, Chicago, IL 60637 USA. [Gair, J. R.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Tapai, M.] Univ Szeged, Dom ter 9, H-6720 Szeged, Hungary. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Gupta, M. K.; Khan, Z.; Kumar, A.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Karlen, J. L.; Kerrigan, J.; Lombardi, A. L.; Mangini, N. M.; McIver, J.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum Kerala 695016, India. [Kalogera, V.; Littenberg, T. B.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, K.; Lee, H. K.; Lee, J.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.; Shaffery, P.] Seoul Natl Univ, Seoul 151742, South Korea. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.; Williams, K. J.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.; Williams, K. J.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 280 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Nat Inst Math Sci, Daejeon 305390, South Korea. [O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Astron Inst, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Vansuch, G.] Emory Univ, Atlanta, GA 30322 USA. RP Aasi, J (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Lazzaro, Claudia/L-2986-2016; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Garufi, Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Travasso, Flavio/J-9595-2016; Howell, Eric/H-5072-2014; Gemme, Gianluca/C-7233-2008; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Strain, Kenneth/D-5236-2011; Gammaitoni, Luca/B-5375-2009; Hild, Stefan/A-3864-2010; Rocchi, Alessio/O-9499-2015; Zhu, Xingjiang/E-1501-2016; prodi, giovanni/B-4398-2010; Bell, Angus/E-7312-2011; Costa, Cesar/G-7588-2012; Puppo, Paola/J-4250-2012; Iyer, Bala R./E-2894-2012; Nelemans, Gijs/D-3177-2012; Piccinni, Ornella Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Kumar, Prem/B-6691-2009 OI Kanner, Jonah/0000-0001-8115-0577; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431; Collette, Christophe/0000-0002-4430-3703; Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315; Naticchioni, Luca/0000-0003-2918-0730; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Boschi, Valerio/0000-0001-8665-2293; Gatto, Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Swinkels, Bas/0000-0002-3066-3601; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Lazzaro, Claudia/0000-0001-5993-3372; De Laurentis, Martina/0000-0002-3815-4078; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Ferrante, Isidoro/0000-0002-0083-7228; Garufi, Fabio/0000-0003-1391-6168; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Travasso, Flavio/0000-0002-4653-6156; Howell, Eric/0000-0001-7891-2817; Gemme, Gianluca/0000-0002-1127-7406; Gorodetsky, Michael/0000-0002-5159-2742; Heidmann, Antoine/0000-0002-0784-5175; Strain, Kenneth/0000-0002-2066-5355; Gammaitoni, Luca/0000-0002-4972-7062; Rocchi, Alessio/0000-0002-1382-9016; Zhu, Xingjiang/0000-0001-7049-6468; prodi, giovanni/0000-0001-5256-915X; Bell, Angus/0000-0003-1523-0821; Puppo, Paola/0000-0003-4677-5015; Iyer, Bala R./0000-0002-4141-5179; Nelemans, Gijs/0000-0002-0752-2974; Piccinni, Ornella Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; FU Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter - Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS Programme of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number LIGO-P1500034-v23. NR 30 TC 2 Z9 2 U1 6 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 17 PY 2016 VL 93 IS 4 AR 042006 DI 10.1103/PhysRevD.93.042006 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DD9LT UT WOS:000370247800001 ER PT J AU Griko, YV Yan, XL AF Griko, Yuri V. Yan, Xiaoli TI Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract CT 60th Annual Meeting of the Biophysical-Society CY FEB 27-MAR 02, 2016 CL Los Angeles, CA SP Biophys Soc C1 [Griko, Yuri V.] NASA, Life Sci, Ames Res Ctr, Mountain View, CA USA. [Yan, Xiaoli] Clearant Inc, Gaithersburg, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD FEB 16 PY 2016 VL 110 IS 3 SU 1 MA 1055-Pos BP 212A EP 212A PG 1 WC Biophysics SC Biophysics GA DK7XZ UT WOS:000375141600033 ER PT J AU Kandel, S Larsen, AB Jain, A Vaidehi, N AF Kandel, Saugat Larsen, Adrien B. Jain, Abhinandan Vaidehi, Nagarajan TI Gneimosim: Multiscale Internal Coordinates Molecular Dynamics for Proteins SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract CT 60th Annual Meeting of the Biophysical-Society CY FEB 27-MAR 02, 2016 CL Los Angeles, CA SP Biophys Soc C1 [Kandel, Saugat; Larsen, Adrien B.; Vaidehi, Nagarajan] City Hope, Duarte, CA USA. [Jain, Abhinandan] CALTECH, Jet Prop Lab, Pasadena, CA USA. NR 0 TC 0 Z9 0 U1 3 U2 3 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD FEB 16 PY 2016 VL 110 IS 3 SU 1 MA 3161-Pos BP 641A EP 641A PG 1 WC Biophysics SC Biophysics GA DK7YN UT WOS:000375143200223 ER PT J AU Harada, Y Mitchell, DL Halekas, JS McFadden, JP Mazelle, C Connerney, JEP Espley, J Brain, DA Larson, DE Lillis, RJ Hara, T Livi, R DiBraccio, GA Ruhunusiri, S Jakosky, BM AF Harada, Y. Mitchell, D. L. Halekas, J. S. McFadden, J. P. Mazelle, C. Connerney, J. E. P. Espley, J. Brain, D. A. Larson, D. E. Lillis, R. J. Hara, T. Livi, R. DiBraccio, G. A. Ruhunusiri, S. Jakosky, B. M. TI MAVEN observations of energy-time dispersed electron signatures in Martian crustal magnetic fields SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE energy-time dispersion; electrons; Mars; MAVEN; crustal magnetic fields ID PLASMA ENVIRONMENT; MARS; MAGNETOSPHERE; ION; RECONNECTION; PROTON AB Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields. C1 [Harada, Y.; Mitchell, D. L.; McFadden, J. P.; Larson, D. E.; Lillis, R. J.; Hara, T.; Livi, R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Mazelle, C.] CNRS, IRAP, Toulouse, France. [Mazelle, C.] Univ Toulouse 3, F-31062 Toulouse, France. [Connerney, J. E. P.; Espley, J.; DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. RP Harada, Y (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM haraday@ssl.berkeley.edu RI Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; Halekas, Jasper/0000-0001-5258-6128 FU NASA MAVEN Project FX The authors wish to acknowledge great support from the team members of the MAVEN mission. The research presented in this paper was funded by the NASA MAVEN Project, and the French space agency CNES MAVEN data are publicly available through the Planetary Data System. NR 31 TC 5 Z9 5 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2016 VL 43 IS 3 BP 939 EP 944 DI 10.1002/2015GL067040 PG 6 WC Geosciences, Multidisciplinary SC Geology GA DG4QI UT WOS:000372056600001 ER PT J AU Melgar, D Fan, WY Riquelme, S Geng, JH Liang, CR Fuentes, M Vargas, G Allen, RM Shearer, PM Fielding, EJ AF Melgar, Diego Fan, Wenyuan Riquelme, Sebastian Geng, Jianghui Liang, Cunren Fuentes, Mauricio Vargas, Gabriel Allen, Richard M. Shearer, Peter M. Fielding, Eric J. TI Slip segmentation and slow rupture to the trench during the 2015, M(w)8.3 Illapel, Chile earthquake SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE earthquake seismology; tsunami; subfuction zone ID MEGATHRUST EARTHQUAKE; SUBDUCTION ZONE; GPS AB The 2015 M(w)8.3 Illapel, Chile earthquake is the latest megathrust event on the central segment of that subduction zone. It generated strong ground motions and a large (up to 11m runup) tsunami which prompted the evacuation of more than 1 million people in the first hours following the event. Observations during recent earthquakes suggest that these phenomena can be associated with rupture on different parts of the megathrust. The deep portion generates strong shaking while slow, large slip on the shallow fault is responsible for the tsunami. It is unclear whether all megathrusts can have shallow slip during coseismic rupture and what physical properties regulate this. Here we show that the Illapel event ruptured both deep and shallow segments with substantial slip. We resolve a kinematic slip model using regional geophysical observations and analyze it jointly with teleseismic backprojection. We find that the shallow and deep portions of the megathrust are segmented and have fundamentally different behavior. We forward calculate local tsunami propagation from the resolved slip and find good agreement with field measurements, independently validating the slip model. These results show that the central portion of the Chilean subduction zone has accumulated a significant shallow slip deficit and indicates that, given enough time, shallow slip might be possible everywhere along the subduction zone. C1 [Melgar, Diego; Allen, Richard M.] Univ Calif Berkeley, Seismol Lab, Berkeley, CA 94720 USA. [Fan, Wenyuan; Shearer, Peter M.] Univ Calif San Diego, Scripps Inst Oceanog, Cecil H & Ida M Green Inst Geophys & Planetary Ph, San Diego, CA 92103 USA. [Riquelme, Sebastian] Univ Chile, Ctr Sismol Nacl, Santiago, Chile. [Geng, Jianghui] Wuhan Univ, GNSS Ctr, Wuhan 430072, Peoples R China. [Liang, Cunren; Fielding, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Fuentes, Mauricio] Univ Chile, Dept Geofis, Santiago, Chile. [Vargas, Gabriel] Univ Chile, Dept Geog, Santiago, Chile. RP Melgar, D (reprint author), Univ Calif Berkeley, Seismol Lab, Berkeley, CA 94720 USA. EM dmelgar@berkeley.edu RI fan, wenyuan/I-2220-2016; Vargas, Victor Gabriel/I-6826-2016; Fan, Wenyuan/M-2748-2016; Shearer, Peter/K-5247-2012; Fielding, Eric/A-1288-2007; GEOFON, GlobalSeismicNetwork/E-4273-2012 OI fan, wenyuan/0000-0002-2983-8240; Vargas, Victor Gabriel/0000-0002-7521-7891; Fan, Wenyuan/0000-0002-2983-8240; Shearer, Peter/0000-0002-2992-7630; Fielding, Eric/0000-0002-6648-8067; FU Gordon and Betty Moore Foundation [GBMF3024]; National Science Foundation [EAR-1111111]; NASA Earth Surface and Interior program FX The teleseismic seismic data were provided by the Data Management Center (DMC) of the Incorporated Research Institutions for Seismology (IRIS). Local seismic and geodetic data are provided by the Centro Sismologico Nacional (CSN) and are available upon request. Tide gauges are operated by the Servicio Hidrografico Oceanografico de la Armada de Chile (SHOA) and data is available at http://www.ioc-sealevel-monitoring.org/. Sentinel-1 interferograms are derived works of Copernicus data. Original Sentinel-1 data is available from ESA and processed interferograms are available from the UNAVCO InSAR archive (https://winsar.unavco.org/portal/insar/). We extend our thanks to Roland Burgmann and Marcelo Lagos for helpful discussions and Piyush Agram for use of the prototype Sentinel-1 TOPS processing programs. We are indebted to J. Gonzalez and A. Villalobos for field support. We thank two anonymous reviewers for constructive critiques which improved the content and presentation of this manuscript. This research was funded by the Gordon and Betty Moore Foundation through grant GBMF3024 to UC Berkeley. Funding at the Scripps Institution of Oceanography is through National Science Foundation grant EAR-1111111. Part of this research was supported by the NASA Earth Surface and Interior program and performed at the Jet Propulsion Laboratory with support for an appointment to the NASA Postdoctoral Program, California Institute of Technology. NR 26 TC 22 Z9 22 U1 9 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2016 VL 43 IS 3 BP 961 EP 966 DI 10.1002/2015GL067369 PG 6 WC Geosciences, Multidisciplinary SC Geology GA DG4QI UT WOS:000372056600004 ER PT J AU Alves, LR Da Silva, LA Souza, VM Sibeck, DG Jauer, PR Vieira, LEA Walsh, BM Silveira, MVD Marchezi, JP Rockenbach, M Dal Lago, A Mendes, O Tsurutani, BT Koga, D Kanekal, SG Baker, DN Wygant, JR Kletzing, CA AF Alves, L. R. Da Silva, L. A. Souza, V. M. Sibeck, D. G. Jauer, P. R. Vieira, L. E. A. Walsh, B. M. Silveira, M. V. D. Marchezi, J. P. Rockenbach, M. Dal Lago, A. Mendes, O. Tsurutani, B. T. Koga, D. Kanekal, S. G. Baker, D. N. Wygant, J. R. Kletzing, C. A. TI Outer radiation belt dropout dynamics following the arrival of two interplanetary coronal mass ejections SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE relativistic electron loss; magnetopause shadowing; nonadiabatic radial transport; adiabatic radial transport; outer radiation belt dynamics ID WAVE-PARTICLE INTERACTIONS; WHISTLER-MODE CHORUS; RELATIVISTIC ELECTRONS; GEOMAGNETIC STORMS; SOLAR-WIND; LOCAL ACCELERATION; LOSS MECHANISMS; RING CURRENT; 30 SEPTEMBER; PRECIPITATION AB Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, using satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks/sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (MC) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 daylong quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown approximate to 2 to 5MeV energy, equatorially mirroring electrons with initial values of L5.5 can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shown to be viable mechanisms. C1 [Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Jauer, P. R.; Vieira, L. E. A.; Marchezi, J. P.; Rockenbach, M.; Dal Lago, A.; Mendes, O.; Koga, D.] Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil. [Sibeck, D. G.; Silveira, M. V. D.; Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Walsh, B. M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Alves, LR (reprint author), Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil. EM livia.alves@inpe.br RI Vieira, Luis Eduardo/A-5548-2008; OI Vieira, Luis Eduardo/0000-0002-9376-475X; Kletzing, Craig/0000-0002-4136-3348; Alves, Livia/0000-0002-5680-7271 NR 61 TC 3 Z9 3 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2016 VL 43 IS 3 BP 978 EP 987 DI 10.1002/2015GL067066 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DG4QI UT WOS:000372056600006 ER PT J AU Yuan, TL Oreopoulos, L Zelinka, M Yu, HB Norris, JR Chin, M Platnick, S Meyer, K AF Yuan, Tianle Oreopoulos, Lazaros Zelinka, Mark Yu, Hongbin Norris, Joel R. Chin, Mian Platnick, Steven Meyer, Kerry TI Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE AMO; cloud feedback; dust feedback; climate model; coupled dynamics ID MERIDIONAL OVERTURNING CIRCULATION; AFRICAN DUST; ATMOSPHERIC RESPONSE; SAHEL RAINFALL; CLIMATE-CHANGE; OCEAN; MODEL; SST; VARIABILITY; PARAMETERIZATION AB The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to the appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO. C1 [Yuan, Tianle] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Catonsville, MD USA. [Yuan, Tianle; Oreopoulos, Lazaros; Yu, Hongbin; Chin, Mian; Platnick, Steven; Meyer, Kerry] NASA, Goddard Space Flight Ctr, Earth Sci Directorate, Greenbelt, MD USA. [Zelinka, Mark] Lawrence Livermore Natl Lab, Program Climate Modeling Diag & Intercomparison, Livermore, CA USA. [Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Norris, Joel R.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Meyer, Kerry] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. RP Yuan, TL (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Catonsville, MD USA.; Yuan, TL (reprint author), NASA, Goddard Space Flight Ctr, Earth Sci Directorate, Greenbelt, MD USA. EM tianle.yuan@nasa.gov RI Oreopoulos, Lazaros/E-5868-2012; Platnick, Steven/J-9982-2014; Yu, Hongbin/C-6485-2008; Zelinka, Mark/C-4627-2011; Meyer, Kerry/E-8095-2016; Chin, Mian/J-8354-2012 OI Oreopoulos, Lazaros/0000-0001-6061-6905; Platnick, Steven/0000-0003-3964-3567; Yu, Hongbin/0000-0003-4706-1575; Zelinka, Mark/0000-0002-6570-5445; Meyer, Kerry/0000-0001-5361-9200; FU NASA's MAP program FX We acknowledge the funding support from NASA's MAP program. All the data used in this study are based on publically available data sets. NR 49 TC 9 Z9 9 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2016 VL 43 IS 3 BP 1349 EP 1356 DI 10.1002/2016GL067679 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DG4QI UT WOS:000372056600050 ER PT J AU Choi, Y Ghim, YS Holben, BN AF Choi, Yongjoo Ghim, Young Sung Holben, B. N. TI Identification of columnar aerosol types under high aerosol optical depth conditions for a single AERONET site in Korea SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE dominant aerosol types; cluster analysis; mean properties; occurrence rate; anmyon site; well-characterized global sites ID BLACK CARBON; LIGHT-ABSORPTION; ORGANIC-CARBON; ASIAN DUST; WAVELENGTH DEPENDENCE; BROWN CARBON; ATMOSPHERIC AEROSOLS; PHYSICAL-PROPERTIES; PARTICULATE MATTER; SCATTERING ALBEDO AB Dominant aerosol types were classified using level 2 inversion products for the Anmyon Aerosol Robotic Network (AERONET) site in Korea for the period 1999-2007. The aerosol types were mineral dust (MD), MD mixed with carbon, and black carbon mixed coarse particles (BCCP) for coarse mode aerosols, black carbon (BC), organic carbon (OC), and secondary inorganic ions (SII) for fine mode aerosols, and mixed particles between. The classification was carried out using a clustering method based on parameters, including single scattering albedo (SSA), absorption Angstrom exponent (AAE), and fine mode volume fraction (FMVF). Among the seven aerosol types, MD was distinct, with the highest AAE and a very low FMVF and SII with the highest SSA and FMVF. BCCP was introduced to designate coarse particles mixed with BC, of which the AAE was lower than 1, despite a low FMVF. In addition to a large difference in AAE between BC and OC, the SSA of OC was larger than that of BC, indicating the effects of the white smoke produced from the smoldering phase of biomass burning. Monthly variations of the aerosol types were well interpreted by meteorology and emissions and coincided with those in the previous studies. Applying our results to well-characterized global AERONET sites, we confirmed that the aerosol types at Anmyon were valid at other sites. However, the results also showed that the mean properties for aerosol types were influenced by the specific aerosols prevalent at the study sites. C1 [Choi, Yongjoo; Ghim, Young Sung] Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin, South Korea. [Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Ghim, YS (reprint author), Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin, South Korea. EM ysghim@hufs.ac.kr FU Korea Meteorological Administration Research and Development Program [KMIPA 2015-6010] FX This work was funded by the Korea Meteorological Administration Research and Development Program under the grant KMIPA 2015-6010. We are grateful to the following principal investigators for establishing and maintaining AERONET sites: H.-B. Chen and P. Goloub of Beijing, D. Tanre of Cape Verde, and A. L. Contreras of Mexico City. The data used in this study are available at http://aeronet.gsfc.nasa.gov/cgi-bin/webtool_opera_v2_inv. NR 79 TC 1 Z9 1 U1 6 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2016 VL 121 IS 3 BP 1264 EP 1277 DI 10.1002/2015JD024115 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6QW UT WOS:000371481700015 ER PT J AU Tao, WK Wu, D Lang, S Chern, JD Peters-Lidard, C Fridlind, A Matsui, T AF Tao, Wei-Kuo Wu, Di Lang, Stephen Chern, Jiun-Dar Peters-Lidard, Christa Fridlind, Ann Matsui, Toshihisa TI High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE ice microphysics; heavy rainfall; WRF ID MIDLATITUDE SQUALL LINE; CLOUD-RESOLVING MODEL; SECONDARY ICE PARTICLES; PART I; NUMERICAL-SIMULATION; STRATIFORM PRECIPITATION; BULK PARAMETERIZATION; OROGRAPHIC SNOWFALL; AEROSOL IMPACTS; SATELLITE-OBSERVATIONS AB The Goddard microphysics was recently improved by adding a fourth ice class (frozen drops/hail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of ice/snow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries. C1 [Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Matsui, Toshihisa] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD USA. [Wu, Di; Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA. [Chern, Jiun-Dar] Morgan State Univ, Goddard Earth Sci Technol & Res Program, Baltimore, MD 21239 USA. [Peters-Lidard, Christa] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA. [Fridlind, Ann] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Matsui, Toshihisa] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Tao, WK (reprint author), NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD USA. EM Wei-Kuo.Tao-1@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Measurement, Global/C-4698-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; FU NASA Precipitation Measurement Missions (PMM); NASA Modeling, Analysis, and Prediction (MAP) Program; Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) [DE-AI02-04ER63755] FX This research was supported by the NASA Precipitation Measurement Missions (PMM), the NASA Modeling, Analysis, and Prediction (MAP) Program, and the Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) Interagency Agreement (DE-AI02-04ER63755). NMQ radar and precipitation products were provided by Xiquan Dong (dong@aero.und.edu) at the University of North Dakota and Carrie Langston (carrie.langston@noaa.gov) at the National Severe Storms Laboratory, while Yudong Tian (University of Maryland, yudong.tian-1@nasa.gov) at NASA GSFC provided the bias-corrected Q2 data. For model related data sets, the GFS data can be downloaded from: http://rda.ucar.edu/datasets/ds083.2. NU-WRF software and microphysics codes can be requested from: http://nuwrf.gsfc.nasa.gov/software. For accessing NU-WRF simulation output, please contact Di Wu (di.wu@nasa.gov). The authors are grateful to Ramesh Kakar and David B. Considine at NASA headquarters for their support of this research. Acknowledgment is also made to the NASA Goddard Space Flight Center and NASA Ames Research Center computing facilities and to Tsengdar Lee at NASA HQ for the computational resources used in this research. NR 155 TC 5 Z9 5 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2016 VL 121 IS 3 BP 1278 EP 1305 DI 10.1002/2015JD023986 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF6QW UT WOS:000371481700016 ER PT J AU Corr, CA Ziemba, LD Scheuer, E Anderson, BE Beyersdorf, AJ Chen, G Crosbie, E Moore, RH Shook, M Thornhill, KL Winstead, E Lawson, RP Barth, MC Schroeder, JR Blake, DR Dibb, JE AF Corr, C. A. Ziemba, L. D. Scheuer, E. Anderson, B. E. Beyersdorf, A. J. Chen, G. Crosbie, E. Moore, R. H. Shook, M. Thornhill, K. L. Winstead, E. Lawson, R. P. Barth, M. C. Schroeder, J. R. Blake, D. R. Dibb, J. E. TI Observational evidence for the convective transport of dust over the Central United States SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE mineral dust; convection; vertical transport; ice nuclei ID ATMOSPHERIC ICE NUCLEI; SAHARAN DUST; AEROSOL COMPOSITION; OPTICAL-PROPERTIES; EASTERN ATLANTIC; MINERAL DUST; CIRRUS; AIRBORNE; PARTICLES; AIRCRAFT AB Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (<5km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude>9km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 mu m50 mu m) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 mu m0.5 kJ/kg hydrothermal fluid) than those in the modern serpentinization-associated seafloor hydrothermal systems (e.g., Kairei field). Furthermore, the recently proposed methanotrophic acetogenesis pathway was also thermodynamically investigated. It is known that methanotrophic acetogenesis would require additional exergonic reactions to compensate its most endergonic methane-to-methanol conversion reaction at the oxidative entry to the metabolic pathway. Our calculations support the view that this thermodynamic barrier could be overcome by the reduction of nitrate in seawater at low temperature, as previously suggested. However, the thermodynamic calculations also revealed that the reduction of ferric iron-bearing minerals would occur at the outer margin and within the hydrothermal chimney wall. The maximum available energy of iron-reducing methanotrophic acetogenesis was calculated to be 0.25-0.35 kJ/kg hydrothermal fluid. Although this value is lower than theoretically available through nitrate reduction, which approaches similar to 0.45-1.25 kJ/kg hydrothermal fluid on the outer cool margins of a putative Hadean alkaline chimney, it is higher than that of sulfate-reducing anaerobic oxidation of methane in the Lost City field. These results suggest that iron reduction had the potential to drive methanotrophy and that the Hadean hydrothermal mixing zone was energetically more favorable to methanotrophy than previously thought. We conclude that iron oxidation and reduction in oxyhydroxides probably played important roles in the early evolution of energy metabolisms in the Hadean alkaline hydrothermal system. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Shibuya, Takazo; Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Lab Ocean Earth Life Evolut Res OELE, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. [Shibuya, Takazo; Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Res & Dev Ctr Submarine Resources, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. [Shibuya, Takazo; Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Project Team Dev New Generat Res Protocol Submari, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. [Shibuya, Takazo; Russell, Michael J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91108 USA. [Takai, Ken] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Dept Subsurface Geobiol Anal & Res SUGAR, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. RP Shibuya, T (reprint author), Japan Agcy Marine Earth Sci & Technol JAMSTEC, Lab Ocean Earth Life Evolut Res OELE, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. EM takazos@jamstec.go.jp FU Japan Society for Promotion of Science (JSPS) [22740333, 25707038]; NASA's Astrobiology Institute (Icy Worlds); US Government FX We thank M. Nishizawa, S. Kato, S. E. McGlynn and E. Branscomb for discussions. We are grateful to four anonymous reviewers for their valuable comments, and W. Bach for editorial handling and suggestions. This work was partially supported by the Grants-in-Aid for Scientific Research from Japan Society for Promotion of Science (JSPS) (No. 22740333 and 25707038). MJR's research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration: Exobiology and Evolutionary Biology and supported by NASA's Astrobiology Institute (Icy Worlds). US Government sponsorship acknowledged. NR 132 TC 3 Z9 3 U1 20 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 15 PY 2016 VL 175 BP 1 EP 19 DI 10.1016/j.gca.2015.11.021 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DC2TR UT WOS:000369070000001 ER PT J AU Kotov, DV Yee, HC Wray, AA Sjogreen, B Kritsuk, AG AF Kotov, D. V. Yee, H. C. Wray, A. A. Sjoegreen, B. Kritsuk, A. G. TI Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE DNS; LES; High order shock-capturing methods; Flow sensors; Numerical dissipation control; Low speed turbulence; Shock free turbulence ID LARGE-EDDY SIMULATION; TAYLOR-GREEN VORTEX; COMPRESSIBLE TURBULENCE; ISOTROPIC TURBULENCE AB The Yee & Sjogreen adaptive numerical dissipation control in high order scheme (High Order Filter Methods for Wide Range of Compressible Flow Speeds, ICOSAHOM 09, 2009) is further improved for DNS and LES of shock-free turbulence and low speed turbulence with shocklets. There are vastly different requirements in the minimization of numerical dissipation for accurate turbulence simulations of different compressible flow types and flow speeds. Traditionally, the method of choice for shock-free turbulence and low speed turbulence are by spectral, high order central or high order compact schemes with high order linear filters. With a proper control of a local flow sensor, appropriate amount of numerical dissipation in high order shock-capturing schemes can have spectral-like accuracy for compressible low speed turbulent flows. The development of the method includes an adaptive flow sensor with automatic selection on the amount of numerical dissipation needed at each flow location for more accurate DNS and LES simulations with less tuning of parameters for flows with a wide range of flow speed regime during the time-accurate evolution, e.g., time varying random forcing. An automatic selection of the different flow sensors catered to the different flow types is constructed. A Mach curve and high-frequency oscillation indicators are used to reduce the tuning of parameters in controlling the amount of shock-capturing numerical dissipation to be employed for shock-free turbulence, low speed turbulence and turbulence with strong shocks. In Kotov etal. (High Order Numerical Methods for LES of Turbulent Flows with Shocks, ICCFD8, Chengdu, Sichuan, China, July 14-18, 2014) the LES of a turbulent flow with a strong shock by the Yee & Sjogreen scheme indicated a good agreement with the filtered DNS data. A work in progress for the application of the adaptive flow sensor for compressible turbulence with time-varying random forcing is forthcoming. The present study examines the versatility of the Yee & Sjogreen scheme for DNS and LES of traditional low speed flows without forcing. Special attention is focused on the accuracy performance of this scheme using the Smagorinsky and the Germano-Lilly SGS models. Published by Elsevier Inc. C1 [Kotov, D. V.] Bay Area Environm Res Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA. [Yee, H. C.; Wray, A. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Sjoegreen, B.] Lawrence Livermore Natl Lab, Box 808,L-422, Livermore, CA 94551 USA. [Kritsuk, A. G.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Yee, HC (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM dmitry.v.kotov@nasa.gov; helen.m.yee@nasa.gov; Alan.A.Wray@nasa.gov; sjogreen2@llnl.gov; akritsuk@ucsd.edu FU DOE/SciDAC SAP [DE-AI02-06ER25796]; NASA Aerosciences Project - RCA; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [AST-1412271]; UC Santa Cruz sub award [A16-0243-S001] FX The support of the DOE/SciDAC SAP grant DE-AI02-06ER25796 is acknowledged. Financial support from the NASA Aerosciences Project - RCA for the second author is gratefully acknowledged. Work by the fourth author was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work by the fifth author was support in part by the National Science Foundation grant AST-1412271 and UC Santa Cruz sub award A16-0243-S001. NR 45 TC 0 Z9 0 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 15 PY 2016 VL 307 BP 189 EP 202 DI 10.1016/j.jcp.2015.11.029 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DC2YR UT WOS:000369085500011 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Ain, A Ajith, P Allen, B Allocca, A Amariutei, DV Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Belczynski, C Bell, AS Bell, J Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, D Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Bork, R Boschi, V Bose, S Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, D Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, R De Rosa, R DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, JM Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fisher, RP Flaminio, R Fletcher, M Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, B Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunwald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, E Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, J Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, I Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, N Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, E Lee, CH Lee, HK Lee, HM Lee, K Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Pereira, R Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, M Pitkin, M Poggiani, R Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prokhorov, L Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Saulson, PR Sauter, O Savage, R Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Sintes, M Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ van den Broeck, C van der Schaaf, L van der Sluys, MV van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, J Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, RD Williamson, R Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Ain, A. Ajith, P. Allen, B. Allocca, A. Amariutei, D. V. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Bell, J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Bork, R. Boschi, V. Bose, S. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Calderon Bustillo, J. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P-F. Colla, A. Collette, C. G. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J-P. Countryman, S. T. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. DeBra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. DeRosa, R. De Rosa, R. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H-B. Ehrens, P. Eichholz, J. M. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J-D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, A. Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunwald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C-J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J-M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, N. Kim, N. Kim, Y-M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Pereira, R. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, M. Pitkin, M. Poggiani, R. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prodi, G. A. Prokhorov, L. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Saulson, P. R. Sauter, O. Savage, R. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Sintes, M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toeyrae, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. van den Broeck, C. van der Schaaf, L. van der Sluys, M. V. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vinet, J-Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L-W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, R. D. Williamson, R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J-P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Sci Collaboration LIGO Sci Collaboration Virgo Collaboration TI All-sky search for long-duration gravitational wave transients with initial LIGO SO PHYSICAL REVIEW D LA English DT Article ID CORE-COLLAPSE SUPERNOVAE; GAMMA-RAY BURSTS; BLACK-HOLE; NEUTRON-STARS; ACCRETION; INSTABILITY; SIGNATURES; RADIATION; BINARIES; MAGNETAR AB We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4 x 10(-5) and 9.4 x 10(-4) Mpc(-3) yr(-1) at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Goetz, R.; Gushwa, E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Ackley, K.; Amariutei, D. V.; Brown, D.; Ciani, G.; Eichholz, J. M.; Eikenberry, S. S.; Fulda, P.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Tanner, D. B.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gonzalez, G.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Drago, M.; Eggenstein, H-B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; nielsen, A. B.; Oppermann, P.; Papa, M. A.; Post, A.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bertolini, A.; Bloemen, S.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, A.; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Pankow, C.; Papa, M. A.; Qi, H.; Reitze, D. H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, L. E.; Wade, M.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Moggi, A.; Paoletti, F.; Passuello, D.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Madras, Tamil Nadu, India. [Ashton, G.; Jones, I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.; Trozzo, L.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Leaci, P.; Majorana, E.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunwald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Raymond, V.; Singh, A.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gondan, L.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Prijatelj, M.; Ruggi, P.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A.; Nuttall, L. K.; Pekowsky, L.; Saulson, P. R.; Usman, S. A.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Castro, J. M. Gonzalez; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Gatto, A.; Lebigot, E.; Tacca, M.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, F-75205 Paris 13, France. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Pereira, R.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J-P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C-J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toeyrae, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Goetz, E.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van der Sluys, M. V.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P.; Dereli, H.; Fournier, J-D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y.; Wei, L-W.] Univ Cote Azur, CNRS, ARTEMIS, F-06304 Nice, France. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P.; Dereli, H.; Fournier, J-D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y.; Wei, L-W.] Observ Cote Azur, F-06304 Nice, France. [Bojtos, P.; Frei, Z.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P-F.; Deleglise, S.; Heidmann, A.; Isac, J-M.; Jacqmin, T.] PSL Res Univ, Univ Paris 04, UPMC, Lab Kastler Brossel,CNRS,ENS,Coll France, F-75005 Paris, France. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, LMA, IN2P3, CNRS, F-69622 Lyon, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Oliver, M.; Sintes, M.] Univ Illes Balears, IEEC, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Gopakumar, A.; Graff, B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Casentini, C.; Cesarini, E.; D'Antonio, S.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Re, V.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez & Roma Tor Vergata, I-00133 Rome, Italy. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Ott, C. D.; Schmidt, P.; Thorne, K. S.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, N.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Chow, J. H.; Mansell, G. L.; McClelland, D. E.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Coccia, E.; Fafone, V.; Lorenzini, M.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Colla, A.; Conte, A.; Di Giovanni, M.; Frasca, S.; Leaci, P.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Coughlin, S. B.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Puerrer, M.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Everett, R.; Hanna, C.; Idrisy, A.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Gair, J. R.; Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Gaur, G.] Indian Inst Technol, Gandhinagar Ahmedabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; McIver, J.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Kalogera, V.; Littenberg, T. B.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y-M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 280 Boyer Ave, Walla Walla, WA USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Lazzaro, Claudia/L-2986-2016; Stratta, Maria Giuliana/L-3045-2016; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Sorrentino, Fiodor/M-6662-2016; Garufi, Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Travasso, Flavio/J-9595-2016; Costa, Cesar/G-7588-2012; Puppo, Paola/J-4250-2012; Iyer, Bala R./E-2894-2012; Nelemans, Gijs/D-3177-2012; Ott, Christian/G-2651-2011; Piccinni, Ornella Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Kumar, Prem/B-6691-2009; Gammaitoni, Luca/B-5375-2009; Hild, Stefan/A-3864-2010; Rocchi, Alessio/O-9499-2015; Zhu, Xingjiang/E-1501-2016; prodi, giovanni/B-4398-2010; Gemme, Gianluca/C-7233-2008; Gorodetsky, Michael/C-5938-2008; Strain, Kenneth/D-5236-2011; Strigin, Sergey/I-8337-2012; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Bell, Angus/E-7312-2011; Tiwari, Shubhanshu/R-8546-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012 OI Lazzaro, Claudia/0000-0001-5993-3372; Stratta, Maria Giuliana/0000-0003-1055-7980; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Ferrante, Isidoro/0000-0002-0083-7228; Sorrentino, Fiodor/0000-0002-9605-9829; Garufi, Fabio/0000-0003-1391-6168; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Travasso, Flavio/0000-0002-4653-6156; Puppo, Paola/0000-0003-4677-5015; Iyer, Bala R./0000-0002-4141-5179; Nelemans, Gijs/0000-0002-0752-2974; Ott, Christian/0000-0003-4993-2055; Piccinni, Ornella Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Gammaitoni, Luca/0000-0002-4972-7062; Rocchi, Alessio/0000-0002-1382-9016; Zhu, Xingjiang/0000-0001-7049-6468; prodi, giovanni/0000-0001-5256-915X; Gemme, Gianluca/0000-0002-1127-7406; Gorodetsky, Michael/0000-0002-5159-2742; Strain, Kenneth/0000-0002-2066-5355; Heidmann, Antoine/0000-0002-0784-5175; Bell, Angus/0000-0003-1523-0821; Haney, Maria/0000-0001-7554-3665; Kanner, Jonah/0000-0001-8115-0577; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Gendre, Bruce/0000-0002-9077-2025; Granata, Massimo/0000-0003-3275-1186; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Collette, Christophe/0000-0002-4430-3703; Addesso, Paolo/0000-0003-0895-184X; Naticchioni, Luca/0000-0003-2918-0730; Khan, Sebastian/0000-0003-4953-5754; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Boschi, Valerio/0000-0001-8665-2293; Gatto, Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Tiwari, Shubhanshu/0000-0003-1611-6625; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Italian Istituto Nazionale di Fisica Nucleare (INFN); French Centre National de la Recherche Scientifique (CNRS); Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educaci, Cultura i Universitats of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; National Science Centre of Poland; European Union; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council, Canada; Brazilian Ministry of Science, Technology, and Innovation; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; NSF; STFC; MPS; INFN; CNRS FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory; the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector; and the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the French Centre National de la Recherche Scientifique (CNRS) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Australian Research Council; the International Science Linkages program of the Commonwealth of Australia; the Council of Scientific and Industrial Research of India; the Department of Science and Technology, India; the Science & Engineering Research Board (SERB), India; the Ministry of Human Resource Development, India; the Spanish Ministerio de Economia y Competitividad; the Conselleria d'Economia i Competitivitat and Conselleria d'Educaci, Cultura i Universitats of the Govern de les Illes Balears; the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research; the National Science Centre of Poland; the European Union; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the National Aeronautics and Space Administration; the Hungarian Scientific Research Fund (OTKA); the Lyon Institute of Origins (LIO); the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the Natural Science and Engineering Research Council, Canada; the Brazilian Ministry of Science, Technology, and Innovation; the Carnegie Trust; the Leverhulme Trust; the David and Lucile Packard Foundation; the Research Corporation; and the Alfred P. Sloan Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. NR 81 TC 7 Z9 7 U1 8 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 12 PY 2016 VL 93 IS 4 AR 042005 DI 10.1103/PhysRevD.93.042005 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DD6IS UT WOS:000370028500001 ER PT J AU Janakiraman, VM Nguyen, X Assanis, D AF Janakiraman, Vijay Manikandan Nguyen, XuanLong Assanis, Dennis TI Stochastic gradient based extreme learning machines for stable online learning of advanced combustion engines SO NEUROCOMPUTING LA English DT Article DE Online learning; Extreme learning machine; System identification; Lyapunov stability; Engine control; Operating envelope ID COMPRESSION IGNITION; NEURAL-NETWORKS; HCCI ENGINES; IDENTIFICATION; CLASSIFICATION; REGRESSION; ALGORITHM AB We propose and develop SG-ELM, a stable online learning algorithm based on stochastic gradients and Extreme Learning Machines (ELM). We propose SG-ELM particularly for systems that are required to be stable during learning; i.e., the estimated model parameters remain bounded during learning. We use a Lyapunov approach to prove both asymptotic stability of estimation error and boundedness in the model parameters suitable for identification of nonlinear dynamic systems. Using the Lyapunov approach, we determine an upper bound for the learning rate of SG-ELM. The SG-ELM algorithm not only guarantees a stable learning but also reduces the computational demand compared to the recursive least squares based OS-ELM algorithm (Liang et al., 2006). In order to demonstrate the working of SG-ELM on a real world problem, an advanced combustion engine identification is considered. The algorithm is applied to two case studies: An online regression learning for system identification of a Homogeneous Charge Compression Ignition (HCCI) Engine and an online classification learning (with class imbalance) for identifying the dynamic operating envelope. The case studies demonstrate that the accuracy of the proposed SG-ELM is comparable to that of the OS-ELM approach but adds stability and a reduction in computational effort. (C) 2015 Elsevier B.V. All rights reserved. C1 [Janakiraman, Vijay Manikandan] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Nguyen, XuanLong] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA. [Assanis, Dennis] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY USA. [Assanis, Dennis] SUNY Stony Brook, Acad Affairs, Stony Brook, NY USA. [Assanis, Dennis] SUNY Stony Brook, Brookhaven Affairs, Stony Brook, NY USA. RP Janakiraman, VM (reprint author), NASA, Ames Res Ctr, MS 269-1, Moffett Field, CA 94035 USA. EM vijai@umich.edu FU Department of Energy [National Energy Technology Laboratory] [DE-EE0003533]; NSF [CCF-1115769, ACI-1047871] FX This material is based upon work supported by the Department of Energy [National Energy Technology Laboratory] under Award number(s) DE-EE0003533. This work is performed as a part of the ACCESS project consortium (Robert Bosch LLC, AVL Inc., Emitec Inc.) under the direction of PI Hakan Yilmaz, Robert Bosch, LLC. Prof. X. Nguyen is supported in part by NSF Grants CCF-1115769 and ACI-1047871. NR 44 TC 0 Z9 0 U1 4 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-2312 EI 1872-8286 J9 NEUROCOMPUTING JI Neurocomputing PD FEB 12 PY 2016 VL 177 BP 304 EP 316 DI 10.1016/j.neucom.2015.11.024 PG 13 WC Computer Science, Artificial Intelligence SC Computer Science GA DD7EF UT WOS:000370085800029 ER PT J AU Reager, JT Gardner, AS Famiglietti, JS Wiese, DN Eicker, A Lo, MH AF Reager, J. T. Gardner, A. S. Famiglietti, J. S. Wiese, D. N. Eicker, A. Lo, M. -H. TI A decade of sea level rise slowed by climate-driven hydrology SO SCIENCE LA English DT Article ID GROUNDWATER DEPLETION; WATER STORAGE; RECONCILED ESTIMATE; MASS VARIATIONS; CENTRAL VALLEY; ICE CAPS; GRACE; IRRIGATION; MANAGEMENT; GLACIERS AB Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of continental land mass changes and a quantification of this term. We found that between 2002 and 2014, climate variability resulted in an additional 3200 +/- 900 gigatons of water being stored on land. This gain partially offset water losses from ice sheets, glaciers, and groundwater pumping, slowing the rate of sea level rise by 0.71 +/- 0.20 millimeters per year. These findings highlight the importance of climate-driven changes in hydrology when assigning attribution to decadal changes in sea level. C1 [Reager, J. T.; Gardner, A. S.; Famiglietti, J. S.; Wiese, D. N.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Famiglietti, J. S.] Univ Calif Irvine, Dept Civil & Environm Engn, Dept Earth Syst Sci, Irvine, CA USA. [Eicker, A.] Univ Bonn, Inst Geodesy & Geoinformat, Bonn, Germany. [Lo, M. -H.] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10764, Taiwan. RP Reager, JT (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM john.reager@jpl.nasa.gov RI Eicker, Annette/B-6076-2014; OI Eicker, Annette/0000-0002-9087-1445; LO, MIN-HUI/0000-0002-8653-143X; Gardner, Alex/0000-0002-8394-8889 FU NASA; NASA GRACE Science Team; University of California Multicampus Research Programs and Initiatives; Ministry of Science and Technology (MOST), Taiwan [MOST 103-2111-M-002-006] FX We thank M. Watkins, E. Ivins, D. Argus, G. Cogley, A. Richey, Y. Wada, R. Nerem, and D. Chambers for their contributions and discussion. This work was supported by funding from the NASA NEWS, Sea Level, and Cryosphere programs; the NASA GRACE Science Team; and the University of California Multicampus Research Programs and Initiatives. This multidisciplinary collaboration grew from the interactions of the NASA Sea Level Change Team. The research was conducted at the University of California, Irvine and at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. M.-H. Lo was supported by the Ministry of Science and Technology (MOST), Taiwan, MOST 103-2111-M-002-006. GRACE RL05M data are available at podaac.jpl.nasa.gov. The authors declare no competing interests. NR 54 TC 14 Z9 14 U1 14 U2 76 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 12 PY 2016 VL 351 IS 6274 BP 699 EP 703 DI 10.1126/science.aad8386 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DD3GL UT WOS:000369810000038 PM 26912856 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Barton, MA Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Belczynski, C Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Birnholtz, O Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cabero, M Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Creighton, TD Cripe, J Crowder, SG Cruise, AM Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Da Silva Costa, CF Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R De, S DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V DeRosa, RT De Rosa, R DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Feldbaum, D Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Finn, LS Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fong, H Fournier, JD Franco, S Frasca, S Frasconi, F Frede, M Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Gleason, JR Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Greenhalgh, RJS Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Healy, J Heefner, J Heidmann, A Heintze, MC Heinzel, G Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacobson, MB Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Johnson-McDaniel, NK Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Keppel, DG Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Koranda, S Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kumar, R Kuo, L Kutynia, A Kwee, P Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL London, LT Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lousto, CO Lovelace, G Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pan, Y Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Pfeiffer, HP Phelps, M Piccinni, O Pichot, M Pickenpack, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poeld, JH Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Ramet, CR Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sampson, LM Sanchez, EJ Sandberg, V Sandeen, B Sanders, GH Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shaffer, T Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, MR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stevenson, SP Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M van Bakel, N van Beuzekom, M van den Brand, JFJ Van Den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Waldman, SJ Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, H Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wiesner, K Wilkinson, C Willems, PA Williams, L Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yakushin, I Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Barton, M. A. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Birnholtz, O. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cabero, M. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. Calderon Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P-F Colla, A. Collette, C. G. Cominsky, L. Constancio, M. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J-P Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Creighton, T. D. Cripe, J. Crowder, S. G. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Da Silva Costa, C. F. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. De, S. DeBra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. DeRosa, R. T. De Rosa, R. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H-B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Feldbaum, D. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Finn, L. S. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fong, H. Fournier, J-D. Franco, S. Frasca, S. Frasconi, F. Frede, M. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Abhirup Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Gleason, J. R. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Greenhalgh, R. J. S. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C-J. Haughian, K. Healy, J. Heefner, J. Heidmann, A. Heintze, M. C. Heinzel, G. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J-M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacobson, M. B. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Johnson-McDaniel, N. K. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Keppel, D. G. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y-M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Koranda, S. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kumar, R. Kuo, L. Kutynia, A. Kwee, P. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. London, L. T. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lousto, C. O. Lovelace, G. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pan, Y. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Pfeiffer, H. P. Phelps, M. Piccinni, O. Pichot, M. Pickenpack, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poeld, J. H. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Ramet, C. R. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sampson, L. M. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, G. H. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shaffer, T. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, M. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toeyrae, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van Den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J-Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Waldman, S. J. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, H. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L-W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wiesner, K. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yakushin, I. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J-P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Observation of Gravitational Waves from a Binary Black Hole Merger SO PHYSICAL REVIEW LETTERS LA English DT Article ID INSPIRALLING COMPACT BINARIES; COALESCING BINARIES; MASS; RADIATION; GRAVITON; STELLAR; SYSTEM; PULSAR; FIELD; DETECTORS AB On September 14, 2015 at 09: 50: 45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 sigma. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z = 0.09(-0.01)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M(circle dot) and 29(-4)(+4)M(circle dot), and the final black hole mass is 62(-4)(+4) M-circle dot, with 3.0(-0.5)(+0.5) M(circle dot)c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Jacobson, M. B.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Sanders, G. H.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.; Romano, R.] Univ Salerno, Fisciano, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Sez Napoli, Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Ackley, K.; Arain, M. A.; Ciani, G.; Da Silva Costa, C. F.; Eichholz, J.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J. R.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Ramet, C. R.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bergmann, G.; Birnholtz, O.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Cabero, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H-B.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heinzel, G.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Keppel, D. G.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Kwee, P.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Pickenpack, M.; Poeld, J. H.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Wiesner, K.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Waldman, S. J.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Abhirup; Ghosh, Archisman; Iyer, B. R.; Johnson-McDaniel, N. K.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Koranda, S.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, GPO Box 4, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Lovelace, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris Saclay, Univ Paris Sud, CNRS, IN2P3,LAL, Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.; Kasprzack, M.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, Martinistr 52, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Pfeiffer, H. P.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, CNRS, IN2P3,APC, CEA Irfu,Observ Paris,Sorbonne Paris Cite,AstroPa, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06100 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; De, S.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Kumar, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Ward, H.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Shaffer, T.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Wilkinson, C.; Worden, J.] LIGo Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J-P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Cruise, A. M.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C-J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Stevenson, S. P.; Thomas, E. G.; Toeyrae, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P; Dereli, H.; Fournier, J-D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J-Y.; Wei, L-W.] Univ Cote Azur, Observ Cote Azur, CNRS, Artemis, CS 34229, Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.; Walsh, S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P-F; Deleglise, S.; Heidmann, A.; Isac, J-M.; Jacqmin, T.] UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS, ENS PSL Res Univ,Coll France, F-75005 Paris, France. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys & Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Lyon 1, Univ Lyon, Inst Lumiere Matiere, UMR CNRS 5306, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3 IEEC, E-07122 Palma de Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Camp, J. B.; Gehrels, N.; Singer, L. P.] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 1A1, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Finn, L. S.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Ott, C. D.; Schmidt, P.; Thorne, K. S.; Vallisneri, M.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Colla, A.; Conte, A.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Rapagnani, P.; Ricci, F.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.] Univ Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sampson, L. M.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Creighton, T. D.; Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Melbourne, Vic 3010, Australia. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Trento Inst Fundamental Phys & Applicat, Ist Nazl Fis Nucl, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; London, L. T.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Ind Technol Inst, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Gandhinagar 382428, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India. [Greenhalgh, R. J. S.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Healy, J.; Lange, J.; Lousto, C. O.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts Amherst, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y-M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South American Inst Fundamental Res, Rua Pamplona 145, BR-01140070 Sao Paulo, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Nat Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Puppo, Paola/J-4250-2012; Iyer, Bala R./E-2894-2012; Nelemans, Gijs/D-3177-2012; Ott, Christian/G-2651-2011; Piccinni, Ornella Juliana/C-1319-2016; Tacca, Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Howell, Eric/H-5072-2014; Strain, Kenneth/D-5236-2011; Gammaitoni, Luca/B-5375-2009; Rocchi, Alessio/O-9499-2015; prodi, giovanni/B-4398-2010; Gemme, Gianluca/C-7233-2008; Bell, Angus/E-7312-2011; Costa, Cesar/G-7588-2012; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Stratta, Maria Giuliana/L-3045-2016; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Conti, Livia/F-8565-2013; Groot, Paul/K-4391-2016; Vecchio, Alberto/F-8310-2015; Graef, Christian/J-3167-2015; Branchesi, Marica/P-2296-2015; Ferrante, Isidoro/F-1017-2012; Chen, Yanbei/A-2604-2013; Garufi, Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Zhu, Xingjiang/E-1501-2016; Bondu, Francois/A-2071-2012; Sorrentino, Fiodor/M-6662-2016; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015 OI Puppo, Paola/0000-0003-4677-5015; Iyer, Bala R./0000-0002-4141-5179; Nelemans, Gijs/0000-0002-0752-2974; Ott, Christian/0000-0003-4993-2055; Piccinni, Ornella Juliana/0000-0001-5478-3950; Tacca, Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Lazzaro, Claudia/0000-0001-5993-3372; Howell, Eric/0000-0001-7891-2817; Strain, Kenneth/0000-0002-2066-5355; Gammaitoni, Luca/0000-0002-4972-7062; Rocchi, Alessio/0000-0002-1382-9016; prodi, giovanni/0000-0001-5256-915X; Gemme, Gianluca/0000-0002-1127-7406; Bell, Angus/0000-0003-1523-0821; Gorodetsky, Michael/0000-0002-5159-2742; Heidmann, Antoine/0000-0002-0784-5175; Stratta, Maria Giuliana/0000-0003-1055-7980; De Laurentis, Martina/0000-0002-3815-4078; Conti, Livia/0000-0003-2731-2656; Groot, Paul/0000-0002-4488-726X; Vecchio, Alberto/0000-0002-6254-1617; Graef, Christian/0000-0002-4535-2603; Ferrante, Isidoro/0000-0002-0083-7228; Garufi, Fabio/0000-0003-1391-6168; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Whiting, Bernard F/0000-0002-8501-8669; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Gendre, Bruce/0000-0002-9077-2025; Allen, Bruce/0000-0003-4285-6256; Granata, Massimo/0000-0003-3275-1186; Wette, Karl/0000-0002-4394-7179; Berry, Christopher/0000-0003-3870-7215; Kanner, Jonah/0000-0001-8115-0577; Scott, Jamie/0000-0001-6701-6515; Callister, Thomas/0000-0001-9892-177X; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; tiwari, shubhanshu/0000-0003-1611-6625; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431; Collette, Christophe/0000-0002-4430-3703; Addesso, Paolo/0000-0003-0895-184X; Denker, Timo/0000-0003-1259-5315; Naticchioni, Luca/0000-0003-2918-0730; Khan, Sebastian/0000-0003-4953-5754; Isi Banales, Maximiliano/0000-0001-8830-8672; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Zhu, Xingjiang/0000-0001-7049-6468; Boschi, Valerio/0000-0001-8665-2293; Gatto, Alberto/0000-0001-9090-983X; Bondu, Francois/0000-0001-6487-5197; Sorrentino, Fiodor/0000-0002-9605-9829; Travasso, Flavio/0000-0002-4653-6156; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533 FU Australian Research Council; Netherlands Organisation for Scientific Research; EGO consortium; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Sciences and Engineering Research Council of Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; NSF; STFC; MPS; INFN; CNRS FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck Society (MPS), and the State of Niedersachsen, Germany, for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector, and for the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen, Germany, for provision of computational resources. This article has been assigned the document numbers LIGO-P150914 and VIR-0015A-16. NR 115 TC 808 Z9 809 U1 149 U2 388 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2016 VL 116 IS 6 AR 061102 DI 10.1103/PhysRevLett.116.061102 PG 16 WC Physics, Multidisciplinary SC Physics GA DD6JJ UT WOS:000370030200001 ER PT J AU Schreurs, AS Shirazi-Fard, Y Shahnazari, M Alwood, JS Truong, TA Tahimic, CGT Limoli, CL Turner, ND Halloran, B Globus, RK AF Schreurs, A. -S. Shirazi-Fard, Y. Shahnazari, M. Alwood, J. S. Truong, T. A. Tahimic, C. G. T. Limoli, C. L. Turner, N. D. Halloran, B. Globus, R. K. TI Dried plum diet protects from bone loss caused by ionizing radiation SO SCIENTIFIC REPORTS LA English DT Article ID TOTAL-BODY IRRADIATION; LONG-DURATION SPACEFLIGHT; OXIDATIVE STRESS; MUSCULOSKELETAL DISUSE; CANCELLOUS BONE; SPACE RADIATION; MALE-MICE; IGF-I; HEALTH; SUPPLEMENTATION AB Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or anti-inflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss. Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-alpha) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Thus, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth. C1 [Schreurs, A. -S.; Shirazi-Fard, Y.; Shahnazari, M.; Alwood, J. S.; Truong, T. A.; Tahimic, C. G. T.; Globus, R. K.] NASA, Bone & Singaling Lab, Space Biosci Div, Ames Res Ctr, Greenbelt, MD 20771 USA. [Limoli, C. L.] Univ Calif Irvine, Dept Radiat Oncol, Irvine, CA 92717 USA. [Turner, N. D.] Texas A&M Univ, Dept Nutr & Food Sci, College Stn, TX 77843 USA. [Halloran, B.] Univ Calif San Francisco, Div Endocrinol, Dept Med, San Francisco, CA 94143 USA. RP Globus, RK (reprint author), NASA, Bone & Singaling Lab, Space Biosci Div, Ames Res Ctr, Greenbelt, MD 20771 USA. EM ruth.k.globus@nasa.gov FU National Space Biomedical Research Institute under NASA [MA02501, NCC 9-58]; DOE-NASA Interagency Award [DE-SC0001507]; Office of Science (BER), U.S. Department of Energy; NASA Postdoctoral Program fellowship FX Research was supported by National Space Biomedical Research Institute grant #MA02501 (RKG, CL, JSA) under NASA cooperative agreement NCC 9-58, a DOE-NASA Interagency Award #DE-SC0001507, supported by the Office of Science (BER), U.S. Department of Energy (RKG), and a NASA Postdoctoral Program fellowship (AS, JSA). The authors gratefully acknowledge members of the Bone and Signaling Laboratory Masahiro Terada, Josergio Zaragoza, Betsabel Chicana, Kevin Bruns and Nicholas Thomas at NASA Ames Research Center for their technical help and valuable contributions during this project. The authors thank Brookhaven National Laboratory Animal Care Facility and NASA Space Radiation Laboratory staff Peter Guida, Adam Rusek, MaryAnn Petry, Kerry Bonti, Angela Kim, and Laura Loudenslager for their assistance with this experiment. We would also like to thank the California Plum Board for their donation of DP. NR 64 TC 1 Z9 1 U1 3 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 11 PY 2016 VL 6 AR 21343 DI 10.1038/srep21343 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DD4WU UT WOS:000369924300001 PM 26867002 ER PT J AU Krause, E Eifler, T Blazek, J AF Krause, Elisabeth Eifler, Tim Blazek, Jonathan TI The impact of intrinsic alignment on current and future cosmic shear surveys SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmology; theory ID WEAK-LENSING SURVEYS; MATTER POWER SPECTRUM; PHOTOMETRIC REDSHIFT ERRORS; GALAXY LUMINOSITY FUNCTIONS; MASSIVEBLACK-II SIMULATION; DARK ENERGY CONSTRAINTS; LARGE-SCALE STRUCTURE; COSMOLOGICAL CONSTRAINTS; NUMBER DENSITY; STATISTICS AB Intrinsic alignment (IA) of source galaxies is one of the major astrophysical systematics for weak lensing surveys. Several IA models have been proposed and their impact on cosmological constraints has been examined using the Fisher information matrix in conjunction with approximate, Gaussian covariances. This paper presents the first forecasts of the impact of IA on cosmic shear measurements for future surveys using simulated likelihood analyses and covariances that include higher order moments of the density field. We consider a range of possible IA scenarios and test mitigation schemes which parametrize IA by the fraction of red galaxies, normalization, luminosity and redshift dependence of the IA signal. Compared to previous studies, we find smaller biases in time-dependent dark energy models if IA is ignored in the analysis. The amplitude and significance of these biases vary as a function of survey properties (depth, statistical uncertainties), luminosity function and IA scenario. Due to its small statistical errors and relatively shallow depth, Euclid is significantly impacted by IA. Large Synoptic Survey Telescope (LSST) and Wide-Field Infrared Survey Telescope (WFIRST) benefit from increased survey depth, while larger statistical errors for Dark Energy Survey (DES) decrease IA's relative impact on cosmological parameters. The proposed IA mitigation scheme removes parameter biases for DES, LSST and WFIRST even if the shape of the IA power spectrum is only poorly known; successful IA mitigation for Euclid requires more prior information. We explore several alternative IA mitigation strategies for Euclid; in the absence of alignment of blue galaxies we recommend the exclusion of red (IA-contaminated) galaxies in cosmic shear analyses. C1 [Krause, Elisabeth] Stanford Univ, Kavli Inst Particle Cosmol & Astrophys, Stanford, CA 94305 USA. [Krause, Elisabeth; Eifler, Tim] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Eifler, Tim] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Blazek, Jonathan] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. RP Krause, E (reprint author), Stanford Univ, Kavli Inst Particle Cosmol & Astrophys, Stanford, CA 94305 USA. EM aekrause@stanford.edu FU National Science Foundation [1066293] FX The authors thank Rachel Mandelbaum for very helpful comments and discussions. This paper is based upon work supported in part by the National Science Foundation under Grant No. 1066293 and the hospitality of the Aspen Center for Physics. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. TE thanks the JPL High-Performance Computing team for outstanding support. NR 70 TC 6 Z9 6 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2016 VL 456 IS 1 BP 207 EP 222 DI 10.1093/mnras/stv2615 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UN UT WOS:000368010000048 ER PT J AU Nelson, RP Gressel, O Umurhan, OM AF Nelson, Richard P. Gressel, Oliver Umurhan, Orkan M. TI Linear and non-linear evolution of the vertical shear instability in accretion discs (vol 435, pg 2610, 2013) SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Correction DE errata; addenda; instabilities; methods: numerical; protoplanetary discs C1 [Nelson, Richard P.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Gressel, Oliver] Niels Bohr Inst, Niels Bohr Int Acad, DK-2100 Copenhagen, Denmark. [Umurhan, Orkan M.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Umurhan, Orkan M.] SETI Inst, Mountain View, CA 94043 USA. RP Nelson, RP (reprint author), Queen Mary Univ London, Astron Unit, Mile End Rd, London E1 4NS, England. EM r.p.nelson@qmul.ac.uk NR 3 TC 0 Z9 0 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2016 VL 456 IS 1 BP 239 EP 239 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UN UT WOS:000368010000050 ER PT J AU Ciceri, S Mancini, L Southworth, J Lendl, M Tregloan-Reed, J Brahm, R Chen, G D'Ago, G Dominik, M Jaimes, RF Galianni, P Harpsoe, K Hinse, TC Jorgensen, UG Juncher, D Korhonen, H Liebig, C Rabus, M Bonomo, AS Bott, K Henning, T Jordan, A Sozzetti, A Alsubai, KA Andersen, JM Bajek, D Bozza, V Bramich, DM Browne, P Novati, SC Damerdji, Y Diehl, C Elyiv, A Giannini, E Gu, SH Hundertmark, M Kains, N Penny, M Popovas, A Rahvar, S Scarpetta, G Schmidt, RW Skottfelt, J Snodgrass, C Surdej, J Vilela, C Wang, XB Wertz, O AF Ciceri, S. Mancini, L. Southworth, J. Lendl, M. Tregloan-Reed, J. Brahm, R. Chen, G. D'Ago, G. Dominik, M. Jaimes, R. Figuera Galianni, P. Harpsoe, K. Hinse, T. C. Jorgensen, U. G. Juncher, D. Korhonen, H. Liebig, C. Rabus, M. Bonomo, A. S. Bott, K. Henning, Th Jordan, A. Sozzetti, A. Alsubai, K. A. Andersen, J. M. Bajek, D. Bozza, V. Bramich, D. M. Browne, P. Novati, S. Calchi Damerdji, Y. Diehl, C. Elyiv, A. Giannini, E. Gu, S-H. Hundertmark, M. Kains, N. Penny, M. Popovas, A. Rahvar, S. Scarpetta, G. Schmidt, R. W. Skottfelt, J. Snodgrass, C. Surdej, J. Vilela, C. Wang, X-B. Wertz, O. TI Physical properties of the planetary systemsWASP-45 and WASP-46 from simultaneous multiband photometry SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE planets and satellites: fundamental parameters; stars: fundamental parameters; stars: individual: WASP-45; stars: individual: WASP-46 ID TRANSITING EXTRASOLAR PLANETS; STELLAR EVOLUTION DATABASE; HIGH-PRECISION PHOTOMETRY; LIMB-DARKENING LAW; LIGHT-CURVE; TRANSMISSION SPECTRA; ATMOSPHERE MODELS; SURFACE GRAVITIES; LOW-MASS; TELESCOPE AB Accurate measurements of the physical characteristics of a large number of exoplanets are useful to strongly constrain theoretical models of planet formation and evolution, which lead to the large variety of exoplanets and planetary-system configurations that have been observed. We present a study of the planetary systems WASP-45 and WASP-46, both composed of a main-sequence star and a close-in hot Jupiter, based on 29 new high-quality light curves of transits events. In particular, one transit of WASP-45 b and four of WASP-46 b were simultaneously observed in four optical filters, while one transit of WASP-46 b was observed with the NTT obtaining a precision of 0.30 mmag with a cadence of roughly 3 min. We also obtained five new spectra of WASP-45 with the FEROS spectrograph. We improved by a factor of 4 the measurement of the radius of the planet WASP-45 b, and found that WASP-46 b is slightly less massive and smaller than previously reported. Both planets now have a more accurate measurement of the density (0.959 +/- 0.077 rho Jup instead of 0.64 +/- 0.30 rho Jup for WASP-45 b, and 1.103 +/- 0.052 rho Jup instead of 0.94 +/- 0.11 rho Jup for WASP-46 b). We tentatively detected radius variations with wavelength for both planets, in particular in the case of WASP-45 b we found a slightly larger absorption in the redder bands than in the bluer ones. No hints for the presence of an additional planetary companion in the two systems were found either from the photometric or radial velocity measurements. C1 [Ciceri, S.; Mancini, L.; Rabus, M.; Henning, Th] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Mancini, L.; Bonomo, A. S.; Sozzetti, A.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, Italy. [Southworth, J.; Tregloan-Reed, J.; Vilela, C.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Lendl, M.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Lendl, M.] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Tregloan-Reed, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brahm, R.; Jordan, A.] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago 7820436, Chile. [Brahm, R.; Jordan, A.] Millennium Inst Astrophys, Santiago 7820436, Chile. [Chen, G.] Chinese Acad Sci, Purple Mt Observ, Key Lab Planetary Sci, Nanjing 210008, Jiangsu, Peoples R China. [Chen, G.] Inst Astrofis Canarias, E-38205 Tenerife, Spain. [D'Ago, G.; Novati, S. Calchi; Scarpetta, G.] Int Inst Adv Sci Studies IIASS, I-84019 Vietri Sul Mare, SA, Italy. [D'Ago, G.; Novati, S. Calchi; Scarpetta, G.] Univ Salerno, Dept Phys ER Caianiello, Fisciano 84084, SA, Italy. [D'Ago, G.; Jaimes, R. Figuera; Galianni, P.; Liebig, C.; Bajek, D.; Browne, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Dominik, M.] Univ St Andrews, SUPA, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Jaimes, R. Figuera; Jorgensen, U. G.; Juncher, D.; Korhonen, H.; Andersen, J. M.; Hundertmark, M.; Penny, M.; Popovas, A.; Skottfelt, J.] European So Observ, D-85748 Garching, Germany. [Harpsoe, K.] Univ Copenhagen, Niels Bohr Inst, DK-1350 Copenhagen K, Denmark. [Harpsoe, K.] Univ Copenhagen, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [Hinse, T. C.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Korhonen, H.] Univ Turku, Finnish Ctr Astron ESO FINCA, FI-21500 Piikkio, Finland. [Bott, K.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Bott, K.; Bramich, D. M.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Alsubai, K. A.] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Andersen, J. M.; Scarpetta, G.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Novati, S. Calchi; Elyiv, A.; Surdej, J.; Wertz, O.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Damerdji, Y.; Giannini, E.; Schmidt, R. W.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Diehl, C.] Heidelberg Univ, Zentrum Astron, Astron Rech Inst, D-69120 Heidelberg, Germany. [Diehl, C.] Univ Hamburg, Hamburger Sternwarte, D-21029 Hamburg, Germany. [Elyiv, A.] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy. [Elyiv, A.; Wang, X-B.] Natl Acad Sci Ukraine, Main Astron Observ, UA-03680 Kiev, Ukraine. [Gu, S-H.; Wang, X-B.] Chinese Acad Sci, Yunnan Observ, Kunming 650011, Peoples R China. [Gu, S-H.] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, Kunming 650011, Peoples R China. [Kains, N.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Penny, M.] Ohio State Univ, Dept Astron, McPherson Lab, Columbus, OH 43210 USA. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Skottfelt, J.] Open Univ, Ctr Elect Imaging, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Snodgrass, C.] Open Univ, Dept Phys Sci, Planetary & Space Sci, Milton Keynes MK7 6AA, Bucks, England. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37077 Gottingen, Germany. RP Ciceri, S (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM ciceri@mpia.de; mancini@mpia.de RI Korhonen, Heidi/E-3065-2016; D'Ago, Giuseppe/N-8318-2016; OI Korhonen, Heidi/0000-0003-0529-1161; D'Ago, Giuseppe/0000-0001-9697-7331; Dominik, Martin/0000-0002-3202-0343; Snodgrass, Colin/0000-0001-9328-2905 FU NTT [088.C-0204(A)]; KASI (Korea Astronomy and Space Science Institute) [2012-1-410-02, 2013-9-400-00]; European Union [313014]; Korea Research Council for Fundamental Science and Technology (KRCF) through the Young Research Scientist Fellowship Program; Communaute francaise de Belgique - Actions de recherche concert certees - Academie Wallonie-Europe; National Natural Science Foundation of China [10873031, 11473066] FX Based on data collected by the MiNDSTEp collaboration with the Danish 1.54 m telescope, and on data observed with the NTT (under program number 088.C-0204(A)), 2.2 m and Euler-Swiss Telescope all located at the ESO La Silla Observatory. We acknowledge the use of the NASA Astrophysics Data System; the SIMBAD data base operated at CDS, Strasbourg, France; and the arXiv scientific paper preprint service operated by Cornell University. This work was supported by KASI (Korea Astronomy and Space Science Institute) grants 2012-1-410-02 and 2013-9-400-00. ASB acknowledges support from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 313014 (ETAEARTH). TCH acknowledges financial support from the Korea Research Council for Fundamental Science and Technology (KRCF) through the Young Research Scientist Fellowship Program. YD, AE, JSurdej and OW acknowledge support from the Communaute francaise de Belgique - Actions de recherche concert certees - Academie Wallonie-Europe. SHG and XBW would like to thank the financial support from National Natural Science Foundation of China through grants nos. 10873031 and 11473066. SC thanks G-D. Marleau for useful discussion and comments, the staff and astronomers observing at the ESO La Silla observatory during January and February 2015 for the great, friendly and scientifically stimulating environment. NR 67 TC 4 Z9 4 U1 2 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2016 VL 456 IS 1 BP 990 EP 1002 DI 10.1093/mnras/stv2698 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UN UT WOS:000368010000107 ER PT J AU Marinucci, A Bianchi, S Matt, G Alexander, DM Balokovic, M Bauer, FE Brandt, WN Gandhi, P Guainazzi, M Harrison, FA Iwasawa, K Koss, M Madsen, KK Nicastro, F Puccetti, S Ricci, C Stern, D Walton, DJ AF Marinucci, A. Bianchi, S. Matt, G. Alexander, D. M. Balokovic, M. Bauer, F. E. Brandt, W. N. Gandhi, P. Guainazzi, M. Harrison, F. A. Iwasawa, K. Koss, M. Madsen, K. K. Nicastro, F. Puccetti, S. Ricci, C. Stern, D. Walton, D. J. TI NuSTAR catches the unveiling nucleus of NGC 1068 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: individual: NGC 1068; galaxies: Seyfert ID X-RAY SOURCE; ACTIVE GALACTIC NUCLEI; SEYFERT 2 GALAXIES; XMM-NEWTON; LINE COMPLEX; BROAD-BAND; NGC-1068; EMISSION; REFLECTION; ABSORBERS AB We present a NuSTAR and XMM-Newton monitoring campaign in 2014/2015 of the Compton-thick Seyfert 2 galaxy, NGC 1068. During the 2014 August observation, we detect with NuSTAR a flux excess above 20 keV (32 +/- 6 per cent) with respect to the 2012 December observation and to a later observation performed in 2015 February. We do not detect any spectral variation below 10 keV in the XMM-Newton data. The transient excess can be explained by a temporary decrease of the column density of the obscuring material along the line of sight (from N-H similar or equal to 10(25) cm(-2) to N-H = 6.7 +/- 1.0 x 10(24) cm(-2)), which allows us for the first time to unveil the direct nuclear radiation of the buried active galactic nucleus in NGC 1068 and to infer an intrinsic 2-10 keV luminosity L-X = 7(-4)(+7) x 10(43) erg s(-1). C1 [Marinucci, A.; Bianchi, S.; Matt, G.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Alexander, D. M.; Gandhi, P.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Balokovic, M.; Harrison, F. A.; Madsen, K. K.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Bauer, F. E.; Ricci, C.] Pontificia Univ Catolica Chile, Inst Astrofis, Fac Fis, Santiago 22, Chile. [Bauer, F. E.] Millennium Inst Astrophys, Santiago 7820436, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Guainazzi, M.] European Space Astron Ctr ESA, E-28691 Madrid, Spain. [Iwasawa, K.] Univ Barcelona, IEEC UB, ICREA, E-08028 Barcelona, Spain. [Iwasawa, K.] Univ Barcelona, IEEC UB, Inst Ciencies Cosmos, E-08028 Barcelona, Spain. [Koss, M.] ETH, Dept Phys, Inst Astron, CH-8093 Zurich, Switzerland. [Nicastro, F.; Puccetti, S.] INAF, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, RM, Italy. [Nicastro, F.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Nicastro, F.] Univ Crete, Dept Phys, GR-71003 Iraklion, Crete, Greece. [Puccetti, S.] ASDC ASI, I-00133 Rome, Italy. [Stern, D.; Walton, D. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Marinucci, A (reprint author), Univ Rome Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy. EM marinucci@fis.uniroma3.it RI Bianchi, Stefano/B-4804-2010 OI Bianchi, Stefano/0000-0002-4622-4240 FU Italian Space Agency [ASI/INAF I/037/12/0-011/13]; CONICYT-Chile [PFB-06/2007, FONDECYT 1141218, ACT1101, IC120009]; Caltech NuSTAR [44A-1092750]; STFC [ST/J003697/1]; NASA [NNG08FD60C, NNX10AC99G, NNX14AQ07H]; National Aeronautics and Space Administration FX We thank the referee for her/his comments. AM, SB and GM acknowledge financial support from Italian Space Agency under grant ASI/INAF I/037/12/0-011/13. FEB acknowledges support from CONICYT-Chile (PFB-06/2007, FONDECYT 1141218, ACT1101), and grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. WNB acknowledges Caltech NuSTAR subcontract 44A-1092750. PG thanks STFC for support (grant reference ST/J003697/1). This work was supported under NASA Contracts No. NNG08FD60C, NNX10AC99G, NNX14AQ07H and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NUSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 47 TC 12 Z9 12 U1 3 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2016 VL 456 IS 1 BP L94 EP L98 DI 10.1093/mnrasl/slv178 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UN UT WOS:000368010000020 ER PT J AU Schlenker, LS Latour, RJ Brill, RW Graves, JE AF Schlenker, Lela S. Latour, Robert J. Brill, Richard W. Graves, John E. TI Physiological stress and post-release mortality of white marlin (Kajikia albida) caught in the United States recreational fishery SO CONSERVATION PHYSIOLOGY LA English DT Article DE Air exposure; catch and release; handling practices; post-release mortality; stress physiology; white marlin ID SATELLITE ARCHIVAL TAGS; BONEFISH ALBULA-VULPES; TUNA THUNNUS-ALBACARES; BRIEF AIR EXPOSURE; BLUE MARLIN; TETRAPTURUS-ALBIDUS; MAKAIRA-NIGRICANS; ROUNDSCALE SPEARFISH; EXHAUSTIVE EXERCISE; ACOUSTIC TELEMETRY AB White marlin, a highly migratory pelagic marine fish, support important commercial and recreational fisheries throughout their range in the tropical and subtropical Atlantic Ocean. More than 10 000 individuals can be caught annually in the United States recreational fishery, of which the vast majority are captured on circle hooks and released alive. The probability of post-release mortality of white marlin released from circle hooks has been documented to be <0.02, but the associated physiological stress resulting from capture and handling techniques has not been characterized despite its importance for understanding the health of released fish. We examined the physiological response of 68 white marlin caught on circle hooks in the recreational fishery and followed the fate of 22 of these fish with pop-up satellite archival tags programmed to release after 30 days. Measures of plasma sodium, chloride, glucose and lactate concentrations taken from fish that were briefly and consistently (mean = 120 s, standard deviation = 40 s) removed from the water increased with angling time, but post-release mortality was inversely related to angling time. The probability of post-release mortality was predicted by elevated plasma potassium concentrations and was more than 10 times greater than has been previously reported for white marlin caught on circle hooks that were not removed from the water. This disparity in estimates of post-release mortality suggests that removal of fish from the water for physiological sampling greatly heightens stress, disrupts homeostasis and thus increases the probability of post-release mortality. Our results demonstrate that elevated concentrations of plasma potassium predict mortality in white marlin and that the probability of post-release mortality is highly dependent on post-capture handling procedures. C1 [Schlenker, Lela S.; Latour, Robert J.; Graves, John E.] Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA. [Brill, Richard W.] Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, James J Howard Marine Sci Lab, 74 Magruder Rd, Highlands, NJ 07732 USA. RP Schlenker, LS (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Dept Marine Biol & Ecol, Miami, FL 33149 USA. EM lschlenker@rsmas.miami.edu FU Offield Family Foundation; National Science Foundation GK-12 [DGE - 0840804] FX This work was supported by the Offield Family Foundation and the National Science Foundation GK-12 (DGE - 0840804 to L.S.S.). NR 73 TC 1 Z9 1 U1 3 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2051-1434 J9 CONSERV PHYSIOL JI Conserv. Physiol. PD FEB 10 PY 2016 VL 4 AR cov066 DI 10.1093/conphys/cov066 PG 15 WC Biodiversity Conservation; Ecology; Environmental Sciences; Physiology SC Biodiversity & Conservation; Environmental Sciences & Ecology; Physiology GA DK8UW UT WOS:000375204800001 PM 27293745 ER PT J AU Bamba, A Terada, Y Hewitt, J Petre, R Angelini, L Safi-Harb, S Zhou, P Bocchino, F Sawada, M AF Bamba, Aya Terada, Yukikatsu Hewitt, John Petre, Robert Angelini, Lorella Safi-Harb, Samar Zhou, Ping Bocchino, Fabrizio Sawada, Makoto TI DISCOVERY OF X-RAY EMISSION FROM THE GALACTIC SUPERNOVA REMNANT G32.8-0.1 WITH SUZAKU SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (G32.8-0.1, Kes 78); ISM: supernova remnants; stars: individual (2XMM J185114.3-000004); stars: neutron; X-rays: ISM ID LARGE-AREA TELESCOPE; EXCITED MASER EMISSION; FERMI-LAT; RCW 86; MOLECULAR CLOUDS; SOURCE CATALOG; GAMMA-RAYS; XMM-NEWTON; POLARIZATION OBSERVATIONS; PARTICLE-ACCELERATION AB We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes. 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT similar to 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high-temperature (kT similar to 3.4 keV) component with a very low ionization timescale (similar to 2.7 x 10(9) cm(-3) s), or a hard nonthermal component with a photon index Gamma similar to 2.3. The average density of the low-temperature plasma is rather low, of the order of 10(-3)-10(-2) cm(-3), implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient. C1 [Bamba, Aya; Sawada, Makoto] Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. [Terada, Yukikatsu] Saitama Univ, Dept Phys, Sci, Sakura Ku, Saitama 3388570, Japan. [Hewitt, John; Petre, Robert; Angelini, Lorella] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Safi-Harb, Samar] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Safi-Harb, Samar] Nanjing Univ, Dept Astron, Nanjing 210093, Jiangsu, Peoples R China. [Bocchino, Fabrizio] INAF Osservatorio Astron Palermo, Piazza Parlamento 1, I-90134 Palermo, Italy. RP Bamba, A (reprint author), Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. FU Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [22684012, 15K05107]; Canadian Space Agency; Natural Sciences and Engineering Research Council of Canada (NSERC) through the Canada Research Chairs and Discovery Grants programs FX We would like to thank the anonymous referee for the fruitful comments. We thank T.. Sakamoto for comments on Swift data. We also thank M. Ishida for comments on the time variability of the background due to the thermal wobbling of the satellite. This work was supported in part by a Grant-in-Aid for Scientific Research of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, No. 22684012 and 15K05107 (A. B.). S.S.H. acknowledges support from the Canadian Space Agency and from the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Canada Research Chairs and Discovery Grants programs. This research has made use of NASA's Astrophysics Data System Bibliographic Services, and the SIMBAD database, operated at CDS, Strasbourg, France. NR 89 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 63 DI 10.3847/0004-637X/818/1/63 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800063 ER PT J AU Carlberg, JK Smith, VV Cunha, K Carpenter, KG AF Carlberg, Joleen K. Smith, Verne V. Cunha, Katia Carpenter, Kenneth G. TI LITHIUM IN OPEN CLUSTER RED GIANTS HOSTING SUBSTELLAR COMPANIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE open clusters and associations: individual (NGC 2423, NGC 4349, M67); stars: abundances; stars: chemically peculiar; stars: late-type ID INTERMEDIATE-MASS STARS; CARBON-ISOTOPE RATIOS; RICH K-GIANTS; EVOLVED STARS; CHEMICAL-COMPOSITION; THERMOHALINE INSTABILITY; ABUNDANCE ANOMALIES; EXTRASOLAR PLANETS; STELLAR PARAMETERS; RADIAL-VELOCITIES AB We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and C-12/C-13 in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+ 12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both C-12/C-13 and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423 3, is found to be Li-rich with A(Li)(NLTE) = 1.56. dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and C-12/C-13 when compared to the control RGs in their respective clusters; however, except for NGC 2423 3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and C-12/C-13. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC. C1 [Carlberg, Joleen K.; Carpenter, Kenneth G.] NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. [Smith, Verne V.] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Cunha, Katia] Observ Nacl, Rua Gen Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. RP Carlberg, JK (reprint author), NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. EM joleen.k.carlberg@nasa.gov FU NASA FX This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. This work made use of the WEBDA database operated at the Department of Theoretical Physics and Astrophysics of the Masaryk University and the SIMBAD database operated at CDS, Strasbourg, France. NR 81 TC 4 Z9 4 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 25 DI 10.3847/0004-637X/818/1/25 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800025 ER PT J AU Endl, M Brugamyer, EJ Cochran, WD MacQueen, PJ Robertson, P Meschiari, S Ramirez, I Shetrone, M Gullikson, K Johnson, MC Wittenmyer, R Horner, J Ciardi, DR Horch, E Simon, AE Howell, SB Everett, M Caldwell, C Castanheira, BG AF Endl, Michael Brugamyer, Erik J. Cochran, William D. MacQueen, Phillip J. Robertson, Paul Meschiari, Stefano Ramirez, Ivan Shetrone, Matthew Gullikson, Kevin Johnson, Marshall C. Wittenmyer, Robert Horner, Jonathan Ciardi, David R. Horch, Elliott Simon, Attila E. Howell, Steve B. Everett, Mark Caldwell, Caroline Castanheira, Barbara G. TI TWO NEW LONG-PERIOD GIANT PLANETS FROM THE MCDONALD OBSERVATORY PLANET SEARCH AND TWO STARS WITH LONG-PERIOD RADIAL VELOCITY SIGNALS RELATED TO STELLAR ACTIVITY CYCLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: activity; techniques: radial velocities ID DELTA-SCUTI STARS; MAIN-SEQUENCE STARS; EXTRASOLAR PLANETS; BINARY STARS; CHEMICAL-COMPOSITION; OXYGEN ABUNDANCES; LOW-MASS; ECHELLE SPECTROMETER; TERRESTRIAL PLANETS; DYNAMICAL ANALYSIS AB We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (psi(1) Dra B) by the McDonald Observatory planet search. The planet HD. 95872b has a minimum mass of 4.6. M-Jup and an orbital semimajor axis of 5.2 AU. The giant planet psi(1) Dra Bb has a minimum mass of 1.5 M-Jup and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of psi(1) Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter-Saturn pair. The primary of the binary star system, psi(1) Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases-HD 10086 and HD 102870 (beta Virginis)-of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet. C1 [Endl, Michael; Brugamyer, Erik J.; Cochran, William D.; MacQueen, Phillip J.; Robertson, Paul; Meschiari, Stefano; Ramirez, Ivan; Shetrone, Matthew; Gullikson, Kevin; Johnson, Marshall C.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Endl, Michael; Brugamyer, Erik J.; Cochran, William D.; MacQueen, Phillip J.; Robertson, Paul; Meschiari, Stefano; Ramirez, Ivan; Shetrone, Matthew; Gullikson, Kevin; Johnson, Marshall C.] Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA. [Wittenmyer, Robert] UNSW Australia, Sch Phys, Sydney, NSW 2052, Australia. [Wittenmyer, Robert] UNSW Australia, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Horner, Jonathan] Univ So Queensland, Computat Engn & Sci Res Ctr, Toowoomba, Qld 4350, Australia. [Horner, Jonathan] UNSW Australia, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Ciardi, David R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Ciardi, David R.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Horch, Elliott] So Connecticut State Univ, Dept Phys, 501 Crescent St, New Haven, CT 06515 USA. [Simon, Attila E.] Univ Bern, Inst Phys, Ctr Space & Habitabil, CH-3012 Bern, Switzerland. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Everett, Mark] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Caldwell, Caroline] Liverpool John Moores Univ, Astrophys Res Inst, 146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. [Castanheira, Barbara G.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Robertson, Paul] Penn State Univ, Dept Astron & Astrophys, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. RP Endl, M (reprint author), Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA.; Endl, M (reprint author), Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA. EM mike@astro.as.utexas.edu OI Horner, Jonti/0000-0002-1160-7970; Ciardi, David/0000-0002-5741-3047 FU National Science Foundation (Astrophysics grant) [AST-1313075]; NASA grants; W.M. Keck Foundation FX This work has been made possible through the National Science Foundation (Astrophysics grant AST-1313075) and various NASA grants over the years. We are grateful for their generous support. We also thank the McDonald Observatory Time Allocation committee for its continuing support of this program.; Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 80 TC 3 Z9 3 U1 3 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 34 DI 10.3847/0004-637X/818/1/34 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800034 ER PT J AU Goldstein, A Connaughton, V Briggs, MS Burns, E AF Goldstein, Adam Connaughton, Valerie Briggs, Michael S. Burns, Eric TI ESTIMATING LONG GRB JET OPENING ANGLES AND REST-FRAME ENERGETICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID GAMMA-RAY BURSTS; SPECTRAL-ENERGY CORRELATIONS; PEAK-ENERGY; LUMINOSITY FUNCTION; FERMI OBSERVATIONS; HUBBLE DIAGRAM; EMISSION; SWIFT; AFTERGLOW; REDSHIFT AB We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate the probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies. C1 [Goldstein, Adam] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. [Connaughton, Valerie] Univ Space Res Assoc, Inst Sci & Technol, Huntsville, AL 35805 USA. [Briggs, Michael S.; Burns, Eric] Univ Alabama, Ctr Space Plasma & Aeron Res, 320 Sparkman Dr, Huntsville, AL 35899 USA. RP Goldstein, A (reprint author), NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. EM adam.m.goldstein@nasa.gov FU NASA Postdoctoral Program through Oak Ridge Associated Universities FX A.G. is funded by the NASA Postdoctoral Program through Oak Ridge Associated Universities. NR 71 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 18 DI 10.3847/0004-637X/818/1/18 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800018 ER PT J AU Graff, PB Lien, AY Baker, JG Sakamoto, T AF Graff, Philip B. Lien, Amy Y. Baker, John G. Sakamoto, Takanori TI MODELING THE SWIFT BAT TRIGGER ALGORITHM WITH MACHINE LEARNING SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gamma-rays: general; methods: data analysis ID GAMMA-RAY BURSTS; STAR-FORMATION RATE; REDSHIFT DISTRIBUTION; LUMINOSITY FUNCTION; ALERT TELESCOPE; FORMATION HISTORY; COMPLETE SAMPLE; EVOLUTION; REIONIZATION; SIMULATIONS AB To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of greater than or similar to 97% (less than or similar to 3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of n(0) similar to 0.48(-0.23)(+0.41) Gpc(-3) yr(-1) with power-law indices of n(1) similar to 1.7(-0.5)(+0.6) and n(2) similar to -5.9(-0.1)(+5.7) for GRBs above and below a break point of z(1) similar to 6.8(-3.2)(+2.8). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. C1 [Graff, Philip B.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Graff, Philip B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Graff, Philip B.; Lien, Amy Y.; Baker, John G.] NASA Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Sakamoto, Takanori] Aoyama Gakuin Univ, Dept Math & Phys, Coll Sci & Engn, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. RP Graff, PB (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA.; Graff, PB (reprint author), Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.; Graff, PB; Lien, AY; Baker, JG (reprint author), NASA Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM pgraff@umd.edu; amy.y.lien@nasa.gov; john.g.baker@nasa.gov FU NASA [NNX12AN10G, ATP11-00046] FX The authors would like to thank Brad Cenko, Judith Racusin, and Neil Gehrels for helpful discussions. P.G. acknowledges support from NASA Grant NNX12AN10G and an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. J.B. acknowledges support from NASA Grant ATP11-00046. NR 49 TC 0 Z9 0 U1 3 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 55 DI 10.3847/0004-637X/818/1/55 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800055 ER PT J AU Izumi, T Kohno, K Aalto, S Espada, D Fathi, K Harada, N Hatsukade, B Hsieh, PY Imanishi, M Krips, M Martin, S Matsushita, S Meier, DS Nakai, N Nakanishi, K Schinnerer, E Sheth, K Terashima, Y Turner, JL AF Izumi, Takuma Kohno, Kotaro Aalto, Susanne Espada, Daniel Fathi, Kambiz Harada, Nanase Hatsukade, Bunyo Hsieh, Pei-Ying Imanishi, Masatoshi Krips, Melanie Martin, Sergio Matsushita, Satoki Meier, David S. Nakai, Naomasa Nakanishi, Kouichiro Schinnerer, Eva Sheth, Kartik Terashima, Yuichi Turner, Jean L. TI SUBMILLIMETER-HCN DIAGRAM FOR ENERGY DIAGNOSTICS IN THE CENTERS OF GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: ISM; ISM: molecules ID LARGE-MAGELLANIC-CLOUD; ACTIVE GALACTIC NUCLEI; DENSE MOLECULAR GAS; LUMINOUS INFRARED GALAXIES; MASSIVE STAR-FORMATION; VIBRATIONALLY EXCITED HCN; NEARBY SEYFERT-GALAXIES; YOUNG STELLAR OBJECTS; H II REGIONS; PHOTON-DOMINATED REGIONS AB Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4-3)/HCO+(4-3) and/or HCN(4-3)/CS(7-6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN. enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of the high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO+ and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even greater than or similar to 10 are a plausible explanation for the submillimeter HCN. enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish. these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral-neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs. C1 [Izumi, Takuma; Kohno, Kotaro] Univ Tokyo, Inst Astron, Sch Sci, 2-21-1 Osawa, Tokyo 1810015, Japan. [Kohno, Kotaro] Univ Tokyo, Res Ctr Early Universe, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Aalto, Susanne] Chalmers, Dept Earth & Space Sci, Onsala Observ, SE-43994 Onsala, Sweden. [Espada, Daniel; Martin, Sergio; Nakanishi, Kouichiro] Joint ALMA Observ, Alonso de Cordova 3107, Santiago 7630355, Chile. [Espada, Daniel; Hatsukade, Bunyo; Imanishi, Masatoshi; Nakanishi, Kouichiro] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Espada, Daniel; Imanishi, Masatoshi; Nakanishi, Kouichiro] SOKENDAI Grad Univ Adv Studies, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Fathi, Kambiz] Stockholm Univ, Dept Astron, AlbaNova Ctr, Stockholm Observ, SE-10691 Stockholm, Sweden. [Harada, Nanase; Hsieh, Pei-Ying; Matsushita, Satoki] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10617, Taiwan. [Hsieh, Pei-Ying] Natl Cent Univ, Inst Astron, 300 Jhongda Rd, Jhongli 32001, Taoyuan County, Taiwan. [Imanishi, Masatoshi] NAOJ, Subaru Telescope, 650 N Aohoku Pl, Hilo, HI 96720 USA. [Krips, Melanie; Martin, Sergio] Inst Radio Astron Millimetr, 300 Rue Piscine, F-38406 St Martin Dheres, France. [Martin, Sergio] European So Observ, Alonso de Cordova 3107, Santiago, Chile. [Meier, David S.] New Mexico Inst Min & Technol, Dept Phys, 801 Leroy Pl, Soccoro, NM 87801 USA. [Nakai, Naomasa] Univ Tsukuba, Fac Pure & Appl Sci, Dept Phys, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 3058571, Japan. [Schinnerer, Eva] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Sheth, Kartik] NASA, 300 E St SW, Washington, DC 20546 USA. [Terashima, Yuichi] Ehime Univ, Dept Phys, 2-5 Bunkyo Cho, Matsuyama, Ehime 7908577, Japan. [Turner, Jean L.] UCLA, Dept Phys & Astron, 430 Portola Plaza, Los Angeles, CA 90095 USA. RP Izumi, T (reprint author), Univ Tokyo, Inst Astron, Sch Sci, 2-21-1 Osawa, Tokyo 1810015, Japan. EM takumaizumi@ioa.s.u-tokyo.ac.jp OI Martin Ruiz, Sergio/0000-0001-9281-2919; Schinnerer, Eva/0000-0002-3933-7677 FU ALMA Japan Research Grant of NAOJ Chile Observatory [NAOJ-ALMA-0029, NAOJ-ALMA-0075]; Japan Society for the Promotion of Science (JSPS) FX We appreciate the anonymous referee for the careful reading and for the very kind comments to improve this paper. This paper makes use of the following ALMA data: ADS/JAO. ALMA#2011.0.00083.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. In addition, this research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. T.I. was supported by the ALMA Japan Research Grant of NAOJ Chile Observatory, NAOJ-ALMA-0029 and NAOJ-ALMA-0075. T.I. is thankful for the fellowship received from the Japan Society for the Promotion of Science (JSPS). NR 217 TC 4 Z9 4 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 42 DI 10.3847/0004-637X/818/1/42 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800042 ER PT J AU Jaeggli, SA AF Jaeggli, S. A. TI MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: infrared; Sun: magnetic fields; Sun: photosphere; sunspots ID SOLAR; SUNSPOTS; POLARIZATION; FLARES; LINE; DEPENDENCE; HINODE AB Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (delta spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe I line pairs at 6302 and 15650 show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne-Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500-3800 G in close proximity to blueshifts as strong as 3.8 km s(-1). The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium. C1 [Jaeggli, S. A.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. [Jaeggli, S. A.] Natl Solar Observ, Sacramento, CA USA. RP Jaeggli, SA (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA.; Jaeggli, SA (reprint author), Natl Solar Observ, Sacramento, CA USA. EM sarah.jaeggli@nasa.gov OI Jaeggli, Sarah/0000-0001-5459-2628 FU NASA; Lockheed Martin Solar and Astrophysics Lab; National Science Foundation Major Research Instrument program [ATM-0421582] FX This research was supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center administered by Oak Ridge Associated Universities through a contract with NASA, and by the NASA Interface Region Imaging Spectrograph mission by subcontract from the Lockheed Martin Solar and Astrophysics Lab to Montana State University. The original observations with FIRS were taken during commissioning of the instrument and supported by the National Science Foundation Major Research Instrument program, grant number ATM-0421582. NR 40 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 81 DI 10.3847/0004-637X/818/1/81 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800081 ER PT J AU Khazov, D Yaron, O Gal-Yam, A Manulis, I Rubin, A Kulkarni, SR Arcavi, I Kasliwal, MM Ofek, EO Cao, Y Perley, D Sollerman, J Horesh, A Sullivan, M Filippenko, AV Nugent, PE Howell, DA Cenko, SB Silverman, JM Ebeling, H Taddia, F Johansson, J Laher, RR Surace, J Rebbapragada, UD Wozniak, PR Matheson, T AF Khazov, D. Yaron, O. Gal-Yam, A. Manulis, I. Rubin, A. Kulkarni, S. R. Arcavi, I. Kasliwal, M. M. Ofek, E. O. Cao, Y. Perley, D. Sollerman, J. Horesh, A. Sullivan, M. Filippenko, A. V. Nugent, P. E. Howell, D. A. Cenko, S. B. Silverman, J. M. Ebeling, H. Taddia, F. Johansson, J. Laher, R. R. Surace, J. Rebbapragada, U. D. Wozniak, P. R. Matheson, T. TI FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND < 10-DAY-OLD TYPE II SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general ID MASSIVE STAR; SN 2009IP; CORE-COLLAPSE; LIGHT-CURVES; P SUPERNOVA; PROGENITOR; EVOLUTION; OUTBURST; SPECTRA; SAMPLE AB Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (<= 10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe. II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M-R = -18.2 belong to the FI or BF groups, and that all FI events peaked above M-R = -17.6 mag, significantly brighter than average SNe II. C1 [Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Ofek, E. O.; Horesh, A.] Weizmann Inst Sci, Fac Phys, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Kulkarni, S. R.; Kasliwal, M. M.; Cao, Y.; Perley, D.] CALTECH, Dept Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Arcavi, I.; Howell, D. A.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA. [Arcavi, I.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Sollerman, J.; Taddia, F.; Johansson, J.] Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden. [Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Filippenko, A. V.; Nugent, P. E.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd MS 50B-4206, Berkeley, CA 94720 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Silverman, J. M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Ebeling, H.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Laher, R. R.; Surace, J.] CALTECH, Spitzer Sci Ctr, M-S 314-6, Pasadena, CA 91125 USA. [Rebbapragada, U. D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Wozniak, P. R.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Matheson, T.] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA. RP Khazov, D (reprint author), Weizmann Inst Sci, Fac Phys, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. RI Horesh, Assaf/O-9873-2016; OI Horesh, Assaf/0000-0002-5936-1156; Sollerman, Jesper/0000-0003-1546-6615; Wozniak, Przemyslaw/0000-0002-9919-3310; Sullivan, Mark/0000-0001-9053-4820 FU EU/FP7 via ERC grant [307260]; Quantum universe I-Core program by the Israeli Committee for planning and budgeting; ISF, Minerva; ISF grants; WIS-UK "making connections"; Kimmel award; ARCHES award; National Science Foundation (NSF) Astronomy and Astrophysics Postdoctoral Fellowship [AST-1302771]; NSF [AST-1211916]; TABASGO Foundation; Christopher R. Redlich Fund; EU/FP7-ERC grant [615929]; US Department of Energy, Laboratory Directed Research and Development program; National Aeronautics and Space Administration; W. M. Keck Foundation; Association of Universities for Research in Astronomy, Inc. [GN-2010B-Q-13]; NSF (United States); National Research Council (Canada); CONICYT (Chile); Australian Research Council (Australia); Ministerio da Ciencia, Tecnologia e Inovacao (Brazil); Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina) FX A. G.-Y. is supported by the EU/FP7 via ERC grant no. 307260, the Quantum universe I-Core program by the Israeli Committee for planning and budgeting, and the ISF, Minerva and ISF grants, WIS-UK "making connections," and the Kimmel and ARCHES awards. J.M.S. is supported by a National Science Foundation (NSF) Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. A. V. F.'s research was made possible by NSF grant AST-1211916, the TABASGO Foundation, and the Christopher R. Redlich Fund. M.S. acknowledges support from the Royal Society and EU/FP7-ERC grant No. [615929]. LANL participation in iPTF is supported by the US Department of Energy as part of the Laboratory Directed Research and Development program. A portion of this work was carried out at the Jet Propulsion Laboratory under a Research and Technology Development Grant, under contract with the National Aeronautics and Space Administration. US Government Support Acknowledged.; Research at Lick Observatory is partially supported by a generous gift from Google. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on observations obtained at the Gemini Observatory under program GN-2010B-Q-13, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). NR 46 TC 8 Z9 8 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 3 DI 10.3847/0004-637X/818/1/3 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800003 ER PT J AU LaMassa, SM Civano, F Brusa, M Stern, D Glikman, E Gallagher, S Urry, CM Cales, S Cappelluti, N Cardamone, C Comastri, A Farrah, D Greene, JE Komossa, S Merloni, A Mroczkowski, T Natarajan, P Richards, G Salvato, M Schawinski, K Treister, E AF LaMassa, Stephanie M. Civano, Francesca Brusa, Marcella Stern, Daniel Glikman, Eilat Gallagher, Sarah Urry, C. Meg Cales, Sabrina Cappelluti, Nico Cardamone, Carolin Comastri, Andrea Farrah, Duncan Greene, Jenny E. Komossa, S. Merloni, Andrea Mroczkowski, Tony Natarajan, Priyamvada Richards, Gordon Salvato, Mara Schawinski, Kevin Treister, Ezequiel TI ON R-W1 AS A DIAGNOSTIC TO DISCOVER OBSCURED ACTIVE GALACTIC NUCLEI IN WIDE-AREA X-RAY SURVEYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; infrared: galaxies; quasars: general; quasars: supermassive black holes; X-rays: galaxies; X-rays: general ID DIGITAL SKY SURVEY; DEEP FIELD-SOUTH; XMM-NEWTON OBSERVATIONS; SIMILAR-TO 2; OSCILLATION SPECTROSCOPIC SURVEY; OPTICALLY NORMAL GALAXIES; EMISSION-LINE GALAXIES; DUST-REDDENED QUASARS; CHANDRA-COSMOS SURVEY; 10TH DATA RELEASE AB Capitalizing on the all-sky coverage of WISE. and the 35% and 50% sky coverage from Sloan Digital Sky Survey and Pan-STARRS, respectively, we explore the efficacy of m(R) (optical) - m(3.4 mu m) (mid-infrared), hereafter R - W1, as a color diagnostic to identify obscured supermassive black hole accretion in wide-area X-ray surveys. We use the similar to 16.5 deg(2) Stripe 82 X-ray survey data as a test. bed to compare R - W1 with R - K, an oft-used obscured active galactic nucleus (AGN) selection criterion, and examine where different classes of objects lie in this parameter space. Most stars follow a well-defined path in R - K versus R - W1 space. We demonstrate that optically normal galaxies hosting X-ray AGNs at redshifts 0.5 < z < 1 can be recovered with an R - W1 > 4 color cut, while they typically are not selected as AGNs based on their W1 - W2 colors. Additionally, different observed X-ray luminosity bins favor different regions in R - W1 parameter space: moderate-luminosity AGNs (10(43) ergs(-1) < L0.5-10 keV < 10(44) erg s(-1)) tend to have red colors, while the highest-luminosity AGNs (L0.5-10 keV > 10(45) erg s(-1)) have bluer colors; higher spectroscopic completeness of the Stripe 82X sample is needed to determine whether this is a selection effect or an intrinsic property. Finally, we parameterize X-ray obscuration of Stripe 82X AGNs by calculating their hardness ratios (HRs) and find no clear trends between HR and optical reddening. Our results will help inform best-effort practices in following. up obscured AGN candidates in current and future wide-area, shallow X-ray surveys, including the all-sky eROSITA mission. C1 [LaMassa, Stephanie M.; Civano, Francesca; Urry, C. Meg; Cales, Sabrina; Natarajan, Priyamvada] Yale Ctr Astron & Astrophys, Dept Phys, POB 208120, New Haven, CT 06520 USA. [LaMassa, Stephanie M.; Urry, C. Meg; Cales, Sabrina; Natarajan, Priyamvada] Yale Univ, Dept Phys, POB 208121, New Haven, CT 06520 USA. [Civano, Francesca] Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA. [Brusa, Marcella] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Brusa, Marcella; Cappelluti, Nico; Comastri, Andrea] INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Glikman, Eilat] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. [Gallagher, Sarah] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Cales, Sabrina; Treister, Ezequiel] Univ Concepcion, Dept Astron, Concepcion, Chile. [Cardamone, Carolin] Wheelock Coll, Dept Math & Sci, 200 Riverway, Boston, MA 02215 USA. [Farrah, Duncan] Virginia Polytech Inst & State Univ, Dept Phys MC 0435, 850 West Campus Dr, Blacksburg, VA 24061 USA. [Greene, Jenny E.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Komossa, S.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Merloni, Andrea; Salvato, Mara] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Mroczkowski, Tony] Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA. [Natarajan, Priyamvada] Yale Univ, Dept Astron, POB 208101, New Haven, CT 06520 USA. [Richards, Gordon] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Schawinski, Kevin] ETH, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. RP LaMassa, SM (reprint author), Yale Ctr Astron & Astrophys, Dept Phys, POB 208120, New Haven, CT 06520 USA.; LaMassa, SM (reprint author), Yale Univ, Dept Phys, POB 208121, New Haven, CT 06520 USA. OI Mroczkowski, Tony/0000-0003-3816-5372; Cappelluti, Nico/0000-0002-1697-186X; Schawinski, Kevin/0000-0001-5464-0888; Urry, Meg/0000-0002-0745-9792 FU FP7 Career Integration Grant "eEASy" [CIG 321913]; National Research Council Research Associateship Award at the Naval Research Laboratory; Swiss National Science Foundation Professorship grant [PP00P2-138979/1]; Center of Excellence in Astrophysics and Associated Technologies [PFB 06]; CONICYT Anillo project [ACT1101]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; U.S. Department of Energy Office of Science; [NNX15AJ40G] FX S.M.L. acknowledges support from grant number NNX15AJ40G. M.B. acknowledges support from the FP7 Career Integration Grant "eEASy" (CIG 321913). Support for T.M. comes from a National Research Council Research Associateship Award at the Naval Research Laboratory. K.S. gratefully acknowledges support from Swiss National Science Foundation Professorship grant PP00P2-138979/1. Support for the work of E.T. was provided by the Center of Excellence in Astrophysics and Associated Technologies (PFB 06) and by the CONICYT Anillo project ACT1101.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss3.org/.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/.; This publication makes use of data products from the Widefield Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 142 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 88 DI 10.3847/0004-637X/818/1/88 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800088 ER PT J AU Mahmoodifar, S Strohmayer, T AF Mahmoodifar, Simin Strohmayer, Tod TI X-RAY BURST OSCILLATIONS: FROM FLAME SPREADING TO THE COOLING WAKE SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: neutron; stars: oscillations (including pulsations); X-rays: binaries; X-rays: bursts ID ROTATING NEUTRON-STARS; MILLISECOND OSCILLATIONS; THERMONUCLEAR FLAMES; PROPAGATION; EVOLUTION; LATITUDE; IGNITION; SURFACE; MODES AB Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars (NSs) in low mass X-ray binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. To date there have not been any quantitative studies that consistently track the oscillation amplitude both during the rise and decay (cooling tail) of bursts. Here we compute the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. We present results for several such "cooling wake" models, a "canonical" cooling model where each patch on the NS surface heats and cools identically, or with a latitude-dependent cooling timescale set by the local effective gravity, and an "asymmetric" model where parts of the star cool at significantly different rates. We show that while the canonical cooling models can generate oscillations in the tails of bursts, they cannot easily produce the highest observed modulation amplitudes. Alternatively, a simple phenomenological model with asymmetric cooling can achieve higher amplitudes consistent with the observations. C1 [Mahmoodifar, Simin] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. NASA, Goddard Space Flight Ctr, Joint Space Sci Inst, Greenbelt, MD 20771 USA. RP Mahmoodifar, S (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. FU NASA Postdoctoral Program at the GSFC; National Aeronautics and Space Administration [14-ADAP14-0198] FX We would like to thank Cole Miller and the anonymous referee for helpful comments. SM's research was supported by an appointment to the NASA Postdoctoral Program at the GSFC. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 14-ADAP14-0198 issued through the Science Mission Directorate. NR 31 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 93 DI 10.3847/0004-637X/818/1/93 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800093 ER PT J AU Matthews, AM Nice, DJ Fonseca, E Arzoumanian, Z Crowter, K Demorest, PB Dolch, T Ellis, JA Ferdman, RD Gonzalez, ME Jones, G Jones, ML Lam, MT Levin, L McLaughlin, MA Pennucci, TT Ransom, SM Stairs, IH Stovall, K Swiggum, JK Zhu, WW AF Matthews, Allison M. Nice, David J. Fonseca, Emmanuel Arzoumanian, Zaven Crowter, Kathryn Demorest, Paul B. Dolch, Timothy Ellis, Justin A. Ferdman, Robert D. Gonzalez, Marjorie E. Jones, Glenn Jones, Megan L. Lam, Michael T. Levin, Lina McLaughlin, Maura A. Pennucci, Timothy T. Ransom, Scott M. Stairs, Ingrid H. Stovall, Kevin Swiggum, Joseph K. Zhu, Weiwei TI THE NANOGRAV NINE-YEAR DATA SET: ASTROMETRIC MEASUREMENTS OF 37 MILLISECOND PULSARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE parallaxes; proper motions; pulsars: general ID LARGE-AREA TELESCOPE; ACCRETION-INDUCED COLLAPSE; MASSIVE WHITE-DWARFS; GAMMA-RAY PULSARS; NEUTRON-STAR; BINARY EVOLUTION; PROPER MOTIONS; TRIGONOMETRIC PARALLAXES; SHAPIRO DELAY; PSR B1957+20 AB Using the nine-year radio-pulsar timing data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), collected at Arecibo Observatory and the Green Bank Telescope, we have measured the positions, proper motions, and parallaxes for 37 millisecond pulsars. We report twelve significant parallax measurements and distance measurements, and eighteen lower limits on distance. We compare these measurements to distances predicted by the NE2001 interstellar electron density model and find them to be in general agreement. We use measured orbital-decay rates and spin-down rates to confirm two of the parallax distances and to place distance upper limits on other sources; these distance limits agree with the parallax distances with one exception, PSR. J1024-0719, which we discuss at length. Using the proper motions of the 37 NANOGrav pulsars in combination with other published measurements, we calculate the velocity dispersion of the millisecond pulsar population in Galactocentric coordinates. We find the radial, azimuthal, and perpendicular dispersions to be 46, 40, and 24 km s(-1), respectively, in a model that allows for high-velocity outliers; or 81, 58, and 62 km s(-1) for the full population. These velocity dispersions are far smaller than those of the canonical pulsar population, and are similar to older Galactic disk populations. This suggests that millisecond pulsar velocities are largely attributable to their being an old population rather than being artifacts of their birth and evolution as neutron star binary systems. The components of these velocity dispersions follow similar proportions to other Galactic populations, suggesting that our results are not biased by selection effects. C1 [Matthews, Allison M.; Nice, David J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Matthews, Allison M.; Pennucci, Timothy T.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Fonseca, Emmanuel; Crowter, Kathryn; Gonzalez, Marjorie E.; Stairs, Ingrid H.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T IZ1, Canada. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Code 662, Greenbelt, MD 20771 USA. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. [Demorest, Paul B.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA. [Dolch, Timothy; Lam, Michael T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Dolch, Timothy] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA. [Ellis, Justin A.; Zhu, Weiwei] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Ferdman, Robert D.; Stairs, Ingrid H.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Gonzalez, Marjorie E.] Vancouver Coastal Hlth Author, Dept Nucl Med, Vancouver, BC V5Z 1M9, Canada. [Jones, Glenn] Columbia Univ, Dept Phys, 550 W 120th St, New York, NY 10027 USA. [Jones, Megan L.; Levin, Lina; McLaughlin, Maura A.; Swiggum, Joseph K.] Univ Virginia, Dept Phys, POB 6315, Morgantown, WV 26505 USA. [Levin, Lina] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ransom, Scott M.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Stovall, Kevin] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Zhu, Weiwei] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. RP Matthews, AM (reprint author), Lafayette Coll, Dept Phys, Easton, PA 18042 USA.; Matthews, AM (reprint author), Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. OI Fonseca, Emmanuel/0000-0001-8384-5049; Nice, David/0000-0002-6709-2566 FU National Science Foundation (NSF) PIRE program [0968296]; NSF Physics Frontier Center [1430284]; NSERC Discovery Grant and Discovery Accelerator Supplement; Canadian Institute for Advanced Research; National Aeronautics and Space Administration; NASA New York Space Grant [NNX15AK07H] FX We thank S. Chatterjee, J. Cordes, J. Verbiest, J. Lazio, and C. Ng for useful discussions and comments on the manuscript. The ATNF pulsar catalogue28 (Manchester et al. 2005), was an invaluable resource for this project, as was S. Chatterjee's online pulsar parallax list.29 The NANOGrav project receives support from National Science Foundation (NSF) PIRE program award number 0968296 and NSF Physics Frontier Center award number 1430284. NANOGrav research at UBC is supported by an NSERC Discovery Grant and Discovery Accelerator Supplement and the Canadian Institute for Advanced Research. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. TP was a student at the National Radio Astronomy Observatory while this project was undertaken. MTL was partially supported by NASA New York Space Grant award number NNX15AK07H. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the NSF (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association. NR 81 TC 10 Z9 10 U1 3 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 92 DI 10.3847/0004-637X/818/1/92 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800092 ER PT J AU Nguyen, AN Keller, LP Messenger, S AF Nguyen, Ann N. Keller, Lindsay P. Messenger, Scott TI MINERALOGY OF PRESOLAR SILICATE AND OXIDE GRAINS OF DIVERSE STELLAR ORIGINS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; dust, extinction; evolution; stars: AGB and post-AGB; stars: winds, outflows; supernovae: general ID GIANT BRANCH STARS; TRANSMISSION ELECTRON-MICROSCOPY; INTERPLANETARY DUST PARTICLES; DIFFUSE INTERSTELLAR-MEDIUM; NOVA CASSIOPEIAE 1993; CRYSTALLINE SILICATES; AGB-STARS; SUPERNOVA REMNANT; CARBONACEOUS CHONDRITE; INFRARED-SPECTROSCOPY AB We report the chemical and structural analysis of nine presolar silicate grains and one presolar oxide grain from the ungrouped chondrite Acfer 094 and the CR chondrite Queen Alexandra Range 99177. Oxygen isotopic analyses indicate that five of these grains condensed in the outflows of asymptotic giant branch (AGB) stars, four have supernova (SN) origins, and one grain likely has a nova origin. Transmission electron microscopy studies show that most of the grains are amorphous with widely varying non-stoichiometric chemical compositions. Three crystalline AGB grains were identified: a clinoenstatite-containing grain assemblage, a Fe-rich olivine grain, and a nanocrystalline enstatite grain encased in an amorphous silicate shell. An amorphous stoichiometric enstatite (MgSiO3) SN grain likely condensed as a crystal and was later rendered amorphous. We do not observe a systematic difference in the chemistries and mineralogies of presolar silicates from different stellar sources, suggesting that the grains formed under a similar range of conditions. C1 [Nguyen, Ann N.; Keller, Lindsay P.; Messenger, Scott] NASA Johnson Space Ctr, Robert M Walker Lab Space Sci, EISD Directorate, Astromat Res & Explorat Sci, Houston, TX 77058 USA. [Nguyen, Ann N.] NASA JSC, JETS Jacobs Technol, Houston, TX 77058 USA. RP Nguyen, AN (reprint author), NASA Johnson Space Ctr, Robert M Walker Lab Space Sci, EISD Directorate, Astromat Res & Explorat Sci, Houston, TX 77058 USA.; Nguyen, AN (reprint author), NASA JSC, JETS Jacobs Technol, Houston, TX 77058 USA. EM lan-anh.n.nguyen@nasa.gov FU NASA Cosmochemistry grants [12-COS12-0058, 10-COS10-0049] FX We thank Z. Rahman for FIB preparation of grain cross sections. We thank Joseph Nuth for a thoughtful review of the manuscript. This work was supported by NASA Cosmochemistry grants 12-COS12-0058 and 10-COS10-0049 to S.R.M. and L.P.K., respectively. NR 107 TC 2 Z9 2 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 051 DI 10.3847/0004-637X/818/1/51 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800051 ER PT J AU Pasham, DR Strohmayer, TE Cenko, SB Trippe, ML Mushotzky, RF Gandhi, P AF Pasham, Dheeraj R. Strohmayer, Tod E. Cenko, S. Bradley Trippe, Margaret L. Mushotzky, Richard F. Gandhi, Poshak TI FIRST SEARCH FOR AN X-RAY-OPTICAL REVERBERATION SIGNAL IN AN ULTRALUMINOUS X-RAY SOURCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; methods: data analysis; X-rays: binaries ID NGC 5408 X-1; MASS BLACK-HOLE; QUASI-PERIODIC OSCILLATIONS; GRO J1655-40; GX 339-4; TIMING OBSERVATIONS; SWIFT J1753.5-0127; ACCRETION DISKS; LOW/HARD STATE; SOLAR MASSES AB Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3 sigma upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximate to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3s) for optical variability on a similar to 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries. C1 [Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA. [Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Mushotzky, Richard F.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Cenko, S. Bradley; Mushotzky, Richard F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Trippe, Margaret L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Gandhi, Poshak] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. RP Pasham, DR (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA.; Pasham, DR (reprint author), Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. EM dheerajrangareddy.pasham@nasa.gov NR 66 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 85 DI 10.3847/0004-637X/818/1/85 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800085 ER PT J AU Petigura, EA Howard, AW Lopez, ED Deck, KM Fulton, BJ Crossfield, IJM Ciardi, DR Chiang, E Lee, EJ Isaacson, H Beichman, CA Hansen, BMS Schlieder, JE Sinukoff, E AF Petigura, Erik A. Howard, Andrew W. Lopez, Eric D. Deck, Katherine M. Fulton, Benjamin J. Crossfield, Ian J. M. Ciardi, David R. Chiang, Eugene Lee, Eve J. Isaacson, Howard Beichman, Charles A. Hansen, Brad M. S. Schlieder, Joshua E. Sinukoff, Evan TI TWO TRANSITING LOW DENSITY SUB-SATURNS FROM K2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: detection; stars: individual (EPIC-203771098); techniques: photometric; techniques: spectroscopic ID GENERAL 3-BODY PROBLEM; EARTH-SIZE PLANETS; SUPER-EARTHS; M4 DWARF; STARS; MASS; KEPLER; STABILITY; SEARCH; COOL AB We report the discovery and confirmation of K2-24 b and c, two sub-Saturn planets orbiting a bright (V = 11.3) C1 [Petigura, Erik A.; Deck, Katherine M.; Beichman, Charles A.] CALTECH, Pasadena, CA 91125 USA. [Howard, Andrew W.; Fulton, Benjamin J.; Sinukoff, Evan] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Lopez, Eric D.] Univ Edinburgh, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Crossfield, Ian J. M.] Univ Arizona, Lunar & Planetary Lab, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Ciardi, David R.] CALTECH, NASA Exoplanet Sci Inst, 770 S Wilson Ave, Pasadena, CA 91125 USA. [Chiang, Eugene; Lee, Eve J.; Isaacson, Howard] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Chiang, Eugene] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Hansen, Brad M. S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Hansen, Brad M. S.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Schlieder, Joshua E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Deck, Katherine M.] CALTECH, Joint Ctr Planetary Astron, Pasadena, CA 91125 USA. RP Petigura, EA (reprint author), CALTECH, Pasadena, CA 91125 USA. EM petigura@caltech.edu OI Lee, Eve/0000-0002-1228-9820; Ciardi, David/0000-0002-5741-3047 FU Space Telescope Science Institute [HST-HF2-51365.001-A]; NASA [NAS 5-26555]; NASA Astrophysics Data Analysis Program grant; K2 Guest Observer Program; European Union Seventh Framework Programme (FP7) [313014 (ETAEARTH)]; National Science Foundation Graduate Research Fellowship [2014184874]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NASA Office of Space Scienc [NNX09AF08G] FX We thank Geoffrey Marcy, Konstantin Batygin, and Leslie Rogers for helpful discussions. We thank an anonymous referee for valuable comments. E. A. P. acknowledges support from a Hubble Fellowship grant HST-HF2-51365.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. for NASA under contract NAS 5-26555. A. W. H. acknowledges support for our K2 team through a NASA Astrophysics Data Analysis Program grant. A. W. H. and I. J. M. C. acknowledge support from the K2 Guest Observer Program. E. D. L. received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 313014 (ETAEARTH). B. J. F. acknowledges support from a National Science Foundation Graduate Research Fellowship under grant No. 2014184874. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work made use of the SIMBAD database (operated at CDS, Strasbourg, France), NASA's Astrophysics Data System Bibliographic Services, and data products from the Two Micron All Sky Survey (2MASS), the APASS database, the SDSS-III project, and the Digitized Sky Survey. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. Some of the data presented herein were obtained at the W. M. Keck Observatory (which is operated as a scientific partnership among Caltech, UC, and NASA). The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 62 TC 4 Z9 4 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 36 DI 10.3847/0004-637X/818/1/36 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800036 ER PT J AU Reep, JW Bradshaw, SJ Holman, GD AF Reep, J. W. Bradshaw, S. J. Holman, G. D. TI X-RAY SOURCE HEIGHTS IN A SOLAR FLARE: THICK-TARGET VERSUS THERMAL CONDUCTION FRONT HEATING SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: flares; Sun: X-rays ID LOOP RADIATIVE HYDRODYNAMICS; NONTHERMAL RECOMBINATION; CHROMOSPHERIC HEIGHT; DENSITY-MEASUREMENTS; ELECTRONS; MODELS; EMISSION; RHESSI; PARTICLES; SPECTRUM AB Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed. C1 [Reep, J. W.] Naval Res Lab, Natl Res Council Postdoc Program, Washington, DC 20375 USA. [Bradshaw, S. J.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Holman, G. D.] NASA Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. RP Reep, JW (reprint author), Naval Res Lab, Natl Res Council Postdoc Program, Washington, DC 20375 USA.; Bradshaw, SJ (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.; Holman, GD (reprint author), NASA Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. EM jeffrey.reep.ctr@nrl.navy.mil; stephen.bradshaw@rice.edu; gordon.d.holman@nasa.gov OI Reep, Jeffrey/0000-0003-4739-1152 FU NASA [NNX11AQ54H]; NASA Living with a Star TRT Grant; RHESSI Project FX This research was performed while JWR held an NRC Research Associateship award at the US Naval Research Laboratory with support from NASA, and previously by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (grant NNX11AQ54H). G.D.H. was supported by a NASA Living with a Star TR&T Grant and the RHESSI Project. The authors thank Giulio Del Zanna for his suggestions about evaluating X-ray emission with CHIANTI in our model. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), and the University of Cambridge (UK). NR 38 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 44 DI 10.3847/0004-637X/818/1/44 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800044 ER PT J AU Schlieder, JE Crossfield, IJM Petigura, EA Howard, AW Aller, KM Sinukoff, E Isaacson, HT Fulton, BJ Ciardi, DR Bonnefoy, M Ziegler, C Morton, TD Lepine, S Obermeier, C Liu, MC Bailey, VP Baranec, C Beichman, CA Defrere, D Henning, T Hinz, P Law, N Riddle, R Skemer, A AF Schlieder, Joshua E. Crossfield, Ian J. M. Petigura, Erik A. Howard, Andrew W. Aller, Kimberly M. Sinukoff, Evan Isaacson, Howard T. Fulton, Benjamin J. Ciardi, David R. Bonnefoy, Mickael Ziegler, Carl Morton, Timothy D. Lepine, Sebastien Obermeier, Christian Liu, Michael C. Bailey, Vanessa P. Baranec, Christoph Beichman, Charles A. Defrere, Denis Henning, Thomas Hinz, Philip Law, Nicholas Riddle, Reed Skemer, Andrew TI TWO SMALL TEMPERATE PLANETS TRANSITING NEARBY M DWARFS IN K2 CAMPAIGNS 0 AND 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE eclipses; stars: individual (K2-26, K2-9); techniques: photometric; techniques: spectroscopic ID MAIN-SEQUENCE STARS; DIGITAL SKY SURVEY; ADAPTIVE OPTICS SYSTEM; LOW-MASS STARS; INFRARED TELESCOPE FACILITY; GALAXY-EVOLUTION-EXPLORER; EARTH-SIZE PLANETS; EXTRASOLAR PLANETS; HABITABLE ZONES; SPECTROPHOTOMETRIC STANDARDS AB The prime Kepler mission revealed that small planets (<4 R-circle plus) are common, especially around low-mass M dwarfs. K2, the repurposed Kepler mission, continues this exploration of small planets around small stars. Here we combine K2 photometry with spectroscopy, adaptive optics imaging, and archival survey images to analyze two small planets orbiting the nearby field-age M dwarfs, K2-26 (EPIC 202083828) and K2-9. K2-26 is an M1.0 +/- 0.5 dwarf at 93 +/- 7 pc from K2 Campaign 0. We validate its planet with a day period of 14.5665 and estimate a radius of 2.67(-0.42)(+0.46) R-circle plus. K2-9 is an M2.5 +/- 0.5 dwarf at 110 +/- 12 pc from K2 Campaign 1. K2-9b was first identified by Montet et al.; here we present spectra and adaptive optics imaging of the host star and independently validate and characterize the planet. Our analyses indicate K2-9b is a 2.25(-0.96)(+0.53) R-circle plus planet with a 18.4498 day period. K2-26b exhibits a transit duration that is too long to be consistent with a circular orbit given its measured stellar radius. Thus, the long transits are likely due to the photoeccentric effect and our transit fits hint at an eccentric orbit. Both planets receive low incident flux from their host stars and have estimated equilibrium temperatures <500 K. K2-9b may receive approximately Earth-like insolation. However, its host star exhibits strong GALEX UV emission which could affect any atmosphere it harbors. K2-26b and K2-9b are representatives of a poorly studied class of small planets with cool temperatures that have radii intermediate to Earth and Neptune. Future study of these systems can provide key insight into trends in bulk composition and atmospheric properties at the transition from silicate dominated to volatile rich bodies. C1 [Schlieder, Joshua E.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA. [Crossfield, Ian J. M.] Univ Arizona, Lunar & Planetary Lab, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Petigura, Erik A.; Riddle, Reed] CALTECH, Pasadena, CA 91125 USA. [Howard, Andrew W.; Aller, Kimberly M.; Sinukoff, Evan; Fulton, Benjamin J.; Liu, Michael C.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Isaacson, Howard T.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Ciardi, David R.; Beichman, Charles A.] CALTECH, NASA Exoplanet Sci Inst, 770 S Wilson Ave, Pasadena, CA 91125 USA. [Bonnefoy, Mickael] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bonnefoy, Mickael] CNRS, IPAG, F-38000 Grenoble, France. [Ziegler, Carl; Law, Nicholas] Univ N Carolina, Chapel Hill, NC 27599 USA. [Morton, Timothy D.] Princeton Univ, Dept Astrophys, Princeton, NJ 08544 USA. [Lepine, Sebastien] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Obermeier, Christian; Henning, Thomas] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Bailey, Vanessa P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Baranec, Christoph] Univ Hawaii Manoa, Inst Astron, Hilo, HI 96720 USA. [Defrere, Denis; Hinz, Philip; Skemer, Andrew] Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Skemer, Andrew] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Schlieder, Joshua E.; Aller, Kimberly M.] NASA, Infrared Telescope Facility, Moffett Field, CA USA. RP Schlieder, JE (reprint author), NASA, Infrared Telescope Facility, Moffett Field, CA USA. EM joshua.e.schlieder@nasa.gov OI Ciardi, David/0000-0002-5741-3047; Bailey, Vanessa/0000-0002-5407-2806 FU NASA [HST-HF2-51349, NAS 5-26555, NNX12AJ23G]; NSF [AST 09-08419]; National Science Foundation [NSF AST-0705296, AST-0906060, AST-0960343, AST-1207891]; Mt. Cuba Astronomical Foundation; Alfred P. Sloan Foundation FX We thank the referee for their prompt, constructive report that has improved the quality of this manuscript. We thank the LBTI/LMIRcam instrument team for providing support during LBT observations. J.E.S. thanks Tom Greene and Mike Werner for helpful discussions. The research of J.E.S. was supported by an appointment to the NASA Postdoctoral Program at NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Support for E.A.P. and A.J.S. was provided by the National Aeronautics and Space Administration through Hubble Fellowship grant HST-HF2-51349 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. A.W.H. acknowledges NASA grant No. NNX12AJ23G and S.L. acknowledges NSF grant No. AST 09-08419. C.A.B. is grateful to Davy Kirkpatrick for his assistance with planning and reduction of the Palomar Double Spectrograph observations. The Large Binocular Telescope Interferometer is funded by NASA as part of its Exoplanet Exploration program. LMIRcam is funded by the National Science Foundation through grant NSF AST-0705296. The Robo-AO system was developed by collaborating partner institutions, the California Institute of Technology and the Inter-University Centre for Astronomy and Astrophysics, and supported by the National Science Foundation under Grant Nos. AST-0906060, AST-0960343, and AST-1207891, the Mt. Cuba Astronomical Foundation, and by a gift from Samuel Oschin. C.B. acknowledges support from the Alfred P. Sloan Foundation. This work made use of the SIMBAD database (operated at CDS, Strasbourg, France); NASA's Astrophysics Data System Bibliographic Services; NASA's Exoplanet Archive and Infrared Science Archive; data products from the Two Micron All Sky Survey (2MASS); the APASS database; the SDSS-III project; the Digitized Sky Survey; and the Wide-Field Infrared Survey Explorer. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 130 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 87 DI 10.3847/0004-637X/818/1/87 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800087 ER PT J AU Schlieder, JE Skemer, AJ Maire, AL Desidera, S Hinz, P Skrutskie, MF Leisenring, J Bailey, V Defrere, D Esposito, S Strassmeier, KG Weber, M Biller, BA Bonnefoy, M Buenzli, E Close, LM Crepp, JR Eisner, JA Hofmann, KH Henning, T Morzinski, KM Schertl, D Weigelt, G Woodward, CE AF Schlieder, Joshua E. Skemer, Andrew J. Maire, Anne-Lise Desidera, Silvano Hinz, Philip Skrutskie, Michael F. Leisenring, Jarron Bailey, Vanessa Defrere, Denis Esposito, Simone Strassmeier, Klaus G. Weber, Michael Biller, Beth A. Bonnefoy, Mickael Buenzli, Esther Close, Laird M. Crepp, Justin R. Eisner, Josh A. Hofmann, Karl-Heinz Henning, Thomas Morzinski, Katie M. Schertl, Dieter Weigelt, Gerd Woodward, Charles E. TI THE LEECH EXOPLANET IMAGING SURVEY: ORBIT AND COMPONENT MASSES OF THE INTERMEDIATE-AGE, LATE-TYPE BINARY NO UMa SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; instrumentation: adaptive optics; stars: fundamental parameters; stars: individual (NO UMa); stars: late-type; techniques: high angular resolution ID SOLAR-TYPE STARS; URSA-MAJOR GROUP; STELLAR KINEMATIC GROUPS; PRE-MAIN-SEQUENCE; M-CIRCLE-DOT; ADAPTIVE OPTICS; SPECKLE INTERFEROMETRY; EVOLUTIONARY MODELS; PLANET FORMATION; GROUP MEMBERSHIP AB We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, K-s-, and L'-band observations resolve the system at angular separations <0 ''.09. The components exhibit significant orbital motion over a span of similar to 7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 +/- 0.5 primary and K6.5 +/- 0.5 secondary are 0.83 +/- 0.02 M-circle dot and 0.64 +/- 0.02 M-circle dot, respectively. We also derive a system distance of d = 25.87 +/- 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the similar to 500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits. C1 [Schlieder, Joshua E.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA. [Schlieder, Joshua E.; Biller, Beth A.; Bonnefoy, Mickael; Buenzli, Esther; Henning, Thomas] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Skemer, Andrew J.; Hinz, Philip; Leisenring, Jarron; Defrere, Denis; Close, Laird M.; Eisner, Josh A.; Morzinski, Katie M.] Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Maire, Anne-Lise; Desidera, Silvano] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Skrutskie, Michael F.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Bailey, Vanessa] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Esposito, Simone] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy. [Strassmeier, Klaus G.; Weber, Michael] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Biller, Beth A.] Univ Edinburgh, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Bonnefoy, Mickael] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bonnefoy, Mickael] CNRS, IPAG, F-38000 Grenoble, France. [Crepp, Justin R.] Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. [Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Woodward, Charles E.] Univ Minnesota, Minnesota Inst Astrophys, 116 Church St SE, Minneapolis, MN 55455 USA. RP Schlieder, JE (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA. EM joshua.e.schlieder@nasa.gov OI Bailey, Vanessa/0000-0002-5407-2806 FU NASA [NAS 5-26555]; National Aeronautics and Space Administration through Hubble Fellowship - Space Telescope Science Institute [HST-HF2-51349]; "Progetti Premiali" funding scheme of the Italian Ministry of Education, University, and Research; Swiss National Science Foundation (SNSF); NASA Origins of Solar Systems Program [NNX13AJ17G]; NASA, Exoplanet Exploration program; National Science Foundation [NSF AST-0705296]; State of Brandenburg (MWFK); German Federal Ministry of Education and Research (BMBF); National Aeronautics and Space Administration; National Science Foundation FX We thank the anonymous referee for their constructive review that improved the quality of this manuscript. We thank the LBTI/LMIRcam instrument team for providing support during LEECH observations. A portion of the research of J.E.S. was supported by an appointment to the NASA Postdoctoral Program at NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Support for A.J.S. was provided by the National Aeronautics and Space Administration through Hubble Fellowship grant HST-HF2-51349 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. A.-L.M. and S.D. acknowledge support from the "Progetti Premiali" funding scheme of the Italian Ministry of Education, University, and Research. E.B. is supported by the Swiss National Science Foundation (SNSF). LEECH is funded by the NASA Origins of Solar Systems Program, grant NNX13AJ17G. The Large Binocular Telescope Interferometer is funded by NASA as part of its Exoplanet Exploration program. LMIRcam is funded by the National Science Foundation through grant NSF AST-0705296. STELLA was made possible by funding through the State of Brandenburg (MWFK) and the German Federal Ministry of Education and Research (BMBF). The facility is a collaboration of the AIP in Brandenburg with the IAC in Tenerife. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the Keck Observatory Archive (KOA), which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. NR 82 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 1 DI 10.3847/0004-637X/818/1/1 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800001 ER PT J AU Schmidt, KB Treu, T Bradac, M Vulcani, B Huang, KH Hoag, A Maseda, M Guaita, L Pentericci, L Brammer, GB Dijkstra, M Dressler, A Fontana, A Henry, AL Jones, TA Mason, C Trenti, M Wang, X AF Schmidt, K. B. Treu, T. Bradac, M. Vulcani, B. Huang, K. -H. Hoag, A. Maseda, M. Guaita, L. Pentericci, L. Brammer, G. B. Dijkstra, M. Dressler, A. Fontana, A. Henry, A. L. Jones, T. A. Mason, C. Trenti, M. Wang, X. TI THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). III. A CENSUS OF Ly alpha EMISSION AT z greater than or similar to 7 FROM HST SPECTROSCOPY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; methods: data analysis; techniques: spectroscopic ID LYMAN-BREAK GALAXIES; STAR-FORMING GALAXIES; ULTRA DEEP FIELD; ULTRAVIOLET LUMINOSITY FUNCTION; SPECTRAL ENERGY-DISTRIBUTIONS; COSMIC REIONIZATION; HIGH-REDSHIFT; PHYSICAL-PROPERTIES; KECK SPECTROSCOPY; FAINT GALAXIES AB We present a census of Ly alpha emission at z greater than or similar to 7, utilizing deep near-infrared Hubble Space Telescope grism spectroscopy from the first six completed clusters of the Grism Lens-Amplified Survey from Space (GLASS). In 24/159 photometrically selected galaxies we detect emission lines consistent with Ly alpha in the GLASS spectra. Based on the distribution of signal-to-noise ratios and on simulations, we expect the completeness and the purity of the sample to be 40%-100% and 60%-90%, respectively. For the objects without detected emission lines we show that the observed (not corrected for lensing magnification) 1 sigma flux limits reach 5 x 10(-18) erg s(-1) cm(-2) per position angle over the full wavelength range of GLASS (0.8-1.7 mu m). Based on the conditional probability of Ly alpha emission measured from the ground at z similar to 7, we would have expected 12-18 Ly alpha emitters. This is consistent with the number of detections, within the uncertainties, confirming the drop in Ly alpha emission with respect to z similar to 6. Deeper follow-up spectroscopy, here exemplified by Keck spectroscopy, is necessary to improve our estimates of completeness and purity. and to confirm individual candidates as true Ly alpha emitters. These candidates include a promising source at z = 8.1. The spatial extent of Ly alpha in a deep stack of the most convincing Ly alpha emitters with < z > = 7.2 is consistent with that of the rest-frame UV continuum. Extended Ly alpha emission, if present, has a surface brightness below our detection limit, consistent with the properties of lower-redshift comparison samples. From the stack we estimate upper limits on rest-frame UV emission line ratios and find f(C IV)/f(Ly alpha) less than or similar to 0.32 and f(C III])/f(Ly alpha) less than or similar to 0.23, in good agreement with other values published in the literature. C1 [Schmidt, K. B.; Jones, T. A.; Mason, C.; Wang, X.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Schmidt, K. B.] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Treu, T.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Bradac, M.; Huang, K. -H.; Hoag, A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Vulcani, B.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778582, Japan. [Maseda, M.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Guaita, L.; Pentericci, L.; Fontana, A.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Brammer, G. B.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Dijkstra, M.] Univ Oslo, Inst Theoret Astrophys, Postboks 1029, NO-0858 Oslo, Norway. [Dressler, A.] Observ Carnegie Inst Sci, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Henry, A. L.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 665, Greenbelt, MD 20771 USA. [Trenti, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. RP Schmidt, KB (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.; Schmidt, KB (reprint author), Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. EM kbschmidt@aip.de FU Kavli Institute for Theoretical Physics in the United States; Earth-Life Science Institute in Japan; Northern Research Partnership; Astrobiology Centre Project of National Institutes of Natural Sciences (NINS) [AB271017] FX We thank Kevin Walsh for providing us with SyMBA, including a Grand Tack model. We thank the anonymous referee for the careful reading and comments. S.M. thanks Prof. Bill McDonough, Prof. Qing-Zhu Yin, and Prof. Yuri Aikawa for useful discussions. S.M. is thankful for the support provided by the Kavli Institute for Theoretical Physics in the United States and the Earth-Life Science Institute in Japan, where some parts of this work were done, and a support from the Northern Research Partnership. R.B. is supported by the Astrobiology Centre Project of National Institutes of Natural Sciences (NINS) (Grant Number AB271017). NR 123 TC 10 Z9 10 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 38 DI 10.3847/0004-637X/818/1/38 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800038 ER PT J AU Tatum, MM Turner, TJ Miller, L Reeves, JN DiLiello, J Gofford, J Patrick, A Clayton, M AF Tatum, M. M. Turner, T. J. Miller, L. Reeves, J. N. DiLiello, J. Gofford, J. Patrick, A. Clayton, M. TI THE GLOBAL IMPLICATIONS OF THE HARD EXCESS. II. ANALYSIS OF THE LOCAL POPULATION OF RADIO-QUIET AGNs SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: Seyfert; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; RAY SPECTRAL VARIABILITY; SEYFERT-GALAXIES; COMPTON-THICK; NGC 1365; BLACK-HOLE; DISK WIND; BEPPOSAX; ABSORPTION; ABSORBER AB Active galactic nuclei (AGNs) show evidence for reprocessing gas, outflowing from the accreting black hole. The combined effects of absorption and scattering from the circumnuclear material likely explain the "hard excess" of X-ray emission above 20 keV, compared with the extrapolation of spectra from lower X-ray energies. In a recent Suzaku study, we established that the ubiquitous hard excess in hard, X-ray-selected, radio-quiet type 1 AGNs is consistent with a reprocessing of the X-ray continuum in an ensemble of clouds, located tens to hundreds of gravitational radii from the nuclear black hole. Here we add hard X-ray-selected, type 2 AGNs to extend our original study and show that the gross X-ray spectral properties of the entire local population of radio-quiet AGNs may be described by a simple unified scheme. We find a broad, continuous distribution of spectral hardness ratio and FeK alpha equivalent width across all AGN types, which can be reproduced by varying the observer's sightline through a single, simple model cloud ensemble, provided that the radiative transfer through the model cloud distribution includes not only photoelectric absorption but also three-dimensional (3D) Compton scattering. Variation in other parameters of the cloud distribution, such as column density or ionization, should be expected between AGNs, but such variation is not required to explain the gross X-ray spectral properties. C1 [Tatum, M. M.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Tatum, M. M.; Turner, T. J.; Reeves, J. N.; DiLiello, J.; Gofford, J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Miller, L.; Clayton, M.] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. [Reeves, J. N.; Gofford, J.; Patrick, A.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. RP Tatum, MM (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.; Tatum, MM (reprint author), Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. FU NASA; NASA grant [NNX11AJ57G] FX This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. T.J.T. would like to acknowledge NASA grant NNX11AJ57G. NR 44 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 12 DI 10.3847/0004-637X/818/1/12 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800012 ER PT J AU Toy, VL Cenko, SB Silverman, JM Butler, NR Cucchiara, A Watson, AM Bersier, D Perley, DA Margutti, R Bellm, E Bloom, JS Cao, Y Capone, JI Clubb, K Corsi, A De Cia, A de Diego, JA Filippenko, AV Fox, OD Gal-Yam, A Gehrels, N Georgiev, L Gonzalez, JJ Kasliwal, MM Kelly, PL Kulkarni, SR Kutyrev, AS Lee, WH Prochaska, JX Ramirez-Ruiz, E Richer, MG Roman-Zuniga, C Singer, L Stern, D Troja, E Veilleux, S AF Toy, V. L. Cenko, S. B. Silverman, J. M. Butler, N. R. Cucchiara, A. Watson, A. M. Bersier, D. Perley, D. A. Margutti, R. Bellm, E. Bloom, J. S. Cao, Y. Capone, J. I. Clubb, K. Corsi, A. De Cia, A. de Diego, J. A. Filippenko, A. V. Fox, O. D. Gal-Yam, A. Gehrels, N. Georgiev, L. Gonzalez, J. J. Kasliwal, M. M. Kelly, P. L. Kulkarni, S. R. Kutyrev, A. S. Lee, W. H. Prochaska, J. X. Ramirez-Ruiz, E. Richer, M. G. Roman-Zuniga, C. Singer, L. Stern, D. Troja, E. Veilleux, S. TI OPTICAL AND NEAR-INFRARED OBSERVATIONS OF SN 2013DX ASSOCIATED WITH GRB 130702A SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (GRB 130702A); supernovae: individual (SN 2013dx) ID GAMMA-RAY BURST; CORE-COLLAPSE SUPERNOVAE; 25 APRIL 1998; LATE-TIME SPECTRA; LIGHT CURVES; IC SUPERNOVAE; RELATIVISTIC SUPERNOVAE; BRIGHT SUPERNOVA; LOW-RESOLUTION; IA SUPERNOVAE AB We present optical and near-infrared (NIR) light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be E gamma,iso = 6.4(-1.0)(+1.3) x 10(50) erg (1 keV to 10 MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed g'r'i'z' light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves similar to 20% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined SNe Ic, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of similar to 21,000 km s(-1). We construct a quasi-bolometric (g'r'i'z'yJ) light curve for SN 2013dx, only the fifth GRB-associated SN with extensive NIR coverage and the third with a bolometric light curve extending beyond Delta t > 40 days. Together with the measured photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a Ni-56 mass of M-Ni = 0.37 +/- 0.01 M-circle dot, an ejecta mass of M-ej = 3.1 +/- 0.1 M-circle dot, and a kinetic energy of E-K = (8.2 +/- 0.43) x 10(51) erg (statistical uncertainties only), consistent with previous GRB-associated supernovae. When considering the ensemble population of GRB-associated supernovae, we find no correlation between the mass of synthesized Ni-56 and high-energy properties, despite clear predictions from numerical simulations that M-Ni should correlate with the degree of asymmetry. On the other hand, M-Ni clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events. C1 [Toy, V. L.; Capone, J. I.; Troja, E.; Veilleux, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cenko, S. B.; Cucchiara, A.; Gehrels, N.; Kutyrev, A. S.; Singer, L.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cenko, S. B.; Veilleux, S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Silverman, J. M.] Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA. [Butler, N. R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Watson, A. M.; de Diego, J. A.; Georgiev, L.; Gonzalez, J. J.; Lee, W. H.; Richer, M. G.; Roman-Zuniga, C.] Univ Nacl Autonoma Mexico, Inst Astron, Apartado Postal 106, Ensenada 22800, Baja California, Mexico. [Bersier, D.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Perley, D. A.; Bellm, E.; Cao, Y.; Kulkarni, S. R.] CALTECH, Dept Astron, MC 249-17,1200 East Calif Blvd, Pasadena, CA 91125 USA. [Margutti, R.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Bloom, J. S.; Clubb, K.; Filippenko, A. V.; Fox, O. D.; Kelly, P. L.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Corsi, A.] Texas Tech Univ, Dept Phys, Box 41051, Lubbock, TX 79409 USA. [De Cia, A.; Gal-Yam, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel. [Kasliwal, M. M.] Observ Carnegie Inst Sci, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Prochaska, J. X.; Ramirez-Ruiz, E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA. [Singer, L.] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Toy, VL (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RI Roman-Zuniga, Carlos/F-6602-2016; Gonzalez, Jose/L-6687-2014; OI Roman-Zuniga, Carlos/0000-0001-8600-4798; Gonzalez, Jose/0000-0002-3724-1583; Bellm, Eric/0000-0001-8018-5348 FU NASA; NSF; Alfred P. Sloan Foundation; U.S. Department of Energy Office of Science FX This research has made use of the VizieR catalog access tool, CDS, Strasbourg, France. This publication also uses data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the NSF, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 148 TC 3 Z9 3 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 79 DI 10.3847/0004-637X/818/1/79 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800079 ER PT J AU Zaritsky, D McCabe, K Aravena, M Athanassoula, E Bosma, A Comeron, S Courtois, HM Elmegreen, BG Elmegreen, DM Erroz-Ferrer, S Gadotti, DA Hinz, JL Ho, LC Holwerda, B Kim, T Knapen, JH Laine, J Laurikainen, E Munoz-Mateos, JC Salo, H Sheth, K AF Zaritsky, Dennis McCabe, Kelsey Aravena, Manuel Athanassoula, E. Bosma, Albert Comeron, Sebastien Courtois, Helene M. Elmegreen, Bruce G. Elmegreen, Debra M. Erroz-Ferrer, Santiago Gadotti, Dimitri A. Hinz, Joannah L. Ho, Luis C. Holwerda, Benne Kim, Taehyun Knapen, Johan H. Laine, Jarkko Laurikainen, Eija Carlos Munoz-Mateos, Juan Salo, Heikki Sheth, Kartik TI GLOBULAR CLUSTER POPULATIONS: RESULTS INCLUDING S(4)G LATE-TYPE GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: star clusters: general; galaxies: stellar content ID STELLAR MASS DISTRIBUTIONS; SPITZER-SPACE-TELESCOPE; MU-M; FORMATION EFFICIENCIES; SYNTHESIS MODELS; GREEN BANK; IRAC 3.6; SYSTEMS; VIRGO; ENVIRONMENT AB Using 3.6 and 4.5 mu m images of 73 late-type, edge-on galaxies from the S(4)G survey, we compare the richness of the globular cluster populations of these galaxies to those of early-type galaxies that we measured previously. In general, the galaxies presented here fill in the distribution for galaxies with lower stellar mass, M-*, specifically log(M-*/M-circle dot) < 10, overlap the results for early-type galaxies of similar masses, and, by doing so, strengthen the case for a dependence of the number of globular clusters per 10(9)M(circle dot) of galaxy stellar mass, T-N, on M-*. For 8.5 < log(M-*/M-circle dot) < 10.5 we find the relationship can be satisfactorily described as T-N = (M-*/10(6.7))(-0.56) M-* is expressed in solar masses. The functional form of the relationship is only weakly constrained, and extrapolation outside this range is not advised. Our late-type galaxies, in contrast to our early types, do not show the tendency for low-mass galaxies to split into two T-N families. Using these results and a galaxy stellar mass function from the literature, we calculate that, in a volume-limited, local universe sample, clusters are most likely to be found around fairly massive galaxies (M-* similar to 10(10.8)M(circle dot)) and present a fitting function for the volume number density of clusters as a function of parent-galaxy stellar mass. We find no correlation between T-N and large-scale environment, but we do find a tendency for galaxies of fixed M-* to have larger T-N if they have converted a larger proportion of their baryons into stars. C1 [Zaritsky, Dennis; McCabe, Kelsey] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Aravena, Manuel] Univ Diego Portales, Fac Ingn, Nucleo Astron, Ave Ejercito 441, Santiago, Chile. [Athanassoula, E.; Bosma, Albert] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Comeron, Sebastien; Laine, Jarkko; Laurikainen, Eija; Salo, Heikki] Univ Oulu, Astron & Space Phys, POB 3000, FI-90014 Oulu, Finland. [Comeron, Sebastien; Laurikainen, Eija] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, FI-21500 Piikkio, Finland. [Courtois, Helene M.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl, F-69365 Lyon, France. [Courtois, Helene M.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Elmegreen, Bruce G.] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA. [Elmegreen, Debra M.] Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA. [Erroz-Ferrer, Santiago] ETH, Inst Astron, Dept Phys, CH-8093 Zurich, Switzerland. [Gadotti, Dimitri A.; Carlos Munoz-Mateos, Juan] European So Observ, Casilla 19001, Santiago 19, Chile. [Hinz, Joannah L.] MMT Observ, POB 210065, Tucson, AZ 85721 USA. [Ho, Luis C.] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Ho, Luis C.] Peking Univ, Dept Astron, Beijing 100871, Peoples R China. [Holwerda, Benne] Leiden Univ, Leiden Observ, Niels Bohrweg 4, NL-2333 Leiden, Netherlands. [Kim, Taehyun; Carlos Munoz-Mateos, Juan; Sheth, Kartik] Natl Radio Astron Observ, NAASC, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Kim, Taehyun] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Knapen, Johan H.] Inst Astrofis Canarias, Via Lactea S-N, E-38205 San Cristobal la Laguna, Spain. [Knapen, Johan H.] Univ la Laguna, Dept Astrofis, E-38206 San Cristobal de la Laguna, Spain. [Sheth, Kartik] NASA Headquarters, MS 3U23,300 St. SW, Washington, DC 20546 USA. RP Zaritsky, D (reprint author), Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. EM dennis.zaritsky@gmail.com FU NASA ADAP [NNX12AE27G]; NASA Spacegrant undergraduate research fellowship; Kavli Foundation; Chinese Academy of Science (Emergence of Cosmological Structures) from the Strategic Priority Research Program [XDB09030102]; Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2013-41243-P]; National Radio Astronomy Observatory; CNES (Centre National d?Etudes Spatiales-France); People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7 [PITN-GA-2011-289313]; Peking University FX D.Z. acknowledges financial support from NASA ADAP NNX12AE27G. K.M. acknowledges support through a NASA Spacegrant undergraduate research fellowship. L.C.H. acknowledges support from the Kavli Foundation, Peking University, and the Chinese Academy of Science through grant No. XDB09030102 (Emergence of Cosmological Structures) from the Strategic Priority Research Program. J.H.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under grant number AYA2013-41243-P. K.Sheth, J.C. Munoz-Mateos, and T. Kim gratefully acknowledge support from the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. E.A. and A.B. acknowledge financial support from the CNES (Centre National d?Etudes Spatiales-France). We also acknowledge support from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/under REA grant agreement number PITN-GA-2011-289313 to the DAGAL network. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 46 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2016 VL 818 IS 1 AR 99 DI 10.3847/0004-637X/818/1/99 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE1EZ UT WOS:000370370800099 ER PT J AU Guo, F Li, XC Li, H Daughton, W Zhang, B Lloyd-Ronning, N Liu, YH Zhang, HC Deng, W AF Guo, Fan Li, Xiaocan Li, Hui Daughton, William Zhang, Bing Lloyd-Ronning, Nicole Liu, Yi-Hsin Zhang, Haocheng Deng, Wei TI EFFICIENT PRODUCTION OF HIGH-ENERGY NONTHERMAL PARTICLES DURING MAGNETIC RECONNECTION IN A MAGNETICALLY DOMINATED ION-ELECTRON PLASMA SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; galaxies: jets; gamma-ray burst: general; magnetic reconnection; pulsars: general; relativistic processes ID GAMMA-RAY BURSTS; CRAB-NEBULA; RELATIVISTIC RECONNECTION; PAIR PLASMAS; ACCELERATION; DISSIPATION; JETS; SIMULATIONS; BLAZARS; VARIABILITY AB Magnetic reconnection is a leading mechanism for dissipating magnetic energy and accelerating nonthermal particles in Poynting-flux-dominated flows. In this Letter, we investigate nonthermal particle acceleration during magnetic reconnection in a magnetically dominated ion-electron plasma using fully kinetic simulations. For an ion-electron plasma with a total magnetization of sigma(0) = B-2/4 pi n(m(i) + m(e))c(2)), the magnetization for each species is sigma(i) similar to sigma(0) and sigma(e) similar to(m(i)/m(e)) sigma(0), respectively. We have studied the magnetically dominated regime by varying sigma(e). = 10(3) - 10(5) with initial ion and electron temperatures T-i = T-e = 5 - 20m(e)c(2) and mass ratio m(i)/m(e)= 1 - 1836. The results demonstrate that reconnection quickly establishes power-law energy distributions for both electrons and ions within several ( 2-3) light-crossing times. For the cases with periodic boundary conditions, the power-law index is 1 < s < 2 for both electrons and ions. The hard spectra limit the power-law energies for electrons and ions to be gamma(be) similar to sigma(e) and gamma(bi) similar to sigma(i), respectively. The main acceleration mechanism is a Fermi-like acceleration through the drift motions of charged particles. When comparing the spectra for electrons and ions in momentum space, the spectral indices s(p) are identical as predicted in Fermi acceleration. We also find that the bulk flow can carry a significant amount of energy during the simulations. We discuss the implication of this study in the context of Poynting-flux dominated jets and pulsar winds, especially the applications for explaining nonthermal high-energy emissions. C1 [Guo, Fan; Li, Xiaocan; Li, Hui; Daughton, William; Lloyd-Ronning, Nicole; Zhang, Haocheng; Deng, Wei] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Li, Xiaocan] Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA. [Zhang, Bing; Deng, Wei] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Liu, Yi-Hsin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zhang, Haocheng] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. RP Guo, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM guofan.ustc@gmail.com RI Daughton, William/L-9661-2013 FU DOE through LDRD program at LANL; DOE/OFES; NASA Headquarters under NASA Earth and Space Science Fellowship Program [NNX13AM30H]; NASA from Heliophysics Theory Program; M. Hildred Blewett Fellowship of the APS; CMSO FX We are grateful to Jonathan Jara-Almonte, who developed an initial version of the particle tracking module. This work is supported by the DOE through the LDRD program at LANL and DOE/OFES support to LANL in collaboration with CMSO. X.L. is supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program-Grant NNX13AM30H. Contributions from W.D. were supported by NASA from the Heliophysics Theory Program. N.L.-R. is supported by the M. Hildred Blewett Fellowship of the APS. Simulation resources are provided by LANL institutional computing. NR 43 TC 9 Z9 9 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 10 PY 2016 VL 818 IS 1 AR L9 DI 10.3847/2041-8205/818/1/L9 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD0JG UT WOS:000369605600009 ER PT J AU Smith, M Sullivan, M D'Andrea, CB Castander, FJ Casas, R Prajs, S Papadopoulos, A Nichol, RC Karpenka, NV Bernard, SR Brown, P Cartier, R Cooke, J Curtin, C Davis, TM Finley, DA Foley, RJ Gal-Yam, A Goldstein, DA Gonzalez-Gaitan, S Gupta, RR Howell, DA Inserra, C Kessler, R Lidman, C Marriner, J Nugent, P Pritchard, TA Sako, M Smartt, S Smith, RC Spinka, H Thomas, RC Wolf, RC Zenteno, A Abbott, TMC Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Rosell, AC Kind, MC Carretero, J Crocce, M Cunha, CE da Costa, LN Desai, S Diehl, HT Doel, P Estrada, J Evrard, AE Flaugher, B Fosalba, P Frieman, J Gerdes, DW Gruen, D Gruendl, RA James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Marshall, JL Martini, P Miller, CJ Miquel, R Nord, B Ogando, R Plazas, AA Reil, K Romer, AK Roodman, A Rykoff, ES Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Walker, AR Wester, W AF Smith, M. Sullivan, M. D'Andrea, C. B. Castander, F. J. Casas, R. Prajs, S. Papadopoulos, A. Nichol, R. C. Karpenka, N. V. Bernard, S. R. Brown, P. Cartier, R. Cooke, J. Curtin, C. Davis, T. M. Finley, D. A. Foley, R. J. Gal-Yam, A. Goldstein, D. A. Gonzalez-Gaitan, S. Gupta, R. R. Howell, D. A. Inserra, C. Kessler, R. Lidman, C. Marriner, J. Nugent, P. Pritchard, T. A. Sako, M. Smartt, S. Smith, R. C. Spinka, H. Thomas, R. C. Wolf, R. C. Zenteno, A. Abbott, T. M. C. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Crocce, M. Cunha, C. E. da Costa, L. N. Desai, S. Diehl, H. T. Doel, P. Estrada, J. Evrard, A. E. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Gruen, D. Gruendl, R. A. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Marshall, J. L. Martini, P. Miller, C. J. Miquel, R. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Roodman, A. Rykoff, E. S. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Walker, A. R. Wester, W. CA DES Collaboration TI DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE supernovae: general ID DARK ENERGY SURVEY; CORE-COLLAPSE SUPERNOVAE; LIGHT CURVES; LEGACY SURVEY; PAN-STARRS1; DISCOVERY; EMISSION; SPECTROSCOPY; EXPLOSIONS; GALAXIES AB We present DES14X3taz, a new hydrogen-poor superluminous supernova (SLSN-I) discovered by the Dark Energy Survey (DES) supernova program, with additional photometric data provided by the Survey Using DECam for Superluminous Supernovae. Spectra obtained using Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy on the Gran Telescopio CANARIAS show DES14X3taz is an SLSN-I at z = 0.608. Multi-color photometry reveals a double-peaked light curve: a blue and relatively bright initial peak that fades rapidly prior to the slower rise of the main light curve. Our multi-color photometry allows us, for the first time, to show that the initial peak cools from 22,000 to 8000 K over 15 rest-frame days, and is faster and brighter than any published core-collapse supernova, reaching 30% of the bolometric luminosity of the main peak. No physical Ni-56-powered model can fit this initial peak. We show that a shock-cooling model followed by a magnetar driving the second phase of the light curve can adequately explain the entire light curve of DES14X3taz. Models involving the shock-cooling of extended circumstellar material at a distance of similar or equal to 400 R-circle dot are preferred over the cooling of shock-heated surface layers of a stellar envelope. We compare DES14X3taz to the few double-peaked SLSN-I events in the literature. Although the rise. times and characteristics of these initial peaks differ, there exists the tantalizing possibility that they can be explained by one physical interpretation. C1 [Smith, M.; Sullivan, M.; D'Andrea, C. B.; Prajs, S.; Karpenka, N. V.; Cartier, R.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [D'Andrea, C. B.; Papadopoulos, A.; Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Castander, F. J.; Casas, R.; Carretero, J.; Crocce, M.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Papadopoulos, A.] European Univ Cyprus, Sch Sci, 6 Diogenes St, CY-1516 Nicosia, Cyprus. [Bernard, S. R.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Brown, P.] Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, 4242 TAMU, College Stn, TX 77843 USA. [Cooke, J.; Curtin, C.; Pritchard, T. A.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Davis, T. M.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Davis, T. M.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW, Australia. [Finley, D. A.; Marriner, J.; Buckley-Geer, E.; Diehl, H. T.; Estrada, J.; Flaugher, B.; Frieman, J.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Wester, W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Foley, R. J.; Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, R. J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Gal-Yam, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Goldstein, D. A.; Nugent, P.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.; Nugent, P.; Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gonzalez-Gaitan, S.] Millennium Inst Astrophys, Casilla 36-D, Santiago, Chile. [Gonzalez-Gaitan, S.] Univ Chile, Ctr Modelamiento Matemt, Beaucheff 851,Edificio Norte,Piso 7, Santiago, Chile. [Gupta, R. R.; Spinka, H.] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. [Howell, D. A.] Las Cumbres Observ, Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Inserra, C.; Smartt, S.] Queen s Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Kessler, R.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, R.] Univ Chicago, Dept Phys & Astron, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Lidman, C.; Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Sako, M.; Wolf, R. C.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Smith, R. C.; Zenteno, A.; Abbott, T. M. C.; James, D. J.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Benoit-Levy, A.; Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Carnero Rosell, A.; da Costa, L. N.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Desai, S.] Excellence Cluster Universe, Boltzmannstr 2, Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.; Reil, K.; Roodman, A.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain. RP Smith, M (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. EM mat.smith@soton.ac.uk RI Fosalba Vela, Pablo/I-5515-2016; Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Davis, Tamara/A-4280-2008; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Davis, Tamara/0000-0002-4213-8783; Bernard, Stephanie/0000-0003-0956-0728; Prajs, Szymon/0000-0003-2541-4659; Carrasco Kind, Matias/0000-0002-4802-3194; Sullivan, Mark/0000-0001-9053-4820 FU EU/FP7-ERC [615929, 307260]; STFC; NSF [AST-1518052, AST-1138766]; Weizmann-UK Grant; DOE; NSF (USA); MEC/MICINN/MINECO (Spain); STFC (UK); HEFCE (UK); NCSA (UIUC); KICP (U. Chicago); CCAPP (Ohio State); MIFPA (Texas AM); CNPQ; FAPERJ; FINEP (Brazil); DFG (Germany); MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; ERC [240672, 291329, 306478]; Collaborating Institutions in the Dark Energy Survey FX We acknowledge support from EU/FP7-ERC grants 615929 and 307260, STFC, NSF grant AST-1518052, and a Weizmann-UK Grant. Based on observations made with the Gran Telescopio Canarias (GTC), at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias.r Funding for the DES Projects has been provided by the DOE and NSF (USA), MEC/MICINN/MINECO (Spain), STFC (UK), HEFCE (UK), NCSA (UIUC), KICP (U. Chicago), CCAPP (Ohio State), MIFPA (Texas A&M), CNPQ, FAPERJ, FINEP (Brazil), DFG (Germany), and the Collaborating Institutions in the Dark Energy Survey.r The DES Data Management System is supported by the NSF under grant number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the ERC including grants 240672, 291329, and 306478. NR 37 TC 5 Z9 5 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 10 PY 2016 VL 818 IS 1 AR L8 DI 10.3847/2041-8205/818/1/L8 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD0JG UT WOS:000369605600008 ER PT J AU Labandeira, CC Yang, Q Santiago-Blay, JA Hotton, CL Monteiro, A Wang, YJ Goreva, Y Shih, CK Siljestrom, S Rose, TR Dilcher, DL Ren, D AF Labandeira, Conrad C. Yang, Qiang Santiago-Blay, Jorge A. Hotton, Carol L. Monteiro, Antonia Wang, Yong-Jie Goreva, Yulia Shih, ChungKun Siljestrom, Sandra Rose, Tim R. Dilcher, David L. Ren, Dong TI The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE angiosperms; gymnosperms; Kalligrammatidae; Papilionoidea; tubular proboscis; wing eyespots ID YIXIAN FORMATION; NEUROPTERIDA INSECTA; POLLINATION; KALLIGRAMMATIDAE; GYMNOSPERMS; CHINA; EYESPOTS; AMERICA; MIMICRY; MELANIN AB Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80-70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in northeastern China to unravel a surprising array of similar morphological and ecological features in these two, unrelated clades. We used polarized light and epifluorescence photography, SEM imaging, energy dispersive spectrometry and time-of-flight secondary ion mass spectrometry to examine kalligrammatid fossils and their environment. We mapped the evolution of specific traits onto a kalligrammatid phylogeny and discovered that these extinct lacewings convergently evolved wing eyespots that possibly contained melanin, and wing scales, elongate tubular proboscides, similar feeding styles, and seed-plant associations, similar to butterflies. Long-proboscid kalligrammatid lacewings lived in ecosystems with gymnosperm-insect relationships and likely accessed bennettitalean pollination drops and pollen. This system later was replaced by mid-Cretaceous angiosperms and their insect pollinators. C1 [Labandeira, Conrad C.; Yang, Qiang; Wang, Yong-Jie; Shih, ChungKun; Ren, Dong] Capital Normal Univ, Coll Life Sci, Beijing 100048, Peoples R China. [Labandeira, Conrad C.; Santiago-Blay, Jorge A.; Hotton, Carol L.; Shih, ChungKun] Smithsonian Inst, Natl Museum Nat Hist, Dept Paleobiol, Washington, DC 20013 USA. [Goreva, Yulia; Siljestrom, Sandra; Rose, Tim R.] Smithsonian Inst, Natl Museum Nat Hist, Dept Mineral Sci, Washington, DC 20013 USA. [Labandeira, Conrad C.] Univ Maryland, Dept Entomol, College Pk, MD 20742 USA. [Labandeira, Conrad C.] Univ Maryland, BEES Program, College Pk, MD 20742 USA. [Yang, Qiang] Sun Yat Sen Univ, Sch Life Sci, Coll Ecol & Evolut,Guangdong Higher Educ Inst, State Key Lab Biocontrol,Key Lab Biodivers Dynam, Guangzhou 510275, Guangdong, Peoples R China. [Yang, Qiang] Shijiazhuang Univ Econ, Geosci Museum, Shijiazhuang 050031, Peoples R China. [Santiago-Blay, Jorge A.] Univ Puerto Rico, Dept Crop & Agroenvironm Sci, Mayaguez, PR 00681 USA. [Hotton, Carol L.] Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20892 USA. [Monteiro, Antonia] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06511 USA. [Monteiro, Antonia] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore. [Monteiro, Antonia] Yale NUS Coll, Singapore 138614, Singapore. [Goreva, Yulia] CALTECH, Jet Prop Lab, Natl Aeronaut & Space Adm, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Siljestrom, Sandra] SP Tech Res Inst Sweden, Dept Chem Mat & Surfaces, S-51115 Boras, Sweden. [Siljestrom, Sandra] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Dilcher, David L.] Indiana Univ, Dept Geol, Bloomington, IN 47405 USA. [Dilcher, David L.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. RP Labandeira, CC; Ren, D (reprint author), Capital Normal Univ, Coll Life Sci, Beijing 100048, Peoples R China.; Labandeira, CC (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Paleobiol, Washington, DC 20013 USA.; Labandeira, CC (reprint author), Univ Maryland, Dept Entomol, College Pk, MD 20742 USA.; Labandeira, CC (reprint author), Univ Maryland, BEES Program, College Pk, MD 20742 USA. EM labandec@si.edu; rendong@mail.cnu.edu.cn OI Monteiro, Antonia/0000-0001-9696-459X FU National Basic Research Program of China (973 Program) [2012CB821906]; National Science Foundation of China [31230065, 31309105, 31372243, 41272006, 41372013]; Beijing Municipal Commission of Education Project [201207120]; China Postdoctoral Science Foundation [2012T50113]; Doctoral Program of Higher Education of China [20131108120005]; Beijing Natural Science Foundation [5132008]; Great Wall Scholar Project of the Beijing Municipal Commission of Education [KZ201310028033]; Program for Changjiang Scholars and Innovative Research Teams at University [IRT13081]; Natural Science Foundation of Hebei Province [C2015403012]; Intramural Research Program of the National Institutes of Health, Library of Medicine; Deep Carbon Observatory; Postdoctoral Fellowship Program of the Geophysical Laboratory, Carnegie Institution of Washington; Swedish National Space Board [121/11] FX This work was supported by the National Basic Research Program of China (973 Program) (grant 2012CB821906), National Science Foundation of China (grant nos. 31230065, 31309105, 31372243, 41272006 and 41372013), Beijing Municipal Commission of Education Project (grant no. 201207120), China Postdoctoral Science Foundation (grant no. 2012T50113), Doctoral Program of Higher Education of China (grant no. 20131108120005), Beijing Natural Science Foundation (grant 5132008), Great Wall Scholar Project of the Beijing Municipal Commission of Education (grant no. KZ201310028033), Program for Changjiang Scholars and Innovative Research Teams at University (IRT13081), Natural Science Foundation of Hebei Province (grant no. C2015403012), Intramural Research Program of the National Institutes of Health, Library of Medicine, to C.L.H. and the Deep Carbon Observatory to Y.G. and S.S. S.S. also was supported through the Postdoctoral Fellowship Program of the Geophysical Laboratory, Carnegie Institution of Washington and the Swedish National Space Board (contract 121/11). NR 65 TC 6 Z9 7 U1 6 U2 22 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8452 EI 1471-2954 J9 P ROY SOC B-BIOL SCI JI Proc. R. Soc. B-Biol. Sci. PD FEB 10 PY 2016 VL 283 IS 1824 AR 20152893 DI 10.1098/rspb.2015.2893 PG 9 WC Biology; Ecology; Evolutionary Biology SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GA DD5PE UT WOS:000369975500024 ER PT J AU Han, YM Peteet, DM Arimoto, R Cao, JJ An, ZS Sritrairat, S Yan, BZ AF Han, Y. M. Peteet, D. M. Arimoto, R. Cao, J. J. An, Z. S. Sritrairat, S. Yan, B. Z. TI Climate and Fuel Controls on North American Paleofires: Smoldering to Flaming in the Late-glacial-Holocene Transition SO SCIENTIFIC REPORTS LA English DT Article ID THERMAL/OPTICAL REFLECTANCE METHOD; ELEMENTAL CARBON; EMISSION FACTORS; FIRE EMISSIONS; LAKES REGION; TRACE GASES; BIOMASS; VARIABILITY; ECOSYSTEMS; SEDIMENTS AB Smoldering and flaming fires, which emit different proportions of organic (OC) and black carbon (BC, in the form of char and soot), have long been recognized in modern wildfire observations but never in a paleo-record, and little is known about their interactions with climate. Here we show that in the late glacial-early Holocene transition period, when the climate was moist, relatively high quantities of char were deposited in Linsley Pond, Connecticut, USA while soot was more abundant during the warmer and drier early Holocene interval. The highest soot mass accumulation rates (MARs) occurred at the beginning of the Holocene as fuel availability increased through the climatic transition when boreal forests were locally extirpated. These variations with time are related to the different formation pathways of char and soot, which are governed by combustion efficiency. This study provides an approach for differentiating smoldering from flaming combustion in paleo-wildfire reconstructions. Our results suggest that climate and fuel loads control the occurrence of different wildfire types and precipitation may play a key role. C1 [Han, Y. M.; Arimoto, R.; Cao, J. J.; An, Z. S.] Chinese Acad Sci, Inst Earth Environm, SKLLQG, Xian 710061, Peoples R China. [Han, Y. M.; Arimoto, R.; Cao, J. J.; An, Z. S.] Chinese Acad Sci, Inst Earth Environm, Key Lab Aerosol Chem & Phys, Xian 710061, Peoples R China. [Han, Y. M.; An, Z. S.] Joint Ctr Global Change Studies, Beijing 100875, Peoples R China. [Han, Y. M.; Peteet, D. M.; Sritrairat, S.; Yan, B. Z.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Peteet, D. M.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Han, Y. M.] Xi An Jiao Tong Univ, Dept Environm Sci & Engn, Xian 710049, Peoples R China. RP Han, YM (reprint author), Chinese Acad Sci, Inst Earth Environm, SKLLQG, Xian 710061, Peoples R China.; Han, YM (reprint author), Chinese Acad Sci, Inst Earth Environm, Key Lab Aerosol Chem & Phys, Xian 710061, Peoples R China.; Han, YM (reprint author), Joint Ctr Global Change Studies, Beijing 100875, Peoples R China.; Han, YM (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.; Han, YM (reprint author), Xi An Jiao Tong Univ, Dept Environm Sci & Engn, Xian 710049, Peoples R China. EM yongming@ieecas.cn RI AN, Zhisheng/F-8834-2012; Cao, Junji/D-3259-2014 OI Cao, Junji/0000-0003-1000-7241 FU National Basic Research Program of China [2013CB955900]; Chinese Academy of Sciences [KZZD-EW-04]; NSF of China [41473119, 41273140]; NASA/Goddard Institute for Space Studies; LDEO Climate Center FX This study was supported by the National Basic Research Program of China (2013CB955900), the Chinese Academy of Sciences (KZZD-EW-04), the NSF of China (41473119 and 41273140), and the NASA/Goddard Institute for Space Studies and LDEO Climate Center. NR 47 TC 1 Z9 1 U1 6 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 10 PY 2016 VL 6 AR 20719 DI 10.1038/srep20719 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DD3MH UT WOS:000369825800001 PM 26860820 ER PT J AU Cullather, RI Nowicki, SMJ Zhao, B Koenig, LS AF Cullather, Richard I. Nowicki, Sophie M. J. Zhao, Bin Koenig, Loras S. TI A Characterization of Greenland Ice Sheet Surface Melt and Runoff in Contemporary Reanalyses and a Regional Climate Model SO FRONTIERS IN EARTH SCIENCE LA English DT Article DE Greenland; ice sheets; runoff; reanalyses; regional climate model; melt area ID MASS-BALANCE; PART I; TEMPERATURE; EXTENT; WEATHER; LAND; PARAMETERIZATION; PERFORMANCE; PROJECTIONS; VALIDATION AB For the Greenland Ice Sheet (GrIS), large-scale melt area has increased in recent years and is detectable via remote sensing, but its relation to runoff is not known. Historical, modeled melt area and runoff from Modern-Era Retrospective Analysis for Research and Applications (MERRA-Replay),the Interim Re-Analysis of the European Centre for Medium Range Weather Forecasts (ERA-I), the Climate Forecast System Reanalysis (CFSR), the Modele Atmospherique Regional (MAR), and the Arctic System Reanalysis (ASR) are examined. These sources compare favorably with satellite-derived estimates of surface melt area for the period 2000-2012. Spatially, the models markedly disagree on the number of melt days in the interior of the southern part of the ice sheet, and on the extent of persistent melt areas in the northeastern GrIS. Temporally, the models agree on the mean seasonality of daily surface melt and on the timing of large-scale melt events in 2012. In contrast, the models disagree on the amount, seasonality, spatial distribution, and temporal variability of runoff. As compared to global reanalyses, time series from MAR indicate a lower correlation between runoff and melt area (r(2) = 0.805). Runoff in MAR is much larger in the second half of the melt season for all drainage basins, while the ASR indicates larger runoff in the first half of the year. This difference in seasonality for the MAR and to an extent for the ASR provide a hysteresis in the relation between runoff and melt area, which is not found in the other models. The comparison points to a need for reliable observations of surface runoff. C1 [Cullather, Richard I.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Cullather, Richard I.; Zhao, Bin] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Nowicki, Sophie M. J.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD USA. [Zhao, Bin] Sci Applicat Int Corp, Greenbelt, MD USA. [Koenig, Loras S.] Univ Colorado, Cooperat Inst Res Environm Sci, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. RP Cullather, RI (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.; Cullather, RI (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. EM richard.cullather@nasa.gov FU NASA Interdisciplinary Research in Earth Science (IDS) program; NASA Modeling Analysis and Prediction (MAP) program FX This study was funded by grants from the NASA Interdisciplinary Research in Earth Science (IDS) program to the first and second authors, and the NASA Modeling Analysis and Prediction (MAP) program to the second author. NR 82 TC 2 Z9 2 U1 0 U2 0 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 2296-6463 J9 FRONT EARTH SCI JI Front. Earth Sci. PD FEB 10 PY 2016 VL 4 AR UNSP 10 DI 10.3389/feart.2016.00010 PG 20 WC Geosciences, Multidisciplinary SC Geology GA EJ2UP UT WOS:000393067400001 ER PT J AU Thompson, DR Roberts, DA Gao, BC Green, RO Guild, L Hayashi, K Kudela, R Palacios, S AF Thompson, David R. Roberts, Dar A. Gao, Bo Cai Green, Robert O. Guild, Liane Hayashi, Kendra Kudela, Raphael Palacios, Sherry TI Atmospheric correction with the Bayesian empirical line SO OPTICS EXPRESS LA English DT Article ID IMAGING SPECTROMETER DATA; RADIATIVE-TRANSFER; SATELLITE SIGNAL; SOLAR SPECTRUM; REFLECTANCE; SPECTROSCOPY; ALGORITHM; AVIRIS AB Atmospheric correction of visible/infrared spectra traditionally involves either (1) physics-based methods using Radiative Transfer Models (RTMs), or (2) empirical methods using in situ measurements. Here a more general probabilistic formulation unifies the approaches and enables combined solutions. The technique is simple to implement and provides stable results from one or more reference spectra. This makes empirical corrections practical for large or remote environments where it is difficult to acquire coincident field data. First, we use a physics-based solution to define a prior distribution over reflectances and their correction coefficients. We then incorporate reference measurements via Bayesian inference, leading to a Maximum A Posteriori estimate which is generally more accurate than pure physics-based methods yet more stable than pure empirical methods. Gaussian assumptions enable a closed form solution based on Tikhonov regularization. We demonstrate performance in atmospheric simulations and historical data from the "Classic" Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) acquired during the HyspIRI mission preparatory campaign. (C) 2016 Optical Society of America C1 [Thompson, David R.; Green, Robert O.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Roberts, Dar A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gao, Bo Cai] US Naval Res Lab, Washington, DC USA. [Guild, Liane] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hayashi, Kendra; Kudela, Raphael] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Palacios, Sherry] NASA, Ames Res Ctr, BAERI, Moffett Field, CA 94035 USA. RP Thompson, DR (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM david.r.thompson@jpl.nasa.gov FU US Government FX The research described in this paper was performed at the Jet Propulsion laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2016 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged. NR 27 TC 0 Z9 0 U1 1 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 8 PY 2016 VL 24 IS 3 BP 2134 EP 2144 DI 10.1364/OE.24.002134 PG 11 WC Optics SC Optics GA DF5XU UT WOS:000371427100026 PM 26906789 ER PT J AU Evirgen, A Karaman, I Pons, J Santamarta, R Noebe, RD AF Evirgen, A. Karaman, I. Pons, J. Santamarta, R. Noebe, R. D. TI Role of nano-precipitation on the microstructure and shape memory characteristics of a new Ni50.3Ti34.7Zr15 shape memory alloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE NiTiZr; Martensitic transformation; Precipitation; Microstructure; Shape memory alloys ID SINGLE-CRYSTAL NITI; MARTENSITIC-TRANSFORMATION; MECHANICAL-BEHAVIOR; PHASE-TRANSFORMATION; ZR; PARTICLES AB The microstructure and shape memory characteristics of the Ni50.3Ti34.7Zr15 shape memory alloy were investigated as a function of aging heat treatments that result in nanometer to submicron size pre-, cipitates. Microstructure-property relationships were developed by characterizing samples using transmission electron microscopy, differential scanning calorimetry, and load-biased thermal cycling experiments. The precipitate size was found to strongly influence the martensitic transformation-precipitate interactions and ultimately the shape memory characteristics of the alloy. Aging treatments resulting in relatively fine precipitates, which are not an obstacle to twin boundaries and easily bypassed by martensite variants, exhibited higher transformation strain, lower transformation thermal hysteresis, and better thermal and dimensional stability compared to samples with relatively large precipitates. When precipitate dimensions approached several hundred nanometers in size they acted as obstacles to martensite growth, limiting martensite variant and twin size resulting in reduced functional and structural properties. Aging heat treatments were also shown to result in a wide range of transformation temperatures, increasing them above 100 degrees C in some cases, and affected the stress dependence of the transformation hysteresis and the stress versus transformation temperature relationships for the Ni50.3Ti34.7Zr15 alloy. (C) 2016 Elsevier B.V. All rights reserved. C1 [Evirgen, A.; Karaman, I.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Pons, J.; Santamarta, R.] Univ Illes Balears, Dept Fis, E-07122 Palma de Mallorca, Spain. [Noebe, R. D.] NASA, Mat & Struct Div, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Karaman, I (reprint author), Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. EM ikaraman@tamu.edu RI Santamarta, Ruben/K-7865-2016 OI Santamarta, Ruben/0000-0003-3341-5758 FU US Air Force Office of Scientific Research [FA9550-15-1-0287]; National Science Foundation [CMMI 1534534]; International Materials Institute for Multifunctional Materials for Energy Conversion (IIMEC) at Texas AM University [DMR 08-44082]; Spanish MINECO; FEDER [MAT2011-28217-C02-01, MAT2014-56116-C4-1-R]; NASA Transformative Aeronautics Concepts Program, Transformational Tools & Technologies Project (Dale Hopkins, Technical Lead for Structures & Materials Discipline) FX The present study was supported by the US Air Force Office of Scientific Research, under Grant no. FA9550-15-1-0287. Additional support was received from the National Science Foundation under Grant no. CMMI 1534534, and under Grant no. DMR 08-44082, which supports the International Materials Institute for Multifunctional Materials for Energy Conversion (IIMEC) at Texas A&M University. Partial financial support from the Spanish MINECO and FEDER under Project Numbers MAT2011-28217-C02-01 and MAT2014-56116-C4-1-R are also acknowledged. RDN gratefully acknowledges support from the NASA Transformative Aeronautics Concepts Program, Transformational Tools & Technologies Project (Dale Hopkins, Technical Lead for Structures & Materials Discipline). NR 44 TC 2 Z9 2 U1 3 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD FEB 8 PY 2016 VL 655 BP 193 EP 203 DI 10.1016/j.msea.2015.12.076 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA DD7KJ UT WOS:000370103000022 ER PT J AU Thorpe, JI McKenzie, K AF Thorpe, James Ira McKenzie, Kirk TI Arm locking with the GRACE follow-on laser ranging interferometer SO PHYSICAL REVIEW D LA English DT Article AB Arm locking is a technique for stabilizing the frequency of a laser in an interspacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna, arm locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-theloop laboratory demonstrations. In this paper we show the laser ranging interferometer instrument flying aboard the upcoming Gravity Recovery and Climate Experiment follow-on (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly 2 orders of magnitude around a Fourier frequency of 1 Hz with conservative margins on the system's stability. We further demonstrate that "pulling" of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100 MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration. C1 [Thorpe, James Ira] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [McKenzie, Kirk] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Thorpe, JI (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. EM james.i.thorpe@nasa.gov FU NASA Research Opportunities in Space and Earth Sciences (ROSES) program [11-APRA11-0029] FX The authors would like to acknowledge Andrew Sutton for his thoughtful commentary during the early stages of this work and Shannon Sankar for a thorough review of the final manuscript. This work was supported by the NASA Research Opportunities in Space and Earth Sciences (ROSES) program under Grant No. 11-APRA11-0029. Part of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NR 19 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 8 PY 2016 VL 93 IS 4 AR 042003 DI 10.1103/PhysRevD.93.042003 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DD2DK UT WOS:000369732500002 ER PT J AU Masnovi, J Clark, EB Hepp, AF Schupp, JD Fanwick, PE AF Masnovi, John Clark, Eric B. Hepp, Aloysius F. Schupp, John D. Fanwick, Philip E. TI Preparation and structures of two mixed-ligand 4-methylpyridine indium bromide complexes SO JOURNAL OF MOLECULAR STRUCTURE LA English DT Article DE Indium bromides; Oxidation; Picoline; Indium dimer; X-ray structures; Hydrogen bond ID TRANSPARENT CONDUCTING OXIDES; SINGLE-SOURCE PRECURSORS; THIN-FILM; MOLECULAR-STRUCTURE; DECOMPOSITION; DEPOSITION; CHEMISTRY; PYRIDINE; GALLIUM; CUINS2 AB We describe the structures of two indium complexes obtained during the attempted syntheses of solid-state materials precursors. The geometries of mer-InBr3(pic)(3) 1 and [In(mu-OH)Br-2(pic)(2)center dot 2pic](2) (pic = 4-methylpyridine) are distorted octahedra about the metal atoms. Two molecules which differ mainly with respect to the relative orientation of the gamma-picoline planes are present in the asymmetric unit of I, and a trans influence is observed for the ligands. Two indium atoms and two hydroxyl groups form a four atom ring in 2, with the four bromine atoms not coplanar. A two-fold rotational symmetry axis is present with the two indium atoms occupying special positions. A trans influence is also observed. Two nonequivalent gamma-picolines not coordinated to the metals are present, one of which forms a hydrogen bond to the hydroxyl group while the other exhibits no strong intermolecular associations. (C) 2015 Elsevier B.V. All rights reserved. C1 [Masnovi, John] Cleveland State Univ, Dept Chem, Cleveland, OH 44115 USA. [Clark, Eric B.; Hepp, Aloysius F.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Schupp, John D.] Tiffin Univ, Dept Chem, Tiffin, OH 44883 USA. [Fanwick, Philip E.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. RP Hepp, AF (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM j.masnovi@csuohio.edu; Aloysius.F.Hepp@nasa.gov FU NASA Glenn Research Center (GRC) at Lewis Field; NASA GRC FX The authors acknowledge NASA Glenn Research Center (GRC) at Lewis Field for support of this work; JM is grateful for NASA GRC support through the Faculty Fellowship Program. NR 50 TC 0 Z9 0 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2860 EI 1872-8014 J9 J MOL STRUCT JI J. Mol. Struct. PD FEB 5 PY 2016 VL 1105 BP 415 EP 422 DI 10.1016/j.molstruc.2015.10.049 PG 8 WC Chemistry, Physical SC Chemistry GA CY2KS UT WOS:000366238100049 ER PT J AU Estabrook, FB AF Estabrook, Frank B. TI A toast to the deep-drilling idea SO NATURE LA English DT Letter C1 [Estabrook, Frank B.] Jet Prop Lab, Pasadena, CA 91109 USA. RP Estabrook, FB (reprint author), Jet Prop Lab, Pasadena, CA 91109 USA. EM festabrook@earthlink.net NR 2 TC 0 Z9 0 U1 2 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 4 PY 2016 VL 530 IS 7588 BP 33 EP 33 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC6BK UT WOS:000369304500022 PM 26842047 ER PT J AU Patzold, M Andert, T Hahn, M Asmar, SW Barriot, JP Bird, MK Hausler, B Peter, K Tellmann, S Grun, E Weissman, PR Sierks, H Jorda, L Gaskell, R Preusker, F Scholten, F AF Paetzold, M. Andert, T. Hahn, M. Asmar, S. W. Barriot, J. -P. Bird, M. K. Haeusler, B. Peter, K. Tellmann, S. Gruen, E. Weissman, P. R. Sierks, H. Jorda, L. Gaskell, R. Preusker, F. Scholten, F. TI A homogeneous nucleus for comet 67P/Churyumov-Gerasimenko from its gravity field SO NATURE LA English DT Article ID MARS EXPRESS; MASS; DENSITY; FLYBY AB Cometary nuclei consist mostly of dust and water ice(1). Previous observations have found nuclei to be low-density and highly porous bodies(2-4), but have only moderately constrained the range of allowed densities because of the measurement uncertainties. Here we report the precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov-Gerasimenko on the basis of its gravity field. The mass and gravity field are derived from measured spacecraft velocity perturbations at fly-by distances between 10 and 100 kilometres. The gravitational point mass is GM = 666.2 +/- 0.2 cubic metres per second squared, giving a mass M = (9,982 +/- 3) x 10(9) kilograms. Together with the current estimate of the volume of the nucleus(5), the average bulk density of the nucleus is 533 +/- 6 kilograms per cubic metre. The nucleus appears to be a low-density, highly porous (72-74 per cent) dusty body, similar to that of comet 9P/Tempel 1(2,3). The most likely composition mix has approximately four times more dust than ice by mass and two times more dust than ice by volume. We conclude that the interior of the nucleus is homogeneous and constant in density on a global scale without large voids. The high porosity seems to be an inherent property of the nucleus material. C1 [Paetzold, M.; Hahn, M.; Bird, M. K.; Peter, K.; Tellmann, S.] Univ Cologne, Rhein Inst Umweltforsch, Abt Planetenforsch, D-50931 Cologne, Germany. [Andert, T.; Haeusler, B.] Univ Bundeswehr Munchen, Inst Raumfahrttech & Weltraumnutzung, D-85577 Neubiberg, Germany. [Asmar, S. W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Barriot, J. -P.] Univ Polynesie Francaise, Faaa, Tahiti, France. [Gruen, E.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Weissman, P. R.; Gaskell, R.] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. [Sierks, H.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Jorda, L.] Lab Astrophys Marseille, F-13388 Marseille, France. [Preusker, F.; Scholten, F.] Deutsch Zentrum Luft & Raumfahrt DLR Berlin Adler, Inst Planetenforsch, D-12489 Berlin, Germany. RP Patzold, M (reprint author), Univ Cologne, Rhein Inst Umweltforsch, Abt Planetenforsch, D-50931 Cologne, Germany. EM martin.paetzold@uni-koeln.de FU Bundesministerium fur Wirtschaft BMWi, Berlin, via the German Space Agency DLR, Bonn [50QM1401, 50QM1002]; CNES, Paris; NASA/JPL FX Rosetta is an ESA mission with contributions from its member states and NASA. The Rosetta RSI experiment is funded by the Bundesministerium fur Wirtschaft BMWi, Berlin, via the German Space Agency DLR, Bonn, under grants 50QM1401 (RIU-PF) and 50QM1002 (UniBw). J.-P.B. is supported by CNES, Paris. Support for the Multimission Radio Science Support Team is provided by NASA/JPL. We thank everyone involved with the Rosetta mission at ESTEC, ESOC, ESAC and JPL. The RSI team expresses deep appreciation for the critical support provided by the Rosetta SGS at ESAC during the planning and in particular by the ESTRACK and DSN ground station networks during the data acquisition periods. We dedicate this work to the late Claudia Alexander, for her support of RSI over many years. NR 29 TC 19 Z9 19 U1 3 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 4 PY 2016 VL 530 IS 7588 BP 63 EP + DI 10.1038/nature16535 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC6BK UT WOS:000369304500032 PM 26842054 ER PT J AU Suosaari, EP Reid, RP Playford, PE Foster, JS Stolz, JF Casaburi, G Hagan, PD Chirayath, V Macintyre, IG Planavsky, NJ Eberli, GP AF Suosaari, E. P. Reid, R. P. Playford, P. E. Foster, J. S. Stolz, J. F. Casaburi, G. Hagan, P. D. Chirayath, V. Macintyre, I. G. Planavsky, N. J. Eberli, G. P. TI New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia SO SCIENTIFIC REPORTS LA English DT Article ID MODERN MARINE STROMATOLITES; MICROBIAL COMMUNITIES; HIGHBORNE CAY; WATER DEPTH; DIVERSITY; ALIGNMENTS; DATABASE; BAHAMAS; IMAGERY; MATS AB A recent field-intensive program in Shark Bay, Western Australia provides new multi-scale perspectives on the world's most extensive modern stromatolite system. Mapping revealed a unique geographic distribution of morphologically distinct stromatolite structures, many of them previously undocumented. These distinctive structures combined with characteristic shelf physiography define eight `Stromatolite Provinces'. Morphological and molecular studies of microbial mat composition resulted in a revised growth model where coccoid cyanobacteria predominate in mat communities forming lithified discrete stromatolite buildups. This contradicts traditional views that stromatolites with the best lamination in Hamelin Pool are formed by filamentous cyanobacterial mats. Finally, analysis of internal fabrics of stromatolites revealed pervasive precipitation of microcrystalline carbonate (i.e. micrite) in microbial mats forming framework and cement that may be analogous to the micritic microstructures typical of Precambrian stromatolites. These discoveries represent fundamental advances in our knowledge of the Shark Bay microbial system, laying a foundation for detailed studies of stromatolite morphogenesis that will advance our understanding of benthic ecosystems on the early Earth. C1 [Suosaari, E. P.; Reid, R. P.; Hagan, P. D.; Eberli, G. P.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33158 USA. [Suosaari, E. P.] Bush Heritage Australia, Melbourne, Vic 3000, Australia. [Playford, P. E.] Geol Survey Western Australia, Perth, WA 6004, Australia. [Foster, J. S.; Casaburi, G.] Univ Florida, Space Life Sci Lab, Dept Microbiol & Cell Sci, Merritt Isl, FL 32953 USA. [Stolz, J. F.] Duquesne Univ, Dept Biol Sci, Pittsburgh, PA 15282 USA. [Chirayath, V.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Macintyre, I. G.] Smithsonian Inst, Natl Museum Nat Hist, Washington, DC 20013 USA. [Planavsky, N. J.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA. RP Reid, RP (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33158 USA. EM preid@rsmas.miami.edu FU Chevron; BP; Repsol; Shell; NASA Astrobiology: Exobiology and Evolutionary Biology program [NNX14AK14G]; NASA Ames Earth Sciences and Earth Exchange FX We thank the Geological Survey of Western Australia and Hamelin Station for logistical support; J. Huff, B. Keyes, J. Mobberley, C. Khodadad, R. Instrella, A. Shaber-Twedt, and the University of Miami field team for field and technical assistance; G. Izuno for aerial photos; and the Western Australian Department of Parks and Wildlife (formerly Department of Environment and Conservation) and the federal Department of Sustainability, Environment, Population and Communities for field access and sampling permits. This project was funded by Chevron, BP, Repsol and Shell, with additional support from the NASA Astrobiology: Exobiology and Evolutionary Biology program (NNX14AK14G). Stanford University Aerospace Design Lab provided flight hardware; NASA Ames Earth Sciences and Earth Exchange provided support and supercomputer facilities for image processing. Hamelin Stromatolite Contribution Series #1. NR 52 TC 5 Z9 5 U1 14 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 3 PY 2016 VL 6 AR 20557 DI 10.1038/srep20557 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC3YZ UT WOS:000369157800001 PM 26838605 ER PT J AU Bauschlicher, CW AF Bauschlicher, Charles W., Jr. TI The infrared spectra of polycyclic aromatic hydrocarbons with CnHm side groups SO CHEMICAL PHYSICS LA English DT Article DE Polycyclic aromatic hydrocarbon; Infrared spectra; DFT; Choice of functional ID EMISSION FEATURES; CARBON NANOPARTICLES; MOLECULES; SPECTROSCOPY; GALAXIES; APPROXIMATION; FREQUENCIES; EXCHANGE; CARRIERS; ENERGY AB The infrared spectra of C54H18 and C96H24 with CH2, CH3, C2H3, C3H4, C3H5, C4H5, C5H6, C5H7, and C6H7 side groups have been studied using the B3LYP/4-31G approach. The spectra of the neutral species look very much like the superposition of the spectra of the parent and side group. The small perturbations in the spectra increase with the size of the side group. The spectra of cations show a similar trend of increasing perturbations in the parent spectra with number and size of the side group. However, for the cations, the change in the spectra become significant for the largest side groups considered. Published by Elsevier B.V. C1 [Bauschlicher, Charles W., Jr.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bauschlicher, CW (reprint author), NASA, Ames Res Ctr, Entry Syst & Technol Div, Mail Stop 230-3, Peakhurst, NSW, Australia. EM Charles.W.Bauschlicher@nasa.gov NR 36 TC 0 Z9 0 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD FEB 3 PY 2016 VL 465 BP 17 EP 27 DI 10.1016/j.chemphys.2015.12.001 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DA9CA UT WOS:000368103100003 ER PT J AU Bloom, AA Exbrayat, JF van der Velde, IR Feng, L Williams, M AF Bloom, A. Anthony Exbrayat, Jean-Francois van der Velde, Ivar R. Feng, Liang Williams, Mathew TI The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE carbon cycle; biomass; soil carbon; allocation; residence time ID CLIMATE-CHANGE; BOREAL FOREST; ATMOSPHERIC CO2; ORGANIC-MATTER; FIRE EMISSIONS; USE EFFICIENCY; ROOT-GROWTH; DIOXIDE; MODEL; ECOSYSTEMS AB The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1 degrees x 1 degrees resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85-88%) in contrast to higher latitudes (73-82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42-0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64-0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types. C1 [Bloom, A. Anthony] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Bloom, A. Anthony; Exbrayat, Jean-Francois; Feng, Liang; Williams, Mathew] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3FF, Midlothian, Scotland. [Bloom, A. Anthony; Exbrayat, Jean-Francois; Feng, Liang; Williams, Mathew] Natl Ctr Earth Observat, Edinburgh EH9 3FF, Midlothian, Scotland. [van der Velde, Ivar R.] Wageningen Univ, Meteorol & Air Qual, NL-6700 AA Wageningen, Netherlands. RP Bloom, AA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Bloom, AA (reprint author), Univ Edinburgh, Sch Geosci, Edinburgh EH9 3FF, Midlothian, Scotland.; Bloom, AA (reprint author), Natl Ctr Earth Observat, Edinburgh EH9 3FF, Midlothian, Scotland. EM abloom@jpl.nasa.gov OI Exbrayat, Jean-Francois/0000-0002-3671-8626 FU NERC National Centre for Earth Observation; Netherlands Organization for Scientific Research [VIDI: 864.08.012]; European Union [283080]; National Aeronautics and Space Administration (NASA) Carbon Cycle Science Program FX A.A.B., J.-F. E., L. F., and M. W. were funded by the NERC National Centre for Earth Observation. I.R.v.d.V. was financially supported under The Netherlands Organization for Scientific Research Project VIDI: 864.08.012. This work made use of the Edinburgh Compute and Data Facility resources. The research leading to these results received funding from European Union's FP7 (2007-2013) Grant 283080 (Project GEOCARBON). The Total Carbon Column Observing Network (TCCON) is supported by the National Aeronautics and Space Administration (NASA) Carbon Cycle Science Program through a grant to the California Institute of Technology. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 67 TC 9 Z9 9 U1 19 U2 64 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 2 PY 2016 VL 113 IS 5 BP 1285 EP 1290 DI 10.1073/pnas.1515160113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC2YO UT WOS:000369085100061 PM 26787856 ER PT J AU Norwood, J Hammel, H Milam, S Stansberry, J Lunine, J Chanover, N Hines, D Sonneborn, G Tiscareno, M Brown, M Ferruit, P AF Norwood, James Hammel, Heidi Milam, Stefanie Stansberry, John Lunine, Jonathan Chanover, Nancy Hines, Dean Sonneborn, George Tiscareno, Matthew Brown, Michael Ferruit, Pierre TI Solar System Observations with the James Webb Space Telescope SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE comets: general; Kuiper belt: general; minor planets, asteroids: general; planets and satellites: general; techniques: miscellaneous; telescopes ID RING PLANE CROSSINGS; SATURNS B-RING; INFRARED OBSERVATIONS; SPITZER OBSERVATIONS; HST OBSERVATIONS; TITAN; URANUS; DUST; MARS; SPECTROSCOPY AB The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012. C1 [Norwood, James; Chanover, Nancy] New Mexico State Univ, Dept Astron, Box 30001,MSC 4500, Las Cruces, NM 88003 USA. [Hammel, Heidi] Assoc Univ Res Astron, 1212 New York Ave NW,Suite 450, Washington, DC 20005 USA. [Milam, Stefanie] NASA, Goddard Space Flight Ctr, Astrochem Lab, Code 691-0,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Stansberry, John; Hines, Dean] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Lunine, Jonathan] Cornell Univ, Space Sci, Carl Sagan Inst 402, Ithaca, NY 14853 USA. [Sonneborn, George] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Tiscareno, Matthew] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Brown, Michael] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ferruit, Pierre] European Space Agcy, European Space Res & Technol Ctr, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands. RP Norwood, J (reprint author), New Mexico State Univ, Dept Astron, Box 30001,MSC 4500, Las Cruces, NM 88003 USA. EM jnorwood@nmsu.edu; hbhammel@aura-astronomy.org; stefanie.n.milam@nasa.gov; jstans@stsci.edu; jlunine@astro.cornell.edu; nchanove@nmsu.edu; hines@stsci.edu; george.sonneborn-1@nasa.gov; matthewt@astro.cornell.edu; mbrown@caltech.edu; pferruit@rssd.esa.int NR 64 TC 0 Z9 0 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD FEB PY 2016 VL 128 IS 960 AR 025004 DI 10.1088/1538-3873/128/960/025004 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1JJ UT WOS:000387106800007 ER PT J AU Robinson, TD Stapelfeldt, KR Marley, MS AF Robinson, Tyler D. Stapelfeldt, Karl R. Marley, Mark S. TI Characterizing Rocky and Gaseous Exoplanets with 2m Class Space-based Coronagraphs SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE astrobiology; planets and satellites: atmospheres; planets and satellites: detection; planets and satellites: gaseous planets; planets and satellites: terrestrial planets; techniques: spectroscopic ID EXTRASOLAR GIANT PLANETS; MAIN-SEQUENCE STARS; TRANSMISSION SPECTRUM; OBSCURATIONAL COMPLETENESS; EARTH OBSERVATIONS; HABITABLE ZONES; ZODIACAL LIGHT; JOVIAN PLANETS; HD 189733B; GJ 1214B AB Several concepts now exist for small, space-based missions to directly characterize exoplanets in reflected light. While studies have been performed that investigate the potential detection yields of such missions, little work has been done to understand how instrumental and astrophysical parameters will affect the ability of these missions to obtain spectra that are useful for characterizing their planetary targets. Here, we develop an instrument noise model suitable for studying the spectral characterization potential of a coronagraph-equipped, space-based telescope. We adopt a baseline set of telescope and instrument parameters appropriate for near-future planned missions like WFIRST-AFTA, including a 2 m diameter primary aperture, an operational wavelength range of 0.4-1.0 mu m, and an instrument spectral resolution of lambda/Delta lambda = .70, and apply our baseline model to a variety of spectral models of different planet types, including Earth twins, Jupiter twins, and warm and cool Jupiters and Neptunes. With our exoplanet spectral models, we explore wavelength-dependent planet-star flux ratios for main-sequence stars of various effective temperatures and discuss how coronagraph inner and outer working angle constraints will influence the potential to study different types of planets. For planets most favorable to spectroscopic characterization-cool Jupiters and Neptunes as well as nearby super-Earths-we study the integration times required to achieve moderate signal-to-noise ratio spectra. We also explore the sensitivity of the integration times required to either detect the bottom or presence of key absorption bands (for methane, water vapor, and molecular oxygen) to coronagraph raw contrast performance, exozodiacal light levels, and the distance to the planetary system. Decreasing detector quantum efficiency at longer visible wavelengths makes the detection of water vapor in the atmospheres of Earth-like planets extremely challenging, and also hinders detections of the 0.89 mu m methane band. Additionally, most modeled observations have noise dominated by dark currents, indicating that improving CCD performance could substantially drive down requisite integration times. Finally, we briefly discuss the extension of our models to a more distant future Large UV-Optical-InfraRed (LUVOIR) mission. C1 [Robinson, Tyler D.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Stapelfeldt, Karl R.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Marley, Mark S.] NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. [Robinson, Tyler D.] NASA, Astrobiol Inst, Virtual Planetary Lab, Moffett Field, CA USA. RP Robinson, TD (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.; Robinson, TD (reprint author), NASA, Astrobiol Inst, Virtual Planetary Lab, Moffett Field, CA USA. EM tydrobin@ucsc.edu OI Marley, Mark/0000-0002-5251-2943 FU NASA Ames Research Center; NASA; NASA through the Exoplanet Exploration Program; NASA through the Goddard Space Flight Center; NASA's Science Mission Directorate; NASA [NNA13AA93A] FX T.R. gratefully acknowledges support from an appointment to the NASA Postdoctoral Program at NASA Ames Research Center, administered by Oak Ridge Affiliated Universities, and from NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. M.M. acknowledges support of the NASA Planetary Atmospheres and Origins programs. K.S. thanks NASA support for the Exo-C mission study through the Exoplanet Exploration Program and the Goddard Space Flight Center. All authors thank M. Line and C. Stark for constructive feedback. The results reported herein benefitted from collaborations and/or information exchange within NASA's Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA's Science Mission Directorate. Results related to LUVOIR telescopes benefited from discussions with S. Domagal-Goldman and G. Arney, as part of collaborative work done within the NASA Astrobiology Institute's Virtual Planetary Laboratory, supported by NASA under Cooperative Agreement No. NNA13AA93A. NR 71 TC 6 Z9 6 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD FEB PY 2016 VL 128 IS 960 AR 025003 DI 10.1088/1538-3873/128/960/025003 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1JJ UT WOS:000387106800006 ER PT J AU Bellur, K Konduru, V Kulshreshtha, M Tyrewala, D Medici, E Allen, JS Choi, CK Hussey, DS Jacobson, DC Leao, JB McQuillen, J Hermanson, J Tamilarasan, A AF Bellur, Kishan Konduru, Vinaykumar Kulshreshtha, Manan Tyrewala, Daanish Medici, Ezequiel Allen, Jeffrey S. Choi, Chang Kyoung Hussey, Daniel S. Jacobson, David C. Leao, Juscelino B. McQuillen, John Hermanson, James Tamilarasan, Arun TI Contact Angle Measurement of Liquid Hydrogen (LH2) in Stainless Steel and Aluminum Cells SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT News Item C1 [Bellur, Kishan; Konduru, Vinaykumar; Kulshreshtha, Manan; Tyrewala, Daanish; Medici, Ezequiel; Allen, Jeffrey S.; Choi, Chang Kyoung] Michigan Technol Univ, Houghton, MI 49931 USA. [Hussey, Daniel S.; Jacobson, David C.; Leao, Juscelino B.] NIST, Gaithersburg, MD 20899 USA. [McQuillen, John] NASA Glenn Res Ctr Lewis Field, Cleveland, OH USA. [Hermanson, James; Tamilarasan, Arun] Univ Washington, Seattle, WA 98195 USA. RP Bellur, K (reprint author), Michigan Technol Univ, Houghton, MI 49931 USA. NR 0 TC 0 Z9 0 U1 4 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD FEB PY 2016 VL 138 IS 2 AR 020904 PG 1 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA DO8WN UT WOS:000378066200006 ER PT J AU Yamamoto, N Manohara, H Platzman, E AF Yamamoto, Namiko Manohara, Harish Platzman, Ellen TI Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes SO MATERIALS RESEARCH EXPRESS LA English DT Article DE carbon nanotubes; nanocomposites; magnetic assembly; magnetic anisotropy ID METAL-MATRIX COMPOSITES; FERROMAGNETIC HYSTERESIS; ALIGNMENT; FIELDS; DEPOSITION; LAYER; NI AB Novel nanoparticles additives for polymer nanocomposites were prepared by coating carbon nanotubes (CNTs) with ferromagnetic iron (Fe) layers, so that their micro-structures can be bulk-controlled by external magnetic field application. Application of magnetic fields is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanoparticle assembly throughout the uncured polymer matrix. In this work, Fe layers (similar to 18 nm thick) were deposited on CNTs (similar to 38 nmdiameter and similar to 50 mu m length) to form thin films with high aspect ratio, resulting in a dominance of shape anisotropy and thus high coercivity of similar to 50-100 Oe. The Fe-coated CNTs were suspended in water and applied with a weak magnetic field of similar to 75 G, and yet preliminary magnetic assembly was confirmed. Our results demonstrate that the fabricated Fe-coated CNTs are magnetically anisotropic and effectively respond to magnetic fields that are similar to 10(3) times smaller than other existing work (similar to 10(5) G). We anticipate this work will pave the way for effective property enhancement and bulk application of CNT-polymer nanocomposites, through controlled microstructure and scalable manufacturing. C1 [Yamamoto, Namiko] Penn State Univ, Dept Aerosp Engn, 229 Hammond, University Pk, PA 16802 USA. [Manohara, Harish] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Platzman, Ellen] Univ So Calif, Dornsife Coll Letters Arts & Sci, 3651 Trousdale Pkwy, Los Angeles, CA 90089 USA. RP Yamamoto, N (reprint author), Penn State Univ, Dept Aerosp Engn, 229 Hammond, University Pk, PA 16802 USA. EM nuy12@psu.edu FU Keck Institute for Space Studies at California Institute of Technology; Department of Aerospace Engineering and Materials Research Institute at the Pennsylvania State University; Hartz Family Career Development Professorship in Engineering FX This work was supported by the Keck Institute for Space Studies at California Institute of Technology, Department of Aerospace Engineering and Materials Research Institute at the Pennsylvania State University, and the Hartz Family Career Development Professorship in Engineering. A part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Measurement on the AGM was done at the USC Department of Earth Sciences in Los Angeles, CA. Yamamoto is thankful to Mr Corey M Breznak and Dr Paris von Lockette for their generous assistance with the VSM measurement. NR 54 TC 1 Z9 1 U1 5 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1591 J9 MATER RES EXPRESS JI Mater. Res. Express PD FEB PY 2016 VL 3 IS 2 AR 025004 DI 10.1088/2053-1591/3/2/025004 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA DO4WI UT WOS:000377785200004 ER PT J AU Pullen, AR Hirata, CM Dore, O Raccanelli, A AF Pullen, Anthony R. Hirata, Christopher M. Dore, Olivier Raccanelli, Alvise TI Interloper bias in future large-scale structure surveys SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE galaxies: distances and redshift; gravitation; large-scale structure of universe; line: identification; surveys ID REDSHIFT-SPACE DISTORTIONS; DARK ENERGY EXPERIMENT; DIGITAL SKY SURVEY; PERTURBATION-THEORY; POWER SPECTRUM; GROWTH-RATE; ACOUSTIC-OSCILLATIONS; PHOTOMETRIC REDSHIFTS; TESTING GRAVITY; REAL-SPACE AB Next-generation spectroscopic surveys will map the large-scale structure of the observable universe, using emission line galaxies as tracers. While each survey will map the sky with a specific emission line, interloping emission lines can masquerade as the survey's intended emission line at different redshifts. Interloping lines from galaxies that are not removed can contaminate the power spectrum measurement, mixing correlations from various redshifts and diluting the true signal. We assess the potential for power spectrum contamination, finding that an interloper fraction worse than 0.2% could bias power spectrum measurements for future surveys by more than 10% of statistical errors, while also biasing power spectrum inferences. We also construct a formalism for predicting cosmological parameter measurement bias, demonstrating that a 0.15%-0.3% interloper fraction could bias the growth rate by more than 10% of the error, which can affect constraints on gravity from upcoming surveys. We use the COSMOS Mock Catalog (CMC), with the emission lines rescaled to better reproduce recent data, to predict potential interloper fractions for the Prime Focus Spectrograph (PFS) and the Wide-Field InfraRed Survey Telescope (WFIRST). We find that secondary line identification, or confirming galaxy redshifts by finding correlated emission lines, can remove interlopers for PFS. For WFIRST, we use the CMC to predict that the 0.2% target can be reached for the WFIRST H alpha survey, but sensitive optical and near-infrared photometry will be required. For the WFIRST [O III] survey, the predicted interloper fractions reach several percent and their effects will have to be estimated and removed statistically (e.g., with deep training samples). These results are optimistic as the CMC does not capture the full set of correlations of galaxy properties in the real Universe, and they do not include blending effects. Mitigating interloper contamination will be crucial to the next generation of emission line surveys. C1 [Pullen, Anthony R.] Carnegie Mellon Univ, Dept Phys, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Pullen, Anthony R.; Dore, Olivier; Raccanelli, Alvise] CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Pullen, Anthony R.; Hirata, Christopher M.; Dore, Olivier; Raccanelli, Alvise] CALTECH, 1200 Calif Blvd, Pasadena, CA 91125 USA. [Hirata, Christopher M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, 191 West Woodruff Ave, Columbus, OH 43210 USA. [Raccanelli, Alvise] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. RP Pullen, AR (reprint author), Carnegie Mellon Univ, Dept Phys, 5000 Forbes Ave, Pittsburgh, PA 15213 USA.; Pullen, AR (reprint author), CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Pullen, AR (reprint author), CALTECH, 1200 Calif Blvd, Pasadena, CA 91125 USA. EM apullen@andrew.cmu.edu OI Raccanelli, Alvise/0000-0001-6726-0438 FU McWilliams Fellowship of the Bruce and Astrid McWilliams Center for Cosmology; National Aeronautics and Space Administration; David and Lucile Packard Foundation; Simons Foundation; U.S. Department of Energy; John Templeton Foundation FX AP was supported by the McWilliams Fellowship of the Bruce and Astrid McWilliams Center for Cosmology. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. AP was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. CH is supported by the David and Lucile Packard Foundation, the Simons Foundation, and the U.S. Department of Energy. AR is supported by the John Templeton Foundation. NR 82 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB PY 2016 VL 68 IS 1 AR 12 DI 10.1093/pasj/psv118 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9ZE UT WOS:000374571300015 ER PT J AU Norbury, JW Schimmerling, W Slaba, TC Azzam, EI Badavi, FF Baiocco, G Benton, E Bindi, V Blakely, EA Blattnig, SR Boothman, DA Borak, TB Britten, RA Curtis, S Dingfelder, M Durante, M Dynan, WS Eisch, AJ Elgart, SR Goodhead, DT Guida, PM Heilbronn, LH Hellweg, CE Huff, JL Kronenberg, A La Tessa, C Lowenstein, DI Miller, J Morita, T Narici, L Nelson, GA Norman, RB Ottolenghi, A Patel, ZS Reitz, G Rusek, A Schreurs, AS Scott-Carnell, LA Semones, E Shay, JW Shurshakov, VA Sihver, L Simonsen, LC Story, MD Turker, MS Uchihori, Y Williams, J Zeitlin, CJ AF Norbury, John W. Schimmerling, Walter Slaba, Tony C. Azzam, Edouard I. Badavi, Francis F. Baiocco, Giorgio Benton, Eric Bindi, Veronica Blakely, Eleanor A. Blattnig, Steve R. Boothman, David A. Borak, Thomas B. Britten, Richard A. Curtis, Stan Dingfelder, Michael Durante, Marco Dynan, William S. Eisch, Amelia J. Elgart, S. Robin Goodhead, Dudley T. Guida, Peter M. Heilbronn, Lawrence H. Hellweg, Christine E. Huff, Janice L. Kronenberg, Amy La Tessa, Chiara Lowenstein, Derek I. Miller, Jack Morita, Takashi Narici, Livio Nelson, Gregory A. Norman, Ryan B. Ottolenghi, Andrea Patel, Zarana S. Reitz, Guenther Rusek, Adam Schreurs, Ann-Sofie Scott-Carnell, Lisa A. Semones, Edward Shay, Jerry W. Shurshakov, Vyacheslav A. Sihver, Lembit Simonsen, Lisa C. Story, Michael D. Turker, Mitchell S. Uchihori, Yukio Williams, Jacqueline Zeitlin, Cary J. TI Galactic cosmic ray simulation at the NASA Space Radiation Laboratory SO LIFE SCIENCES IN SPACE RESEARCH LA English DT Article DE Space radiation; Galactic cosmic ray simulationat ID ANCHORAGE-INDEPENDENT GROWTH; X-RAYS; HUMAN-CELLS; SEQUENTIAL IRRADIATION; IONIZING-RADIATION; MAMMALIAN-CELLS; FAST-NEUTRONS; DNA-DAMAGE; DOSE-RATE; LOW-LET AB Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. Published by Elsevier Ltd on behalf of The Committee on Space Research (COSPAR). C1 [Norbury, John W.; Slaba, Tony C.; Blattnig, Steve R.; Norman, Ryan B.; Scott-Carnell, Lisa A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Schimmerling, Walter; Dingfelder, Michael] E Carolina Univ, Greenville, NC 27858 USA. [Schimmerling, Walter] Univ Space Res Assoc, Houston, TX 77058 USA. [Azzam, Edouard I.] Rutgers State Univ, Newark, NJ 07101 USA. [Badavi, Francis F.] Old Dominion Univ, Norfolk, VA 23529 USA. [Baiocco, Giorgio; Ottolenghi, Andrea] Univ Pavia, Dept Phys, I-27100 Pavia, Italy. [Benton, Eric] Oklahoma State Univ, Stillwater, OK 74074 USA. [Bindi, Veronica] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Blakely, Eleanor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boothman, David A.; Eisch, Amelia J.; Shay, Jerry W.] Univ Texas SW Med Ctr Dallas, Dallas, TX 75390 USA. [Borak, Thomas B.] Colorado State Univ, Ft Collins, CO 80523 USA. [Britten, Richard A.] Eastern Virginia Med Sch, Norfolk, VA 23507 USA. [Curtis, Stan] 11771 Sunset Ave NE, Bainbridge Isl, WA 98110 USA. [Durante, Marco] GSI Helmholtz Ctr Heavy Ion Res, D-64291 Darmstadt, Germany. [Dynan, William S.; Semones, Edward] Emory Univ, Atlanta, GA 30322 USA. [Elgart, S. Robin] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Goodhead, Dudley T.] MRC, Didcot OX11 0RD, Oxon, England. [Guida, Peter M.; Lowenstein, Derek I.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Heilbronn, Lawrence H.] Univ Tennessee, Knoxville, TN 37996 USA. [Hellweg, Christine E.; Reitz, Guenther] German Aerosp Ctr, D-51147 Cologne, Germany. [Morita, Takashi] Osaka City Univ, Osaka 5458585, Japan. [Narici, Livio] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Narici, Livio] Ist Nazl Fis Nucl, I-00133 Rome, Italy. [Nelson, Gregory A.] Loma Linda Univ, Loma Linda, CA 92354 USA. [Schreurs, Ann-Sofie] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Shurshakov, Vyacheslav A.] Inst Biomed Problems, Moscow 123007, Russia. [Sihver, Lembit] Vienna Univ Technol, Atominst, A-1020 Vienna, Austria. [Sihver, Lembit] EBG MedAustron GmbH, A-2700 Wiener Neustadt, Austria. [Turker, Mitchell S.] Oregon Hlth & Sci Univ, Portland, OR 97239 USA. [Uchihori, Yukio] Natl Inst Radiol Sci, Chiba 2638555, Japan. [Williams, Jacqueline] Univ Rochester, Med Ctr, Rochester, NY 14642 USA. [Zeitlin, Cary J.] Lockheed Martin Informat Syst & Global Solut, Houston, TX 77058 USA. RP Norbury, JW (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM john.w.norbury@nasa.gov RI Norman, Ryan/D-5095-2017; OI Norman, Ryan/0000-0002-9103-7225; Durante, Marco/0000-0002-4615-553X NR 72 TC 3 Z9 3 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-5524 EI 2214-5532 J9 LIFE SCI SPACE RES JI Life Sci. Space Res. PD FEB PY 2016 VL 8 BP 38 EP 51 DI 10.1016/j.lssr.2016.02.001 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DO2MY UT WOS:000377615300006 PM 26948012 ER PT J AU Slaba, TC Blattnig, SR Norbury, JW Rusek, A La Tessa, C AF Slaba, Tony C. Blattnig, Steve R. Norbury, John W. Rusek, Adam La Tessa, Chiara TI Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation SO LIFE SCIENCES IN SPACE RESEARCH LA English DT Article DE Space radiation; Galactic cosmic rays; Radiobiology; Astronaut risk ID RADIATION PROTECTION; HZETRN; TRANSPORT; PION AB The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. Published by Elsevier Ltd on behalf of The Committee on Space Research (COSPAR). C1 [Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Rusek, Adam; La Tessa, Chiara] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Slaba, TC (reprint author), 2 West Reid St,Mail Stop 188E, Hampton, VA 23681 USA. EM Tony.C.Slaba@nasa.gov NR 42 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-5524 EI 2214-5532 J9 LIFE SCI SPACE RES JI Life Sci. Space Res. PD FEB PY 2016 VL 8 BP 52 EP 67 DI 10.1016/j.lssr.2016.01.001 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DO2MY UT WOS:000377615300007 PM 26948013 ER PT J AU Wendel, DE Hesse, M Bessho, N Adrian, ML Kuznetsova, M AF Wendel, D. E. Hesse, M. Bessho, N. Adrian, M. L. Kuznetsova, M. TI Nongyrotropic electrons in guide field reconnection SO PHYSICS OF PLASMAS LA English DT Article ID COLLISIONLESS MAGNETIC RECONNECTION; ACCELERATION; ANISOTROPY; REGION; FLUX AB We apply a scalar measure of nongyrotropy to the electron pressure tensor in a 2D particle-in-cell simulation of guide field reconnection and assess the corresponding electron distributions and the forces that account for the nongyrotropy. The scalar measure reveals that the nongyrotropy lies in bands that straddle the electron diffusion region and the separatrices, in the same regions where there are parallel electric fields. Analysis of electron distributions and fields shows that the nongyrotropy along the inflow and outflow separatrices emerges as a result of multiple populations of electrons influenced differently by large and small-scale parallel electric fields and by gradients in the electric field. The relevant parallel electric fields include large-scale potential ramps emanating from the x-line and sub-ion inertial scale bipolar electron holes. Gradients in the perpendicular electric field modify electrons differently depending on their phase, thus producing nongyrotropy. Magnetic flux violation occurs along portions of the separatrices that coincide with the parallel electric fields. An inductive electric field in the electron E x B drift frame thus develops, which has the effect of enhancing nongyrotropies already produced by other mechanisms and under certain conditions producing their own nongyrotropy. Particle tracing of electrons from nongyrotropic populations along the inflows and outflows shows that the striated structure of nongyrotropy corresponds to electrons arriving from different source regions. We also show that the relevant parallel electric fields receive important contributions not only from the nongyrotropic portion of the electron pressure tensor but from electron spatial and temporal inertial terms as well. (C) 2016 AIP Publishing LLC. C1 [Wendel, D. E.; Hesse, M.; Bessho, N.; Adrian, M. L.; Kuznetsova, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bessho, N.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. RP Wendel, DE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NASA GSFC FX D.E.W. thanks Magnetospheric MultiScale Mission Theory and Modeling team members at the NASA Goddard Space Flight Center (GSFC) for their support. This work has been supported by internal funding from NASA GSFC. NR 36 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2016 VL 23 IS 2 AR 022114 DI 10.1063/1.4942031 PG 19 WC Physics, Fluids & Plasmas SC Physics GA DL7XR UT WOS:000375854200016 ER PT J AU Lovison, L Parodi, L Monett, A Duenas, P Frye, S Nativi, S Santoro, M AF Lovison, Lucia Parodi, Luciano Monett, Alvaro Duenas, Pablo Frye, Stuart Nativi, Stefano Santoro, Mattia TI A GEOSS Architecture Implementation Pilot Project for Disasters in Chile SO PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING LA English DT Article C1 [Lovison, Lucia; Frye, Stuart] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lovison, Lucia; Nativi, Stefano] CNR IIA, Natl Res Council Italy, Florence Div, Inst Atmospher Pollut Res, Monterotondo, Italy. [Santoro, Mattia] CNR IIA, Natl Res Council Italy, Inst Atmospher Pollut Res, ESSI Lab, Monterotondo, Italy. RP Lovison, L (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RI Nativi, Stefano/E-7180-2016; Santoro, Mattia/B-2709-2014 OI Nativi, Stefano/0000-0003-3185-8539; Santoro, Mattia/0000-0003-0401-3100 NR 13 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC PHOTOGRAMMETRY PI BETHESDA PA 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160 USA SN 0099-1112 J9 PHOTOGRAMM ENG REM S JI Photogramm. Eng. Remote Sens. PD FEB PY 2016 VL 82 IS 2 BP 79 EP 85 PG 7 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA DK0SN UT WOS:000374622600001 ER PT J AU Matheou, G Bowman, KW AF Matheou, Georgios Bowman, Kevin W. TI A recycling method for the large-eddy simulation of plumes in the atmospheric boundary layer SO ENVIRONMENTAL FLUID MECHANICS LA English DT Article DE Plume dispersion; Atmospheric boundary layer; Large-eddy simulation ID CUMULUS CONVECTION; NUMERICAL-SIMULATION; DISPERSION; MODEL; FLOW AB A method for the large-eddy simulation (LES) of dispersion and mixing of passive scalars is developed and evaluated. The new method addresses the requirements of tracking the evolution of plumes for large distances from their sources while attaining a low computational cost. To reduce computational cost, the velocity and thermodynamic fields are solved on a doubly periodic domain in the horizontal directions. In contrast, when the plume reaches the downstream end of the computational domain, it is reintroduced at the upstream plane but as a different scalar field. The same procedure is repeated when the new scalar field reaches the downstream boundary. By using several scalar fields to describe the evolution of a single plume, the simulation is computationally cheaper since the same velocity and thermodynamic fields are reused, or recycled, when computing the plume evolution. The recycling method is verified by showing that low-order plume statistics are identical to a single-domain LES. Three cases of dispersion and mixing from a point ground source in diverse boundary layer conditions (stable, convectively unstable, and shallow cumulus convection) are considered. Moreover, the LES results are compared with the predictions a Gaussian plume model, which is found to perform satisfactorily in all cases when accurate information about the state of the boundary layer is provided. C1 [Matheou, Georgios; Bowman, Kevin W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Matheou, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM georgios.matheou@jpl.nasa.gov NR 33 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1567-7419 EI 1573-1510 J9 ENVIRON FLUID MECH JI Environ. Fluid Mech. PD FEB PY 2016 VL 16 IS 1 BP 69 EP 85 DI 10.1007/s10652-015-9413-4 PG 17 WC Environmental Sciences; Mechanics; Meteorology & Atmospheric Sciences; Oceanography; Water Resources SC Environmental Sciences & Ecology; Mechanics; Meteorology & Atmospheric Sciences; Oceanography; Water Resources GA DL1EV UT WOS:000375375900004 ER PT J AU Zaman, KBMQ Bencic, TJ Fagan, AF Clem, MM AF Zaman, K. B. M. Q. Bencic, T. J. Fagan, A. F. Clem, M. M. TI Shock-Induced Boundary-Layer Separation in Round Convergent-Divergent Nozzles SO AIAA JOURNAL LA English DT Article ID FLOW SEPARATION; PLANAR NOZZLES; NOISE AB The location of shock-induced boundary-layer separation inside the divergent section of convergent-divergent nozzles is studied experimentally. Pressure-sensitive paint technique is used with nozzles of different design Mach numbers in the range 1.4-2.8. Nozzle pressure ratios in the range of 1.12-4.91, corresponding to a "jet Mach number" range of 0.4-1.7 and a Reynolds number range of 0.35 x 10(6)-0.58 x 10(7), are covered in the experiment. As it is well-known, one-dimensional nozzle flow theory grossly overpredicts the throat-to-shock-location distance at a given nozzle pressure ratio. A correlation from the literature based on rocket nozzle databases is also found to be inadequate for these nozzles of lower design Mach number typical of aircraft applications. For the parametric range covered, a simple correlation for the shock location distance is found. All data collapse in a cluster when plotted as a function of the ratio of jet Machnumber to design Machnumber. Acurve-fit equation representing the average trend is provided. C1 [Zaman, K. B. M. Q.] NASA, Glenn Res Ctr, Inlets & Nozzles Branch, Cleveland, OH 44135 USA. [Bencic, T. J.; Fagan, A. F.; Clem, M. M.] NASA, Glenn Res Ctr, Opt & Photon Branch, Cleveland, OH 44135 USA. RP Zaman, KBMQ (reprint author), NASA, Glenn Res Ctr, Inlets & Nozzles Branch, Cleveland, OH 44135 USA. NR 19 TC 0 Z9 0 U1 6 U2 6 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD FEB PY 2016 VL 54 IS 2 BP 434 EP 442 DI 10.2514/1.J054238 PG 9 WC Engineering, Aerospace SC Engineering GA DI1YY UT WOS:000373294100006 ER PT J AU Zhang, Q Shia, RL Sander, SP Yung, YL AF Zhang, Qiong Shia, Run-Lie Sander, Stanley P. Yung, Yuk L. TI X-CO2 retrieval error over deserts near critical surface albedo SO EARTH AND SPACE SCIENCE LA English DT Article DE aerosol scattering; critical surface albedo; X-CO2 retrieval ID AEROSOL SCATTERING; OPTICAL DEPTH; OBSERVED CO2; UNCERTAINTIES; VALIDATION; REANALYSIS; ATMOSPHERE; PRODUCTS; OCO-2 AB Large retrieval errors in column-weighted CO2 mixing ratio (X-CO2) over deserts are evident in the Orbiting Carbon Observatory 2 version 7 L2 products. We argue that these errors are caused by the surface albedo being close to a critical surface albedo ((c)). Over a surface with albedo close to (c), increasing the aerosol optical depth (AOD) does not change the continuum radiance. The spectral signature caused by changing the AOD is identical to that caused by changing the absorbing gas column. The degeneracy in the retrievals of AOD and X-CO2 results in a loss of degrees of freedom and information content. We employ a two-stream-exact single scattering radiative transfer model to study the physical mechanism of X-CO2 retrieval error over a surface with albedo close to (c). Based on retrieval tests over surfaces with different albedos, we conclude that over a surface with albedo close to (c), the X-CO2 retrieval suffers from a significant loss of accuracy. We recommend a bias correction approach that has significantly improved the X-CO2 retrieval from the California Laboratory for Atmospheric Remote Sensing data in the presence of aerosol loading. C1 [Zhang, Qiong; Shia, Run-Lie; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Sander, Stanley P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Zhang, Q (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM qzh@caltech.edu NR 30 TC 1 Z9 1 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 Earth Space Sci JI Earth Space Sci. PD FEB PY 2016 VL 3 IS 2 BP 36 EP 45 DI 10.1002/2015EA000143 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DH4BO UT WOS:000372730700001 ER PT J AU Jiang, X Crisp, D Olsen, ET Kulawik, SS Miller, CE Pagano, TS Liang, MC Yung, YL AF Jiang, Xun Crisp, David Olsen, Edward T. Kulawik, Susan S. Miller, Charles E. Pagano, Thomas S. Liang, Maochang Yung, Yuk L. TI CO2 annual and semiannual cycles from multiple satellite retrievals and models SO EARTH AND SPACE SCIENCE LA English DT Article DE satellite CO2 retrievals; model simulations; CO2 annual and semiannual cycles ID ATMOSPHERIC CARBON-DIOXIDE; TROPOSPHERIC EMISSION SPECTROMETER; NINO SOUTHERN OSCILLATION; EL-NINO; MIDTROPOSPHERIC CO2; MAUNA-LOA; INTERANNUAL VARIABILITY; X-CO2 DATA; MISSION; CIRCULATION AB Satellite CO2 retrievals from the Greenhouse gases Observing SATellite (GOSAT), Atmospheric Infrared Sounder (AIRS), and Tropospheric Emission Spectrometer (TES) and in situ measurements from the National Oceanic and Atmospheric Administration - Earth System Research Laboratory (NOAA-ESRL) Surface CO2 and Total Carbon Column Observing Network (TCCON) are utilized to explore the CO2 variability at different altitudes. A multiple regression method is used to calculate the CO2 annual cycle and semiannual cycle amplitudes from different data sets. The CO2 annual cycle and semiannual cycle amplitudes for GOSAT X-CO2 and TCCON X-CO2 are consistent but smaller than those seen in the NOAA-ESRL surface data. The CO2 annual and semiannual cycles are smallest in the AIRS midtropospheric CO2 compared with other data sets in the Northern Hemisphere. The amplitudes for the CO2 annual cycle and semiannual cycle from GOSAT, TES, and AIRS CO2 are small and comparable to each other in the Southern Hemisphere. Similar regression analysis is applied to the Model for OZone And Related chemical Tracers-2 and CarbonTracker model CO2. The convolved model CO2 annual cycle and semiannual cycle amplitudes are similar to those from the satellite CO2 retrievals, although the models tend to underestimate the CO2 seasonal cycle amplitudes in the Northern Hemisphere midlatitudes and underestimate the CO2 semiannual cycle amplitudes in the high latitudes. These results can be used to better understand the vertical structures for the CO2 annual cycle and semiannual cycle and help identify deficiencies in the models, which are very important for the carbon budget study. C1 [Jiang, Xun] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX USA. [Crisp, David; Olsen, Edward T.; Kulawik, Susan S.; Miller, Charles E.; Pagano, Thomas S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Liang, Maochang] Acad Sinica, Res Ctr Environm Changes, Taipei 115, Taiwan. [Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Jiang, X (reprint author), Univ Houston, Dept Earth & Atmospher Sci, Houston, TX USA. EM xjiang7@uh.edu NR 64 TC 1 Z9 1 U1 3 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 Earth Space Sci JI Earth Space Sci. PD FEB PY 2016 VL 3 IS 2 BP 78 EP 87 DI 10.1002/2014EA000045 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DH4BO UT WOS:000372730700004 ER PT J AU Lin, TJ Ver Eecke, HC Breves, EA Dyar, MD Jamieson, JW Hannington, MD Dahle, H Bishop, JL Lane, MD Butterfield, DA Kelley, DS Lilley, MD Baross, JA Holden, JF AF Lin, T. J. Ver Eecke, H. C. Breves, E. A. Dyar, M. D. Jamieson, J. W. Hannington, M. D. Dahle, H. Bishop, J. L. Lane, M. D. Butterfield, D. A. Kelley, D. S. Lilley, M. D. Baross, J. A. Holden, J. F. TI Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour Segment, Juan de Fuca Ridge SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Juan de Fuca Ridge; hydrothermal vents; subsurface biosphere ID EAST PACIFIC RISE; SP-NOV.; BLACK-SMOKER; MIDOCEAN RIDGE; EMISSION-SPECTROSCOPY; VENT FLUIDS; GEN. NOV.; ANAEROBIC DEGRADATION; SUBSEAFLOOR HABITAT; VOLCANIC-ERUPTION AB Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mossbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282 degrees C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300 degrees C venting chimney from the Dante edifice and a 321 degrees C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100 degrees C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2- oxidation in the vent fluids, or O-2 depletion by aerobic respiration on the chimney outer wall. C1 [Lin, T. J.; Ver Eecke, H. C.; Holden, J. F.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Ver Eecke, H. C.; Breves, E. A.] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA. [Jamieson, J. W.; Hannington, M. D.] Univ Ottawa, Dept Earth Sci, Ottawa, ON, Canada. [Jamieson, J. W.] Helmholtz Ctr Ocean Res, GEOMAR, Kiel, Germany. [Dahle, H.] Univ Bergen, Ctr Geobiol, Dept Biol, Bergen, Norway. [Bishop, J. L.] NASA Ames Res Ctr, SETI Inst, Moffett Field, CA USA. [Lane, M. D.] Inst Plant Sci, Tucson, AZ USA. [Butterfield, D. A.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA. [Butterfield, D. A.] NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way Ne, Seattle, WA 98115 USA. [Kelley, D. S.; Lilley, M. D.; Baross, J. A.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. RP Holden, JF (reprint author), Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. EM jholden@microbio.umass.edu RI Butterfield, David/H-3815-2016 OI Butterfield, David/0000-0002-1595-9279 FU National Science Foundation Division of Ocean Sciences [OCE-0732611]; National Science Foundation [OCE-0731947]; JISAO under NOAA [NA10OAR4320148] FX We thank Eric Olson, Kevin Roe, Leigh Evans, My Christensen, Dmitry Tokar, Jacqueline Knutson, and the personnel onboard the R/V Atlantis and DSV Alvin for technical assistance. We also thank Richard Thomson of the Institute of Ocean Sciences, Fisheries, and Oceans Canada for providing the dissolved O2 data used to calculate redox energy. This study was supported by the National Science Foundation Division of Ocean Sciences grant OCE-0732611 (to JFH) and National Science Foundation grant OCE-0731947 (to DAB, DSK, and MD Lilley). This publication is partially funded by JISAO to DAB under NOAA Cooperative Agreement NA10OAR4320148. JISAO contribution 2501, PMEL contribution 4423. This is PSI contribution 612 (MD Lane). Supporting data are included as five tables in an SI file. Any additional data not mentioned in databases in the text may be obtained from JFH (email: jholden@microbio.umass.edu). NR 106 TC 1 Z9 1 U1 14 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD FEB PY 2016 VL 17 IS 2 BP 300 EP 323 DI 10.1002/2015GC006091 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DH8TQ UT WOS:000373070100005 ER PT J AU Potter, C AF Potter, Christopher TI Thirty years of vegetation change in the coastal Santa Cruz Mountains of Northern California detected using landsat satellite image analysis SO JOURNAL OF COASTAL CONSERVATION LA English DT Article DE Landsat; California; Santa Cruz Mountains; Climate change; Forest vegetation; Wildfire; Drought; NDVI ID NET PRIMARY PRODUCTION; POSTFIRE VEGETATION; REDWOOD FORESTS; COVER CHANGE; SEVERITY; TM AB The Santa Cruz Mountains is a coastal landscape with a history of extensive forest logging, and a future with projected climate warming that may alter vegetation cover and surface water runoff in new ways. Results from Landsat satellite image time-series analysis since 1983 of this study area showed gradual, statistically significant increases in the normalized difference vegetation index (NDVI) in more than 90 % of the (predominantly second-growth) evergreen forest locations sampled. The cumulative distribution of NDVI values in 2013 was significantly different and higher overall from the cumulative distribution of NDVI values in 1983. The extreme drought year of 2013 (and other previous years of low precipitation) did not affect average NDVI growth rates in most drainage basins of the study area, with the exception of four relatively small basins that had less than 30 % forested land cover. Notably different patterns of NDVI change were detected in areas burned by wildfires in recent years. Within the perimeters of the 2008 Summit Fire and the 2009 Lockheed Fire, NDVI showed notable declines from pre-fire levels to those calculated in 2013 Landsat imagery. In contrast to these recent fires, the burned area from the 1985 Lexington Fire showed the highest rate of NDVI increase (over 27 years of regrowth) of any relatively large contiguous area within the Santa Cruz Mountains. C1 [Potter, Christopher] NASA, Ames Res Ctr, Mail Stop 232-21, Moffett Field, CA 94035 USA. RP Potter, C (reprint author), NASA, Ames Res Ctr, Mail Stop 232-21, Moffett Field, CA 94035 USA. EM chris.potter@nasa.gov NR 37 TC 0 Z9 0 U1 12 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1400-0350 EI 1874-7841 J9 J COAST CONSERV JI J. Coast. Conserv. PD FEB PY 2016 VL 20 IS 1 BP 51 EP 59 DI 10.1007/s11852-015-0417-5 PG 9 WC Biodiversity Conservation; Environmental Sciences; Marine & Freshwater Biology; Water Resources SC Biodiversity & Conservation; Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DH9XO UT WOS:000373149500005 ER PT J AU Mannino, A Signorini, SR Novak, MG Wilkin, J Friedrichs, MAM Najjar, RG AF Mannino, Antonio Signorini, Sergio R. Novak, Michael G. Wilkin, John Friedrichs, Marjorie A. M. Najjar, Raymond G. TI Dissolved organic carbon fluxes in the Middle Atlantic Bight: An integrated approach based on satellite data and ocean model products SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE DOC; CDOM; Chesapeake Bay; Middle Atlantic Bight; carbon cycling ID EAST CHINA SEA; CONTINENTAL-SHELF CARBON; GULF-STREAM WATER; CAPE-HATTERAS; OPTICAL-PROPERTIES; DATA ASSIMILATION; CHESAPEAKE BAY; INTERANNUAL VARIATIONS; COASTAL OCEAN; MATTER CDOM AB Continental margins play an important role in global carbon cycle, accounting for 15-21% of the global marine primary production. Since carbon fluxes across continental margins from land to the open ocean are not well constrained, we undertook a study to develop satellite algorithms to retrieve dissolved organic carbon (DOC) and combined these satellite data with physical circulation model products to quantify the shelf boundary fluxes of DOC for the U.S. Middle Atlantic Bight (MAB). Satellite DOC was computed through seasonal relationships of DOC with colored dissolved organic matter absorption coefficients, which were derived from an extensive set of in situ measurements. The multiyear time series of satellite-derived DOC stocks (4.9TeragramsC; Tg) shows that freshwater discharge influences the magnitude and seasonal variability of DOC on the continental shelf. For the 2010-2012 period studied, the average total estuarine export of DOC into the MAB shelf is 0.77TgCyr(-1) (year). The integrated DOC tracer fluxes across the shelf boundaries are 12.1TgCyr(-1) entering the MAB from the southwest alongshore boundary, 18.5TgCyr(-1) entering the MAB from the northeast alongshore boundary, and 29.0TgCyr(-1) flowing out of the MAB across the entire length of the 100m isobath. The magnitude of the cross-shelf DOC flux is quite variable in time (monthly) and space (north to south). The highly dynamic exchange of water along the shelf boundaries regulates the DOC budget of the MAB at subseasonal time scales. C1 [Mannino, Antonio; Signorini, Sergio R.; Novak, Michael G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Signorini, Sergio R.] Sci Applicat Int Corp, Washington, DC USA. [Novak, Michael G.] Sci Syst & Applicat Inc, Lanham, MD USA. [Wilkin, John] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08903 USA. [Friedrichs, Marjorie A. M.] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA. [Najjar, Raymond G.] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. RP Mannino, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM antonio.mannino@nasa.gov RI Wilkin, John/E-5343-2011; Mannino, Antonio/I-3633-2014; OI Wilkin, John/0000-0002-5444-9466; Friedrichs, Marjorie/0000-0003-2828-7595 FU NASA Interdisciplinary Science Program (USECoS Project); Ocean Biology and Biogeochemistry Program (CliVEC Project) FX We want to acknowledge the NASA Interdisciplinary Science Program (USECoS Project) and Ocean Biology and Biogeochemistry Program (CliVEC Project) for supporting this work. We thank the Editor and two anonymous reviewers for their comments, which helped us to improve this manuscript. Our sincere gratitude to Katherine Filippino, Mary Russ, Veronica Lance, Xiaoju Pan, and Dirk Aurin for assistance with sample collection. We are grateful to Jerry Prezioso, Jon Hare, and Harvey Walsh for accommodating our CliVEC project on NOAA's Northeast Marine Fisheries Service Ecosystem Monitoring (ECO-Mon) cruises and Tamara Holzwarth-Davis for processing the CTD profile data. We thank Mike Twardowski for organizing several cruises in the Hudson-Raritan Estuary and adjacent shelf and Ru Morrison for inviting us to participate on cruises in the Gulf of Maine. Thanks to Jay Austin, Eileen Hofmann, and John Klinck for planning or assistance with the Old Dominion University Chesapeake Bay mouth hydrography transects and data access. The USECoS team members provided many useful comments. We extend our profound appreciation to the Ocean Biology Processing Group (OBPG) at the NASA Goddard Space Flight Center for the distribution of and continuing efforts in improving MODIS and SeaWiFS data products. Measurements from the field sampling described in this manuscript were archived in the NASA SeaWiFS Bio-optical Archive and Storage System (http://seabass.gsfc.nasa.gov/). NR 93 TC 0 Z9 0 U1 8 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD FEB PY 2016 VL 121 IS 2 BP 312 EP 336 DI 10.1002/2015JG003031 PG 25 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DI0OT UT WOS:000373197300005 ER PT J AU Martin-Espanol, A Zammit-Mangion, A Clarke, PJ Flament, T Helm, V King, MA Luthcke, SB Petrie, E Remy, F Schon, N Wouters, B Bamber, JL AF Martin-Espanol, Alba Zammit-Mangion, Andrew Clarke, Peter J. Flament, Thomas Helm, Veit King, Matt A. Luthcke, Scott B. Petrie, Elizabeth Remy, Frederique Schoen, Nana Wouters, Bert Bamber, Jonathan L. TI Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE Antarctica; Mass balance; SMB; ice dynamics; GIA ID AMUNDSEN SEA EMBAYMENT; WEST ANTARCTICA; EAST ANTARCTICA; UPLIFT RATES; LEVEL RISE; GRACE; GREENLAND; BALANCE; PENINSULA; ELEVATION AB We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from astatistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balanceanomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003-2013, Antarctica has been losing mass at a rate of -84 22Gtyr(-1), with a sustained negative mean trend of dynamic imbalance of -111 13Gtyr(-1). West Antarctica is the largest contributor with -112 10Gtyr(-1), mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of -28 7Gtyr(-1) and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 +/- 18Gtyr(-1) in East Antarctica due to a positive trend of surface mass balance anomalies. C1 [Martin-Espanol, Alba; Zammit-Mangion, Andrew; Schoen, Nana; Wouters, Bert; Bamber, Jonathan L.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Zammit-Mangion, Andrew] Univ Wollongong, Natl Inst Appl Stat Res Australia, Environm Informat Ctr, Wollongong, NSW, Australia. [Clarke, Peter J.; King, Matt A.; Petrie, Elizabeth] Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Flament, Thomas; Remy, Frederique] LEGOS, Toulouse, France. [Helm, Veit] Alfred Wegener Inst, Bremerhaven, Germany. [King, Matt A.] Univ Tasmania, Sch Land & Food, Hobart, Tas, Australia. [Luthcke, Scott B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Petrie, Elizabeth] Univ Glasgow, Sch Geog & Earth Sci, Glasgow, Lanark, Scotland. RP Bamber, JL (reprint author), Univ Bristol, Sch Geog Sci, Bristol, Avon, England. EM j.bamber@bristol.ac.uk RI Zammit Mangion, Andrew/I-5356-2016; Clarke, Peter/B-1783-2008; King, Matt/B-4622-2008; Bamber, Jonathan/C-7608-2011; OI Zammit Mangion, Andrew/0000-0002-4164-6866; Clarke, Peter/0000-0003-1276-8300; King, Matt/0000-0001-5611-9498; Bamber, Jonathan/0000-0002-2280-2819; Wouters, Bert/0000-0002-1086-2435; Petrie, Elizabeth/0000-0002-7124-2600 FU National Science Foundation (NSF); National Aeronautics and Space Administration (NASA) under NSF Cooperative Agreement [EAR-0735156]; Australian Research Council Future Fellowship [FT110100207]; UK NERC grant [NE/I027401/1] FX We acknowledge the substantial efforts required to establish, maintain and operate Antarctic GPS sites and also data archives. We thank those responsible for the GPS data used in this paper (see Table S1) and for making them available including: the ANET and CAPGIA teams, the Scientific Committee on Antarctic Research, Geoscience Australia, Paul Tregoning (Australian National University), the British Antarctic Survey, the Alfred Wegener Institute, the Instituto Antartico Argentino, the Finnish Geodetic Institute, the JPL Marie Byrd Land, LARISSA, TAMDEF and WAGN projects, and the International GNSS Service [Dow et al., 2009] and the UNAVCO Facility (with support from the National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) under NSF Cooperative Agreement No. EAR-0735156). We also acknowledge S. Ligtenberg, J. M. Lenaerts and J. M. van Wessem for providing SMB output from 2.1/ANT27 and RACMO2.3 and T. Sutterley and I. Velicogna for providing the data shown in Figure 9. The data for this paper are available by contacting the corresponding author. M. A. K. is a recipient of an Australian Research Council Future Fellowship (project number FT110100207). JLB and AME and the work undertaken in this study was supported by UK NERC grant NE/I027401/1. The authors wish to thank Bryn Hubbard, the Associate Editor and three anonymous reviewers NR 65 TC 1 Z9 1 U1 8 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD FEB PY 2016 VL 121 IS 2 BP 182 EP 200 DI 10.1002/2015JF003550 PG 19 WC Geosciences, Multidisciplinary SC Geology GA DH6UU UT WOS:000372928400001 PM 27134805 ER PT J AU Schodlok, MP Menemenlis, D Rignot, EJ AF Schodlok, M. P. Menemenlis, D. Rignot, E. J. TI Ice shelf basal melt rates around Antarctica from simulations and observations SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE ice shelf ocean interaction; numerical modeling; Antarctica; ice shelf basal melt; Southern Ocean ID PINE ISLAND GLACIER; WEDDELL SEA; SOUTHERN-OCEAN; CIRCUMPOLAR CURRENT; WEST ANTARCTICA; DEEP-WATER; MODEL; TRANSPORT; CIRCULATION; VARIABILITY AB We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations. C1 [Schodlok, M. P.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Rignot, E. J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. RP Schodlok, MP (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA.; Schodlok, MP (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM schodlok@jpl.nasa.gov RI Rignot, Eric/A-4560-2014 OI Rignot, Eric/0000-0002-3366-0481 FU National Aeronautics and Space Administration (NASA); NASA Modeling, Analysis, and Prediction (MAP); Cryospheric Sciences Programs; University of California, Irvine NASA grant [NNX13AN46G] FX This research was carried out, in part, at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). We gratefully acknowledge support from the NASA Modeling, Analysis, and Prediction (MAP) and Cryospheric Sciences Programs. Computational resources were provided by the NASA Advanced Supercomputing (NAS) Division. This work is a contribution to the ECCO-IcES project and to University of California, Irvine NASA grant NNX13AN46G. We thank C. Rodehacke and M. Flexas for helpful comments and discussions to improve the manuscript. Model input data are available on http://ecco2.jpl.nasa.gov/ products and model output by contacting M.P. Schodlok. NR 75 TC 2 Z9 2 U1 6 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD FEB PY 2016 VL 121 IS 2 BP 1085 EP 1109 DI 10.1002/2015JC011117 PG 25 WC Oceanography SC Oceanography GA DH9RX UT WOS:000373134600004 ER PT J AU Wang, Y Holt, B Rogers, WE Thomson, J Shen, HH AF Wang, Yu Holt, Benjamin Rogers, W. Erick Thomson, Jim Shen, Hayley H. TI Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer-fall transition 2014 SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE sea ice morphology; wind; wave; Beaufort; Chukchi; summer-fall ID OCEAN WAVES; WEDDELL SEA; AMSR-E; ORIENTATION; IMAGERY; SURFACE; STORM; ZONE; PROPAGATION; EVOLUTION AB Sea ice floe size distribution and lead properties in the Beaufort and Chukchi Seas are studied in the summer-fall transition 2014 to examine the impact on the sea ice cover from storms and surface waves. Floe size distributions are analyzed from MEDEA, Landsat8, and RADARSAT-2 imagery, with a resolution span of 1-100 m. Landsat8 imagery is also used to identify the orientation and spacing of leads. The study period centers around three large wave events during August-September 2014 identified by SWIFT buoys and WAVEWATCH III (R) model data. The range of floe sizes from different resolutions provides the overall distribution across a wide range of ice properties and estimated thickness. All cumulative floe size distribution curves show a gradual bending toward shallower slopes for smaller floe sizes. The overall slopes in the cumulative floe size distribution curves from Landsat8 images are lower than, while those from RADARSAT-2 are similar to, previously reported results in the same region and seasonal period. The MEDEA floe size distributions appeared to be sensitive to the passage of storms. Lead orientations, regardless of length, correlate slightly better with the peak wave direction than with the mean wave direction. Their correlation with the geostrophic wind is stronger than with the surface wind. The spacing between shorter leads correlates well with the local incoming surface wavelengths, obtained from the model peak wave frequency. The information derived shows promise for a coordinated multisensor study of storm effects in the Arctic marginal ice zone. C1 [Wang, Yu] Ocean Univ China, Dept Oceanog, Phys Oceanog Lab, Qingdao, Peoples R China. [Holt, Benjamin] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rogers, W. Erick] Naval Res Lab, Stennis Space Ctr, MS USA. [Thomson, Jim] Univ Washington, Appl Phys Lab, Dept Civil & Environm Engn, Seattle, WA 98105 USA. [Shen, Hayley H.] Clarkson Univ, Dept Civil & Environm Engn, Potsdam, NY USA. RP Shen, HH (reprint author), Clarkson Univ, Dept Civil & Environm Engn, Potsdam, NY USA. EM hhshen@clarkson.edu FU China Scholarship Council [201306330026]; National Natural Science Foundation of China [41521091, U1406401]; Clarkson University; Office of Naval Research [N00014-13-1-0294, N0001413WX20825, N00014-12-1-0113, N0001415IP00081]; National Aeronautics and Space Administration FX The first author is a visiting doctoral student at Clarkson University. The financial support of China Scholarship Council (201306330026), National Natural Science Foundation of China (41521091, U1406401) and the hospitality of Clarkson University are appreciated. This work was supported in part by the Office of Naval Research, including grants N00014-13-1-0294, N0001413WX20825, and N00014-12-1-0113. This work was also performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration, with support from the Office of Naval Research (grant N0001415IP00081). We thank William Olsen of Clarkson University for his generous guidance in using ArcGIS for part of the image analysis, and the insightful suggestions from the anonymous reviewers. The data used in this study are all provided in the references cited. They are also listed below: air temperature (http://www.esrl.noaa.gov/psd/cgi-bin/DataAccess.pl?DB_dataset=NCEP+Rean alysis+Daily+Averages+Surface+Level & ice mass balance buoy data (http://imb.erdc.dren.mil/index.htm); ice thickness data (http://rda.ucar.edu/datasets/ds093.0/#!access); Landsat8 data (http://LandSAT.usgs.gov/Landsat8.php); MEDEA data (http://gfl.usgs.gov/); RADARSAT-2 data (http://www.apl.washington.edu/project/project.php?id5arctic_sea_state); sea surface mean surface temperature, MST (http://www.esrl.noaa.gov/psd/cgi-bin/DataAccess.pl?DB_dataset=NCEP+Rean alysis+Daily+Averages+Surface+Flux & SWIFT10 camera record (http://faculty.washington.edu/jmt3rd/SWIFTdata/ArcticOcean/SWIFT10_Sep1 _Sep15_Timelapse.mp4); wave data (http://apl.uw.edu/swift); wind data source (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface. html); RADARSAT-2 images were collected by the Center for Southeastern Tropical Advanced Remote Sensing (CSTARS) in support of the Marginal Ice Zone program and made available for use within the related Sea State program. NR 63 TC 1 Z9 1 U1 6 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD FEB PY 2016 VL 121 IS 2 BP 1502 EP 1525 DI 10.1002/2015JC011349 PG 24 WC Oceanography SC Oceanography GA DH9RX UT WOS:000373134600027 ER PT J AU Blanco-Cano, X Kajdic, P Aguilar-Rodriguez, E Russell, CT Jian, LK Luhmann, JG AF Blanco-Cano, X. Kajdic, P. Aguilar-Rodriguez, E. Russell, C. T. Jian, L. K. Luhmann, J. G. TI Interplanetary shocks and foreshocks observed by STEREO during 2007-2010 SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE shocks ID AMPLITUDE MAGNETIC-STRUCTURES; QUASI-PARALLEL SHOCKS; LOW-FREQUENCY WAVES; EARTHS BOW SHOCK; COLLISIONLESS SHOCKS; SUPRATHERMAL IONS; OBSERVED UPSTREAM; FIELD; ACCELERATION; SIMULATIONS AB Interplanetary shocks in the heliosphere modify the solar wind through which they pass. In particular, shocks play an important role in particle acceleration. During the extended solar minimum (2007-2010) STEREO observed 65 forward shocks driven by stream interactions (SI), with magnetosonic Mach numbers M-ms approximate to 1.1-4.0 and shock normal angles BN similar to 20-87 degrees. We analyze the waves associated with these shocks and find that the region upstream can be permeated by whistler waves (f similar to 1Hz) and/or ultra low frequency (ULF) waves (f similar to 10(-2)-10(-1)Hz). While whistlers appear to be generated at the shock, the origin of ULF waves is most probably associated with local kinetic ion instabilities. We find that when the Mach number (M-ms) is low and the shock is quasi-perpendicular ( BN>45 degrees) whistler waves remain close to the shock. As M-ms increases, the shock profile changes and can develop a foot and overshoot associated with ion reflection and gyration. Whistler precursors can be superposed on the foot region, so that some quasi-perpendicular shocks have characteristics of both subcritical and supercritical shocks. When the shock is quasi-parallel ( BN<45 degrees) a large foreshock with suprathermal ions and waves can form. Upstream, there are whistler trains at higher frequencies whose characteristics can be slightly modified probably by reflected and/or leaked ions and by almost circularly polarized waves at lower frequencies that may be locally generated by ion instabilities. In contrast with planetary bow shocks, most of the upstream waves studied here are mainly transverse and no steepening occurs. Some quasi-perpendicular shocks (45 degrees< BN<60 degrees) are preceded by ULF waves and ion foreshocks. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves in the sheath of quasi-perpendicular shocks. We compare SI-driven shock properties with those of shocks generated by interplanetary coronal mass ejections (ICMEs). During the same years, STEREO observed 20 ICME-driven shocks with M-ms approximate to 1.2-4.0 and BN similar to 38-85 degrees. We find that shocks driven by ICMEs tend to have larger proton foreshocks (dr similar to 0.1AU) than shocks driven by stream interactions (dr0.05AU). This difference of ion foreshock size should be linked to shock age: ICME-driven shocks form at shorter distances to the Sun and therefore can energize particles for longer times as they propagate to 1AU, while stream interaction shocks form closer to Earth's orbit and have been accelerating ions for a shorter interval of time. C1 [Blanco-Cano, X.; Kajdic, P.] Univ Nacl Autonoma Mexico, Inst Geofis, CU, Mexico City, DF, Mexico. [Aguilar-Rodriguez, E.] UNAM, Inst Geofis, Morelia, Michoacan, Mexico. [Russell, C. T.] Univ Calif Los Angeles, EPSS, Los Angeles, CA USA. [Russell, C. T.] Univ Calif Los Angeles, IGPP, Los Angeles, CA USA. [Jian, L. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Jian, L. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Luhmann, J. G.] Univ Calif Berkeley, SSL, Berkeley, CA 94720 USA. RP Blanco-Cano, X (reprint author), Univ Nacl Autonoma Mexico, Inst Geofis, CU, Mexico City, DF, Mexico. EM xbc@geofisica.unam.mx RI Jian, Lan/B-4053-2010 OI Jian, Lan/0000-0002-6849-5527 FU DGAPA/PAPIIT grant [IN105014]; DGAPA/PAPIIT project [IN103615]; CONACyT [220981]; NASA's Science Mission Directorate as part of the STEREO project; IMPACT investigation FX X.B.C. and P. K. work was supported by DGAPA/PAPIIT grant IN105014. E. Aguilar-Rodriguez acknowledges the DGAPA/PAPIIT project (grant: IN103615) and the CONACyT project (grant: 220981). The contribution of L. K. J., J. G. Luhmann and C. T. R. are supported by NASA's Science Mission Directorate as part of the STEREO project, including the IMPACT investigation. We thank A. Galvin and the STEREO PLASTIC team for the data provided. The data STEREO IMPACT/PLASTIC data used in this study are available in http://www-ssc.igpp.ucla.edu/ssc/stereo/. The PLASTIC-WAP Proton spectra are from http://fiji.sr.unh.edu/. NR 62 TC 2 Z9 2 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2016 VL 121 IS 2 BP 992 EP 1008 DI 10.1002/2015JA021645 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH7VN UT WOS:000373002100005 ER PT J AU Toth, G Jia, XZ Markidis, S Peng, IB Chen, YX Daldorff, LKS Tenishev, VM Borovikov, D Haiducek, JD Gombosi, TI Glocer, A Dorelli, JC AF Toth, Gabor Jia, Xianzhe Markidis, Stefano Peng, Ivy Bo Chen, Yuxi Daldorff, Lars K. S. Tenishev, Valeriy M. Borovikov, Dmitry Haiducek, John D. Gombosi, Tamas I. Glocer, Alex Dorelli, John C. TI Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE kinetic simulation; Ganymede; Hall MHD; Galileo ID BLOCK-ADAPTIVE GRIDS; HALL MAGNETOHYDRODYNAMICS; MHD SIMULATIONS; MAGNETIC-FIELD; SATELLITES; SCHEME; MODEL AB We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD-EPIC) algorithm is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHD-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD-EPIC simulation was only about 4 times more than that of the Hall MHD simulation. Key Points C1 [Toth, Gabor; Jia, Xianzhe; Chen, Yuxi; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.] Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA. [Markidis, Stefano; Peng, Ivy Bo] KTH Royal Inst Technol, Dept Computat Sci & Technol, Stockholm, Sweden. [Daldorff, Lars K. S.; Glocer, Alex; Dorelli, John C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Toth, G (reprint author), Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA. EM gtoth@umich.edu RI Jia, Xianzhe/C-5171-2012; Toth, Gabor/B-7977-2013; Daldorff, Lars/M-4117-2013; Gombosi, Tamas/G-4238-2011 OI Jia, Xianzhe/0000-0002-8685-1484; Toth, Gabor/0000-0002-5654-9823; Daldorff, Lars/0000-0002-1198-5138; Gombosi, Tamas/0000-0001-9360-4951 FU Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project - U.S. Department of Energy through the Los Alamos National Laboratory Directed Research and Development program [DE-AC52-06NA25396]; INSPIRE NSF grant [PHY-1513379]; NASA [NNX15AH28G, NNX15AJ68G]; NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; Yellowstone by NCAR's Computational and Information Systems Laboratory; National Science Foundation FX G.T. was partially supported by the Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project DE-AC52-06NA25396, funded by the U.S. Department of Energy through the Los Alamos National Laboratory Directed Research and Development program and also by the INSPIRE NSF grant PHY-1513379. X. J. acknowledges support by the NASA Solar System Workings program through grant NNX15AH28G and the Heliophysics Supporting Research program through grant NNX15AJ68G. Computational resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center and from Yellowstone (ark:/85065/d7wd3xhc), provided by NCAR's Computational and Information Systems Laboratory, and sponsored by the National Science Foundation. The SWMF code (including BATS-R-US and iPIC3D) is publicly available through the csem.engin.umich.edu/tools/swmf website after registration. The output of the simulations presented in this paper can be obtained by contacting the first author G.T. NR 27 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2016 VL 121 IS 2 BP 1273 EP 1293 DI 10.1002/2015JA021997 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH7VN UT WOS:000373002100024 ER PT J AU Lyatskaya, S Lyatsky, W Zesta, E AF Lyatskaya, Sonya Lyatsky, Wladislaw Zesta, Eftyhia TI Effect of interhemispheric currents on equivalent ionospheric currents in two hemispheres: Simulation results SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE interhemispheric currents; magnetosphere-ionosphere coupling; field-aligned currents; equivalent ionospheric currents; auroral zone ionosphere; magnetosphere-ionosphere current system ID FIELD-ALIGNED CURRENTS; CURRENT SYSTEMS; CONJUGATE HEMISPHERES; ELECTRIC-FIELDS; SUBSTORM; MAGNETOSPHERE; MODEL; CONDUCTIVITY; SATELLITE; SHEET AB In this research, we used numerical simulation to study the effect of interhemispheric field-aligned currents (IHCs), going between two conjugate ionospheres in two hemispheres, on the equivalent ionospheric currents (EICs). We computed the maps of these EICs in two hemispheres during summer-winter conditions, when the effect of the IHCs is especially significant. The main results may be summarized as follows. (1) In winter hemisphere, the IHCs may significantly exceed and be a substitute for the local R1 currents, and they may strongly affect the magnitude, location, and direction of the EICs in the nightside winter auroral ionosphere. (2) While in summer polar cap the EICs tend to flow sunward, and in winter polar cap the EICs turn toward dawn due to the effect of the IHCs. (3) The well-known reversal in the direction of the EICs in the vicinity of the midnight meridian, in winter hemisphere, is observed not at the polar caps boundary (as usually expected) but equatorward of this boundary in the region of the IHCs location. (4) The IHCs in winter hemisphere may be, in fact, not only a substitute for the R1 currents but also the major source of the Westward Auroral Electrojet, observed in both hemispheres during substorm activity. Key Points C1 [Lyatskaya, Sonya] Natl Sci Fdn, 4201 Wilson Blvd, Arlington, VA 22230 USA. [Lyatsky, Wladislaw; Zesta, Eftyhia] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lyatsky, Wladislaw] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Lyatskaya, S (reprint author), Natl Sci Fdn, 4201 Wilson Blvd, Arlington, VA 22230 USA. EM slyatsky@nsf.gov FU NSF [ANT-1204019]; Division of Polar Programs, National Science Foundation FX This study was accomplished as a part of the NSF Postdoctoral Fellowship ANT-1204019 with the Division of Polar Programs, National Science Foundation. This paper was prepared in the first author's personal capacity. Any opinion, finding, conclusion, or recommendation expressed in this paper are strictly those of the author and do not necessarily reflect the views of the National Science Foundation. For the ground magnetometer data, we gratefully acknowledge the following: Intermagnet; USGS, Jeffrey J. Love; CARISMA, PI Ian Mann; CANMOS; the S-RAMP Database, PI K. Yumoto and K. Shiokawa; the SPIDR database; AARI, PI Oleg Troshichev; the MACCS program, PI M. Engebretson, Geomagnetism Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP and Florida Institute of Technology; SAMBA, PI Eftyhia Zesta; 210 Chain, PI K. Yumoto; SAMNET, PI Farideh Honary; the institutes maintaining the IMAGE magnetometer array, PI Eija Tanskanen; PENGUIN; AUTUMN, PI Martin Conners; DTU Space, PI Jurgen Matzka; South Pole and McMurdo Magnetometer; PIs Louis J. Lanzerotti and Alan T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIN; British Antarctic Survey; McMac, PI Peter Chi; BGS, PI Susan Macmillan; the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, PI Monika Korte; SuperMAG, PI Jesper W. Gjerloev; and the website http://supermag.jhuapl.edu/polar NR 32 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2016 VL 121 IS 2 BP 1339 EP 1348 DI 10.1002/2015JA021167 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH7VN UT WOS:000373002100029 ER PT J AU Gallagher, DL Comfort, RH AF Gallagher, D. L. Comfort, R. H. TI Unsolved problems in plasmasphere refilling SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Editorial Material DE plasmasphere; refilling ID MAGNETIC EQUATOR; DENSITY PROFILES; ELECTRON-DENSITY; MAGNETOSPHERE; PLASMAPAUSE; MODELS; WAVES; SOLAR; SAMI3; FLOW AB The plasmasphere is a cold (similar to 1eV) plasma at middle to low magnetic latitudes surrounding the Earth. Its shape is dominated by Earth's magnetic field and its cross-field motion is dominated by electric fields. It is a highly coupled part of the inner magnetosphere. Storm time conditions erode the outer plasmasphere, transporting that plasma into the dayside magnetosheath region, leaving behind a region of greatly reduced plasma density that will refill from ionospheric outflow. The processes involved in refilling remain incompletely understood. In this commentary, outstanding questions about plasmaspheric refilling are summarized in the context of recent publications. C1 [Gallagher, D. L.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Comfort, R. H.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. RP Gallagher, DL (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM dennis.gallagher@nasa.gov NR 42 TC 1 Z9 1 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2016 VL 121 IS 2 BP 1447 EP 1451 DI 10.1002/2015JA022279 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH7VN UT WOS:000373002100038 ER PT J AU Scime, EE Barrie, A Dugas, M Elliott, D Ellison, S Keesee, AM Pollock, CJ Rager, A Tersteeg, J AF Scime, E. E. Barrie, A. Dugas, M. Elliott, D. Ellison, S. Keesee, A. M. Pollock, C. J. Rager, A. Tersteeg, J. TI Key elements of a low voltage, ultracompact plasma spectrometer SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE plasma spectrometer ID MISSION AB Taking advantage of technological developments in wafer-scale processing over the past two decades, such as deep etching, 3-D chip stacking, and double-sided lithography, we have designed and fabricated the key elements of an ultracompact (1.5cm)(3) plasma spectrometer that requires only low-voltage power supplies, has no microchannel plates, and has a high aperture area to instrument volume ratio. The initial design of the instrument targets the measurement of charged particles in the 3-20keV range with a highly directional field of view and a 100% duty cycle; i.e., the entire energy range is continuously measured. In addition to reducing mass, size, and voltage requirements, the new design will affect the manufacturing process of plasma spectrometers, enabling large quantities of identical instruments to be manufactured at low individual unit cost. Such a plasma spectrometer is ideal for heliophysics plasma investigations, particularly for small satellite and multispacecraft missions. Two key elements of the instrument have been fabricated: the collimator and the energy analyzer. An initial collimator transparency of 20% with 3 degrees x3 degrees angular resolution was achieved. The targeted 40% collimator transparency appears readily achievable. The targeted energy analyzer scaling factor of 1875 was achieved; i.e., 20keV electrons were selected for only a 10.7V bias voltage in the energy analyzer. Key Points C1 [Scime, E. E.; Elliott, D.; Keesee, A. M.] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Barrie, A.; Pollock, C. J.; Rager, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Dugas, M.; Ellison, S.; Tersteeg, J.] Adv Res Corp, White Bear Lake, MN USA. RP Scime, EE (reprint author), W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. EM escime@wvu.edu FU NASA [NNX14AJ36G] FX This work is supported by NASA grant NNX14AJ36G. NR 22 TC 0 Z9 0 U1 2 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2016 VL 121 IS 2 BP 1452 EP 1465 DI 10.1002/2015JA022208 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH7VN UT WOS:000373002100039 ER PT J AU Fernandes, PA Lynch, KA Zettergren, M Hampton, DL Bekkeng, TA Cohen, IJ Conde, M Fisher, LE Horak, P Lessard, MR Miceli, RJ Michell, RG Moen, J Powell, SP AF Fernandes, P. A. Lynch, K. A. Zettergren, M. Hampton, D. L. Bekkeng, T. A. Cohen, I. J. Conde, M. Fisher, L. E. Horak, P. Lessard, M. R. Miceli, R. J. Michell, R. G. Moen, J. Powell, S. P. TI Measuring the seeds of ion outflow: Auroral sounding rocket observations of low-altitude ion heating and circulation SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE auroral ionosphere; sounding rocket; low-altitude heating; fine-scale structure; ion upflow and downflow; electrostatic analyzer ID F-REGION; ALFVEN WAVES; EISCAT OBSERVATIONS; TOPSIDE IONOSPHERE; PLASMA STRUCTURE; LOWER-HYBRID; POLAR CUSP; HEAVY-IONS; ACCELERATION; ENERGIZATION AB We present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfven Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure convection away from the arc (poleward) and downflows of hundreds of ms(-1) poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvenic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred ms(-1) upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). The low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected. C1 [Fernandes, P. A.; Lynch, K. A.; Fisher, L. E.; Horak, P.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Fernandes, P. A.] Los Alamos Natl Lab, ISR Space Sci & Applicat 1, Los Alamos, NM USA. [Zettergren, M.] Embry Riddle Aeronaut Univ, Dept Phys Sci, Daytona Beach, FL USA. [Hampton, D. L.; Conde, M.] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Bekkeng, T. A.; Moen, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Cohen, I. J.; Lessard, M. R.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Cohen, I. J.; Miceli, R. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Miceli, R. J.] Cornell Univ, Earth & Atmospher Sci, Ithaca, NY USA. [Michell, R. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Michell, R. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Powell, S. P.] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY USA. RP Fernandes, PA (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.; Fernandes, PA (reprint author), Los Alamos Natl Lab, ISR Space Sci & Applicat 1, Los Alamos, NM USA. EM pfernandes@lanl.gov RI Cohen, Ian/K-3038-2015; OI Cohen, Ian/0000-0002-9163-6009; Powell, Steven/0000-0002-8829-6752 FU NASA [NNX10AL18G, NNX10AL97H, NNX10AL20G, NNX10AL17G, NNX10AL16G]; Dartmouth College; NSF [AGS-1339537]; ESA PRODEX [4200090335]; Research Council of Norway [230996] FX The MICA analysis is dedicated to the memory of Paul M Kintner, Jr. MICA analysis work at Dartmouth College was funded by NASA grant NNX10AL18G, NASA space grant NNX10AL97H, and by Dartmouth College's Presidential Scholar and Senior Honors Thesis programs. Work at ERAU was funded by NSF grant AGS-1339537, at UAF/GI by NASA grant NNX10AL20G, at UNH by NASA grant NNX10AL17G, and at Cornell by NASA grant NNX10AL16G. Work at UiO has been supported by the ESA PRODEX contract 4200090335 and the Research Council of Norway grant 230996. The MICA team thanks the engineering group at NASA Wallops Flight Facility and NSROC for their hard work and dedication to sounding rocket missions. The MICA project was aided by SRI/PFISR, and by the UAF/GI staff at Poker Flat Research Range. We thank Bryan Wright at ERAU for analysis of the PFISR ion temperature data. The authors thank David Knudsen for his substantive constructive commentary on the manuscript. All data may be requested from the lead author. NR 95 TC 5 Z9 5 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2016 VL 121 IS 2 BP 1587 EP 1607 DI 10.1002/2015JA021536 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH7VN UT WOS:000373002100048 ER PT J AU Lynn, BH Khain, AP Bao, JW Michelson, SA Yuan, T Kelman, G Rosenfeld, D Shpund, J Benmoshe, N AF Lynn, Barry H. Khain, Alexander P. Bao, Jian Wen Michelson, Sara A. Yuan, Tianle Kelman, Guy Rosenfeld, Daniel Shpund, Jacob Benmoshe, Nir TI The Sensitivity of Hurricane Irene to Aerosols and Ocean Coupling: Simulations with WRF Spectral Bin Microphysics SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID MARINE BOUNDARY-LAYER; TROPICAL CYCLONE INTENSITY; MODEL. PART; STRONG WIND; LANDFALLING HURRICANES; CONVECTIVE CLOUDS; SPRAY FORMATION; SEA SPRAY; RESOLUTION; IMPACT AB Hurricane Irene (2011) moved northward along the eastern coast of the United States and was expected to cause severe wind and flood damage. However, the hurricane weakened much faster than was predicted. Moreover, the minimum pressure in Irene occurred, atypically, about 40 h later than the time of maximum wind speed. Possible reasons for Irene's weakening and the time shift between maximum wind and minimum central pressure were studied in simulations using WRF with spectral bin microphysics (WRF-SBM) with 1-km grid spacing and ocean coupling. Both ocean coupling and aerosol distribution/concentration were found to influence Irene's development. Without ocean coupling or with ocean coupling and uniform aerosol distribution, the simulated maximum wind occurred at about the same time as the minimum pressure. With ocean coupling and nonuniform spatial aerosol distributions caused by aerosols from the Saharan air layer (band) and the continental United States, the maximum wind occurred about 40 h before the simulated minimum pressure, in agreement with observations. Concentrations of aerosols of several hundred per cubic centimeter in the inner core were found to initially cause convection invigoration in the simulated eyewall. In contrast, a weakening effect dominated at the mature and the decaying stages, when aerosols from the band and land intensified convection at the simulated storm's periphery. Simulations made with 3-km instead of 1-km grid spacing suggest that cloud-scale processes interactions are required to correctly simulate the timing differences between maximum wind and minimum pressure. C1 [Lynn, Barry H.; Khain, Alexander P.; Rosenfeld, Daniel; Shpund, Jacob; Benmoshe, Nir] Hebrew Univ Jerusalem, Dept Atmospher Sci, IL-91904 Jerusalem, Israel. [Bao, Jian Wen] NOAA, ESRL, Boulder, CO USA. [Michelson, Sara A.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Yuan, Tianle] Goddard Space Flight Ctr, Radiat & Climate Lab, Greenbelt, MD USA. [Kelman, Guy] Weather It Is Ltd, Efrat, Israel. RP Khain, AP (reprint author), Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. EM alexander.khain@mail.huji.ac.il RI Rosenfeld, Daniel/F-6077-2016 OI Rosenfeld, Daniel/0000-0002-0784-7656 FU U.S. Department of Energy's Atmospheric Science Program, Atmospheric System Research; Office of Science, Office of Biological and Environmental Research program [DE-SC0006788, DE-SC0008811]; Binational United States-Israel Science Foundation [2010446] FX This research was supported by the U.S. Department of Energy's Atmospheric Science Program, Atmospheric System Research, and the Office of Science, Office of Biological and Environmental Research program under Grants DE-SC0006788 and DE-SC0008811, as well as by the Binational United States-Israel Science Foundation (Grant 2010446). We acknowledge the Department of Energy for granting us access to their supercomputing cluster. We would also like to thank NOAA's ESRL for providing computing for preliminary simulations studies and the NCDC for providing us with GFS reanalysis data. NR 51 TC 3 Z9 3 U1 7 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD FEB PY 2016 VL 73 IS 2 BP 467 EP 486 DI 10.1175/JAS-D-14-0150.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH8DW UT WOS:000373024700002 ER PT J AU van Diedenhoven, B Ackerman, AS Fridlind, AM Cairns, B AF van Diedenhoven, Bastiaan Ackerman, Andrew S. Fridlind, Ann M. Cairns, Brian TI On Averaging Aspect Ratios and Distortion Parameters over Ice Crystal Population Ensembles for Estimating Effective Scattering Asymmetry Parameters SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID MULTIDIRECTIONAL POLARIZATION MEASUREMENTS; CIRRUS CLOUDS; SURFACE-ROUGHNESS; RADIATIVE PROPERTIES; OPTICAL-PROPERTIES; CLIMATE MODELS; PARTICLES; EVOLUTION; GROWTH AB The use of ensemble-average values of aspect ratio and distortion parameter of hexagonal ice prisms for the estimation of ensemble-average scattering asymmetry parameters is evaluated. Using crystal aspect ratios greater than unity generally leads to ensemble-average values of aspect ratio that are inconsistent with the ensemble-average asymmetry parameters. When a definition of aspect ratio is used that limits the aspect ratio to below unity alpha(<= 1) for both hexagonal plates and columns, the effective asymmetry parameters calculated using ensemble-average aspect ratios are generally consistent with ensemble-average asymmetry parameters, especially if aspect ratios are geometrically averaged. Ensemble-average distortion parameters generally also yield effective asymmetry parameters that are largely consistent with ensemble-average asymmetry parameters. In the case of mixtures of plates and columns, it is recommended to geometrically average the alpha(<= 1) aspect ratios and to subsequently calculate the effective asymmetry parameter using a column or plate geometry when the contribution by columns to a given mixture's total projected area is greater or less than 50%, respectively. In addition, it is shown that ensemble-average aspect ratios, distortion parameters, and asymmetry parameters can generally be retrieved accurately from simulated multidirectional polarization measurements based on mixtures of varying columns and plates. However, such retrievals tend to be somewhat biased toward yielding columnlike aspect ratios. Furthermore, generally large retrieval errors can occur for mixtures with approximately equal contributions of columns and plates and for ensembles with strong contributions of thin plates. C1 [van Diedenhoven, Bastiaan] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Fridlind, Ann M.; Cairns, Brian] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP van Diedenhoven, B (reprint author), Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. EM bastiaan.vandiedenhoven@nasa.gov OI Cairns, Brian/0000-0002-1980-1022 FU NASA ROSES (Science of Aqua and Terra) program [NNX14AJ28G] FX This material is based upon work supported by the NASA ROSES (Science of Aqua and Terra) program under Grant NNX14AJ28G. We thank three anonymous reviewers for their contributions. NR 40 TC 2 Z9 2 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD FEB PY 2016 VL 73 IS 2 BP 775 EP 787 DI 10.1175/JAS-D-15-0150.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH8DW UT WOS:000373024700018 ER PT J AU Alexandrov, MD Geogdzhayev, IV Tsigaridis, K Marshak, A Levy, R Cairns, B AF Alexandrov, Mikhail D. Geogdzhayev, Igor V. Tsigaridis, Kostas Marshak, Alexander Levy, Robert Cairns, Brian TI New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID LIQUID WATER DISTRIBUTIONS; MARINE STRATOCUMULUS; SCALE-INVARIANCE; INTERMITTENCY; SIMULATIONS; PRODUCTS; CLOUDS; ISSUES; DEPTH AB A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach, AOT fields have lognormal PDFs and structure functions with the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a 1-yr-long global MODISAOT dataset (over ocean) with 10-km resolution. It was used to compute AOT statistics for sample cells forming a grid with 58 spacing. The observed shapes of the structure functions indicated that, in a large number of cases, the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs. C1 [Alexandrov, Mikhail D.; Geogdzhayev, Igor V.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Alexandrov, Mikhail D.; Geogdzhayev, Igor V.; Tsigaridis, Kostas; Cairns, Brian] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Tsigaridis, Kostas] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Marshak, Alexander; Levy, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Alexandrov, MD (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mda14@columbia.edu RI Levy, Robert/M-7764-2013; Marshak, Alexander/D-5671-2012; OI Levy, Robert/0000-0002-8933-5303; Cairns, Brian/0000-0002-1980-1022 FU NASA Radiation Sciences Program; NASA's Atmospheric Composition Modeling and Analysis Program (ACMAP) [NNX15AE36G] FX This research was funded by the NASA Radiation Sciences Program managed by Hal Maring. Kostas Tsigaridis acknowledges support from NASA's Atmospheric Composition Modeling and Analysis Program (ACMAP), Contract NNX15AE36G. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. We thank the two anonymous reviewers for thoughtful remarks that allowed us to substantially improve the paper. We also thank A. Davis and M. Mishchenko for useful discussions. NR 38 TC 0 Z9 0 U1 3 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD FEB PY 2016 VL 73 IS 2 BP 821 EP 837 DI 10.1175/JAS-D-15-0130.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH8DW UT WOS:000373024700021 ER PT J AU Morabito, DD D'Addario, L Finley, S AF Morabito, David D. D'Addario, Larry Finley, Susan TI A comparison of atmospheric effects on differential phase for a two-element antenna array and nearby site test interferometer SO RADIO SCIENCE LA English DT Article DE arraying; interferometry; propagation AB Phased arrays of reflector antennas can be used to obtain effective area and gain that are much larger than is practical with a single antenna. This technique is routinely used by NASA for receiving weak signals from deep space. Phase alignment of the signals can be disrupted by turbulence in the troposphere, which causes fluctuations in the differences of signal delays among the antennas. At the Deep Space Network stations, site test interferometers (STIs) are being used for long-term monitoring of these delay fluctuations using signals from geostationary satellites. In this paper, we compare the STI measurements with the phase variations seen by a nearby two-element array of 34m diameter antennas tracking 8.4GHz and 32GHz signals from the Cassini spacecraft in orbit around Saturn. It is shown that the statistics of the STI delay fluctuations, after appropriate scaling for differences in antenna separation and elevation angle and conversion to phase at the spacecraft frequencies, provide reliable estimates of the phase fluctuations seen by the large antennas on the deep space signal. Techniques for adaptive compensation of the phase fluctuations are available when receiving a sufficiently strong signal, but compensation is often impractical or impossible when using the array for transmitting. These results help to validate the use of long-term STI data for assessing the feasibility of large transmitting arrays at various sites. C1 [Morabito, David D.; D'Addario, Larry; Finley, Susan] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Morabito, DD (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM David.D.Morabito@jpl.nasa.gov FU U.S. Government FX We would like to thank Barry Geldzahler, Faramaz Davarian, and Steven Townes for their support of this study; Steve Rogstad for some valuable comments; Sami Asmar and the radio science support team (Aseel Anabtawi, Daniel Kahan, and Kahan Oudrhini) for allowing us to conduct the array demonstrations during their Cassini radio science tracks on a noninterference basis; Daniel Kahan for preprocessing the open-loop receiver data sets; and the DSN support staff (Mitch Metes, Lu Nguyen, and Steven Benites of ITT Exelis) in setting up and configuring the equipment and generating the data products needed for conducting these array demonstration passes. The input files necessary to reproduce the results are available from the authors upon request. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. U.S. Government sponsorship is acknowledged. NR 17 TC 0 Z9 0 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD FEB PY 2016 VL 51 IS 2 BP 91 EP 103 DI 10.1002/2015RS005763 PG 13 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA DH9ML UT WOS:000373120100004 ER PT J AU Bloomfield, DS Gallagher, PT Marquette, WH Milligan, RO Canfield, RC AF Bloomfield, D. S. Gallagher, P. T. Marquette, W. H. Milligan, R. O. Canfield, R. C. TI Performance of Major Flare Watches from the Max Millennium Program (2001-2010) SO SOLAR PHYSICS LA English DT Article DE Active regions, magnetic fields; Flares, forecasting; Flares, relation to magnetic field; Magnetic fields, photosphere; Sunspots, statistics ID VECTOR MAGNETIC-FIELD; SOLAR-FLARE; PREDICTION; NONPOTENTIALITY; ENERGY; SUN AB The physical processes that trigger solar flares are not well understood, and significant debate remains around processes governing particle acceleration, energy partition, and particle and energy transport. Observations at high resolution in energy, time, and space are required in multiple energy ranges over the whole course of many flares to build an understanding of these processes. Obtaining high-quality, co-temporal data from ground- and space- based instruments is crucial to achieving this goal and was the primary motivation for starting the Max Millennium program and Major Flare Watch (MFW) alerts, aimed at coordinating observations of all flares a parts per thousand yenaEuro parts per thousand X1 GOES X-ray classification (including those partially occulted by the limb). We present a review of the performance of MFWs from 1 February 2001 to 31 May 2010, inclusive, which finds that (1) 220 MFWs were issued in 3407 days considered (6.5 % duty cycle), with these occurring in 32 uninterrupted periods that typically last 2 -aEuro parts per thousand 8 days; (2) 56% of flares a parts per thousand yenaEuro parts per thousand X1 were caught, occurring in 19 % of MFW days; (3) MFW periods ended at suitable times, but substantial gain could have been achieved in percentage of flares caught if periods had started 24 h earlier; (4) MFWs successfully forecast X-class flares with a true skill statistic (TSS) verification metric score of 0.500, that is comparable to a categorical flare/no-flare interpretation of the NOAA Space Weather Prediction Centre probabilistic forecasts (TSS = 0.488). C1 [Bloomfield, D. S.; Gallagher, P. T.] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland. [Marquette, W. H.] Helio Res, 5212 Maryland Ave, La Crescenta, CA 91214 USA. [Milligan, R. O.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Univ Rd, Belfast BT7 1NN, Antrim, North Ireland. [Milligan, R. O.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. [Milligan, R. O.] Catholic Univ Amer, Dept Phys, 620 Michigan Ave,NE, Washington, DC 20064 USA. [Canfield, R. C.] Montana State Univ, Bozeman, MT 59715 USA. RP Bloomfield, DS (reprint author), Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland. EM shaun.bloomfield@tcd.ie RI Gallagher, Peter/C-7717-2011; OI Gallagher, Peter/0000-0001-9745-0400; Bloomfield, Shaun/0000-0002-4183-9895 FU University of California, Berkeley [SA-1868 26308PG]; Montana State University [SA-1868 26308PG]; European Space Agency PRODEX Programme; European Union [640216]; NASA LWS/TRT grant [NNX11AQ53G]; NASA LWS/SDO Data Analysis grant [NNX14AE07G] FX The authors wish to thank the excellent efforts of both our newest MMCO (Ying Li) and past MMCOs who have contributed since 2001 (in alphabetical surname order: Paul A. Higgins, R.T. James McAteer, and Claire L. Raftery), Keiji Yoshimura for maintaining the Max Millennium website, and the referee for useful comments that helped improve the manuscript. The Max Millennium program has been supported by the enlightened RHESSI PI team led by Principle Investigator Robert P. Lin (later Sam Krucker) and Project Scientist Brian R. Dennis through Sub-agreement No. SA-1868 26308PG between University of California, Berkeley and Montana State University. DSB received funding from the European Space Agency PRODEX Programme and the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 640216 (FLARECAST project). ROM received funding from NASA LWS/TR&T grant NNX11AQ53G and NASA LWS/SDO Data Analysis grant NNX14AE07G. NR 28 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD FEB PY 2016 VL 291 IS 2 BP 411 EP 427 DI 10.1007/s11207-015-0833-6 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH6CI UT WOS:000372878200006 ER PT J AU Jensen, EA Frazin, R Heiles, C Lamy, P Llebaria, A Anderson, JD Bisi, MM Fallows, RA AF Jensen, E. A. Frazin, R. Heiles, C. Lamy, P. Llebaria, A. Anderson, J. D. Bisi, M. M. Fallows, R. A. TI The Comparison of Total Electron Content Between Radio and Thompson Scattering SO SOLAR PHYSICS LA English DT Article DE Electron density; Instrumental effects; Integrated Sun observations; Radio scintillation; Solar corona; Thompson scattering ID POLARIZED WHITE-LIGHT; SOLAR CORONA; FARADAY-ROTATION; MAGNETIC FIELDS; LASCO-C2; INTERPLANETARY; TOMOGRAPHY; DENSITY; IMAGES AB The total electron content (TEC) of the solar corona in June 2002 is calculated by three observational techniques and the results are compared. The first technique is solar rotational tomography (SRT) applied to a 14-day time series of LASCO-C2 polarized brightness images, and the other two techniques use the Cassini spacecraft radio beacon for Doppler tracking (phase delay) and ranging (group delay). While the Doppler-tracking technique has an arbitrary zero-point, it is otherwise found that the three methods produce consistent estimates of the TEC to within established uncertainties, providing an independent check on the calibrations. The verification of the accuracy of the Doppler-tracking technique enables a significant improvement to the use of spacecraft data sets in studying the heliosphere: the density component to Faraday rotation can be separated from the magnetic-field component as variable structures cross, such as coronal mass ejections and magnetohydrodynamic waves. Furthermore, we show that the unique frequency-time variable characteristics of the hydrodynamic components of waves can be studied. Based on this work, future Faraday rotation studies of variable solar phenomena will isolate the electron density changes from the magnetic-field contribution. This capability will enable advanced research into variable heliospheric magnetic fields. C1 [Jensen, E. A.] Planetary Sci Inst, Tucson, AZ USA. [Jensen, E. A.] ACS Consulting, ACS Engn & Safety, Houston, TX USA. [Frazin, R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Heiles, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Lamy, P.; Llebaria, A.] Univ Provence, Lab Astrophys Marseille, CNRS, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France. [Anderson, J. D.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bisi, M. M.] Rutherford Appleton Lab, RAL Space Sci & Technol Facil Council, Didcot, Oxon, England. [Fallows, R. A.] ASTRON, Netherlands Inst Radio Astron, Zwiggelte, Netherlands. RP Jensen, EA (reprint author), Planetary Sci Inst, Tucson, AZ USA.; Jensen, EA (reprint author), ACS Consulting, ACS Engn & Safety, Houston, TX USA. EM eaj@acs-consulting.com; rfrazin@umich.edu; heiles@astro.berkeley.edu; philippe.lamy@oamp.fr; antoine.llebaria@oamp.fr; johna34oz@yahoo.com; mario.bisi@stfc.ac.uk; fallows@astron.nl FU NASA Graduate Student Research Fellowship Program; University of California, Los Angeles; ACS Engineering Safety, Ltd. FX The authors thank Luciano Iess, Christopher Russell, Faith Vilas, the Cassini Science Team, and the Deep Space Network Radio Science Systems Group. This research was supported by the NASA Graduate Student Research Fellowship Program, the University of California, Los Angeles, and ACS Engineering & Safety, Ltd. NR 21 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD FEB PY 2016 VL 291 IS 2 BP 465 EP 485 DI 10.1007/s11207-015-0834-5 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH6CI UT WOS:000372878200009 ER PT J AU Thakur, N Gopalswamy, N Makela, P Akiyama, S Yashiro, S Xie, H AF Thakur, N. Gopalswamy, N. Maekelae, P. Akiyama, S. Yashiro, S. Xie, H. TI Two Exceptions in the Large SEP Events of Solar Cycles 23 and 24 SO SOLAR PHYSICS LA English DT Article DE Solar energetic particles; Ground level enhancement; Coronal mass ejections ID ENERGETIC PARTICLE EVENTS; CORONAL MASS EJECTIONS; GROUND-LEVEL ENHANCEMENT; II RADIO-BURSTS; FILAMENT ERUPTIONS; SHOCK FORMATION; RELEASE TIMES; HEIGHT AB We discuss our findings from a survey of all large solar energetic particle (SEP) events of Solar Cycles 23 and 24, i.e. the SEP events where the intensity of > 10 MeV protons observed by GOES was > 10 pfu. In our previous work (Gopalswamy et al. in Geophys. Res. Lett. 41, 2673, 2014) we suggested that ground level enhancements (GLEs) in Cycles 23 and 24 also produce an intensity increase in the GOES > 700 MeV proton channel. Our survey, now extended to include all large SEP events of Cycle 23, confirms this to be true for all but two events: i) the GLE of 6 May 1998 (GLE57) for which GOES did not observe enhancement in > 700 MeV protons intensities and ii) a high-energy SEP event of 8 November 2000, for which GOES observed > 700 MeV protons but no GLE was recorded. Here we discuss these two exceptions. We compare GLE57 with other small GLEs, and the 8 November 2000 SEP event with those that showed similar intensity increases in the GOES > 700 MeV protons but produced GLEs. We find that, because GOES > 700 MeV proton intensity enhancements are typically small for small GLEs, they are difficult to discern near solar minima due to higher background. Our results also support that GLEs are generally observed when shocks of the associated coronal mass ejections (CMEs) form at heights 1.2 -aEuro parts per thousand 1.93 solar radii [] and when the solar particle release occurs between 2 -aEuro parts per thousand 6 . Our secondary findings support the view that the nose region of the CME-shock may be accelerating the first-arriving GLE particles and the observation of a GLE is also dependent on the latitudinal connectivity of the observer to the CME-shock nose. We conclude that the GOES > 700 MeV proton channel can be used as an indicator of GLEs excluding some rare exceptions, such as those discussed here. C1 [Thakur, N.; Gopalswamy, N.; Maekelae, P.; Akiyama, S.; Yashiro, S.; Xie, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Thakur, N.; Maekelae, P.; Akiyama, S.; Yashiro, S.; Xie, H.] Catholic Univ Amer, Washington, DC 20064 USA. RP Thakur, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.; Thakur, N (reprint author), Catholic Univ Amer, Washington, DC 20064 USA. EM Neeharika.Thakur@nasa.gov FU National Science Foundation; European Union [213007]; NASA's LWS TRT program FX We thank A. Tylka and J. Rodriguez for valuable discussions on GOES data. We acknowledge the Oulu and Bartol neutron-monitor websites for data and GLE information. Neutron monitors of the Bartol Research Institute are supported by the National Science Foundation. We acknowledge the NMDB database (www.nmdb.eu), founded under the European Union's FP7 programme (contract No. 213007) for providing data. The sunspot-number data were taken from the SILSO data center, Royal Observatory of Belgium, Brussels. We acknowledge NOAA for making GOES data available. SOHO is a project of international collaboration between ESA and NASA. This work was supported by NASA's LWS TR&T program. NR 34 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD FEB PY 2016 VL 291 IS 2 BP 513 EP 530 DI 10.1007/s11207-015-0830-9 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DH6CI UT WOS:000372878200011 ER PT J AU Rastatter, L Shim, JS Kuznetsova, MM Kilcommons, LM Knipp, DJ Codrescu, M Fuller-Rowell, T Emery, B Weimer, DR Cosgrove, R Wiltberger, M Raeder, J Li, WH Toth, G Welling, D AF Rastaetter, Lutz Shim, Ja Soon Kuznetsova, Maria M. Kilcommons, Liam M. Knipp, Delores J. Codrescu, Mihail Fuller-Rowell, Tim Emery, Barbara Weimer, Daniel R. Cosgrove, Russell Wiltberger, Michael Raeder, Joachim Li, Wenhui Toth, Gabor Welling, Daniel TI GEM-CEDAR challenge: Poynting flux at DMSP and modeled Joule heat SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article DE GEM-CEDAR challenge; DMSP Poynting flux; data-model comparison ID IONOSPHERE-THERMOSPHERE MODEL; GENERAL-CIRCULATION MODEL; COUPLED ELECTRODYNAMICS; MAGNETOSPHERE; SIMULATION; MAGNETOHYDRODYNAMICS; COMMUNITY; RESPONSES; EVENT; STORM AB Poynting flux into the ionosphere measures the electromagnetic energy coming from the magnetosphere. This energy flux can vary greatly between quiet times and geomagnetic active times. As part of the Geospace Environment Modeling-coupling energetics and dynamics of atmospheric regions modeling challenge, physics-based models of the 3-D ionosphere and ionospheric electrodynamics solvers of magnetosphere models that specify Joule heat and empirical models specifying Poynting flux were run for six geomagnetic storm events of varying intensity. We compared model results with Poynting flux values along the DMSP-15 satellite track computed from ion drift meter and magnetic field observations. Although being a different quantity, Joule heat can in practice be correlated to incoming Poynting flux because the energy is dissipated primarily in high latitudes where Poynting flux is being deposited. Within the physics-based model group, we find mixed results with some models overestimating Joule heat and some models agreeing better with observed Poynting flux rates as integrated over auroral passes. In contrast, empirical models tend to underestimate integrated Poynting flux values. Modeled Joule heat or Poynting flux patterns often resemble the observed Poynting flux patterns on a large scale, but amplitudes can differ by a factor of 2 or larger due to the highly localized nature of observed Poynting flux deposition that is not captured by the models. In addition, the positioning of modeled patterns appear to be randomly shifted against the observed Poynting flux energy input. This study is the first to compare Poynting flux and Joule heat in a large variety of models of the ionosphere. C1 [Rastaetter, Lutz; Shim, Ja Soon; Kuznetsova, Maria M.] NASA, Community Coordinated Modeling Ctr, Goddard Space Flight Ctr, Greenbelt, MD USA. [Shim, Ja Soon] Catholic Univ Amer, IACS, Washington, DC 20064 USA. [Kilcommons, Liam M.; Knipp, Delores J.] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA. [Knipp, Delores J.; Emery, Barbara; Wiltberger, Michael] Natl Ctr Atmospher Res, High Altitude Observ, Pob 3000, Boulder, CO 80307 USA. [Codrescu, Mihail; Fuller-Rowell, Tim] Natl Ocean & Atmospher Adm, Space Weather Predict Ctr, Boulder, CO USA. [Weimer, Daniel R.] Virginia Tech, Blacksburg, VA USA. [Cosgrove, Russell] SRI Int, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA. [Raeder, Joachim; Li, Wenhui] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Toth, Gabor; Welling, Daniel] Univ Michigan, Sch Engn, Ann Arbor, MI 48109 USA. RP Rastatter, L (reprint author), NASA, Community Coordinated Modeling Ctr, Goddard Space Flight Ctr, Greenbelt, MD USA. EM Lutz.Rastaetter@nasa.gov RI Wiltberger, Michael/B-8781-2008; Toth, Gabor/B-7977-2013; OI Wiltberger, Michael/0000-0002-4844-3148; Toth, Gabor/0000-0002-5654-9823; Rastaetter, Lutz/0000-0002-7343-4147 FU NASA [NNX13AG07G]; NSF [AGS 1144154]; AFOSR [12-091, FA9550-12*0264]; National Science Foundation FX DMSP data, outputs, and time series data from all models are available at the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov): Follow the "Metrics and Validation" and "GEM-CEDAR Challenge" links. In the GEM-CEDAR challenge page, the link titled " Time series plotting tool (magnetosphere)" leads to a table (http://ccmc.gsfc.nasa.gov/challenges/GEM-CEDAR/plotting_tool_mag.php) with the events and physical quantities that were studied, including Poynting flux at the DMSP (F15) satellite. Solar wind input data for the models (magnetic field and plasma parameters) were obtained from CDAWeb (http://cdaweb.gsfc.nasa.gov). AL, Kp, and Dst index data are provided by the World Data Center for Geomagnetism in Kyoto, Japan (http://wdc.kugi.kyoto-u.ac.jp). D. J.K. and L.M.K. were partially supported by NASA grant NNX13AG07G. L.M.K. was also partially supported by NSF grant AGS 1144154. D.J.K. was partially supported by AFOSR award 12-091; FA9550-12*0264. The National Center for Atmospheric Research (NCAR) is supported by the National Science Foundation. The authors thank Art Richmond and Marc Hairston for their valuable discussions in improving the manuscript. The authors remember Kelly Ann Drake who prepared the DMSP data and got the effort started. NR 49 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD FEB PY 2016 VL 14 IS 2 BP 113 EP 135 DI 10.1002/2015SW001238 PG 23 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DH9MY UT WOS:000373121400006 ER PT J AU Popovic, Z Afridi, KK Ponchak, GE AF Popovic, Zoya Afridi, Khurram K. Ponchak, George E. TI MINI-SPECIAL ISSUE ON 2015 IEEE WIRELESS POWER TRANSFER CONFERENCE (WPTC 2015) SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Editorial Material C1 [Popovic, Zoya; Afridi, Khurram K.] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Ponchak, George E.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Popovic, Z (reprint author), Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD FEB PY 2016 VL 64 IS 2 BP 329 EP 330 DI 10.1109/TMTT.2016.2515167 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA DH0QB UT WOS:000372487600001 ER PT J AU Ng, HK Sridhar, B AF Ng, Hok K. Sridhar, Banavar TI Computational Approaches to Simulation and Optimization of Global Aircraft Trajectories SO JOURNAL OF AEROSPACE INFORMATION SYSTEMS LA English DT Article ID EVENT-TRIGGERED CONTROL; AIR VEHICLES; SYSTEMS AB This study examines three possible approaches to improving the speed in generating wind-optimal routes for air traffic at the national or global level. They are 1) using the resources of a supercomputer, 2) running the computations on multiple commercially available computers, and 3) implementing those same algorithms into NASA's FACET and comparing those to a standard implementation run on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic schedules. The run time and wait time on the supercomputer for trajectory optimization using various numbers of CPUsranging from 80 to 10,240 units are compared with the total computational time for running the same computation on a single desktop computer and on multiple commercially available computers for potential computational enhancement through parallel processing on the computer clusters. This study also reimplements the trajectory optimization algorithm for further reduction of computational time through algorithm modifications and integrates that with FACET to facilitate the use of the new features that calculate time-optimal routes between worldwide airport pairs in a wind field for use with existing FACET applications. The implementations of trajectory optimization algorithms use MATLAB (R), Python, and Java programming languages. The performance evaluations are done by comparing their computational efficiencies and based on the potential application of optimized trajectories. The paper shows that in the absence of special privileges on a supercomputer a cluster of commercially available computers provides a feasible approach for national and global air traffic system studies. C1 [Ng, Hok K.] Univ Calif Santa Cruz, MS 210-8, Moffett Field, CA 94035 USA. [Sridhar, Banavar] NASA, Ames Res Ctr, Air Transportat Syst, Aviat Syst Div, Moffett Field, CA 94035 USA. RP Ng, HK (reprint author), Univ Calif Santa Cruz, MS 210-8, Moffett Field, CA 94035 USA. FU Nvidia Corporation; European Union Marie Curie network AstroNet-II [PITN-GA 2011-289240] FX The authors are grateful for the generous support of this work by Nvidia Corporation through the donation of two NvidiaTesla K20c GPGPU accelerator cards within the Nvidia academic partnership program. A. Wittig gratefully acknowledges the support received from the European Union Marie Curie network AstroNet-II (PITN-GA 2011-289240). The authors would like to thank C. Zhang and F. Topputo for their low-thrust trajectory optimizer, as well as C. Colombo and F. Letizia for their CPU implementation of a branch-and-bound algorithm and A. Morselli for his work on the mothership trajectory optimization code. NR 13 TC 0 Z9 0 U1 1 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 EI 2327-3097 J9 J AEROSP INFORM SYST JI J. Aerosp. Inf. Syst. PD FEB PY 2016 VL 13 IS 2 BP 1 EP 13 DI 10.2514/1.I010398 PG 13 WC Engineering, Aerospace SC Engineering GA DH5JU UT WOS:000372824400001 ER PT J AU Adrian-Martinez, S Ageron, M Albert, A Al Samarai, I Andre, M Anton, G Ardid, M Aubert, JJ Baret, B Barrios-Marti, J Basa, S Bertin, V Biagi, S Bogazzi, C Bormuth, R Bou-Cabo, M Bouwhuis, MC Bruijnk, R Brunner, J Busto, J Capone, A Caramete, L Carr, J Chiarusi, T Circella, M Coniglione, R Costantini, H Coyle, P Creusot, A Dekeyser, I Deschamps, A Bonis, G Distefano, C Donzaud, C Dornic, D Drouhin, D Dumas, A Eberl, T Elsasser, D Enzenhofer, A Fehn, K Feis, I Fermani, P Folger, F Fusco, LA Galata, S Gay, P Geisselsoder, S Geyer, K Giordano, V Gleixner, A Gracia-Ruiz, R Graf, K van Haren, H Heijboer, AJ Hello, Y Hernandez-Rey, JJ Herrero, A Hossl, J Hofestadt, J Hugon, C James, CW De Jong, M Kadler, M Kalekin, O Katz, U Kiessling, D Kooijman, P Kouchner, A Kreykenbohm, I Kulikovskiy, V Lahmann, R Lambard, G Lattuada, D Lefevre, D Leonora, E Loucatos, S Mangano, S Marcelin, M Margiotta, A Martinez-Mora, JA Martini, S Mathieu, A Michael, T Migliozzi, P Moussa, A Mueller, C Neff, M Nezri, E Pavalas, GE Pellegrino, C Perrina, C Piattelli, P Popa, V Pradier, T Racca, C Riccobene, G Richter, R Roensch, K Rostovtsev, A Saldana, M Samtleben, DFE Sanguinetiz, M Sapienza, P Schmid, J Schnabel, J Schulte, S Schussler, F Seitz, T Sieger, C Spurio, M Steijger, JJM Stolarczyk, T Sanchez-Losa, A Taiuti, M Tamburini, C Trovato, A Tselengidou, M Tonnis, C Turpin, D Vallage, B Vallee, C Van Elewyck, V Vecchi, M Visser, E Vivolo, D Wagner, S Wilms, J Zornoza, JD Zuniga, J Klotz, A Boer, M Le Van Suu, A Akerlof, C Zheng, W Evans, P Gehrels, N Kennea, J Osborne, JP Coward, DM AF Adrian-Martinez, S. Ageron, M. Albert, A. Al Samarai, I. Andre, M. Anton, G. Ardid, M. Aubert, J. -J. Baret, B. Barrios-Marti, J. Basa, S. Bertin, V. Biagi, S. Bogazzi, C. Bormuth, R. Bou-Cabo, M. Bouwhuis, M. C. Bruijnk, R. Brunner, J. Busto, J. Capone, A. Caramete, L. Carr, J. Chiarusi, T. Circella, M. Coniglione, R. Costantini, H. Coyle, P. Creusot, A. Dekeyser, I. Deschamps, A. De Bonis, G. Distefano, C. Donzaud, C. Dornic, D. Drouhin, D. Dumas, A. Eberl, T. Elsasser, D. Enzenhofer, A. Fehn, K. Feis, I. Fermani, P. Folger, F. Fusco, L. A. Galata, S. Gay, P. Geisselsoder, S. Geyer, K. Giordano, V. Gleixner, A. Gracia-Ruiz, R. Graf, K. van Haren, H. Heijboer, A. J. Hello, Y. Hernandez-Rey, J. J. Herrero, A. Hossl, J. Hofestadt, J. Hugon, C. James, C. W. De Jong, M. Kadler, M. Kalekin, O. Katz, U. Kiessling, D. Kooijman, P. Kouchner, A. Kreykenbohm, I. Kulikovskiy, V. Lahmann, R. Lambard, G. Lattuada, D. Lefevre, D. Leonora, E. Loucatos, S. Mangano, S. Marcelin, M. Margiotta, A. Martinez-Mora, J. A. Martini, S. Mathieu, A. Michael, T. Migliozzi, P. Moussa, A. Mueller, C. Neff, M. Nezri, E. Pavalas, G. E. Pellegrino, C. Perrina, C. Piattelli, P. Popa, V. Pradier, T. Racca, C. Riccobene, G. Richter, R. Roensch, K. Rostovtsev, A. Saldana, M. Samtleben, D. F. E. Sanguinetiz, M. Sapienza, P. Schmid, J. Schnabel, J. Schulte, S. Schussler, F. Seitz, T. Sieger, C. Spurio, M. Steijger, J. J. M. Stolarczyk, Th. Sanchez-Losa, A. Taiuti, M. Tamburini, C. Trovato, A. Tselengidou, M. Tonnis, C. Turpin, D. Vallage, B. Vallee, C. Van Elewyck, V. Vecchi, M. Visser, E. Vivolo, D. Wagner, S. Wilms, J. Zornoza, J. D. Zuniga, J. Klotz, A. Boer, M. Le Van Suu, A. Akerlof, C. Zheng, W. Evans, P. Gehrels, N. Kennea, J. Osborne, J. P. Coward, D. M. CA ANTARES Collaboration TI Optical and X-ray early follow-up of ANTARES neutrino alerts SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE gamma ray burst experiments; neutrino astronomy; X-ray telescopes ID FERMI-DETECTED BLAZARS; HIGH-ENERGY NEUTRINOS; LIGHT CURVES; ROTSE-III; TELESCOPE; BURSTS; SEARCH; ICECUBE; EMISSION; SYSTEM AB High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or Xray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with Xray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert. C1 [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Feis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain. [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit,BP 50568, F-68008 Colmar, France. [Andre, M.; Wilms, J.] Tech Univ Catalonia, Lab Appl Bioacoust, Barcelona 08800, Spain. [Anton, G.; Eberl, T.; Enzenhofer, A.; Fehn, K.; Folger, F.; Geisselsoder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hossl, J.; Hofestadt, J.; James, C. W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany. [Ageron, M.; Al Samarai, I.; Aubert, J. -J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Turpin, D.; Vallee, C.; Vecchi, M.] Aix Marseille Univ, CNRS, IN2P3, CPPM UMR 7346, F-13288 Marseille, France. [Baret, B.; Creusot, A.; Donzaud, C.; Galata, S.; Gracia-Ruiz, R.; Kouchner, A.; Van Elewyck, V.] Univ Paris Diderot, APC, Observ Paris, CNRS IN2P3,CEA IRFU,Sorbonne Paris Cite, F-75205 Paris, France. [Barrios-Marti, J.; Hernandez-Rey, J. J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Tonnis, C.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, CSIC, IFIC, Edificios Invest Paterna, Apdo Correos 22085, Valencia 46071, Spain. [Basa, S.; Marcelin, M.; Nezri, E.] LAM, Pole Etoile Site Chateau Gombert, Rue Frederic Joliot Curie 38, F-13388 Marseille 13, France. [Chiarusi, T.; Fusco, L. A.; Margiotta, A.; Pellegrino, C.; Spurio, M.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Fusco, L. A.; Margiotta, A.; Pellegrino, C.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Albert, A.; Bogazzi, C.; Bormuth, R.; Bouwhuis, M. C.; Bruijnk, R.; Heijboer, A. J.; De Jong, M.; Kooijman, P.; Michael, T.; Samtleben, D. F. E.; Schulte, S.; Steijger, J. J. M.; Visser, E.] NIKHEF H, Sci Pk, NL-1009 DB Amsterdam, Netherlands. [Bormuth, R.; De Jong, M.; Samtleben, D. F. E.] Leiden Univ, Huygens Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Bruijnk, R.; Kooijman, P.] Univ Amsterdam, Inst Hoge Energie Fys, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. [Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.] Ist Nazl Fis Nucl, Sez Roma, Ple Aldo Moro 2, I-00185 Rome, Italy. [Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.] Univ Roma La Sapienza, Dipartimento Fis, Ple Aldo Moro 2, I-00185 Rome, Italy. [Caramete, L.; Pavalas, G. E.; Popa, V.] Inst Space Sci, RO-077125 Bucharest, Magurele, Romania. [Circella, M.] Ist Nazl Fis Nucl, Sez Bari, Via E Orabona 4, I-70126 Bari, Italy. [Biagi, S.; Coniglione, R.; Distefano, C.; Kulikovskiy, V.; Lattuada, D.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.] Ist Nazl Fis Nucl, LNS, Via S Sofia 62, I-95123 Catania, Italy. [Vecchi, M.] Univ Sao Paulo, Inst Fis Sao Carlos, CP 369, BR-13560970 Sao Carlos, SP, Brazil. [Dekeyser, I.; Lefevre, D.; Martini, S.; Tamburini, C.] Aix Marseille Univ, MIO, F-13288 Marseille 9, France. [Dekeyser, I.; Lefevre, D.; Martini, S.; Tamburini, C.] Univ Sud Toulon Var, CNRS INSU IRD 110, F-83957 La Garde, France. [Deschamps, A.; Hello, Y.] Univ Nice Sophia Antipolis, CNRS, IRD, Geoazur,Observ Cote Azur, Sophia Antipolis, France. [Donzaud, C.] Univ Paris 11, F-91405 Orsay, France. [Dumas, A.; Gay, P.] Univ Clermont Ferrand, Clermont Univ, Lab Phys Corpusculaire, CNRS IN2P3, BP 10448, F-63000 Clermont Ferrand, France. [Elsasser, D.; Kadler, M.; Mueller, C.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Emil Fischer Str 31, D-97074 Wurzburg, Germany. [Giordano, V.; Leonora, E.] Ist Nazl Fis Nucl, Sez Catania, Via S Sofia 64, I-95123 Catania, Italy. [van Haren, H.] Royal Netherlands Inst Sea Res NIOZ, Landsdiep 4, NL-1797 SZ T Horntje, Texel, Netherlands. [Hugon, C.; Sanguinetiz, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Hugon, C.; Sanguinetiz, M.; Taiuti, M.] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy. [Kooijman, P.] Univ Utrecht, Fac Betawetenschappen, Princetonpl 5, NL-3584 CC Utrecht, Netherlands. [Kreykenbohm, I.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Kulikovskiy, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. Univ Catania, Dipartimento Fis, Viale Andrea Doria 6, I-95125 Catania, Italy. [Loucatos, S.; Moussa, A.; Schussler, F.; Stolarczyk, Th.; Vallage, B.] CEA Saclay, Serv Phys Particules, Inst Rech Fondament Univers, Direct Sci Mat, F-91191 Gif Sur Yvette, France. [Migliozzi, P.; Vivolo, D.] Ist Nazl Fis Nucl, Sez Napoli, Via Cintia, I-80126 Naples, Italy. Univ Mohammed 1, Lab Phys Matter & Radiat, BP 717, Oujda 6000, Morocco. [Pradier, T.] Univ Strasbourg, IPHC, 23 Rue Loess,BP 28, F-67037 Strasbourg 2, France. [Pradier, T.] IN2P3, CNRS, 23 Rue Loess,BP 28, F-67037 Strasbourg 2, France. [Rostovtsev, A.] ITEP, B Cheremushkinskaya 25, Moscow 117218, Russia. [Vivolo, D.] Univ Naples Federico II, Dipartimento Fis, Via Cintia, I-80126 Naples, Italy. [Turpin, D.; Klotz, A.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Turpin, D.; Klotz, A.] IRAP, CNRS, 14 Ave Eduard Belin, F-31400 Toulouse, France. [Boer, M.] ARTEMIS, UMR 7250, CNRS OCA UNS, Blvd Observ,BP 4229, F-06304 Nice, France. [Le Van Suu, A.] Observ Haute Provence, F-04870 St Michel lObservatoire, France. [Akerlof, C.] Univ Michigan, 500 East Univ, Ann Arbor, MI 48109 USA. [Zheng, W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Evans, P.; Osborne, J. P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kennea, J.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Aubert, J. -J.; Donzaud, C.; Coward, D. M.] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia. RP Dornic, D; Mathieu, A (reprint author), Aix Marseille Univ, CNRS, IN2P3, CPPM UMR 7346, F-13288 Marseille, France. EM dornic@cppm.in2p3.fr; amathieu@cppm.in2p3.fr RI Schussler, Fabian/G-5313-2013; Katz, Uli/E-1925-2013; James, Clancy/G-9178-2015; Migliozzi, Pasquale/I-6427-2015; Zuniga, Juan/P-4385-2014; Piattelli, Paolo/J-2958-2012; Caramete, Laurentiu/C-2328-2011; Eberl, Thomas/J-4826-2016; Hernandez-Rey, Juan Jose/N-5955-2014; Capone, Antonio/F-1098-2010; Anton, Gisela/C-4840-2013; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Wilms, Joern/C-8116-2013; Biagi, Simone/G-4557-2016; Distefano, Carla/G-5213-2016; Vecchi, Manuela/J-9180-2014; Riccobene, Giorgio Maria/A-4502-2010; Zornoza, Juan de Dios/L-1604-2014 OI Fusco, Luigi Antonio/0000-0001-8254-3372; Kadler, Matthias/0000-0001-5606-6154; Schussler, Fabian/0000-0003-1500-6571; Katz, Uli/0000-0002-7063-4418; James, Clancy/0000-0002-6437-6176; Migliozzi, Pasquale/0000-0001-5497-3594; Zuniga, Juan/0000-0002-1041-6451; Piattelli, Paolo/0000-0003-4748-6485; Sanguineti, Matteo/0000-0002-7206-2097; Sanchez Losa, Agustin/0000-0001-9596-7078; Eberl, Thomas/0000-0002-5301-9106; Hernandez-Rey, Juan Jose/0000-0002-1527-7200; Anton, Gisela/0000-0003-2039-4724; Wilms, Joern/0000-0003-2065-5410; Biagi, Simone/0000-0001-8598-0017; Distefano, Carla/0000-0001-8632-1136; Riccobene, Giorgio Maria/0000-0002-0600-2774; Zornoza, Juan de Dios/0000-0002-1834-0690 FU Centre National de la Recherche Scientifique (CNRS), France; Commissariat a l'energie atomique et aux energies alternatives (CEA), France; Commission Europeenne (FEDER fund), France; Commission Europeenne (Marie Curie Program), France; Region Ile-de-France (DIM-ACAV), France; Region Alsace (contrat CPER), France; Region Provence-Alpes-Cote d'Azur, France; Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung and Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Spain; Prometeo of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental, Morocco; OCEVU LabEx, France; U.K. Space Agency; CNRST, Morocco FX The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung and Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. We gratefully acknowledge financial support from the OCEVU LabEx, France. PAE andJPO acknowledge support from the U.K. Space Agency. NR 58 TC 2 Z9 2 U1 5 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2016 IS 2 AR 062 DI 10.1088/1475-7516/2016/02/062 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DH0IM UT WOS:000372467600063 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardinik, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Carmona, E Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Garrido, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Guberman, D Hahn, A Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lopez-Dramas, A Lorenz, E Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazing, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Moretti, E Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Satalecka, K Schultz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshimag, M Thaele, J Torres, DF Toyama, T Treves, A Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanins, R Aleksic, J Wood, M Anderson, B Bloom, ED Cohen-Tanugi, J Drlica-Wagner, A Mazziotta, MN Sanchez-Condea, M Strigari, L AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. Barres de Almeida, U. Barrio, J. A. Gonzalez, J. Becerra Bednarek, W. Bernardinik, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Lotto, B. De Ona Wilhelmi, E. Delgado Mendez, C. Di Pierro, F. Dominis Prester, D. Dorner, D. Doro, M. Einecke, S. Eisenacher Glawion, D. Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Guberman, D. Hahn, A. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lopez-Dramas, A. Lorenz, E. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazing, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Moretti, E. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Persic, M. Poutanen, J. Prada Moroni, P. G. Prandini, E. Puljak, I. Rhode, W. Ribo, M. Rico, J. Rodriguez Garcia, J. Saito, T. Satalecka, K. Schultz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshimag, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanins, R. Aleksic, J. Wood, M. Anderson, B. Bloom, E. D. Cohen-Tanugi, J. Drlica-Wagner, A. Mazziotta, M. N. Sanchez-Condea, M. Strigari, L. CA MAGIC Collaboration TI Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter experiments; gamma ray experiments; dwarfs galaxies; neutrino experiments ID GAMMA-RAY EMISSION; LARGE-AREA TELESCOPE; SPHEROIDAL GALAXIES; MAJOR UPGRADE; SEARCH; CONSTRAINTS; DECAY; HESS AB We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors. C1 [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, Univ Rijeka, Rudjer Boskovic Inst, Croatian MAGIC Consortium, Split, Croatia. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Zagreb, Zagreb 41000, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, 1-AF Bidhannagar,Sect 1, Kolkata 700064, India. [Bangale, P.; Barres de Almeida, U.; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hahn, A.; Hose, J.; Lorenz, E.; Mazing, D.; Menzel, U.; Mirzoyan, R.; Moretti, E.; Noda, K.; Paneque, D.; Rodriguez Garcia, J.; Schweizer, T.; Strzys, M.; Teshimag, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Nievas Rosillo, M.; Satalecka, K.] Univ Complutense, E-28040 Madrid, Spain. [Gonzalez, J. Becerra; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Gonzalez, J. Becerra; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardinik, E.; Garczarczyk, M.; Mallot, K.] DESY, D-15738 Zeuthen, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Lopez-Dramas, A.; Martinez, M.; Moralejo, A.; Palacio, J.; Rico, J.; Ward, J. E.; Aleksic, J.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Bretz, T.; Dorner, D.; Eisenacher Glawion, D.; Elsaesser, D.; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Univ Padua, I-35131 Padua, Italy. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] INFN, I-35131 Padua, Italy. [De Ona Wilhelmi, E.; Wu, M. H.] Inst Space Sci CSIC IEEC, E-08193 Barcelona, Spain. [Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Font, L.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, E-08193 Bellaterra, Spain. [Font, L.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, E-08193 Bellaterra, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanins, R.] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain. [Garrido Terrats, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokyo, Dept Phys, ICRR, Japanese MAGIC Consortium, Tokyo 1138654, Japan. [Garrido Terrats, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokushima, Tokai Univ, Kyoto Univ, Hakubi Ctr, Tokushima, Japan. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, Finnish MAGIC Consortium, Tuorla Observ, SF-20500 Turku, Finland. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, SF-90100 Oulu, Finland. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Prada Moroni, P. G.; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Prada Moroni, P. G.; Shore, S. N.] INFN Pisa, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, E-08193 Barcelona, Spain. [Torres, D. F.] Inst Space Sci CSIC IEEC, E-08193 Barcelona, Spain. [Barres de Almeida, U.] Ctr Brasileiro Pesquisas Fis, MCTI, R Dr Xavier Sigaud,150 Urca, BR-22290180 Rio De Janeiro, Brazil. [Gonzalez, J. Becerra] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gonzalez, J. Becerra] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gonzalez, J. Becerra] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bernardinik, E.] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. [Bretz, T.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Lopez-Dramas, A.] CEA Saclay, DSM IRFU, Lab AIM, Serv Astrophys, FR-91191 Gif Sur Yvette, France. [Mazing, D.; Teshimag, M.] Japanese MAGIC Consortium, Kyoto, Japan. [Nilsson, K.] ESO FINCA, Finnish Ctr Astron, Turku, Finland. [Persic, M.] INAF Trieste, Trieste, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. [Wood, M.; Bloom, E. D.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Wood, M.; Bloom, E. D.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Anderson, B.; Sanchez-Condea, M.] Stockholm Univ, Alballova, Dept Phys, SE-10691 Stockholm, Sweden. [Anderson, B.; Sanchez-Condea, M.] Alballova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cohen-Tanugi, J.] Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, F-34059 Montpellier, France. [Drlica-Wagner, A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Mazziotta, M. N.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Strigari, L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Rico, J; Aleksic, J (reprint author), Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain.; Wood, M (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.; Wood, M (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. EM jrico@ifae.es; jelena@ifae.es; mdwood@slac.stanford.edu RI Barrio, Juan/L-3227-2014; GAug, Markus/L-2340-2014; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017; Font, Lluis/L-4197-2014; Poutanen, Juri/H-6651-2016; Nievas Rosillo, Mireia/K-9738-2014; Miranda, Jose Miguel/F-2913-2013; Torres, Diego/O-9422-2016; Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; Lopez Moya, Marcos/L-2304-2014; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016 OI Prandini, Elisa/0000-0003-4502-9053; Becerra Gonzalez, Josefa/0000-0002-6729-9022; Barrio, Juan/0000-0002-0965-0259; GAug, Markus/0000-0001-8442-7877; Cortina, Juan/0000-0003-4576-0452; Strigari, Louis/0000-0001-5672-6079; de Ona Wilhelmi, Emma/0000-0002-5401-0744; Font, Lluis/0000-0003-2109-5961; Poutanen, Juri/0000-0002-0983-0049; Nievas Rosillo, Mireia/0000-0002-8321-9168; Miranda, Jose Miguel/0000-0002-1472-9690; Torres, Diego/0000-0002-1522-9065; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; Lopez Moya, Marcos/0000-0002-8791-7908; Temnikov, Petar/0000-0002-9559-3384; FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; National Aeronautics and Space Administration in the United States; Department of Energy in the United States; Commissariat a l'Energie Atomique in France; Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana in Italy; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan; High Energy Accelerator Research Organization (KEK) in Japan; Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation in Sweden; Swedish Research Council in Sweden; Swedish National Space Board in Sweden; German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2012-39502]; Japanese JSPS; Japanese MEXT; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; CPAN [CSD2007-00042]; Spanish Consolider-Ingenio programme [MultiDark CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0] FX The MAGIC Collaboration thanks the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0.; The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 61 TC 20 Z9 20 U1 3 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2016 IS 2 AR 039 DI 10.1088/1475-7516/2016/02/039 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DH0IM UT WOS:000372467600040 ER PT J AU Vieregg, AG Bechtol, K Romero-Wolf, A AF Vieregg, A. G. Bechtol, K. Romero-Wolf, A. TI A technique for detection of PeV neutrinos using a phased radio array SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE neutrino detectors; ultra high energy photons and neutrinos; neutrino experiments ID COSMOGENIC NEUTRINOS; COSMIC-RAYS; HADRONIC SHOWERS; HIGH-ENERGIES; SOUTH-POLE; ICE; ATTENUATION; SCATTERING; GREENLAND; EMISSION AB The detection of high energy neutrinos (10(15)-10(20) eV) is an important step toward understanding the most energetic cosmic accelerators and would enable tests of fundamental physics at energy scales that cannot easily be achieved on Earth. In this energy range, there are two expected populations of neutrinos: the astrophysical flux observed with IceCube at lower energies (similar to 1 PeV) and the predicted cosmogenic flux at higher energies (similar to 10(18) eV). Radio detector arrays such as RICE, ANITA, ARA, and ARIANNA exploit the Askaryan effect and the radio transparency of glacial ice, which together enable enormous volumes of ice to be monitored with sparse instrumentation. We describe here the design for a phased radio array that would lower the energy threshold of radio techniques to the PeV scale, allowing measurement of the astrophysical flux observed with IceCube over an extended energy range. Meaningful energy overlap with optical Cherenkov telescopes could be used for energy calibration. The phased radio array design would also provide more efficient coverage of the large effective volume required to discover cosmogenic neutrinos. C1 [Vieregg, A. G.] Univ Chicago, Enrico Fermi Inst, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Vieregg, A. G.; Bechtol, K.] Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Romero-Wolf, A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Vieregg, AG (reprint author), Univ Chicago, Enrico Fermi Inst, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Vieregg, AG; Bechtol, K (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Romero-Wolf, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM avieregg@kicp.uchicago.edu; bechtol@kicp.uchicago.edu; andrew.romero-wolf@jpl.nasa.gov FU Kavli Institute for Cosmological Physics at the University of Chicago FX This work was supported by the Kavli Institute for Cosmological Physics at the University of Chicago. Computing resources were provided by the University of Chicago Research Computing Center. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We would like to thank A. Connolly, P. Gorham, D. Saltzberg, and S. Wissel for useful conversations and guidance. NR 65 TC 1 Z9 1 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2016 IS 2 AR 005 DI 10.1088/1475-7516/2016/02/005 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DH0IM UT WOS:000372467600006 ER PT J AU Bennett, CJ McLain, JL Sarantos, M Gann, RD DeSimone, A Orlando, TM AF Bennett, Chris J. McLain, Jason L. Sarantos, Menelaos Gann, Reuben D. DeSimone, Alice Orlando, Thomas M. TI Investigating potential sources of Mercury's exospheric Calcium: Photon-stimulated desorption of Calcium Sulfide SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE exosphere; laboratory studies and experimental techniques; models; Mercury; neutral particles; radiation processes ID ELECTRONIC-TRANSITIONS; OPTICAL-PROPERTIES; MESSENGER FLYBYS; ALKALI-HALIDES; LUNAR; SURFACES; IMPACT; SODIUM; CAS; NA AB Ground-based and MErcury Surface, Space ENvironment, GEochemistry, and Ranging observations detected Ca-0 and Ca+ in the exosphere of Mercury as well as unexpectedly high levels of sulfur on Mercury's surface. The mineral oldhamite ((Mg,Ca)S) could be a predominant component of the Mercury surface, particularly within the hollows identified within craters, and could therefore serve as a source of the observed exospheric calcium. Laboratory measurements on the photon-stimulated desorption (PSD) of CaS powder (an analog for oldhamite) at a wavelength of =355nm have been conducted, utilizing resonance-enhanced multiphoton ionization time-of-flight mass spectrometry to determine the yields and velocity distributions of Ca-0. The desorbing Ca-0 could be fit using two Maxwell-Boltzmann components: a 600 (30)K thermal component and a 1389 (121)K nonthermal component, the latter accounting for 25% of the observed signal. Cross sections for PSD using 3.4eV photons were found to be 1.1 (0.7)x10(-20)cm(2) for Ca-0 and 3.2 (0.9)x10(-24)cm(2) for Ca+. Adopting these cross sections, a Monte Carlo model of the release of Ca-0 by PSD from the Tyagaraja crater finds the neutral microexosphere created from this process to be substantial even if only 1% CaS is assumed in the hollows. Diffuse reflectance UV-visible measurements were made on the CaS powder to determine a bandgap, E-g, of 2.81 (+/- 0.14)eV via the Tauc method. C1 [Bennett, Chris J.; Gann, Reuben D.; DeSimone, Alice; Orlando, Thomas M.] Georgia Inst Technol, Dept Chem & Biochem, Atlanta, GA 30332 USA. [McLain, Jason L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McLain, Jason L.; Sarantos, Menelaos] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Sarantos, Menelaos] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA. RP Orlando, TM (reprint author), Georgia Inst Technol, Dept Chem & Biochem, Atlanta, GA 30332 USA. EM Thomas.Orlando@chemistry.gatech.edu FU NASA Planetary Atmospheres Program [NNX14AH41G, NNX14AJ46G] FX The authors at Georgia Institute of Technology gratefully acknowledge funding from NASA Planetary Atmospheres Program grant NNX14AH41G. We would additionally like to thank Janos Simon (Georgia Institute for Technology) for his assistance taking the UV-Vis measurements and Greg Greives for his assistance with the experimental setup. M.S. acknowledges support from NASA Planetary Atmospheres Program NNX14AJ46G. We note that there are no data-sharing issues since all of the numerical data are provided within the table, figures, and supporting information. Please address any additional information requests pertaining to the experimental data to T.M.O (e-mail thomas.orlando@chemistry.gatech.edu) and for the model to S.M. (e-mail: menelaos.sarantos-1@nasa.gov). Raw XY data for Figures 1, 2, 4, and 5 are provided in the supporting information. NR 65 TC 2 Z9 2 U1 5 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD FEB PY 2016 VL 121 IS 2 BP 137 EP 146 DI 10.1002/2015JE004966 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DH1AQ UT WOS:000372517200003 ER PT J AU Le Gall, A Malaska, MJ Lorenz, RD Janssen, MA Tokano, T Hayes, AG Mastrogiuseppe, M Lunine, JI Veyssiere, G Encrenaz, P Karatekin, O AF Le Gall, A. Malaska, M. J. Lorenz, R. D. Janssen, M. A. Tokano, T. Hayes, A. G. Mastrogiuseppe, M. Lunine, J. I. Veyssiere, G. Encrenaz, P. Karatekin, O. TI Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Titan; radiometry; surface; composition; lakes ID CHEMICAL-COMPOSITION; LIQUID ETHANE; ONTARIO LACUS; CASSINI RADAR; SURFACE; LAKES; RADIOMETER; NITROGEN; METHANE; MODEL AB For the last decade, the passive radiometer incorporated in the Cassini RADAR has recorded the 2.2cm wavelength thermal emission from Titan's seas. In this paper, we analyze the radiometry observations collected from February 2007 to January 2015 over one of these seas, Ligeia Mare, with the goal of providing constraints on its composition, bathymetry, and dynamics. In light of the depth profile obtained by Mastrogiuseppe et al. (2014) and of a two-layer model, we find that the dielectric constant of the sea liquid is <1.8, and its loss tangent is 3.6-2.1+4.3x10-5. Both results point to a composition dominated by liquid methane rather than ethane. A high methane concentration suggests that Ligeia Mare is primarily fed by methane-rich precipitation and/or ethane has been removed from it (e.g., by crustal interaction). Our result on the dielectric constant of the seafloor is less constraining 56.2% of the global population in 2080. Looking at the drivers of risk, we find that population growth outweigh the impacts of climate change at global and regional scales. Using a risk-based method to assess water scarcity, we show the results to be less sensitive than traditional water scarcity assessments to the use of fixed threshold to represent different levels of water scarcity. This becomes especially important when moving from global to local scales, whereby deviations increase up to 50% of estimated risk levels. C1 [Veldkamp, T. I. E.; Aerts, J. C. J. H.; Ward, P. J.] Vrije Univ Amsterdam, Inst Environm Studies IVM, Amsterdam, Netherlands. [Wada, Y.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Wada, Y.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Wada, Y.] Univ Utrecht, Dept Phys Geog, NL-3508 TC Utrecht, Netherlands. RP Veldkamp, TIE (reprint author), Vrije Univ Amsterdam, Inst Environm Studies IVM, Amsterdam, Netherlands. EM ted.veldkamp@vu.nl RI Aerts, Jeroen/M-8431-2013; Ward, Philip/E-6208-2010 FU EU [308438, 603608]; Netherlands Organization for Scientific Research (NWO) VICI [453-14-006]; Japan Society for the Promotion of Science (JSPS) [JSPS-2014-878]; Netherlands Organization for Scientific Research (NWO) [863-11-011] FX The research leading to this article is partly funded by the EU 7th Framework Programme through the projects ENHANCE (grant agreement no. 308438) and Earth2Observe (grant agreement no. 603608). J Aerts received funding from the Netherlands Organization for Scientific Research (NWO) VICI (grant no. 453-14-006). Y Wada is supported by Japan Society for the Promotion of Science (JSPS) Oversea Research Fellowship (grant no. JSPS-2014-878). P Ward received funding from the Netherlands Organization for Scientific Research (NWO) in the form of a VENI grant (grant no. 863-11-011). None of the authors of this article have a competing financial interest. NR 104 TC 1 Z9 1 U1 10 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD FEB PY 2016 VL 11 IS 2 AR 024006 DI 10.1088/1748-9326/11/2/024006 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DF6SX UT WOS:000371488300008 ER PT J AU Mishra, KV Krajewski, WF Goska, R Ceynar, D Seo, BC Kruger, A Niemeier, JJ Galvez, MB Thurai, M Bringi, VN Tolstoy, L Kucera, PA Petersen, WA Grazioli, J Pazmany, AL AF Mishra, Kumar Vijay Krajewski, Witold F. Goska, Radoslaw Ceynar, Daniel Seo, Bong-Chul Kruger, Anton Niemeier, James J. Galvez, Miguel B. Thurai, Merhala Bringi, V. N. Tolstoy, Leonid Kucera, Paul A. Petersen, Walter A. Grazioli, Jacopo Pazmany, Andrew L. TI Deployment and Performance Analyses of High-Resolution Iowa XPOL Radar System during the NASA IFloodS Campaign SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Observational techniques and algorithms; Physical Meteorology and Climatology; Hydrology; Atm/Ocean Structure/ Phenomena; Remote sensing; Microscale processes/variability; Precipitation; Variability; Field experiments; Radars/Radar observations; Applications ID BAND POLARIMETRIC RADAR; 2D VIDEO DISDROMETER; X-BAND; RAINFALL ESTIMATION; WEATHER RADAR; DIFFERENTIAL REFLECTIVITY; PART I; ATTENUATION; UNCERTAINTIES; VARIABILITY AB This article presents the data collected and analyzed using the University of Iowa's X-band polarimetric (XPOL) radars that were part of the spring 2013 hydrology-oriented Iowa Flood Studies (IFloodS) field campaign, sponsored by NASA's Global Precipitation Measurement (GPM) Ground Validation (GV) program. The four mobile radars have full scanning capabilities that provide quantitative estimation of the rainfall at high temporal and spatial resolutions over experimental watersheds. IFloodS was the first extensive test of the XPOL radars, and the XPOL radars demonstrated their field worthiness during this campaign with 46 days of nearly uninterrupted, remotely monitored, and controlled operations. This paper presents detailed postcampaign analyses of the high-resolution, research-quality data that the XPOL radars collected. The XPOL dual-polarimetric products and rainfall are compared with data from other instruments for selected diverse meteorological events at high spatiotemporal resolutions from unprecedentedly unique and vast data generated during IFloodS operations. The XPOL data exhibit a detailed, complex structure of precipitation viewed at multiple range resolutions (75 and 30 m). The inter-XPOL comparisons within an overlapping scanned domain demonstrate consistency across different XPOL units. The XPOLs employed a series of heterogeneous scans and obtained estimates of the meteorological echoes up to a range oversampling of 7.5 m. A finer-resolution (30 m) algorithm is described to correct the polarimetric estimates for attenuation at the X band and obtain agreement of attenuation-corrected products with disdrometers and NASA S-band polarimetric (NPOL) radar. The paper includes hardware characterization of Iowa XPOL radars conducted prior to the deployment in IFloodS following the GPM calibration protocol. C1 [Mishra, Kumar Vijay; Krajewski, Witold F.; Goska, Radoslaw; Ceynar, Daniel; Seo, Bong-Chul; Kruger, Anton; Niemeier, James J.] Univ Iowa, Iowa Flood Ctr, Iowa City, IA 52242 USA. [Mishra, Kumar Vijay; Krajewski, Witold F.; Goska, Radoslaw; Ceynar, Daniel; Seo, Bong-Chul; Kruger, Anton; Niemeier, James J.] Univ Iowa, IIHR Hydrosci & Engn, 100 Stanley Hydraul Lab, Iowa City, IA 52242 USA. [Mishra, Kumar Vijay; Kruger, Anton] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA. [Mishra, Kumar Vijay] Univ Iowa, Dept Math, Iowa City, IA 52242 USA. [Krajewski, Witold F.] Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA. [Galvez, Miguel B.; Thurai, Merhala; Bringi, V. N.; Tolstoy, Leonid] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Kucera, Paul A.] Natl Ctr Atmospher Res, Res Applicat Lab, POB 3000, Boulder, CO 80307 USA. [Petersen, Walter A.] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Grazioli, Jacopo] Ecole Polytech Fed Lausanne, Environm Remote Sensing Lab LTE, Lausanne, Switzerland. [Pazmany, Andrew L.] ProSensing Inc, Amherst, MA USA. RP Mishra, KV (reprint author), Univ Iowa, IIHR Hydrosci & Engn, 100 Stanley Hydraul Lab, Iowa City, IA 52242 USA. EM kumarvijay-mishra@uiowa.edu RI Measurement, Global/C-4698-2015 FU Iowa Flood Center; National Science Foundation (RAPID) [1327830]; NASA [NNX13AG94G, NNX13AD83G]; [NNX13AI94G]; [NNX14AJ81G] FX This study was supported by the Iowa Flood Center, the National Science Foundation (RAPID) Award 1327830, and NASA's Global Precipitation Measurement program through Awards NNX13AG94G and NNX13AD83G. V.N.B. and L.T. acknowledge support via NNX13AI94G and NNX14AJ81G. NR 79 TC 3 Z9 3 U1 2 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2016 VL 17 IS 2 BP 455 EP 479 DI 10.1175/JHM-D-15-0029.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF8MM UT WOS:000371611900002 ER PT J AU Santanello, JA Kumar, SV Peters-Lidard, CD Lawston, PM AF Santanello, Joseph A., Jr. Kumar, Sujay V. Peters-Lidard, Christa D. Lawston, Patricia M. TI Impact of Soil Moisture Assimilation on Land Surface Model Spinup and Coupled Land-Atmosphere Prediction SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Land surface model; Mesoscale models; Data assimilation; Satellite observations; Observational techniques and algorithms; Physical Meteorology and Climatology; Models and modeling; Soil moisture ID REMOTE-SENSING DATA; SNOW DEPTH; INFORMATION-SYSTEM; PRECIPITATION; INITIALIZATION; RETRIEVALS; FRAMEWORK; PRODUCTS; SIMULATIONS; UTILITY AB Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASA's Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spinup can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux-PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research. C1 [Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.] NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Code 617,Bldg 33,Room G220, Greenbelt, MD 20771 USA. [Kumar, Sujay V.] Sci Applicat Int Corp, Mclean, VA 22102 USA. [Lawston, Patricia M.] Univ Delaware, Newark, DE USA. RP Santanello, JA (reprint author), NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Code 617,Bldg 33,Room G220, Greenbelt, MD 20771 USA. EM joseph.a.santanello@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Santanello, Joseph/D-4438-2012 OI Peters-Lidard, Christa/0000-0003-1255-2876; Santanello, Joseph/0000-0002-0807-6590 FU NASA Advanced Information System Technology program (AIST); Earth Science Technology Office (ESTO) FX This work was supported by the NASA Advanced Information System Technology program (AIST) and the Earth Science Technology Office (ESTO). The data for the MET analysis are from the Research Data Archive (RDA), which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR). The original data are available from the RDA (http://rda.ucar.edu) in dataset number ds337.0. NR 58 TC 2 Z9 2 U1 3 U2 17 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2016 VL 17 IS 2 BP 517 EP 540 DI 10.1175/JHM-D-15-0072.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF8MQ UT WOS:000371612300001 ER PT J AU Getirana, A AF Getirana, Augusto TI Extreme Water Deficit in Brazil Detected from Space SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Geographic location/entity; Drought; Hydrology; Observational techniques and algorithms; Extreme events; South America; Remote sensing; Atm/Ocean Structure/ Phenomena; Physical Meteorology and Climatology ID LAND-SURFACE MODEL; GLOBAL PRECIPITATION; GROUNDWATER DEPLETION; AMAZON BASIN; 2012 FLOOD; GRACE; DROUGHT; ASSIMILATION; SYSTEM; CLIMATOLOGY AB Extreme droughts have caused significant socioeconomic and environmental damage worldwide. In Brazil, ineffective energy development and water management policies have magnified the impacts of recent severe droughts, which include massive agricultural losses, water supply restrictions, and energy rationing. Spaceborne remote sensing data advance our understanding of the spatiotemporal variability of large-scale droughts and enhance the detection and monitoring of extreme water-related events. In this study, data derived from the Gravity Recovery and Climate Experiment (GRACE) mission are used to detect and quantify an extended major drought over eastern Brazil and provide estimates of impacted areas and region-specific water deficits. Two structural breakpoint detection methods were applied to time series of GRACE-based terrestrial water storage anomalies (TWSA), determining when two abrupt changes occurred. One, in particular, defines the beginning of the current drought. Using TWSA, a water loss rate of -6.1 cm yr(-1) over southeastern Brazil was detected from 2012 to 2015. Based on analysis of Global Land Data Assimilation System (GLDAS) outputs, the extreme drought is mostly related to lower-than-usual precipitation rates, resulting in high soil moisture depletion and lower-than-usual rates of evapotranspiration. A reduction of 20%-23% of precipitation over an extended period of 3 years is enough to raise serious water scarcity conditions in the country. Correlations between monthly time series of both grid-based TWSA and ground-based water storage measurements at 16 reservoirs located within southeastern Brazil varied from 0.42 to 0.82. Differences are mainly explained by reservoir sizes and proximity to the drought nucleus. C1 [Getirana, Augusto] NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20009 USA. [Getirana, Augusto] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Getirana, A (reprint author), NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20009 USA. EM augusto.getirana@nasa.gov FU NASA MEaSUREs Program FX The author would like to thank ONS and Sabesp for providing water storage at reservoirs. He is also thankful to Matthew Rodell, Jamon Van den Hoek, Jan-Carlo Espinoza, and three anonymous reviewers for their valuable comments and revision. GRACE land data (available at http://grace.jpl.nasa.gov) processing algorithms were provided by Sean Swenson and supported by the NASA MEaSUREs Program. Landsat-based water extent was provided by J. Van den Hoek. GLDAS data are available through the Goddard Earth Sciences Data and Information Services Center (GES DISC; http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings). NR 45 TC 9 Z9 9 U1 8 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2016 VL 17 IS 2 BP 591 EP 599 DI 10.1175/JHM-D-15-0096.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF8MQ UT WOS:000371612300005 ER PT J AU De Lannoy, GJM Reichle, RH AF De Lannoy, Gabrielle J. M. Reichle, Rolf H. TI Global Assimilation of Multiangle and Multipolarization SMOS Brightness Temperature Observations into the GEOS-5 Catchment Land Surface Model for Soil Moisture Estimation SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID ENSEMBLE KALMAN FILTER; VARIATIONAL DATA ASSIMILATION; CLIMATE REFERENCE NETWORK; RADIATIVE-TRANSFER MODEL; INSTRUMENT PERFORMANCE; NONFROZEN LAND; NEAR-SURFACE; AMSR-E; SYSTEM; CALIBRATION AB Multiangle and multipolarization L-band microwave observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated into the Goddard Earth Observing System Model, version 5 (GEOS-5), using a spatially distributed ensemble Kalman filter. A variant of this system is also used for the Soil Moisture Active Passive (SMAP) Level 4 soil moisture product. The assimilation involves a forward simulation of brightness temperatures (Tb) for various incidence angles and polarizations and an inversion of the differences between Tb forecasts and observations into updates to modeled surface and root-zone soil moisture, as well as surface soil temperature. With SMOS Tb assimilation, the unbiased root-mean-square difference between simulations and gridcell-scale in situ measurements in a few U.S. watersheds during the period from 1 July 2010 to 1 July 2014 is 0.034 m(3) m(-3) for both surface and root-zone soil moisture. A validation against gridcell-scale measurements and point-scale measurements from sparse networks in the United States, Australia, and Europe demonstrates that the assimilation improves both surface and root-zone soil moisture results over the open-loop (no assimilation) estimates in areas with limited vegetation and terrain complexity. At the global scale, the assimilation of SMOS Tb introduces mean absolute increments of 0.004 m(3) m(-3) to the profile soil moisture content and 0.7 K to the surface soil temperature. The updates induce changes to energy fluxes and runoff amounting to about 15% of their respective temporal standard deviation. C1 [De Lannoy, Gabrielle J. M.; Reichle, Rolf H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [De Lannoy, Gabrielle J. M.] Univ Space Res Assoc, Columbia, MD USA. [De Lannoy, Gabrielle J. M.] Katholieke Univ Leuven, Dept Earth & Environm Sci, Celestijnenlaan 200 E, B-3001 Heverlee, Belgium. [De Lannoy, Gabrielle J. M.] Katholieke Univ Leuven, Div Soil & Water Management, B-3001 Heverlee, Belgium. RP De Lannoy, GJM (reprint author), Katholieke Univ Leuven, Dept Earth & Environm Sci, Celestijnenlaan 200 E, B-3001 Heverlee, Belgium. EM gabrielle.delannoy@ees.kuleuven.be RI Reichle, Rolf/E-1419-2012 FU NASA Soil Moisture Active Passive (SMAP) mission FX The authors thank Yann Kerr for his assistance with the SMOS data, Mike Cosh and Tom Jackson for providing the in situ data for the SMAP core validation watersheds, Jeffrey Walker and Xiaoling Wu for providing a part of the Oznet data, Qing Liu for helping with the quality control of sparse network data, and the reviewers and Hans Lievens for suggestions to edit the paper. The study was supported by the NASA Soil Moisture Active Passive (SMAP) mission. Special thanks go to our SMAP L4_SM collaborators Randy Koster, Wade Crow, John Kimball, and Qing Liu. Computational resources were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center. NR 71 TC 8 Z9 8 U1 9 U2 17 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2016 VL 17 IS 2 BP 669 EP 691 DI 10.1175/JHM-D-15-0037.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF8MW UT WOS:000371612900001 ER PT J AU Ashouri, H Sorooshian, S Hsu, KL Bosilovich, MG Lee, J Wehner, MF Collow, A AF Ashouri, Hamed Sorooshian, Soroosh Hsu, Kuo-Lin Bosilovich, Michael G. Lee, Jaechoul Wehner, Michael F. Collow, Allison TI Evaluation of NASA's MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID CLIMATE EXTREMES; INTENSE PRECIPITATION; GLOBAL ENERGY; MODEL; TEMPERATURE; REANALYSES; VARIABILITY; KNOWLEDGE; ENSEMBLE; WATER AB This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S. Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes. C1 [Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin] Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Bosilovich, Michael G.; Collow, Allison] NASA, Goddard Space Flight Ctr, Modeling & Assimilat Off, Greenbelt, MD USA. [Lee, Jaechoul] Boise State Univ, Dept Math, Boise, ID 83725 USA. [Wehner, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Collow, Allison] Univ Space Res Assoc, Columbia, MD USA. RP Ashouri, H (reprint author), Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Dept Civil & Environm Engn, Irvine, CA 92697 USA. EM h.ashouri@uci.edu RI Ashouri, Hamed/I-3040-2016; sorooshian, soroosh/B-3753-2008; Bosilovich, Michael/F-8175-2012 OI sorooshian, soroosh/0000-0001-7774-5113; FU NASA Earth and Space Science Fellowship (NESSF) [NNX12AO11H]; NOAA Climate Change Data and Detection (CCDD) [NA10DAR4310122]; NASA Decision Support System [NNX09A067G]; Army Research Office [W911NF-11-1-0422]; NSF [DMS 1107225]; Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-AC02-05CH11231] FX The CPC U.S. Unified precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website (http://www.esrl.noaa.gov/psd/). The MERRA product is accessible through the Goddard Earth Sciences Data Information Services Center (GES DISC; http://disc.sci.gsfc.nasa.gov/mdisc/overview). The authors would like to thank the anonymous reviewers for the constructive comments. In addition, the authors would like to thank Dr. Jin-Yi Yu, professor at the Department of Earth System Science at the University of California, Irvine, for his insightful comments on the tropical cyclones. We would also like to thank Dr. Tsou Chun Jaw at the Center for Hydrometeorology and Remote Sensing for his assistance in data processing. Ashouri was supported by the NASA Earth and Space Science Fellowship (NESSF; Award NNX12AO11H). Hsu and Sorooshian were supported by the NOAA Climate Change Data and Detection (CCDD; Grant NA10DAR4310122), the NASA Decision Support System (Grant NNX09A067G), and the Army Research Office (Grant W911NF-11-1-0422). Lee was partially supported by the NSF (Grant DMS 1107225), and Wehner was supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science under Contract DE-AC02-05CH11231 (LBNL). NR 70 TC 1 Z9 1 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2016 VL 17 IS 2 BP 693 EP 711 DI 10.1175/JHM-D-15-0097.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF8MY UT WOS:000371613100001 ER PT J AU Gurney, KR Patarasuk, R Razlivanov, I Song, Y O'Keeffe, D Huang, JH Zhou, YY Rao, P AF Gurney, Kevin Robert Patarasuk, Risa Razlivanov, Igor Song, Yang O'Keeffe, Darragh Huang, Jianhua Zhou, Yuyu Rao, Preeti TI Comment on "Analysis of High-Resolution Utility Data for Understanding Energy Use in Urban Systems" SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Letter ID FUEL CO2 EMISSIONS; GREENHOUSE-GAS EMISSIONS; QUANTIFICATION; SCALE C1 [Gurney, Kevin Robert; Patarasuk, Risa; Razlivanov, Igor; Song, Yang; O'Keeffe, Darragh; Huang, Jianhua] Arizona State Univ, Sch Life Sci, Tempe, AZ USA. [Zhou, Yuyu] Joint Global Change Res Inst, College Pk, MD USA. [Rao, Preeti] CALTECH, Jet Prop Lab, Megac Carbon Project, Pasadena, CA USA. RP Gurney, KR (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ USA. OI Rao, Preeti/0000-0002-5549-0583 NR 15 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 EI 1530-9290 J9 J IND ECOL JI J. Ind. Ecol. PD FEB PY 2016 VL 20 IS 1 BP 192 EP 193 DI 10.1111/jiec.12358 PG 2 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DF6RV UT WOS:000371484400017 ER PT J AU Nelson, AO Dee, R Gudipati, MS Horanyi, M James, D Kempf, S Munsat, T Sternovsky, Z Ulibarri, Z AF Nelson, Andrew Oakleigh Dee, Richard Gudipati, Murthy S. Horanyi, Mihaly James, David Kempf, Sascha Munsat, Tobin Sternovsky, Zoltan Ulibarri, Zach TI New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID WATER-ICE; MASS-SPECTROMETRY; AMINO-ACIDS; E-RING; COMETARY; IMPACTS; ANALOGS; EJECTA; TEMPERATURE; IONIZATION AB Ice is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith. The target consists of a copper block, cooled by liquid nitrogen, upon which layers of vapor-deposited ice, pre-frozen ice, or icy regolith can be built in a controlled and quantifiable environment. This ice can be grown from a variety of materials, including H2O, CH3OH, NH3, and slurries containing nanophase iron. Ice temperatures can be varied between 96 K and 150 K and ice thickness greater than 150 nm can be accurately measured. Importantly, the composition of ion plumes created during micrometeoroid impacts onto these icy layers can be measured even in trace amounts by in situ time-of-flight mass spectroscopy. In this paper, we present the fundamental design components of the cryogenic target chamber at IMPACT and proof-of-concept results from target development and from first impacts into thick layers of water ice. (C) 2016 AIP Publishing LLC. C1 [Nelson, Andrew Oakleigh; Dee, Richard; Horanyi, Mihaly; James, David; Kempf, Sascha; Munsat, Tobin; Sternovsky, Zoltan; Ulibarri, Zach] Univ Colorado, Inst Modeling Plasma Atmospheres & Cosm Dust IMPA, Boulder, CO 80309 USA. [Nelson, Andrew Oakleigh; Kempf, Sascha; Munsat, Tobin; Ulibarri, Zach] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Gudipati, Murthy S.] CALTECH, Div Sci, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Horanyi, Mihaly; James, David; Kempf, Sascha; Sternovsky, Zoltan] Lab Atmospher & Space Phys, 1234 Innovat Dr, Boulder, CO 80303 USA. [Sternovsky, Zoltan] Univ Colorado, Aerosp Engn Sci, Boulder, CO 80309 USA. RP Nelson, AO (reprint author), Univ Colorado, Inst Modeling Plasma Atmospheres & Cosm Dust IMPA, Boulder, CO 80309 USA.; Nelson, AO (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM andrew.nelson-1@colorado.edu RI Gudipati, Murthy/F-7575-2011 NR 28 TC 0 Z9 0 U1 16 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 024502 DI 10.1063/1.4941960 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900260 PM 26931872 ER PT J AU Burton, AS Di Stefano, M Lehman, N Orland, H Micheletti, C AF Burton, Aaron S. Di Stefano, Marco Lehman, Niles Orland, Henri Micheletti, Cristian TI The elusive quest for RNA knots SO RNA BIOLOGY LA English DT Editorial Material DE Physical knots; RNA knots; RNA structure ID CHROMOSOME TERRITORIES; CIRCULAR RNAS; PROTEINS; EVOLUTION; DNA; TOPOISOMERASE; COMPLEXITY; SLIPKNOTS; POLYMERS; CLOSURE AB Physical entanglement, and particularly knots arise spontaneously in equilibrated polymers that are sufficiently long and densely packed. Biopolymers are no exceptions: knots have long been known to occur in proteins as well as in encapsidated viral DNA. The rapidly growing number of RNA structures has recently made it possible to investigate the incidence of physical knots in this type of biomolecule, too. Strikingly, no knots have been found to date in the known RNA structures. In this Point of View Article we discuss the absence of knots in currently available RNAs and consider the reasons why knots in RNA have not yet been found, despite the expectation that they should exist in Nature. We conclude by singling out a number of RNA sequences that, based on the properties of their predicted secondary structures, are good candidates for knotted RNAs. C1 [Burton, Aaron S.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Di Stefano, Marco; Micheletti, Cristian] SISSA, Via Bonomea 265, I-34014 Trieste, Italy. [Lehman, Niles] Portland State Univ, Dept Chem, Portland, OR 97207 USA. [Orland, Henri] IPhT CNRS, Commissariat Energie Atom CEA, Inst Phys Theor, UMR3681, F-91191 Gif Sur Yvette, France. [Orland, Henri] Beijing Computat Sci Res Ctr, Haidian District Beijing 100084, Peoples R China. [Di Stefano, Marco] CNAG CRG, Struct Genom Grp, Baldiri & Reixac 4, Barcelona 08028, Spain. RP Micheletti, C (reprint author), SISSA, Via Bonomea 265, I-34014 Trieste, Italy. EM michelet@sissa.it OI Di Stefano, Marco/0000-0001-6195-4754 NR 46 TC 2 Z9 2 U1 1 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1547-6286 EI 1555-8584 J9 RNA BIOL JI RNA Biol. PD FEB 1 PY 2016 VL 13 IS 2 BP 134 EP 139 DI 10.1080/15476286.2015.1132069 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DG0HE UT WOS:000371745100003 PM 26828280 ER PT J AU Pflitsch, A Schorghofer, N Smith, SM Holmgren, D AF Pflitsch, Andreas Schoerghofer, Norbert Smith, Stephen M. Holmgren, David TI Massive ice loss from the Mauna Loa Icecave, Hawaii SO ARCTIC ANTARCTIC AND ALPINE RESEARCH LA English DT Article ID CAVES; MARS AB We provide the first detailed documentation of a lava tube cave with permanent ice on the Hawaiian Islands. "Mauna Loa Icecave" had been surveyed in 1978; we periodically visited the cave and monitored temperature, humidity, and ice levels from 2011 to 2014. Perennial ice still blocks the lava tube at the terminal end, but a previously present large ice floor (estimated 260 m(2)) has disappeared. A secondary mineral deposited on the cave walls is interpreted as the result of past sustained ice levels. Airflow measurements, scallop patterns in the ice, strong temperature and humidity variations, and ice volume fluctuations indicate ventilation of the cave, which suggests that additional ice loss could occur rapidly. The scientific potential of the ice record remains to be explored, before it is lost. C1 [Pflitsch, Andreas; Holmgren, David] Ruhr Univ Bochum, Dept Geog, Univ Str 150, D-44780 Bochum, Germany. [Schoerghofer, Norbert] Univ Hawaii, NASA, Astrobiol Inst, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Schoerghofer, Norbert] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Smith, Stephen M.] Hawaii Speleol Survey, 1190 Waianuenue Ave, Hilo, HI 96720 USA. RP Schorghofer, N (reprint author), Univ Hawaii, NASA, Astrobiol Inst, 2680 Woodlawn Dr, Honolulu, HI 96822 USA.; Schorghofer, N (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM norbert@hawaii.edu FU National Aeronautics and Space Administration through the NASA Astrobiology Institute through the Office of Space Science [NNA09DA77A] FX We are grateful to Lyman Perry and the Department of Land and Natural Resources of the State of Hawaii for permits to conduct this research. We thank John Barnes, Peter Bosted, Stephan Kempe, Jack Lockwood, John Mackey, Scott Rowland, and Kim Teehera for insightful discussions, assistance, and help with logistics. This material is based in part upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science. NR 32 TC 1 Z9 1 U1 1 U2 4 PU INST ARCTIC ALPINE RES PI BOULDER PA UNIV COLORADO, BOULDER, CO 80309 USA SN 1523-0430 EI 1938-4246 J9 ARCT ANTARCT ALP RES JI Arct. Antarct. Alp. Res. PD FEB PY 2016 VL 48 IS 1 BP 33 EP 43 DI 10.1657/AAAR0014-095 PG 11 WC Environmental Sciences; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA DF4MI UT WOS:000371322100003 ER PT J AU Eastman, JD Beatty, TG Siverd, RJ Antognino, JMO Penny, MT Gonzales, EJ Crepp, JR Howard, AW Avril, RL Bieryla, A Collins, K Fulton, BJ Ge, J Gregorio, J Ma, B Mellon, SN Oberst, TE Wang, J Gaudi, BS Pepper, J Stassun, KG Buchhave, LA Jensen, ELN Latham, DW Berlind, P Calkins, ML Cargile, PA Colon, KD Dhital, S Esquerd, GA Johnson, JA Kielkopf, JF Manner, M Mao, QQ McLeod, KK Penev, K Stefanik, RP Street, R Zambelli, R DePoy, DL Gould, A Marshall, JL Pogge, RW Trueblood, M Trueblood, P AF Eastman, Jason D. Beatty, Thomas G. Siverd, Robert J. Antognino, Joseph M. O. Penny, Matthew T. Gonzales, Erica J. Crepp, Justin R. Howard, Andrew W. Avril, Ryan L. Bieryla, Allyson Collins, Karen Fulton, Benjamin J. Ge, Jian Gregorio, Joao Ma, Bo Mellon, Samuel N. Oberst, Thomas E. Wang, Ji Gaudi, B. Scott Pepper, Joshua Stassun, Keivan G. Buchhave, Lars A. Jensen, Eric L. N. Latham, David W. Berlind, Perry Calkins, Michael L. Cargile, Phillip A. Colon, Knicole D. Dhital, Saurav Esquerd, Gilbert A. Johnson, John Asher Kielkopf, John F. Manner, Mark Mao, Qingqing McLeod, Kim K. Penev, Kaloyan Stefanik, Robert P. Street, Rachel Zambelli, Roberto DePoy, D. L. Gould, Andrew Marshall, Jennifer L. Pogge, Richard W. Trueblood, Mark Trueblood, Patricia TI KELT-4Ab: AN INFLATED HOT JUPITER TRANSITING THE BRIGHT (V similar to 10) COMPONENT OF A HIERARCHICAL TRIPLE SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: visual; eclipses; planets and satellites: detection; planets and satellites: dynamical evolution and stability; planets and satellites: gaseous planets; techniques: photometric ID DOUBLE STAR CATALOG; PLANET HD 149026B; STELLAR EVOLUTION; QUADRUPLE SYSTEMS; MASS COMPANION; Y-2 ISOCHRONES; GIANT PLANETS; LIGHT CURVES; EXOPLANETS; TELESCOPE AB We report the discovery of KELT-4Ab, an inflated, transiting Hot Jupiter orbiting the brightest component of a hierarchical triple stellar system. The host star is an F star with T-eff = 6206 +/- 75 K, log g = 4.108 +/- 0.014, [Fe/H] = -0.116(-0.069)(+0.065), M-* = 1.201(-0.061)(+0.067) M-circle dot, and R-* = 1.603(-0.038)(+0.039) R-circle dot. The best-fit linear ephemeris is BJD(TDB) = 2456193.29157 +/- 0.00021 + E(2.9895936 +/- 0.0000048). With a magnitude of V similar to 10, a planetary radius of 1.699(-0.045)(+0.046) R-J, and a mass of 0.902(-0.059)(+0.060) M-J, it is the brightest host among the population of inflated Hot Jupiters (R-P > 1.5R(J)), making it a valuable discovery for probing the nature of inflated planets. In addition, its existence within a hierarchical triple and its proximity to Earth ( 210 pc) provide a unique opportunity for dynamical studies with continued monitoring with high resolution imaging and precision radial velocities. The projected separation between KELT-4A and KELT-4BC is 328 +/- 16 AU and the projected separation between KELT-4B and KELT-4C is 10.30 +/- 0.74 AU. Assuming face-on, circular orbits, their respective periods would be 3780 +/- 290 and 29.4 +/- 3.6 years and the astrometric motions relative to the epoch in this work of both the binary stars around each other and of the binary around the primary star would be detectable now and may provide meaningful constraints on the dynamics of the system. C1 [Eastman, Jason D.; Bieryla, Allyson; Buchhave, Lars A.; Latham, David W.; Berlind, Perry; Calkins, Michael L.; Cargile, Phillip A.; Esquerd, Gilbert A.; Johnson, John Asher; Stefanik, Robert P.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Beatty, Thomas G.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Beatty, Thomas G.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, Davey Lab 525, University Pk, PA 16802 USA. [Siverd, Robert J.; Street, Rachel] Las Cumbres Observ, Global Telescope Network, Goleta, CA 93117 USA. [Antognino, Joseph M. O.; Penny, Matthew T.; Gaudi, B. Scott; Gould, Andrew; Pogge, Richard W.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Gonzales, Erica J.; Crepp, Justin R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Howard, Andrew W.; Fulton, Benjamin J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Avril, Ryan L.; Mellon, Samuel N.; Oberst, Thomas E.] Westminster Coll, Dept Phys, New Wilmington, PA 16172 USA. [Collins, Karen; Stassun, Keivan G.; Mao, Qingqing] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Ge, Jian; Ma, Bo] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32611 USA. [Gregorio, Joao] Atalaia Grp & Crow Observ, Portalegre, Portugal. [Mellon, Samuel N.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Wang, Ji] CALTECH, Dept Astrophys, MC 249-17, Pasadena, CA 91125 USA. [Pepper, Joshua; Colon, Knicole D.] Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA. [Jensen, Eric L. N.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Colon, Knicole D.] NASA, Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA. [Colon, Knicole D.] Bay Area Environm Res Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA. [Dhital, Saurav] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. [Kielkopf, John F.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Manner, Mark] Spot Observ, Nunnelly, TN 37137 USA. [McLeod, Kim K.] Wellesley Coll, Wellesley, MA 02481 USA. [Penev, Kaloyan] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Zambelli, Roberto] Soc Astronom Lunae, Via Montefrancio 77, I-19030 Castelnuovo Magra, Italy. [DePoy, D. L.; Marshall, Jennifer L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Marshall, Jennifer L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Trueblood, Mark; Trueblood, Patricia] Winer Observ, Sonoita, AZ 85637 USA. RP Eastman, JD (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. OI Jensen, Eric/0000-0002-4625-7333; Pepper, Joshua/0000-0002-3827-8417 FU NASA [NNG04GO70G]; NSF CAREER [AST-1056524]; NASA Kentucky Space Grant Consortium Graduate Fellowship; Vanderbilt Office of the Provost through the Vanderbilt Initiative in Data-intensive Astrophysics; National Science Foundation [AST-0849736, AST-1009810]; Kepler Mission through NASA Cooperative Agreement [NNX11AB99A]; Smithsonian Astrophysical Observatory; NSF [1313252, AST-0705139]; University of Florida; National Science Foundation Graduate Research Fellowship [2014184874]; National Aeronautics and Space Administration; National Science Foundation FX We extend special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. Without their generous hospitality, the Keck observations presented herein would not have been possible. Early work on KELT-North was supported by NASA Grant NNG04GO70G. Work by B.S.G., J.D.E., and T.G.B. was partially supported by NSF CAREER Grant AST-1056524. K.A.C. was supported by a NASA Kentucky Space Grant Consortium Graduate Fellowship. J.A.P. and K.G.S. acknowledge support from the Vanderbilt Office of the Provost through the Vanderbilt Initiative in Data-intensive Astrophysics. K.G.S. and L.H. acknowledge the support of the National Science Foundation through PAARE grant AST-0849736 and AAG grant AST-1009810. The TRES and KeplerCam observations were obtained with partial support from the Kepler Mission through NASA Cooperative Agreement NNX11AB99A with the Smithsonian Astrophysical Observatory, D.W.L. PI. J.M.O.A. is supported in part by NSF Award #1313252. J.G., B.M., and J.W. acknowledge support from NSF AST-0705139 and the University of Florida for the development of the EXPERT instrument and observations. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 2014184874. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.; This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 102 TC 4 Z9 4 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 45 DI 10.3847/0004-6256/151/2/45 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600025 ER PT J AU Gerdes, DW Jennings, RJ Bernstein, GM Sako, M Adams, E Goldstein, D Kessler, R Hamilton, S Abbott, T Abdalla, EB Allam, S Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Cunha, CE D'Andrea, CB da Costa, LN Depoy, DL Desai, S Dietrich, JP Doel, P Eifler, TF Neto, AF Flaugher, B Frieman, J Gaztanaga, E Gruen, D Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Maia, MAG March, M Martini, P Miller, CJ Miquel, R Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Sanchez, E Santiago, B Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Walker, AR Wester, W Zhang, Y AF Gerdes, D. W. Jennings, R. J. Bernstein, G. M. Sako, M. Adams, E. Goldstein, D. Kessler, R. Hamilton, S. Abbott, T. Abdalla, E. B. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Depoy, D. L. Desai, S. Dietrich, J. P. Doel, P. Eifler, T. F. Fausti Neto, A. Flaugher, B. Frieman, J. Gaztanaga, E. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Maia, M. A. G. March, M. Martini, P. Miller, C. J. Miquel, R. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Sanchez, E. Santiago, B. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Walker, A. R. Wester, W. Zhang, Y. CA DES Collaboration TI OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS SO ASTRONOMICAL JOURNAL LA English DT Article DE minor planets, asteroids: general ID SIZE DISTRIBUTION; PLANET MIGRATION; KUIPER-BELT; 2004 KV18; ASTEROIDS; JUPITER; POPULATIONS; SOFTWARE; CAPTURE; SEARCH AB We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014. QO(441) and 2014. QP(441) were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory. Both are in high-inclination orbits (18 degrees.8 and 19 degrees.4, respectively). With an eccentricity of 0.104, 2014. QO(441) has the most eccentric orbit of the 11 known stable Neptune Trojans. Here we describe the search procedure and investigate the objects' long-term dynamical stability and physical properties. C1 [Gerdes, D. W.; Adams, E.; Hamilton, S.; Miller, C. J.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Jennings, R. J.] Carleton Coll, Northfield, MN 55057 USA. [Bernstein, G. M.; Sako, M.; Eifler, T. F.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Adams, E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Goldstein, D.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Kessler, R.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, R.] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Abdalla, E. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, E. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Allam, S.; Buckley-Geer, E.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Soares-Santos, M.; Sobreira, F.; Wester, W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Burke, D. L.; Cunha, C. E.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.; Sevilla-Noarbe, I.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Caner Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Depoy, D. L.; Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Depoy, D. L.; Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Dietrich, J. P.; Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. K.; Sevilla-Noarbe, I.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.] CIEMAT, Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Gerdes, DW (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RI Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Gaztanaga, Enrique/L-4894-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Gaztanaga, Enrique/0000-0001-9632-0815; Dietrich, Jorg/0000-0002-8134-9591; Carrasco Kind, Matias/0000-0002-4802-3194; Abdalla, Filipe/0000-0003-2063-4345 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University FX We are grateful for the extraordinary contributions of our CTIO colleagues and the DES Camera, Commissioning and Science Verification teams for achieving excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management organization. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 41 TC 4 Z9 4 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 39 DI 10.3847/0004-6256/151/2/39 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600019 ER PT J AU Howell, SB Ciardi, DR Giampapa, MS Everett, ME Silva, DR Szkody, P AF Howell, Steve B. Ciardi, David R. Giampapa, Mark S. Everett, Mark E. Silva, David R. Szkody, Paula TI VARIABILITY OF KEPLER SOLAR-LIKE STARS HARBORING SMALL EXOPLANETS SO ASTRONOMICAL JOURNAL LA English DT Article DE planetary systems; stars: fundamental parameters; surveys ID MAIN-SEQUENCE STARS; NEAR-SURFACE CONVECTION; 3-DIMENSIONAL SIMULATIONS; STELLAR ACTIVITY; HOST STARS; MISSION; MODELS; SUN; SPECTROSCOPY; PERSPECTIVE AB We examine Kepler light-curve variability on habitable zone transit timescales for a large uniform sample of spectroscopically studied Kepler exoplanet host stars. The stars, taken from Everett et al., are solar-like in their properties and each harbors at least one exoplanet (or candidate) of radius <= 2.5 R-e. The variability timescale examined is typical for habitable zone planets orbiting solar-like stars and we note that the discovery of the smallest exoplanets (<= 1.2 R-e) with corresponding transit depths of less than similar to 0.18 mmag occur for the brightest and photometrically quietest stars. Thus, these detections are quite rare in Kepler observations. Some brighter and more evolved stars (subgiants), the latter of which often show large radial velocity jitter, are found to be among the photometrically quietest solar-like stars in our sample and the most likely small planet transit hunting grounds. The Sun is discussed as a solar-like star proxy to provide insight into the nature and cause of photometric variability. It is shown that Kepler's broad, visible light observations are insensitive to variability caused by chromospheric activity that may be present in the observed stars. C1 [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ciardi, David R.] CALTECH, NASA Exoplanet Sci Inst, 770 S Wilson Ave, Pasadena, CA 91125 USA. [Giampapa, Mark S.] Natl Solar Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. [Everett, Mark E.; Silva, David R.] Natl Opt Astron Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. [Szkody, Paula] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Howell, Steve B.; Everett, Mark E.; Silva, David R.; Szkody, Paula] Natl Opt Astron Observ, Kitt Peak Natl Observ, Tucson, AZ USA. [Giampapa, Mark S.] Natl Solar Observ, Tucson, AZ USA. RP Howell, SB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Howell, SB (reprint author), Natl Opt Astron Observ, Kitt Peak Natl Observ, Tucson, AZ USA. OI Ciardi, David/0000-0002-5741-3047 FU NASA [NNX13AB60A] FX We wish to thank the staff of the Kepler project, the NASA Exoplanet Archive, and the Kitt Peak National Observatory for their continued support of the Kepler mission and its data products. Some of the data used here was collected by the National Solar Observatory SOLIS (ISS) instrument. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. M.E.E. wishes to acknowledge funding supporting this work at NOAO provided by NASA agreement number NNX13AB60A. NR 47 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 43 DI 10.3847/0004-6256/151/2/43 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600023 ER PT J AU Srivastava, PK Yaduvanshi, A Singh, SK Islam, T Gupta, M AF Srivastava, Prashant K. Yaduvanshi, Aradhana Singh, Sudhir Kumar Islam, Tanvir Gupta, Manika TI Support vector machines and generalized linear models for quantifying soil dehydrogenase activity in agro-forestry system of mid altitude central Himalaya SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Dehydrogenase activity; Agro-forestry system; Support vector machines; Generalized linear models; Central Himalaya ID LOCALLY WEIGHTED REGRESSION; LAND-SURFACE MODEL; HYDROLOGICAL APPLICATION; SMOOTHING SCATTERPLOTS; MICROBIAL COMMUNITIES; ENZYME-ACTIVITIES; SMOS SATELLITE; MOISTURE; CLASSIFICATION; IDENTIFICATION AB In natural ecosystems, the linkages between inputs of carbon from plants, soil moisture (SM) and microbial activity are central to our understanding of nutrient cycling. Predictions of microbial activities in soil are important as they indicate the potential of the soil to support biochemical processes that are essential for the maintenance of soil fertility as well as productivity. The dehydrogenase activity (DHA) in soil provides information on microbial activities of the soil. However, estimation of DHA activity over complex terrain such as soils of the central Himalaya is not always possible due to very harsh environment and climatic conditions. In this study, the attempts were made to estimate the DHA in the soil of mid altitude central Himalaya using computational intelligence techniques. The linear and non-linear correlation results indicate that the fluctuations in SM and organic carbon (OC) in the root zone affect DHA and can be used as predictors for DHA. Therefore, the performances of support vector machines (SVMs) and generalized linear models (GLMs) were attempted for the prediction of DHA over mid altitude central Himalaya using information of SM and OC. The results showed that the SVM was giving a much better performance than GLM using SM and OC and could be promising and cost effective approach for soil DHA prediction over complex ecosystem. Our results are also of considerable scientific and practical value to the wider scientific community, given the number of practical applications and research studies in which SM and OC datasets are used. C1 [Srivastava, Prashant K.; Gupta, Manika] NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Srivastava, Prashant K.] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India. [Yaduvanshi, Aradhana] Birla Inst Technol, Ctr Excellence Climatol, Ranchi, Bihar, India. [Singh, Sudhir Kumar] Univ Allahabad, Nehru Sci Ctr, K Banerjee Ctr Atmospher & Ocean Studies, IIDS, Allahabad 211002, Uttar Pradesh, India. [Islam, Tanvir] NOAA NESDIS Ctr Satellite Applicat & Res, College Pk, MD USA. [Islam, Tanvir] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Gupta, Manika] Univ Space Res Assoc, Columbia, MD USA. RP Srivastava, PK (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA.; Srivastava, PK (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.; Srivastava, PK (reprint author), Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India. EM prashant.k.srivastava@nasa.gov NR 60 TC 1 Z9 1 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 EI 1866-6299 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD FEB PY 2016 VL 75 IS 4 AR 299 DI 10.1007/s12665-015-5074-3 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA DF5LO UT WOS:000371393400022 ER PT J AU Munchak, SJ Meneghini, R Grecu, M Olson, WS AF Munchak, S. Joseph Meneghini, Robert Grecu, Mircea Olson, William S. TI A Consistent Treatment of Microwave Emissivity and Radar Backscatter for Retrieval of Precipitation over Water Surfaces SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Satellite observations; Filtering techniques; Mathematical and statistical techniques; Observational techniques and algorithms; Radars/Radar observations; Microwave observations ID RAIN-PROFILING ALGORITHM; LOW INCIDENCE ANGLES; CROSS-SECTIONS; PATH ATTENUATION; GLOBAL OCEANS; SEA-SURFACE; MODEL; TRMM; WINDS; BAND AB The Global Precipitation Measurement (GPM) Microwave Imager (GMI) and dual-frequency precipitation radar (DPR) are designed to provide the most accurate instantaneous precipitation estimates currently available from space. The GPM Combined Radar-Radiometer Algorithm (CORRA) plays a key role in this process by retrieving precipitation profiles that are consistent with GMI and DPR measurements; therefore, it is desirable that the forward models in CORRA use the same geophysical input parameters. This study explores the feasibility of using internally consistent emissivity and surface backscatter cross-sectional ( [GRAPHICS] ) models for water surfaces in CORRA. An empirical model for DPR Ku- and Ka-band [GRAPHICS] as a function of 10-m wind speed and incidence angle is derived from GMI-only wind retrievals under clear-sky conditions. This allows for the [GRAPHICS] measurements, which are also influenced by path-integrated attenuation (PIA) from precipitation, to be used as input to CORRA and for wind speed to be retrieved as output. Comparisons to buoy data give a wind rmse of 3.7 m s(-1) for Ku+GMI retrievals and 3.2 m s(-1) for Ku+Ka+GMI retrievals under precipitation (compared to 1.3 m s(-1) for clear-sky GMI-only retrievals), and there is a reduction in bias from the global analysis (GANAL) background data (-10%) to the Ku+GMI (-3%) and Ku+Ka+GMI (-5%) retrievals. Ku+GMI retrievals of precipitation increase slightly in light (<1 mm h(-1)) and decrease in moderate to heavy precipitation (>1 mm h(-1)). The Ku+Ka+GMI retrievals, being additionally constrained by the Ka reflectivity, increase only slightly in moderate and heavy precipitation at low wind speeds (<5 m s(-1)) relative to retrievals using the surface reference estimate of PIA as input. C1 [Munchak, S. Joseph] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Meneghini, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Grecu, Mircea] Morgan State Univ, Baltimore, MD 21239 USA. [Olson, William S.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Munchak, SJ (reprint author), NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Mail Code 612,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM s.j.munchak@nasa.gov RI Measurement, Global/C-4698-2015 FU NASA [NNX12AD03A]; Precipitation Measurement Missions Program FX This work was supported under NASA Cooperative Agreement NNX12AD03A and Precipitation Measurement Missions Program Scientist Dr. Ramesh Kakar. We would also like to thank Dr. Thomas Meissner of Remote Sensing Systems for providing the computational codes for the Meissner-Wentz emissivity model, and Dr. Simone Tanelli of NASA JPL/Caltech for providing the cutoff-invariant two-scale Durden-Vesecky model data. Finally, we thank the three anonymous reviewers, whose comments and suggestions greatly improved the quality of this manuscript. NR 56 TC 3 Z9 3 U1 2 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD FEB PY 2016 VL 33 IS 2 BP 215 EP 229 DI 10.1175/JTECH-D-15-0069.1 PG 15 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DE7PA UT WOS:000370828000002 ER PT J AU Han, J Witek, ML Teixeira, J Sun, R Pan, HL Fletcher, JK Bretherton, CS AF Han, Jongil Witek, Marcin L. Teixeira, Joao Sun, Ruiyu Pan, Hua-Lu Fletcher, Jennifer K. Bretherton, Christopher S. TI Implementation in the NCEP GFS of a Hybrid Eddy-Diffusivity Mass-Flux (EDMF) Boundary Layer Parameterization with Dissipative Heating and Modified Stable Boundary Layer Mixing SO WEATHER AND FORECASTING LA English DT Article DE Models and modeling; Parameterization ID CONVECTIVE MOMENTUM TRANSPORT; SHALLOW CUMULUS CONVECTION; HURRICANE INTENSITY; VERTICAL DIFFUSION; CLIMATE MODELS; FORECAST; SENSITIVITY; FORMULATION; IMPROVEMENT; SIMULATION AB The current operational eddy-diffusivity countergradient (EDCG) planetary boundary layer (PBL) scheme in the NCEP Global Forecast System (GFS) tends to underestimate the PBL growth in the convective boundary layer (CBL). To improve CBL growth, an eddy-diffusivity mass-flux (EDMF) PBL scheme is developed, where the nonlocal transport by large turbulent eddies is represented by a mass-flux (MF) scheme and the local transport by small eddies is represented by an eddy-diffusivity (ED) scheme. For the vertical momentum mixing, the MF scheme is modified to include the effect of the updraft-induced pressure gradient force. While the EDMF scheme displays better CBL growth than the EDCG scheme, it tends to overproduce the amount of low clouds and degrades wind vector forecasts over the tropical ocean where strongly unstable PBLs are rarely found. In order not to degrade the forecast skill in the tropics, a hybrid scheme is developed, where the EDMF scheme is applied only for the strongly unstable PBL, while the EDCG scheme is used for the weakly unstable PBL. Along with the hybrid EDMF scheme, the heating by turbulent kinetic energy (TKE) dissipation is parameterized to reduce an energy imbalance in the GFS. To enhance a too weak vertical turbulent mixing for weakly and moderately stable conditions, the current local scheme in the stable boundary layer (SBL) is modified to use an eddy-diffusivity profile method. The hybrid EDMF PBL scheme with TKE dissipative heating and modified SBL mixing led to significant improvements in some key medium-range weather forecast metrics and was operationally implemented into the NCEP GFS in January 2015. C1 [Han, Jongil] Natl Ctr Environm Predict, Syst Res Grp Inc, Environm Predict Ctr, College Pk, MD USA. [Witek, Marcin L.; Teixeira, Joao] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Sun, Ruiyu; Pan, Hua-Lu] Natl Ctr Environm Predict, IM Syst Grp Inc, Environm Predict Ctr, College Pk, MD USA. [Fletcher, Jennifer K.; Bretherton, Christopher S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. RP Han, J (reprint author), NCEP EMC, 5830 Univ Res Ct, College Pk, MD 20740 USA. EM jongil.han@noaa.gov RI Witek, Marcin/G-9440-2016 FU NOAA MAPP/CPO program as part of the Sc-to-Cu Transition Climate Process Team FX This work was supported by the NOAA MAPP/CPO program as part of the Sc-to-Cu Transition Climate Process Team. Internal reviews from Helin Wei, Qingfu Liu, and Mary Hart at NCEP/EMC are highly appreciated. We also thank the anonymous reviewers for valuable comments that helped to improve the manuscript. NR 41 TC 1 Z9 1 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0882-8156 EI 1520-0434 J9 WEATHER FORECAST JI Weather Forecast. PD FEB PY 2016 VL 31 IS 1 BP 341 EP 352 DI 10.1175/WAF-D-15-0053.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DE1MT UT WOS:000370391800002 ER PT J AU Rettberg, P Anesio, AM Baker, VR Baross, JA Cady, SL Detsis, E Foreman, CM Hauber, E Ori, GG Pearce, DA Renno, NO Ruvkun, G Sattler, B Saunders, MP Smith, DH Wagner, D Westall, F AF Rettberg, Petra Anesio, Alexandre M. Baker, Victor R. Baross, John A. Cady, Sherry L. Detsis, Emmanouil Foreman, Christine M. Hauber, Ernst Ori, Gian Gabriele Pearce, David A. Renno, Nilton O. Ruvkun, Gary Sattler, Birgit Saunders, Mark P. Smith, David H. Wagner, Dirk Westall, Frances TI Planetary Protection and Mars Special Regions-A Suggestion for Updating the Definition SO ASTROBIOLOGY LA English DT Article ID RECURRING SLOPE LINEAE; SCIENCE ANALYSIS GROUP; METHANE; ATMOSPHERE AB We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars "Special Regions," areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions. Key Words: Planetary protection-Mars Special Regions-COSPAR policy. Astrobiology 16, 119-125. C1 [Rettberg, Petra] German Aerosp Ctr, D-51147 Cologne, Germany. [Anesio, Alexandre M.] Univ Bristol, Bristol Glaciol Ctr, Bristol, Avon, England. [Baker, Victor R.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Baross, John A.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Cady, Sherry L.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Detsis, Emmanouil] European Sci Fdn, Space Sci Grp, Strasbourg, France. [Foreman, Christine M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT USA. [Hauber, Ernst] German Aerosp Ctr, Dept Planetary Geol, Berlin, Germany. [Ori, Gian Gabriele] Univ G dAnnunzio, Int Res Sch Planetary Sci, Pescara, Italy. [Pearce, David A.] Northumbria Univ, Dept Appl Sci, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England. [Renno, Nilton O.] Univ Michigan, Coll Engn, Ann Arbor, MI 48109 USA. [Ruvkun, Gary] Harvard Univ, Sch Med, Richard B Simches Res Ctr, Boston, MA USA. [Sattler, Birgit] Univ Innsbruck, Austrian Polar Res Inst, A-6020 Innsbruck, Austria. [Saunders, Mark P.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Smith, David H.] Natl Acad Sci Engn & Med, Space Studies Board, Washington, DC USA. [Wagner, Dirk] Helmholtz Ctr Potsdam, German Res Ctr Geosci, Potsdam, Germany. [Westall, Frances] CNRS, Ctr Biophys Mol, Orleans, France. RP Rettberg, P (reprint author), German Aerosp Ctr, Inst Aerosp Med, D-51147 Cologne, Germany. EM Petra.Rettberg@dlr.de RI Wagner, Dirk/C-3932-2012; Rettberg, Petra/K-2378-2015; Anesio, Alexandre/A-7597-2008 OI Wagner, Dirk/0000-0001-5064-497X; Rettberg, Petra/0000-0003-4439-2395; Anesio, Alexandre/0000-0003-2990-4014 FU National Academies of Sciences, Engineering, and Medicine [NNH11CD57B]; National Aeronautics and Space Administration [NNH11CD57B]; European Science Foundation [RFP/IPL-PTM/PA/fg/306.2014]; European Space Agency [RFP/IPL-PTM/PA/fg/306.2014] FX This article is based on work supported by the Contract NNH11CD57B between the National Academies of Sciences, Engineering, and Medicine and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency. NR 22 TC 1 Z9 1 U1 1 U2 12 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD FEB 1 PY 2016 VL 16 IS 2 BP 119 EP 125 DI 10.1089/ast.2016.1472 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DF0FB UT WOS:000371013300001 PM 26848950 ER PT J AU Georgiou, CD Zisimopoulos, D Panagiotidis, K Grintzalis, K Papapostolou, I Quinn, RC McKay, CP Sun, HJ AF Georgiou, Christos D. Zisimopoulos, Dimitrios Panagiotidis, Konstantinos Grintzalis, Konstantinos Papapostolou, Ioannis Quinn, Richard C. McKay, Christopher P. Sun, Henry J. TI Martian Superoxide and Peroxide O-2 Release (OR) Assay: A New Technology for Terrestrial and Planetary Applications SO ASTROBIOLOGY LA English DT Article ID GAS-EXCHANGE EXPERIMENT; CYTOCHROME-C; HYDROGEN-PEROXIDE; EXTINCTION COEFFICIENT; MARS; SOIL; PERCHLORATE; CATALASE; ANION; DECOMPOSITION AB This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O-2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O-2 and their quantification by an O-2 electrode based on the stoichiometry of the involved reactions. The intermediate product [GRAPHICS] from the hydrolysis of metal superoxides is converted by cytochrome c to O-2 and by superoxide dismutase (SOD) to 1/2 mol O-2 and 1/2 mol H2O2, which is then converted by catalase (CAT) to 1/2 mol O-2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to 1/2 mol O-2 by CAT. The assay method was validated in a sealed sample chamber by using a liquid-phase Clark-type O-2 electrode with known concentrations of [GRAPHICS] and H2O2, and commercial metal superoxide and peroxide mixed with Mars analog Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, when using luminescence quenching/optical sensing O-2-electrodes, is 1 nmol O-2 cm(-3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by gamma radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, which demonstrates the suitability of these enzymes for planetary missions, for example, on Mars or Europa. Key Words: Geochemistry-Oxygen-Geological conditions for the development of life-Mars-Europa. Astrobiology 16, 126-142. C1 [Georgiou, Christos D.; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Konstantinos; Papapostolou, Ioannis] Univ Patras, Dept Biol, Patras 26504, Greece. [Quinn, Richard C.] SETI Inst, Carl Sagan Ctr, Mountain View, CA USA. [McKay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Sun, Henry J.] Desert Res Inst, Las Vegas, NV USA. RP Georgiou, CD (reprint author), Univ Patras, Dept Biol, Patras 26504, Greece. EM c.georgiou@upatras.gr RI Georgiou, Christos/B-8354-2013 OI Georgiou, Christos/0000-0001-9707-0109 NR 57 TC 0 Z9 0 U1 4 U2 10 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD FEB 1 PY 2016 VL 16 IS 2 BP 126 EP 142 DI 10.1089/ast.2015.1345 PG 17 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DF0FB UT WOS:000371013300002 PM 26881470 ER PT J AU Fairen, AG Dohm, JM Rodriguez, JAP Uceda, ER Kargel, J Soare, R Cleaves, HJ Oehler, D Schulze-Makuch, D Essefi, E Banks, ME Komatsu, G Fink, W Robbins, S Yan, JG Miyamoto, H Maruyama, S Baker, VR AF Fairen, Alberto G. Dohm, James M. Rodriguez, J. Alexis P. Uceda, Esther R. Kargel, Jeffrey Soare, Richard Cleaves, H. James Oehler, Dorothy Schulze-Makuch, Dirk Essefi, Elhoucine Banks, Maria E. Komatsu, Goro Fink, Wolfgang Robbins, Stuart Yan, Jianguo Miyamoto, Hideaki Maruyama, Shigenori Baker, Victor R. TI The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars SO ASTROBIOLOGY LA English DT Article ID MARTIAN ATMOSPHERE; GALE CRATER; CONTINENTAL-CRUST; ISOTOPIC EVIDENCE; NORTHERN PLAINS; ARCHEAN LIFE; WATER; EVOLUTION; OCEANS; EARTH AB At the time before similar to 3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at similar to 3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows. Key Words: Mars-Surface processes and composition of Mars-Liquid water-Geological conditions for the development of life-Planetary habitability and biosignatures. Astrobiology 16, 143-158. C1 [Fairen, Alberto G.] Ctr Astrobiol CSIC INTA, Dept Planetol & Habitabil, Madrid, Spain. [Fairen, Alberto G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Dohm, James M.; Miyamoto, Hideaki] Univ Tokyo, Univ Museum, Tokyo, Japan. [Rodriguez, J. Alexis P.; Banks, Maria E.] Planetary Sci Inst, Tucson, AZ USA. [Uceda, Esther R.] Univ Autonoma Madrid, Fac Ciencias, E-28049 Madrid, Spain. [Kargel, Jeffrey; Baker, Victor R.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Soare, Richard] Dawson Coll, Dept Geog, Montreal, PQ H3Z 1A4, Canada. [Cleaves, H. James; Maruyama, Shigenori] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo 152, Japan. [Cleaves, H. James] Inst Adv Study, Olden Lane, Princeton, NJ 08540 USA. [Oehler, Dorothy] NASA, Lyndon B Johnson Space Ctr, Jacobs LZ Technol, JETS Contract, Houston, TX 77058 USA. [Schulze-Makuch, Dirk] Tech Univ Berlin, Ctr Astron & Astrophys, Berlin, Germany. [Schulze-Makuch, Dirk] Washington State Univ, Sch Environm, Pullman, WA 99164 USA. [Essefi, Elhoucine] Univ Gabes, Higher Inst Appl Sci & Technol, Gabes, Tunisia. [Banks, Maria E.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20560 USA. [Komatsu, Goro] Univ G dAnnunzio, Int Res Sch Planetary Sci, Pescara, Italy. [Fink, Wolfgang] Univ Arizona, Dept Elect & Comp Engn, Coll Engn, Tucson, AZ 85721 USA. [Fink, Wolfgang] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Robbins, Stuart] Southwest Res Inst, Boulder, CO USA. [Yan, Jianguo] Natl Astron Observ Japan, RISE Project Off, Oshu, Japan. RP Fairen, AG (reprint author), Ctr Astrobiol, M-108,Km 4, Madrid 28850, Spain. EM agfairen@cab.inta-csic.es RI Komatsu, Goro/I-7822-2012; Miyamoto, Hideaki/B-9666-2008; OI Komatsu, Goro/0000-0003-4155-108X; Schulze-Makuch, Dirk/0000-0002-1923-9746; Cleaves, Henderson/0000-0003-4101-0654 FU European Research Council [307496, 339231]; NASA PGG Program; JSPS KAKENHI [26106002]; Tokyo Institute of Technology's Earth-Life Science Institute; Astromaterials Research and Exploration Science Division at Johnson Space Center FX The research leading to these results is a contribution from the Project "icyMARS,'' funded by the European Research Council, Starting Grant no 307496. J.M.D. was supported by the NASA PG&G Program and JSPS KAKENHI Grant Number 26106002 [Hadean BioScience (Grant-in-Aid for Scientific Research on Innovative Areas)]. J.M.D. and H.M. express their gratitude to the Tokyo Dome Corporation for their support of the TeNQ exhibit and the branch of Space Exploration Education & Discovery, the University Museum, the University of Tokyo. H.J.C. would like to thank the Tokyo Institute of Technology's Earth-Life Science Institute for funding during the preparation of this manuscript. D.Z.O. is grateful to the Astromaterials Research and Exploration Science Division at Johnson Space Center for support. D.S.-M. was supported by European Research Council, Advanced Grant "Habitability of Martian Environments,'' no 339231. The authors want to thank Chris McKay for a constructive review of this paper. NR 115 TC 1 Z9 1 U1 4 U2 16 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD FEB 1 PY 2016 VL 16 IS 2 BP 143 EP 158 DI 10.1089/ast.2015.1396 PG 16 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DF0FB UT WOS:000371013300003 PM 26836592 ER PT J AU Davila, AF Schulze-Makuch, D AF Davila, Alfonso F. Schulze-Makuch, Dirk TI The Last Possible Outposts for Life on Mars SO ASTROBIOLOGY LA English DT Article ID CRYPTOENDOLITHIC MICROBIAL ENVIRONMENT; MCMURDO DRY VALLEYS; ATACAMA DESERT IMPLICATIONS; ANTARCTIC COLD DESERT; HYPER-ARID ZONE; LIQUID WATER; ROSS DESERT; ENDOLITHIC MICROORGANISMS; DESICCATION-TOLERANCE; HIGH OBLIQUITY AB The evolution of habitable conditions on Mars is often tied to the existence of aquatic habitats and largely constrained to the first billion years of the planet. Here, we propose an alternate, lasting evolutionary trajectory that assumes the colonization of land habitats before the end of the Hesperian period (ca. 3 billion years ago) at a pace similar to life on Earth. Based on the ecological adaptations to increasing dryness observed in dryland ecosystems on Earth, we reconstruct the most likely sequence of events leading to a late extinction of land communities on Mars. We propose a trend of ecological change with increasing dryness from widespread edaphic communities to localized lithic communities and finally to communities exclusively found in hygroscopic substrates, reflecting the need for organisms to maximize access to atmospheric sources of water. If our thought process is correct, it implies the possibility of life on Mars until relatively recent times, perhaps even the present. Key Words: Life-Mars-Evolution-Desert-Land ecosystems-Deliquescence. Astrobiology 16, 159-168. C1 [Davila, Alfonso F.] SETI Inst, Carl Sagan Ctr, Mountain View, CA USA. [Davila, Alfonso F.] NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 95043 USA. [Schulze-Makuch, Dirk] Washington State Univ, Sch Environm, Pullman, WA 99164 USA. [Schulze-Makuch, Dirk] Tech Univ Berlin, Ctr Astron & Astrophys, Berlin, Germany. RP Davila, AF (reprint author), NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 95043 USA. EM adavila@seti.org OI Schulze-Makuch, Dirk/0000-0002-1923-9746 FU NASA Exobiology Program [NNX12AD61G]; NASA Astrobiology Institute (NAI Grant) [NNX15BB01A]; ERC [339231] FX A.F.D. acknowledges funding from the NASA Exobiology Program (Grant NNX12AD61G) and the NASA Astrobiology Institute (NAI Grant NNX15BB01A to the SETI Institute). D.S.M. acknowledges funding for this work from ERC Advanced Grant 339231. We thank Kim Warren-Rhodes, Chris McKay, and Henry Sun for helpful discussions and for providing some of the images in Fig. 1. NR 95 TC 2 Z9 2 U1 29 U2 53 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD FEB 1 PY 2016 VL 16 IS 2 BP 159 EP 168 DI 10.1089/ast.2015.1380 PG 10 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DF0FB UT WOS:000371013300004 PM 26836457 ER PT J AU Bower, DM Steele, A Fries, MD Green, OR Lindsay, JF AF Bower, D. M. Steele, A. Fries, M. D. Green, O. R. Lindsay, J. F. TI Raman Imaging Spectroscopy of a Putative Microfossil from the similar to 3.46 Ga Apex Chert: Insights from Quartz Grain Orientation SO ASTROBIOLOGY LA English DT Article ID EARTHS EARLIEST FOSSILS; WESTERN-AUSTRALIA; HYDROTHERMAL ALTERATION; ORGANIC-CARBON; LIFE; BIOGENICITY; IMAGERY; HEMATITE; DEPOSITS AB The utility of nondestructive laser Raman for testing the biogenicity of microfossil-like structures in ancient rocks is promising, yet results from deposits like the similar to 3.46 Ga Apex chert remain contentious. The essence of the debate is that associated microstructures, which are not purported to be microfossils, also contain reduced carbon that displays Raman D- and G-band peaks similar to those seen in the purported microfossils. This has led to the hypothesis that all features including reported microfossils are due to compression of nonfossil carbon during crystal growth around quartz spherulites or more angular crystals. In this scenario, the precursor to this macromolecular carbon may or may not have been of biogenic origin, while the arcuate and linear features described would be pseudofossils. To test this hypothesis, we have undertaken 2-D micro-Raman imaging of the Eoleptonema apex holotype and associated features using instrumentation with a high spatial and spectral resolution. In addition to this, we utilized the ratio of two Raman active quartz mode intensities (I-129/I-461) to assess quartz grain orientation and grain-splitting artifacts. These data lead us to conclude that the holotype of Eoleptonema apex is a sheet-shaped pseudofossil that appears to be a carbon infilled intragranular crack; therefore other holotypes should be carefully reexamined for syngenicity. Key Words: Micro-Raman spectroscopy-Microfossils-Life detection-Archean-Apex chert. Astrobiology 16, 169-180. C1 [Bower, D. M.; Steele, A.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. [Fries, M. D.] NASA Astromat Res & Explorat Sci, Lyndon B Johnson Space Ctr, Houston, TX USA. [Green, O. R.] Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England. [Lindsay, J. F.] Lunar & Planetary Sci Inst, Houston, TX USA. RP Bower, DM (reprint author), NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. EM dina.m.bower@nasa.gov FU NASA SRLIDA; ASTEP; Natural History Museum London; WITec GMbH; NAI Postdoctoral Program; Oak Ridge Associated Universities FX We would like to acknowledge the support of NASA SRLIDA and ASTEP (A. Steele, PI), Natural History Museum London for loan of the thin sections, WITec GMbH, NAI Postdoctoral Program, and Oak Ridge Associated Universities. We thank Martin Brasier, Maia Schweizer, and David Wacey for useful comments on the manuscript. A special thanks to E. Leporida for reminding us the truth is what matters most. This paper is dedicated to the memory of John Lindsay and Martin D. Brasier. NR 37 TC 1 Z9 1 U1 9 U2 12 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD FEB 1 PY 2016 VL 16 IS 2 BP 169 EP 180 DI 10.1089/ast.2014.1207 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DF0FB UT WOS:000371013300005 PM 26848838 ER PT J AU Zivan, O Segal-Rosenheimer, M Dubowski, Y AF Zivan, Ohad Segal-Rosenheimer, Michal Dubowski, Yael TI Airborne organophosphate pesticides drift in Mediterranean climate: The importance of secondary drift SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Airborne pesticides measurements; Pesticide drift; CALPUFF; Secondary drift; Chlorpyrifos ID GROUND BOOM SPRAYERS; BYSTANDER EXPOSURE; CHLORPYRIFOS-OXON; MODEL DEVELOPMENT; GC-MS; AIR; VOLATILIZATION; EMISSION; VALIDATION; CALPUFF AB Pesticide application is a short-term air-pollution episode with near and far field effects due to atmospheric drift. In order to better evaluate resulting air concentrations in nearby communities following pesticide application, measurements of airborne pesticides were conducted at similar to 70 m from field edge. This was done following three different application events of the organophosphate pesticide Chlorpyrifos in a persimmon orchard. Complementary information on larger spatial scale was obtained using CAL PUFF modeling in which application and meteorological data was used to better evaluate dispersion patterns. Measurements indicated high airborne concentrations during application hours (few pg 111-3 for 8 h average), which dropped to tens of mu g m(-3) in the following days. Measured atmospheric concentrations show that secondary drift (i.e., post-application drift) involves significant loads of pesticides and hence should not be ignored in exposure considerations. Furthermore, CALPUFF modeling revealed the complex dispersion pattern when weak winds prevailed, and showed that during the 24 h after application air concentrations reached levels above the hourly Texas effect screening level (0.1 mu g m(-3)). Interestingly, weak winds on the night after application resulted in a secondary peak in measured and modeled air concentrations. Long exposure time (when secondary drift is considered) and concentrations measured following such common air-assisted orchard application, suggest pesticide drift may have health repercussions that are currently unknown, and emphasize the need for further epidemiological studies. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zivan, Ohad; Dubowski, Yael] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel. [Segal-Rosenheimer, Michal] NASA, Ames Res Ctr, Sunphotometer Satellite Grp, Bldg 245,Rm 280-S, Moffett Field, CA 94035 USA. RP Zivan, O (reprint author), Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel. EM zivan@campus.technion.ac.il; michal.segalrozenhaimer@nasa.gov; yaeld@technion.ac.il OI Zivan, Ohad/0000-0003-1598-173X FU Environmental Health Foundation [RGA 0903]; Israel Science Foundation [809/12] FX This work was supported by the Environmental Health Foundation (grant RGA 0903) and by the Israel Science Foundation (grant 809/12). NR 51 TC 2 Z9 2 U1 5 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2016 VL 127 BP 155 EP 162 DI 10.1016/j.atmosenv.2015.12.003 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE6VC UT WOS:000370770700018 ER PT J AU Gall, ET Griffin, RJ Steiner, AL Dibb, J Scheuer, E Gong, LW Rutter, AP Cevik, BK Kim, S Lefer, B Flynn, J AF Gall, Elliott T. Griffin, Robert J. Steiner, Allison L. Dibb, Jack Scheuer, Eric Gong, Longwen Rutter, Andrew P. Cevik, Basak K. Kim, Saewung Lefer, Barry Flynn, James TI Evaluation of nitrous acid sources and sinks in urban outflow SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air quality; Unknown HONO source; Monte Carlo simulation; Evolutionary solver ID HONO VERTICAL GRADIENTS; DAYTIME SOURCE; NITRIC-ACID; ATMOSPHERIC IMPLICATIONS; ORGANIC-COMPOUNDS; BOUNDARY-LAYER; HUMIC-ACID; SHARP 2009; NO2; SURFACE AB Intensive air quality measurements made from June 22-25, 2011 in the outflow of the Dallas Fort Worth (DFW) metropolitan area are used to evaluate nitrous acid (HONO) sources and sinks. A two layer box model was developed to assess the ability of established and recently identified HONO sources and sinks to reproduce observations of HONO mixing ratios. A baseline model scenario includes sources and sinks established in the literature and is compared to scenarios including three recently identified sources: volatile organic compound-mediated conversion of nitric acid to HONO (S1), biotic emission from the ground (S2), and re-emission from a surface nitrite reservoir (S3). For all mechanisms, ranges of parametric values span lower- and upper-limit values. Model outcomes for 'likely' estimates of sources and sinks generally show under-prediction of HONO observations, implying the need to evaluate additional sources and variability in estimates of parameterizations, particularly during daylight hours. Monte Carlo simulation is applied to model scenarios constructed with sources S1-S3 added independently and in combination, generally showing improved model outcomes. Adding sources S2 and S3 (scenario S2/S3) appears to best replicate observed HONO, as determined by the model coefficient of determination and residual sum of squared errors (r(2) = 0.55 +/- 0.03, SSE = 4.6 x 10(6) +/- 7.6 x 10(5) ppt(2)). In scenario S2/S3, source S2 is shown to account for 25% and 6.7% of the nighttime and daytime budget, respectively, while source S3 accounts for 19% and 11% of the nighttime and daytime budget, respectively. However, despite improved model fit, there remains significant underestimation of daytime HONO; on average, a 0.15 ppt/s unknown daytime HONO source, or 67% of the total daytime source, is needed to bring scenario S2/S3 into agreement with observation. Estimates of 'best fit' parameterizations across lower to upper-limit values results in a moderate reduction of the unknown daytime source, from 0.15 to 0.10 ppt/s. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Gall, Elliott T.; Griffin, Robert J.; Gong, Longwen; Rutter, Andrew P.; Cevik, Basak K.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. [Gall, Elliott T.] Portland State Univ, Dept Mech & Mat Engn, Portland, OR 97201 USA. [Steiner, Allison L.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Dibb, Jack; Scheuer, Eric] Univ New Hampshire, Earth Syst Res Ctr, Durham, NH 03824 USA. [Kim, Saewung] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Lefer, Barry; Flynn, James] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77004 USA. [Gall, Elliott T.] Nanyang Technol Univ, Singapore 138602, Singapore. [Gall, Elliott T.] Berkeley Educ Alliance Res Singapore, Singapore 138602, Singapore. [Gong, Longwen] Calif Air Resources Board, Monitoring & Lab Div, Sacramento, CA 95811 USA. [Rutter, Andrew P.] SC Johnson Inc, Collaborat Sci Div, Racine, WI 53403 USA. [Lefer, Barry] NASA Headquarters, Tropospher Composit Program, Washington, DC 20546 USA. RP Griffin, RJ (reprint author), Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. EM rob.griffin@rice.edu RI Kim, Saewung/E-4089-2012; Steiner, Allison/F-4942-2011; Lefer, Barry/B-5417-2012 OI Gall, Elliott/0000-0003-1351-0547; Lefer, Barry/0000-0001-9520-5495 FU Texas Commission on Environmental Quality Air Quality Research Program [10-024] FX The support of the Texas Commission on Environmental Quality (Project 10-024) Air Quality Research Program is gratefully acknowledged. We also thank the reviewers whose comments and suggestions greatly improved the model and manuscript. NR 51 TC 3 Z9 5 U1 13 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2016 VL 127 BP 272 EP 282 DI 10.1016/j.atmosenv.2015.12.044 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE6VC UT WOS:000370770700031 ER PT J AU Yates, EL Iraci, LT Singh, HB Tanaka, T Roby, MC Hamill, P Clements, CB Lareau, N Contezac, J Blake, DR Simpson, IJ Wisthaler, A Mikoviny, T Diskin, GS Beyersdorf, AJ Choi, Y Ryerson, TB Jimenez, JL Campuzano-Jost, P Loewenstein, M Gore, W AF Yates, E. L. Iraci, L. T. Singh, H. B. Tanaka, T. Roby, M. C. Hamill, P. Clements, C. B. Lareau, N. Contezac, J. Blake, D. R. Simpson, I. J. Wisthaler, A. Mikoviny, T. Diskin, G. S. Beyersdorf, A. J. Choi, Y. Ryerson, T. B. Jimenez, J. L. Campuzano-Jost, P. Loewenstein, M. Gore, W. TI Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Wildfire; Trace gases; Emission factors; Enhancement ratios; Western US ID BIOMASS BURNING EMISSIONS; FOREST-FIRE EMISSIONS; UNITED-STATES; AIRCRAFT MEASUREMENTS; ORGANIC-COMPOUNDS; PRESCRIBED FIRES; CARBON-DIOXIDE; BROWN CARBON; AIR-QUALITY; WESTERN US AB This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O-3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC 8, as part of SEAC(4)RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4 (ppm CO2)(-1) on 26 August, 6.5 ppb CH4 (ppm CO2)(-1) on 29 August and 18.3 ppb CH4 (ppm CO2)(-1) on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4 (ppm CO2)(-1) during the primary burning period to 18.3 ppb CH4 (ppm CO2)(-1) during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Loewenstein, M.; Gore, W.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.] San Jose State Univ, San Jose, CA 95192 USA. [Blake, D. R.; Simpson, I. J.] UC Irvine, Irvine, CA USA. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. [Wisthaler, A.; Mikoviny, T.] Univ Oslo, Dept Chem, N-0316 Oslo, Norway. [Diskin, G. S.; Beyersdorf, A. J.; Choi, Y.] NASA Langley, Hampton, VA USA. [Choi, Y.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Ryerson, T. B.] NOAA, ESRL, Boulder, CO USA. [Jimenez, J. L.; Campuzano-Jost, P.] Univ Colorado, Boulder, CO 80309 USA. RP Yates, EL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM emma.l.yates@nasa.gov RI Jimenez, Jose/A-5294-2008; Manager, CSD Publications/B-2789-2015 OI Jimenez, Jose/0000-0001-6203-1847; FU H211 L. L. C.; NASA Earth Science Program; San Jose State University Research Foundation; NASA Postdoctoral Program; Bay Area Environmental Research Institute; National Science Foundation [AGS-1151930]; Ames Research Center; Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG); Visiting Scientist Program of the National Institute of Aerospace (NIA); NASA Earth Science Division Award [NNX14AP4] FX We acknowledge the support and partnership of H211 L. L. C. for the Alpha Jet and the NASA Earth Science Program for the SEAC4RS effort. Further support was provided by San Jose State University Research Foundation, the NASA Postdoctoral Program, the Bay Area Environmental Research Institute, the National Science Foundation (AGS-1151930) and the Ames Research Center. CH3CN, CH3OH, CH3COCH3, C6H6 and C7H8 measurements aboard the NASA DC-8 were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). AW and TM received support from the Visiting Scientist Program of the National Institute of Aerospace (NIA) and through NASA Earth Science Division Award NNX14AP4 We are thankful to the SEAC4RS and Alpha Jet Science Teams for their contribution. NR 58 TC 4 Z9 4 U1 20 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2016 VL 127 BP 293 EP 302 DI 10.1016/j.atmosenv.2015.12.038 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE6VC UT WOS:000370770700033 ER PT J AU Zhang, Z Pasolli, E Crawford, MM Tilton, JC AF Zhang, Zhou Pasolli, Edoardo Crawford, Melba M. Tilton, James C. TI An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Active learning (AL); classification; hierarchical segmentation (HSeg); hyperspectral images; spatial information ID REMOTE-SENSING IMAGES; SPECTRAL-SPATIAL CLASSIFICATION; BINARY PARTITION TREE; REPRESENTATION; INFORMATION; EXTRACTION AB Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation. C1 [Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. [Pasolli, Edoardo] Univ Trento, Ctr Integrat Biol, I-38121 Trento, Italy. [Tilton, James C.] NASA, Goddard Space Flight Ctr, Computat & Informat Sci & Technol Off, Greenbelt, MD 20771 USA. RP Zhang, Z; Pasolli, E; Crawford, MM (reprint author), Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA.; Pasolli, E (reprint author), Univ Trento, Ctr Integrat Biol, I-38121 Trento, Italy.; Tilton, JC (reprint author), NASA, Goddard Space Flight Ctr, Computat & Informat Sci & Technol Off, Greenbelt, MD 20771 USA. EM zhan1553@purdue.edu; edoardo.pasolli@unitn.it; mcrawford@purdue.edu; james.c.tilton@nasa.gov OI Pasolli, Edoardo/0000-0003-0799-3490 FU NASA AIST [11-0077] FX This work was supported by the NASA AIST under Grant 11-0077. NR 41 TC 1 Z9 1 U1 14 U2 34 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD FEB PY 2016 VL 9 IS 2 BP 640 EP 654 DI 10.1109/JSTARS.2015.2493887 PG 15 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DE8HT UT WOS:000370877600008 ER PT J AU Czapla-Myers, J Ong, L Thome, K McCorkel, J AF Czapla-Myers, Jeffrey Ong, Lawrence Thome, Kurtis McCorkel, Joel TI Validation of EO-1 Hyperion and Advanced Land Imager Using the Radiometric Calibration Test Site at Railroad Valley, Nevada SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Advanced Land Imager (ALI); calibration; Earth-Observing One (EO-1); Hyperion; hyperspectral; validation ID IMAGING SPECTROMETER; SENSORS; SPACE; ETM+; NETWORK; AERONET; MISSION; DESIGN AB The Earth-Observing One (EO-1) satellite was launched in 2000. Radiometric calibration of Hyperion and the Advanced Land Imager (ALI) has been performed throughout the mission lifetime using various techniques that include ground-based vicarious calibration, pseudo-invariant calibration sites, and also the moon. The EO-1 mission is nearing its useful lifetime, and this work seeks to validate the radiometric calibration of Hyperion and ALI from 2013 until the satellite is decommissioned. Hyperion and ALI have been routinely collecting data at the automated Radiometric Calibration Test Site [RadCaTS/Railroad Valley (RRV)] since launch. In support of this study, the frequency of the acquisitions at RadCaTS has been significantly increased since 2013, which provides an opportunity to analyze the radiometric stability and accuracy during the final stages of the EO-1 mission. The analysis of Hyperion and ALI is performed using a suite of ground instrumentation that measures the atmosphere and surface throughout the day. The final product is an estimate of the top-of-atmosphere (TOA) spectral radiance, which is compared to Hyperion and ALI radiances. The results show that Hyperion agrees with the RadCaTS predictions to within 5% in the visible and near-infrared (VNIR) and to within 10% in the shortwave infrared (SWIR). The 2013-2014 ALI results show agreement to within 6% in the VNIR and 7.5% in the SWIR bands. A crosscomparison between ALI and the Operational Land Imager (OLI) using RadCaTS as a transfer source shows agreement of 3%-6% during the period of 2013-2014. C1 [Czapla-Myers, Jeffrey] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Ong, Lawrence] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. [Thome, Kurtis; McCorkel, Joel] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. RP Czapla-Myers, J (reprint author), Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA.; Ong, L (reprint author), NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA.; Thome, K; McCorkel, J (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. EM jscm@optics.arizona.edu; lawrence.ong@nasa.gov; kurtis.thome@nasa.gov; joel.mccorkel@nasa.gov RI McCorkel, Joel/D-4454-2012; OI McCorkel, Joel/0000-0003-2853-2036; Czapla-Myers, Jeffrey/0000-0003-4804-5358 FU NASA [NNX11AG28G, NNX14AE20G] FX This work was supported by NASA under Grant NNX11AG28G and Grant NNX14AE20G. NR 50 TC 2 Z9 2 U1 6 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD FEB PY 2016 VL 9 IS 2 BP 816 EP 826 DI 10.1109/JSTARS.2015.2463101 PG 11 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DE8HT UT WOS:000370877600022 ER PT J AU Mielikainen, J Price, E Huang, BM Huang, HLA Lee, T AF Mielikainen, Jarno Price, Erik Huang, Bormin Huang, Hung-Lung Allen Lee, Tsengdar TI GPU Compute Unified Device Architecture (CUDA)-based Parallelization of the RRTMG Shortwave Rapid Radiative Transfer Model SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Compute unified device architecture (CUDA); graphics processing unit (GPU); parallel computing; radiative transfer ID ATMOSPHERIC SOUNDING INTERFEROMETER; ACCELERATION; CODE AB Radiative transfer of electromagnetic radiation through a planetary atmosphere is computed using an atmospheric radiative transfer model (RTM). One RTM is the rapid RTM (RRTM), which calculates both longwave and shortwave atmospheric radiative fluxes and heating rates. Broadband radiative transfer code for general circulation model (GCM) applications, rapid RTM for global (RRTMG), is based on the singlecolumn reference code, RRTM. The focus of this paper is on the RRTMG shortwave (RRTMG_SW) model. Due to its accuracy, RRTMG_SW has been implemented operationally in many weather forecast and climatemodels. In this paper, we examine the feasibility of using graphics processing units (GPUs) to accelerate the RRTMG_SW for a massive amount of atmospheric profiles. In recent years, GPUs have emerged as a low-cost, low-power, and a very high-performance alternative to conventional central processing units (CPUs). GPUs can provide a substantial improvement in RRTMG speed by supporting the parallel computation of large numbers of independent radiative calculations in separate atmospheric profiles. A GPU-compatible version of RRTMG was implemented and thorough testing was performed to ensure that the original level of accuracy is retained. Our results show that GPUs can provide significant speedup over conventional CPUs. In particular, Nvidia's Tesla K40 GPU card can provide a speedup of 202x compared to its single-threaded Fortran counterpart running on Intel Xeon E5-2603 CPU, whereas the speedup for four CPU cores, on one CPU socket, with respect to 1 CPU core is 5.6x. C1 [Mielikainen, Jarno; Price, Erik; Huang, Bormin; Huang, Hung-Lung Allen] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53703 USA. [Lee, Tsengdar] NASA Headquarters, Washington, DC 20546 USA. RP Huang, BM (reprint author), Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53703 USA. EM Bormin.Huang@ssec.wisc.edu FU National Aeronautics and Space Administration (NASA) [NNX11AL83G] FX This work was supported by the National Aeronautics and Space Administration (NASA) under Grant NNX11AL83G. NR 31 TC 0 Z9 0 U1 3 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD FEB PY 2016 VL 9 IS 2 BP 921 EP 931 DI 10.1109/JSTARS.2015.2427652 PG 11 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DE8HT UT WOS:000370877600031 ER PT J AU DeMartini, EE Howard, KG AF DeMartini, E. E. Howard, K. G. TI Comparisons of body sizes at sexual maturity and at sex change in the parrotfishes of Hawaii: input needed for management regulations and stock assessments SO JOURNAL OF FISH BIOLOGY LA English DT Article DE maturation rates; scarids; scarine labrid; sex allocation ID REEF FISH; HERMAPHRODITISM; MICRONESIA; COMMUNITY; FISHERIES; HISTORY; ATOLLS AB First estimates of sex allocation patterns and body size-at-sexual maturity and at protogynous sex change are presented for the five major (including one endemic) species of parrotfishes of Hawaii. Median body size at initial maturation as a female (L-M50) and at protogynous sex change from adult female to adult male (L-50) varied greatly among the five species. Estimates of L-M50 were about 14, 17, 24, 34 and 35 cm fork length (L-F) in palenose Scarus psittacus, Pacific bullethead Chlorurus spilurus, stareye Calotomus carolinus, spectacled Chlorurus perspicillatus and redlip parrotfish Scarus rubroviolaceus. Values of L-50 were c. 23, 27, 37, 46 and 47 cm L-F in the respective species. Length at female maturation was proportional to maximum body size (L-max) of the respective species, ranging from 50 to 72% and averaging 62% of L-max across species. L-50 was also proportional to L-max, ranging from 82 to 97% and averaging 92%. Males of both pairs of Scarus and Chlorurus spp. reported here are diandric. Only one of the five major species (C. carolinus) is functionally monandric, with either all or nearly all males secondarily derived from adult females. The broadly differing absolute body sizes at sexual maturation and at sex change among the five species have important implications for improving regulatory size limits for parrotfishes in the State of Hawaii, where parrotfish species have historically been managed based on a single minimum size limit of 305 cm L-F. This study provides a model demonstration of why catch data for parrotfishes, and other size-structured reef-fish populations, should be recorded either by species or by functional size-groups of species that allow setting more meaningful minimum size limits. C1 [DeMartini, E. E.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, 1845 Wasp Blvd,Bldg 176, Honolulu, HI 96818 USA. [DeMartini, E. E.] Univ Hawaii, Hawaii Inst Marine Biol, Kaneohe, HI 96744 USA. [Howard, K. G.] Alaska Dept Fish & Game, Div Commercial Fisheries, 333 Raspberry Rd, Anchorage, AK 99518 USA. RP DeMartini, EE (reprint author), NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, 1845 Wasp Blvd,Bldg 176, Honolulu, HI 96818 USA.; DeMartini, EE (reprint author), Univ Hawaii, Hawaii Inst Marine Biol, Kaneohe, HI 96744 USA. EM edward.demartini@noaa.gov FU Bio-Sampling Initiative; Western Pacific Regional Fishery Management Council; SeaGrant College Programme (NOAA) at University of Hawaii; NSF [DGE05-38550]; University of Hawaii Graduate Student Organization FX This study was supported in part by Bio-Sampling Initiative funding provided to E.E.D. at the NOAA Pacific Islands Fisheries Science Center and in part to K.G.H. by the Western Pacific Regional Fishery Management Council, the SeaGrant College Programme (NOAA) at the University of Hawaii, NSF grant DGE05-38550 to the University of Hawaii Ecology, Evolution and Conservation Biology group and the University of Hawaii Graduate Student Organization. Parts of this study are based on an unpublished PhD thesis (Zoology) by K.G.H. at the University of Hawaii. K.G.H. would like to thank her committee members, especially thesis advisor J. Parrish (deceased), and J.H. Choat and K. Cole for their guidance. J. Claisse, L. Ong and numerous other graduate students and research assistants helped collect field and laboratory data. Comments by R. Humphreys, B. Taylor and two anonymous reviewers greatly improved the manuscript. NR 50 TC 0 Z9 0 U1 2 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1112 EI 1095-8649 J9 J FISH BIOL JI J. Fish Biol. PD FEB PY 2016 VL 88 IS 2 BP 523 EP 541 DI 10.1111/jfb.12831 PG 19 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA DE7WS UT WOS:000370848200007 PM 26890131 ER PT J AU Zanetti, R D'Souza, CN AF Zanetti, Renato D'Souza, Christopher N. TI Observability Analysis and Filter Design for the Orion Earth-Moon Attitude Filter SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID SPACECRAFT ATTITUDE; KALMAN; REPRESENTATIONS; NAVIGATION AB The Orion attitude navigation design is presented, together with justification of the choice of states in the filter and an analysis of the observability of its states while processing star tracker measurements. The analysis shows that when the gyroscope biases and scale factors drift at different rates and are modeled as first-order Gauss-Markov processes, the states are observable so long as the time constants are not the same for both sets of states. In addition, the inertial-measurement-unit-to-star-tracker misalignments are modeled as first-order Gauss-Markov processes and these states are estimated. These results are used to finalize the design of the attitude estimation algorithm and the attitude calibration maneuvers. C1 [Zanetti, Renato; D'Souza, Christopher N.] NASA, Lyndon B Johnson Space Ctr, Aerosci & Flight Mech Div, Houston, TX 77058 USA. RP Zanetti, R (reprint author), NASA, Lyndon B Johnson Space Ctr, Aerosci & Flight Mech Div, Houston, TX 77058 USA. NR 15 TC 0 Z9 0 U1 3 U2 10 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD FEB PY 2016 VL 39 IS 2 BP 201 EP 213 DI 10.2514/1.G001217 PG 13 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DE7ZR UT WOS:000370856100001 ER PT J AU Gill, SJ Lowenberg, MH Neild, SA Crespo, LG Krauskopf, B AF Gill, Stephen J. Lowenberg, Mark H. Neild, Simon A. Crespo, Luis G. Krauskopf, Bernd TI Impact of Controller Delays on the Nonlinear Dynamics of Remotely Piloted Aircraft SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID BIFURCATION-ANALYSIS; MODEL AB Time delays arise in most feedback systems and have specific relevance for remotely piloted vehicles with ground-based pilots and controllers. NASA's test facility for flight dynamics and control research using subscale vehicles, the Airborne Subscale Transport Aircraft Research facility, has developed the remotely piloted generic transport model. Analysis of a numerical model of this has previously provided insight into open-loop upset dynamics and the impact of flight controllers. However, to date, studies have not considered the effect of time delay on the system's stability. Current developments at the Airborne Subscale Transport Aircraft Research facility are aimed at testing a subscale generic airliner model during loss-of-control conditions over extended distances and altitudes compared to the generic transport model. In developing controllers for such a remotely piloted vehicle, it is helpful to understand the effect of delay in the communication links and protocols. This paper uses bifurcation analysis to evaluate the effect of delay on the closed-loop stability for the generic transport model numerical model with a linear quadratic regulator controller with proportional and integral components. The impact of time delays in both fixed-gain and gain-scheduled versions of the controller are presented in terms of the stability of nominal and offnominal solutions. This is followed by a discussion of stability maps, again generated by bifurcation analysis, which can be used to assess, over a wide flight envelope, the maximum acceptable delay before instability arises. C1 [Gill, Stephen J.] Univ Bristol, Dept Aerosp Engn, Bristol BS8 1TR, Avon, England. [Lowenberg, Mark H.] Univ Bristol, Dept Aerosp Engn, Flight Dynam, Bristol BS8 1TR, Avon, England. [Neild, Simon A.] Univ Bristol, Nonlinear Struct Dynam, Dept Mech Engn, Bristol BS8 1TR, Avon, England. [Crespo, Luis G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Krauskopf, Bernd] Univ Auckland, Appl Math, Dept Math, Fac Sci, Private Bag 92019, Auckland 1142, New Zealand. RP Gill, SJ (reprint author), Univ Bristol, Dept Aerosp Engn, Bristol BS8 1TR, Avon, England. RI Lowenberg, Mark/A-5598-2012; OI Lowenberg, Mark/0000-0002-1373-8237; Krauskopf, Bernd/0000-0002-8940-230X FU U.K. Engineering and Physical Sciences Research Council (ESPRC); Airbus Group; Royal Society [IE121367]; EPSRC [EP/K005373/1] FX The research of Stephen J. Gill was supported by a U.K. Engineering and Physical Sciences Research Council (ESPRC) studentship in collaboration with The Airbus Group. The collaboration with NASA Langley Research Center was supported by the Royal Society International Exchanges Scheme grant no. IE121367. Simon Neild was funded by EPSRC fellowship EP/K005373/1. The authors would like to thank Guilhem Puyou of The Airbus Company for his support of the project. We are grateful to colleagues in the NASA Langley Research Center's Flight Dynamics Branch and Dynamics Systems and Control Branch for provision of the generic transport model DesignSim and advice on its use. NR 24 TC 0 Z9 0 U1 0 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD FEB PY 2016 VL 39 IS 2 BP 292 EP 300 DI 10.2514/1.G001222 PG 9 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DE7ZR UT WOS:000370856100007 ER PT J AU Watanabe, S Vincent, WF Reuter, J Hook, SJ Schladow, SG AF Watanabe, Shohei Vincent, Warwick F. Reuter, John Hook, Simon J. Schladow, S. Geoffrey TI A quantitative blueness index for oligotrophic waters: Application to Lake Tahoe, California-Nevada SO LIMNOLOGY AND OCEANOGRAPHY-METHODS LA English DT Article ID OPTICAL-PROPERTIES; RADIOMETRIC COLOR; PHYTOPLANKTON; TRANSPARENCY; LIGHT AB The perceived blue color of a lake often contributes to its aesthetic appeal, and changes in blueness can be indicative of major shifts in water quality. We developed a quantitative blue water index (B-w) for natural waters, and used it to evaluate spatial and seasonal variations in ultraoligotrophic Lake Tahoe, where clarity and blueness are of ecological and economic value and a focus for lake management strategies. Spectral reflectance was measured using a profiling hyperspectral radiometer, and the values were converted to the axis values of a color space: the International Commission on Illumination L*a*b*, where L* is the lightness of color, a* ranges from green to magenta, and b* ranges from blue to yellow. The blue water index B-w, defined as negative b*, was similarly high at two offshore monitoring sites in Lake Tahoe, but much lower in a semienclosed bay and a small adjacent lake. Seasonal variations of B-w were determined using a hyperspectral radiometer attached to a buoy in the middle of Lake Tahoe. The B-w values were highest in summer, and there was a strong inverse correlation between B-w and phytoplankton concentrations as measured by in vivo chlorophyll a fluorescence. However, there was no significant correlation between B-w and Secchi depth. Blueness and visual clarity are complementary measures of the perceived optical state of natural waters, and for many lakes may provide a powerful combination of indicators for conveying water quality to the public. C1 [Watanabe, Shohei; Reuter, John; Schladow, S. Geoffrey] Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA 95616 USA. [Watanabe, Shohei; Vincent, Warwick F.] Univ Laval, Ctr Northern Studies, Takuvik, Quebec City, PQ, Canada. [Watanabe, Shohei; Vincent, Warwick F.] Univ Laval, Dept Biol, Quebec City, PQ G1K 7P4, Canada. [Hook, Simon J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Watanabe, S (reprint author), Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA 95616 USA.; Watanabe, S (reprint author), Univ Laval, Ctr Northern Studies, Takuvik, Quebec City, PQ, Canada.; Watanabe, S (reprint author), Univ Laval, Dept Biol, Quebec City, PQ G1K 7P4, Canada. EM swatanabe@ucdavis.edu FU Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; UC Davis Tahoe Environmental Research Center; Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration as part of the NASA EOS program FX We thank M.-J. Martineau for her technical assistance at Laval University, Canada; B. Allen, K. Webb, and R. Townsend for their assistance in boat operations and field sampling; and T. Mathis for assistance with Fig. 2. We also thank S. Hackley and A. Liston for laboratory assistance and S. Lane and P. Baker who provided access to Cascade Lake and helped in the sampling. This study was supported by the Canada Research Chair Program and the Natural Sciences and Engineering Research Council of Canada (WFV), the UC Davis Tahoe Environmental Research Center (SGS), and the Jet Propulsion Laboratory, California Institute of Technology, under a contract to SJH with the National Aeronautics and Space Administration as part of the NASA EOS program. NR 42 TC 0 Z9 0 U1 2 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1541-5856 J9 LIMNOL OCEANOGR-METH JI Limnol. Oceanogr. Meth. PD FEB PY 2016 VL 14 IS 2 BP 100 EP 109 DI 10.1002/lom3.10074 PG 10 WC Limnology; Oceanography SC Marine & Freshwater Biology; Oceanography GA DF2IW UT WOS:000371167100004 ER PT J AU von Schuckmann, K Palmer, MD Trenberth, KE Cazenave, A Chambers, D Champollion, N Hansen, J Josey, SA Loeb, N Mathieu, PP Meyssignac, B Wild, M AF von Schuckmann, K. Palmer, M. D. Trenberth, K. E. Cazenave, A. Chambers, D. Champollion, N. Hansen, J. Josey, S. A. Loeb, N. Mathieu, P. -P. Meyssignac, B. Wild, M. TI An imperative to monitor Earth's energy imbalance SO NATURE CLIMATE CHANGE LA English DT Article ID OCEAN HEAT-CONTENT; SEA-LEVEL RISE; OF-ATMOSPHERE RADIATION; GLOBAL ENERGY; WARMING HIATUS; CLIMATE; TRANSPORTS; BUDGET; SYSTEM; CERES AB The current Earth's energy imbalance (EEI) is mostly caused by human activity, and is driving global warming. The absolute value of EEI represents the most fundamental metric defining the status of global climate change, and will be more useful than using global surface temperature. EEI can best be estimated from changes in ocean heat content, complemented by radiation measurements from space. Sustained observations from the Argo array of autonomous profiling floats and further development of the ocean observing system to sample the deep ocean, marginal seas and sea ice regions are crucial to refining future estimates of EEI. Combining multiple measurements in an optimal way holds considerable promise for estimating EEI and thus assessing the status of global climate change, improving climate syntheses and models, and testing the effectiveness of mitigation actions. Progress can be achieved with a concerted international effort. C1 [von Schuckmann, K.] Aix Marseille Univ, Univ Toulouse, CNRS, Mediterranean Inst Oceanog,IRD,MIO UM 110, F-83041 Toulon, France. [von Schuckmann, K.] Mercator Ocean, 10 Rue Hermes, F-31520 Ramonville St Agne, France. [Palmer, M. D.] Met Off Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England. [Trenberth, K. E.] Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA. [Cazenave, A.; Meyssignac, B.] Ctr Natl Etudes Spati, Lab Etudes Geophys & Oceanog Spatiales, 18 Ave Edouard BELIN, F-31401 Toulouse 9, France. [Cazenave, A.; Champollion, N.] Int Space Sci Inst, Hallerstr 6, CH-3012 Bern, Switzerland. [Chambers, D.] Univ S Florida, Coll Marine Sci, 140 7th Ave South, St Petersburg, FL 33701 USA. [Hansen, J.] Columbia Univ, Earth Inst, 475 Riverside Dr, New York, NY 10115 USA. [Josey, S. A.] Natl Oceanog Ctr, Waterfront Campus,European Way, Southampton SO14 3ZH, Hants, England. [Loeb, N.] NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. [Mathieu, P. -P.] European Space Agcy, Via Galileo Galilei,Casella Postale 64, I-00044 Frascati, RM, Italy. [Wild, M.] ETH, Univstr 16, CH-8092 Zurich, Switzerland. RP von Schuckmann, K (reprint author), Aix Marseille Univ, Univ Toulouse, CNRS, Mediterranean Inst Oceanog,IRD,MIO UM 110, F-83041 Toulon, France.; von Schuckmann, K (reprint author), Mercator Ocean, 10 Rue Hermes, F-31520 Ramonville St Agne, France. EM karina.von.schuckmann@mercator-ocean.fr RI Wild, Martin/J-8977-2012 FU International Space Science Institute (ISSI), Bern, Switzerland FX Two meetings of this international working group have been supported by the International Space Science Institute (ISSI), Bern, Switzerland. NR 76 TC 25 Z9 25 U1 20 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD FEB PY 2016 VL 6 IS 2 BP 138 EP 144 DI 10.1038/NCLIMATE2876 PG 7 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE9NB UT WOS:000370963400012 ER PT J AU Sexton, JO Noojipady, P Song, XP Feng, M Song, DX Kim, DH Anand, A Huang, CQ Channan, S Pimm, SL Townshend, JR AF Sexton, Joseph O. Noojipady, Praveen Song, Xiao-Peng Feng, Min Song, Dan-Xia Kim, Do-Hyung Anand, Anupam Huang, Chengquan Channan, Saurabh Pimm, Stuart L. Townshend, John R. TI Conservation policy and the measurement of forests SO NATURE CLIMATE CHANGE LA English DT Article ID TREE COVER; MODIS; DATASETS; IMPACT; WORLDS; EARTH; PLUS; MAPS; AREA AB Deforestation is a major driver of climate change(1) and the major driver of biodiversity loss(1,2). Yet the essential baseline for monitoring forest cover-the global area of forests-remains uncertain despite rapid technological advances and international consensus on conserving target extents of ecosystems(3). Previous satellite-based estimates(4,5) of global forest area range from 32.1 x 10(6) km(2) to 41.4 x 10(6) km(2). Here, we show that the major reason underlying this discrepancy is ambiguity in the term 'forest'. Each of the >800 official definitions(6) that are capable of satellite measurement relies on a criterion of percentage tree cover. This criterion may range from >10% to >30% cover under the United Nations Framework Convention on Climate Change(7). Applying the range to the first global, high-resolution map of percentage tree cover(8) reveals a discrepancy of 19.3 x 10(6) km(2), some 13% of Earth's land area. The discrepancy within the tropics alone involves a difference of 45.2 Gt C of biomass, valued at US$1 trillion. To more effectively link science and policy to ecosystems, we must now refine forest monitoring, reporting and verification to focus on ecological measurements that are more directly relevant to ecosystem function, to biomass and carbon, and to climate and biodiversity. C1 [Sexton, Joseph O.; Noojipady, Praveen; Song, Xiao-Peng; Feng, Min; Song, Dan-Xia; Kim, Do-Hyung; Anand, Anupam; Huang, Chengquan; Channan, Saurabh; Townshend, John R.] Univ Maryland, Dept Geog Sci, Global Land Cover Facil, College Pk, MD 20742 USA. [Noojipady, Praveen] Natl Advocacy Ctr, Natl Wildlife Federat, Washington, DC 20006 USA. [Noojipady, Praveen] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA. [Anand, Anupam] Global Environm Facil, Washington, DC 20433 USA. [Pimm, Stuart L.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. RP Sexton, JO (reprint author), Univ Maryland, Dept Geog Sci, Global Land Cover Facil, College Pk, MD 20742 USA. EM jsexton@umd.edu FU NASA programme: Making Earth System Data Records for Use in Research Environments [NNX08AP33A-MEASURES]; NASA programme: Land Cover and Land Use Change [NNX08AN72G-LCLUC]; NASA programme: Carbon Cycle Science [NNH13ZDA001N-CARBON]; NASA programme: Earth System Science Research Using Data and Products from Terra, Aqua, and Acrimsat Satellites [NNH06ZDA001N-EOS]; NASA's Earth and Space Science Fellowship (NESSF) Program [NNX12AN92H]; Norwegian Agency for Development Cooperation's Department for Civil Society under the Norwegian Forest and Climate Initiative FX Funding was provided by the following NASA programmes: Making Earth System Data Records for Use in Research Environments (NNX08AP33A-MEASURES), Land Cover and Land Use Change (NNX08AN72G-LCLUC), Carbon Cycle Science (NNH13ZDA001N-CARBON), and Earth System Science Research Using Data and Products from Terra, Aqua, and Acrimsat Satellites (NNH06ZDA001N-EOS). X.-P.S. was also supported by NASA's Earth and Space Science Fellowship (NESSF) Program (NNX12AN92H). P.N. was also supported by the Norwegian Agency for Development Cooperation's Department for Civil Society under the Norwegian Forest and Climate Initiative. The opinions expressed do not represent those of the Global Environmental Facility or the World Bank Group. Data processing and analysis were performed at the Global Land Cover Facility (www.landcover.org) in the Department of Geographical Sciences at the University of Maryland in service of the Global Forest Cover Change Project (www.forestcover.org), a partnership of the University of Maryland Global Land Cover Facility and NASA Goddard Space Flight Center. We thank A. Whitehurst, C. Jenkins and N. Aguilar-Amuchastegui for comments and T. B. Murphy for political insights. NR 39 TC 14 Z9 15 U1 6 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD FEB PY 2016 VL 6 IS 2 BP 192 EP + DI 10.1038/NCLIMATE2816 PG 6 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE9NB UT WOS:000370963400022 ER PT J AU Mellin, C Mouillot, D Kulbicki, M McClanahan, TR Vigliola, L Bradshaw, CJA Brainard, RE Chabanet, P Edgar, GJ Fordham, DA Friedlander, AM Parravicini, V Sequeira, AMM Stuart-Smith, RD Wantiez, L Caley, MJ AF Mellin, C. Mouillot, D. Kulbicki, M. McClanahan, T. R. Vigliola, L. Bradshaw, C. J. A. Brainard, R. E. Chabanet, P. Edgar, G. J. Fordham, D. A. Friedlander, A. M. Parravicini, V. Sequeira, A. M. M. Stuart-Smith, R. D. Wantiez, L. Caley, M. J. TI Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges SO NATURE COMMUNICATIONS LA English DT Article ID MARINE PROTECTED AREAS; SPECIES RICHNESS; EXTINCTION RISK; GLOBAL PATTERNS; HUMAN IMPACT; SIZE; DIVERSITY; ABUNDANCE; OCEAN; BIODIVERSITY AB Coral reefs are among the most species-rich and threatened ecosystems on Earth, yet the extent to which human stressors determine species occurrences, compared with biogeography or environmental conditions, remains largely unknown. With ever-increasing human-mediated disturbances on these ecosystems, an important question is not only how many species can inhabit local communities, but also which biological traits determine species that can persist (or not) above particular disturbance thresholds. Here we show that human pressure and seasonal climate variability are disproportionately and negatively associated with the occurrence of large-bodied and geographically small-ranging fishes within local coral reef communities. These species are 67% less likely to occur where human impact and temperature seasonality exceed critical thresholds, such as in the marine biodiversity hotspot: the Coral Triangle. Our results identify the most sensitive species and critical thresholds of human and climatic stressors, providing opportunity for targeted conservation intervention to prevent local extinctions. C1 [Mellin, C.; Caley, M. J.] Australian Inst Marine Sci, PMB 3, Townsville, Qld 4810, Australia. [Mellin, C.; Bradshaw, C. J. A.; Fordham, D. A.] Univ Adelaide, Inst Environm, Adelaide, SA 5005, Australia. [Mellin, C.; Bradshaw, C. J. A.; Fordham, D. A.] Univ Adelaide, Sch Biol Sci, Adelaide, SA 5005, Australia. [Mouillot, D.] Univ Montpellier, IRD CNRS IFREMER UM, UMR MARBEC 9190, F-34095 Montpellier, France. [Mouillot, D.; Parravicini, V.] James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld 4811, Australia. [Kulbicki, M.] Univ Perpignan, LABEX Corail, UMR Entropie, Inst Rech Dev, F-66000 Perpignan, France. [McClanahan, T. R.] Wildlife Conservat Soc, Marine Programs, Bronx, NY 10460 USA. [Vigliola, L.] Inst Rech Dev, UMR Entropie, LABEX Corail, BP A5, Noumea 98848, New Caledonia. [Brainard, R. E.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, 1125B Ala Moana Blvd, Honolulu, HI 96814 USA. [Chabanet, P.] IRD, UMR Entropie, LABEX Corail, BP 50172,CS 41095, FR-97495 Ste Clotilde, Reunion. [Edgar, G. J.; Stuart-Smith, R. D.] Univ Tasmania, Inst Marine & Antarctic Studies, Private Bag 49, Hobart, Tas 7001, Australia. [Friedlander, A. M.] Natl Geog Soc, Pristine Seas, Washington, DC 20036 USA. [Friedlander, A. M.] Univ Hawaii Manoa, Fisheries Ecol Res Lab, Honolulu, HI USA. [Parravicini, V.] Fdn Rech Biodiversite, Ctr Synth & Anal Biodiversite, F-13100 Aix En Provence, France. [Parravicini, V.] Univ Perpignan, LABEX Corail, USR CNRS EPHE UPVD 3278, CRIOBE, F-66860 Perpignan, France. [Sequeira, A. M. M.] Univ Western Australia, Sch Anim Biol, IOMRC, M470,35 Stirling Highway, Crawley, WA 6009, Australia. [Sequeira, A. M. M.] Univ Western Australia, Sch Anim Biol, UWA Oceans Inst, M470,35 Stirling Highway, Crawley, WA 6009, Australia. [Sequeira, A. M. M.] Univ Western Australia, Ctr Marine Futures, M470,35 Stirling Highway, Crawley, WA 6009, Australia. [Wantiez, L.] Univ New Caledonia, Res Unit LIVE EA4243, Noumea, New Caledonia. RP Mellin, C (reprint author), Australian Inst Marine Sci, PMB 3, Townsville, Qld 4810, Australia.; Mellin, C (reprint author), Univ Adelaide, Inst Environm, Adelaide, SA 5005, Australia.; Mellin, C (reprint author), Univ Adelaide, Sch Biol Sci, Adelaide, SA 5005, Australia. EM camille.mellin@adelaide.edu.au RI Vigliola, Laurent/J-7107-2016; Fordham, Damien/E-9255-2013; Parravicini, Valeriano/A-8539-2011; Bradshaw, Corey/A-1311-2008; Wantiez, Laurent/L-3343-2013 OI Vigliola, Laurent/0000-0003-4715-7470; Fordham, Damien/0000-0003-2137-5592; Bradshaw, Corey/0000-0002-5328-7741; Wantiez, Laurent/0000-0001-5024-2057 FU ARC Grant [DE140100701]; Indian Ocean Marine Research Centre; Australian Government's National Environmental Research Program (NERP); European Development Funds (EDF); Western Indian Ocean Marine Science Association (WIOMSA); John D. and Catherine T. MacArthur Foundation; Fondation pour la Recherche en Biodiversite (FRB) within the CESAB structure FX We thank C. Mora, B. Halpern and A. MacNeil for sharing ideas, and many staff from the authors' institutions for contributing to data collection, in particular R. Galzin and M. Harmelin-Vivien. CM was funded by an ARC Grant (DE140100701). AMMS was supported by a Collaborative Post-doctoral Fellowship (AIMS, CSIRO and UWA) from the Indian Ocean Marine Research Centre. This work was done within the Marine Biodiversity Hub, a collaborative partnership supported through funding from the Australian Government's National Environmental Research Program (NERP) (www.nerpmarine.edu.au). The PROCFish data set was collected under the COFish and PROCFish-C programs implemented by the Secretariat of the Pacific Community (SPC) through funding by European Development Funds (EDF). TRM and the Western Indian Ocean data collection were supported by the Western Indian Ocean Marine Science Association (WIOMSA) and the John D. and Catherine T. MacArthur Foundation. Life-history traits and species distributions were accessed through the GASPAR programme financed by the Fondation pour la Recherche en Biodiversite (FRB) within the CESAB structure. NR 69 TC 4 Z9 4 U1 13 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10491 DI 10.1038/ncomms10491 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0EP UT WOS:000371012100003 PM 26839155 ER PT J AU Gunn, C AF Gunn, Chris TI Webb telescope optical testing complete; construction progresses SO PHOTONICS SPECTRA LA English DT Editorial Material C1 [Gunn, Chris] NASA, Ames, IA USA. RP Gunn, C (reprint author), NASA, Ames, IA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LAURIN PUBL CO INC PI PITTSFIELD PA BERKSHIRE COMMON PO BOX 1146, PITTSFIELD, MA 01202 USA SN 0731-1230 J9 PHOTONIC SPECTRA JI Photon. Spect. PD FEB PY 2016 VL 50 IS 2 BP 16 EP 16 PG 1 WC Optics SC Optics GA DF0AV UT WOS:000371001900002 ER PT J AU Marshak, A AF Marshak, Alexander TI Multispectral camera tracks Earth's atmosphere from distant orbit SO PHOTONICS SPECTRA LA English DT Editorial Material C1 [Marshak, Alexander] NASA, Ames, IA USA. RP Marshak, A (reprint author), NASA, Ames, IA USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU LAURIN PUBL CO INC PI PITTSFIELD PA BERKSHIRE COMMON PO BOX 1146, PITTSFIELD, MA 01202 USA SN 0731-1230 J9 PHOTONIC SPECTRA JI Photon. Spect. PD FEB PY 2016 VL 50 IS 2 BP 30 EP 31 PG 2 WC Optics SC Optics GA DF0AV UT WOS:000371001900018 ER PT J AU Ackermann, M Albert, A Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Bellazzini, R Bissaldi, E Bloom, ED Bonino, R Brandt, TJ Bregeon, J Bruel, P Buehler, R Caliandro, GA Cameron, RA Caragiulo, M Caraveo, PA Cavazzuti, E Cecchi, C Charles, E Chekhtman, A Chiang, J Chiaro, G Ciprini, S Cohen-Tanugi, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Desiante, R Digel, SW Drell, PS Favuzzi, C Ferrara, EC Focke, WB Franckowiak, A Fusco, P Gargano, F Gasparrini, D Giglietto, N Giordano, F Godfrey, G Grenier, IA Grondin, MH Guillemot, L Guiriec, S Harding, AK Hill, AB Horan, D Johannesson, G Knodlseder, J Kuss, M Larsson, S Latronico, L Li, J Li, L Longo, F Loparco, F Lubrano, P Maldera, S Martin, P Mayer, M Mazziotta, MN Michelson, PF Mizuno, T Monzani, ME Morselli, A Murgia, S Nuss, E Ohsugi, T Orienti, M Orlando, E Ormes, JF Paneque, D Pesce-Rollins, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Romani, RW Sanchez-Conde, M Schulz, A Sgro, C Siskind, EJ Smith, DA Spada, F Spandre, G Spinelli, P Suson, DJ Takahashi, H Thayer, JB Tibaldo, L Torres, DF Tosti, G Troja, E Vianello, G Wood, M Zimmer, S AF Ackermann, M. Albert, A. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bellazzini, R. Bissaldi, E. Bloom, E. D. Bonino, R. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Caliandro, G. A. Cameron, R. A. Caragiulo, M. Caraveo, P. A. Cavazzuti, E. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Cohen-Tanugi, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Desiante, R. Digel, S. W. Drell, P. S. Favuzzi, C. Ferrara, E. C. Focke, W. B. Franckowiak, A. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giordano, F. Godfrey, G. Grenier, I. A. Grondin, M. -H. Guillemot, L. Guiriec, S. Harding, A. K. Hill, A. B. Horan, D. Johannesson, G. Knoedlseder, J. Kuss, M. Larsson, S. Latronico, L. Li, J. Li, L. Longo, F. Loparco, F. Lubrano, P. Maldera, S. Martin, P. Mayer, M. Mazziotta, M. N. Michelson, P. F. Mizuno, T. Monzani, M. E. Morselli, A. Murgia, S. Nuss, E. Ohsugi, T. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Romani, R. W. Sanchez-Conde, M. Schulz, A. Sgro, C. Siskind, E. J. Smith, D. A. Spada, F. Spandre, G. Spinelli, P. Suson, D. J. Takahashi, H. Thayer, J. B. Tibaldo, L. Torres, D. F. Tosti, G. Troja, E. Vianello, G. Wood, M. Zimmer, S. TI Deep view of the Large Magellanic Cloud with six years of Fermi-LAT observations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma rays: galaxies; Magellanic Clouds; cosmic rays ID LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; STAR-FORMING GALAXIES; SUPERNOVA REMNANT; INTERSTELLAR-MEDIUM; MAGNETIC-FIELD; SOURCE CATALOG; COSMIC-RAYS; NGC 253; PULSAR AB Context. The nearby Large Magellanic Cloud (LMC) provides a rare opportunity of a spatially resolved view of an external star-forming galaxy in gamma-rays. The LMC was detected at 0.1-100 GeV as an extended source with CGRO/EGRET and using early observations with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Aims. Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions by revealing whether and how the gamma-ray emission is connected to specific objects, populations of objects, and structures in the galaxy. Methods. We revisited the gamma-ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2-100 GeV range. We developed a complete spatial and spectral model of the LMC emission, for which we tested several approaches: a simple geometrical description, template-fitting, and a physically driven model for CR-induced interstellar emission. Results. In addition to identifying PSR J0540-6919 through its pulsations, we find two hard sources positionally coincident with plerion N 157B and supernova remnant N 132D, which were also detected at TeV energies with H.E.S.S. We detect an additional soft source that is currently unidentified. Extended emission dominates the total flux from the LMC. It consists of an extended component of about the size of the galaxy and additional emission from three to four regions with degree-scale sizes. If it is interpreted as CRs interacting with interstellar gas, the large-scale emission implies a large-scale population of similar to 1-100 GeV CRs with a density of similar to 30% of the local Galactic value. On top of that, the three to four small-scale emission regions would correspond to enhancements of the CR density by factors 2 to 6 or higher, possibly more energetic and younger populations of CRs compared to the large-scale population. An alternative explanation is that this is emission from an unresolved population of at least two dozen objects, such as pulsars and their nebulae or supernova remnants. This small-scale extended emission has a spatial distribution that does not clearly correlate with known components of the LMC, except for a possible relation to cavities and supergiant shells. Conclusions. The Fermi-LAT GeV observations allowed us to detect individual sources in the LMC. Three of the newly discovered sources are associated with rare and extreme objects. The 30 Doradus region is prominent in GeV gamma-rays because PSR J0540-6919 and N 157B are strong emitters. The extended emission from the galaxy has an unexpected spatial distribution, and observations at higher energies and in radio may help to clarify its origin. C1 [Ackermann, M.; Buehler, R.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Albert, A.; Baldini, L.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Godfrey, G.; Hill, A. B.; Michelson, P. F.; Monzani, M. E.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Albert, A.; Baldini, L.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Godfrey, G.; Hill, A. B.; Michelson, P. F.; Monzani, M. E.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Grenier, I. A.] Univ Paris Diderot, CEA IRFU, Lab AIM, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Kuss, M.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, Lab Univers & Particules Montpellier, CNRS, IN2P3, F-34059 Montpellier, France. [Bruel, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Chekhtman, A.] Naval Res Lab, Washington, DC 20375 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [D'Ammando, F.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Grondin, M. -H.; Smith, D. A.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, BP120, F-33175 Gradignan, France. [Guillemot, L.] Univ Orleans, Lab Phys & Chim Environm & Espace, CNRS, F-45071 Orleans 02, France. [Guillemot, L.] CNRS INSU, Stn Radioastron Nancay, Observ Paris, F-18330 Nancay, France. [Guiriec, S.] NASA, Moffett Field, CA USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland. [Knoedlseder, J.; Martin, P.] IRAP, CNRS, F-31028 Toulouse 4, France. [Knoedlseder, J.; Martin, P.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Larsson, S.; Li, L.] AlbaNova, Dept Phys, KTH Royal Inst Technol, S-10691 Stockholm, Sweden. [Larsson, S.; Li, L.; Sanchez-Conde, M.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] Inst Space Sci IEEC CSIC, Campus UAB, Barcelona 08193, Spain. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Murgia, S.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Sanchez-Conde, M.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Torres, D. F.] ICREA, Barcelona, Spain. [Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Martin, P (reprint author), IRAP, CNRS, F-31028 Toulouse 4, France.; Martin, P (reprint author), Univ Toulouse, UPS OMP, IRAP, Toulouse, France. EM pierrick.martin@irap.imp.edu RI Reimer, Olaf/A-3117-2013; giglietto, nicola/I-8951-2012; Bissaldi, Elisabetta/K-7911-2016; Orlando, E/R-5594-2016; Bonino, Raffaella/S-2367-2016; Torres, Diego/O-9422-2016; OI Reimer, Olaf/0000-0001-6953-1385; giglietto, nicola/0000-0002-9021-2888; Bissaldi, Elisabetta/0000-0001-9935-8106; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Gargano, Fabio/0000-0002-5055-6395; Pesce-Rollins, Melissa/0000-0003-1790-8018; Hill, Adam/0000-0003-3470-4834; orienti, monica/0000-0003-4470-7094; Mazziotta, Mario Nicola/0000-0001-9325-4672 FU Italian Ministry of Education, University and Research (MIUR) [FIRB-2012-RBFR12PM1F] FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. M. Razzano was funded by contract FIRB-2012-RBFR12PM1F from the Italian Ministry of Education, University and Research (MIUR). NR 52 TC 6 Z9 6 U1 2 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A71 DI 10.1051/0004-6361/201526920 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900082 ER PT J AU Adam, R Ade, PAR Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouillel, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejse, A Galeotta, S Gai, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, K Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneiss, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marshal, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Descheness, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Reinecke, M Remazeilles, M Renault, C Ristorcelli, I Rocha, G Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Soler, JD Spencer, LD Stolyarov', V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Wiesemeyer, H Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J-F Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouillel, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejse, A. Galeotta, S. Gai, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneiss, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J-M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marshal, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Descheness, M-A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Pratt, G. W. Prunet, S. Puget, J-L. Rachen, J. P. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Ristorcelli, I. Rocha, G. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov', V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A-S. Sygnet, J-F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Wiesemeyer, H. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: magnetic fields; ISM: structure; magnetohydrodynamics (MHD); polarization; turbulence ID TAURUS MOLECULAR CLOUD; MASS STAR-FORMATION; INFRARED POLARIMETRY; MILKY-WAY; FILAMENTARY CLOUDS; POLARIZATION MAPS; SPIRAL ARMS; GOULD BELT; TURBULENCE; GAS AB The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10(20) to 10(22) cm(2). We measure the magnetic field orientation on the plane of the sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM. C1 [Cardoso, J-F; Delabrouillel, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Via le Liegi 26, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov', V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneiss, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Descheness, M-A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Dore, O.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via E Carnevale, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Kneiss, R.] ESO Vitacura, European So Observ, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Descheness, M-A.; Pajot, F.; Ponthieu, N.; Puget, J-L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J-F; Colombi, S.; Ducout, A.; Elsner, F.; Gai, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov', V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J-M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Marshal, D. J.; Pratt, G. W.] Univ Paris Diderot, Serv Astrophys, Lab AIM, IRFU,CEA,DSM,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J-F] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J-F] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Wiesemeyer, H.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejse, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov', V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac I, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Bracco, A (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. EM andrea.bracco@ias.u-psud.fr RI Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; OI Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Hivon, Eric/0000-0003-1880-2733; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 99 TC 7 Z9 7 U1 8 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A135 DI 10.1051/0004-6361/201425044 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900145 ER PT J AU Adam, R Ade, PAR Aghanim, N Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dunkley, J Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jewell, J Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Knox, L Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Remazeilles, M Renault, C Renzi, A Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G d'Orfeuil, BR Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Soler, JD Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vibert, L Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK White, M White, SDM Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dunkley, J. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jewell, J. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Remazeilles, M. Renault, C. Renzi, A. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rouille d'Orfeuil, B. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vibert, L. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. White, M. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; ISM: structure; ISM: magnetic fields; polarization ID MICROWAVE BACKGROUND POLARIZATION; PRE-LAUNCH STATUS; INTERSTELLAR DUST; 353 GHZ; STATISTICAL PROPERTIES; FOREGROUND EMISSION; HIGH-FREQUENCY; MOLECULAR GAS; B-MODES; SUBMILLIMETER AB The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra C-l(EE) and C-l(BB) over the multipole range 40 < l < 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, C-l proportional to l(alpha), with exponents alpha(EE,BB) = -2.42 +/- 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with beta(d) = 1.59 and T-d = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B-and E-modes, C-l(BB) = C-l(EE) = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power D-l(BB) equivalent to l(l + 1)C-l(BB)/(2 pi) of 1.32 x 10(-2) mu K-CMB(2) over the multipole range of the primordial recombination bump (40 < l < 120); the statistical uncertainty is +/-0.29 x 10(-2) mu K-CMB(2) and there is an additional uncertainty (+0.28, -0.24) x 10(-2) mu K-CMB(2) from the extrapolation. This level is the same magnitude as reported by BICEP2 over this l range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Viale Liegi 26, Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Dore, O.; Helou, G.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg, Tallahassee, FL 32306 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, 3antiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Ducout, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.; Vibert, L.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Mangilli, A.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Ducout, A.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Holmes, W. A.; Jewell, J.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Ducout, A.; Leahy, J. P.; Maffei, B.; Noviello, F.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Challinor, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Rouille d'Orfeuil, B.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France. [Lesgourgues, J.] Univ Savoie, CNRS, LAPTh, BP110, F-74941 Annecy Le Vieux, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Lesgourgues, J.] Ecole Polytech Fed Lausanne, SB ITP LPPC, CH-1015 Lausanne, Switzerland. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Dolag, K.] Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Aumont, J (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM jonathan.aumont@ias.u-psud.fr RI Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; White, Martin/I-3880-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Pearson, Timothy/N-2376-2015; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014 OI Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; White, Martin/0000-0001-9912-5070; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Pearson, Timothy/0000-0001-5213-6231; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. Some of the results in this paper have been derived using the HEALPix package. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 81 TC 172 Z9 172 U1 7 U2 17 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A133 DI 10.1051/0004-6361/201425034 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900143 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Aniano, G Arnaud, M Ashdown, M Atunont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, FPL Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Avies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Draine, BT Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galcotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Holmes, WA Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Natoli, P Norgaard-Nielsen, HU Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ristorcelli, I Rocha, G Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D ScottI, D Spencer, LD Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Ysard, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Aniano, G. Arnaud, M. Ashdown, M. Atunont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, F. P. L. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Avies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Draine, B. T. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galcotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Holmes, W. A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J-M Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Pratt, G. W. Prunet, S. Puget, J-L Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ristorcelli, I. Rocha, G. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Scott, D., I Spencer, L. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Ysard, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: general ID DIFFUSE INTERSTELLAR-MEDIUM; SPITZER-SPACE-TELESCOPE; NEARBY GALAXIES SURVEY; SMALL-MAGELLANIC-CLOUD; INFRARED-EMISSION; OPTICAL-PROPERTIES; ARRAY CAMERA; DATA RELEASE; MILKY-WAY; EXTINCTION AB We present all-sky modelling of the high resolution Planck, IRAS, andWISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Sigma(Md), the dust optical extinction A(V), and the starlight intensity heating the bulk of the dust, parametrized by U-min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction A(V) for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 x 10(5) quasi-stellar objects (QSOs) observed in the Sloan Digital Sky Survey (SDSS). The DL A(V) estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U-min. The DL fitting parameter U-min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit A(V), and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL A(V) estimate, dependent of U-min, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the A(V) estimates towards QSOs, also brings into agreement the DL A(V) estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per A(V), parameterized by U-min, which may be used to test and empirically calibrate dust models. The family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, APC, Sorbonne Paris Cite, CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Viale Liegi 26, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Kneissl, R.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D., I] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, F. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.; Ysard, N.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00185 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Aston Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galcotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Aniano, G.; Atunont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J-L; Remazeilles, M.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91898 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38200, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Colombo, F. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Avies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J-M; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. [Draine, B. T.] Princeton Univ Observ, Peyton Hall, Princeton, NJ 08544 USA. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Aniano, G; Boulanger, F (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91898 Orsay, France. EM ganiano@ias.u-psud.fr; francois.boulanger@ias.u-psud.fr RI Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Colombo, Loris/J-2415-2016; Remazeilles, Mathieu/N-1793-2015; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; OI Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Colombo, Loris/0000-0003-4572-7732; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Stolyarov, Vladislav/0000-0001-8151-828X; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 80 TC 18 Z9 18 U1 2 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A132 DI 10.1051/0004-6361/201424945 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900142 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday', AJ Barreiro, RB Bartolo, N Battaner, E Benabed', K Benoit-Levy, A Bernard', JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borri, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang', HC Christensen', PR Colombo, LPL Combet, C Cri, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ De Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Dickinson, C Diego, JM Dole', H Donzelli, S Dore, O Douspis, M Dunkley, J Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hornstrup, A Hovest, W Huang, Z Huffenberger, KM Hurier, G Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneiss', R Knoche, J Kunz, M Kurki-Suonio, H Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Leon-Tavares, J Levrier, E Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Serra, P Soler, JD Stolyarov, V Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Cardoso, J-F. Catalano, A. Chamballu, A. Chary, R-R. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Cri, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. De Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J-M. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dunkley, J. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hornstrup, A. Hovest, W. Huang, Z. Huffenberger, K. M. Hurier, G. Jaffe, T. R. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneiss', R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lamarre, J-M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Leon-Tavares, J. Levrier, E. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M-A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J-L Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Serra, P. Soler, J. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Suur-Uski, A-S Sygnet, J-F Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; galaxies: ISM; submillimeter: ISM; ISM: general ID ROTATION MEASURES; COSMIC WEB; EMISSION; GALAXY; MORPHOLOGY; WAVELETS; SPHERE; CLOUD AB The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. We present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF), we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2 degrees (corresponding to 3.5 pc in length for a typical distance of 100 pc). These filaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C-l(TE)/C-l(EE) ratio, reported in the power spectra analysis of the Planck 353 GHz polarization maps. Future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter. C1 [Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,CNRS IN2P3,CEA Irfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneiss', R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Cent Off, Alonso de Cordova 3107,763 0355 Casilla, Santiago, Chile. [Huang, Z.; Martin, P. G.; Miville-Deschenes, M-A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Helou, G.; Hildebrandt, S. R.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28049 Madrid, Spain. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Ave Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Huffenberger, K. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Rome, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneiss', R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107, Santiago, Chile. [Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron, ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, I-95123 Catania, Italy. Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-40127 Trieste, Italy. [Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40129 Bologna, Italy. [Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E. Bassini 15, I-20133 Milan, Italy. [Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. Inst Univ France, 103 bd St Michel, F-75005 Paris, France. [Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Miville-Deschenes, M-A.; Pajot, F.; Ponthieu, N.; Puget, J-L; Remazeilles, M.; Serra, P.; Soler, J. D.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Ave Castros S-N, E-39005 Santander, Spain. [Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Maffei, B.; Remazeilles, M.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Oxford M13 9PL, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Lamarre, J-M.; Levrier, E.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM IRFU Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Macias-Perez, J. F.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. Sorbonne Univ UPMC, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian 369167, Zelenchukskiy R, Russia. Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Ghosh, T (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM tuhin.ghosh@ias.u-psud.fr RI Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; OI Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Huang, Zhiqi/0000-0002-1506-1063; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Matarrese, Sabino/0000-0002-2573-1243; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); European Research Council under the European Union/ERC [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. Some of the results in this paper have been derived using the HEALPix package. NR 50 TC 1 Z9 1 U1 5 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A141 DI 10.1051/0004-6361/201526506 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900151 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Berne, O Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejse, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Nirgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oppermann, N Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Savelainen, M Savini, G Scott, D Soler, JD Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J-P. Berne, O. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Calabrese, E. Cardoso, J-F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejse, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J-M. Lasenby, A. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M-A. moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Nirgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Puget, J-L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Stolyarov, V. Sutton, D. Suur-Uski, A-S. Sygnet, J-F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: magnetic fields; polarization; submillimeter: ISM ID TAURUS MOLECULAR CLOUD; GOULD BELT SURVEY; GRAIN ALIGNMENT; DARK-CLOUDS; RADIATIVE TORQUES; PRESTELLAR CORES; STAR-FORMATION; SUPRATHERMAL ROTATION; INFRARED POLARIMETRY; IMAGING POLARIMETRY AB Planck observations at 353 GHz provide the first fully sampled maps of the polarized dust emission towards interstellar filaments and their backgrounds (i.e., the emission observed in the surroundings of the filaments). The data allow us to determine the intrinsic polarization properties of the filaments and therefore to provide insight into the structure of their magnetic field (B). We present the polarization maps of three nearby (several parsecs long) star-forming filaments of moderate column density (N-H about 10(22) cm(-2)): Musca, B211, and L1506. These three filaments are detected above the background in dust total and polarized emission. We use the spatial information to separate Stokes I, Q, and U of the filaments from those of their backgrounds, an essential step in measuring the intrinsic polarization fraction (p) and angle (psi) of each emission component. We find that the polarization angles in the three filaments (psi(fil)) are coherent along their lengths and not the same as in their backgrounds (psi(bg)). The differences between psi(fil) and psi(bg) are 12 degrees and 54 degrees for Musca and L1506, respectively, and only 6 degrees in the case of B211. These di ff erences for Musca and L1506 are larger than the dispersions of psi, both along the filaments and in their backgrounds. The observed changes of psi are direct evidence of variations of the orientation of the plane of the sky (POS) projection of the magnetic field. As in previous studies, we find a decrease of several per cent in p with N-H from the backgrounds to the crest of the filaments. We show that the bulk of the drop in p within the filaments cannot be explained by random fluctuations of the orientation of the magnetic field because they are too small (sigma(psi) < 10 degrees). We recognize the degeneracy between the dust alignment efficiency (by, e. g., radiative torques) and the structure of the B-field in causing variations in p, but we argue that the decrease in p from the backgrounds to the filaments results in part from depolarization associated with the 3D structure of the B-field: both its orientation in the POS and with respect to the POS. We do not resolve the inner structure of the filaments, but at the smallest scales accessible with Planck (similar to 0.2 pc), the observed changes of psi and p hold information on the magnetic field structure within filaments. They show that both the mean field and its fluctuations in the filaments are different from those of their backgrounds, which points to a coupling between the matter and the B-field in the filament formation process. C1 [Cardoso, J-F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M-A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Nirgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M-A.; Pajot, F.; Puget, J-L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J-F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; moneti, A.; Sygnet, J-F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91400 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J-M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,IRFU,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J-F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J-F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejse, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Univ Paris 04, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J-P.; Berne, O.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac I, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Arzoumanian, D (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. EM doris.arzoumanian@ias.u-psud.fr RI Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010 OI Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); European Research Council under the European Union/ERC [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 103 TC 4 Z9 4 U1 6 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A136 DI 10.1051/0004-6361/201425305 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900146 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Calabrese, E Cardoso, JF Catalano, A Chiang, HC Christensen, PR Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falceta-Goncalves, D Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Guillet, V Harrison, DL Helou, G Hennebelle, P Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Holmes, WA Hornstrup, A Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Netterfield, CB Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Soler, JD Stolyarov, V Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Ysard, N Yvon, D Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falceta-Goncalves, D. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Guillet, V. Harrison, D. L. Helou, G. Hennebelle, P. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Stolyarov, V. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Ysard, N. Yvon, D. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; ISM: magnetic fields; ISM: clouds; dust, extinction; submillimeter: ISM; infrared: ISM ID FAR-INFRARED POLARIMETRY; STAR-FORMATION; INTERSTELLAR CLOUDS; GRAIN ALIGNMENT; NONHOMOLOGOUS CONTRACTION; IMAGING POLARIMETRY; ALFVENIC TURBULENCE; VELOCITY ANISOTROPY; SOLAR NEIGHBORHOOD; RADIATIVE TORQUES AB Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, N-H. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from N-H approximate to 10(21) to 10(23) cm(-2), and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing N-H, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvenic or sub-Alfvenic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Benoit, A.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.; Ysard, N.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Falceta-Goncalves, D.] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Rua Arlindo Bettio 1000, BR-03828000 Sao Paulo, Brazil. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, Inst Neel, CNRS, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91400 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Hennebelle, P.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, Serv Astrophys, CEA,DSM,CNRS,CEA Saclay,IRFU, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Falceta-Goncalves, D.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ, UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J-P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Soler, JD (reprint author), Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91400 Orsay, France. EM jsolerpu@ias.u-psudfr RI Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Falceta-Goncalves, Diego/I-4576-2012; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015 OI Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 113 TC 10 Z9 10 U1 3 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A138 DI 10.1051/0004-6361/201525896 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900148 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aubourg, E Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombo, LPL Combet, C Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dolag, K Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kitaura, F Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Leon-Tavares, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Ma, YZ Macias-Perez, JF Maffei, B Maino, D Mak, DSY Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pointecouteau, E Polenta, G Pontineu, N Pratt, GW Puget, JL Puisieux, S Rachen, JP Racine, B Reach, WT Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Spencer, LD Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wang, W Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aubourg, E. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Combet, C. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dolag, K. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kitaura, F. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Leon-Tavares, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Ma, Y. -Z. Macias-Perez, J. F. Maffei, B. Maino, D. Mak, D. S. Y. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pointecouteau, E. Polenta, G. Pontineu, N. Pratt, G. W. Puget, J. -L. Puisieux, S. Rachen, J. P. Racine, B. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wang, W. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; large-scale structure of Universe; galaxies: clusters: intracluster medium ID PARTICLE HYDRODYNAMICS SIMULATIONS; BULK FLOW; DENSITY FIELDS; COSMOLOGICAL IMPLICATIONS; WIENER RECONSTRUCTION; PECULIAR VELOCITIES; REDSHIFT SURVEYS; GALAXY SAMPLES; IRAS-GALAXIES; DARK ENERGY AB By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z approximate to 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8-2.5 sigma detections of the kSZ signal, which are consistent with the kSZ evidence found in individual Planck raw frequency maps, although lower than found in the WMAP-9yr W-band (3.3 sigma). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0-3.7 sigma detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80-100 h(-1) Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find tau(T) = (1.4 +/- 0.5) x 10(-4); the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observations. C1 [Aubourg, E.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Racine, B.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Observ Paris, APC,CNRS,IN2P3,CEA,Irfu,Sorbonne Paris Cite, 10 Rue Alice Damon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Central Off, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.; Puisieux, S.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Ma, Y. -Z.; Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, 17 Blegdamsvej, Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] IINAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Pontineu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Pontineu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Aumont, J.; Chamballu, A.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Pontineu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Mak, D. S. Y.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Ma, Y. -Z.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Mak, D. S. Y.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] CEA Saclay, Lab AIM, Serv Astrophys, CEA,DSM,CNRS,CEA Saclay,IRFU, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Infonnat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP7, Moscow 117997, Russia. [Kitaura, F.] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; Wang, W.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6I3T, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldng, Cardiff CF10 3AX, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Dolag, K.] Univ Munich, Univ Observ, Scheinerstr 1, I-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Hernandez-Monteagudo, C (reprint author), CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. EM chm@cefca.es RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Remazeilles, Mathieu/N-1793-2015; Renzi, Alessandro/K-4114-2015; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Remazeilles, Mathieu/0000-0001-9126-6266; Renzi, Alessandro/0000-0001-9856-1970; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Pierpaoli, Elena/0000-0002-7957-8993; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); ERC [307209]; Marie Curie Career Integration Grant [CIG 294183]; Spanish Ministerio de Economia y Competitividad [AYA2012-30789] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/. This research was supported by ERC Starting Grant (No. 307209), by the Marie Curie Career Integration Grant CIG 294183 and by the Spanish Ministerio de Economia y Competitividad project AYA2012-30789. NR 65 TC 8 Z9 8 U1 4 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A140 DI 10.1051/0004-6361/201526328 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900150 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Barrena, R Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bikmaev, I Bohringer, H Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burenin, R Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang, HC Chon, G Christensen, PR Clements, DL Colombo, LPL Combet, C Comis, B Crill, BP Curto, A Cuttaia, F Dahle, H Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Ferragamo, A Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Fromenteau, S Galeotta, S Galli, S Ganga, K Genova-Santos, RT Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Hansen, FK Harrison, DL Hempel, A Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, TR Keihanen, E Keskitalo, R Khamitov, I Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Leon-Tavares, J Levrier, F Lietzen, H Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Stolyarov, V Streblyanska, A Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tramonte, D Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Barrena, R. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bikmaev, I. Bohringer, H. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burenin, R. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Chon, G. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Combet, C. Comis, B. Crill, B. P. Curto, A. Cuttaia, F. Dahle, H. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Ferragamo, A. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Fromenteau, S. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Hansen, F. K. Harrison, D. L. Hempel, A. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, T. R. Keihanen, E. Keskitalo, R. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Leon-Tavares, J. Levrier, F. Lietzen, H. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Stolyarov, V. Streblyanska, A. Sudiwala, R. Sunyaev, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tramonte, D. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes at the Canary Islands observatories SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE large-scale structure of Universe; galaxies: clusters: general; catalogs ID DIGITAL SKY SURVEY; GALAXY CLUSTER CATALOG; 720 SQUARE DEGREES; DATA RELEASE; COSMOLOGY; SAMPLE; CONSTRAINTS AB We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories as part of the general optical follow-up programme undertaken by the Planck Collaboration. In total, 78 SZ sources are discussed. Deep-imaging observations were obtained for most of these sources; spectroscopic observations in either in long-slit or multi-object modes were obtained for many. We effectively used 37.5 clear nights. We found optical counterparts for 73 of the 78 candidates. This sample includes 53 spectroscopic redshift determinations, 20 of them obtained with a multi-object spectroscopic mode. The sample contains new redshifts for 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1). C1 [Cardoso, J. -F.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Bauman Str 20, Kazan 420111, Russia. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Cent Off, Alonso de Cordova 3107,Casilla 763, Santiago 0355, Chile. [Leonardi, R.] CGEE, SCS Qd 9,4 Andar,Ed Parque Cidade Corp, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Ave colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, 1200E, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28006 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Barrena, R.; Ferragamo, A.; Genova-Santos, R. T.; Hempel, A.; Lietzen, H.; Rebolo, R.; Streblyanska, A.; Tramonte, D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kremlevskaya Str 18, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00173 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00136 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Clements, D. L.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Fromenteau, S.; Hurier, G.; Kunz, M.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Barrena, R.; Ferragamo, A.; Genova-Santos, R. T.; Hempel, A.; Lietzen, H.; Rebolo, R.; Rubino-Martin, J. A.; Streblyanska, A.; Tramonte, D.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Maffei, B.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91400 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, Serv Astrophys, CEA,DSM,CNRS,CEA Saclay,IRFU, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Bohringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Burenin, R.] Moscow Inst Phys & Technol, Inst Sky Per 9, Dolgoprudnyi 141700, Russia. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ, UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Burenin, R.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Khamitov, I.] Akdeniz Univ Campus, TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Hempel, A.] Univ Andres Bello, Dept Ciencias Fis, Fac Ciencias Exactas, Santiago De Compostela 8370134, Spain. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. RP Rubino-Martin, JA (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. EM jalberto@iac.es RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Remazeilles, Mathieu/N-1793-2015; Renzi, Alessandro/K-4114-2015; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Novikov, Dmitry/P-1807-2015; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Pierpaoli, Elena/0000-0002-7957-8993; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Remazeilles, Mathieu/0000-0001-9126-6266; Renzi, Alessandro/0000-0001-9856-1970; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); CCI International Time Programme at the Canary Islands observatories [ITP12-2, ITP13-8]; NASA; CNES; CNRS; SDSS; Alfred P. Sloan Foundation; National Aeronautics and Space Administration; National Science Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Spanish Ministry of Economy and Competitiveness (MINECO) [MINECO SEV-2011-0187]; Consolider-Ingenio project [CSD2010-00064] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. This article is based on observations made with a) the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos (ORM) of the Instituto de Astrofisica de Canarias (IAC), in the island of La Palma; b) the Isaac Newton Telescope and the William Herschel Telescope operated on the island of La Palma by the ISAAC Newton Group of Telescopes in the Spanish ORM of the IAC; c) the italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish ORM of the IAC; d) the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish ORM of the IAC; and e) the IAC80 telescope operated on the island of Tenerife by the IAC in the Spanish Observatorio del Teide. This research has been carried out with telescope time awarded by the CCI International Time Programme at the Canary Islands observatories (programmes ITP12-2 and ITP13-8). This research has made use of the following databases: the NED database, operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA; SIMBAD, operated at CDS, Strasbourg, France; the SZ-Cluster Database operated by the Integrated Data and Operation Center (IDOC) at the IAS under contract with CNES and CNRS; and the SDSS. Funding for the Sloan Digital Sky Survey (SDSS) has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. A.S., R.B., H.L., and J.A.R.M. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under the 2011 Severo Ochoa Program MINECO SEV-2011-0187, and the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). NR 53 TC 0 Z9 0 U1 4 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A139 DI 10.1051/0004-6361/201526345 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900149 ER PT J AU Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jewell, J Juvela, M Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oppermann, N Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Patanchon, G Perdereau, O Pettorino, V Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prezeau, G Prunet, S Puget, JL Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Soler, JD Spencer, LD Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Wiesemeyer, H Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jewell, J. Juvela, M. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Pettorino, V. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov, V. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Wiesemeyer, H. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXIV. The magnetic field structure in the Rosette Nebula SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: magnetic fields; polarization; radiation mechanisms: general; radio continuum: ISM; submillimeter: ISM ID H-II REGIONS; MOLECULAR CLOUDS; STAR-FORMATION; FARADAY-ROTATION; STOKES PARAMETERS; ELEPHANT-TRUNK; GALACTIC PLANE; HII-REGIONS; NGC 2244; EMISSION AB Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). We combine polarization data from Planck with rotation measure (RM) observations towards a massive star-forming region, the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding H II region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion of ionized gas and the formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about 3 mu G (towards the observer) in the Rosette Nebula, for a uniform electron density of about 12 cm(-3). The dust shell that surrounds the Rosette H II region is clearly observed in the Planck intensity map at 353 GHz, with a polarization signal significantly different from that of the local background when considered as a whole. The Planck observations constrain the plane-of-the-sky orientation of the magnetic field in the Rosette's parent molecular cloud to be mostly aligned with the large-scale field along the Galactic plane. The Planck data are compared with the analytical model, which predicts the mean polarization properties of a spherical and uniform dust shell for a given orientation of the field. This comparison leads to an upper limit of about 45 degrees on the angle between the line of sight and the magnetic field in the Rosette complex, for an assumed intrinsic dust polarization fraction of 4%. This field direction can reproduce the RM values detected in the ionized region if the magnetic field strength in the Monoceros molecular cloud is in the range 6.5-9 mu G. The present analytical model is able to reproduce the RM distribution across the ionized nebula, as well as the mean dust polarization properties of the swept-up shell, and can be directly applied to other similar objects. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roudier, G.; Savelainen, M.; Scott, D.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Damon & Leonie Duquet, Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7950 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Viale Liegi 26, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, LAM, CNRS, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Sandri, M.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Univ Dublin Trinity Coll, CRANN, Pearse St, Dublin 2, Ireland. [Dore, O.; Prezeau, G.; Renzi, A.; Santos, D.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.; Rosset, C.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.] Tech Univ Denmark, DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z4, Canada. [Colombo, L. P. L.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.] Princeton Univ, Dept Phys, 1746 Elizabeth, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Savini, G.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Rusholme, B.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rosset, C.; Soler, J. D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35141 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00136 Rome, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Stolyarov, V.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Savini, G.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Rusholme, B.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Jaffe, A. H.; Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Spencer, L. D.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Rocha, G.; Roudier, G.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Mangilli, A.; Moneti, A.; Prunet, S.; Ristorcelli, I.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rosset, C.; Soler, J. D.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Jewell, J.; Lawrence, C. R.; Pietrobon, D.; Prezeau, G.; Renzi, A.; Santos, D.; Scott, D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.; Roudier, G.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Scott, D.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-57014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.; Renault, C.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA,DSM,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Rubino-Martin, J. A.; Sutton, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, IN2P3,Inst Natl Polytech Grenoble, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Reinecke, M.; Rossetti, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Wiesemeyer, H.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. UCL, Opt Sci Lab, Gower St, London, England. [Novikov, D.] Russian Acad Sci, PN Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Ristorcelli, I.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Sandri, M.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Alves, MIR (reprint author), CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France.; Alves, MIR (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France.; Alves, MIR (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM marta.alves@irap.omp.eu RI Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Novikov, Igor/N-5098-2015; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; OI Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); European Research Council under the European Union/ERC [267934] FX We thank the referee for the useful comments. We acknowledge the use of the HEALPix package and IRAS data. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, and JA (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A detailed description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 79 TC 0 Z9 0 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A137 DI 10.1051/0004-6361/201525616 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900147 ER PT J AU Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bobin, J Bond, JR Borrill, J Bouchet, FR Brogan, CL Burigana, C Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPL Crill, BP Curto, A Cuttaia, F Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Donzelli, S Dore, O Dupac, X Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hobson, M Holmes, WA Huffenberger, KM Jaffe, AH Jaffe, TR Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Maino, D Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Noviello, E Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paladini, R Pasian, F Peel, M Perdereau, O Perrotta, F Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Puget, JL Rachen, JP Reach, WT Reich, W Reinecke, M Remazeilles, M Renault, C Rho, J Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rusholme, B Sandri, M Savini, G Scott, D Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Yvon, D Zacchei, A Zonca, A AF Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P Bersanelli, M. Bielewicz, P. Bobin, J. Bond, J. R. Borrill, J. Bouchet, F. R. Brogan, C. L. Burigana, C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Crill, B. P. Curto, A. Cuttaia, F. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Dupac, X. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hobson, M. Holmes, W. A. Huffenberger, K. M. Jaffe, A. H. Jaffe, T. R. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leonardi, R. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Maino, D. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M-A Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Noviello, E. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Pasian, F. Peel, M. Perdereau, O. Perrotta, F. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Puget, J. -L. Rachen, J. P. Reach, W. T. Reich, W. Reinecke, M. Remazeilles, M. Renault, C. Rho, J. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rusholme, B. Sandri, M. Savini, G. Scott, D. Stolyarov, V. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: supernova remnants; cosmic rays; radio continuum: ISM ID WMAP OBSERVATIONS; FLUX-DENSITY; CYGNUS LOOP; CM OBSERVATIONS; RADIO-EMISSION; IA SUPERNOVA; FERMI-LAT; 32 GHZ; X-RAY; CATALOG AB The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, S-v proportional to v(-alpha), with the spectral index, alpha, increasing by 0.5-1 above a break frequency in the range 10-60 GHz. The break could be due to synchrotron losses. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 011E, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar,Ed Parque Cidade, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M-A; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91101 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 91101 USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansennet, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihaenen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Lubin, P. M.; Zonca, A.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdainsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Kurki-Suonio, H.; Lahteenmaki, A.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Morgante, G.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobefil 101, I-40126 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20100 Milan, Italy. [Burigana, C.; Finelli, F.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aumont, J.; Chamballu, A.; Kunz, M.; Miville-Deschenes, M-A; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, Batiment 121, F-91440 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Moneti, A.; Sygnet, J. -F.] CNRS, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge 0133 011A, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, E.; Peel, M.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91400 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Bobin, J.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Renault, C.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Reich, W.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Brogan, C. L.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Rho, J.] SETE Inst, MS 211-3, Moffett Field, CA 94035 USA. [Rho, J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, MS 211-3, Moffett Field, CA 94035 USA. [Baccigalupi, C.; Bielewicz, P.; de Zotti, G.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff 024 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Univ Paris 04, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Benabed, K.; Benoit-Levy, A.; Colombi, S.] Univ Paris 06, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computat 1, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Reach, WT (reprint author), Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. EM wreach@sofia.usra.edu RI Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Lahteenmaki, Anne/L-5987-2013; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Atrio-Barandela, Fernando/A-7379-2017; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; Remazeilles, Mathieu/N-1793-2015; OI Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Savini, Giorgio/0000-0003-4449-9416; Ricciardi, Sara/0000-0002-3807-4043; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; Peel, Mike/0000-0003-3412-2586; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 71 TC 0 Z9 0 U1 5 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A134 DI 10.1051/0004-6361/201425022 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900144 ER PT J AU Carney, MT Yildiz, UA Mottram, JC van Dishoeck, EF Ramchandani, J Jorgensen, JK AF Carney, M. T. Yildiz, U. A. Mottram, J. C. van Dishoeck, E. F. Ramchandani, J. Jorgensen, J. K. TI Classifying the embedded young stellar population in Perseus and Taurus and the LOMASS database SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; stars: statistics; submillimeter: stars; stars: protostars; stars: formation ID 2-DIMENSIONAL RADIATIVE-TRANSFER; SPECTRAL ENERGY-DISTRIBUTIONS; CLERK MAXWELL TELESCOPE; STAR-FORMING REGIONS; LOW-MASS PROTOSTARS; CLASS-I; MOLECULAR CLOUD; DARK CLOUD; PROTOSTELLAR ENVELOPES; PROTOPLANETARY DISKS AB Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims. We aim to separate the truly embedded YSOs from more evolved sources. Methods. Maps of HCO+ J = 4-3 and (CO)-O-18 J = 3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize the presence and morphology of emission from high density (n(crit) > 10(6) cm(-3)) and high column density gas, respectively. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO(+)J = 4-3 and 850 mu m dust emission are used to classify the embedded nature of YSOs. Results. Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Outflows are found to make a negligible contribution to the integrated HCO+ intensity for the majority of sources in this study. Conclusions. Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales down to 0.38 Myr for the embedded phase. C1 [Carney, M. T.; Yildiz, U. A.; Mottram, J. C.; van Dishoeck, E. F.; Ramchandani, J.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Yildiz, U. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [van Dishoeck, E. F.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Jorgensen, J. K.] Univ Copenhagen, Niels Bohr Inst, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark. RP Carney, MT (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM masoncarney@strw.leidenuniv.nl RI Yildiz, Umut/C-5257-2011 OI Yildiz, Umut/0000-0001-6197-2864 FU Netherlands Research School for Astronomy (NOVA); Royal Netherlands Academy of Arts and Sciences (KNAW); Spinoza grant; Netherlands Organisation for Scientific Research (NWO) [614.001.008] FX The authors are grateful to Amanda Heiderman and Neal Evans for their useful collaboration and discussion on embedded protostellar environments, and to Mike Dunham for his comments on the paper. Many thanks to the referee, Charles Lada, for his very useful comments and suggestions. Astrochemistry in Leiden is supported by the Netherlands Research School for Astronomy (NOVA), by a Royal Netherlands Academy of Arts and Sciences (KNAW) professor prize, by a Spinoza grant and grant 614.001.008 from the Netherlands Organisation for Scientific Research (NWO). The authors are indebted to the various observers who have collected data for their papers and kindly provided them to be included in the LOMASS database, as well as staff at the JAC. Acknowledgment is given to the following programs and languages for building this database: GILDAS-CLASS and PYTHON for data reduction and format manipulation; PYTHON-MATPLOTLIB for plotting; MySQL for construction of the database; PHP and HTML for the web interface. NR 62 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A44 DI 10.1051/0004-6361/201526308 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900055 ER PT J AU Muller, HSP Drouin, BJ Pearson, JC Ordu, MH Wehres, N Lewen, F AF Mueller, Holger S. P. Drouin, Brian J. Pearson, John C. Ordu, Matthias H. Wehres, Nadine Lewen, Frank TI Rotational spectra of isotopic species of methyl cyanide, CH3CN, in their v(8)=1 excited vibrational states SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE molecular data; methods: laboratory: molecular; techniques: spectroscopic; radio lines: ISM; ISM: molecules; astrochemistry ID LASER STARK SPECTROSCOPY; SYMMETRIC TOP MOLECULES; LOW-LYING STATES; INTERSTELLAR-MEDIUM; SAGITTARIUS B2(N); MICROWAVE-SPECTRA; COLOGNE DATABASE; LINE SURVEY; MILLIMETER; ORION AB Context. Methyl cyanide is an important trace molecule in space, especially in star-forming regions where it is one of the more common molecules used to derive kinetic temperatures. Aims. We want to obtain accurate spectroscopic parameters of minor isotopologs of methyl cyanide in their lowest excited v(8) = 1 vibrational states to support astronomical observations, in particular, with interferometers such as ALMA. Methods. The laboratory rotational spectrum of methyl cyanide in natural isotopic composition has been recorded from the millimeter to the terahertz regions. Results. Transitions with good signal-to-noise ratios could be identified for the three isotopic species (CH3CN)-C-13, (CH3CN)-C-13, and (CH3CN)-N-15 up to about 1.2 THz (J '' <= 66). Accurate spectroscopic parameters were obtained for all three species. Conclusions. The present data were already instrumental in identifying v(8) = 1 lines of methyl cyanide with one C-13 in IRAM 30 m and ALMA data toward Sagittarius B2(N). C1 [Mueller, Holger S. P.; Ordu, Matthias H.; Wehres, Nadine; Lewen, Frank] Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. [Drouin, Brian J.; Pearson, John C.] CALTECH, Jet Prop Lab, Mail Stop 183-301,4800 Oak Grove Dr, Pasadena, CA 91011 USA. RP Muller, HSP (reprint author), Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. EM hspm@ph1.uni-koeln.de FU Deutsche Forschungsgemeinschaft (DFG) [SFB 956]; National Aeronautics and Space Administration (NASA) FX The measurements in Koln were supported by the Deutsche Forschungsgemeinschaft (DFG) through the collaborative research grant SFB 956, project area B3. We would like to thank Dr. Bernd Vowinkel for making Schottky detectors available for our measurements. The portion of this work, which was carried out at the Jet Propulsion Laboratory, California Institute of Technology, was performed under contract with the National Aeronautics and Space Administration (NASA). NR 47 TC 3 Z9 3 U1 6 U2 12 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A17 DI 10.1051/0004-6361/201527602 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900028 ER PT J AU Pascual, N Montesinos, B Meeus, G Marshall, JP Mendigutia, I Sandell, G AF Pascual, N. Montesinos, B. Meeus, G. Marshall, J. P. Mendigutia, I. Sandell, G. TI The far-infrared behaviour of Herbig Ae/Be discs: Herschel PACS photometry SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE evolution; protoplanetary disks; stars: imaging; infrared: ISM ID PRE-MAIN-SEQUENCE; INTERMEDIATE-MASS STARS; SPITZER-SPACE-TELESCOPE; EMISSION-LINE STARS; 206462 HD 135344B; VEGA-TYPE STARS; PROTOPLANETARY DISKS; AE STAR; CIRCUMSTELLAR DISK; HIGH-RESOLUTION AB Herbig Ae/Be objects are pre-main sequence stars surrounded by gas-and dust-rich circumstellar discs. These objects are in the throes of star and planet formation, and their characterisation informs us of the processes and outcomes of planet formation processes around intermediate mass stars. Here we analyse the spectral energy distributions of disc host stars observed by the Herschel open time key programme "Gas in Protoplanetary Systems". We present Herschel /PACS far-infrared imaging observations of 22 Herbig Ae /Bes and 5 debris discs, combined with ancillary photometry spanning ultraviolet to sub-millimetre wavelengths. From these measurements we determine the diagnostics of disc evolution, along with the total excess, in three regimes spanning near-, mid-, and far-infrared wavelengths. Using appropriate statistical tests, these diagnostics are examined for correlations. We find that the far-infrared flux, where the disc becomes optically thin, is correlated with the millimetre flux, which provides a measure of the total dust mass. The ratio of far-infrared to sub-millimetre flux is found to be greater for targets with discs that are brighter at millimetre wavelengths and that have steeper sub-millimetre slopes. Furthermore, discs with flared geometry have, on average, larger excesses than flat geometry discs. Finally, we estimate the extents of these discs (or provide upper limits) from the observations. C1 [Pascual, N.; Meeus, G.; Marshall, J. P.] Univ Autonoma Madrid, Dept Fis Teor, Campus Cantoblanco, E-28049 Madrid, Spain. [Pascual, N.] Open Univ, Dept Phys Sci, Walton Hall, Milton Keynes MK7 6AA, Bucks, England. [Montesinos, B.] CAB CSIC INTA, Dept Astrophys, ESAC Campus,POB 78, Villanueva De La Canada 28691, Spain. [Marshall, J. P.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Marshall, J. P.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Mendigutia, I.] Univ Leeds, Sch Phys & Astron, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England. [Sandell, G.] NASA, Ames Res Ctr, SOFIA USRA, MS 232-12, Moffett Field, CA 94035 USA. RP Pascual, N (reprint author), Univ Autonoma Madrid, Dept Fis Teor, Campus Cantoblanco, E-28049 Madrid, Spain.; Pascual, N (reprint author), Open Univ, Dept Phys Sci, Walton Hall, Milton Keynes MK7 6AA, Bucks, England. EM natalia.pascual@open.ac.uk RI Montesinos, Benjamin/C-3493-2017 OI Montesinos, Benjamin/0000-0002-7982-2095 FU UNSW; [AYA-2011-26202]; [RYC-2011-07920] FX We would like to thank the PACS instrument team for their dedicated support and M. van den Ancker for the bibliographic photometry data. G. Meeus, J.P. Marshall, and B. Montesinos are partly supported by AYA-2011-26202. G. Meeus is supported by RYC-2011-07920. J.P. Marshall is supported by a UNSW Vice Chancellor's Fellowship. This research made use of the SIMBAD database, operated at the CDS, Strasbourg, France. NR 116 TC 1 Z9 1 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A6 DI 10.1051/0004-6361/201526605 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900017 ER PT J AU Reggiani, M Meyer, MR Chauvin, G Vigan, A Quanz, SP Biller, B Bonavita, M Desidera, S Delorme, P Hagelberg, J Maire, AL Boccaletti, A Beuzit, JL Buenzli, E Carson, J Covino, E Feldt, M Girard, J Gratton, R Henning, T Kasper, M Lagrange, AM Mesa, D Messina, S Montagnier, G Mordasini, C Mouillet, D Schlieder, JE Segransan, D Thalmann, C Zurlo, A AF Reggiani, M. Meyer, M. R. Chauvin, G. Vigan, A. Quanz, S. P. Biller, B. Bonavita, M. Desidera, S. Delorme, P. Hagelberg, J. Maire, A. -L. Boccaletti, A. Beuzit, J. -L. Buenzli, E. Carson, J. Covino, E. Feldt, M. Girard, J. Gratton, R. Henning, T. Kasper, M. Lagrange, A. -M. Mesa, D. Messina, S. Montagnier, G. Mordasini, C. Mouillet, D. Schlieder, J. E. Segransan, D. Thalmann, C. Zurlo, A. TI The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits III. The frequency of brown dwarfs and giant planets as companions to solar-type stars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE methods: observational; methods: statistical; binaries: general; brown dwarfs; planetary systems ID MASS-RATIO DISTRIBUTION; SUN-LIKE STARS; FINDING CAMPAIGN DISCOVERY; EXTRASOLAR PLANETS; YOUNG STARS; SUBSTELLAR COMPANION; EVOLUTIONARY MODELS; MULTIPLICITY SURVEY; IMAGING SURVEY; T-DWARFS AB Context. In recent years there have been many attempts to characterize the occurrence and distribution of stellar, brown dwarf (BD), and planetary-mass companions to solar-type stars with the aim of constraining formation mechanisms. From radial velocity observations a dearth of companions with masses between 10-40 M-Jupiter has been noticed at close separations, suggesting the possibility of a distinct formation mechanism for objects above and below this range. Aims. We present a model for the substellar companion mass function (CMF). This model consists of the superposition of the planet and BD companion mass distributions, assuming that we can extrapolate the radial velocity measured CMF for planets to larger separations and the stellar companion mass-ratio distribution over all separations into the BD mass regime. By using both the results of the VLT/NaCo large program (NaCo-LP) and the complementary archive datasets, which probe the occurrence of planets and BDs on wide orbits around solar-type stars, we place some constraints on the planet and BD distributions. Methods. We developed a Monte Carlo simulation tool to predict the outcome of a given survey, depending on the shape of the orbital parameter distributions (mass, semimajor axis, eccentricity, and inclination). Comparing the predictions with the results of the observations, we calculate the likelihood of different models and which models can be ruled out. Results. Current observations are consistent with the proposed model for the CMF, as long as a sufficiently small outer truncation radius (less than or similar to 100 AU) is introduced for the planet separation distribution. Some regions of parameter space can be excluded by the observations. Conclusions. We conclude that the results of the direct imaging surveys searching for substellar companions around Sun-like stars are consistent with a combined substellar mass spectrum of planets and BDs. This mass distribution has a minimum between 10 and 50 M-Jupiter, in agreement with radial velocity measurements. In this picture the dearth of objects in this mass range would naturally arise from the shape of the mass distribution, without the introduction of any distinct formation mechanism for BDs. This kind of model for the CMF allows us to determine the probability for a substellar companion as a function of mass to have formed in a disk or from protostellar core fragmentation, as such mechanisms overlap in this mass range. C1 [Reggiani, M.; Meyer, M. R.; Quanz, S. P.; Buenzli, E.; Thalmann, C.] ETH, Inst Astron IfA, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Reggiani, M.] Univ Liege, Dept Astrophys Geophys & Oceanog, 17 Allee Six Aout, B-4000 Liege, Belgium. [Chauvin, G.; Delorme, P.; Beuzit, J. -L.; Lagrange, A. -M.; Mouillet, D.] UJF Grenoble1, CNRS, INSU, Inst Planetol & Astrophys Grenoble,UMR 5274, F-38041 Grenoble, France. [Vigan, A.; Montagnier, G.] Aix Marseille Univ, CNRS, Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France. [Biller, B.; Bonavita, M.] Univ Edinburgh, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Bonavita, M.; Desidera, S.; Maire, A. -L.; Gratton, R.; Mesa, D.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Hagelberg, J.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Boccaletti, A.] Observ Paris, LESIA, 5 Pl J Janssen, F-92195 Meudon, France. [Feldt, M.; Henning, T.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Carson, J.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA. [Covino, E.] INAF Osservatorio Astron Capodimonte, Via Moiarello 16, I-80131 Naples, Italy. [Girard, J.] European So Observ, Casilla 19001, Santiago 19, Chile. [Kasper, M.] European So Observ, Karl Schwarzschild St 2, D-85748 Garching, Germany. [Messina, S.] INAF Catania Astrophys Observ, Via S So A 78, I-95123 Catania, Italy. [Mordasini, C.] Univ Bern, Phys Inst, Sidlerstr 5, CH-3012 Bern, Switzerland. [Schlieder, J. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hagelberg, J.; Segransan, D.] Univ Geneva, Observ Geneva, Chemin Maillettes 51, CH-1290 Versoix, Switzerland. [Zurlo, A.] Univ Diego Portales, Fac Ingn, Nucleo Astron, Ave Ejercito 441, Santiago, Chile. [Zurlo, A.] Univ Chile, Dept Astron, Millennium Nucleus Protoplanetary Disk, Casilla 36-D, Santiago, Chile. RP Reggiani, M (reprint author), ETH, Inst Astron IfA, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.; Reggiani, M (reprint author), Univ Liege, Dept Astrophys Geophys & Oceanog, 17 Allee Six Aout, B-4000 Liege, Belgium. EM mreggiani@ulg.ac.be OI Hagelberg, Janis/0000-0002-1096-1433; Messina, Sergio/0000-0002-2851-2468; Vigan, Arthur/0000-0002-5902-7828 FU Swiss National Science Foundation (SNSF); European Research Council Under the European Union (ERC) [337569]; French Community of Belgium through an ARC; SNSF; U.S. National Science Foundation [1009203]; PRIN-INAF; Millennium Science Initiative (Chilean Ministry of Economy) [Nucleus RC130007] FX We are grateful to the referee for useful comments. Part of this work has been carried out within the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). M.R. acknowledges funding from the European Research Council Under the European Union's Seventh Framework Programme (ERC Grant Agreement No. 337569) and from the French Community of Belgium through an ARC grant for Concerted Research Action. M.R., S.P.Q., E.B., J.H., and M.R.M. acknowledge the financial support of the SNSF. JC is supported by the U.S. National Science Foundation under Award No. 1009203. S.D., A.L.M., R.G., and D.M. acknowledge partial support from PRIN-INAF 2010 "Planetary systems at young ages and the interactions with their active host stars". A.Z. acknowledges support from the Millennium Science Initiative (Chilean Ministry of Economy), through grant "Nucleus RC130007". NR 58 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A147 DI 10.1051/0004-6361/201525930 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900157 ER PT J AU Sousa, AP Alencar, SHP Bouvier, J Stauffer, J Venuti, L Hillenbrand, L Cody, AM Teixeira, PS Guimaraes, MM McGinnis, PT Rebull, L Flaccomio, E Furesz, G Micela, G Gameiro, JF AF Sousa, A. P. Alencar, S. H. P. Bouvier, J. Stauffer, J. Venuti, L. Hillenbrand, L. Cody, A. M. Teixeira, P. S. Guimaraes, M. M. McGinnis, P. T. Rebull, L. Flaccomio, E. Fueresz, G. Micela, G. Gameiro, J. F. TI CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; stars: variables: T Tauri, Herbig Ae/Be; open clusters and associations: individual: NGC 2264; accretion, accretion disks ID MAIN-SEQUENCE STARS; COROT PHOTOMETRIC-OBSERVATIONS; ROTATION PERIOD DISTRIBUTION; LINE-PROFILE VARIABILITY; ORION NEBULA CLUSTER; LOW-MASS STARS; MAGNETOSPHERIC ACCRETION; SU AURIGAE; LIGHT CURVES; TIME-SERIES AB Context. NGC 2264 is a young stellar cluster (similar to 3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims. Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods. NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results. The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the H alpha emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the H alpha line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric accretion and outflow models, including variations from stable to unstable accretion regimes on timescales of a few years. C1 [Sousa, A. P.; Alencar, S. H. P.; McGinnis, P. T.] UFMG Antonio Carlos, Dept Fis, Icex, BR-3127090 Belo Horizonte, MG, Brazil. [Bouvier, J.; Venuti, L.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bouvier, J.; Venuti, L.] CNRS, IPAG, F-38000 Grenoble, France. [Stauffer, J.; Rebull, L.] CALTECH, Spitzer Sci Ctr, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Hillenbrand, L.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Cody, A. M.] NASA, Ames Res Ctr, Kepler Sci Off, Moffett Field, CA 94035 USA. [Teixeira, P. S.] Univ Wien, Inst Astrophys, Trkenschanzstr 17, A-1180 Vienna, Austria. [Guimaraes, M. M.] Univ Fed Sergipe, Dept Fis, BR-49100000 Aracaju, SE, Brazil. [Flaccomio, E.; Micela, G.] Osserv Astron Palermo, INAF, Piazza Parlamento 1, I-90134 Palermo, Italy. [Fueresz, G.] MIT Kavli Inst Astrophys & Space Res, 77 Mass Ave 37-582f, Cambridge, MA 02139 USA. [Gameiro, J. F.] Univ Porto, CAUP, Inst Astrofis Ciencias Espaciais, Rua Estrelas, P-4150762 Oporto, Portugal. [Gameiro, J. F.] Univ Porto, CAUP, Fac Ciencias, Rua Estrelas, P-4150762 Oporto, Portugal. RP Sousa, AP (reprint author), UFMG Antonio Carlos, Dept Fis, Icex, BR-3127090 Belo Horizonte, MG, Brazil. EM alana@fisica.ufmg.br RI Teixeira, Paula Stella/O-2289-2013; Guimaraes, Marcelo/H-5897-2012; McGinnis, Pauline/F-6490-2015; OI Teixeira, Paula Stella/0000-0002-3665-5784; Guimaraes, Marcelo/0000-0002-0517-4507; McGinnis, Pauline/0000-0001-7476-7253; Rebull, Luisa/0000-0001-6381-515X FU CNPq; CAPES; Fapemig; FCT [UID/FIS/04434/2013] FX A.P.S. and S.H.P.A. acknowledge support from CNPq, CAPES and Fapemig. J.F.G. aknowledges support from FCT ref project UID/FIS/04434/2013. NR 76 TC 5 Z9 5 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A47 DI 10.1051/0004-6361/201526599 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900058 ER PT J AU Thorpe, JI Parvini, C Trigo-Rodriguez, JM AF Thorpe, J. I. Parvini, C. Trigo-Rodriguez, J. M. TI Detection and measurement of micrometeoroids with LISA Pathfinder SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE meteorites, meteors, meteoroids; instrumentation: miscellaneous ID ZODIACAL LIGHT; DUST; IDENTIFICATION; SHOWERS; COMPLEX; ORBITS; STREAM; EARTH; SKY AB The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These particles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launched on Dec. 3rd, 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as 4 x 10(-8) Ns. We then estimate the rate of such impulses resulting from impacts of microme-teoroids based on standard models of the micrometeoroid environment in the inner solar system. We find that LPF may detect dozens to hundreds of individual events corresponding to impacts of particles with masses >10(-9) g during LPF's roughly six-month science operations phase in a 5 x 10(5) km by 8 x 10(5) km Lissajous orbit around L1. In addition, we estimate the ability of LPF to characterize individual impacts by measuring quantities such as total momentum transferred, direction of impact, and location of impact on the spacecraft. Information on flux and direction provided by LPF may provide insight as to the nature and origin of the individual impact and help constrain models of the interplanetary dust complex in general. Additionally, this direct in situ measurement of micrometeoroid impacts will be valuable to designers of future spacecraft targeting the environment around L1. C1 [Thorpe, J. I.; Parvini, C.] NASA Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Parvini, C.] George Washington Univ, Dept Aerosp Engn, Washington, DC 20052 USA. [Trigo-Rodriguez, J. M.] Inst Space Sci CSIC IEEC, Meteorites Minor Bodies & Planetary Sci Grp, Campus UAB Bellaterra,Carrer Can Magrans S-N, Cerdanyola Valles Barcel 08193, Spain. RP Thorpe, JI (reprint author), NASA Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. EM james.i.thorpe@nasa.gov FU Spanish Ministry of Science and Innovation [AYA2011-26522]; NASA Goddard Space Flight Center Summer Internship Program FX The authors would like to acknowledge Ian Harrison for providing the representative LPF ephemeris file used to estimate the distribution of impact velocities in Sect. 3. J.M.T.R.'s research was supported by the Spanish Ministry of Science and Innovation (project: AYA2011-26522). C.P.'s research was supported by the 2015 NASA Goddard Space Flight Center Summer Internship Program. Copyright (c) 2015 United States Government as represented by the Administrator of the National Aeronautics and Space Administration. No copyright is claimed in the United States under Title 17, US Code. All other rights reserved. NR 26 TC 0 Z9 0 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A107 DI 10.1051/0004-6361/201527658 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900118 ER PT J AU Umurhan, OM Nelson, RP Gressel, O AF Umurhan, O. M. Nelson, R. P. Gressel, O. TI Linear analysis of the vertical shear instability: outstanding issues and improved solutions SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE protoplanetary disks; instabilities; turbulence; waves; methods: analytical ID ACCRETION DISCS; ROTATION; MODELS; DISKS; STARS AB Context. The vertical shear instability is one of several known mechanisms that are potentially active in the so-called dead zones of protoplanetary accretion disks. A recent analysis of the instability mechanism indicates that a subset of unstable modes shows unbounded growth - both as resolution is increased and when the nominal lid of the atmosphere is extended. This trend suggests that, possibly, the model system is ill-posed. Aims. This research note both examines the energy content of these modes and questions the legitimacy of assuming separable solutions for a problem whose linear operator is fundamentally inseparable. Methods. The reduced equations governing the instability are revisited and the generated solutions are examined using both the previously assumed separable forms and an improved non-separable solution form that is introduced in this paper. Results. Reconsidering the solutions of the reduced equations by using the separable form shows that, while the low-order body modes have converged eigenvalues and eigenfunctions (for both variations in the model atmosphere's vertical boundaries and radial numerical resolution). It is also confirmed that the corresponding high-order body modes and the surface modes indeed show unbounded growth rates. The energy contained in both the higher order body modes and surface modes diminishes precipitously due to the disk's Gaussian density profile. Most of the energy of the instability is contained in the low-order modes. An inseparable solution form is introduced to filter out the inconsequential surface modes, leaving only body modes (both low-and high-order ones). The analysis predicts a fastest growing mode with a specific radial length scale. The growth rates associated with the fundamental corrugation and breathing modes match the growth and length scales observed in previous nonlinear studies of the instability. Conclusions. Linear stability analysis of the vertical shear instability should be done assuming non-separable solutions, especially for settings involving boundaries in the radial direction. We also conclude that the surface modes are relatively inconsequential because of the little energy they contain, and are artifacts of imposing specific kinematic vertical boundary conditions in isothermals disk models. C1 [Umurhan, O. M.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Umurhan, O. M.] SETI Inst, 189 Bernardo Way, Mountain View, CA 94043 USA. [Nelson, R. P.] Queen Mary Univ London, Sch Phys & Astron, 327 Mile End Rd, London E1 4NS, England. [Gressel, O.] Niels Bohr Inst, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark. RP Umurhan, OM (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA.; Umurhan, OM (reprint author), SETI Inst, 189 Bernardo Way, Mountain View, CA 94043 USA. EM orkan.m.umurhan@nasa.gov FU BIS National E-Infrastructure capital grant [ST/K000373/1]; STFC DiRAC Operations grant [ST/K0003259/1] FX The authors express appreciation to A. Barker and H. Latter for their comments and views regarding several points of debate presented in this paper, when an earlier version of this work appeared on ArXiv. We also thank the anonymous referee who suggested a number of additional points for discussion, and we thank K. Shariff and J. Cuzzi (NASA Ames Research Center) for providing an internal review of this manuscript. Elements found in the discussion of this work used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National E-Infrastructure. NR 11 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A33 DI 10.1051/0004-6361/201526494 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900044 ER PT J AU Anderson, RL Campagnola, S Lantoine, G AF Anderson, Rodney L. Campagnola, Stefano Lantoine, Gregory TI Broad search for unstable resonant orbits in the planar circular restricted three-body problem SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article DE Resonant orbits; Dynamical systems theory; Orbit families; Continuation Three-body problem; Stability; CWIC ID 2ND SPECIES SOLUTIONS; NEAR-MOON PASSAGE; DYNAMICAL-SYSTEMS ANALYSIS; LESS-THAN 1; PERIODIC-SOLUTIONS; CHAOTIC TRAJECTORIES; FLYBYS; CAPTURE; DESIGN; MISSIONS AB Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques. In this study, several methods for computing these unstable resonant orbits are explored including grid searches, flyby maps, and continuation. Families of orbits are computed focusing on orbits with multiple loops near the secondary in the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonant orbits, and the continuation of several specific orbits is explored in more detail. C1 [Anderson, Rodney L.; Lantoine, Gregory] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 301-121, Pasadena, CA 91109 USA. [Campagnola, Stefano] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept Space Flight Syst, Yoshinodai 3-1-1, Sagamihara, Kanagawa 2525210, Japan. RP Anderson, RL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 301-121, Pasadena, CA 91109 USA. EM rodney.l.anderson@jpl.nasa.gov; stefano.campagnola@jaxa.jp; gregory.lantoine@jpl.nasa.gov FU National Aeronautics and Space Administration; AMMOS/MGSS under the "Tour and Endgame Design using Invariant Manifolds" study FX The research presented here has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Funding for this research came from AMMOS/MGSS under the "Tour and Endgame Design using Invariant Manifolds" study. The authors would like to thank Martin Lo, Jon Sims, Try Lam, and Channing Chow for their helpful comments and conversations. They would also like to thank the anonymous reviewers for their helpful suggestions. NR 70 TC 0 Z9 0 U1 2 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 EI 1572-9478 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD FEB PY 2016 VL 124 IS 2 BP 177 EP 199 DI 10.1007/s10569-015-9659-7 PG 23 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA DE1AJ UT WOS:000370357500006 ER PT J AU Scott, JM Armenian, S Giralt, S Moslehi, J Wang, T Jones, LW AF Scott, Jessica M. Armenian, Saro Giralt, Sergio Moslehi, Javid Wang, Thomas Jones, Lee W. TI Cardiovascular disease following hematopoietic stem cell transplantation: Pathogenesis, detection, and the cardioprotective role of aerobic training SO CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY LA English DT Review DE Cardiovascular disease; Exercise; Detection; Hematopoietic stem cell transplantation ID VERSUS-HOST-DISEASE; QUALITY-OF-LIFE; BONE-MARROW-TRANSPLANTATION; RANDOMIZED CONTROLLED-TRIAL; LEFT-VENTRICULAR FUNCTION; CORONARY-ARTERY-DISEASE; HIGH-DOSE CHEMOTHERAPY; LONG-TERM SURVIVORS; GROWTH-DIFFERENTIATION FACTOR-15; ACUTE MYOCARDIAL-INFARCTION AB Advances in hematopoietic cell transplantation (HCT) techniques and supportive care strategies have led to dramatic improvements in relapse mortality in patients with high-risk hematological malignancies. These improvements, however, conversely increase the risk of late-occurring non-cancer competing causes, mostly cardiovascular disease (CVD). HCT recipients have a significantly increased risk of CVD-specific mortality, including elevated incidence of coronary artery disease (CAD), cerebrovascular disease, and heart failure (HF) compared to age-matched counterparts. Accordingly, there is an urgent need to identify techniques for the detection of early CVD in HCT patients to inform early prevention strategies. Aerobic training (AT) is established as the cornerstone of primary and secondary disease prevention in multiple clinical settings, and may confer similar benefits in HCT patients at high-risk of CVD. The potential benefits of AT either before, immediately after, or in the months years following HCT have received limited attention. Here, we discuss the risk and extent of CVD in adult HCT patients, highlight novel tools for early detection of CVD, and review existing evidence in oncology and non-oncology populations supporting the efficacy of AT to attenuate HCT-induced CVD. This knowledge can be utilized to optimize treatment, while minimizing CVD risk in individuals with hematological malignancies undergoing HCT. (C) 2015 Elsevier Ireland Ltd. All rights reserved. C1 [Scott, Jessica M.] Univ Space Res Assoc, NASA, Lyndon B Johnson Space Ctr, Houston, TX USA. [Armenian, Saro] City Hope Comprehens Canc Ctr, Duarte, CA USA. [Giralt, Sergio] Mem Sloan Kettering Canc Ctr, Bone Marrow Transplantat Serv, 1275 York Ave, New York, NY 10021 USA. [Jones, Lee W.] Mem Sloan Kettering Canc Ctr, Cardiooncol Program, 1275 York Ave, New York, NY 10021 USA. [Moslehi, Javid] Vanderbilt Univ, Cardiooncol Program, 221 Kirkland Hall, Nashville, TN 37235 USA. [Wang, Thomas] Vanderbilt Univ, Div Cardiovasc Med, 221 Kirkland Hall, Nashville, TN 37235 USA. RP Jones, LW (reprint author), Mem Sloan Kettering Canc Ctr, Dept Med, 1275 York Ave, New York, NY 10065 USA. EM jonesl3@mskcc.org FU National Cancer Institute; AKTIV Against Cancer Foundation FX LWJ is supported by research grants from the National Cancer Institute and from AKTIV Against Cancer Foundation. NR 170 TC 0 Z9 0 U1 3 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1040-8428 EI 1879-0461 J9 CRIT REV ONCOL HEMAT JI Crit. Rev. Oncol./Hematol. PD FEB PY 2016 VL 98 BP 222 EP 234 DI 10.1016/j.critrevonc.2015.11.007 PG 13 WC Oncology; Hematology SC Oncology; Hematology GA DD7EL UT WOS:000370086400022 PM 26643524 ER PT J AU Han, JW Seol, ML Choi, YK Meyyappan, M AF Han, Jin-Woo Seol, Myeong-Lok Choi, Yang-Kyu Meyyappan, M. TI Self-Destructible Fin Flip-Flop Actuated Channel Transistor SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE FinFET; More than Moore; self-destructible transistor; transient electronics ID ELECTRONICS AB A self-destructible fin flip-flop actuated channel transistor is presented as a candidate for transient electronics. The device uses a movable fin anchored on the source and drain pads with two independent gates on each side of the fin. The fin is in contact with a primary gate during normal operation providing the performance of a single-gate thin-body transistor. When death of the device is desired, a trigger voltage applied to a trigger gate mechanically shatters the source/drain extension region of the fin due to electrostatic bending stress. The self-destruction operation results in the formation of an open circuit at the individual transistor level, terminating the designed function of the chip. The present device can be used in security, military, and consumer applications to protect from malicious attempts to operate the system or gain access to sensitive information. C1 [Han, Jin-Woo; Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Seol, Myeong-Lok; Choi, Yang-Kyu] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305764, South Korea. RP Han, JW (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov OI Seol, Myeong-Lok/0000-0001-5724-2244 NR 14 TC 0 Z9 0 U1 2 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 EI 1558-0563 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD FEB PY 2016 VL 37 IS 2 BP 130 EP 133 DI 10.1109/LED.2015.2507258 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA DE2BU UT WOS:000370432000001 ER PT J AU Ahn, DC Seol, ML Hur, J Moon, DI Lee, BH Han, JW Park, JY Jeon, SB Choi, YK AF Ahn, Dae-Chul Seol, Myeong-Lok Hur, Jae Moon, Dong-Il Lee, Byung-Hyun Han, Jin-Woo Park, Jun-Young Jeon, Seung-Bae Choi, Yang-Kyu TI Ultra-Fast Erase Method of SONOS Flash Memory by Instantaneous Thermal Excitation SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Gate-all-around; Joule heat; junctionless; self-annealing; SONOS; thermal excitation ID OXIDE AB An ultra-fast erasing process that acts within 200 ns is demonstrated in a junctionless gate-all-around nanowire silicon-oxide-nitride-oxide-silicon device. Rapid erasing is enabled with the use of instantaneous thermal excitation (TE) through a double-ended gate structure. Charges inside the silicon nitride layer are de-trapped by Joule heating. Moreover, an in-situ self-annealing effect accompanied by the TE erase method is achieved; hence, both the tunnel oxide quality and the retention characteristics are less degraded compared with the conventional Fowler-Nordheim erase method. C1 [Ahn, Dae-Chul; Seol, Myeong-Lok; Hur, Jae; Moon, Dong-Il; Lee, Byung-Hyun; Park, Jun-Young; Jeon, Seung-Bae; Choi, Yang-Kyu] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea. [Han, Jin-Woo] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Choi, YK (reprint author), Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea. EM ykchoi@ee.kaist.ac.kr FU Pioneer Research Center Program through National Research Foundation of Korea within Ministry of Science, ICT and Future Planning (MSIP) [2012-0009600]; Center for Integrated Smart Sensors within MSIP through the Global Frontier Project [CISS-2011-0031848]; IDEC Corporation (EDA Tool, MPW) FX This work was supported in part by the Pioneer Research Center Program through the National Research Foundation of Korea within the Ministry of Science, ICT and Future Planning (MSIP) under Grant 2012-0009600, in part by the Center for Integrated Smart Sensors within the MSIP through the Global Frontier Project under Grant CISS-2011-0031848, and in part by IDEC Corporation (EDA Tool, MPW). The review of this letter was arranged by Editor W. T. Ng. NR 15 TC 0 Z9 0 U1 3 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 EI 1558-0563 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD FEB PY 2016 VL 37 IS 2 BP 190 EP 192 DI 10.1109/LED.2015.2512280 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA DE2BU UT WOS:000370432000017 ER PT J AU Fulbright, J Lei, N Efremova, B Xiong, XX AF Fulbright, Jon Lei, Ning Efremova, Boryana Xiong, Xiaoxiong TI Suomi-NPP VIIRS Solar Diffuser Stability Monitor Performance SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; reflective solar bands (RSBs); stability; visible infrared imaging radiometer suite (VIIRS) ID CALIBRATION AB When illuminated by the Sun, the onboard solar diffuser (SD) panel provides a known spectral radiance source to calibrate the reflective solar bands of the Visible Infrared Imaging Radiometer Suite on the Suomi-NPP satellite. The SD bidirectional reflectance distribution function (BRDF) degrades over time due to solar exposure, and this degradation is measured using the SD stability monitor (SDSM). The SDSM acts as a ratioing radiometer, comparing solar irradiance measurements off the SD panel to those from a direct Sun view. We discuss the design and operations of the SDSM, the SDSM data analysis, including improvements incorporated since launch, and present the results through 1000 days after launch. After 1000 days, the band-dependent H-factors, a quantity describing the relative degradation of the BRDF of the SD panel since launch, range from 0.716 at 412 nm to 0.989 at 926 nm. The random uncertainty of these H-factors is about 0.1%, which is confirmed by the similar standard deviation values computed from the residuals of quadratic exponential fits to the H-factor time trends. The SDSM detector gains have temperature sensitivity of up to about 0.36% per kelvin, but this does not affect the derived H-factors. An initial error in the solar vector caused a seasonal bias to the H-factors of up to 0.5%. The total exposure of the SD panel to UV light after 1000 orbits is equivalent to about 100 h of direct sunlight illumination perpendicular to the SD panel surface. C1 [Fulbright, Jon; Lei, Ning] Sci Syst & Applicat Inc, VIIRS Characterizat & Support Team, Lanham, MD 20706 USA. [Efremova, Boryana] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Fulbright, J (reprint author), Sci Syst & Applicat Inc, VIIRS Characterizat & Support Team, Lanham, MD 20706 USA. EM jon.fulbright@ssaihq.com NR 15 TC 5 Z9 5 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 631 EP 639 DI 10.1109/TGRS.2015.2441558 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100001 ER PT J AU Das, NN Entekhabi, D Dunbar, RS Njoku, EG Yueh, SH AF Das, Narendra Narayan Entekhabi, Dara Dunbar, R. Scott Njoku, Eni G. Yueh, Simon H. TI Uncertainty Estimates in the SMAP Combined Active-Passive Downscaled Brightness Temperature SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Active and passive microwave merging; downscaled brightness temperature; error in downscaled brightness temperature; microwave remote sensing ID SOIL-MOISTURE; RADAR; VEGETATION; RADIOMETER AB NASA's Soil Moisture Active Passive (SMAP) mission objective is global mapping of surface volumetric soil moisture at 10-km resolution every two to three days and with accuracy of 0.04 cm(3) cm(-3) (one sigma). In order to achieve this resolution and accuracy, the SMAP utilizes L-band radar and L-band radiometer measurements. The instruments share a rotating 6-m mesh reflector antenna that scans across a 1000-km swath in order to meet the required data refresh rate. The Level-2 Active-Passive soil moisture product (L2_SM_AP) at 9 km is retrieved from the disaggregated/downscaled brightness temperature obtained by merging of active and passive L-band observations. The baseline L2_SM_AP algorithm disaggregates the coarse-resolution (similar to 36 km) brightness temperatures of the SMAP L-band radiometer using the high-resolution (similar to 3 km) backscatter data from the SMAP L-band radar with unfocused synthetic aperture processing. The inversion of brightness temperature to estimate surface soil moisture is more mature when compared with inversions of radar backscatter. This is the primary driver of the brightness temperature disaggregation approach to the combined active-passive surface soil moisture product. Furthermore, this approach allows some consistency with the coarse-resolution radiometer-only surface soil moisture product since the disaggregated brightness temperatures sums to the radiometer measurement. The disaggregated brightness temperature contains instrument errors (similar to 0.7 dB for co-pol backscatter and similar to 1.0 dB for cross-pol backscatter, and similar to 1.3 K in brightness temperature) inherent in the radar and radiometer. Furthermore, the algorithm has two critical parameters that add uncertainty. Finally, correction of the land brightness temperature (used in the inversion) for water body contributions is a source of uncertainty. In this paper, we introduce analytical expressions for the SMAP downscaled brightness temperature due to all these sources of uncertainty. The expressions allow estimation of uncertainty (in kelvin) for each data granule of the SMAP L2_SM_AP product. Since the uncertainties depend on the given ground conditions, e.g., existing water body fraction and local algorithm parameters that depend on vegetation cover and landscape heterogeneity, it is necessary to evaluate the uncertainty for each data granule. In this paper, we show that the uncertainty expressions closely match Monte Carlo simulations with an overall difference of only similar to 0.1 K. Whereas Monte Carlo estimates of uncertainty can only be afforded for a nominal case (such as those typically reported in Algorithm Theoretical Basis Documents as uncertainty tables), the analytical expressions allow uncertainty estimates for every data granule. The expressions are now used to provide uncertainty standard deviation of downscaled brightness temperature at 9 km in the SMAP L2_SM_AP product. These standard deviations are useful for the following: 1) guidance on the expected level of error in the estimate brightness temperature due to the downscaling process and 2) observation error in direct radiance data assimilation. C1 [Das, Narendra Narayan; Dunbar, R. Scott; Njoku, Eni G.; Yueh, Simon H.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Entekhabi, Dara] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Das, NN; Dunbar, RS; Njoku, EG; Yueh, SH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Entekhabi, D (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM nndas@jpl.nasa.gov; darae@mit.edu; roy.s.dunbar@jpl.nasa.gov; eni.g.njoku@jpl.nasa.gov; simon.yueh@jpl.nasa.gov NR 16 TC 1 Z9 1 U1 8 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 640 EP 650 DI 10.1109/TGRS.2015.2450694 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100002 ER PT J AU Liao, TH Tsang, L Huang, SW Niamsuwan, N Jaruwatanadilok, S Kim, SB Ren, H Chen, KL AF Liao, Tien-Hao Tsang, Leung Huang, Shaowu Niamsuwan, Noppasin Jaruwatanadilok, Sermsak Kim, Seung-bum Ren, Hsuan Chen, Kuan-Liang TI Copolarized and Cross-Polarized Backscattering From Random Rough Soil Surfaces From L-Band to Ku-Band Using Numerical Solutions of Maxwell's Equations With Near-Field Precondition SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Near-field precondition; numerical Maxwell solution; polarization ratio; rough surface; soil moisture ID SERIES RADAR OBSERVATIONS; MOISTURE RETRIEVAL; SCATTERING; SIMULATIONS; MODEL AB We extend the 3-D numerical method of Maxwell's equation (NMM3D) for rough soil surface scattering from L-band to C-, X-, and Ku-bands. We illustrate the results for copolarization, cross-polarization, and polarization ratio (HH/VV). Copolarized and cross-polarized backscattering coefficients from NMM3D are analyzed for frequency dependence, incident angle dependence, and soil moisture dependence. We also cross compare results from analytical and empiricalmodels. The 16x16 squared wavelength (lambda(2)) of rough surface is applied for NMM3D using 256 processors on NSF Extreme Science and Engineering Discovery Environment clusters. Polarization ratio, HH/VV, is studied to address the feature of dependence on frequency for same fields (same physical parameters for the model). HH/VV is shown useful to provide additional information to study land surface. Results from NMM3D are also validated with POLARSCAT measurement data-1. NMM3D shows good agreement with data and better performance while considering copolarization, cross-polarization, and polarization ratio (HH/VV) together. The key advancement in computation efficiency in this paper is the implementation of a physically based near-field precondition algorithm in NMM3D to accelerate parallel computation. With precondition, the computation time is faster by ten times for larger root-mean-square height. C1 [Liao, Tien-Hao; Huang, Shaowu] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Tsang, Leung] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. [Niamsuwan, Noppasin; Jaruwatanadilok, Sermsak] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Ren, Hsuan; Chen, Kuan-Liang] Natl Cent Univ, Inst Space Sci, Jhongli 32001, Taiwan. RP Liao, TH (reprint author), Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. EM thliao@uw.edu FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration (NASA); NASA Earth Observing System Simulator Suite Project - Advanced Information System Technology program of NASA's Earth Science Technology Office FX This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA) and in part by the NASA Earth Observing System Simulator Suite Project funded within the Advanced Information System Technology program of NASA's Earth Science Technology Office. NR 24 TC 1 Z9 1 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 651 EP 662 DI 10.1109/TGRS.2015.2451671 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100003 ER PT J AU Abercrombie, SP Friedl, MA AF Abercrombie, S. Parker Friedl, Mark A. TI Improving the Consistency of Multitemporal Land Cover Maps Using a Hidden Markov Model SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Hidden Markov models (HMMs); image classification; land cover dynamics; remote sensing; vegetation mapping ID IGBP DISCOVER; CLASSIFICATION; MODIS; ALGORITHM; DATASETS; IMAGE AB Land cover and land use affect a wide range of regional-scale to global-scale ecosystem processes, and many Earth system models rely on accurate land cover information. However, multitemporal land cover products often show unrealistically high levels of year-to-year label change, particularly at coarse spatial resolution (i.e., 300-500 m). Much of this apparent land cover change arises from errors in classification and does not indicate real change in land cover or land use. In this paper, we present a novel framework that uses a hidden Markov model (HMM) to help distinguish real land cover change from spurious land cover changes in classification time series. We apply the HMM as a postprocessing step to supervised classification, and we solve for the optimal label sequence using existing HMM algorithms. Our results demonstrate that the HMM provides a rigorous framework for capturing temporal context and likelihood of land cover change at each pixel. We evaluated our approach using the MODIS Collection 5.1 Land Cover Type product (MCD12Q1), focusing on areas that have experienced little change over the MODIS time series, and areas that have experienced well characterized change (e.g., deforestation). We show that the HMM method provides label sequences that are more accurate and that exhibit less year-to-year variability than label sequences produced by ensemble-decision-tree classification or by postprocessing heuristics that have been used in recent versions of MCD12Q1 product. The framework that we present offers an improvement over conventional multitemporal land cover classification methods, and it is widely applicable to problems in multitemporal land cover and land use monitoring. C1 [Abercrombie, S. Parker] Boston Univ, Boston, MA 02215 USA. [Abercrombie, S. Parker] NASA, Jet Prop Lab, Human Interfaces Grp, Pasadena, CA 91109 USA. [Friedl, Mark A.] Boston Univ, Earth & Environm, Boston, MA 02215 USA. RP Abercrombie, SP (reprint author), Boston Univ, Boston, MA 02215 USA.; Abercrombie, SP (reprint author), NASA, Jet Prop Lab, Human Interfaces Grp, Pasadena, CA 91109 USA.; Friedl, MA (reprint author), Boston Univ, Earth & Environm, Boston, MA 02215 USA. EM stewart.p.abercrombie@jpl.nasa.gov; friedl@bu.edu FU National Aeronautics and Space Administration [NNX11AE75G] FX This work was supported by the National Aeronautics and Space Administration under Grant NNX11AE75G. NR 40 TC 0 Z9 0 U1 7 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 703 EP 713 DI 10.1109/TGRS.2015.2463689 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100007 ER PT J AU Hilburn, KA Meissner, T Wentz, FJ Brown, ST AF Hilburn, Kyle A. Meissner, Thomas Wentz, Frank J. Brown, Shannon T. TI Ocean Vector Winds From WindSat Two-Look Polarimetric Radiances SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Advanced Scatterometer (ASCAT); maximum-likelihood estimation; microwave radiometer; multilook radiometry; ocean vector winds (OVW); passive microwave remote sensing; polarimetric radiometry; QuikSCAT; scatterometer; WindSat ID NUMERICAL WEATHER PREDICTION; RESEARCH MOORED ARRAY; SCATTEROMETER DATA; SEA-ICE; TROPICAL CYCLONES; SATELLITE-OBSERVATIONS; MICROWAVE RADIOMETER; SURFACE OBSERVATIONS; RETRIEVAL ALGORITHM; OPERATIONAL IMPACT AB WindSat has been providing accurate ocean vector winds (OVWs) for over a decade. WindSat makes polarimetric brightness temperature measurements of Earth looking forwards and backwards. However, because the overlap of these two swaths is relatively narrow, the benefit of two-look polarimetric (2LP) retrieval accuracy has not been utilized. This paper derives OVW from WindSat 2LP measurements using a radiative transfermodel and maximum-likelihood estimation. The purpose of this paper is a comparison of WindSat 2LP wind direction accuracy with WindSat one-look, QuikSCAT, and Advanced Scatterometer (ASCAT) wind directions. Retrievals are compared with anemometer measurements on collocated moored buoys. Statistics are examined for both the first-ranked wind direction ambiguity and the selected ambiguity after median filtering initialized with a numerical weather prediction wind field. For winds above 8 m/s, WindSat 2LP retrievals have the most accurate first-ranked direction compared with all other sensors. For winds of 6-9 m/s, the standard deviation relative to buoys is 17 degrees, and for 9-20 m/s, it is less than 10 degrees. One-look standard deviations are nearly twice as large. At low winds, QuikSCAT provides the most accurate wind directions, for first-ranked and selected ambiguity. Thus, scatterometer and radiometer OVW measurements provide complementary capabilities. The accuracy of 2LP OVW is particularly relevant now that new internal calibration technology allows for a 360 degrees conical scan of earth observations. Moreover, new low-cost designs would make it possible to affordably deploy a constellation of OVW sensors capable of providing accurate winds under a wide range of conditions, described herein. C1 [Hilburn, Kyle A.; Meissner, Thomas; Wentz, Frank J.] Remote Sensing Syst, Santa Rosa, CA 95401 USA. [Brown, Shannon T.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Hilburn, KA (reprint author), Remote Sensing Syst, Santa Rosa, CA 95401 USA. EM kylehilburn@gmail.com NR 101 TC 1 Z9 1 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 918 EP 931 DI 10.1109/TGRS.2015.2469633 PG 14 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100024 ER PT J AU Berndt, EB Zavodsky, BT Folmer, MJ AF Berndt, Emily B. Zavodsky, Bradley T. Folmer, Michael J. TI Development and Application of Atmospheric Infrared Sounder Ozone Retrieval Products for Operational Meteorology SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Cyclogenesis; hyperspectral; infrared; meteorology; ozone; red; green; blue (RGB) air mass imagery; remote sensing; stratospheric air; weather forecasting ID STRATOSPHERE-TROPOSPHERE EXCHANGE; POTENTIAL VORTICITY; TROPOPAUSE FOLDS; CYCLOGENESIS; CLIMATOLOGY AB The National Aeronautics and Space Administration Short-term Prediction Research and Transition (SPoRT) Center has worked closely with the Geostationary Operational Environmental Satellite-R series and the Joint Polar Satellite System Proving Grounds to develop and transition unique ozone products derived from Atmospheric Infrared Sounder (AIRS) ozone retrievals to the Ocean Prediction Center (OPC). These products were developed to aid identification of stratospheric air and enhance situational awareness of rapid cyclogenesis and hurricaneforce wind events during which stratospheric air may play a key role. OPC forecasters have used the European Organisation for the Exploitation of Meteorological Satellites Meteosat Spinning Enhanced Visible and Infrared Imager red, green, blue (RGB) air mass imagery to identify regions of stratospheric air for their unique weather forecasting challenges; however, the qualitative nature of the new RGB product facilitated a need for quantitative products to enhance forecaster confidence in the RGB air mass imagery. To enhance forecaster interpretation and confidence in the RGB air mass imagery, SPoRT created the total column ozone and ozone anomaly products from hyperspectral infrared sounder ozone retrievals. AIRS Version 6 Level-2 ozone retrievals were utilized to create hourly ozone products over a northwest hemisphere domain. An example case study from February 24-27, 2014, shows the utility of the ozone products in enhancing interpretation of the RGB air mass imagery for anticipating rapid cyclogenesis and hurricane-force winds in the North Atlantic. C1 [Berndt, Emily B.] NASA, Postdoctoral Program, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Zavodsky, Bradley T.] NASA, Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35805 USA. [Folmer, Michael J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Cooperat Inst Climate & Satellites, College Pk, MD 20740 USA. RP Berndt, EB (reprint author), NASA, Postdoctoral Program, Marshall Space Flight Ctr, Huntsville, AL 35805 USA.; Zavodsky, BT (reprint author), NASA, Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35805 USA.; Folmer, MJ (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Cooperat Inst Climate & Satellites, College Pk, MD 20740 USA. EM emily.b.berndt@nasa.gov; brad.zavodsky@nasa.gov; michael.folmer@noaa.gov OI Berndt, Emily/0000-0001-9370-7504 FU NASA; Earth Science Division at NASA Headquarters FX This work was supported in part by an appointment to the National Aeronautics and Space Administration (NASA) Postdoctoral Program at the Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA and the Earth Science Division at NASA Headquarters. NR 35 TC 1 Z9 1 U1 0 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 958 EP 967 DI 10.1109/TGRS.2015.2471259 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100027 ER PT J AU Zheng, G Yang, JS Liu, AK Li, XF Pichel, WG He, SY AF Zheng, Gang Yang, Jingsong Liu, Antony K. Li, Xiaofeng Pichel, William G. He, Shuangyan TI Comparison of Typhoon Centers From SAR and IR Images and Those From Best Track Data Sets SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Best track (BT); infrared (IR); synthetic aperture radar (SAR); typhoon center ID TROPICAL CYCLONES; INTENSITY; OCEAN; EYES; EXTRACTION; SENSORS AB This paper compares the typhoon centers from the tropical cyclone best track (BT) data sets of three meteorological agencies and those from synthetic aperture radar (SAR) and infrared (IR) images. First, we carried out algorithm comparison using two newly developed algorithms and one existing wavelet-based algorithm, which were used to extract typhoon eyes in six SAR images and two IR images. These case studies showed that the extracted eyes by the three algorithms are consistent with each other. The differences among them are relatively small. However, there is a systematic difference between the extracted centers and the typhoon centers from the three BT data sets, which were interpolated to the imaging times first. We then compared the typhoon centers determined from 25 SAR and 43 IR images with those from the three BT data sets to investigate the performance of the latter at the sea surface and at the cloud top, respectively. We found that the typhoon centers from the three BT data sets are generally closer to the locations extracted from the SAR images showing sea-surface imprints of the typhoons than those from the IR images showing cloud-top structures of the typhoons. C1 [Zheng, Gang; Yang, Jingsong] State Ocean Adm, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Zhejiang, Peoples R China. [Liu, Antony K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Liu, Antony K.] Zhejiang Univ, Ocean Coll, Hangzhou 310058, Zhejiang, Peoples R China. [Li, Xiaofeng] Global Sci & Technol Inc, Ctr Satellite Applicat & Res STAR, Natl Environm Satellite Data & Informat Serv, NOAA, College Pk, MD 20740 USA. [Pichel, William G.] NOAA, Ctr Satellite Applicat & Res STAR, Natl Environm Satellite Data & Informat Serv, College Pk, MD 20740 USA. [He, Shuangyan] Zhejiang Univ, Ocean Coll, Hangzhou 310058, Zhejiang, Peoples R China. RP Zheng, G (reprint author), State Ocean Adm, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Zhejiang, Peoples R China. EM gang_zheng@outlook.com RI Li, Xiaofeng/B-6524-2008 OI Li, Xiaofeng/0000-0001-7038-5119 FU National Natural Science Foundation of China [41306192, 41228007, 41201350]; NOAA Ocean Remote Sensing Program FX This work was supported in part by the National Natural Science Foundation of China under Grant 41306192, Grant 41228007, and Grant 41201350 and in part by the NOAA Ocean Remote Sensing Program. NR 26 TC 2 Z9 2 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 1000 EP 1012 DI 10.1109/TGRS.2015.2472282 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100031 ER PT J AU Xiong, XX Sun, JQ Fulbright, J Wang, ZP Butler, JJ AF Xiong, Xiaoxiong Sun, Junqiang Fulbright, Jon Wang, Zhipeng Butler, James J. TI Lunar Calibration and Performance for S-NPP VIIRS Reflective Solar Bands SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; Moderate Resolution Imaging Spectroradiometer (MODIS); Moon; reflective solar bands (RSBs); sensor; stability; Visible Infrared Imaging Radiometer Suite (VIIRS) ID ON-ORBIT CALIBRATION; MOON; SEAWIFS; TERRA AB The Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) has successfully operated for more than three years since its launch in October 2011. Fifteen of the 22 VIIRS spectral bands are in the reflective solar spectral region, covering wavelengths from 0.41 to 2.3 mu m. Similar to its heritage sensor, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA Terra and Aqua spacecraft, the measurements of these spectral bands are routinely calibrated on orbit by a solar diffuser (SD) and an SD stability monitor (SDSM) system. In addition, lunar observations are regularly scheduled and implemented, allowing the reflective solar band (RSB) calibration stability to be independently monitored. This paper provides an overview of VIIRS RSB on-orbit calibration activities and methodologies, with a focus on the approaches and strategies developed for the lunar calibration. Results derived from VIIRS lunar observations are used to assess its RSB on-orbit performance and to compare with that derived from the SD measurements. Also discussed in this paper are issues identified since launch through comparisons of VIIRS SD and lunar calibration, remaining challenges, and future improvements. Specifically, potential impacts due to degradation caused by the telescope mirror coating contamination on both SD and lunar calibration are assessed. As demonstrated in this paper, VIIRS lunar calibration activities have been successfully planned and executed, in support of its RSB on-orbit calibration. Overall, the long-term response trending derived from lunar calibrations has been consistent with that derived from SD observations. In addition to small features in SD measurements, noticeable seasonal variations, on the order of 1%, between the lunar measurements and the model have been identified. These variations are likely due to the effect of different lunar viewing angles on the lunar irradiance reference model. Future improvements to the sensor's lunar response trending could be achieved with an improved lunar irradiance model. C1 [Xiong, Xiaoxiong; Butler, James J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sun, Junqiang] Global Sci & Technol Inc, Greenbelt, MD 20770 USA. [Fulbright, Jon] Columbus Technol & Serv Inc, Greenbelt, MD 20770 USA. [Wang, Zhipeng] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. RP Xiong, XX (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Xiaoxiong.Xiong-1@nasa.gov; junqiang.sun@noaa.gov; jon.fulbright@gmail.com; zhipeng.wang@ssaihq.com; james.j.butler@nasa.gov RI Richards, Amber/K-8203-2015; OI Wang, Zhipeng/0000-0002-9108-9009 NR 30 TC 10 Z9 10 U1 4 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 1052 EP 1061 DI 10.1109/TGRS.2015.2473665 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100035 ER PT J AU Cao, N Lee, H Jung, HC AF Cao, Ning Lee, Hyongki Jung, Hahn Chul TI A Phase-Decomposition-Based PSInSAR Processing Method SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Differential interferometric synthetic aperture radar (DInSAR); distributed scatterer (DS) interferometry; persistent scatterer (PS) interferometry (PSI); synthetic aperture radar (SAR) ID POLARIMETRIC SAR DATA; COMPLEX WISHART DISTRIBUTION; APERTURE RADAR INTERFEROMETRY; SURFACE DEFORMATION; PERMANENT SCATTERERS; SOIL-MOISTURE; INTERFEROGRAMS; STATISTICS; SUBSIDENCE; ALGORITHM AB A phase-decomposition-based persistent scatterer (PS) InSAR (PD-PSInSAR) method is developed in this paper to improve coherence and spatial density of measurement points (MPs). In order to improve PS network density, a distributed scatterer (DS) has been utilized in some advanced PSInSAR process, such as SqueeSAR. In addition to the conventional DS that consists of independent small scatterers with a uniform scattering mechanism, processing the DSs dominated by two or more scattering mechanisms is a promising way to improve MP density. Estimating phases from DS with multiple scattering mechanisms is difficult for many DS algorithms because of the interference between different scattering mechanisms. Recently, a covariance-matrix-decomposition-based method, which is named Component extrAction and sElection SAR (CAESAR), is proposed to extract different scattering components from the analysis of the covariance matrix. Instead of using a covariance matrix, the PD-PSInSAR in this study is developed to perform eigendecomposition on a coherence matrix, in order to estimate the phases corresponding to the different scattering mechanisms, and then to implement these estimated phases in a conventional PSInSAR process. The major benefit of using a coherence matrix rather than a covariance matrix is to compensate the amplitude unbalances among SAR images. A detailed study of comparison among SqueeSAR, CAESAR, and PD-PSInSARis also performed in this study. It has been found that these three methods share very similar mathematic forms with different weight values. The PD-PSInSAR method is implemented to estimate land deformation over the greater Houston area using Envisat ASAR images, which verifies that the proposed method can detect more MPs and provide better coherences. C1 [Cao, Ning; Lee, Hyongki] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. [Cao, Ning; Lee, Hyongki] Univ Houston, Natl Ctr Airborne Laser Mapping, Houston, TX 77204 USA. [Jung, Hahn Chul] NASA, Goddard Space Flight Ctr, Off Appl Sci, Greenbelt, MD 20771 USA. [Jung, Hahn Chul] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. RP Cao, N (reprint author), Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA.; Cao, N (reprint author), Univ Houston, Natl Ctr Airborne Laser Mapping, Houston, TX 77204 USA. EM ncao5@uh.edu FU National Center for Airborne Laser Mapping under Project NSF [EAR-1043051] FX This work was supported by the National Center for Airborne Laser Mapping under Project NSF EAR-1043051. NR 42 TC 1 Z9 1 U1 2 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 1074 EP 1090 DI 10.1109/TGRS.2015.2473818 PG 17 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100037 ER PT J AU Harrison, KW Tian, YD Peters-Lidard, CD Ringerud, S Kumar, SV AF Harrison, Kenneth W. Tian, Yudong Peters-Lidard, Christa D. Ringerud, Sarah Kumar, Sujay V. TI Calibration to Improve Forward Model Simulation of Microwave Emissivity at GPM Frequencies Over the US Southern Great Plains SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave radiometry; optimization; parameter estimation; passive microwave remote sensing ID LAND-SURFACE EMISSIVITIES; DATA ASSIMILATION SYSTEM; RADIATIVE-TRANSFER MODEL; MESOSCALE ETA-MODEL; LEAF-AREA INDEX; L-BAND; SOIL-MOISTURE; BRIGHTNESS TEMPERATURES; HYDRAULIC-PROPERTIES; SEMIEMPIRICAL MODEL AB Better estimation of land surface microwave emissivity (MWE) promises to improve overland precipitation retrievals in the Global Precipitation Measurement era. Forward models of land MWE are available but have suffered from poor parameter specification and limited testing. Here, forward models are calibrated, and the accompanying change in predictive power is evaluated. With inputs (e.g., soil moisture) from the Noah land surface model and applying Moderate Resolution Imaging Spectroradiometer leaf area index data, two microwave emissivity models (MEMs) are tested, namely, the Community Radiative Transfer Model and the Community Microwave Emission Model. The calibration is conducted with the National Aeronautics and Space Administration Land Information System parameter estimation subsystem using Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)-based emissivity retrievals for the calibration data set. The extent of agreement between the modeled and retrieved estimates is evaluated using the AMSR-E retrievals for a separate seven-year validation period. Results indicate that calibration can significantly improve the agreement, simulating emissivity with an across-channel average root-mean-square difference (RMSD) of about 0.013 or about 20% lower than if relying on daily estimates based on climatology. The results also indicate that calibration of the MEM alone, as was done in prior studies, results in as much as 12% higher across-channel average RMSD, as compared with the joint calibration of the land surface and microwave emissivity models. It remains as future work to assess the extent to which the improvements in emissivity estimation translate into improvements in precipitation retrieval accuracy. C1 [Harrison, Kenneth W.; Tian, Yudong] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Harrison, Kenneth W.; Tian, Yudong; Peters-Lidard, Christa D.; Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Ringerud, Sarah] Colorado State Univ, Ft Collins, CO 80523 USA. [Kumar, Sujay V.] Sci Applicat Int Corp, Beltsville, MD 20705 USA. RP Harrison, KW (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA.; Harrison, KW (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. EM ken.harrison@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Measurement, Global/C-4698-2015; Kumar, Sujay/B-8142-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; FU National Aeronautics and Space Administration [NNH09ZDA001N] FX This work was supported by the National Aeronautics and Space Administration through the Precipitation Science Program under Solicitation NNH09ZDA001N (PI: C. D. Peters-Lidard). NR 100 TC 2 Z9 2 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2016 VL 54 IS 2 BP 1103 EP 1117 DI 10.1109/TGRS.2015.2474120 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DE0XW UT WOS:000370350100039 ER PT J AU Griffin, SM Bedka, KM Velden, CS AF Griffin, Sarah M. Bedka, Kristopher M. Velden, Christopher S. TI A Method for Calculating the Height of Overshooting Convective Cloud Tops Using Satellite-Based IR Imager and CloudSat Cloud Profiling Radar Observations SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Convective storms; Satellite observations; Profilers, atmospheric ID TROPICAL TROPOPAUSE; TURBULENCE; THUNDERSTORMS; TRANSPORT; REGION; STORMS AB Assigning accurate heights to convective cloud tops that penetrate into the upper troposphere-lower stratosphere (UTLS) region using infrared (IR) satellite imagery has been an unresolved issue for the satellite research community. The height assignment for the tops of optically thick clouds is typically accomplished by matching the observed IR brightness temperature (BT) with a collocated rawinsonde or numerical weather prediction (NWP) profile. However, "overshooting tops" (OTs) are typically colder (in BT) than any vertical level in the associated profile, leaving the height of these tops undetermined using this standard approach. A new method is described here for calculating the heights of convectively driven OTs using the characteristic temperature lapse rate of the cloud top as it ascends into the UTLS region. Using 108 MODIS-identified OT events that are directly observed by the CloudSat Cloud Profiling Radar (CPR), the MODIS-derived brightness temperature difference (BTD) between the OT and anvil regions can be defined. This BTD is combined with the CPR- and NWP-derived height difference between these two regions to determine the mean lapse rate, -7.34 K km(-1), for the 108 events. The anvil height is typically well known, and an automated OT detection algorithm is used to derive BTD, so the lapse rate allows a height to be calculated for any detected OT. An empirical fit between MODIS and geostationary imager IR BT for OTs and anvil regions was performed to enable application of this method to coarser-spatial-resolution geostationary data. Validation indicates that ~75% (65%) of MODIS (geostationary) OT heights are within +/- 500 m of the coincident CPR-estimated heights. C1 [Griffin, Sarah M.; Velden, Christopher S.] Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, 1225 W Dayton St, Madison, WI 53706 USA. [Bedka, Kristopher M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Griffin, SM (reprint author), Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, 1225 W Dayton St, Madison, WI 53706 USA. EM sarah.griffin@ssec.wisc.edu FU GOES-R Risk Reduction Grant [NA10NES4400013] FX This research was funded by GOES-R Risk Reduction Grant NA10NES4400013. NR 40 TC 1 Z9 1 U1 4 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD FEB PY 2016 VL 55 IS 2 BP 479 EP 491 DI 10.1175/JAMC-D-15-0170.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DE1WZ UT WOS:000370418500007 ER PT J AU Prive, NC Errico, RM AF Prive, N. C. Errico, R. M. TI Temporal and Spatial Interpolation Errors of High-Resolution Modeled Atmospheric Fields SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Numerical analysis/modeling; Model output statistics; Models and modeling; Interpolation schemes ID WIND FIELDS AB General circulation models can now be run at very high spatial resolutions to capture finescale features, but saving the full-spatial-resolution output at every model time step is usually not practical because of storage limitations. To reduce storage requirements, the model output may be produced at reduced temporal and/or spatial resolutions. When this reduced-resolution output is then used in situations where spatiotemporal interpolation is required, such as the generation of synthetic observations for observing system simulation experiments, interpolation errors can significantly affect the quality and usefulness of the reduced-resolution model output. Although it is common in practice to record model output at the highest possible spatial resolution with relatively infrequent temporal output, this may not be the best option to minimize interpolation errors. In this study, two examples using a high-resolution global run of the Goddard Earth Observing System Model, version 5 (GEOS-5), are presented to illustrate cases in which the optimal output dataset configurations for interpolation have high temporal frequency but reduced spatial resolutions. Interpolation errors of tropospheric temperature, specific humidity, and wind fields are investigated. The relationship between spatial and temporal output resolutions and interpolation errors is also characterized for the example model. C1 [Prive, N. C.; Errico, R. M.] Morgan State Univ, Goddard Earth Sci Technol & Res, Greenbelt, MD 20771 USA. RP Prive, NC (reprint author), Morgan State Univ, GESTAR, NASA GSFC, Code 610-1, Greenbelt, MD 20771 USA. EM nikki.prive@morgan.edu OI Prive, Nikki/0000-0001-8309-8741 FU NASA GMAO FX Model output fields were kindly provided by William Putman. Support for this project was encouraged by Steven Pawson and provided by NASA GMAO core funding. Comments from four anonymous reviewers led to significant improvements in the manuscript. NR 9 TC 1 Z9 1 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD FEB PY 2016 VL 33 IS 2 BP 303 EP 311 DI 10.1175/JTECH-D-15-0132.1 PG 9 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DE7PE UT WOS:000370828400003 ER PT J AU Mayr, HG Lee, JN AF Mayr, Hans G. Lee, Jae N. TI Downward propagating Equatorial Annual Oscillation and QBO generated multi-year oscillations in stratospheric NCEP reanalysis data SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Review DE Assimilated observations; Modeling; Atmosphere dynamics; Nonlinearity ID QUASI-BIENNIAL OSCILLATION; SOLAR-CYCLE; INTERANNUAL VARIABILITY; DECADAL OSCILLATIONS; MIDDLE ATMOSPHERE; GRAVITY-WAVES; MODULATION AB In this brief review we discuss and summarize the results of an analysis of zonal wind and temperature variations from the National Center for Environmental Prediction (NCEP) reanalysis, which provide observational evidence for the 12-month Equatorial Annual Oscillation (EAO), in addition to the classical equatorial oscillations, the 6-month Semi-annual Oscillation (SAO) and Quasi-biannual Oscillation (QBO). The EAO is observed slowly propagating down with a velocity of about 3 km/month in agreement with the results from a numerical model, and characteristic of wave mean flow interactions at low latitudes that generate the QBO at 1.3 km/month. For data samples that cover as much as 40 years, the NCEP zonal winds reveal a rich spectrum of oscillations with periods between 3 and 10 years. Such multi-year oscillations can be generated by the QBO interacting with the seasonal variations through wave filtering. As shown with model simulations, the 30-month QBO can interact with the 12-month Annual Oscillation (AO) to generate a 5-year oscillation, which is prominent in the NCEP data. And the 27-month QBO can generate a 9-year quasi-decadal oscillation, which is also observed along with the related modulation signatures close to 3 years. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Mayr, Hans G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Mayr, Hans G.; Lee, Jae N.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Lee, Jae N.] Univ Maryland, Baltimore, MD 21201 USA. RP Mayr, HG (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. EM hmayr2@verizon.net; jae.n.lee@nasa.gov FU NASA Living With a Star Targeted Research and Technology Program [NNH10ZDA001N-LWSTRT] FX Jae N. Lee is supported by the NASA Living With a Star Targeted Research and Technology Program (NNH10ZDA001N-LWSTRT). NR 29 TC 0 Z9 0 U1 3 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD FEB PY 2016 VL 138 BP 1 EP 8 DI 10.1016/j.jastp.2015.11.016 PG 8 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DE6UU UT WOS:000370769900001 ER PT J AU Wust, S Wendt, V Schmidt, C Lichtenstern, S Bittner, M Yee, JH Mlynczak, MG Russell, JM AF Wuest, Sabine Wendt, Verena Schmidt, Carsten Lichtenstern, Sabrina Bittner, Michael Yee, Jeng-Hwa Mlynczak, Martin G. Russell, James M., III TI Derivation of gravity wave potential energy density from NDMC measurements SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Mesopause; Gravity waves; Potential energy density; Airgiow ID ROTATIONAL TEMPERATURES; LIDAR OBSERVATIONS; MIDDLE ATMOSPHERE; HYDROXYL AIRGLOW; MESOSPHERIC TEMPERATURES; ROCKET MEASUREMENTS; MESOPAUSE REGION; SABER EXPERIMENT; STRATOSPHERE; WINDII/UARS AB Within the Network for the Detection of Mesospheric Change, NDMC (http://wdc.dlr.de/ndmc), we currently operate 12 infrared spectrometers, which are nearly identical in set-up and data processing. These spectrometers are called GRIPS 5 to GRIPS 16 (GRound based Infrared P-branch Spectrometer) and allow the acquisition of rotational temperatures in the mesopause region making use of the OH*-airglow phenomenon. We present an algorithm for the estimation of potential energy density using measurements of five GRIPS instruments from 2011 to 2014 at three stations in central and one in Northern Europe. Nightly temperature variations are retrieved for periods shorter and longer than ca. 60 min applying an iterative approach of sliding means. Based on these results, monthly mean potential energy density is estimated for the short and the long periods. The Brunt-Vaisala frequency, which is necessary for its calculation, is taken from TIMED-SABER and CIRA-86 data. In order to justify the combination of TIMED-SABER and GRIPS data sets, temperature time series at the different stations are compared. Depending on the periods, an annual and/or semi-annual variation of potential energy density can be observed in most cases which agree quite well with other publications addressing the mesopause at mid latitudes but relying on different techniques. The influence of the vertical extension of the OH*-layer and of the size of the field-of-view on the results is discussed. Finally, we show for the first time that GRIPS measurements, which take place at the same station but which are characterized through differing sizes of the fields of view, can provide additional information about the dominating horizontal wavelengths at mesopause heights. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wuest, Sabine; Wendt, Verena; Schmidt, Carsten; Lichtenstern, Sabrina; Bittner, Michael] Deutsch Fernerkundungsdatenzentrum, Deutsch Zentrum Luft & Raumfahrt, Oberpfaffenhofen, Germany. [Wendt, Verena] Umweltforsch Stn Schneefernerhaus, Zugspitze, Germany. [Bittner, Michael] Univ Augsburg, Inst Phys, D-86159 Augsburg, Germany. [Yee, Jeng-Hwa] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Mlynczak, Martin G.] NASA Langley Res Ctr, Hampton, VA USA. [Russell, James M., III] Ctr Atmospher Sci, Hampton, VA USA. [Wendt, Verena] Hsch Ostwestfalen Lippe, Inst Ind Informat Tech, Ostwestfalen Lippe, Germany. RP Wust, S (reprint author), Munchener Str 20, D-82234 Wessling, Germany. EM sabine.wuest@dlr.de FU Bavarian Ministry for Environment and Consumer Protection; European Union; EU-project ARISE [284387]; Bavarian project RHEA [TLK01U-49580]; VAO-project LUDWIG - Bavarian Ministry for Environment and Consumer Protection [TP I/03, TUS01 UFS-67093] FX We thank the Bavarian Ministry for Environment and Consumer Protection and the European Union for funding: the work of C. Schmidt and S. Lichtenstern was financially supported by the EU-project ARISE (Grant agreement no: 284387, 2012-2014). V. Wendt was paid by the Bavarian project RHEA (Project number TLK01U-49580, 2010-2013). The work of S. Wust was subsidized by both projects as well as by the VAO-project LUDWIG (TP I/03) which is funded by the Bavarian Ministry for Environment and Consumer Protection (Project number TUS01 UFS-67093). NR 47 TC 2 Z9 2 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD FEB PY 2016 VL 138 BP 32 EP 46 DI 10.1016/j.jastp.2015.12.003 PG 15 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DE6UU UT WOS:000370769900004 ER PT J AU Burns, DE Oh, LH Li, MJ Kelly, DP Kutyrev, AS Moseley, SH AF Burns, Devin E. Oh, Lance H. Li, Mary J. Kelly, Daniel P. Kutyrev, Alexander S. Moseley, Samuel H. TI 2-D Electrostatic Actuation of Microshutter Arrays SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Microelectromechanical devices; optoelectronic devices; optical arrays AB Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. The analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25 V. The 2-D electrostatic latching and addressing was demonstrated using both a resonant and a pulsed addressing scheme. [2015-0172] C1 [Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20763 USA. RP Burns, DE; Oh, LH; Li, MJ; Kelly, DP; Kutyrev, AS; Moseley, SH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20763 USA. EM devin.e.burns@nasa.gov; lance.h.oh@nasa.gov; mary.j.li@nasa.gov; daniel.p.kelly@nasa.gov; alexander.s.kutyrev@nasa.gov; samuel.h.moseley@nasa.gov FU Astrophysics Science Division through the Internal Research and Development Program; National Aeronautics and Space Administration through Research Opportunities in Space and Earth Sciences FX This work was supported in part by the Astrophysics Science Division through the Internal Research and Development Program, and in part by the National Aeronautics and Space Administration through Research Opportunities in Space and Earth Sciences. Subject Editor H. Jiang. NR 12 TC 0 Z9 0 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 EI 1941-0158 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD FEB PY 2016 VL 25 IS 1 BP 101 EP 107 DI 10.1109/JMEMS.2015.2498411 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA DE6SM UT WOS:000370763900010 ER PT J AU Sebastien, LM AF Sebastien, Le Maistre TI InSight coordinates determination from direct-to-Earth radio-tracking and Mars topography model SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Lander coordinate; Mars; Direct-to-Earth Doppler; Topography AB The InSight mission is planned to land on the surface of Mars in September 2016. Close to the equator in Elysium Planitia, in the vicinity of the Curiosity location, the exact landing site coordinates cannot be provided by the navigation team. The direct-to-Earth (DTE) Doppler measurements are rarely included in the early lander localization process since DTE Doppler cannot provide the Z-coordinate (along the polar axis) with a precision better than a few kilometers after a few days of operation. Most of the recent landers used two-way UHF Doppler with Odyssey to determine the inertial location of the lander quickly. Sometimes the lander location is also provided from imaging using triangulation techniques. However, there is no InSight commitment to use UHF Doppler nor images taken from InSight camera to locate the lander. If DTE Doppler data are not suitable to determine the Z-coordinate of Insight, these data are very powerful to rapidly estimate the in-equatorial plane coordinates with high precision. The present study proposes, tests and quantifies a new method to determine Z much faster and more precisely than from DTE Doppler data only. The method consists of inferring the Z-coordinate from the accurate estimates of the in-equatorial plane coordinates and from the current topography model of Mars. We show that our method will allow us estimating InSight's Z-coordinate within +/- 10 m or better depending on the topography model used and on the actual lander location: the flatter and the higher in latitude, the better. This is two orders of magnitude more precise than the DTE Doppler solution and at least 5 times more precise than the triangulated lander location from imaging. The possible bias in the Z estimate of InSight with the proposed method is shown to likely be insignificant based on the application of the method onto the previous landed missions. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Sebastien, Le Maistre] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Sebastien, LM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Sebastien.Le.Maistre@jpl.nasa.gov FU NASA Post-doctoral Program at the Jet Propulsion Laboratory FX The research carried out at the Jet Propulsion Laboratory was supported by an appointment to the NASA Post-doctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. The author would like to thank Nat Bachman and the JPL-NAIF Group for help with the DSK as well as William Folkner, who suggested to do the study and gave useful advice for the completion of the paper. I thank T. Duxbury and M. Golombek for their insightful comments. NR 10 TC 0 Z9 0 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD FEB PY 2016 VL 121 BP 1 EP 9 DI 10.1016/j.pss.2015.11.003 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2LU UT WOS:000370459600001 ER PT J AU Roatsch, T Kersten, E Matz, KD Preusker, F Scholten, F Jaumann, R Raymond, CA Russell, CT AF Roatsch, Th. Kersten, E. Matz, K. -D. Preusker, F. Scholten, F. Jaumann, R. Raymond, C. A. Russell, C. T. TI Ceres Survey Atlas derived from Dawn Framing Camera images SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Dawn; Ceres; Dwarf planets; Planetary mapping ID IN-FLIGHT CALIBRATION; VESTA; MIMAS AB The Dawn Framing Camera (FC) acquired almost 900 clear filter images of Ceres with a resolution of about 400 m/pixels during the seven cycles in the Survey orbit in June 2015. We ortho-rectified 42 images from the third cycle and produced a global, high-resolution, controlled mosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 3 tiles mapped at a scale of 1:2,000,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The whole atlas is available to the public through the Dawn GIS web page [http://dawn_gis.dlr.de/atlas]. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Roatsch, Th.; Kersten, E.; Matz, K. -D.; Preusker, F.; Scholten, F.; Jaumann, R.] German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. [Raymond, C. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys, Los Angeles, CA USA. RP Roatsch, T (reprint author), German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. EM Thomas.Roatsch@dlr.de NR 12 TC 6 Z9 6 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD FEB PY 2016 VL 121 BP 115 EP 120 DI 10.1016/j.pss.2015.12.005 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DE2LU UT WOS:000370459600012 ER PT J AU Jones, TA Knopfmeier, K Wheatley, D Creager, G Minnis, P Palikonda, R AF Jones, Thomas A. Knopfmeier, Kent Wheatley, Dustan Creager, Gerald Minnis, Patrick Palikonda, Rabindra TI Storm-Scale Data Assimilation and Ensemble Forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined Radar and Satellite Data Experiments SO WEATHER AND FORECASTING LA English DT Article DE Data assimilation; Numerical weather prediction/forecasting; Storm tracks; Short-range prediction; Ensembles; Tornadoes; Forecasting; Atm/Ocean Structure/ Phenomena; Models and modeling ID MULTICASE COMPARATIVE-ASSESSMENT; ADAPTIVE COVARIANCE INFLATION; KALMAN FILTER ASSIMILATION; CLOUD-WATER PATH; CONVECTIVE-SCALE; EXPLICIT FORECASTS; INITIAL CONDITION; MESOSCALE; MICROPHYSICS; OKLAHOMA AB This research represents the second part of a two-part series describing the development of a prototype ensemble data assimilation system for the Warn-on-Forecast (WoF) project known as the NSSL Experimental WoF System for ensembles (NEWS-e). Part I describes the NEWS-e design and results from radar reflectivity and radial velocity data assimilation for six severe weather events occurring during 2013 and 2014. Part II describes the impact of assimilating satellite liquid and ice water path (LWP and IWP, respectively) retrievals from the GOES Imager along with the radar observations. Assimilating LWP and IWP observations may improve thermodynamic conditions at the surface over the storm-scale domain through better analysis of cloud coverage in the model compared to radar-only experiments. These improvements sometimes corresponded to an improved analysis of supercell storms leading to better forecasts of low-level vorticity. This positive impact was most evident for events where convection is not ongoing at the beginning of the radar and satellite data assimilation period. For more complex cases containing significant amounts of ongoing convection, only assimilating clear-sky satellite retrievals in place of clear-air reflectivity resulted in spurious regions of light precipitation compared to the radar-only experiments. The analyzed tornadic storms in these experiments are sometimes too weak and quickly diminished in intensity in the forecasts. The lessons learned as part of these experiments should lead to improved iterations of the NEWS-e system, building on the modestly successful results described here. C1 [Jones, Thomas A.; Knopfmeier, Kent; Wheatley, Dustan; Creager, Gerald] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, 120 David L Boren Blvd, Norman, OK 73072 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Palikonda, Rabindra] Sci Syst & Applicat Inc, Hampton, VA USA. RP Jones, TA (reprint author), Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, 120 David L Boren Blvd, Norman, OK 73072 USA. EM thomas.jones@noaa.gov FU NOAA/National Environmental Satellite, Data, and Information Service; NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement [NA11OAR4320072]; NASA Modeling, Analysis, and Prediction (MAP) program; Department of Energy's Atmospheric Science Research Program [DE-SC0000991/006]; NOAA/Office of Oceanic and Atmospheric Research U.S. Department of Commerce FX This research was supported by the NOAA/National Environmental Satellite, Data, and Information Service as part of the GOES-R program. Partial funding for this research was also provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement NA11OAR4320072, under the U.S. Department of Commerce. PM and RP are supported by the NASA Modeling, Analysis, and Prediction (MAP) program, and by the Department of Energy's Atmospheric Science Research Program under Interagency Agreement DE-SC0000991/006. The near-real-time satellite analyses can be accessed for a variety of domains online (http://cloudsgate2.larc.nasa.gov/). The computing for this project was performed at the University of Oklahoma's (OU) Supercomputing Center for Education and Research (OSCER). NR 62 TC 7 Z9 7 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0882-8156 EI 1520-0434 J9 WEATHER FORECAST JI Weather Forecast. PD FEB PY 2016 VL 31 IS 1 BP 297 EP 327 DI 10.1175/WAF-D-15-0107.1 PG 31 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DE1MS UT WOS:000370391700001 ER PT J AU Brodwin, M McDonald, M Gonzalez, AH Stanford, SA Eisenhardt, PR Stern, D Zeimann, GR AF Brodwin, Mark McDonald, Michael Gonzalez, Anthony H. Stanford, S. A. Eisenhardt, Peter R. Stern, Daniel Zeimann, Gregory R. TI IDCS J1426.5+3508: THE MOST MASSIVE GALAXY CLUSTER AT z > 1.5 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (IDCS J1426.5+3508); galaxies: clusters: intracluster medium; galaxies: high-redshift; large-scale structure of universe; X-rays: galaxies: clusters ID SOUTH-POLE TELESCOPE; ACTIVE GALACTIC NUCLEI; IRAC SHALLOW SURVEY; COOL-CORE CLUSTER; SPT-SZ SURVEY; STAR-FORMATION; SPECTROSCOPIC CONFIRMATION; COSMOLOGICAL IMPLICATIONS; HIGH-REDSHIFT; FIELD SURVEY AB We present a deep (100 ks) Chandra observation of IDCS J1426.5+3508, a spectroscopically confirmed, infrared-selected galaxy cluster at z = 1.75. This cluster is the most massive galaxy cluster currently known at z > 1.5, based on existing Sunyaev-Zel'dovich (SZ) and gravitational lensing detections. We confirm this high mass via a variety of X-ray scaling relations, including T-X-M, f(g)-M, Y-X-M, and L-X-M, finding a tight distribution of masses from these different methods, spanning M-500 = 2.3-3.3 x 10(14)M(circle dot), with the low-scatter Y-X-based mass M-500,M-YX = 2.6(-0.5)(+1.5) x 10(14)M(circle dot). IDCS J1426.5+3508 is currently the only cluster at z > 1.5 for which X-ray, SZ, and gravitational lensing mass estimates exist, and these are in remarkably good agreement. We find a relatively tight distribution of the gas-to-total mass ratio, employing total masses from all of the aforementioned indicators, with values ranging from f(gas,500) = 0.087-0.12. We do not detect metals in the intracluster medium (ICM) of this system, placing a 2 sigma upper limit of Z(r < R-500) < 0.18 Z(circle dot). This upper limit on the metallicity suggests that this system may still be in the process of enriching its ICM. The cluster has a dense, low-entropy core, offset by similar to 30 kpc from the X-ray centroid, which makes it one of the few "cool core" clusters discovered at z > 1, and the first known cool core cluster at z > 1.2. The offset of this core from the large-scale centroid suggests that this cluster has had a relatively recent (less than or similar to 500 Myr) merger/interaction with another massive system. C1 [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [McDonald, Michael] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Gonzalez, Anthony H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Eisenhardt, Peter R.; Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zeimann, Gregory R.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. RP Brodwin, M (reprint author), Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. FU National Aeronautics and Space Administration (NASA) [GO3-14135A]; NASA [NAS8-03060, NAS 5-26555]; NASA through Space Telescope Science Institute [11663, 12203, 12994] FX Support for this work was provided by the National Aeronautics and Space Administration (NASA) through Chandra Award Number GO3-14135A issued the the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and behalf of NASA under contract NAS8-03060. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for HST programs 11663, 12203 and 12994 were provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 65 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 122 DI 10.3847/0004-637X/817/2/122 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900039 ER PT J AU Chen, G An, HJ Kaspi, VM Harrison, FA Madsen, KK Stern, D AF Chen, Ge An, Hongjun Kaspi, Victoria M. Harrison, Fiona A. Madsen, Kristin K. Stern, Daniel TI NUSTAR OBSERVATIONS OF THE YOUNG, ENERGETIC RADIO PULSAR PSR B1509-58 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (PSR B1509-58); stars: neutron; X-rays: stars ID X-RAY PULSAR; MSH 15-52; WIND NEBULA; TELESCOPE; SPECTRUM; BEPPOSAX; DISCOVERY; MISSION AB We report on Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of the young rotation-powered radio pulsar PSR B1509-59 in the supernova remnant MSH 15-52. We confirm the previously reported curvature in the hard X-ray spectrum, showing that a log parabolic model provides a statistically superior fit to the spectrum compared with the standard power law. The log parabolic model describes the NuSTAR data, as well as previously published gamma-ray data obtained with COMPTEL and AGILE, all together spanning 3 keV through 500 MeV. Our spectral modeling allows us to constrain the peak of the broadband high energy spectrum to be at 2.6. +/- 0.8 MeV, an improvement of nearly an order of magnitude in precision over previous measurements. In addition, we calculate NuSTAR spectra in 26 pulse phase bins and confirm previously reported variations of photon indices with phase. Finally, we measure the pulsed fraction of PSR B1509-58 in the hard X-ray energy band for the first time. Using the energy resolved pulsed fraction results, we estimate that the pulsar's off-pulse emission has a photon index value between 1.26 and 1.96. Our results support a model in which the pulsar's lack of GeV emission is due to viewing geometry, with the X-rays originating from synchrotron emission from secondary pairs in the magnetosphere. C1 [Chen, Ge; Kaspi, Victoria M.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [An, Hongjun] Stanford Univ, Dept Phys KIPAC, Stanford, CA 94305 USA. [Harrison, Fiona A.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. RP Chen, G (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. OI Madsen, Kristin/0000-0003-1252-4891 FU NASA [NNG08FD60C, NAS5-00147]; National Aeronautics and Space Administration; Kavli Institute for Particle Astrophysics and Cosmology; NSERC; FQRNT Centre de Recherche Astrophysique du Quebec; R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Research (CIFAR); Canada Research Chairs Program; Lorne Trottier Chair in Astrophysics and Cosmology FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). H.A. acknowledges supports provided by the NASA sponsored Fermi Contract NAS5-00147 and by Kavli Institute for Particle Astrophysics and Cosmology. V.M.K. acknowledges support from an NSERC Discovery Grant and Accelerator Supplement, the FQRNT Centre de Recherche Astrophysique du Quebec, an R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Research (CIFAR), the Canada Research Chairs Program and the Lorne Trottier Chair in Astrophysics and Cosmology. NR 27 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 93 DI 10.3847/0004-637X/817/2/93 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900010 ER PT J AU Kozlowski, S Kochanek, CS Ashby, MLN Assef, RJ Brodwin, M Eisenhardt, PR Jannuzi, BT Stern, D AF Kozlowski, Szymon Kochanek, Christopher S. Ashby, Matthew L. N. Assef, Roberto J. Brodwin, Mark Eisenhardt, Peter R. Jannuzi, Buell T. Stern, Daniel TI QUASAR VARIABILITY IN THE MID-INFRARED SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: active; infrared: galaxies; quasars: general ID ACTIVE GALACTIC NUCLEI; SPECTRAL ENERGY-DISTRIBUTIONS; SPITZER-SPACE-TELESCOPE; DAMPED RANDOM-WALK; WIDE-FIELD SURVEY; SUPERMASSIVE BLACK-HOLES; LARGE-MAGELLANIC-CLOUD; ARRAY CAMERA IRAC; X-RAY SOURCES; OPTICAL VARIABILITY AB The Decadal IRAC Bootes Survey is a mid-IR variability survey of the similar to 9 sq. deg. of the NDWFS Bootes Field and extends the time baseline of its predecessor, the Spitzer Deep, Wide-Field Survey (SDWFS), from 4 to 10 years. The Spitzer Space Telescope visited the field five times between 2004 and 2014 at 3.6 and 4.5 mu m. We provide the difference image analysis photometry for a half a million mostly extragalactic sources. In mid-IR color-color plane, sources with quasar colors constitute the largest variability class (75%), 16% of the variable objects have stellar colors and the remaining 9% have the colors of galaxies. Adding the fifth epoch doubles the number of variable active galactic nuclei (AGNs) for the same false positive rates as in SDWFS, or increases the number of sources by 20% while decreasing the false positive rates by factors of 2-3 for the same variability amplitude. We quantify the ensemble mid-IR variability of similar to 1500 spectroscopically confirmed AGNs using single power-law structure functions (SFs), which we find to be steeper (index gamma approximate to 0.45) than in the optical (gamma approximate to 0.3), leading to much lower amplitudes at short time-lags. This provides evidence for large emission regions, smoothing out any fast UV/optical variations, as the origin of infrared quasar variability. The mid-IR AGN SF slope gamma seems to be uncorrelated with both the luminosity and rest-frame wavelength, while the amplitude shows an anti-correlation with the luminosity and a correlation with the rest-frame wavelength. C1 [Kozlowski, Szymon] Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. [Kochanek, Christopher S.] Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA. [Kochanek, Christopher S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Ashby, Matthew L. N.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Assef, Roberto J.] Univ Diego Portales, Fac Ingn, Nucleo Astron, Ave Ejercito Libertador 441, Santiago, Chile. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Eisenhardt, Peter R.; Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Jannuzi, Buell T.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Kozlowski, S (reprint author), Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland.; Kochanek, CS (reprint author), Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA.; Kochanek, CS (reprint author), Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. EM simkoz@astrouw.edu.pl; kochanek.1@osu.edu FU Polish National Science Center [2014/15/B/ST9/00093]; Gemini-CONICYT [32120009]; FONDECYT [1151408] FX We thank Prof. Igor Soszynski for discussions on variable stars and the anonymous referee for helpful suggestions that improved the manuscript. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of the Technology under contract with the National Aeronautics and Space Administration (NASA). S.K. acknowledges the financial support of the Polish National Science Center through the grant number 2014/15/B/ST9/00093. R.J.A. was supported by Gemini-CONICYT grant number 32120009 and FONDECYT grant number 1151408. NR 87 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 119 DI 10.3847/0004-637X/817/2/119 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900036 ER PT J AU LaMassa, SM Urry, CM Cappelluti, N Bohringer, H Comastri, A Glikman, E Richards, G Ananna, T Brusa, M Cardamone, C Chon, G Civano, F Farrah, D Gilfanov, M Green, P Komossa, S Lira, P Makler, M Marchesi, S Pecoraro, R Ranalli, P Salvato, M Schawinski, K Stern, D Treister, E Viero, M AF LaMassa, Stephanie M. Urry, C. Megan Cappelluti, Nico Boehringer, Hans Comastri, Andrea Glikman, Eilat Richards, Gordon Ananna, Tonima Brusa, Marcella Cardamone, Carie Chon, Gayoung Civano, Francesca Farrah, Duncan Gilfanov, Marat Green, Paul Komossa, S. Lira, Paulina Makler, Martin Marchesi, Stefano Pecoraro, Robert Ranalli, Piero Salvato, Mara Schawinski, Kevin Stern, Daniel Treister, Ezequiel Viero, Marco TI THE 31 DEG(2) RELEASE OF THE STRIPE 82 X-RAY SURVEY: THE POINT SOURCE CATALOG SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; galaxies: active; quasars: general; surveys; X-rays: general ID ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; DEEP FIELD-SOUTH; OSCILLATION SPECTROSCOPIC SURVEY; CHANDRA MULTIWAVELENGTH PROJECT; ATACAMA COSMOLOGY TELESCOPE; INFRARED-SURVEY-EXPLORER; EMISSION-LINE GALAXIES; 1ST DATA RELEASE; XMM-NEWTON AB We release the next installment of the Stripe 82 X-ray survey point-source catalog, which currently covers 31.3 deg(2) of the Sloan Digital Sky Survey (SDSS) Stripe 82 Legacy field. In total, 6181 unique X-ray sources are significantly detected with XMM-Newton (>5 sigma) and Chandra (>4.5 sigma). This catalog release includes data from XMM-Newton cycle AO 13, which approximately doubled the Stripe 82X survey area. The flux limits of the Stripe 82X survey are 8.7 x 10(-16) erg s(-1) cm(-2), 4.7 x 10(-15) erg s(-1) cm(-2), and 2.1 x 10(-15) erg s(-1) cm(-2) in the soft (0.5-2 keV), hard (2-10 keV), and full bands (0.5-10 keV), respectively, with approximate half-area survey flux limits of 5.4 x 10(-15) erg s(-1) cm(-2), 2.9 x 10(-14) erg s(-1) cm(-2), and 1.7 x 10(-14) erg s(-1) cm(-2). We matched the X-ray source lists to available multi-wavelength catalogs, including updated matches to the previous release of the Stripe 82X survey; 88% of the sample is matched to a multi-wavelength counterpart. Due to the wide area of Stripe 82X and rich ancillary multi-wavelength data, including coadded SDSS photometry, mid-infrared WISE coverage, near-infrared coverage from UKIDSS and VISTA Hemisphere Survey, ultraviolet coverage from GALEX, radio coverage from FIRST, and far-infrared coverage from Herschel, as well as existing similar to 30% optical spectroscopic completeness, we are beginning to uncover rare objects, such as obscured high-luminosity active galactic nuclei at high-redshift. The Stripe 82X point source catalog is a valuable data set for constraining how this population grows and evolves, as well as for studying how they interact with the galaxies in which they live. C1 [LaMassa, Stephanie M.; Urry, C. Megan; Ananna, Tonima; Civano, Francesca; Marchesi, Stefano; Pecoraro, Robert] Yale Ctr Astron & Astrophys, Dept Phys, POB 208120, New Haven, CT 06520 USA. [LaMassa, Stephanie M.; Urry, C. Megan; Ananna, Tonima; Pecoraro, Robert] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [LaMassa, Stephanie M.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cappelluti, Nico; Comastri, Andrea; Brusa, Marcella; Marchesi, Stefano; Ranalli, Piero] INAF Osservatorio Astronom Bologna, I-40127 Bologna, Italy. [Boehringer, Hans; Chon, Gayoung; Salvato, Mara] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Glikman, Eilat] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. [Richards, Gordon] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Brusa, Marcella] Univ Bologna, DIFA Dipartimento Fis Astron, I-40127 Bologna, Italy. [Cardamone, Carie] Wheelock Coll, Dept Math & Sci, Boston, MA 02215 USA. [Civano, Francesca; Green, Paul; Marchesi, Stefano] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Farrah, Duncan] Virginia Polytech Inst & State Univ, Dept Phys MC 0435, Blacksburg, VA 24061 USA. [Farrah, Duncan] State Univ, Blacksburg, VA 24061 USA. [Gilfanov, Marat] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Gilfanov, Marat] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia. [Komossa, S.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Lira, Paulina] Univ Chile, Dept Astron, Santiago, Chile. [Makler, Martin] Ctr Brasileiro Pesquisas Fis, BR-22290 Rio De Janeiro, Brazil. [Ranalli, Piero] Natl Observ Athens, Space Applicat & Remote Sensing IAASARS, Inst Astron Astrophys, Penteli 15236, Greece. [Schawinski, Kevin] ETH, Dept Phys, Inst Astron, CH-8093 Zurich, Switzerland. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schawinski, Kevin] Univ Concepcion, Dept Astron, Concepcion, Chile. [Viero, Marco] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Viero, Marco] CALTECH, Pasadena, CA 91125 USA. RP LaMassa, SM (reprint author), Yale Ctr Astron & Astrophys, Dept Phys, POB 208120, New Haven, CT 06520 USA. RI Makler, Martin/G-2639-2012; Ranalli, Piero/K-6363-2013; Lira, Paulina/G-8536-2016 OI Makler, Martin/0000-0003-2206-2651; Ranalli, Piero/0000-0003-3956-755X; FU Yale University; Kavli Institute for Theoretical Physics (Santa Barbara); NSF [NSF PHY11-25915]; FPY Career Integration Grant "eEASY" [CIG 321913]; Center of Excellence in Astrophysics and Associated Technologies [PFB 06]; FONDECYT [1120061]; Anillo project [ACT1101]; Swiss National Science Foundation [PP00P2_138979/1]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New York University; Pennsylvania State University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; [NNX15AJ40G] FX We thank the anonymous referee for feedback that helped improve the manuscript. S.M.L. acknowledges support from grant number NNX15AJ40G. C.M.U. gratefully acknowledges support from Yale University. C.M.U. and S.K. would like to thank the Kavli Institute for Theoretical Physics (Santa Barbara) for their hospitality and support; the KITP is supported by NSF grant No. NSF PHY11-25915. M.B. acknowledges support from the FPY Career Integration Grant "eEASY" (CIG 321913). Support for the work of E.T. was provided by the Center of Excellence in Astrophysics and Associated Technologies (PFB 06), by the FONDECYT grant 1120061 and the Anillo project ACT1101. K.S. gratefully acknowledges support from Swiss National Science Foundation Grant PP00P2_138979/1.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is. http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.; This publication makes use of data products from the Widefield Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 104 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 172 DI 10.3847/0004-637X/817/2/172 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900089 ER PT J AU Lebreton, J Beichman, C Bryden, G Defrere, D Mennesson, B Millan-Gabet, R Boccaletti, A AF Lebreton, J. Beichman, C. Bryden, G. Defrere, D. Mennesson, B. Millan-Gabet, R. Boccaletti, A. TI MODELS OF THE eta CORVI DEBRIS DISK FROM THE KECK INTERFEROMETER, SPITZER, AND HERSCHEL SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: planetary systems; planetary systems; stars: individual (Corvi, HD 109085); zodiacal dust ID MAIN-SEQUENCE STARS; INTERSTELLAR SILICATE MINERALOGY; GIANT PLANETS; KUIPER-BELT; HOT DUST; FOMALHAUT; NULLER; GRAINS; CHARA/FLUOR; SIMULATION AB Debris disks are signposts of analogs to small-body populations of the solar system, often, however, with much higher masses and dust production rates. The disk associated with the nearby star eta Crv is especially striking, as it shows strong mid-and far-infrared excesses despite an age of similar to 1.4 Gyr. We undertake constructing a consistent model of the system that can explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer. and additional spectrophotometric data, as well as resolved Herschel. images, to determine the dust spatial distribution in the inner exozodi and in the outer belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries along the major axis. KIN enables us to establish that the warm dust consists of a ring that peaks between 0.2 and 0.8 AU. To reconcile this location with the similar to 400 K dust temperature, very high albedo dust must be invoked, and a distribution of forsterite grains starting from micron sizes satisfies this criterion, while providing an excellent fit to the spectrum. We discuss additional constraints from the LBTI and near-infrared spectra, and we present predictions of what James Webb Space Telescope can unveil about this unusual object and whether it can detect unseen planets. C1 [Lebreton, J.; Beichman, C.; Millan-Gabet, R.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Lebreton, J.; Beichman, C.; Millan-Gabet, R.] CALTECH, NASA Exoplanet Sci Inst, 770 S Wilson Ave, Pasadena, CA 91125 USA. [Beichman, C.; Bryden, G.; Mennesson, B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91107 USA. [Defrere, D.] Univ Arizona, Astron, 993 N Cherry Ave, Tucson, AZ 85721 USA. [Boccaletti, A.] Univ Paris 06, CNRS, Observ Paris, LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. [Boccaletti, A.] Univ Paris 07, 5 Pl Jules Janssen, F-92195 Meudon, France. RP Lebreton, J (reprint author), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA.; Lebreton, J (reprint author), CALTECH, NASA Exoplanet Sci Inst, 770 S Wilson Ave, Pasadena, CA 91125 USA. EM lebretoj@gmail.com FU NASA FX We thank Kate Su, who provided the MIPS-SED data. We are grateful to Grant Kennedy and Gaspard Duchene for their comments on IRS spectrum and photosphere models and to Casey Lisse for his insights on dust properties and models. We also thank Dimitra Touli for her help with the data analysis. Finally, we acknowledge Jean-Charles Augereau and Olivier Absil, who are the original developpers of the GRaTer code and the KIN simulator, respectively. This paper was based on observations taken with the Spitzer. Space Telescope and the Keck Interferometer Nuller, both funded by NASA. Herschel. Space Observatory is an ESA space observatory with important participation from NASA. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. NR 63 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 165 DI 10.3847/0004-637X/817/2/165 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900082 ER PT J AU Li, TS Balbinot, E Mondrik, N Marshall, JL Yanny, B Bechtol, K Drlica-Wagner, A Oscar, D Santiago, B Simon, JD Vivas, AK Walker, AR Wang, MY Abbott, TMC Abdalla, FB Benorr-Levy, A Bernstein, GM Bertin, E Brooks, D Burke, DL Rosell, AC Kind, MC Carretero, J da Costa, LN DePoy, DL Desai, S Diehl, HT Doel, P Estrada, J Finley, DA Flaugher, B Frieman, J Gruen, D Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Maia, MAG March, M Martini, P Ogando, R Plazas, AA Reil, K Romer, AK Roodman, A Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Tucker, D Zhang, Y AF Li, T. S. Balbinot, E. Mondrik, N. Marshall, J. L. Yanny, B. Bechtol, K. Drlica-Wagner, A. Oscar, D. Santiago, B. Simon, J. D. Vivas, A. K. Walker, A. R. Wang, M. Y. Abbott, T. M. C. Abdalla, F. B. Benorr-Levy, A. Bernstein, G. M. Bertin, E. Brooks, D. Burke, D. L. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. da Costa, L. N. DePoy, D. L. Desai, S. Diehl, H. T. Doel, P. Estrada, J. Finley, D. A. Flaugher, B. Frieman, J. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Maia, M. A. G. March, M. Martini, P. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Roodman, A. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Tucker, D. Zhang, Y. CA DES Collaboration TI DISCOVERY OF A STELLAR OVERDENSITY IN ERIDANUS-PHOENIX IN THE DARK ENERGY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxy: formation; galaxy: halo; galaxy: structure; local group ID DIGITAL SKY SURVEY; EXPLORING HALO SUBSTRUCTURE; TRACING GALAXY FORMATION; HERCULES-AQUILA CLOUD; WAY GLOBULAR-CLUSTERS; MILKY-WAY; PISCES OVERDENSITY; DWARF GALAXY; TRIANGULUM-ANDROMEDA; SATELLITE GALAXIES AB We report the discovery of an excess of main-sequence turnoff stars in the direction of the constellations of Eridanus and Phoenix from the first-year data of the Dark Energy Survey (DES). The Eridanus-Phoenix (EriPhe) overdensity is centered around l similar to 285 degrees and b similar to -60 degrees and spans at least 30 degrees in longitude and 10 degrees in latitude. The Poisson significance of the detection is at least 9 sigma. The stellar population in the overdense region is similar in brightness and color to that of the nearby globular cluster NGC 1261, indicating that the heliocentric distance of EriPhe is about d similar to 16 kpc. The extent of EriPhe in projection is therefore at least similar to 4 kpc by similar to 3 kpc. On the sky, this overdensity is located between NGC 1261 and a new stellar stream discovered by DES at a similar heliocentric distance, the so-called Phoenix Stream. Given their similar distance and proximity to each other, it is possible that these three structures may be kinematically associated. Alternatively, the EriPhe overdensity is morphologically similar to the Virgo overdensity and the Hercules-Aquila cloud, which also lie at a similar Galactocentric distance. These three overdensities lie along a polar plane separated by similar to 120 degrees and may share a common origin. Spectroscopic follow-up observations of the stars in EriPhe are required to fully understand the nature of this overdensity. C1 [Li, T. S.; Mondrik, N.; Marshall, J. L.; Wang, M. Y.; DePoy, D. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Mondrik, N.; Marshall, J. L.; Wang, M. Y.; DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Mondrik, N.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Yanny, B.; Drlica-Wagner, A.; Diehl, H. T.; Estrada, J.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Bechtol, K.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Oscar, D.; Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Oscar, D.; Santiago, B.; Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Simon, J. D.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Vivas, A. K.; Walker, A. R.; Abbott, T. M. C.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benorr-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Bernstein, G. M.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Burke, D. L.; Reil, K.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Caner Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Desai, S.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Li, TS (reprint author), Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.; Li, TS (reprint author), Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. EM sazabi@neo.tamu.edu RI Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Balbinot, Eduardo/E-8019-2015; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Balbinot, Eduardo/0000-0002-1322-3153; Abdalla, Filipe/0000-0003-2063-4345 FU European Research Council (CLUSTERS) [ERC-StG-335936]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Unions Seventh Framework Programme (FP7); Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Ludwig-Maximilians Universitat Munchen; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Illinois at Urbana-Champaign; Lawrence Berkeley National Laboratory; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; ERC [240672, 291329, 306478] FX This paper has gone through internal review by the DES collaboration. We thank the anonymous referee for comments and suggestions that improved the paper. We also thank Helmut Jerjen and Marcel Pawlowski for providing the original VPOS coordinates. T.S.L. thanks Jonathan Hargis, Steven Boada, Daniel Nagasawa, and Katelyn Stringer for very helpful conversations. E.Ba. acknowledges financial support from the European Research Council (ERC-StG-335936, CLUSTERS). This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013).r Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.r The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013), including ERC grant agreements 240672, 291329, and 306478. NR 91 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 135 DI 10.3847/0004-637X/817/2/135 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900052 ER PT J AU Lyra, W Richert, AJW Boley, A Turner, N Mac Low, MM Okuzumi, S Flock, M AF Lyra, Wladimir Richert, Alexander J. W. Boley, Aaron Turner, Neal Mac Low, Mordecai-Mark Okuzumi, Satoshi Flock, Mario TI ON SHOCKS DRIVEN BY HIGH-MASS PLANETS IN RADIATIVELY INEFFICIENT DISKS. II. THREE-DIMENSIONAL GLOBAL DISK SIMULATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; planet-disk interactions; planets and satellites: formation; protoplanetary disks; shock waves; turbulence ID PRIMORDIAL SOLAR NEBULA; PROTOPLANETARY DISKS; ACCRETION DISKS; COAGULATION; APPEARANCE; MODELS; MOTION; FLOW AB Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk-planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 +/- 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5M(J) planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high a values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet's orbit. C1 [Lyra, Wladimir] Calif State Univ Northridge, Dept Phys & Astron, 18111 Nordhoff St, Northridge, CA 91330 USA. [Lyra, Wladimir; Turner, Neal; Okuzumi, Satoshi; Flock, Mario] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Lyra, Wladimir] CALTECH, Div Geol & Planetary Sci, 1200 E Calif Blvd MC 150-21, Pasadena, CA 91125 USA. [Richert, Alexander J. W.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Boley, Aaron] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Mac Low, Mordecai-Mark] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West 79th St, New York, NY 10024 USA. [Mac Low, Mordecai-Mark] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69121 Heidelberg, Germany. [Okuzumi, Satoshi] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. RP Lyra, W (reprint author), Calif State Univ Northridge, Dept Phys & Astron, 18111 Nordhoff St, Northridge, CA 91330 USA.; Lyra, W; Turner, N; Okuzumi, S; Flock, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Lyra, W (reprint author), CALTECH, Div Geol & Planetary Sci, 1200 E Calif Blvd MC 150-21, Pasadena, CA 91125 USA.; Richert, AJW (reprint author), Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.; Boley, A (reprint author), Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada.; Mac Low, MM (reprint author), Amer Museum Nat Hist, Dept Astrophys, Cent Pk West 79th St, New York, NY 10024 USA.; Mac Low, MM (reprint author), Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69121 Heidelberg, Germany.; Okuzumi, S (reprint author), Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. EM wlyra@csun.edu; ajr327@psu.edu; acboley@phas.ubc.ca; neal.j.turner@jpl.nasa.gov; mordecai@amnh.org; okuzumi@geo.titech.ac.jp; mario.flock@jpl.nasa.gov OI Richert, Alexander/0000-0002-9613-6863 FU Texas Advanced Computing Center (TACC) at The University of Texas at Austin through XSEDE grant [TG-AST140014]; NASA [NNX14AJ56G]; Humboldt Foundation; NASA Origins of the Solar System program [13-OSS13-0114] FX The simulations presented here were carried out using the Stampede cluster of the Texas Advanced Computing Center (TACC) at The University of Texas at Austin through XSEDE grant TG-AST140014. M-MML was partly supported by NASA grant NNX14AJ56G and the Humboldt Foundation. We acknowledge discussions with Thayne Currie and thank the anonymous referee for helpful comments. This work was performed in part at the Jet Propulsion Laboratory, California Institute of Technology. N.J.T. was supported by grant 13-OSS13-0114 from the NASA Origins of the Solar System program. NR 40 TC 5 Z9 5 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 102 DI 10.3847/0004-637X/817/2/102 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900019 ER PT J AU Schneider, AC Greco, J Cushing, MC Kirkpatrick, JD Mainzer, A Gelino, CR Fajardo-Acosta, SB Bauer, J AF Schneider, Adam C. Greco, Jennifer Cushing, Michael C. Kirkpatrick, J. Davy Mainzer, Amy Gelino, Christopher R. Fajardo-Acosta, Sergio B. Bauer, James TI A PROPER MOTION SURVEY USING THE FIRST SKY PASS OF NEOWISE-REACTIVATION DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; stars: low-mass ID INFRARED-SURVEY-EXPLORER; LOW-MASS STARS; T-DWARFS; BROWN DWARF; SPECTRAL CLASSIFICATION; ULTRACOOL DWARFS; L/T TRANSITION; GALACTIC PLANE; 2MASS; DISCOVERY AB The Wide-field Infrared Survey Explorer (WISE) was reactivated in 2013 December (NEOWISE) to search for potentially hazardous near-Earth objects. We have conducted a survey using the first sky pass of NEOWISE data and the AllWISE catalog to identify nearby stars and brown dwarfs with large proper motions (mu(total) greater than or similar to 250 mas yr(-1)). A total of 20,548 high proper motion objects were identified, 1006 of which are new discoveries. This survey has uncovered a significantly larger sample of fainter objects (W2 greater than or similar to 13 mag) than the previous WISE motion surveys of Luhman and Kirkpatrick et al. Many of these objects are predicted to be new L and T dwarfs based on near- and mid-infrared colors. Using estimated spectral types along with distance estimates, we have identified several objects that likely belong to the nearby solar neighborhood (d < 25 pc). We have followed up 19 of these new discoveries with near-infrared or optical spectroscopy, focusing on potentially nearby objects, objects with the latest predicted spectral types, and potential late-type subdwarfs. This subset includes sixM dwarfs, five of which are likely subdwarfs, as well as eight L dwarfs and five T dwarfs, many of which have blue near-infrared colors. As an additional supplement, we provide 2MASS and AllWISE positions and photometry for every object found in our search, as well as 2MASS/AllWISE calculated proper motions. C1 [Schneider, Adam C.; Greco, Jennifer; Cushing, Michael C.] Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. [Kirkpatrick, J. Davy; Gelino, Christopher R.; Fajardo-Acosta, Sergio B.] CALTECH, Ctr Infrared Proc & Anal, MS 100-22, Pasadena, CA 91125 USA. [Mainzer, Amy; Bauer, James] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Gelino, Christopher R.] CALTECH, NASA Exoplanet Sci Inst, Mail Code 100-22,770 South Wilson Ave, Pasadena, CA 91125 USA. RP Schneider, AC (reprint author), Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. EM Adam.Schneider@Utoledo.edu FU National Aeronautics and Space Administration; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX The authors wish to thank Sebastian Lepine for graciously providing us with subdwarf standard spectra. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration. This research has benefited from the M, L, T, and Y dwarf compendium housed at DwarfArchives.org. This research has made use of the VizieR catalog access tool and SIMBAD database operated at, CDS, Strasbourg, France. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 65 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 112 DI 10.3847/0004-637X/817/2/112 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900029 ER PT J AU Simon, AA Rowe, JF Gaulme, P Hammel, HB Casewell, SL Fortney, JJ Gizis, JE Lissauer, JJ Morales-Juberias, R Orton, GS Wong, MH Marley, MS AF Simon, Amy A. Rowe, Jason F. Gaulme, Patrick Hammel, Heidi B. Casewell, Sarah L. Fortney, Jonathan J. Gizis, John E. Lissauer, Jack J. Morales-Juberias, Raul Orton, Glenn S. Wong, Michael H. Marley, Mark S. TI NEPTUNE'S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; planets and satellites: atmospheres; planets and satellites: gaseous planets; stars: oscillations (including pulsations); stars: rotation; starspots ID COORDINATED 1996 HST; MULTIWAVELENGTH OBSERVATIONS; PHOTOMETRIC VARIABILITY; EVOLVING WEATHER; CLOUD STRUCTURE; FEATURES; CIRCULATION; MISSION; TRANSITION; ALBEDO AB Observations of Neptune with the Kepler Space Telescope yield a 49 day light curve with 98% coverage at a 1 minute cadence. A significant signature in the light curve comes from discrete cloud features. We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-m telescope at 1.65 microns and Hubble Space Telescope visible imaging acquired nine months later. This direct comparison validates the feature latitudes assigned to the K2 light curve periods based on Neptune's zonal wind profile, and confirms observed cloud feature variability. Although Neptune's clouds vary in location and intensity on short and long timescales, a single large discrete storm seen in Keck imaging dominates the K2 and Hubble light curves; smaller or fainter clouds likely contribute to short-term brightness variability. The K2 Neptune light curve, in conjunction with our imaging data, provides context for the interpretation of current and future brown dwarf and extrasolar planet variability measurements. In particular we suggest that the balance between large, relatively stable, atmospheric features and smaller, more transient, clouds controls the character of substellar atmospheric variability. Atmospheres dominated by a few large spots may show inherently greater light curve stability than those which exhibit a greater number of smaller features. C1 [Simon, Amy A.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div 690 0, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Rowe, Jason F.] Univ Montreal, Dept Phys, 2900 Blvd Edouard Montpetit, Montreal, PQ H3T 1J4, Canada. [Gaulme, Patrick] New Mexico State Univ, Dept Astron, POB 30001, Las Cruces, NM 88003 USA. [Hammel, Heidi B.] AURA Inc, 1212 New York Ave NW, Washington, DC 20005 USA. [Casewell, Sarah L.] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St,275 Interdisciplinary Sci Bldg, Santa Cruz, CA 95064 USA. [Gizis, John E.] Univ Delaware, Dept Phys & Astron, 104 Green, Newark, DE 19716 USA. [Lissauer, Jack J.; Marley, Mark S.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA. [Morales-Juberias, Raul] New Mexico Inst Min & Technol, Dept Phys, Workman Ctr 345, 801 Leroy Pl, Socorro, NM 87801 USA. [Orton, Glenn S.] CALTECH, Jet Prop Lab, M-S 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wong, Michael H.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Simon, AA (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div 690 0, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM amy.simon@nasa.gov RI Simon, Amy/C-8020-2012; OI Simon, Amy/0000-0003-4641-6186; Gizis, John/0000-0002-8916-1972; Marley, Mark/0000-0002-5251-2943; Gaulme, Patrick/0000-0001-8330-5464 FU NASA Science Mission Directorate; NASA/ESA Hubble Space Telescope [GO12675, GO13937]; NASA through a grant from the Space Telescope Science Institute [GO13937]; Association of Universities for Research in Astronomy, Inc., under NASA [NAS5-26555]; W. M. Keck Foundation FX This paper includes data collected by the Kepler mission, available through the MAST archive: http://archive.stsci.edu/k2. Funding for the Kepler mission is provided by the NASA Science Mission Directorate. We acknowledge T. Barclay for assistance with the K2 data reductions. This work was based, in part, on observations made with the NASA/ESA Hubble Space Telescope under programs GO12675 and GO13937. Support for program GO13937 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We thank D. Piskorz, H. Ngo, and H. Knutson for acquiring the Keck images of Neptune. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 54 TC 4 Z9 4 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 162 DI 10.3847/0004-637X/817/2/162 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900079 ER PT J AU Skemer, AJ Morley, CV Zimmerman, NT Skrutskie, MF Leisenring, J Buenzli, E Bonnefoy, M Bailey, V Hinz, P Defrere, D Esposito, S Apai, D Biller, B Brandner, W Close, L Crepp, JR De Rosa, RJ Desidera, S Eisner, J Fortney, J Freedman, R Henning, T Hofmann, KH Kopytova, T Lupu, R Maire, AL Males, JR Marley, M Morzinski, K Oza, A Patience, J Rajan, A Rieke, G Schertl, D Schlieder, J Stone, J Su, K Vaz, A Visscher, C Ward-Duong, K Weigelt, G Woodward, CE AF Skemer, Andrew J. Morley, Caroline V. Zimmerman, Neil T. Skrutskie, Michael F. Leisenring, Jarron Buenzli, Esther Bonnefoy, Mickael Bailey, Vanessa Hinz, Philip Defrere, Denis Esposito, Simone Apai, Daniel Biller, Beth Brandner, Wolfgang Close, Laird Crepp, Justin R. De Rosa, Robert J. Desidera, Silvano Eisner, Josh Fortney, Jonathan Freedman, Richard Henning, Thomas Hofmann, Karl-Heinz Kopytova, Taisiya Lupu, Roxana Maire, Anne-Lise Males, Jared R. Marley, Mark Morzinski, Katie Oza, Apurva Patience, Jenny Rajan, Abhijith Rieke, George Schertl, Dieter Schlieder, Joshua Stone, Jordan Su, Kate Vaz, Amali Visscher, Channon Ward-Duong, Kimberly Weigelt, Gerd Woodward, Charles E. TI THE LEECH EXOPLANET IMAGING SURVEY: CHARACTERIZATION OF THE COLDEST DIRECTLY IMAGED EXOPLANET, GJ 504 b, AND EVIDENCE FOR SUPERSTELLAR METALLICITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: gaseous planets; stars: individual (GJ 504) ID MASS DWARF STARS; SUN-LIKE STAR; GIANT PLANETS; HR 8799; BROWN DWARFS; ATMOSPHERIC CHEMISTRY; CARBON-MONOXIDE; ELEMENTAL ABUNDANCES; CHEMICAL EVOLUTION; EXTRASOLAR PLANET AB As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L. type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a similar to 500 K temperature that bridges the gap between the first directly imaged planets (similar to 1000 K) and our own solar system's Jupiter (similar to 130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 mu m), spanning the red end of the broad methane fundamental absorption feature (3.3 mu m) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well. fit by models with the following parameters: T-eff - 544 +/- 10 K, g < 600 m s(-2), [M/H] - 0.60 +/- 0.12, cloud opacity parameter of f(sed) - 2-5, R = 0.96 +/- 0.07 R-Jup, and log(L) = -6.13 +/- 0.03 L-circle dot, implying a hot start mass of 3-30M(jup) for a conservative age range of 0.1-6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion. C1 [Skemer, Andrew J.; Leisenring, Jarron; Bailey, Vanessa; Hinz, Philip; Defrere, Denis; Apai, Daniel; Close, Laird; Eisner, Josh; Males, Jared R.; Morzinski, Katie; Rieke, George; Stone, Jordan; Su, Kate; Vaz, Amali] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Zimmerman, Neil T.; Buenzli, Esther; Bonnefoy, Mickael; Biller, Beth; Brandner, Wolfgang; Henning, Thomas; Kopytova, Taisiya; Schlieder, Joshua] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Zimmerman, Neil T.] Princeton Univ, Princeton, NJ 08544 USA. [Zimmerman, Neil T.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Skrutskie, Michael F.; Oza, Apurva] Univ Virginia, Charlottesville, VA 22904 USA. [Bonnefoy, Mickael] Inst Planetol & Astrophys Grenoble, F-38400 St Martin Dheres, France. [Esposito, Simone] Ist Nazl Astrofis Arcetri Astrophys Observ, I-50125 Florence, Italy. [Apai, Daniel] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Biller, Beth] Univ Edinburgh, Edinburgh EH8 9YL, Midlothian, Scotland. [Crepp, Justin R.] Notre Dame Univ, Notre Dame, IN 46556 USA. [De Rosa, Robert J.; Patience, Jenny; Rajan, Abhijith; Ward-Duong, Kimberly] Arizona State Univ, Tempe, AZ 85281 USA. [De Rosa, Robert J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Desidera, Silvano; Maire, Anne-Lise] Ist Nazl Astrofis Padova Astron Observ, I-35122 Padua, Italy. [Freedman, Richard] Search Extraterrestrial Intelligence Inst, Mountain View, CA 94043 USA. [Freedman, Richard; Lupu, Roxana; Marley, Mark; Schlieder, Joshua] NASA Ames Res Ctr, Mountain View, CA 94035 USA. [Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Oza, Apurva] Univ Paris 06, F-75005 Paris, France. [Visscher, Channon] Dordt Coll, Sioux Ctr, IA 51250 USA. [Woodward, Charles E.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. RP Skemer, AJ (reprint author), Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. OI Zimmerman, Neil/0000-0001-5484-1516; Su, Kate/0000-0002-3532-5580; Marley, Mark/0000-0002-5251-2943; Stone, Jordan/0000-0003-0454-3718; Bailey, Vanessa/0000-0002-5407-2806 FU National Aeronautics and Space Administration through Hubble Fellowship - Space Telescope Science Institute [HSTHF2-51349]; NASA [NAS 5-26555]; Swiss National Science Foundation (SNSF); Italian Ministry of Education, University, and Research; NSF [AST-1312305]; NASA Origins of Solar Systems Program [NNX13AJ17G]; National Aeronautics and Space Administration, Earths in Other Solar Systems [NNX15AD94G]; National Aeronautics and Space Administration as part of its Exoplanet Exploration program; National Science Foundation [NSF AST-0705296]; National Aeronautics and Space Administration FX The authors thank the anonymous referee for a very helpful report. We thank the HiCIAO team and Masayuki Kuzuhara for providing filter curves for the HiCIAO methane filters. A.S. is supported by the National Aeronautics and Space Administration through Hubble Fellowship grant HSTHF2-51349 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. E.B. is supported by the Swiss National Science Foundation (SNSF). S.E., S.D., and A.L.M. acknowledge support from the "Progetti Premiali" funding scheme of the Italian Ministry of Education, University, and Research. C.V. is supported by NSF AST-1312305. LEECH is funded by the NASA Origins of Solar Systems Program, grant NNX13AJ17G. This material is based in part on work supported by the National Aeronautics and Space Administration under Agreement No. NNX15AD94G, Earths in Other Solar Systems, issued through the Science Mission Directorate interdivisional initiative Nexus for Exoplanet System Science. The Large Binocular Telescope Interferometer is funded by the National Aeronautics and Space Administration as part of its Exoplanet Exploration program. LMIRcam is funded by the National Science Foundation through grant NSF AST-0705296. This publication makes use of the Spex Prism Library Analysis Toolkit. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration. NR 83 TC 5 Z9 5 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 166 DI 10.3847/0004-637X/817/2/166 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900083 ER PT J AU Steiner, JF Walton, DJ Garcia, JA McClintock, JE Laycock, SGT Middleton, MJ Barnard, R Madsen, KK AF Steiner, James F. Walton, Dominic J. Garcia, Javier A. McClintock, Jeffrey E. Laycock, Silas G. T. Middleton, Matthew J. Barnard, Robin Madsen, Kristin K. TI ON THE SPIN OF THE BLACK HOLE IN IC 10 X-1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion; accretion disks; black hole physics; stars: individual (IC 10 X-1); X-rays: binaries ID X-RAY BINARIES; HUBBLE-SPACE-TELESCOPE; NGC 300 X-1; NEUTRON-STAR; ACCRETION DISK; XTE J1701-462; WOLF-RAYET; IC-10 X-1; LMC X-3; REFLECTION SPECTROSCOPY AB The compact X-ray source in the eclipsing X-ray binary IC 10 X-1 has reigned for years as ostensibly the most massive stellar-mass black hole, with a mass estimated to be about twice that of its closest rival. However, striking results presented recently by Laycock et al. reveal that the mass estimate, based on emission-line velocities, is unreliable and that the mass of the X-ray source is essentially unconstrained. Using Chandra and NuSTAR data, we rule against a neutron-star model and conclude that IC 10 X-1 contains a black hole. The eclipse duration of IC 10 X-1 is shorter and its depth shallower at higher energies, an effect consistent with the X-ray emission being obscured during eclipse by a Compton-thick core of a dense wind. The spectrum is strongly disk-dominated, which allows us to constrain the spin of the black hole via X-ray continuum fitting. Three other wind-fed black hole systems are known; the masses and spins of their black holes are high: M similar to 10-15M(circle dot) and a(*) > 0.8. If the mass of IC 10 X-1's black hole is comparable, then its spin is likewise high. C1 [Steiner, James F.] MIT, Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA. [Steiner, James F.; Garcia, Javier A.; McClintock, Jeffrey E.; Barnard, Robin] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Walton, Dominic J.] NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Laycock, Silas G. T.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Middleton, Matthew J.] Inst Astron, Madingly Rd, Cambridge CB3 OHA, England. [Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. RP Steiner, JF (reprint author), MIT, Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA.; Steiner, JF (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. OI Madsen, Kristin/0000-0003-1252-4891 FU Chandra [GO4-15051X]; NASA Hubble Fellowship [HST-HF-51315.01]; NASA Einstein Fellowship [PF5-160144]; NASA FX This research has made use of software provided by the Chandra X-ray Center (CXC). This work was made possible by Chandra Grant GO4-15051X. J.F.S. has been supported by the NASA Hubble Fellowship grant HST-HF-51315.01, and the NASA Einstein Fellowship grant PF5-160144. We thank the CXC helpdesk and Larry David for their advice on the Chandra data reductions. J.F.S. thanks R. Remillard and J. Homan for helpful discussions on NS spectral models. We thank the anonymous referee for helpful criticisms which have improved this paper. This research has made use of data obtained with the NuSTAR mission, a project led by the California Institute of Technology (Caltech), managed by the Jet Propulsion Laboratory (JPL) and funded by NASA, and has utilized the NuSTAR Data Analysis Software (NUSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and Caltech (USA). Chandra ObsId 15803. NR 82 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 154 DI 10.3847/0004-637X/817/2/154 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900071 ER PT J AU Stevenson, KB Bean, JL Seifahrt, A Gilbert, GJ Line, MR Desert, JM Fortney, JJ AF Stevenson, Kevin B. Bean, Jacob L. Seifahrt, Andreas Gilbert, Gregory J. Line, Michael R. Desert, Jean-Michel Fortney, Jonathan J. TI A SEARCH FOR WATER IN THE ATMOSPHERE OF HAT-P-26b USING LDSS-3C SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; stars: individual (HAT-P-26); techniques: spectroscopic ID HOT JUPITER WASP-12B; EXOPLANET GJ 1214B; TRANSMISSION SPECTRUM; LIGHT CURVES; SPACE-TELESCOPE; GIANT PLANET; HD 189733B; SPECTROSCOPY; TRANSIT; SPITZER AB The characterization of a physically diverse set of transiting exoplanets is an important and necessary step toward establishing the physical properties linked to the production of obscuring clouds or hazes. It is those planets with identifiable spectroscopic features that can most effectively enhance our understanding of atmospheric chemistry and metallicity. The newly commissioned LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed fringing in the red optical, thus advancing the search for the spectroscopic signature of water in exoplanetary atmospheres from the ground. Using data acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b. Our measured spectrum is best explained by the presence of water vapor, a lack of potassium, and either a high-metallicity, cloud-free atmosphere or a solar-metallicity atmosphere with a cloud deck at similar to 10 mbar. The emergence of multi-scale-height spectral features in our data suggests that future observations at higher precision could break this degeneracy and reveal the planet's atmospheric chemical abundances. We also update HAT-P-26b's transit ephemeris, t(0) = 2455304.65218(25) BJD(TDB), and orbital period, p = 4.2345023(7) days. C1 [Stevenson, Kevin B.; Bean, Jacob L.; Seifahrt, Andreas; Gilbert, Gregory J.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Line, Michael R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Desert, Jean-Michel] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Stevenson, KB (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM kbs@uchicago.edu FU NASA [NNX13AJ16G]; Sagan Fellowship Program - NASA; Alfred P. Sloan Foundation; David and Lucile Packard Foundation FX We thank all contributors to the LDSS-3C project, particularly our colleagues at Fermilab (Steve Chappa, Greg Derylo, Tom Diehl, Juan Estrada, Brenna Flaugher, Lee Scott, Terri Shaw, Walter Stuermer, Donna Kubik, and Kevin Kuk), at Carnegie and Las Campanas Observatories (Christoph Birk, Alan Uomoto, and David Osip), and at The University of Chicago (Mike Gladders and Josh Frieman). We are deeply indebted to Marco Bonati at CTIO for tailoring PanView to LDSS-3C and thank him for his countless hours of work on this project. We thank contributors to SciPy, Matplotlib, and the Python Programming Language, the free and open-source community, the NASA Astrophysics Data System, and the JPL Solar System Dynamics group for software and services. Funding for this work has been provided by NASA grant NNX13AJ16G. K.B.S. recognizes support from the Sagan Fellowship Program, supported by NASA and administered by the NASA Exoplanet Science Institute (NExScI). J.L.B. acknowledges support from the Alfred P. Sloan and David and Lucile Packard Foundations. NR 55 TC 7 Z9 7 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 141 DI 10.3847/0004-637X/817/2/141 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900058 ER PT J AU Tzanavaris, P Hornschemeier, AE Gallagher, SC Lenkic, L Desjardins, TD Walker, LM Johnson, KE Mulchaey, JS AF Tzanavaris, P. Hornschemeier, A. E. Gallagher, S. C. Lenkic, L. Desjardins, T. D. Walker, L. M. Johnson, K. E. Mulchaey, J. S. TI EXPLORING X-RAY BINARY POPULATIONS IN COMPACT GROUP GALAXIES WITH CHANDRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE X-rays: binaries; X-rays: galaxies ID STAR-FORMATION RATE; ULTRALUMINOUS INFRARED GALAXIES; FORMATION RATE INDICATOR; 2-10 KEV LUMINOSITY; DWARF GALAXIES; FORMING GALAXIES; FORMATION RATES; STELLAR MASS; METALLICITY RELATION; STEPHANS QUINTET AB We obtain total galaxy X-ray luminosities, L-X, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/- 1 sigma scatter of the Mineo et al. L-X-star formation rate (SFR) correlation or have higher L-X than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. L-X-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low-or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme L-X values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high L-X values can be observed due to strong XRB variability. C1 [Tzanavaris, P.; Hornschemeier, A. E.] NASA, Lab Xray Astrophys, Goddard Spaceflight Ctr, Mail Code 662, Greenbelt, MD 20771 USA. [Tzanavaris, P.] Univ Maryland Baltimore Cty, CRESST, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Tzanavaris, P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Gallagher, S. C.; Lenkic, L.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Gallagher, S. C.; Lenkic, L.] Univ Western Ontario, Ctr Planetary & Space Explorat, London, ON N6A 3K7, Canada. [Desjardins, T. D.] Univ Kentucky, Dept Phys & Astron, 177 Chem Phys Bldg,505 Rose St, Lexington, KY 40506 USA. [Walker, L. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Johnson, K. E.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Mulchaey, J. S.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. RP Tzanavaris, P (reprint author), NASA, Lab Xray Astrophys, Goddard Spaceflight Ctr, Mail Code 662, Greenbelt, MD 20771 USA.; Tzanavaris, P (reprint author), Univ Maryland Baltimore Cty, CRESST, 1000 Hilltop Circle, Baltimore, MD 21250 USA.; Tzanavaris, P (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. FU Chandra X-ray Observatory Center [15620513]; NASA [NAS8-03060]; Natural Science and Engineering Research Council of Canada; Ontario Early Researcher Award Program FX A.H. and P.T. acknowledge funding provided through Chandra Award No. 15620513 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory under NASA contract NAS8-03060. We thank Andrew Ptak and Mihoko Yukita for useful discussions. We thank Bret Lehmer for making his catalog of star forming galaxies available to us. S.C.G., L.L. and T.D.D. thank the Natural Science and Engineering Research Council of Canada and the Ontario Early Researcher Award Program for support. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 95 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 95 DI 10.3847/0004-637X/817/2/95 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900012 ER PT J AU ZuHone, JA Markevitch, M Zhuravleva, I AF ZuHone, J. A. Markevitch, M. Zhuravleva, I. TI MAPPING THE GAS TURBULENCE IN THE COMA CLUSTER: PREDICTIONS FOR ASTRO-H SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: intracluster medium; methods: numerical; techniques: spectroscopic; X-rays: galaxies: clusters ID GALAXY CLUSTERS; X-RAY; ELLIPTIC GALAXIES; PERSEUS CLUSTER; XMM-NEWTON; MAGNETIC-FIELDS; COSMOLOGICAL SIMULATIONS; COMPRESSIBLE TURBULENCE; DENSITY FLUCTUATIONS; RESONANT SCATTERING AB Astro-H will be able for the first time to map gas velocities and detect turbulence in galaxy clusters. One of the best targets for turbulence studies is the Coma cluster, due to its proximity, absence of a cool core, and lack of a central active galactic nucleus. To determine what constraints Astro-H will be able to place on the Coma velocity field, we construct simulated maps of the projected gas velocity and compute the second-order structure function, an analog of the velocity power spectrum. We vary the injection scale, dissipation scale, slope, and normalization of the turbulent power spectrum, and apply measurement errors and finite sampling to the velocity field. We find that even with sparse coverage of the cluster, Astro-H will be able to measure the Mach number and the injection scale of the turbulent power spectrum-the quantities determining the energy flux down the turbulent cascade and the diffusion rate for everything that is advected by the gas (metals, cosmic rays, etc.). Astro-H will not be sensitive to the dissipation scale or the slope of the power spectrum in its inertial range, unless they are outside physically motivated intervals. We give the expected confidence intervals for the injection scale and the normalization of the power spectrum for a number of possible pointing configurations, combining the structure function and velocity dispersion data. Importantly, we also determine that measurement errors on the line shift will bias the velocity structure function upward, and show how to correct this bias. C1 [ZuHone, J. A.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [ZuHone, J. A.; Markevitch, M.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Xray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. [Zhuravleva, I.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Zhuravleva, I.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. RP ZuHone, JA (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. FU NASA from the Smithsonian Astrophysical Observatory [SV2-8203]; Astrophysics Theory Program [12-ATP12-0159] FX J.A.Z. thanks Mark Bautz, Eric Miller, Fred Baganoff, Catherine Grant, and Michael McDonald for several useful discussions. This research made use of AstroPy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). J.A.Z. acknowledges support from NASA though subcontract SV2-8203 to MIT from the Smithsonian Astrophysical Observatory, as well as the Astrophysics Theory Program Award Number 12-ATP12-0159. NR 67 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 110 DI 10.3847/0004-637X/817/2/110 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900027 ER PT J AU Gu, GJ Adler, RF Huffman, GJ AF Gu, Guojun Adler, Robert F. Huffman, George J. TI Long-term changes/trends in surface temperature and precipitation during the satellite era (1979-2012) SO CLIMATE DYNAMICS LA English DT Article DE Global precipitation and temperature change/variability; Pacific Decadal Oscillation; Atlantic Multidecadal Oscillation; The effect of anthropogenic greenhouse-gas related surface warming ID VARIABILITY; PACIFIC; CLIMATE; HIATUS; OSCILLATION; RAINFALL; CYCLE AB During the post-1979 period in which the satellite-based precipitation measurements with global coverage are available, global mean surface temperature rapidly increased up to late 1990s, followed by a period of temperature hiatus after about 1998/1999. Comparing observed surface temperature trends against the simulated ones by the CMIP5 historical experiments especially in the zonal mean context suggests that although the anthropogenic greenhouse-gases (GHG) forcing has played a major role, in addition to the anthropogenic aerosols and various natural forcings, the effects from decadal-to-interdecadal-scale internal modes specifically the Pacific Decadal Oscillation (PDO) are also very strong. Evident temperature changes associated with the PDO's phase shift are seen in the Pacific basin, with decadal-scale cooling in the tropical central-eastern Pacific and most of the east basin and concurrent warming in the subtropics of both hemispheres, even though the PDO's net effect on global mean temperature is relatively weak. The Atlantic Multidecadal Oscillation (AMO) also changed its phase in the mid-1990s, and hence its possible impact is estimated and assessed as well. However, comparisons with CMIP5 simulations suggest that the AMO may have not contributed as significantly as the PDO in terms of the changes/trends in global surface temperature, even though the data analysis technique used here suggests otherwise. Long-term precipitation changes or trends during the post-1979 period are further shown to have been modulated by the two major factors: anthropogenic GHG and PDO, in addition to the relatively weak effects from aerosols and natural forcings. The spatial patterns of observed precipitation trends in the Pacific, including reductions in the tropical central-eastern Pacific and increases in the tropical western Pacific and along the South Pacific Convergence Zone, manifest the PDO's contributions. Removing the PDO effect from the total precipitation trends makes the spatial structures of precipitation trends more similar to those simulated by CMIP5 historical full forcing experiments particularly in the context of zonal-mean results. This also confirms that in spite of the PDO effect specifically on regional scales, the anthropogenic GHG signals are still discernible in observed precipitation during the time period. Following the increase of GHG, precipitation tends to increase roughly along the climatological ITCZ and decrease south of the equator and in the subtropics of both hemispheres. C1 [Gu, Guojun; Adler, Robert F.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, 5825 Univ Res Court,Suite 4001, College Pk, MD 20740 USA. [Huffman, George J.] NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD USA. RP Gu, GJ (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, 5825 Univ Res Court,Suite 4001, College Pk, MD 20740 USA. EM ggu@umd.edu RI Huffman, George/F-4494-2014 OI Huffman, George/0000-0003-3858-8308 FU NASA Modeling, Analysis, and Prediction (MAP) Programs; NASA Energy and Water-cycle Study (NEWS) FX The NASA-GISS global surface temperature anomaly product was downloaded from its website at http://data.giss.nasa.gov/. The ERSST data set (v3b) was downloaded from the NOAA-NCDC website at http://www.ncdc.noaa.gov/ersst/. The historical simulations from multiple CMIP5 models and the AMIP precipitation outputs of NASA/GISS Model E were downloaded from the CMIP5 website (http://cmip-pcmdi.llnl.gov/index.html). We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling and the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison. This research is supported under the NASA Modeling, Analysis, and Prediction (MAP) Programs and the NASA Energy and Water-cycle Study (NEWS). NR 37 TC 3 Z9 3 U1 5 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD FEB PY 2016 VL 46 IS 3-4 BP 1091 EP 1105 DI 10.1007/s00382-015-2634-x PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD6JQ UT WOS:000370030900026 ER PT J AU Grotjahn, R Black, R Leung, R Wehner, MF Barlow, M Bosilovich, M Gershunov, A Gutowski, WJ Gyakum, JR Katz, RW Lee, YY Lim, YK Prabhat AF Grotjahn, Richard Black, Robert Leung, Ruby Wehner, Michael F. Barlow, Mathew Bosilovich, Mike Gershunov, Alexander Gutowski, William J., Jr. Gyakum, John R. Katz, Richard W. Lee, Yun-Young Lim, Young-Kwon Prabhat TI North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends SO CLIMATE DYNAMICS LA English DT Review DE Large scale meteorological patterns for temperature extremes; Heat waves; Hot spells; Cold air outbreaks; Cold spells; Statistics of temperature extremes; Dynamics of heat waves; Dynamics of cold air outbreaks; Dynamical modeling of temperature extremes; Statistical modeling of extremes; Trends in temperature extremes ID COLD-AIR OUTBREAKS; CLIMATE-CHANGE PROJECTIONS; LOW-FREQUENCY VARIABILITY; SUMMER HEAT-WAVE; ARCTIC SEA-ICE; UNITED-STATES; TELECONNECTION PATTERN; ATMOSPHERIC BLOCKING; CIRCULATION PATTERNS; MIDLATITUDE WEATHER AB The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions. C1 [Grotjahn, Richard; Lee, Yun-Young] Univ Calif Davis, Atmospher Sci Program, Dept LAWR, One Shields Ave, Davis, CA 95616 USA. [Black, Robert] Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30332 USA. [Leung, Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wehner, Michael F.; Prabhat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barlow, Mathew] Univ Massachusetts Lowell, Lowell, MA 01854 USA. [Bosilovich, Mike] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Gershunov, Alexander] Univ Calif San Diego, Scripps Inst Oceanog, Climate Atmospher Sci & Phys Oceanog CASPO Div, La Jolla, CA 92093 USA. [Gutowski, William J., Jr.] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA 50011 USA. [Gyakum, John R.] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 0B9, Canada. [Katz, Richard W.] Natl Ctr Atmospher Res, Inst Math Appl Geosci, POB 3000, Boulder, CO 80307 USA. [Lim, Young-Kwon] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Goddard Earth Sci Technol & Res IM Syst Grp, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Grotjahn, R (reprint author), Univ Calif Davis, Atmospher Sci Program, Dept LAWR, One Shields Ave, Davis, CA 95616 USA. EM grotjahn@ucdavis.edu RI Black, Robert/L-8522-2014; Bosilovich, Michael/F-8175-2012; Katz, Richard/K-4133-2012 OI Katz, Richard/0000-0002-0267-8953 FU US CLIVAR office; US CLIVAR; NSF [1236681]; USDA National Institute of Food and Agriculture [CA-D-LAW-4264-H]; Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science; Battelle Memorial Institute for the DOE [DE-AC05-76RL01830]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; US Department of Energy, Office of Biological and Environmental Research [DE-SC0004942, DE-SC0012554]; National Science Foundation [ARC-1107384, ARC1023369]; Department of Energy [DESC0006643]; Natural Sciences and Engineering Research Council of Canada Discovery Grant; International Polar Year Grant; National Science Foundation FX The authors thank Dr. Christopher J. Paciorek for his assistance in preparing this article. The authors also thank Dr. Steven Vavrus for his comments. Most of the authors are members of the US CLIVAR Extremes working group who greatly appreciate the support provided by the US CLIVAR office. This report was enhanced by discussions held at the 2013 workshop on Analyses, Dynamics, and Modeling of Large Scale Meteorological Patterns Associated with Extreme Temperature and Precipitation Events held at the Lawrence Berkeley National Laboratory and also funded by US CLIVAR (https://usclivar.org/meetings/extremes-workshop-agenda). Research by Grotjahn was funded in part by NSF Grant 1236681 and also supported by the USDA National Institute of Food and Agriculture, Hatch project CA-D-LAW-4264-H. Leung and Wehner were supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830 and Lawrence Berkeley National Laboratory is under contract DE-AC02-05CH11231. Black was supported by the US Department of Energy, Office of Biological and Environmental Research, awards DE-SC0004942 and DE-SC0012554, and the National Science Foundation Grant ARC-1107384. Gutowski was supported by National Science Foundation Grant ARC1023369 and Department of Energy Grant DESC0006643. Gyakum was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant, and by an International Polar Year Grant. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 163 TC 5 Z9 5 U1 21 U2 54 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD FEB PY 2016 VL 46 IS 3-4 BP 1151 EP 1184 DI 10.1007/s00382-015-2638-6 PG 34 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD6JQ UT WOS:000370030900029 ER PT J AU Ferraz, A Mallet, C Chehata, N AF Ferraz, Antonio Mallet, Clement Chehata, Nesrine TI Large-scale road detection in forested mountainous areas using airborne topographic lidar data SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING LA English DT Article DE Lidar; Airborne; Road extraction; Classification; Mountainous areas; Forests; Large scale mapping ID AERIAL IMAGES; CENTERLINE EXTRACTION; AUTOMATIC EXTRACTION; NETWORK EXTRACTION; SATELLITE IMAGERY; CLASSIFICATION; FEATURES; ALGORITHM; TERRAIN AB In forested mountainous areas, the road location and characterization are invaluable inputs for various purposes such as forest management, wood harvesting industry, wildfire protection and fighting. Airborne topographic lidar has become an established technique to characterize the Earth surface. Lidar provides 3D point clouds allowing for fine reconstruction of ground topography while preserving high frequencies of the relief: fine Digital Terrain Models (DTMs) is the key product. This paper addresses the problem of road detection and characterization in forested environments over large scales (>1000 km(2)). For that purpose, an efficient pipeline is proposed, which assumes that main forest roads can be modeled as planar elongated features in the road direction with relief variation in orthogonal direction. DTMs are the only input and no complex 3D point cloud processing methods are involved. First, a restricted but carefully designed set of morphological features is defined as input for a supervised Random Forest classification of potential road patches. Then, a graph is built over these candidate regions: vertices are selected using stochastic geometry tools and edges are created in order to fill gaps in the DTM created by vegetation occlusion. The graph is pruned using morphological criteria derived from the input road model. Finally, once the road is located in 2D, its width and slope are retrieved using an object-based image analysis. We demonstrate that our road model is valid for most forest roads and that roads are correctly retrieved (>80%) with few erroneously detected pathways (10-15%) using fully automatic methods. The full pipeline takes less than 2 min per km(2) and higher planimetric accuracy than 2D existing topographic databases are achieved. Compared to these databases, additional roads can be detected with the ability of lidar sensors to penetrate the understory. In case of very dense vegetation and insufficient relief in the DTM, gaps may exist in the results resulting in local incompleteness (similar to 15%). 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. C1 [Ferraz, Antonio; Mallet, Clement; Chehata, Nesrine] Univ Paris Est, IGN, MATIS, Paris, France. [Ferraz, Antonio] NASA, Jet Prop Lab, New York, NY USA. [Ferraz, Antonio] INESC Coimbra, R&D Unit, Coimbra, Portugal. [Chehata, Nesrine] Bordeaux INP, EA 4592, Bordeaux, France. RP Mallet, C (reprint author), Univ Paris Est, IGN, MATIS, Paris, France. RI Ferraz, Antonio/D-9662-2017; OI Ferraz, Antonio/0000-0002-5328-5471; Mallet, Clement/0000-0002-2675-165X FU French National Research Agency (ANR) through the FORESEE project [ANR-2010-BIOE-008]; Portuguese Foundation for Science and Technology [PEst-OE/EEI/U1308/2014] FX The authors would like to thank Nicolas David (IGN), Alain Munoz (ONF), Sylvain Dupire and Jean-Matthieu Monnet (IRSTEA) for fruitful discussions on the topic, Adrien Gressin for software development, Jean-Stephane Bailly (UMR LISAH) for providing the code of road evaluation, and Mathieu Bredif for his help on the LibRJMCMC library. This work was supported by the French National Research Agency (ANR) through the FORESEE project (ANR-2010-BIOE-008) and by the Portuguese Foundation for Science and Technology under project grant PEst-OE/EEI/U1308/2014. NR 48 TC 3 Z9 4 U1 5 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2716 EI 1872-8235 J9 ISPRS J PHOTOGRAMM JI ISPRS-J. Photogramm. Remote Sens. PD FEB PY 2016 VL 112 BP 23 EP 36 DI 10.1016/j.isprsjprs.2015.12.002 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA DD7GW UT WOS:000370092700003 ER PT J AU Tavakoly, AA Maidment, DR McClelland, JW Whiteaker, T Yang, ZL Griffin, C David, CH Meyer, L AF Tavakoly, Ahmad A. Maidment, David R. McClelland, James W. Whiteaker, Tim Yang, Zong-Liang Griffin, Claire David, Cedric H. Meyer, Lisa TI A GIS FRAMEWORK FOR REGIONAL MODELING OF RIVERINE NITROGEN TRANSPORT: CASE STUDY, SAN ANTONIO AND GUADALUPE BASINS SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE total nitrogen; geographic information system; river networks; nonpoint source pollution; surface water hydrology; NHDPlus; Routing Application for Parallel computation of Discharge ID LAND-USE CHANGE; GULF-OF-MEXICO; WATER-QUALITY; NORTHEASTERN USA; UNITED-STATES; EXPORT; STREAMS; FLOW; NUTRIENTS; NETWORKS AB This article presents a framework for integrating a regional geographic information system (GIS)-based nitrogen dataset (Texas Anthropogenic Nitrogen Dataset, TX-ANB) and a GIS-based river routing model (Routing Application for Parallel computation of Discharge) to simulate steady-state riverine total nitrogen (TN) transport in river networks containing thousands of reaches. A two-year case study was conducted in the San Antonio and Guadalupe basins during dry and wet years (2008 and 2009, respectively). This article investigates TN export in urbanized (San Antonio) vs. rural (Guadalupe) drainage basins and considers the effect of reservoirs on TN transport. Simulated TN export values are within 10 percent of measured export values for selected stations in 2008 and 2009. Results show that in both years the San Antonio basin contributed a larger quantity than the Guadalupe basin of delivered TN to the coastal ocean. The San Antonio basin is affected by urban activities including point sources, associated with the city of San Antonio, in addition to greater agricultural activities. The Guadalupe basin lacks major metropolitan areas and is dominated by rangeland, rather than fertilized agricultural fields. Both basins delivered more TN to coastal waters in 2009 than in 2008. Furthermore, TN removal in the San Antonio and Guadalupe basins is inversely related to stream orders: the higher the order the more TN delivery (or the less TN removal). C1 [Tavakoly, Ahmad A.] US Army, Corps Engineers, Coastal & Hydraul Lab, River Engn Branch, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA. [Maidment, David R.] Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USA. [Whiteaker, Tim] Univ Texas Austin, Ctr Res Water Resources, Austin, TX 78712 USA. [Yang, Zong-Liang] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [McClelland, James W.; Griffin, Claire] Univ Texas Austin, Dept Marine Sci, Port Aransas, TX 78373 USA. [David, Cedric H.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Meyer, Lisa] Hilcorp Energy Co, Houston, TX 77002 USA. RP Tavakoly, AA (reprint author), US Army, Corps Engineers, Coastal & Hydraul Lab, River Engn Branch, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA. EM ahmad.a.tavakoly@erdc.dren.mil RI Yang, Zong-Liang/B-4916-2011; McClelland, James/C-5396-2008; OI McClelland, James/0000-0001-9619-8194; Tavakoly, Ahmad A./0000-0002-2163-2627 FU NASA Interdisciplinary Science Project [NNX11AE42G]; USACE Coastal and Hydraulics Laboratory; Jet Propulsion Laboratory; California Institute of Technology FX This project was partially funded by the NASA Interdisciplinary Science Project NNX11AE42G and USACE Coastal and Hydraulics Laboratory. The locations and data on wastewater treatment plants and industrial facilities were obtained from the Discharge Monitoring Report (DMR) Pollutant Loading Tool. The river maps were derived from the NHDPlus dataset. Cedric H. David is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank the editor-in-chief and two anonymous reviewers for their valuable comments that helped improved the original version of this manuscript. NR 51 TC 1 Z9 1 U1 2 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-474X EI 1752-1688 J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD FEB PY 2016 VL 52 IS 1 BP 1 EP 15 DI 10.1111/1752-1688.12355 PG 15 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DD5XV UT WOS:000369999100001 ER PT J AU Hendrickx, JMH Allen, RG Brower, A Byrd, AR Hong, SH Ogden, FL Pradhan, NR Robison, CW Toll, D Trezza, R Umstot, TG Wilson, JL AF Hendrickx, Jan M. H. Allen, Richard G. Brower, Al Byrd, Aaron R. Hong, Sung-ho Ogden, Fred L. Pradhan, Nawa Raj Robison, Clarence W. Toll, David Trezza, Ricardo Umstot, Todd G. Wilson, John L. TI BENCHMARKING OPTICAL/THERMAL SATELLITE IMAGERY FOR ESTIMATING EVAPOTRANSPIRATION AND SOIL MOISTURE IN DECISION SUPPORT TOOLS SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE soil moisture; evapotranspiration; GSSHA; SEBAL; METRIC; DPWM; distributed hydrologic modeling; optical/thermal satellite imagery; Landsat; MODIS; groundwater recharge; water management; hydrograph ID ENERGY BALANCE ALGORITHM; CROP COEFFICIENT METHOD; LATENT-HEAT FLUXES; ROOT WATER-UPTAKE; OPTICAL IMAGERY; MAPPING EVAPOTRANSPIRATION; ESTIMATING EVAPORATION; MODEL; SURFACE; LAND AB Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We benchmark three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall-runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite. C1 [Hendrickx, Jan M. H.; Wilson, John L.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, 801 Leroy Pl, Socorro, NM 87801 USA. [Allen, Richard G.; Robison, Clarence W.; Trezza, Ricardo] Univ Idaho, Kimberly Res & Extens Ctr, Kimberly, ID 83341 USA. [Brower, Al] US Bur Reclamat, Water & Environm Resources Div, Denver, CO 80225 USA. [Byrd, Aaron R.; Pradhan, Nawa Raj] US Army, Corps Engineers, Engn Res & Dev Ctr, Vicksburg, MS 39180 USA. [Hong, Sung-ho] Murray State Univ, Dept Geosci, Murray, KY 42071 USA. [Ogden, Fred L.] Univ Wyoming, Water Resources Environm Sci & Engn, Laramie, WY 82071 USA. [Toll, David] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Umstot, Todd G.] Daniel B Stephens & Associates Inc, Albuquerque, NM 87109 USA. RP Hendrickx, JMH (reprint author), New Mexico Inst Min & Technol, Dept Earth & Environm Sci, 801 Leroy Pl, Socorro, NM 87801 USA. EM hendrick@nmt.edu FU NASA [NNA06CN01A]; Idaho Agricultural Experiment Station FX We acknowledge financial support by NASA under Cooperative Agreement #NNA06CN01A, support by the Idaho Agricultural Experiment Station, and support by the USGS Landsat Science Team (Allen). NR 152 TC 2 Z9 2 U1 7 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-474X EI 1752-1688 J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD FEB PY 2016 VL 52 IS 1 BP 89 EP 119 DI 10.1111/1752-1688.12371 PG 31 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DD5XV UT WOS:000369999100007 ER PT J AU Miller, KB AF Miller, Katharine B. TI Forecasting at the edge of the niche: Didemnum vexillum in Southeast Alaska SO MARINE BIOLOGY LA English DT Article ID ECOLOGICAL OBSERVATIONS; BOTRYLLUS-SCHLOSSERI; NEURAL-NETWORKS; NEW-ENGLAND; ASCIDIANS; INVASION; POPULATION; PLASTICITY; SALINITY; TOLERANT AB Controlling the spread of marine invasive species is a challenging and costly task. Maps that predict the potential spread of an invader based on known habitat preferences can be extremely valuable for assessing invasion risk and prioritizing management actions for invasion control or prevention. Most maps are developed by using environmental data on the species' known distribution to map the potential niche of the species in a new location. However, this approach is complicated when a species spreads to an area where environmental conditions are much different than in other places it is known to exist. Didemnum vexillum was discovered in Southeast Alaska in 2010, marking the northernmost known range of this species. A self-organizing map (SOM) was used to assess potential habitat for D. vexillum in other parts of Southeast Alaska using summer and winter temperature and salinity as controlling factors. This research highlights the uncertainty of using the species' current distribution to evaluate potential spread to an environment at the edge of a species' environmental tolerances. It also identifies gaps in our knowledge of D. vexillum thermal and salinity tolerances, including potential synergistic and additive effects of both low temperature and low salinity, which limit investigation of mechanistic modeling methods. C1 [Miller, Katharine B.] NOAA, Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. RP Miller, KB (reprint author), NOAA, Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM katharine.miller@noaa.gov FU Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA of the National Fish and Wildlife Foundation [32852] FX This research was funded by the Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA in support of research conducted under Grant 32852 of the National Fish and Wildlife Foundation, Alaska Fish and Wildlife Fund. Disclaimer: The findings and conclusions in the paper are those of the author(s) and do not necessarily represent the views of the National Marine Fisheries Service, NOAA. NR 57 TC 0 Z9 0 U1 5 U2 17 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0025-3162 EI 1432-1793 J9 MAR BIOL JI Mar. Biol. PD FEB PY 2016 VL 163 IS 2 AR 30 DI 10.1007/s00227-015-2799-1 PG 12 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA DD6RW UT WOS:000370052700009 ER PT J AU Schmidt, MA Goodwin, TJ Pelligra, R AF Schmidt, Michael A. Goodwin, Thomas J. Pelligra, Ralph TI Incorporation of omics analyses into artificial gravity research for space exploration countermeasure development SO METABOLOMICS LA English DT Review DE Omics; Gravity; Artificial gravity; Space flight; Astronaut; Countermeasures ID GENE-EXPRESSION; DNA TOPOISOMERASES; FLIGHT; MAGNESIUM; MUSCLE; MICROGRAVITY; ENDONUCLEASE-1; ACCELERATION; HYPERGRAVITY; METABOLOMICS AB The next major steps in human spaceflight include flyby, orbital, and landing missions to the Moon, Mars, and near earth asteroids. The first crewed deep space mission is expected to launch in 2022, which affords less than 7 years to address the complex question of whether and how to apply artificial gravity to counter the effects of prolonged weightlessness. Various phenotypic changes are demonstrated during artificial gravity experiments. However, the molecular dynamics (genotype and molecular phenotypes) that underlie these morphological, physiological, and behavioral phenotypes are far more complex than previously understood. Thus, targeted molecular assessment of subjects under various G conditions can be expected to miss important patterns of molecular variance that inform the more general phenotypes typically being measured. Use of omics methods can help detect changes across broad molecular networks, as various G-loading paradigms are applied. This will be useful in detecting offtarget, or unanticipated effects of the different gravity paradigms applied to humans or animals. Insights gained from these approaches may eventually be used to inform countermeasure development or refine the deployment of existing countermeasures. This convergence of the omics and artificial gravity research communities may be critical if we are to develop the proper artificial gravity solutions under the severely compressed timelines currently established. Thus, the omics community may offer a unique ability to accelerate discovery, provide new insights, and benefit deep space missions in ways that have not been previously considered. C1 [Schmidt, Michael A.] Colorado State Univ, Res Innovat Ctr, Sovaris Aerosp LLC, Adv Pattern Anal & Countermeasures Grp, 3185 Rampart Rd, Ft Collins, CO 80521 USA. [Goodwin, Thomas J.] NASA, Lyndon B Johnson Space Ctr, Biomed Res & Environm Sci Div, Dis Modeling & Tissue Analogues Lab, Houston, TX 77058 USA. [Pelligra, Ralph] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Schmidt, MA (reprint author), Colorado State Univ, Res Innovat Ctr, Sovaris Aerosp LLC, Adv Pattern Anal & Countermeasures Grp, 3185 Rampart Rd, Ft Collins, CO 80521 USA. EM mschmidtphd@patternanalysis.org; thomas.j.goodwin@nasa.gov; ralph.pelligra-1@nasa.gov NR 91 TC 0 Z9 0 U1 3 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1573-3882 EI 1573-3890 J9 METABOLOMICS JI Metabolomics PD FEB PY 2016 VL 12 IS 2 AR 36 DI 10.1007/s11306-015-0942-0 PG 15 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA DC6QE UT WOS:000369343900017 ER PT J AU Loeffler, MJ Dukes, CA Christoffersen, R Baragiola, RA AF Loeffler, M. J. Dukes, C. A. Christoffersen, R. Baragiola, R. A. TI Space weathering of silicates simulated by successive laser irradiation: In situ reflectance measurements of Fo(90), Fo(99+), and SiO2 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EXCIMER-LASER; OPTICAL-PROPERTIES; ASTEROID SURFACES; ION IRRADIATION; LUNAR REGOLITH; FUSED-SILICA; BAND GAP; IMPACT; IRON; NANOSECOND AB Pulsed-laser irradiation causes the visible-near-infrared spectral slope of olivine (Fo(90) and Fo(99+)) and SiO2 to increase (redden), while the olivine samples darken and the SiO2 samples brighten slightly. XPS analysis shows that irradiation of Fo(90) produces metallic Fe. Analytical SEM and TEM measurements confirm that reddening in the Fo(90) olivine samples correlates with the production of nanophase metallic Fe (npFe(0)) grains, 20-50nm in size. The reddening observed in the SiO2 sample is consistent with the formation of SiO or other SiOx species that absorb in the visible. The weak spectral brightening induced by laser irradiation of SiO2 is consistent with a change in surface topography of the sample. The darkening observed in the olivine samples is likely caused by the formation of larger npFe(0) particles, such as the 100-400nm diameter npFe(0) identified during our TEM analysis of Fo(90) samples. The Fo(90) reflectance spectra are qualitatively similar to those in previous experiments suggesting that in all cases formation of npFe(0) is causing the spectral alteration. Finally, we find that the accumulation of successive laser pulses cause continued sample darkening in the Vis-NIR, which suggests that repeated surface impacts are an efficient way to darken airless body surfaces. C1 [Loeffler, M. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dukes, C. A.; Baragiola, R. A.] Univ Virginia, Lab Astrophys & Surface Phys, Charlottesville, VA 22904 USA. [Christoffersen, R.] Jacobs, NASA, Lyndon B Johnson Space Ctr, Mail Code XI3, Houston, TX 77058 USA. RP Loeffler, MJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM mark.loeffler@nasa.gov RI Loeffler, Mark/C-9477-2012 FU NASA Cosmochemistry, Lunar Advanced Science and Exploration Research; Solar System Workings programs; NSF's Astronomy and Astrophysics Research Grants program FX This work was supported by the NASA Cosmochemistry, Lunar Advanced Science and Exploration Research, and Solar System Workings programs, as well as NSF's Astronomy and Astrophysics Research Grants program (C.D. and R. B.). The authors would like to thank Lindsay Keller for his comments on the manuscript. NR 61 TC 0 Z9 0 U1 3 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD FEB PY 2016 VL 51 IS 2 BP 261 EP 275 DI 10.1111/maps.12581 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DD8DU UT WOS:000370156000003 ER PT J AU Schmieder, M Jourdan, F Moilanen, J Buchner, E Ohman, T AF Schmieder, Martin Jourdan, Fred Moilanen, Jarmo Buchner, Elmar Ohman, Teemu TI A Late Mesoproterozoic Ar-40/Ar-39 age for a melt breccia from the Keurusselka impact structure, Finland SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID PLANAR DEFORMATION FEATURES; CANYON SANIDINE STANDARD; POST-KINEMATIC MAGMATISM; K-40 DECAY CONSTANTS; JOINT DETERMINATION; IMPROVED ACCURACY; SOUTH-AUSTRALIA; DATING STANDARD; K-AR; GEOCHRONOLOGY AB Field investigations in the eroded central uplift of the 30km Keurusselka impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone-bearing target rocks near the homestead of Kirkkoranta, close to the center of the impact structure. The petrographic analysis of quartz in this melt breccia and the wall rock granite indicate weak shock metamorphic overprint not exceeding similar to 8-10 GPa. The mode of occurrence and composition of the melt breccia suggest its formation as some kind of pseudotachylitic breccia. Ar-40/Ar-39 dating of dark and clast-poor whole-rock chips yielded five concordant Late Mesoproterozoic miniplateau ages and one plateau age of 1151 +/- 10Ma [+/- 11Ma] (2 sigma; MSWD = 0.11; P=0.98), considered here as the statistically most robust age for the rock. The new Ar-40/Ar-39 age is incompatible with similar to 1.88Ga Svecofennian tectonism and magmatism in south-central Finland and probably reflects the Keurusselka impact, followed by impact-induced hydrothermal chloritization of the crater basement. In keeping with the crosscutting relationships in the outcrop and the possible influence of postimpact alteration, the Late Mesoproterozoic Ar-40/Ar-39 age of similar to 1150Ma should be treated as a minimum age for the impact. The new Ar-40/Ar-39 results are consistent with paleomagnetic results that suggested a similar age for Keurusselka, which is shown to be one of the oldest impact structures currently known in Europe and worldwide. C1 [Schmieder, Martin] Univ Western Australia, Sch Earth & Environm, 35 Stirling Highway, Crawley, WA 6009, Australia. [Schmieder, Martin; Jourdan, Fred] Curtin Univ, Western Australian Argon Isotope Facil, Dept Appl Geol, GPO Box U1987, Perth, WA 6845, Australia. [Schmieder, Martin; Jourdan, Fred] Curtin Univ, John de Laeter Ctr, GPO Box U1987, Perth, WA 6845, Australia. [Buchner, Elmar] HNU Neu Ulm Univ Appl Sci, Wileystr 1, D-89231 Neu Ulm, Germany. [Buchner, Elmar] Univ Stuttgart, Inst Mineral & Kristallchem, Azenbergstr 18, D-70174 Stuttgart, Germany. [Ohman, Teemu] Arctic Planetary Sci Inst, Karhuntie 19 C 24, Rovaniemi 96500, Finland. [Ohman, Teemu] Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. [Schmieder, Martin] NASA, Lunar & Planetary Inst, Solar Syst Explorat Res Virtual Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. RP Schmieder, M (reprint author), Univ Western Australia, Sch Earth & Environm, 35 Stirling Highway, Crawley, WA 6009, Australia.; Schmieder, M (reprint author), Curtin Univ, Western Australian Argon Isotope Facil, Dept Appl Geol, GPO Box U1987, Perth, WA 6845, Australia.; Schmieder, M (reprint author), Curtin Univ, John de Laeter Ctr, GPO Box U1987, Perth, WA 6845, Australia.; Schmieder, M (reprint author), NASA, Lunar & Planetary Inst, Solar Syst Explorat Res Virtual Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM schmieder@lpi.usra.edu OI Ohman, Teemu/0000-0001-8214-841X FU Australian Research Council [DP110104818]; NASA [NNX08AC28] FX The authors acknowledge Satu Hietala (Kurikka, Finland) for providing field image material, as well as Christoph Wimmer-Pfeil for thin section preparation and Thomas Theye for electron microprobe analyses at the University of Stuttgart. The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments. Reviews by Kip Hodges and an anonymous reviewer, as well as additional helpful comments by the handling Associate Editor Uwe Reimold, are greatly appreciated and helped improve the manuscript. We also thank Mario Trieloff and Alex Deutsch for their reviews of a previous version of this manuscript. The authors declare that there is no conflict of interest associated with this study. M. S. and F. J. acknowledge the Australian Research Council contribution (Discovery Project # DP110104818). E. B. acknowledges the Stifterverband fur die deutsche Wissenschaft. T.O. acknowledges financial support from NASA under the LPI Cooperative Agreement NNX08AC28. This is LPI Contribution #1885 and APSI contribution #5. NR 89 TC 3 Z9 3 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD FEB PY 2016 VL 51 IS 2 BP 303 EP 322 DI 10.1111/maps.12594 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DD8DU UT WOS:000370156000005 ER PT J AU Friedrich, JM Glavin, DP Rivers, ML Dworkin, JP AF Friedrich, Jon M. Glavin, Daniel P. Rivers, Mark L. Dworkin, Jason P. TI Effect of a synchrotron X-ray microtomography imaging experiment on the amino acid content of a CM chondrite SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID CARBONACEOUS CHONDRITES; ORGANIC-MATTER; IONIZING-RADIATION; METEORITES; PRESERVATION; EVOLUTION; REGOLITH; BRECCIA; METAL AB X-ray microcomputed tomography and synchrotron X-ray microcomputed tomography (CT) are becoming popular tools for the reconnaissance imaging of chondrites. However, there are occasional concerns that the use of CT may be detrimental to organic components of a chondrite. Soluble organic compounds represent similar to 2-10% of the total solvent extractable carbon in CI and CM carbonaceous chondrites and amino acids are among the most abundant compounds in the soluble organic fraction. We irradiated two samples of the Murchison CM2 carbonaceous chondrite under conditions slightly harsher (increased beam exposure time) than those typically used for x-ray CT imaging experiments to determine if detectable changes in the amino acid abundance and distribution relative to a nonexposed control sample occurred. After subjecting two meteorite portions to ionizing radiation dosages of 1.1 kiloGray (kGy) and 1.2kGy with 48.6 and 46.6keV monochromatic X-rays, respectively, we analyzed the amino acid content of each sample. Within analytical errors, we found no differences in the amino acid abundances or enantiomeric ratios when comparing the control samples (nonexposed Murchison) and the irradiated samples. We show with calculations that any sample heating due to x-ray exposure is negligible. We conclude that a monochromatic synchrotron X-ray CT experiment at beamline 13-BM-D of the Advanced Photon Source, which imparts similar to 1kGy doses, has no detectable effect on the amino acid content of a carbonaceous chondrite. These results are important for the initial reconnaissance of returned samples from the OSIRIS-REx and Hayabusa 2 asteroid sample return missions. C1 [Friedrich, Jon M.] Fordham Univ, Dept Chem, Bronx, NY 10458 USA. [Friedrich, Jon M.] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. [Glavin, Daniel P.; Dworkin, Jason P.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Rivers, Mark L.] Univ Chicago, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. RP Friedrich, JM (reprint author), Fordham Univ, Dept Chem, Bronx, NY 10458 USA.; Friedrich, JM (reprint author), Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. EM friedrich@fordham.edu RI Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012 OI Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997 FU National Science Foundation-Earth Sciences [EAR-1128799]; Department of Energy-GeoSciences [DE-FG02-94ER14466]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; NASA Astrobiology Institute FX The authors thank T. McCoy and L. Welzenbach who kindly allocated the Murchison meteorite sample used in this study. JMF would like to thank the Camille and Henry Dreyfus Special Grant Program in the Chemical Sciences for providing vital material support. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-GeoSciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. DPG and JPD appreciate funding support from the NASA Astrobiology Institute and the Goddard Center for Astrobiology and Hannah McLain for technical support. NR 26 TC 1 Z9 1 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD FEB PY 2016 VL 51 IS 2 BP 429 EP 437 DI 10.1111/maps.12595 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DD8DU UT WOS:000370156000011 ER PT J AU Bradley, BK Sibois, A Axelrad, P AF Bradley, Ben K. Sibois, Aurore Axelrad, Penina TI Influence of ITRS/GCRS implementation for astrodynamics: Coordinate transformations SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Earth orientation parameters; Precise frame transformations; Precession-nutation ID PRECISION ORBIT DETERMINATION; PRECESSION; NUTATION; EXPRESSIONS; DEFINITION; ROTATION; EARTH; GPS AB Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit determination and analyzing geoscience data from satellite missions. The implementation of this frame transformation and the manner in which the Earth orientation parameters (EOPs) are used have a notable impact on station coordinates and satellite positions. After briefly reviewing the various theories and their mathematical description, we investigate the impact of EOP interpolation methods, ocean tide corrections, precession nutation simplifications, and Julian date handling on the ITRS/GCRS coordinate transformation. Estimates of the impact on position concern a range of altitudes, from the Earth's surface to geosynchronous orbit (GEO), and apply to a wide array of astrodynamics applications. We demonstrate that EOP interpolation methods and ocean tide corrections impact the ITRS/GCRS transformation between 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. We conclude with a summary of recommendations on EOP usage and bias precession nutation model implementations for achieving a wide range of transformation accuracies at several altitudes. This comprehensive set of recommendations allows astrodynamicists, flight software engineers, and Earth scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Bradley, Ben K.; Axelrad, Penina] Univ Colorado, Colorado Ctr Astrodynam Res, 431 UCB,ECNT 320, Boulder, CO 80309 USA. [Sibois, Aurore] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Bradley, BK (reprint author), Univ Colorado, Colorado Ctr Astrodynam Res, 431 UCB,ECNT 320, Boulder, CO 80309 USA. EM ben.bradley@colorado.edu RI Sibois, Aurore/I-6415-2016 OI Sibois, Aurore/0000-0003-1212-3940 FU DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship [32 CFR 168a] FX This research was made possible with partial Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors also wish to thank the anonymous reviewers for their insightful recommendations which helped improve the paper. NR 30 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD FEB 1 PY 2016 VL 57 IS 3 BP 850 EP 866 DI 10.1016/j.asr.2015.11.006 PG 17 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DC8FX UT WOS:000369456400012 ER PT J AU Airapetian, VS Usmanov, AV AF Airapetian, Vladimir S. Usmanov, Arcadi V. TI RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE solar wind; stars: magnetic field; stars: mass-loss; stars: solar-type; Sun: evolution; Sun: magnetic fields ID ELECTRON HEAT-CONDUCTION; MASS-LOSS RATES; ATMOSPHERIC EVOLUTION; MAGNETIC-FIELDS; STELLAR WINDS; HOT JUPITERS; ALFVEN WAVES; MODEL; STARS; SUN AB Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfven wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfven wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, similar to 50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion. C1 [Airapetian, Vladimir S.; Usmanov, Arcadi V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Usmanov, Arcadi V.] Univ Delaware, Newark, DE USA. RP Airapetian, VS; Usmanov, AV (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.; Usmanov, AV (reprint author), Univ Delaware, Newark, DE USA. EM vladimir.airapetian@nasa.gov; avusmanov@gmail.com FU NASA [NNX13AR42G, NNX14AI63G, NNX15AB88G]; NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at the Ames Research Center [SMD-14-4848, SMD-15-5715] FX We thank Drs. William Danchi and Gordon Holman for a careful reading of the manuscript and suggestions for improvement. The work of A.V.U. was supported by NASA grants NNX13AR42G, NNX14AI63G, and NNX15AB88G to the University of Delaware. Supercomputer time allocations were provided by the NASA High-End Computing (HEC) Program awards SMD-14-4848 and SMD-15-5715 through the NASA Advanced Supercomputing (NAS) Division at the Ames Research Center and the NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center. The authors wish to thank two anonymous referees for their comments and constructive suggestions that stimulated the authors to perform more detailed parametric study of the properties of the solar wind. NR 47 TC 6 Z9 6 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2016 VL 817 IS 2 AR L24 DI 10.3847/2041-8205/817/2/L24 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7LB UT WOS:000369400300014 ER PT J AU Li, JY Reddy, V Nathues, A Le Corre, L Izawa, MRM Cloutis, EA Sykes, MV Carsenty, U Castillo-Rogez, JC Hoffmann, M Jaumann, R Krohn, K Mottola, S Prettyman, TH Schaefer, M Schenk, P Schroder, SE Williams, DA Smith, DE Zuber, MT Konopliv, AS Park, RS Raymond, CA Russell, CT AF Li, Jian-Yang Reddy, Vishnu Nathues, Andreas Le Corre, Lucille Izawa, Matthew R. M. Cloutis, Edward A. Sykes, Mark V. Carsenty, Uri Castillo-Rogez, Julie C. Hoffmann, Martin Jaumann, Ralf Krohn, Katrin Mottola, Stefano Prettyman, Thomas H. Schaefer, Michael Schenk, Paul Schroeder, Stefan E. Williams, David A. Smith, David E. Zuber, Maria T. Konopliv, Alexander S. Park, Ryan S. Raymond, Carol A. Russell, Christopher T. TI SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE methods: observational; minor planets, asteroids: individual (1 Ceres); space vehicles; techniques: image processing; techniques: photometric ID DAWN FRAMING CAMERA; IN-FLIGHT CALIBRATION; PHOTOMETRIC PROPERTIES; 4 VESTA; COLOR; PHASE AB Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun-Ceres-Earth geometry. The active area on Ceres is less than 1 km(2), too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres' heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity. C1 [Li, Jian-Yang; Reddy, Vishnu; Le Corre, Lucille; Sykes, Mark V.; Prettyman, Thomas H.] Planetary Sci Inst, 1700 E Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. [Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael] Max Planck Inst Solar Syst Res, Gottingen, Germany. [Izawa, Matthew R. M.; Cloutis, Edward A.] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada. [Izawa, Matthew R. M.] Royal Ontario Museum, Toronto, ON M5S 2C6, Canada. [Carsenty, Uri; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Schroeder, Stefan E.] German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. [Castillo-Rogez, Julie C.; Konopliv, Alexander S.; Park, Ryan S.; Raymond, Carol A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Schenk, Paul] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [Williams, David A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Smith, David E.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Russell, Christopher T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Li, JY (reprint author), Planetary Sci Inst, 1700 E Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. RI Schroder, Stefan/D-9709-2013 OI Schroder, Stefan/0000-0003-0323-8324 FU Max Planck Society; German Space Agency, DLR; University of California, Los Angeles under the NASA [NNM05AA86] FX We thank the Dawn operations team for the development, cruise, orbital insertion, and operations of the Dawn spacecraft at Ceres. The Framing Camera project is financially supported by the Max Planck Society and the German Space Agency, DLR. Li is supported by a subcontract from the University of California, Los Angeles under the NASA Contract #NNM05AA86 Dawn Discovery Mission. This research made use of Astropy (Astropy Collaboration et al. 2013), and Matplotlib (Hunter 2007) NR 32 TC 0 Z9 0 U1 7 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2016 VL 817 IS 2 AR L22 DI 10.3847/2041-8205/817/2/L22 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7LB UT WOS:000369400300012 ER PT J AU Tremblin, P Amundsen, DS Chabrier, G Baraffe, I Drummond, B Hinkley, S Mourier, P Venot, O AF Tremblin, P. Amundsen, D. S. Chabrier, G. Baraffe, I. Drummond, B. Hinkley, S. Mourier, P. Venot, O. TI CLOUDLESS ATMOSPHERES FOR L/T DWARFS AND EXTRASOLAR. GIANT PLANETS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs; methods: numerical; methods: observational; planets and satellites: atmospheres ID LOW-MASS STARS; BROWN DWARFS; T DWARFS; EFFECTIVE TEMPERATURE; ULTRACOOL DWARFS; SURFACE GRAVITY; TRANSITION; POLARIZATION; SPECTROSCOPY; CONVECTION AB The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection. 20 years ago. has always been the key role played by micron-size condensates, called "dust" or "clouds," in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/CH4 and N-2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution. C1 [Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.] Univ Exeter, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Tremblin, P.] Ctr Etud Saclay, Maison Simulat, CEA CNRS INRIA UPS UVSQ, USR 3441, F-91191 Gif Sur Yvette, France. [Amundsen, D. S.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Amundsen, D. S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Chabrier, G.; Baraffe, I.; Mourier, P.] UMR CNRS 5574, CRAL, Ecole Normale Super Lyon, F-69364 Lyon 07, France. [Mourier, P.] Ecole Normale Super, Dept Phys, 24 Rue Lhomond, F-75005 Paris, France. [Venot, O.] Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Leuven, Belgium. RP Tremblin, P (reprint author), Univ Exeter, Astrophys Grp, Exeter EX4 4QL, Devon, England.; Tremblin, P (reprint author), Ctr Etud Saclay, Maison Simulat, CEA CNRS INRIA UPS UVSQ, USR 3441, F-91191 Gif Sur Yvette, France. EM tremblin@astro.ex.ac.uk OI Tremblin, Pascal/0000-0001-6172-3403 FU European Research Council under the European Community [247060, 247060-PEPS, 320478-TOFU]; Royal Society [WM090065]; K. U. Leuven IDO project [IDO/10/2013]; FWO FX We thank Patrick Ingraham and Rebecca Oppenheimer for providing their data. This work is partly supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 247060 and FP7/2007-2013 Grant Agreement No. 247060-PEPS and grant No. 320478-TOFU). Part of this work is supported by the Royal Society award WM090065. O.V. acknowledges support from the K. U. Leuven IDO project IDO/10/2013 and from the FWO Postdoctoral Fellowship programme. NR 25 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2016 VL 817 IS 2 AR L19 DI 10.3847/2041-8205/817/2/L19 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7LB UT WOS:000369400300009 ER PT J AU Kotov, DV Yee, HC Wray, AA Hadjadj, A Sjogreen, B AF Kotov, D. V. Yee, H. C. Wray, A. A. Hadjadj, A. Sjoegreen, B. TI High Order Numerical Methods for the Dynamic SGS Model of Turbulent Flows with Shocks SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE High order numerical methods; turbulent flows with shocks; Germano SGS model; LES ID LARGE-EDDY SIMULATION; COMPRESSIBLE TURBULENCE; SUBCELL RESOLUTION; CAPTURING SCHEMES; DISSIPATION; LES AB Simulation of turbulent flows with shocks employing subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. This paper addresses the accuracy improvement of LES of turbulent flows in two ways: (a) from the SGS model standpoint and (b) from the numerical method improvement standpoint. In an internal report, Kotov et al. ("High Order Numerical Methods for large eddy simulation (LES) of Turbulent Flows with Shocks", CTR Tech Brief, Oct. 2014, Stanford University), we performed a preliminary comparative study of different approaches to reduce the loss of accuracy within the framework of the dynamic Germano SGS model. The high order low dissipative method of Yee & Sjogreen (2009) using local flow sensors to control the amount of numerical dissipation where needed is used for the LES simulation. The considered improved dynamics model approaches include applying the one-sided SGS test filter of Sagaut & Germano (2005) and/or disabling the SGS terms at the shock location. For Mach 1.5 and 3 canonical shock-turbulence interaction problems, both of these approaches show a similar accuracy improvement to that of the full use of the SGS terms. The present study focuses on a five levels of grid refinement study to obtain the reference direct numerical simulation (DNS) solution for additional LES SGS comparison and approaches. One of the numerical accuracy improvements included here applies Harten's subcell resolution procedure to locate and sharpen the shock, and uses a one-sided test filter at the grid points adjacent to the exact shock location. C1 [Kotov, D. V.] Environm Res Inst, Bay Area, 625 2nd St,Ste 209, Petaluma, CA USA. [Yee, H. C.; Wray, A. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hadjadj, A.] CORIA, UMR 6614, F-76800 St Etienne, France. [Hadjadj, A.] INSA De Rouen, F-76800 St Etienne, France. [Sjoegreen, B.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Yee, HC (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM dmitry.v.kotov@nasa.gov; Helen.M.Yee@nasa.gov; alan.a.wray@nasa.gov; hadjadj@coria.fr; sjogreen2@llnl.gov FU DOE/SciDAC SAP [DE-AI02-06ER25796]; NASA Aerosciences/RCA program; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The support of the DOE/SciDAC SAP grant DE-AI02-06ER25796 is acknowledged. The authors are grateful to J. Larsson for providing the turbulent inflow and selected input data. The work has been performed with the first author as a postdoctoral fellow at the Center for Turbulence Research, Stanford University. Financial support from the NASA Aerosciences/RCA program for the second author is gratefully acknowledged. Work by the fifth author was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 44 TC 0 Z9 0 U1 3 U2 4 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2016 VL 19 IS 2 BP 273 EP 300 DI 10.4208/cicp.211014.040915a PG 28 WC Physics, Mathematical SC Physics GA DC5HS UT WOS:000369252700001 ER PT J AU Huang, MH Burgmann, R Pollitz, F AF Huang, Mong-Han Buergmann, Roland Pollitz, Fred TI Lithospheric rheology constrained from twenty-five years of postseismic deformation following the 1989 M-W, 6.9 Loma Prieta earthquake SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Loma Prieta earthquake; postseismic displacement; lithospheric rheology; viscoelastic relaxation; San Francisco Bay Area ID SAN-ANDREAS FAULT; FRANCISCO BAY AREA; SOUTHERN CALIFORNIA; NORTHERN CALIFORNIA; MOJAVE-DESERT; GEODETIC DATA; INSAR; SLIP; GPS; SYSTEM AB The October 17, 1989 M-w 6.9 Loma Prieta earthquake provides the first opportunity of probing the crustal and upper mantle rheology in the San Francisco Bay Area since the 1906 M-w 7.9 San Francisco earthquake. Here we use geodetic observations including GPS and InSAR to characterize the Loma Prieta earthquake postseismic displacements from 1989 to 2013. Pre-earthquake deformation rates are constrained by nearly 20 yr of USGS trilateration measurements and removed from the postseismic measurements prior to the analysis. We observe GPS horizontal displacements at mean rates of 1-4 mm/yr toward Loma Prieta Mountain until 2000, and similar to 2 mm/yr surface subsidence of the northern Santa Cruz Mountains between 1992 and 2002 shown by InSAR, which is not associated with the seasonal and longer-term hydrological deformation in the adjoining Santa Clara Valley. Previous work indicates afterslip dominated in the early (1989-1994) postseismic period, so we focus on modeling the postseismic viscoelastic relaxation constrained by the geodetic observations after 1994. The best fitting model shows an elastic 19-km-thick upper crust above an 11-km-thick viscoelastic lower crust with viscosity of similar to 6 x 10(18) Pas, underlain by a viscous upper mantle with viscosity between 3 x 10(18) and 2 x 10(19) Pas. The millimeter-scale postseismic deformation does not resolve the viscosity in the different layers very well, and the lower-crustal relaxation may be localized in a narrow shear zone. However, the inferred lithospheric rheology is consistent with previous estimates based on post-1906 San Francisco earthquake measurements along the San Andreas fault system. The viscoelastic relaxation may also contribute to the enduring increase of aseismic slip and repeating earthquake activity on the San Andreas fault near San Juan Bautista, which continued for at least a decade after the Loma Prieta event. (C) 2016 Elsevier B.V. All rights reserved. C1 [Huang, Mong-Han; Buergmann, Roland] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Huang, Mong-Han; Buergmann, Roland] Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA. [Huang, Mong-Han] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Pollitz, Fred] US Geol Survey, Menlo Pk, CA 94025 USA. RP Huang, MH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mong@seismo.berkeley.edu OI Huang, Mong-Han/0000-0003-2331-3766 FU National Science Foundation [EAR-0951430]; NASA [NXX08AG50G]; NASA Postdoctoral Program FX We would like to thank D. Dreger, T. Bodin, I. Johanson, E. Chaussard, C. Johnson, and R. Turner for discussion and constructive suggestions. We thank James Savage and Eileen Evans for reviewing an earlier version of this paper. Two anonymous reviewers give critical and constructive comments on improving the manuscript. All of the USGS GPS campaign and continuous stations data are downloaded from the USGS website (http://earthquake.usgs.gov/monitoring/gps/). Continuous GPS data are from the BARD network and the Plate Boundary Observatory operated by UNAVCO for Earthscope (http://www.earthscope.org). The ERS and Envisat SAR data are copyrighted by the European Space Agency and were provided through the WInSAR archive at UNAVCO. This project is supported by the National Science Foundation grant (EAR-0951430) and NASA (NXX08AG50G). M.-H. Huang is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. This is Berkeley Seismological Laboratory contribution" #2015-10. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 51 TC 2 Z9 2 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD FEB 1 PY 2016 VL 435 BP 147 EP 158 DI 10.1016/j.epsl.2015.12.018 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DC4TT UT WOS:000369213900016 ER PT J AU Ma, ZW Hu, XF Sayer, AM Levy, R Zhang, Q Xue, YG Tong, SL Bi, J Huang, L Liu, Y AF Ma, Zongwei Hu, Xuefei Sayer, Andrew M. Levy, Robert Zhang, Qiang Xue, Yingang Tong, Shilu Bi, Jun Huang, Lei Liu, Yang TI Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-2013 SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article ID FINE PARTICULATE MATTER; AEROSOL OPTICAL DEPTH; GROUND-LEVEL PM2.5; LONG-TERM EXPOSURE; AIR-POLLUTION; UNITED-STATES; EMISSIONS REDUCTION; ENERGY-CONSERVATION; AOD; PRODUCTS AB BACKGROUND: Three decades of rapid economic development is causing severe and widespread PM2.5 (particulate matter <= 2.5 mu m) pollution in China. However, research on the health impacts of PM2.5 exposure has been hindered by limited historical PM2.5 concentration data. OBJECTIVES: We estimated ambient PM2.5 concentrations from 2004 to 2013 in China at 0.1 degrees resolution using the most recent satellite data and evaluated model performance with available ground observations. METHODS: We developed a two-stage spatial statistical model using the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) and assimilated meteorology, land use data, and PM2.5 concentrations from China's recently established ground monitoring network. An inverse variance weighting (IVW) approach was developed to combine MODIS Dark Target and Deep Blue AOD to optimize data coverage. We evaluated model-predicted PM2.5 concentrations from 2004 to early 2014 using ground observations. RESULTS: The overall model cross-validation R-2 and relative prediction error were 0.79 and 35.6%, respectively. Validation beyond the model year (2013) indicated that it accurately predicted PM2.5 concentrations with little bias at the monthly (R-2 = 0.73, regression slope = 0.91) and seasonal (R-2 = 0.79, regression slope = 0.92) levels. Seasonal variations revealed that winter was the most polluted season and that summer was the cleanest season. Analysis of predicted PM2.5 levels showed a mean annual increase of 1.97 mu g/m(3) between 2004 and 2007 and a decrease of 0.46 mu g/m(3) between 2008 and 2013. CONCLUSIONS: Our satellite-driven model can provide reliable historical PM2.5 estimates in China at a resolution comparable to those used in epidemiologic studies on the health effects of long-term PM2.5 exposure in North America. This data source can potentially advance research on PM2.5 health effects in China. C1 [Ma, Zongwei; Bi, Jun; Huang, Lei] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Jiangsu, Peoples R China. [Ma, Zongwei; Hu, Xuefei; Liu, Yang] Emory Univ, Rollins Sch Publ Hlth, Dept Environm Hlth, Atlanta, GA 30322 USA. [Sayer, Andrew M.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Greenbelt, MD USA. [Sayer, Andrew M.; Levy, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Zhang, Qiang] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Xue, Yingang] Changzhou Environm Monitoring Ctr, Changzhou, Jiangsu, Peoples R China. [Tong, Shilu] Queensland Univ Technol, Sch Publ Hlth & Social Work, Brisbane, Qld 4001, Australia. [Tong, Shilu] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4001, Australia. RP Liu, Y (reprint author), Emory Univ, Rollins Sch Publ Hlth, 1518 Clifton Rd NE, Atlanta, GA 30322 USA.; Huang, L (reprint author), Nanjing Univ, Sch Environm, 163 Xianlin Ave, Nanjing 210023, Jiangsu, Peoples R China. EM huanglei@nju.edu.cn; yang.liu@emory.edu RI Sayer, Andrew/H-2314-2012; Zhang, Qiang/D-9034-2012; Levy, Robert/M-7764-2013; OI Sayer, Andrew/0000-0001-9149-1789; Levy, Robert/0000-0002-8933-5303; Ma, Zongwei/0000-0003-0257-5695 FU U.S. Environmental Protection Agency (EPA) [R834799]; NASA Applied Sciences Program [NNX11AI53G]; Chinese National Natural Science Foundation [71433007]; National High-tech R&D Program (863 Program) of China [2013AA06A309]; China Scholarship Council (CSC) FX This publication was made possible by U.S. Environmental Protection Agency (EPA) grant R834799. The work of Y.L. was partially supported by the NASA Applied Sciences Program (grant NNX11AI53G). The work of L.H. and J.B. was partially supported by the Key Program of the Chinese National Natural Science Foundation (71433007) and the National High-tech R&D Program (863 Program) of China (2013AA06A309). The work of Z.M. was supported by the China Scholarship Council (CSC). NR 34 TC 15 Z9 17 U1 39 U2 100 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD FEB PY 2016 VL 124 IS 2 BP 184 EP 192 DI 10.1289/ehp.1409481 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA DC6NX UT WOS:000369337900011 PM 26220256 ER PT J AU Reid, PC Hari, RE Beaugrand, G Livingstone, DM Marty, C Straile, D Barichivich, J Goberville, E Adrian, R Aono, Y Brown, R Foster, J Groisman, P Helaouet, P Hsu, HH Kirby, R Knight, J Kraberg, A Li, JP Lo, TT Myneni, RB North, RP Pounds, JA Sparks, T Stubi, R Tian, YJ Wiltshire, KH Xiao, D Zhu, ZC AF Reid, Philip C. Hari, Renata E. Beaugrand, Gregory Livingstone, David M. Marty, Christoph Straile, Dietmar Barichivich, Jonathan Goberville, Eric Adrian, Rita Aono, Yasuyuki Brown, Ross Foster, James Groisman, Pavel Helaouet, Pierre Hsu, Huang-Hsiung Kirby, Richard Knight, Jeff Kraberg, Alexandra Li, Jianping Lo, Tzu-Ting Myneni, Ranga B. North, Ryan P. Pounds, J. Alan Sparks, Tim Stuebi, Rene Tian, Yongjun Wiltshire, Karen H. Xiao, Dong Zhu, Zaichun TI Global impacts of the 1980s regime shift SO GLOBAL CHANGE BIOLOGY LA English DT Article DE climate; Earth systems; global change; regime shift; statistical analysis; time series; volcanic forcing ID HEMISPHERE SST FIELD; NORTHERN-HEMISPHERE; SURFACE-TEMPERATURE; CLIMATE REGIME; VOLCANIC-ERUPTIONS; CMIP5 SIMULATIONS; SEA; OCEAN; CONSEQUENCES; ECOSYSTEMS AB Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichon volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur. C1 [Reid, Philip C.; Beaugrand, Gregory; Goberville, Eric; Helaouet, Pierre] Sir Alister Hardy Fdn Ocean Sci, Lab Citadel Hill, Plymouth PL1 2PB, Devon, England. [Reid, Philip C.; Kirby, Richard] Univ Plymouth, Inst Marine, Drake Circus, Plymouth PL4 8AA, Devon, England. [Reid, Philip C.] Lab, Marine Biol Assoc UK, Citadel Hill, Plymouth PL1 2PB, Devon, England. [Hari, Renata E.; Livingstone, David M.; North, Ryan P.] Eawag, Swiss Fed Inst Aquat Sci & Technol, Uberlandstr 133, CH-8600 Dubendorf, Switzerland. [Beaugrand, Gregory; Goberville, Eric] Univ Sci & Technol Lille, CNRS, LOG, UMR 8187, BP 80, F-62930 Wimereux, France. [Marty, Christoph] WSL Inst Snow & Avalanche Res SLF, Fluelastr 11, CH-7260 Davos, Switzerland. [Straile, Dietmar] Univ Konstanz, Limnol Inst, Dept Biol, D-78464 Constance, Germany. [Barichivich, Jonathan] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. [Barichivich, Jonathan] CEA CNRS UVSQ, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France. [Adrian, Rita] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecosyst Res, D-12587 Berlin, Germany. [Aono, Yasuyuki] Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Muggelseedamm 301, Sakai, Osaka 5998531, Japan. [Brown, Ross] Environm Canada Ouranos, Div Climate Res, Sci & Technol Branch, 550 Sherbrooke St West,19th Floor, Montreal, PQ H3A 1B9, Canada. [Foster, James] NASA, Goddard Space Flight Ctr, Code 917, Greenbelt, MD 20771 USA. [Groisman, Pavel] Natl Ctr Environm Informat, Ctr Weather & Climate, Fed Bldg,151 Patton Ave, Asheville, NC 28801 USA. [Groisman, Pavel] RAS, PP Shirshov Inst Oceanol, 36 Nakhimovsky Ave, Moscow 117997, Russia. [Hsu, Huang-Hsiung] Acad Sinica, Res Ctr Environm Changes, 128 Acad Rd,Sect 2, Taipei 115, Taiwan. [Knight, Jeff] Hadley Ctr, Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England. [Kraberg, Alexandra; Wiltshire, Karen H.] Alfred Wegener Inst Polar & Marine Res Biolog Ans, Kurpromenade 201, D-27498 Helgoland, Germany. [Li, Jianping] Beijing Normal Univ, Coll Global Change & Earth Syst Sci GCESS, Beijing 100875, Peoples R China. [Li, Jianping] Joint Ctr Global Change Studies, Beijing 100875, Peoples R China. [Lo, Tzu-Ting] Cent Weather Bur, Weather Forecast Ctr, 64 Gongyuan Rd, Taipei 10048, Taiwan. [Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, 685 Commonwealth Ave, Boston, MA 02215 USA. [North, Ryan P.] Helmholtz Zentrum Geesthacht, Inst Coastal Res, Max Planck Str 1, D-21502 Geesthacht, Germany. [Pounds, J. Alan] Trop Sci Ctr, Monteverde Cloud Forest Preserve, Puntarenas 565573, Costa Rica. [Sparks, Tim] Pozna Univ Life Sci, Inst Zool, Wojska Polskiego 71 C, PL-60625 Poznan, Poland. [Sparks, Tim] Coventry Univ, Fac Engn Environm & Comp, Coventry CV1 5FB, W Midlands, England. [Sparks, Tim] Tech Univ Munich, Fachgebiet Okoklimatol, Hans Carl von Carlowitz Pl 2, D-85354 Freising Weihenstephan, Germany. [Sparks, Tim] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2a, D-85748 Garching, Germany. [Stuebi, Rene] MeteoSwiss, Fed Off Meteorol & Climatol, Ch Aerol 1, CH-1530 Payerne, Switzerland. [Tian, Yongjun] Ocean Univ China, Coll Fisheries, Yushan Rd 5, Qingdao 266003, Peoples R China. [Tian, Yongjun] Japan Sea Natl Fisheries Res Inst, Fisheries Res Agcy, Chuo Ku, Niigata 9518121, Japan. [Xiao, Dong] Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China. [Zhu, Zaichun] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China. [Zhu, Zaichun] Ctr Applicat Spatial Informat Technol Publ Hlth, Beijing 100101, Peoples R China. RP Reid, PC (reprint author), Sir Alister Hardy Fdn Ocean Sci, Lab Citadel Hill, Plymouth PL1 2PB, Devon, England.; Reid, PC (reprint author), Univ Plymouth, Inst Marine, Drake Circus, Plymouth PL4 8AA, Devon, England.; Reid, PC (reprint author), Lab, Marine Biol Assoc UK, Citadel Hill, Plymouth PL1 2PB, Devon, England. EM pcre@sahfos.ac.uk RI Goberville, Eric/A-2621-2017; Myneni, Ranga/F-5129-2012; Straile, Dietmar/A-4065-2008 OI Goberville, Eric/0000-0002-1843-7855; Straile, Dietmar/0000-0002-7441-8552 FU Russian Ministry of Education and Science [14.B25.31.0026] FX We wish to thank all who contributed the time series data used in the figures (See Table S3) and others for assistance or for data not presented here, including Stephan Bader and Regula Gehrig Bichsel, MeteoSwiss, Zurich, Switzerland; Adrian Jakob, Edith Oosenbrug and Michele Oberhansli, BAFU Hydrology, Switzerland; and Reto Ruedy, NASA Goddard Institute for Space Studies, New York, USA. PG acknowledges support from Grant 14.B25.31.0026 of the Russian Ministry of Education and Science. We are grateful to Eawag and its Department of Systems Analysis, Integrated Assessment and Modelling for hosting a workshop in Zurich, Switzerland. NR 67 TC 17 Z9 17 U1 24 U2 63 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2016 VL 22 IS 2 BP 682 EP 703 DI 10.1111/gcb.13106 PG 22 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DC3RC UT WOS:000369135400017 PM 26598217 ER PT J AU Guan, KY Berry, JA Zhang, YG Joiner, J Guanter, L Badgley, G Lobell, DB AF Guan, Kaiyu Berry, Joseph A. Zhang, Yongguang Joiner, Joanna Guanter, Luis Badgley, Grayson Lobell, David B. TI Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence SO GLOBAL CHANGE BIOLOGY LA English DT Article DE carbon use efficiency; crop monitoring; fluorescence; gross primary production; net primary production; respiration ID LIGHT-USE EFFICIENCY; TERRESTRIAL CHLOROPHYLL FLUORESCENCE; GROSS PRIMARY PRODUCTION; NET PRIMARY PRODUCTION; UNITED-STATES; PHOTOSYNTHESIS; MODELS; SATELLITE; ECOSYSTEM; VEGETATION AB Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C-3 and C-4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change. C1 [Guan, Kaiyu; Badgley, Grayson; Lobell, David B.] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA. [Guan, Kaiyu; Lobell, David B.] Stanford Univ, Ctr Food Secur & Environm, Stanford, CA 94305 USA. [Berry, Joseph A.; Badgley, Grayson] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [Zhang, Yongguang] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China. [Zhang, Yongguang; Guanter, Luis] German Res Ctr Geosci GFZ, Remote Sensing Sect, Telegrafenberg A17, D-14473 Potsdam, Germany. [Joiner, Joanna] NASA, Goddard Space Flight Ctr, Lab Atmospher Chem & Dynam, Code 614, Greenbelt, MD 20771 USA. RP Guan, KY (reprint author), Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA.; Guan, KY (reprint author), Stanford Univ, Ctr Food Secur & Environm, Stanford, CA 94305 USA. EM kaiyug@stanford.edu FU U.S. National Science Foundation [SES-1048946]; Terman Fellowship from Stanford University FX K.G. and D.B.L. have been funded by the U.S. National Science Foundation (SES-1048946) and a Terman Fellowship from Stanford University. This work used eddy covariance data acquired by AmeriFlux. We thank PIs of the flux tower sites: T. Meyers (NOAA/ARL), D. Cook and R. Matamala (Argonne National Laboratory), and A. Suyker (Univ. Nebraska). All the data used in this study can be shared by request (kaiyug@stanford.edu, dlobell@stanford.edu). NR 58 TC 9 Z9 9 U1 17 U2 51 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2016 VL 22 IS 2 BP 716 EP 726 DI 10.1111/gcb.13136 PG 11 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DC3RC UT WOS:000369135400019 PM 26490834 ER PT J AU Kim, DJ Hensley, S Yun, SH Neumann, M AF Kim, Duk-jin Hensley, Scott Yun, Sang-Ho Neumann, Maxim TI Detection of Durable and Permanent Changes in Urban Areas Using Multitemporal Polarimetric UAVSAR Data SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Change detection; multitemporal; polarimetry; Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR); urban ID SAR CHANGE DETECTION; DECOMPOSITION; IMAGERY; MODEL AB Change detection using synthetic aperture radar (SAR) data is useful in emergency situations and unfavorable weather conditions. In this letter, change detection using multitemporal polarimetric Uninhabited Aerial Vehicle SAR data is investigated in an urban environment. The most robust polarimetric parameters are determined, and change detection techniques using a maximum likelihood ratio and a hyperbolic tangent model function are applied to the selected parameter. The model function was introduced to quantify the change characteristics and to rule out seasonal changes or those related to mobile features, and thus to only detect durable and permanent changes in urban environments. A comparison of results with historical Google Earth images showed a good level of agreement. Fitting of the hyperbolic tangent function to the multitemporal polarimetric parameters significantly reduces the false detection rate and indicates whether a building was constructed or destroyed, as well as when the detected changes occurred. C1 [Kim, Duk-jin; Hensley, Scott; Yun, Sang-Ho; Neumann, Maxim] CALTECH, Jet Prop Lab, Radar Sci & Engn Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Kim, Duk-jin] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. RP Kim, DJ (reprint author), CALTECH, Jet Prop Lab, Radar Sci & Engn Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Kim, DJ (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. EM djkim@snu.ac.kr FU Space Core Technology Development Program through the National Research Foundation of Korea - Ministry of Science, ICT, and Future Planning [2014M1A3A3A03034799, 2011-0020884]; National Aeronautics and Space Administration Applied Sciences Program FX This work was supported in part by the Space Core Technology Development Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT, and Future Planning under Grant 2014M1A3A3A03034799 and Grant 2011-0020884 and in part by the National Aeronautics and Space Administration Applied Sciences Program. NR 16 TC 1 Z9 1 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD FEB PY 2016 VL 13 IS 2 BP 267 EP 271 DI 10.1109/LGRS.2015.2509080 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DC8QA UT WOS:000369483500030 ER PT J AU Brown, PT Li, WH Jiang, JH Su, H AF Brown, Patrick T. Li, Wenhong Jiang, Jonathan H. Su, Hui TI Unforced Surface Air Temperature Variability and Its Contrasting Relationship with the Anomalous TOA Energy Flux at Local and Global Spatial Scales SO JOURNAL OF CLIMATE LA English DT Article DE Atm; Ocean Structure; Phenomena; El Nino; Physical Meteorology and Climatology; Cloud radiative effects; Feedback; Longwave radiation; Surface temperature; Variability; Interannual variability ID WATER-VAPOR FEEDBACK; 1998 EL-NINO; CLIMATE MODELS; WARMING HIATUS; INTERANNUAL VARIABILITY; ATMOSPHERIC BRIDGE; RADIATION BUDGET; CLOUD FEEDBACK; PACIFIC; ENSO AB Unforced global mean surface air temperature ((T) over bar) is stable in the long term primarily because warm T anomalies are associated with enhanced outgoing longwave radiation (up arrow LW) to space and thus a negative net radiative energy flux ((N) over bar, positive downward) at the top of the atmosphere (TOA). However, it is shown here that, with the exception of high latitudinal and specific continental regions, warm unforced surface air temperature anomalies at the local spatial scale [T(theta, phi), where (theta, phi) = (latitude, longitude)] tend to be associated with anomalously positive N(theta, phi). It is revealed that this occurs mainly because warm T(theta, phi) anomalies are accompanied by anomalously low surface albedo near sea icemargins and over high altitudes, low cloud albedo overmuch of themiddle and lowlatitudes, and a largewater vapor greenhouse effect over the deep Indo- Pacific. It is shown here that the negative (N) over bar versus (T) over bar relationship arises because warm (T) over bar anomalies are associated with large divergence of atmospheric energy transport over the tropical Pacific [where theN(theta, phi) versus T(theta, phi) relationship tends to be positive] and convergence of atmospheric energy transport at high latitudes [where the N(theta, phi) versus T(theta, phi) relationship tends to be negative]. Additionally, the characteristic surface temperature pattern contains anomalously cool regions where a positive local N(theta, phi) versus T(theta, phi) relationship helps induce negative (N) over bar. Finally, large- scale atmospheric circulation changes play a critical role in the production of the negative (N) over bar versus (T) over bar relationship as they drive cloud reduction and atmospheric drying over large portions of the tropics and subtropics, which allows for greatly enhanced up arrow LW. C1 [Brown, Patrick T.; Li, Wenhong] Duke Univ, Nicholas Sch Environm, Earth & Ocean Sci, 5120K Environm Hall,9 Circuit Dr, Durham, NC 27708 USA. [Jiang, Jonathan H.; Su, Hui] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Brown, PT (reprint author), Duke Univ, Nicholas Sch Environm, Earth & Ocean Sci, 5120K Environm Hall,9 Circuit Dr, Durham, NC 27708 USA. EM patrick.brown@duke.edu FU NSF [AGS-1147608]; NASA ROSES13-NDOA; NASA ROSES12-MAP; NASA ROSES-NEWS; NASA FX We thank Dr. Drew Shindell for helpful discussions on this topic. We acknowledge Dr. Aaron Donohoe and two anonymous reviewers whose comments greatly enhanced the manuscript. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work was partially supported by NSF Grant AGS-1147608. We also acknowledge the support from NASA ROSES13-NDOA, ROSES12-MAP, and ROSES-NEWS programs. This research was partially conducted at the Jet Propulsion Laboratory, California Institute of Technology, sponsored by NASA. NR 63 TC 2 Z9 2 U1 1 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD FEB PY 2016 VL 29 IS 3 BP 925 EP 940 DI 10.1175/JCLI-D-15-0384.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DC5SA UT WOS:000369279500003 ER PT J AU Rossow, WB Zhang, YC Tselioudis, G AF Rossow, William B. Zhang, Yuanchong Tselioudis, George TI Atmospheric Diabatic Heating in Different Weather States and the General Circulation SO JOURNAL OF CLIMATE LA English DT Article DE Circulation; Dynamics; Atmospheric circulation; Clouds; Feedback ID TROPICAL WESTERN PACIFIC; CLOUD REGIMES; PRECIPITATION; ISCCP AB Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by stormy weather and more nearly continuous, weak cooling by fair weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful feedback like relationships between cloud processes and the large-scale circulation. C1 [Rossow, William B.] CUNY City Coll, CREST Inst, Steinman Hall T-107,140th St & Convent Ave, New York, NY 10031 USA. [Zhang, Yuanchong] Columbia Univ, Appl Phys & Appl Math, New York, NY USA. [Tselioudis, George] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Rossow, WB (reprint author), CUNY City Coll, CREST Inst, Steinman Hall T-107,140th St & Convent Ave, New York, NY 10031 USA. EM wbrossow@gmail.com FU NSF [AGS-1240643]; NASA [NNX13AO39G]; NASA Modeling, Analysis and Prediction (MAP) program; NASA grant FX WBR is supported by grants from the NSF (AGS-1240643) and NASA (NNX13AO39G), and Y-CZ is supported by the NASA grant. GT is supported by the NASA Modeling, Analysis and Prediction (MAP) program. We thank Christian Jakob for many good discussions of these ideas. NR 20 TC 2 Z9 2 U1 5 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD FEB PY 2016 VL 29 IS 3 BP 1059 EP 1065 DI 10.1175/JCLI-D-15-0760.1 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DC5UK UT WOS:000369285800001 ER PT J AU Chartrand, T McCollum, G Hanes, DA Boyle, RD AF Chartrand, Thomas McCollum, Gin Hanes, Douglas A. Boyle, Richard D. TI Symmetries of a generic utricular projection: neural connectivity and the distribution of utricular information SO JOURNAL OF MATHEMATICAL BIOLOGY LA English DT Article DE Utricle; Symmetry; Group; Projection ID ANGULAR VESTIBULOOCULAR REFLEX; CENTRAL VESTIBULAR SYSTEM; OTOCONIA-DEFICIENT MICE; CANAL-NECK PROJECTION; SPATIAL ORIENTATION; SEMICIRCULAR CANALS; NODULUS; UVULA; ORGANIZATION; MOTONEURONS AB Sensory contribution to perception and action depends on both sensory receptors and the organization of pathways (or projections) reaching the central nervous system. Unlike the semicircular canals that are divided into three discrete sensitivity directions, the utricle has a relatively complicated anatomical structure, including sensitivity directions over essentially of a curved, two-dimensional disk. The utricle is not flat, and we do not assume it to be. Directional sensitivity of individual utricular afferents decreases in a cosine-like fashion from peak excitation for movement in one direction to a null or near null response for a movement in an orthogonal direction. Directional sensitivity varies slowly between neighboring cells except within the striolar region that separates the medial from the lateral zone, where the directional selectivity abruptly reverses along the reversal line. Utricular primary afferent pathways reach the vestibular nuclei and cerebellum and, in many cases, converge on target cells with semicircular canal primary afferents and afference from other sources. Mathematically, some canal pathways are known to be characterized by symmetry groups related to physical space. These groups structure rotational information and movement. They divide the target neural center into distinct populations according to the innervation patterns they receive. Like canal pathways, utricular pathways combine symmetries from the utricle with those from target neural centers. This study presents a generic set of transformations drawn from the known structure of the utricle and therefore likely to be found in utricular pathways, but not exhaustive of utricular pathway symmetries. This generic set of transformations forms a 32-element group that is a semi-direct product of two simple abelian groups. Subgroups of the group include order-four elements corresponding to discrete rotations. Evaluation of subgroups allows us to functionally identify the spatial implications of otolith and canal symmetries regarding action and perception. Our results are discussed in relation to observed utricular pathways, including those convergent with canal pathways. Oculomotor and other sensorimotor systems are organized according to canal planes. However, the utricle is evolutionarily prior to the canals and may provide a more fundamental spatial framework for canal pathways as well as for movement. The fullest purely otolithic pathway is likely that which reaches the lumbar spine via Deiters' cells in the lateral vestibular nucleus. It will be of great interest to see whether symmetries predicted from the utricle are identified within this pathway. C1 [Chartrand, Thomas] Univ Calif Davis, Grad Grp Appl Math, Davis, CA 95618 USA. [McCollum, Gin] Portland State Univ, Fariborz Maseeh Dept Math & Stat, POB 751, Portland, OR 97207 USA. [Hanes, Douglas A.] Natl Coll Nat Med, Sch Res & Grad Studies, Portland, OR 97201 USA. [Boyle, Richard D.] NASA, Vestibular Biophys Lab, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hanes, DA (reprint author), Natl Coll Nat Med, Sch Res & Grad Studies, Portland, OR 97201 USA. EM gin.mccollum@pdx.edu; douglas.hanes@gmail.com FU Coleman Wheeler Summer Fellowship; NASA [03-OBPR-04]; NASA Human Research Program FX We gratefully acknowledge the mechanization of group analysis made possible by the GAP software provided on http://www.gap-system.org and the support of the Coleman Wheeler Summer Fellowship (to TC). RDB gratefully acknowledges the support of NASA 03-OBPR-04 grant and NASA Human Research Program. We thank Michael Miletic for the image of the "missing link". We heartily appreciate the efforts of two anonymous reviewers to critique this intensely interdisciplinary paper and point out the places in which it has needed amplification and clarification. NR 56 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0303-6812 EI 1432-1416 J9 J MATH BIOL JI J. Math. Biol. PD FEB PY 2016 VL 72 IS 3 BP 727 EP 753 DI 10.1007/s00285-015-0900-5 PG 27 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA DC9EA UT WOS:000369522700007 PM 26059813 ER PT J AU Mlynczak, MG Cageao, RP Mast, JC Kratz, DP Latvakoski, H Johnson, DG AF Mlynczak, Martin G. Cageao, Richard P. Mast, Jeffrey C. Kratz, David P. Latvakoski, Harri Johnson, David G. TI Observations of downwelling far-infrared emission at Table Mountain California made by the FIRST instrument SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Far-Infrared; Spectral radiance; Water vapor; Greenhouse effect; Radiative closure ID SPECTROSCOPY; CALIBRATION; MISSION; CLIMATE; DESIGN AB The Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument measured down welling far-infrared (far-IR) and mid-infrared (mid-IR) atmospheric spectra from 200 to 800 cm(-1) at Table Mountain, California (elevation 2285 m). Spectra were recorded during a field campaign conducted in early autumn 2012, subsequent to a detailed laboratory calibration of the instrument. Radiosondes launched coincident with the FIRST observations provide temperature and water vapor profiles for model simulation of the measured spectra. Results from the driest day of the campaign (October 19, with less than 3 mm precipitable water) are presented here. Considerable spectral development is observed between 400 and 600 cm(-1). Over 90% of the measured radiance in this interval originates within 2.8 km of the surface. The existence of temperature inversions close to the surface necessitates atmospheric layer thicknesses as fine as 10 m in the radiative transfer model calculations. A detailed assessment of the uncertainties in the FIRST measurements and in the model calculations shows that the measured radiances agree with the model radiance calculations to within their combined uncertainties. The uncertainties in modeled radiance are shown to be larger than the measurement uncertainties. Overall, the largest source of uncertainty is in the water vapor concentration used in the radiative transfer calculations. Proposed new instruments with markedly higher measurement accuracy than FIRST will be able to measure the far-IR spectrum to much greater accuracy than it can be computed. As such, accurate direct measurements of the far-IR, and not solely calculations, are essential to the assessment of climate change. Published by Elsevier Ltd. C1 [Mlynczak, Martin G.; Kratz, David P.] NASA, Climate Sci Branch, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. [Cageao, Richard P.; Johnson, David G.] NASA, Remote Sensing Flight Syst Branch, Langley Res Ctr, Mail Stop 468, Hampton, VA 23681 USA. [Latvakoski, Harri] Space Dynam Lab, 1695 Res Pk Way, Logan, UT 84341 USA. [Mast, Jeffrey C.] Sci Syst & Applicat Inc, 1 Enterprise Pkwy, Hampton, VA 23666 USA. RP Mlynczak, MG (reprint author), NASA, Climate Sci Branch, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM m.g.mlynczak@nasa.gov; richard.p.cageao@nasa.gov; jeffrey.c.mast@nasa.gov; david.p.kratz@nasa.gov; harri.latvakoski@sdl.usu.edu; david.g.johnson@nasa.gov FU NASA Earth Science Technology Office; NASA Langley Research Center FX The authors acknowledge the NASA Earth Science Technology Office for support of the FIRST recalibration effort and the Climate Absolute Radiance and Refractivity Observatory (CLARREO) project at NASA Langley Research Center for support of the FIRST field campaign data analyses. Dan Walsh, Thierry Leblanc, Pam Glatfelter, and Bruce Williamson of the Jet Propulsion Laboratory Table Mountain Facility were extremely helpful in making the deployment during August to October 2012 run smoothly. Jason Swasey, Kendall Johnson, Mark Esplin, Erik Syrstad, Mike Watson of the Space Dynamics Laboratory provided significant on-site support in the set up and operation of the FIRST instrument during the campaign. NR 26 TC 3 Z9 3 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB PY 2016 VL 170 BP 90 EP 105 DI 10.1016/j.jqsrt.2015.10.017 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DC4LJ UT WOS:000369192100009 ER PT J AU Tompson, SR AF Tompson, Sara R. TI Encyclopedia of Archival Science. SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA USA. NR 1 TC 0 Z9 0 U1 1 U2 1 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD FEB 1 PY 2016 VL 141 IS 2 BP 99 EP 100 PG 2 WC Information Science & Library Science SC Information Science & Library Science GA DC3NV UT WOS:000369126900230 ER PT J AU Tian, YD Nearing, G Peters-Lidard, CD Harrison, KW Tang, L AF Tian, Yudong Nearing, Grey S. Peters-Lidard, Christa D. Harrison, Kenneth W. Tang, Ling TI Performance Metrics, Error Modeling, and Uncertainty Quantification SO MONTHLY WEATHER REVIEW LA English DT Article DE Mathematical and statistical techniques; Error analysis; Forecasting; Forecast verification; skill; Models and modeling; Model errors; Model evaluation; performance ID FORECAST VERIFICATION; CORRELATION-COEFFICIENT; SKILL SCORES; PRECIPITATION; INFORMATION; DECOMPOSITION; TEMPERATURE; QUALITY AB A common set of statistical metrics has been used to summarize the performance of models or measurementsthe most widely used ones being bias, mean square error, and linear correlation coefficient. They assume linear, additive, Gaussian errors, and they are interdependent, incomplete, and incapable of directly quantifying uncertainty. The authors demonstrate that these metrics can be directly derived from the parameters of the simple linear error model. Since a correct error model captures the full error information, it is argued that the specification of a parametric error model should be an alternative to the metrics-based approach. The error-modeling methodology is applicable to both linear and nonlinear errors, while the metrics are only meaningful for linear errors. In addition, the error model expresses the error structure more naturally, and directly quantifies uncertainty. This argument is further explained by highlighting the intrinsic connections between the performance metrics, the error model, and the joint distribution between the data and the reference. C1 [Tian, Yudong; Nearing, Grey S.; Peters-Lidard, Christa D.; Harrison, Kenneth W.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA. [Tian, Yudong; Harrison, Kenneth W.; Tang, Ling] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Nearing, Grey S.] Sci Applicat Int Corp, Beltsville, MD USA. RP Tian, YD (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 617, Greenbelt, MD 20771 USA. EM yudong.tian@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Measurement, Global/C-4698-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; FU NASA Earth System Data Records Uncertainty Analysis Program [NH10ZDA001N-ESDRERR] FX This research was supported by the NASA Earth System Data Records Uncertainty Analysis Program (Martha E. Maiden) under solicitation NNH10ZDA001N-ESDRERR. Computing resources were provided by the NASA Center for Climate Simulation. We thank two anonymous reviewers for their helpful comments. NR 28 TC 3 Z9 3 U1 4 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2016 VL 144 IS 2 BP 607 EP 613 DI 10.1175/MWR-D-15-0087.1 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD2AF UT WOS:000369724000002 ER PT J AU Lien, GY Kalnay, E Miyoshi, T Huffman, GJ AF Lien, Guo-Yuan Kalnay, Eugenia Miyoshi, Takemasa Huffman, George J. TI Statistical Properties of Global Precipitation in the NCEP GFS Model and TMPA Observations for Data Assimilation SO MONTHLY WEATHER REVIEW LA English DT Article DE Atm; Ocean Structure; Phenomena; Precipitation; Observational techniques and algorithms; Satellite observations; Mathematical and statistical techniques; Bias; Models and modeling; Data assimilation ID VARIATIONAL DATA ASSIMILATION; MESOSCALE MODEL; KALMAN FILTER; SYSTEM; CLOUD; RADIANCES AB Assimilation of satellite precipitation data into numerical models presents several difficulties, with two of the most important being the non-Gaussian error distributions associated with precipitation, and large model and observation errors. As a result, improving the model forecast beyond a few hours by assimilating precipitation has been found to be difficult. To identify the challenges and propose practical solutions to assimilation of precipitation, statistics are calculated for global precipitation in a low-resolution NCEP Global Forecast System (GFS) model and the TRMM Multisatellite Precipitation Analysis (TMPA). The samples are constructed using the same model with the same forecast period, observation variables, and resolution as in the follow-on GFS/TMPA precipitation assimilation experiments presented in the companion paper.The statistical results indicate that the T62 and T126 GFS models generally have positive bias in precipitation compared to the TMPA observations, and that the simulation of the marine stratocumulus precipitation is not realistic in the T62 GFS model. It is necessary to apply to precipitation either the commonly used logarithm transformation or the newly proposed Gaussian transformation to obtain a better relationship between the model and observational precipitation. When the Gaussian transformations are separately applied to the model and observational precipitation, they serve as a bias correction that corrects the amplitude-dependent biases. In addition, using a spatially and/or temporally averaged precipitation variable, such as the 6-h accumulated precipitation, should be advantageous for precipitation assimilation. C1 [Lien, Guo-Yuan; Kalnay, Eugenia; Miyoshi, Takemasa] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Lien, Guo-Yuan; Miyoshi, Takemasa] RIKEN, Adv Inst Computat Sci, Kobe, Hyogo, Japan. [Miyoshi, Takemasa] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan. [Huffman, George J.] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD USA. RP Lien, GY (reprint author), RIKEN, Adv Inst Computat Sci, Data Assimilat Res Team, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan. EM guo-yuan.lien@riken.jp RI Huffman, George/F-4494-2014; Miyoshi, Takemasa/C-2768-2009; Measurement, Global/C-4698-2015; Lien, Guo-Yuan/C-4613-2016; PMM, JAXA/K-8537-2016; OI Huffman, George/0000-0003-3858-8308; Miyoshi, Takemasa/0000-0003-3160-2525; Lien, Guo-Yuan/0000-0002-0400-6210; Kalnay, Eugenia/0000-0002-9984-9906 FU NASA [NNX11AH39G, NNX11AL25G, NNX13AG68G]; NOAA [NA100OAR4310248, CICS-PAEK-LETKF11]; Office of Naval Research (ONR) [N000141010149]; Japan Aerospace Exploration Agency (JAXA) Precipitation Measuring Mission (PMM) FX This study was done as part of Guo-Yuan Lien's Ph.D. thesis work at the University of Maryland, partially supported by NASA Grants NNX11AH39G, NNX11AL25G, and NNX13AG68G; NOAA Grants NA100OAR4310248 and CICS-PAEK-LETKF11; and the Office of Naval Research (ONR) Grant N000141010149 under the National Oceanographic Partnership Program (NOPP). We obtained a version of the GFS model from NOAA's Environmental Modeling Center (EMC) with the kind help of Henry Huang and Daryl Kleist, and the model was ported to our Linux cluster with the contribution by Tetsuro Miyachi. We also gratefully acknowledge the support from the Japan Aerospace Exploration Agency (JAXA) Precipitation Measuring Mission (PMM). NR 43 TC 6 Z9 6 U1 3 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2016 VL 144 IS 2 BP 663 EP 679 DI 10.1175/MWR-D-15-0150.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD2AN UT WOS:000369724900001 ER PT J AU van Lier-Walqui, M Fridlind, AM Ackerman, AS Collis, S Helmus, J MacGorman, DR North, K Kollias, P Posselt, DJ AF van Lier-Walqui, Marcus Fridlind, Ann M. Ackerman, Andrew S. Collis, Scott Helmus, Jonathan MacGorman, Donald R. North, Kirk Kollias, Pavlos Posselt, Derek J. TI On Polarimetric Radar Signatures of Deep Convection for Model Evaluation: Columns of Specific Differential Phase Observed during MC3E SO MONTHLY WEATHER REVIEW LA English DT Article DE Circulation; Dynamics; Convective storms; Updrafts; Atm; Ocean Structure; Phenomena; Lightning; Rainfall; Observational techniques and algorithms; Radars; Radar observations; Mathematical and statistical techniques; Pattern detection ID SUPERCELL STORM; MICROPHYSICAL CHARACTERISTICS; PRECIPITATION PROCESSES; LIGHTNING OBSERVATIONS; MULTIPARAMETER RADAR; PROPAGATION PHASE; SQUALL LINE; IN-SITU; RAINFALL; SYSTEMS AB The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts. C1 [van Lier-Walqui, Marcus] Columbia Univ, CCSR, 2880 Broadway, New York, NY 10027 USA. [van Lier-Walqui, Marcus; Fridlind, Ann M.; Ackerman, Andrew S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Collis, Scott; Helmus, Jonathan] Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [MacGorman, Donald R.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [MacGorman, Donald R.] Cooperat Inst Mesoscale Meteorol Studies, Norman, OK USA. [North, Kirk; Kollias, Pavlos] McGill Univ, Montreal, PQ, Canada. [Posselt, Derek J.] Univ Michigan, Ann Arbor, MI 48109 USA. RP van Lier-Walqui, M (reprint author), Columbia Univ, CCSR, 2880 Broadway, New York, NY 10027 USA. EM marcus.vanlier-walqui@nasa.gov RI Measurement, Global/C-4698-2015; OI MacGorman, Donald/0000-0002-2395-8196; North, Kirk/0000-0002-1938-4046 FU Office of Science (BER), U.S. Department of Energy [DE-SC0006988]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-06CH11357]; Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the ARM Program FX This research was supported by the Office of Science (BER), U.S. Department of Energy, Award DE-SC0006988. MC3E data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357. This work has been supported by the Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the ARM Program. The authors thank Scott Giangrande, Alexander Ryzhkov, and Matthew Kumjian for helpful discussions during preparation of this manuscript. NR 77 TC 1 Z9 1 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2016 VL 144 IS 2 BP 737 EP 758 DI 10.1175/MWR-D-15-0100.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD2AX UT WOS:000369725900002 ER PT J AU Cooper, BL Thaisen, K Chang, BC Lee, TS McKay, DS AF Cooper, B. L. Thaisen, K. Chang, B. C. Lee, T. S. McKay, D. S. TI Reply to 'Integrity of lunar soil samples' SO NATURE GEOSCIENCE LA English DT Letter C1 [Cooper, B. L.; Chang, B. C.; Lee, T. S.] Hanyang Univ, Int Space Explorat Res Inst, 2nd Engn Bldg,1271,Sa 3 Dong, Ansan 426791, Gyeonggi Do, South Korea. [Thaisen, K.] Grand Valley State Univ, Dept Geol, Allendale, MI 49401 USA. [McKay, D. S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Cooper, BL (reprint author), Hanyang Univ, Int Space Explorat Res Inst, 2nd Engn Bldg,1271,Sa 3 Dong, Ansan 426791, Gyeonggi Do, South Korea. EM bcooper108@gmail.com NR 2 TC 0 Z9 0 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD FEB PY 2016 VL 9 IS 2 BP 87 EP 87 DI 10.1038/ngeo2645 PG 1 WC Geosciences, Multidisciplinary SC Geology GA DC6IY UT WOS:000369324600003 ER PT J AU Taylor, LA Liu, Y Lofgren, G AF Taylor, Lawrence A. Liu, Yang Lofgren, Gary TI Integrity of lunar soil samples SO NATURE GEOSCIENCE LA English DT Letter C1 [Taylor, Lawrence A.] Univ Tennessee, Planetary Geosci Inst, Earth & Planetary Sci, Knoxville, TN 37996 USA. [Liu, Yang] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Lofgren, Gary] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Taylor, LA (reprint author), Univ Tennessee, Planetary Geosci Inst, Earth & Planetary Sci, Knoxville, TN 37996 USA. EM lataylor@utk.edu NR 4 TC 0 Z9 0 U1 2 U2 4 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD FEB PY 2016 VL 9 IS 2 BP 87 EP 87 DI 10.1038/ngeo2637 PG 1 WC Geosciences, Multidisciplinary SC Geology GA DC6IY UT WOS:000369324600002 ER PT J AU Magney, TS Vierling, LA Eitel, JUH Huggins, DR Garrity, SR AF Magney, Troy S. Vierling, Lee A. Eitel, Jan U. H. Huggins, David R. Garrity, Steven R. TI Response of high frequency Photochemical Reflectance Index (PRI) measurements to environmental conditions in wheat SO REMOTE SENSING OF ENVIRONMENT LA English DT Article; Proceedings Paper CT 2014 ForestSAT Conference CY NOV 04-07, 2014 CL Riva del Garda, ITALY DE Photochemical Reflectance Index (PRI); Spectral Reflectance Sensors (SRS); Delta PRI; Diurnal spectral reflectance; Plant water stress; Plant nitrogen stress; Remote sensing; Xanthophyll cycle; Wheat ID LIGHT-USE EFFICIENCY; STATE CHLOROPHYLL FLUORESCENCE; RADIATION-USE EFFICIENCY; WATER-STRESS DETECTION; XANTHOPHYLL CYCLE; PHOTOSYNTHETIC EFFICIENCY; HYPERSPECTRAL IMAGERY; ENERGY-DISSIPATION; DATA ASSIMILATION; SHADOW FRACTION AB Remotely sensed data that are sensitive to rapidly changing plant physiology can provide real-time information about crop responses to abiotic conditions. The Photochemical Reflectance Index (PRI) has shown promise when measured at short timesteps to remotely estimate dynamics in xanthophyll pigment interconversion a plant photoprotective mechanism that results in lowered photosynthetic efficiency. To gain a better understanding of this dynamic spectral response to environmental conditions, we investigated PRI over two seasons (2013 and 2014) in rainfed soft white spring wheat (Triticum aestivum L.). Highly temporally resolved (measurement frequency = five minutes) in-situ radiometric measurements of PRI were collected at field plots of varying nitrogen (N) and soil water conditions (n = 16). To represent the diurnal magnitude of xanthophyll pigment inter conversion, we use a delta PRI (Delta PRI) derived from a midday PRI (xanthophyll de-epoxidation state) and an early morning PRI (xanthophyll epoxidation state). We hypothesize that Delta PRI can empirically deconvolve the diurnally changing (facultative) from the seasonally changing (constitutive) component of the PRI signal. In this study, Delta PRI demonstrated less sensitivity than an uncorrected PRI to leaf area index (LAI) and leaf chlorophyll content throughout the growing season. Delta PRI! was correlated with continuous, unattended crop responses associated with vapor pressure deficit (0.50 > R-2 > 0.48), stomatal conductance (R-2 = 0.47), and air temperature (0.42 > R-2 > 35). Further, the sensitivity with which Delta PRI responded to solar radiation under varying N treatments and periods of soil water availability (surplus, depletion, and deficit) suggests that crop growth may be inhibited by a xanthophyll cycle mediated stress response, detectable by Delta PRI A major implication of these findings is that highly temporally and spatially resolved Delta PRI data could be used to track plant status in response to changing environmental conditions. (C) 2015 Elsevier Inc. All rights reserved. C1 [Magney, Troy S.; Vierling, Lee A.; Eitel, Jan U. H.] Univ Idaho, Geospatial Lab Environm Dynam, Moscow, ID 83844 USA. [Vierling, Lee A.; Eitel, Jan U. H.] Univ Idaho, McCall Outdoor Sci Sch, Mccall, ID 83638 USA. [Huggins, David R.] USDA ARS, Pullman, WA 99163 USA. [Garrity, Steven R.] Decagon Devices, Pullman, WA 99163 USA. [Magney, Troy S.] NASA, Jet Prop Lab, Washington, DC USA. [Magney, Troy S.] 4800 Oak Grove Dr MS 233-300, Pasadena, CA USA. RP Magney, TS (reprint author), Univ Idaho, Geospatial Lab Environm Dynam, Moscow, ID 83844 USA.; Magney, TS (reprint author), NASA, Jet Prop Lab, Washington, DC USA.; Magney, TS (reprint author), 4800 Oak Grove Dr MS 233-300, Pasadena, CA USA. EM tmagney@uidaho.edu; leev@uidaho.edu; jeitel@uidaho.edu; dhuggins@wsu.edu; steven@decagon.com FU US Department of Agriculture National Institute of Food and Agricutlutre (USDA-NIFA) award [637003-3034]; NASA Idaho Space Grant Fellowship awarded [NNX10AM75H] FX Many thanks to Sam Finch, Leanna Dann, Jyotti Jennewein, and Dave Uberaga for their field support, and Drs. Barry A. Logan, Kevin L. Griffin, David Brown, Erin Brooks, Caley Gasch, Douglas R. Cobos, Colin Campbell, and Gaylon Campbell for their comments during previous versions and developments of this work. This research was made possible through the funding provided by US Department of Agriculture National Institute of Food and Agricutlutre (USDA-NIFA) award 2011 - 637003-3034 and the NASA Idaho Space Grant Fellowship awarded to TSM (#NNX10AM75H). NR 78 TC 5 Z9 5 U1 10 U2 33 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD FEB PY 2016 VL 173 BP 84 EP 97 DI 10.1016/j.rse.2015.11.013 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DC4OT UT WOS:000369200900007 ER PT J AU Gregoire, TG Naesset, E McRoberts, RE Stahl, G Andersen, HE Gobakken, T Ene, L Nelson, R AF Gregoire, Timothy G. Naesset, Erik McRoberts, Ronald E. Stahl, Goran Andersen, Hans-Erik Gobakken, Terje Ene, Liviu Nelson, Ross TI Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass SO REMOTE SENSING OF ENVIRONMENT LA English DT Article; Proceedings Paper CT 2014 ForestSAT Conference CY NOV 04-07, 2014 CL Riva del Garda, ITALY DE Sampling; Statistical inference; Variance estimation ID MODEL-BASED INFERENCE; POST-STRATIFIED ESTIMATION; GROWING STOCK VOLUME; HEDMARK COUNTY; SAMPLE SURVEY; SIMULATION APPROACH; FINITE POPULATIONS; BOOTSTRAP METHODS; AIRBORNE LIDAR; NORWAY AB For many decades remotely sensed data have been used as a source of auxiliary information when conducting regional or national surveys of forest resources. In the past decade, airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool for sample surveys aimed at improving estimation of aboveground forest biomass. This technology is now employed routinely in forest management inventories of some Nordic countries, and there is eager anticipation for its application to assess changes in standing biomass in vast tropical regions of the globe in concert with the UN REDD program to limit C emissions. In the rapidly expanding literature on LiDAR-assisted biomass estimation the assessment of the uncertainty of estimation varies widely, ranging from statistically rigorous to ad hoc. In many instances, too, there appears to be no recognition of different bases of statistical inference which bear importantly on uncertainty estimation. Statistically rigorous assessment of uncertainty for four large LiDAR-assisted surveys is expounded. (C) 2015 Elsevier Inc. All rights reserved. C1 [Gregoire, Timothy G.] Yale Univ, Sch Forestry & Environm Studies, 360 Prospect St, New Haven, CT 06511 USA. [Naesset, Erik; Gobakken, Terje; Ene, Liviu] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, POB 5003, NO-1432 As, Norway. [McRoberts, Ronald E.] US Forest Serv, No Res Stn, St Paul, MN 55108 USA. [Stahl, Goran] Swedish Univ Agr Sci, Dept Forest Resource Management & Geomat, S-90183 Umea, Sweden. [Andersen, Hans-Erik] US Forest Serv, Pacific NW Res Stn, Seattle, WA 98195 USA. [Nelson, Ross] NASA, Biospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gregoire, TG (reprint author), Yale Univ, Sch Forestry & Environm Studies, 360 Prospect St, New Haven, CT 06511 USA. EM timothy.gregoire@yale.edu NR 40 TC 11 Z9 11 U1 12 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD FEB PY 2016 VL 173 BP 98 EP 108 DI 10.1016/j.rse.2015.11.012 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DC4OT UT WOS:000369200900008 ER PT J AU Neigh, CSR Masek, JG Bourget, P Rishmawi, K Zhao, F Huang, CQ Cook, BD Nelson, RF AF Neigh, Christopher S. R. Masek, Jeffrey G. Bourget, Paul Rishmawi, Khaldoun Zhao, Feng Huang, Chengquan Cook, Bruce D. Nelson, Ross F. TI Regional rates of young US forest growth estimated from annual Landsat disturbance history and IKONOS stereo imagery SO REMOTE SENSING OF ENVIRONMENT LA English DT Article; Proceedings Paper CT 2014 ForestSAT Conference CY NOV 04-07, 2014 CL Riva del Garda, ITALY DE IKONOS; Landsat; LiDAR; Stereo; Forest; Disturbance; Growth; Canopy height model; Vegetation change tracker ID LASER SCANNER DATA; AIRBORNE LIDAR; UNITED-STATES; CARBON SINK; MODELS; HEIGHT; CANOPY; GENERATION; VEGETATION; BIOMASS AB Forests of the Contiguous United States (CONUS) have been found to be a large contributor to the global atmospheric carbon sink. The magnitude and nature of this sink is still uncertain and recent studies have sought to define the dynamics that control its strength and longevity. The Landsat series of satellites has been a vital resource to understand the long-term changes in land cover that can impact ecosystem function and terrestrial carbon stock. We combine annual Landsat forest disturbance history from 1985 to 2011 with single date IKONOS stereo imagery to estimate the change in young forest canopy height and above ground live dry biomass accumulation for selected sites in the CONUS. Our approach follows an approximately linear growth rate following clearing over short intervals and does not estimate the distinct non-linear growth rate over longer intervals. We produced canopy height models by differencing digital surface models estimated from IKONOS stereo pairs with national elevation data (NED). Correlations between height and biomass were established independently using airborne LiDAR, and then applied to the IKONOS-estimated canopy height models. Graphing current biomass against time since disturbance provided biomass accumulation rates. For 20 study sites distributed across five regions of the CONUS, 19 showed statistically significant recovery trends (p < 0.001) with canopy growth from 0.26 m yr(-1) to 0.73 m yr(-1). Aboveground live dry biomass (AGB) density accumulation ranged from 1.31 t/ha yr(-1) to 12.47 t/ha yr(-1). Mean forest AGB accumulation was 631 t/ha yr(-1) among all sites with significant growth trends. We evaluated the accuracy of our estimates by comparing to field estimated site index curves of growth, airborne LiDAR data, and independent model predictions of C accumulation. Growth estimates found with this approach are consistent with site index curves and total biomass estimates fall within the range of field estimates. This is a viable approach to estimate forest biomass accumulation in regions with clear-cut harvest disturbances. Published by Elsevier Inc. C1 [Neigh, Christopher S. R.; Masek, Jeffrey G.; Cook, Bruce D.; Nelson, Ross F.] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA. [Bourget, Paul] Univ So Maine, Geog Anthropol Program, Muskie Sch Publ Serv, POB 9300, Portland, ME 04104 USA. [Rishmawi, Khaldoun; Zhao, Feng; Huang, Chengquan] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. RP Neigh, CSR (reprint author), NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA. EM Christopher.S.Neigh@nasa.gov RI Masek, Jeffrey/D-7673-2012; OI Neigh, Christopher/0000-0002-5322-6340 FU North American Forest Dynamics project by NASA's C Cycle/Terrestrial Ecology program [NNH10ZDA001N-CARBON] FX This work was funded under the North American Forest Dynamics project by NASA's C Cycle/Terrestrial Ecology program under grant NNH10ZDA001N-CARBON. We would like to thank two anonymous reviewers and the Guest Editor Ronald McRoberts for their comments that improved the structure and clarity of our manuscript. The use of trade names is intended for clarity and does not constitute an endorsement of any product or company by the federal government. NR 52 TC 1 Z9 1 U1 8 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD FEB PY 2016 VL 173 BP 282 EP 293 DI 10.1016/j.rse.2015.09.007 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DC4OT UT WOS:000369200900025 ER PT J AU Cervini-Silva, J Camacho, AN Palacios, E del Angel, P Pentrak, M Pentrakova, L Kaufhold, S Ufer, K Ramirez-Apan, MT Gomez-Vidales, V Montano, DR Montoya, A Stucki, JW Theng, BKG AF Cervini-Silva, Javiera Nieto Camacho, Antonio Palacios, Eduardo del Angel, Paz Pentrak, Martin Pentrakova, Linda Kaufhold, Stephan Ufer, Kristian Teresa Ramirez-Apan, Maria Gomez-Vidales, Virginia Rodriguez Montano, Daniela Montoya, Ascencion Stucki, Joseph W. Theng, Benny K. G. TI Anti-inflammatory, antibacterial, and cytotoxic activity by natural matrices of nano-iron(hydr)oxide/halloysite SO APPLIED CLAY SCIENCE LA English DT Article DE Nanoferrihydrite; Immune response(s) ID ELECTRON-PARAMAGNETIC-RESONANCE; MOSSBAUER-SPECTRA; OXIDATIVE STRESS; HALLOYSITE; KAOLINITE; NONTRONITE; SMECTITES; ALLOPHANE; MINERALS; ASSAY AB This manuscript reports on the effects of natural Fe-halloysite matrices on infiltration and migration of neutrophils (polymorphonuclear (PMN) leukocytes), which, after the skin, constitute the primary protection of organisms against pathogens. Speciation of mineral Fe was quantified before and after treatment with citrate-bicarbonate-dithionite (CBD). Infiltration and migration of inflammatory and immune effector cells, and cell viability were quantified using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) enzymatic activity methods, and the Griess assay. Halloysite was collected similar to 2 km from Opotiki, Bay of Plenty, New Zealand. HRSEM images confirmed typical morphological features proper of spheroidal Hal (S-Hal). Mossbauer spectroscopy of S-Hal confirmed the presence of Fe, octahedrally coordinated in the form of substituted Fe(III), magnetically ordered goethite or ferrihydrite. HRTEM images showed the presence of small-size domains of Fe (similar to 3-nm) predominantly in the form of ferrihydrite. EPR analyses of S-Hal (0-5000 ppm) before and after reacting with desferrioxamine-B confirmed the fast release of Fe from the nanodomains of ferrihydrite. Early inhibition of edema by S-Hal doubled that by CBD treated Hal (t-S-Hal), explained because labile Fe (2-L-ferrihydrite) enhanced the 4-h anti-inflammatory response. On the other hand, prolonged inhibition of edema by S-Hal and t-S-Hal compared, consistent with the release of Fe from the Hal structure. The presence of S-Hal or t-S-Hal related to the inhibition of MPO content. After 4 h, the inhibition of MPO content by S-Hal or t-S-Hal compared to that by commercial indomethacin (ca. 80%). S-Hal or t-S-Hal showed high inhibition of MPO contents shortly after exposure, but decreased sharply afterwards. On the other hand, tubular Hal (T-Hal) caused an increasing inhibition of MPO with time, explained because clay structure restricted the kinetics and mechanism of MPO inhibition. Evidenced showed that the release of mineral Fe related to infiltration and migration of inflammatory and immune effector cells, expanding the knowledge that metal ions affect inflammatory responses. Finally, dose-response experiments confirmed that the inhibition of edema and cell viability were surface-mediated. Natural clay reservoirs are complex in composition, therefore identifying the molecular mechanism(s) regulating cell migration and infiltration becomes necessary prior to recommending their use for healing purposes. (C) 2015 Published by Elsevier B.V. C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Dept Proc & Tecnol, Unidad Cuajimalpa, Ave Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Cervini-Silva, Javiera] NASA, Astrobiol Inst, New York, NY USA. [Nieto Camacho, Antonio; Teresa Ramirez-Apan, Maria] Univ Nacl Autonoma Mexico, Inst Quim, Lab Pruebas Biol, Ciudad Univ, Mexico City 04510, DF, Mexico. [Palacios, Eduardo; del Angel, Paz; Montoya, Ascencion] Inst Mexicano Petr, Direcc Invest & Posgrad, Mexico City 07730, DF, Mexico. [Pentrak, Martin; Pentrakova, Linda; Stucki, Joseph W.] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL USA. [Kaufhold, Stephan; Ufer, Kristian] BGR Bundesansalt Geowissensch & Rohstoff, Stilleweg 2, D-30655 Hannover, Germany. [Gomez-Vidales, Virginia] Univ Nacl Autonoma Mexico, Inst Quim, Lab Resonancia Paramagnet Elect, Ciudad Univ, Mexico City 04510, DF, Mexico. [Rodriguez Montano, Daniela; Theng, Benny K. G.] Univ Nacl Autonoma Mexico, Inst Fisiol Celular, Unidad Histol, Ciudad Univ, Mexico City 04510, DF, Mexico. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Dept Proc & Tecnol, Unidad Cuajimalpa, Ave Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico. EM jcervini@correo.cua.uam.mx FU Universidad Autonoma Metropolitana [UAM-C 33678] FX The authors thank Dr. John Keeling (Geological Survey of South Australia) for providing tubular halloysite from Camel Lake; Jaime Ortega Lechuga (UAM-Cuajimalpa), Claudia Rivera Cerecedo and Hector Malagon Rivero (Bioterio, Institute de Fisiologia Celular, UNAM), and Natascha Schleuning (Bundesansaltfur Geowissenschaften and Rohstoffe, BGR) for the assistance; and the Universidad Autonoma Metropolitana for the support (Grant No. UAM-C 33678). NR 44 TC 4 Z9 4 U1 17 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 EI 1872-9053 J9 APPL CLAY SCI JI Appl. Clay Sci. PD FEB PY 2016 VL 120 BP 101 EP 110 DI 10.1016/j.clay.2015.10.004 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA DC1BI UT WOS:000368951400013 ER PT J AU Blacksberg, J Alerstam, E Maruyama, Y Cochrane, CJ Rossman, GR AF Blacksberg, Jordana Alerstam, Erik Maruyama, Yuki Cochrane, Corey J. Rossman, George R. TI Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array SO APPLIED OPTICS LA English DT Article ID IN-SITU; MERIDIANI-PLANUM; HYDRATION STATES; FT-RAMAN; SPECTROSCOPY; MARS; FLUORESCENCE; EXPLORATION; MINERALOGY; REJECTION AB We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability. C1 [Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Cochrane, Corey J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Rossman, George R.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Blacksberg, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jordana.blacksberg@jpl.nasa.gov OI Rossman, George/0000-0002-4571-6884 FU National Aeronautics and Space Administration (NASA) [104528-811073.02.06.02.25] FX National Aeronautics and Space Administration (NASA) (104528-811073.02.06.02.25). NR 60 TC 1 Z9 1 U1 10 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD FEB 1 PY 2016 VL 55 IS 4 BP 739 EP 748 DI 10.1364/AO.55.000739 PG 10 WC Optics SC Optics GA DC2PN UT WOS:000369058700014 PM 26836075 ER PT J AU Eikema, DJA Chien, JH Stergiou, N Myers, SA Scott-Pandorf, MM Bloomberg, JJ Mukherjee, M AF Eikema, Diderik Jan A. Chien, Jung Hung Stergiou, Nicholas Myers, Sara A. Scott-Pandorf, Melissa M. Bloomberg, Jacob J. Mukherjee, Mukul TI Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation SO EXPERIMENTAL BRAIN RESEARCH LA English DT Article DE Motor learning; Biomechanics; Virtual reality; Motor control; Gait; Vibration; Sensory ID PRESSURE DISTRIBUTION PATTERNS; OVERGROUND WALKING; CONTROL MECHANISMS; PLANTAR PRESSURE; POSTURAL CONTROL; BALANCE CONTROL; TREADMILL; INTEGRATION; GAIT; MODULATION AB Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were similar in the two groups, suggesting that temporal parameters are not modified by optic flow. However, whereas the TC group displayed significant stance time asymmetries during the post-treadmill session, such aftereffects were absent in the VRT group. The results indicated that the enhanced transfer resulting from exposure to plantar cutaneous vibration during adaptation was alleviated by optic flow information. The presence of visual self-motion information may have reduced proprioceptive gain during learning. Thus, during overground walking, the learned proprioceptive split-belt pattern is more rapidly overridden by visual input due to its increased relative gain. The results suggest that when visual stimulation is provided during adaptive training, the system acquires the novel movement dynamics while maintaining the ability to flexibly adapt to different environments. C1 [Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Mukherjee, Mukul] Univ Nebraska, Biomech Res Bldg, Omaha, NE 68182 USA. [Stergiou, Nicholas] Univ Nebraska Med Ctr, Coll Publ Hlth, Dept Environm Agr & Occupat Hlth, Omaha, NE USA. [Scott-Pandorf, Melissa M.] NASA, Lyndon B Johnson Space Ctr, Wyle Sci Technol & Engn, Houston, TX 77058 USA. [Bloomberg, Jacob J.] NASA, Lyndon B Johnson Space Ctr, Neurosci Labs, Houston, TX 77058 USA. RP Mukherjee, M (reprint author), Univ Nebraska, Biomech Res Bldg, Omaha, NE 68182 USA. EM mmukherjee@unomaha.edu OI Mukherjee, Mukul/0000-0001-9653-0556 FU NASA Experimental Program to Stimulate Competitive Research (EPSCoR) grant [NNX11AM06A]; Center of Biomedical Research Excellence grant from NIGMS/NIH [1P20GM109090-01] FX This study was supported by NASA Experimental Program to Stimulate Competitive Research (EPSCoR) grant number NNX11AM06A and the Center of Biomedical Research Excellence grant (1P20GM109090-01) from NIGMS/NIH. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NASA or the NIH. NR 42 TC 1 Z9 1 U1 1 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4819 EI 1432-1106 J9 EXP BRAIN RES JI Exp. Brain Res. PD FEB PY 2016 VL 234 IS 2 BP 511 EP 522 DI 10.1007/s00221-015-4484-5 PG 12 WC Neurosciences SC Neurosciences & Neurology GA DC1XW UT WOS:000369012600017 PM 26525712 ER PT J AU Allen, JI Allen, CC Brill, JV AF Allen, John I. Allen, Carlton C. Brill, Joel V. TI Gastroenterology 2020: No Time for WIMPs SO GASTROENTEROLOGY LA English DT Editorial Material ID HEALTH-CARE REFORM; PHYSICIAN-PAYMENT; COLONOSCOPY; COST C1 [Allen, John I.] Yale Univ, Sch Med, Dept Digest Dis, New Haven, CT USA. [Allen, Carlton C.] NASA, Johnson Space Ctr, Placitas, NM USA. [Brill, Joel V.] Predict Hlth LLC, Paradise Valley, AZ USA. RP Allen, JI (reprint author), Yale Univ, Sch Med, Digest Dis, 40 Temple St Suite 1A, New Haven, CT 06510 USA. EM john.i.allen@yale.edu NR 28 TC 2 Z9 2 U1 1 U2 3 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0016-5085 EI 1528-0012 J9 GASTROENTEROLOGY JI Gastroenterology PD FEB PY 2016 VL 150 IS 2 BP 295 EP 299 DI 10.1053/j.gastro.2015.12.014 PG 5 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA DB6MU UT WOS:000368629900008 PM 26709033 ER PT J AU Doyle, PM Jogo, K Nagashima, K Huss, GR Krot, AN AF Doyle, Patricia M. Jogo, Kaori Nagashima, Kazuhide Huss, Gary R. Krot, Alexander N. TI Mn-Cr relative sensitivity factor in ferromagnesian olivines defined for SIMS measurements with a Cameca ims-1280 ion microprobe: Implications for dating secondary fayalite SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID EARLY SOLAR-SYSTEM; UNGROUPED CARBONACEOUS CHONDRITE; ANGRITE PARENT BODY; ISOTOPE SYSTEMATICS; ABSOLUTE CHRONOLOGY; RATIO ESTIMATION; OXYGEN-ISOTOPES; CV3 CHONDRITE; MAC 88107; AGES AB The short-lived radionuclide Mn-53, which decays to Cr-53 with a half-life of similar to 3.7 Myr, is useful for sequencing objects that formed within the first 20 Myr of Solar System evolution. Mn-53-Cr-53 relative chronology enables aqueously formed secondary minerals such as fayalite and various carbonates in ordinary and carbonaceous chondrites to be dated, thereby providing chronological constraints on aqueous alteration processes. In situ measurements of Mn-Cr isotope systematics in fayalite by secondary ion mass spectrometry (SIMS) require consideration of the relative sensitivities of the Mn-55(+) and Cr-52(+) ions, for which a relative sensitivity factor [RSF = (Mn-55(+)/Cr-52(+))(SIMS)/(Mn-55/Cr-52)(true)] is defined using appropriate standards. In the past, San Carlos olivine (Fa(similar to 10)) was commonly used for this purpose, but a growing body of evidence suggests that it is an unsuitable standard for meteoritic fayalite (Fa(>90)). Natural fayalite also cannot be used as a standard because it contains only trace amounts of chromium, which makes determining a true Mn-55/Cr-52 ratio and its degree of heterogeneity very difficult. To investigate the dependence of the Mn-Cr RSF on ferromagnesian olivine compositions, we synthesized a suite of compositionally homogeneous Mn, Cr-bearing liquidus-phase ferromagnesian olivines (Fa(31-99)). Manganese-chromium isotopic measurements of San Carlos olivine and synthesized ferromagnesian olivines using the University of Hawai'i Cameca ims-1280 SIMS show that the RSF for Fa(10) is similar to 0.9; it increases rapidly between Fa(10) and Fa(31) and reaches a plateau value of similar to 1.5 +/- 0.1 for Fa(>34). The RSF is time-dependent: it increases during the measurements of olivines with fayalite content <30 and decreases during the measurements of olivines with fayalite content >50. The RSF measured on ferroan olivine (Fa(>90)) is influenced by pit shape, whereas the RSF measured on magnesian olivine (Fa(10)) is less sensitive to changes in pit shape. For these reasons, Mn-53-Cr-53 systematics of chondritic fayalite (Fa(>90)) should be determined using standards of similar composition that are measured under the same analytical conditions as the "unknown". The Mn-53-Cr-53 ages of secondary fayalites (Fa(90-100)) in the Elephant Moraine (EET) 90161 (L3.05), Vicencia (LL3.2), Asuka 881317 (CV3) and MacAlpine Hills (MAC) 88107 (C3) chondrites (2.4(-1.3)(+1.8), 4.0(-1.1)(+1.4), 4.2(-0.7)(+0.8) and 5.1(-0.4)(+0.5) Myrs after CV CAIs, respectively) are similar to 3 Myr older when using an RSF measured on a matrix-matched (Fa(99)) standard, rather than on a San Carlos olivine. The inferred Mn-53-Cr-53 ages of fayalite formation are consistent with the ages reported for calcites in CM chondrites measured with similarly matrix-matched standards, suggesting an early onset of aqueous alteration on the ordinary and carbonaceous chondrite parent bodies heated by decay of Al-26. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Doyle, Patricia M.; Jogo, Kaori; Huss, Gary R.; Krot, Alexander N.] Univ Hawaii, Inst Astron, NASA Astrobiol Inst, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Jogo, Kaori] Korea Polar Res Inst, Div Polar Earth Syst Sci, 26 Songdomirae Ro, Inchon 406840, South Korea. RP Doyle, PM (reprint author), Univ Cape Town, Dept Geol Sci, ZA-7701 Cape Town, South Africa. EM p.doyle07@alumni.imperial.ac.uk FU National Aeronautics and Space Administration (NASA) [NNX12AH69G]; NASA Astrobiology Institute through Office of Space Science [NNA09DA77A]; South African National Research Foundation [88191] FX This research was supported by the National Aeronautics and Space Administration (NASA) Cosmochemistry grant NNX12AH69G (PI: ANK) and the NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science (PI: Dr. Karen Meech). Continuing work was supported by the South African National Research Foundation grant #88191 (PI: PMD). The views expressed herein are those of the authors and not of the respective funding bodies. NR 71 TC 4 Z9 4 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 1 PY 2016 VL 174 BP 102 EP 121 DI 10.1016/j.gca.2015.10.010 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB9ES UT WOS:000368819800008 ER PT J AU Ruedig, E Duncan, C Dickerson, B Williams, M Gelatt, T Bell, J Johnson, TE AF Ruedig, Elizabeth Duncan, Colleen Dickerson, Bobette Williams, Michael Gelatt, Thomas Bell, Justin Johnson, Thomas E. TI Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Cs-134; Cs-137; Bioaccumulation; Nuclear reactor; Fukushima; Seal ID ST-PAUL-ISLAND; CALLORHINUS-URSINUS; BARENTS SEAS; PACIFIC; RADIONUCLIDES; CS-137; ALASKA; BIOACCUMULATION; GREENLAND; PORPOISES AB In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimum detectable activity concentrations of Cs-137 and Cs-134, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq Cs-134 kg(-1) f.w. (95% CI: 35.9-38.5) and 141.2 mBq Cs-137 kg(-1) f.w. (95% CI: 135.5-146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25-0.28). The Fukushima nuclear accident released Cs-134 and Cs-137 in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both Cs-134 and Cs-137 in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace Cs-134 in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species. Published by Elsevier Ltd. C1 [Ruedig, Elizabeth; Bell, Justin; Johnson, Thomas E.] Colorado State Univ, Dept Environm & Radiol Hlth Sci, 1618 Campus Delivery, Ft Collins, CO 80523 USA. [Duncan, Colleen] Colorado State Univ, Dept Microbiol Immunol & Pathol, Vet Diagnost Lab, 300 West Drake Rd, Ft Collins, CO 80523 USA. [Dickerson, Bobette; Gelatt, Thomas] Natl Ocean & Atmospher Adm, Alaska Fisheries Sci Ctr, Natl Marine Mammal Lab, Natl Marine Fisheries Serv, Seattle, WA USA. [Williams, Michael] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, Alaska Reg Off, POB 21668, Juneau, AK 99802 USA. RP Ruedig, E (reprint author), Colorado State Univ, Dept Environm & Radiol Hlth Sci, 1618 Campus Delivery, Ft Collins, CO 80523 USA. EM elizarue@lanl.gov NR 35 TC 0 Z9 0 U1 5 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD FEB PY 2016 VL 152 BP 1 EP 7 DI 10.1016/j.jenvrad.2015.10.024 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA DC1FO UT WOS:000368962400001 PM 26630034 ER PT J AU Schneider, J Brooke, S Nunes, AC AF Schneider, Judy Brooke, Shane Nunes, Arthur C., Jr. TI Material Flow Modification in a FSW Through Introduction of Flats SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article ID FRICTION-STIR WELDS; TOOL PIN PROFILE; ALUMINUM-ALLOY; MECHANICAL-PROPERTIES; PROCESSING ZONE; HEAT-TRANSFER; MODEL; GEOMETRY; TORQUE; MICROSTRUCTURE AB Friction stir welding (FSW) is a solid-state process in which a non-consumable weld tool is used to stir metal together to obtain a fully consolidated weld seam. There is controversy regarding the contributions of various attributes of the pin design, especially with regards to flats and flutes. In this study, similar FSWs made with threaded cylindrical pin-tools having 0, 1, 2, 3, 4, and 5 flats were compared. Slight increases in torque were noted with increasing flats. Significant changes in the FSW structure with varying numbers of flats were observed, but without significant changes in tensile strength. Changes in the textural banding shape, the addition of sub-bands, and a new set of bands from coalescence of band kinks constitute the structural changes observed. Explanations of these structural changes in terms of tool interactions with the FSW metal are offered. C1 [Schneider, Judy] Univ Alabama, Huntsville, AL 35899 USA. [Brooke, Shane; Nunes, Arthur C., Jr.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Schneider, J (reprint author), Univ Alabama, Huntsville, AL 35899 USA. EM Judith.schneider@uah.edu NR 62 TC 1 Z9 1 U1 9 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 EI 1543-1916 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD FEB PY 2016 VL 47 IS 1 BP 720 EP 730 DI 10.1007/s11663-015-0523-7 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DB7JX UT WOS:000368692300064 ER PT J AU Jensen, BD Wise, KE Odegard, GM AF Jensen, Benjamin D. Wise, Kristopher E. Odegard, Gregory M. TI Simulation of mechanical performance limits and failure of carbon nanotube composites SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE ReaxFF; functionalization; composites; mechanical properties; simulation ID MOLECULAR-DYNAMICS; FILMS; DIAMOND; IRRADIATION; LINKING; BUNDLES; SURFACE; ROPES AB The mechanical properties of carbon nanotube (CNT) fiber composites are steadily approaching those of traditional carbon fiber composites. This work is focused on establishing a plausible upper bound on these properties by modeling the elastic deformations, yield, and fracture of idealized CNT composites using reactive molecular dynamics. Amorphous carbon (AC) was used for the matrix material because of its structural simplicity and physical compatibility with the CNT fillers. Three different arrangements of CNTs in the simulation cell were investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. Chemical crosslinking was modeled by adding bonds between the CNTs and AC to explore the balance between weakening the CNTs and improving fiber-matrix load transfer. The simulation results reported here clarify the impact of CNT dispersion, the extent of crosslinking, and CNT-templated matrix structuring on the mechanical properties of CNT composites. C1 [Jensen, Benjamin D.; Wise, Kristopher E.] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. [Jensen, Benjamin D.; Odegard, Gregory M.] Michigan Technol Univ, Dept Mech Engn Engn Mech, 1400 Townsend Dr, Houghton, MI 49931 USA. RP Odegard, GM (reprint author), Michigan Technol Univ, Dept Mech Engn Engn Mech, 1400 Townsend Dr, Houghton, MI 49931 USA. EM gmodegar@mtu.edu RI Jensen, Benjamin/B-1297-2013 OI Jensen, Benjamin/0000-0002-7982-0663 FU NASA [NNX09AM50A] FX This research was funded by NASA under the Revolutionary Technology Challenges Program (Grant NNX09AM50A). SUPERIOR, a high-performance computing cluster at Michigan Technological University, was used in obtaining some of results presented in this publication. NR 36 TC 1 Z9 1 U1 6 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD FEB PY 2016 VL 24 IS 2 AR 025012 DI 10.1088/0965-0393/24/2/025012 PG 23 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DB9UA UT WOS:000368861200012 ER PT J AU Asanuma, H Asaka, K Su, J Poubel, L Shahinpoor, M AF Asanuma, H. Asaka, K. Su, J. Poubel, L. Shahinpoor, M. TI Smart contact oscillations by IPMCs SO SMART MATERIALS AND STRUCTURES LA English DT Article DE IPMCs; smart contact oscillations; self-oscillation ID POLYMER-METAL COMPOSITES; ARTIFICIAL MUSCLES; BIOMIMETIC SENSORS; ACTUATORS; GELS AB An ion migration-induced self-oscillation phenomenon observed in ionic polymer metal composites (IPMCs) is reported. These oscillations are generated from a purely static equilibrium configuration of IPMCs in loose contact with a stationary electrode, and in particular the anode of an imposed DC voltage source. Many interesting possibilities emerge, which are described in this paper. Of particular importance is the emergence of the possibility of creating tailor-made electric signals or pulse-width modulation-type signals from a DC source. C1 [Asanuma, H.; Poubel, L.] Chiba Univ, Dept Mech Engn, Chiba, Chiba 2638522, Japan. [Asaka, K.] Natl Inst Adv Ind Sci & Technol, Hlth Res Inst, Artificial Cell Grp, Ikeda, Osaka, Japan. [Su, J.] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23665 USA. [Shahinpoor, M.] Univ Maine, Dept Mech Engn, BEAR Labs, Orono, ME USA. RP Shahinpoor, M (reprint author), Univ Maine, Dept Mech Engn, BEAR Labs, Orono, ME USA. EM shah@maine.edu FU Environmental Robots, Inc. FX This work was partially supported by Environmental Robots, Inc. NR 24 TC 0 Z9 0 U1 5 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 EI 1361-665X J9 SMART MATER STRUCT JI Smart Mater. Struct. PD FEB PY 2016 VL 25 IS 2 AR 025015 DI 10.1088/0964-1726/25/2/025015 PG 13 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA DB9CP UT WOS:000368814100017 ER PT J AU Tan, FY Lim, HS Abdullah, K Holben, B AF Tan, Fuyi Lim, Hwee San Abdullah, Khiruddin Holben, Brent TI Estimation of aerosol optical depth at different wavelengths by multiple regression method SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Aerosol; Aerosol optical depth (AOD); Air pollution index (API); Relative humidity; Visibility ( Vis); Back-trajectory; CALIPSO; Southeast Asia ID SIZE DISTRIBUTION; ANGSTROM EXPONENT; VISIBILITY; AERONET; THICKNESS; QUALITY; COEFFICIENTS; DEPENDENCE; PARTICLES; CHINA AB This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients. The model was validated using a set of statistical tests. The validated model was then employed to calculate AOD at different wavelengths. The results show that the proposed model successfully predicted AOD at each studied wavelength ranging from 340 nm to 1020 nm. To illustrate the application of the model, the aerosol size determined using measure AOD data for Penang was compared with that determined using the model. This was done by examining the curvature in the ln [AOD]-ln [wavelength] plot. Consistency was obtained when it was concluded that Penang was dominated by fine mode aerosol in 2012 and 2013 using both measured and predicted AOD data. These results indicate that the proposed AOD prediction model using routine measurements as input is a promising tool for the regular monitoring of aerosol variation during non-retrieval time. C1 [Tan, Fuyi; Lim, Hwee San; Abdullah, Khiruddin] Univ Sains Malaysia, Sch Phys, Gelugor 11800, Penang, Malaysia. [Holben, Brent] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tan, FY (reprint author), Univ Sains Malaysia, Sch Phys, Gelugor 11800, Penang, Malaysia. EM fuyitan@yahoo.com; hslim@usm.my; khirudd@usm.my; brent.n.holben@nasa.gov RI Lim, Hwee San/F-6580-2010; OI Lim, Hwee San/0000-0002-4835-8015; Tan, Fuyi/0000-0002-9655-3608 FU RU [1001/PFIZIK/811228]; RUI-PRGS [1001/PFIZIK/846083] FX The authors gratefully acknowledge the financial support provided by the RU and RUI-PRGS grants with account numbers 1001/PFIZIK/811228 and 1001/PFIZIK/846083, respectively. The authors are also grateful to the members of NASA Goddard Space Flight Center who helped to set up AERONET in Penang. The authors also acknowledge Dr. Yoon Tiem Leong for fruitful discussions on certain issues. NR 47 TC 0 Z9 0 U1 2 U2 8 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD FEB PY 2016 VL 23 IS 3 BP 2735 EP 2748 DI 10.1007/s11356-015-5506-3 PG 14 WC Environmental Sciences SC Environmental Sciences & Ecology GA DB2YO UT WOS:000368376800073 PM 26438373 ER PT J AU Harpold, R Yungel, J Linkswiler, M Studinger, M AF Harpold, Robert Yungel, James Linkswiler, Matthew Studinger, Michael TI Intra-scan intersection method for the determination of pointing biases of an airborne altimeter SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article AB An altimeter's mounting and pointing biases must be computed so that the altimeter footprints can be geolocated precisely. Whereas normal methods for computing biases require a comparison of the altimeter footprints' elevations over a previously surveyed site with the elevations from that survey, the intra-scan method can be computed with any subset of data from an altimeter with a scan pattern that intersects itself several times within a few seconds. This study assumes an altimeter whose footprints are in a self-intersecting ellipsoidal pattern, such as those from the Airborne Topographic Mapper (ATM). Differences in the derived elevations at the intersections are used to estimate the mounting and pointing angle biases; since differences are used, the range bias cannot be computed with this method. As data over any surface can theoretically be used to estimate biases, the intra-scan method has significantly greater temporal resolution than the ground survey method; this allows the detection of changes in the biases. The biases estimated from the intra-scan method during the Operation IceBridge Greenland 2013 campaign were typically within less than 0.1 degrees of those estimated from the ground survey method. C1 [Harpold, Robert] Formerly Sigma Space Corp, 4801 Forbes Blvd, Lanham, MD 20706 USA. [Yungel, James; Linkswiler, Matthew] AECOM, Hyattsville, MD USA. [Studinger, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Harpold, R (reprint author), Formerly Sigma Space Corp, 4801 Forbes Blvd, Lanham, MD 20706 USA. EM rharpold@hotmail.com FU NASA's Airborne Science and Cryospheric Sciences Programs; NASA's Operation IceBridge Project FX Funding for this work was provided by NASA's Airborne Science and Cryospheric Sciences Programs. All data used in this article were acquired by NASA's Operation IceBridge Project and are available at the National Snow and Ice Data Center (NSIDC) at http://nsidc.org/data/icebridge/. NR 9 TC 0 Z9 0 U1 1 U2 1 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PD FEB PY 2016 VL 37 IS 3 BP 648 EP 668 DI 10.1080/01431161.2015.1137989 PG 21 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA DB7VD UT WOS:000368723800010 ER PT J AU Kaddi, CD Bennett, RV Paine, MRL Banks, MD Weber, AL Fernandez, FM Wang, MD AF Kaddi, Chanchala D. Bennett, Rachel V. Paine, Martin R. L. Banks, Mitchel D. Weber, Arthur L. Fernandez, Facundo M. Wang, May D. TI DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Imaging mass spectrometry; Data processing; Feature detection; Ambient MS; DESI MS ID DESORPTION ELECTROSPRAY-IONIZATION; THIN-LAYER-CHROMATOGRAPHY; TRYPTIC PROTEIN DIGESTS; LASER-DESORPTION/IONIZATION; HPTLC/DESI-MS; TISSUE; IDENTIFICATION; SEPARATIONS; MALDI; LIFE AB Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. C1 [Kaddi, Chanchala D.; Wang, May D.] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Fernandez, Facundo M.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Weber, Arthur L.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Bennett, Rachel V.] Coca Cola Co, 1 Coca Cola Plaza, Atlanta, GA 30313 USA. RP Wang, MD (reprint author), Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA.; Fernandez, FM (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM facundo.fernandez@chemistry.gatech.edu; maywang@bme.gatech.edu FU Center for Chemical Evolution; NSF; NASA Astrobiology Program [NSF CHE-1004570]; BioImaging Mass Spectrometry Initiative at Georgia Tech; Parker H. Petit Institute for Bioengineering and Bioscience (IBB); Johnson Johnson; National Institutes of Health [R01CA108468, U54CA119338]; Georgia Cancer Coalition (Distinguished Cancer Scholar Award); Microsoft Research; NSF GRF; P.E.O. International Scholar Award FX The authors acknowledge support for his research by the Center for Chemical Evolution, jointly supported by NSF and the NASA Astrobiology Program (NSF CHE-1004570). Initial work was supported by a seed grant from the BioImaging Mass Spectrometry Initiative at Georgia Tech to M.D.W. and F.M.F. M.D.W. also acknowledges support from The Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Johnson & Johnson, National Institutes of Health (R01CA108468, U54CA119338), Georgia Cancer Coalition (Distinguished Cancer Scholar Award), and Microsoft Research. C.D.K. acknowledges support from an NSF GRF and a P.E.O. International Scholar Award. NR 28 TC 1 Z9 1 U1 2 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD FEB PY 2016 VL 27 IS 2 BP 359 EP 365 DI 10.1007/s13361-015-1293-9 PG 7 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA DB7PO UT WOS:000368708000019 PM 26508443 ER PT J AU Janakiraman, VM Nguyen, X Assanis, D AF Janakiraman, Vijay Manikandan Nguyen, XuanLong Assanis, Dennis TI An ELM based predictive control method for HCCI engines SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE LA English DT Article DE Model predictive control; Extreme Learning Machines; Engine control; HCCI engine; System identification; Neural networks ID EXTREME LEARNING-MACHINE; IDENTIFICATION; OPTIMIZATION; DYNAMICS AB We formulate and develop a control method for homogeneous charge compression ignition (HCCI) engines using model predictive control (MPC) and models learned from operational data. An HCCI engine is a highly efficient but complex combustion system that operates with a high fuel efficiency and reduced emissions compared to the present technology. HCCI control is a nonlinear, multi-input multi-output problem with state and actuator constraints which makes controller design a challenging task. In this paper, we propose an MPC approach where the constraints are elegantly included in the control problem along with optimality in control. We develop the engine models using experimental data so that the complexity and time involved in the modeling process can be reduced. An Extreme Learning Machine (ELM) is used to capture the engine dynamic behavior and is used by the MPC controller to evaluate control actions. We also used a simplified quadratic programming making use of the convexity of the MPC problem so that the algorithm can be implemented on the engine control unit that is limited in memory. The working and effectiveness of the proposed MPC methodology has been analyzed in simulation using a nonlinear HCCI engine model. The controller tracks several reference signals taking into account the constraints defined by HCCI states, actuators and operational limits. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Janakiraman, Vijay Manikandan] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Nguyen, XuanLong] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA. [Assanis, Dennis] SUNY Stony Brook, Stony Brook, NY USA. RP Janakiraman, VM (reprint author), NASA, Ames Res Ctr, MS 269-1, Moffett Field, CA 94035 USA. EM vijai@umich.edu FU Department of Energy [National Energy Technology Laboratory] [DE-EE0003533]; NSF [CCF-1115769, ACI-1047871] FX This material is based upon work supported by the Department of Energy [National Energy Technology Laboratory] under Award Number(s) DE-EE0003533. This work is performed as a part of the ACCESS project consortium (Robert Bosch LLC, AVL Inc., Emitec Inc.) under the direction of PI Hakan Yilmaz, Robert Bosch, LLC. Prof. X. Nguyen is supported in part by NSF Grants CCF-1115769 and ACI-1047871. NR 39 TC 4 Z9 4 U1 3 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0952-1976 EI 1873-6769 J9 ENG APPL ARTIF INTEL JI Eng. Appl. Artif. Intell. PD FEB PY 2016 VL 48 BP 106 EP 118 DI 10.1016/j.engappai.2015.10.007 PG 13 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Automation & Control Systems; Computer Science; Engineering GA DB0SD UT WOS:000368216900009 ER PT J AU Awerbuch, J Leone, FA Ozevin, D Tan, TM AF Awerbuch, Jonathan Leone, Frank A., Jr. Ozevin, Didem Tan, Tein-Min TI On the applicability of acoustic emission to identify modes of damage in full-scale composite fuselage structures SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE Acoustic emission; full-scale testing; polymer-matrix composites ID CARBON-FIBER COMPOSITES; GRAPHITE-EPOXY; REINFORCED THERMOPLASTICS; MATRIX CRACKING; MECHANISMS; BEHAVIOR; SINGLE; SIGNALS; PLATE; CFRP AB The acoustic emission method was applied during the testing of six full-scale sandwich composite aircraft fuselage panels containing through-the-thickness notches. The panels were subjected to different combinations of quasi-static internal pressure, the corresponding hoop loads, and longitudinal loads. The applicability of conventional acoustic emission signal feature analysis to identify the dominant modes of failure and extraneous emission in large composite structures was investigated. It was concluded that no clear distinction could be made among the different failure mechanisms based on the conventional acoustic emission signal features alone. Further, emission generated by fretting, either among fracture surfaces or of loading fixtures, has acoustic emission signal waveform features that are similar to those of damage-generated emission signals. C1 [Awerbuch, Jonathan; Tan, Tein-Min] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA. [Leone, Frank A., Jr.] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. [Ozevin, Didem] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL USA. RP Leone, FA (reprint author), NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. EM frank.a.leone@nasa.gov OI Leone, Frank/0000-0003-4352-1036 FU FAA-Drexel Fellowship research program [97-G-032] FX This work was partially supported by the FAA-Drexel Fellowship research program (grant number 97-G-032). The authors wish to acknowledge the support of John G. Bakuckas, Jr. and Curtis Davies of the FAA William J. Hughes Technical Center for facilitating this study. NR 77 TC 0 Z9 0 U1 3 U2 14 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 EI 1530-793X J9 J COMPOS MATER JI J. Compos Mater. PD FEB PY 2016 VL 50 IS 4 BP 447 EP 469 DI 10.1177/0021998315576379 PG 23 WC Materials Science, Composites SC Materials Science GA DA9XX UT WOS:000368164200002 ER PT J AU Harker, GJA Mirocha, J Burns, JO Pritchard, JR AF Harker, Geraint J. A. Mirocha, Jordan Burns, Jack O. Pritchard, Jonathan R. TI Parametrizations of the 21-cm global signal and parameter estimation from single-dipole experiments SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; cosmology: theory; dark ages, reionization, first stars; diffuse radiation; radio lines: general ID COSMIC DAWN; DARK-AGES; COSMOLOGY; MODELS AB One approach to extracting the global 21-cm signal from total-power measurements at low radio frequencies is to parametrize the different contributions to the data and then fit for these parameters. We examine parametrizations of the 21-cm signal itself, and propose one based on modelling the Ly alpha background, intergalactic medium temperature and hydrogen ionized fraction using tanh functions. This captures the shape of the signal from a physical modelling code better than an earlier parametrization based on interpolating between maxima and minima of the signal, and imposes a greater level of physical plausibility. This allows less biased constraints on the turning points of the signal, even though these are not explicitly fit for. Biases can also be alleviated by discarding information which is less robustly described by the parametrization, for example by ignoring detailed shape information coming from the covariances between turning points or from the high-frequency parts of the signal, or by marginalizing over the high-frequency parts of the signal by fitting a more complex foreground model. The fits are sufficiently accurate to be usable for experiments gathering 1000 h of data, though in this case it may be important to choose observing windows which do not include the brightest areas of the foregrounds. Our assumption of pointed, single-antenna observations and very broad-band fitting makes these results particularly applicable to experiments such as the Dark Ages Radio Explorer, which would study the global 21-cm signal from the clean environment of a low lunar orbit, taking data from the far side. C1 [Harker, Geraint J. A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Mirocha, Jordan; Burns, Jack O.] Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Burns, Jack O.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Pritchard, Jonathan R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2AZ, England. RP Harker, GJA (reprint author), UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. EM g.harker@ucl.ac.uk OI Harker, Geraint/0000-0002-7894-4082 FU European Union under REA [327999]; NASA [NNX14AN79H]; ERC [638743-FIRSTDAWN]; FP7-PEOPLE-CIG grant [321933-21ALPHA]; STFC [ST/K001051/1]; NASA Ames Research Center [NNA09DB30A, NNX15AD20A]; NASA ATP [NNX15AK80G]; National Science Foundation [CNS-0821794] FX GH acknowledges funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 327999. JM acknowledges support through the NASA Earth and Space Science Fellowship programme, grant number NNX14AN79H. JRP acknowledges support under ERC-2014-STG grant #638743-FIRSTDAWN, FP7-PEOPLE-2012-CIG grant #321933-21ALPHA, and STFC consolidated grant ST/K001051/1. This research has been supported by the NASA Ames Research Center via Cooperative Agreements NNA09DB30A and NNX15AD20A, and by NASA ATP grant NNX15AK80G. This work utilized the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794) and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver and the National Center for Atmospheric Research. NR 29 TC 4 Z9 4 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2016 VL 455 IS 4 BP 3829 EP 3840 DI 10.1093/mnras/stv2630 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UH UT WOS:000368009300034 ER PT J AU Driver, SP Wright, AH Andrews, SK Davies, LJ Kafle, PR Lange, R Moffett, AJ Mannering, E Robotham, ASG Vinsen, K Alpaslan, M Andrae, E Baldry, IK Bauer, AE Bamford, SP Bland-Hawthorn, J Bourne, N Brough, S Brown, MJI Cluver, ME Croom, S Colless, M Conselice, CJ da Cunha, E De Propris, R Drinkwater, M Dunne, L Eales, S Edge, A Frenk, C Graham, AW Grootes, M Holwerda, BW Hopkins, AM Ibar, E van Kampen, E Kelvin, LS Jarrett, T Jones, DH Lara-Lopez, MA Liske, J Lopez-Sanchez, AR Loveday, J Maddox, SJ Madore, B Mahajan, S Meyer, M Norberg, P Penny, SJ Phillipps, S Popescu, C Tuffs, RJ Peacock, JA Pimbblet, KA Prescott, M Rowlands, K Sansom, AE Seibert, M Smith, MWL Sutherland, WJ Taylor, EN Valiante, E Vazquez-Mata, JA Wang, LY Wilkins, SM Williams, R AF Driver, Simon P. Wright, Angus H. Andrews, Stephen K. Davies, Luke J. Kafle, Prajwal R. Lange, Rebecca Moffett, Amanda J. Mannering, Elizabeth Robotham, Aaron S. G. Vinsen, Kevin Alpaslan, Mehmet Andrae, Ellen Baldry, Ivan K. Bauer, Amanda E. Bamford, Steven P. Bland-Hawthorn, Joss Bourne, Nathan Brough, Sarah Brown, Michael J. I. Cluver, Michelle E. Croom, Scott Colless, Matthew Conselice, Christopher J. da Cunha, Elisabete De Propris, Roberto Drinkwater, Michael Dunne, Loretta Eales, Steve Edge, Alastair Frenk, Carlos Graham, Alister W. Grootes, Meiert Holwerda, Benne W. Hopkins, Andrew M. Ibar, Edo van Kampen, Eelco Kelvin, Lee S. Jarrett, Tom Jones, D. Heath Lara-Lopez, Maritza A. Liske, Jochen Lopez-Sanchez, Angel R. Loveday, Jon Maddox, Steve J. Madore, Barry Mahajan, Smriti Meyer, Martin Norberg, Peder Penny, Samantha J. Phillipps, Steven Popescu, Cristina Tuffs, Richard J. Peacock, John A. Pimbblet, Kevin A. Prescott, Matthew Rowlands, Kate Sansom, Anne E. Seibert, Mark Smith, Matthew W. L. Sutherland, Will J. Taylor, Edward N. Valiante, Elisabetta Vazquez-Mata, J. Antonio Wang, Lingyu Wilkins, Stephen M. Williams, Richard TI Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV-far-IR) and the low-z energy budget SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astronomical data bases: miscellaneous; galaxies: evolution; galaxies: general; galaxies: photometry; cosmology: observations ID SCIENCE DEMONSTRATION PHASE; EXTRAGALACTIC LEGACY SURVEY; DIGITAL SKY SURVEY; 1ST DATA RELEASE; HERSCHEL-ATLAS; STAR-FORMATION; INFRARED-EMISSION; STELLAR STRUCTURE; NEARBY GALAXIES; SPITZER SURVEY AB We present the Galaxy And Mass Assembly (GAMA) Panchromatic Data Release (PDR) constituting over 230 deg(2) of imaging with photometry in 21 bands extending from the far-UV to the far-IR. These data complement our spectroscopic campaign of over 300k galaxies, and are compiled from observations with a variety of facilities including: GALaxy Evolution eXplorer, Sloan Digital Sky Survey, Visible and Infrared Telescope for Astronomy (VISTA), Wide-field Infrared Survey Explorer, and Herschel, with the GAMA regions currently being surveyed by VLT Survey Telescope (VST) and scheduled for observations by Australian Square Kilometer Array Pathfinder (ASKAP). These data are processed to a common astrometric solution, from which photometry is derived for similar to 221 373 galaxies with r < 19.8 mag. Online tools are provided to access and download data cutouts, or the full mosaics of the GAMA regions in each band. We focus, in particular, on the reduction and analysis of the VISTA VIsta Kilo- degree INfrared Galaxy data, and compare to earlier data sets (i. e. 2MASS and UKIDSS) before combining the data and examining its integrity. Having derived the 21-band photometric catalogue, we proceed to fit the data using the energy balance code MAGPHYS. These measurements are then used to obtain the first fully empirical measurement of the 0.1-500 mu m energy output of the Universe. Exploring the cosmic spectral energy distribution across three time-intervals (0.3-1.1, 1.1-1.8, and 1.8- 2.4 Gyr), we find that the Universe is currently generating (1.5 +/- 0.3) x 10(35) h(70) W Mpc(-3), down from (2.5 +/- 0.2) x 10(35) h(70) W Mpc(-3) 2.3 Gyr ago. More importantly, we identify significant and smooth evolution in the integrated photon escape fraction at all wavelengths, with the UV escape fraction increasing from 27(18) per cent at z = 0.18 in NUV(FUV) to 34(23) per cent at z = 0.06. The GAMA PDR can be found at: http://gama-psi.icrar.org/. C1 [Driver, Simon P.; Wright, Angus H.; Andrews, Stephen K.; Davies, Luke J.; Kafle, Prajwal R.; Lange, Rebecca; Moffett, Amanda J.; Mannering, Elizabeth; Robotham, Aaron S. G.; Vinsen, Kevin; Meyer, Martin] Univ Western Australia, ICRAR, Crawley, WA 6009, Australia. [Driver, Simon P.; Rowlands, Kate] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Alpaslan, Mehmet] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Andrae, Ellen; Grootes, Meiert; Tuffs, Richard J.] Max Planck Inst Nucl Phys MPIK, D-69117 Heidelberg, Germany. [Baldry, Ivan K.; Kelvin, Lee S.; Williams, Richard] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Bauer, Amanda E.; Brough, Sarah; Hopkins, Andrew M.; Lopez-Sanchez, Angel R.] Australian Astron Observ, N Ryde, NSW 1670, Australia. [Bamford, Steven P.; Conselice, Christopher J.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Bland-Hawthorn, Joss; Croom, Scott] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Bourne, Nathan; Dunne, Loretta; Maddox, Steve J.; Peacock, John A.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Brown, Michael J. I.; Pimbblet, Kevin A.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Cluver, Michelle E.; Prescott, Matthew] Univ Western Cape, Astrophys Grp, ZA-7530 Bellville, South Africa. [Colless, Matthew] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [da Cunha, Elisabete; Graham, Alister W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [De Propris, Roberto] Univ Turku, Finnish Ctr Astron ESO, FI-21500 Piikkio, Finland. [Drinkwater, Michael; Smith, Matthew W. L.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Dunne, Loretta; Eales, Steve; Maddox, Steve J.; Valiante, Elisabetta] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Edge, Alastair; Norberg, Peder] Univ Durham, Dept Phys, Ctr Extragalact Astron, Durham DH1 3LE, England. [Frenk, Carlos; Norberg, Peder; Wang, Lingyu] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. [Holwerda, Benne W.] Leiden Univ, Leiden Observ, NL-2333 CA Leiden, Netherlands. [Ibar, Edo] Univ Valparaiso, Inst Fis & Astron, Valparaiso, Chile. [van Kampen, Eelco] European So Observ, D-85748 Garching, Germany. [Jarrett, Tom] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Jones, D. Heath] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. [Lara-Lopez, Maritza A.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Liske, Jochen] Univ Hamburg, Hamburger Sternwarte, D-21029 Hamburg, Germany. [Loveday, Jon; Vazquez-Mata, J. Antonio; Wilkins, Stephen M.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Madore, Barry; Seibert, Mark] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Mahajan, Smriti] Indian Inst Sci Educ & Res Mohali, Manauli 140306, Punjab, India. [Penny, Samantha J.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Phillipps, Steven] Univ Bristol, HH Wills Phys Lab, Astrophys Grp, Bristol BS8 1TL, Avon, England. [Popescu, Cristina; Sansom, Anne E.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Pimbblet, Kevin A.] Univ Hull, Dept Math & Phys, Kingston Upon Hull HU6 7RX, Yorks, England. [Pimbblet, Kevin A.] Univ Hull, EA Milne Ctr Astrophys, Kingston Upon Hull HU6 7RX, Yorks, England. [Sutherland, Will J.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Taylor, Edward N.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Wang, Lingyu] SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. RP Driver, SP (reprint author), Scottish Univ Phys Alliance, SUPA, Glasgow, Lanark, Scotland. EM simon.driver@uwa.edu.au RI Bamford, Steven/E-8702-2010; Brown, Michael/B-1181-2015; OI Bamford, Steven/0000-0001-7821-7195; Brown, Michael/0000-0002-1207-9137; Maddox, Stephen/0000-0001-5549-195X; Liske, Jochen/0000-0001-7542-2927; Edge, Alastair/0000-0002-3398-6916; da Cunha, Elisabete/0000-0001-9759-4797; Baldry, Ivan/0000-0003-0719-9385; Colless, Matthew/0000-0001-9552-8075 FU European Advanced Investigator grant cosmicism; ARC Future Fellowship [FT140101166]; EC FP7 SPACE project ASTRODEEP [312725]; CONICYT/FONDECYT [3130504]; UNAM through PAPIIT project [IA101315]; Royal Society through the award of a University Research Fellowship; European Research Council [DEGAS-259586]; Science and Technology Facilities Council [ST/L00075X/1]; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; ESO Telescopes at the La Silla Paranal Observatory [179.A-2004]; STFC (UK); ARC (Australia); AAO; Australian Government; Government of Western Australia FX LD and SJM acknowledge support from the European Advanced Investigator grant cosmicism. SB acknowledges support from an ARC Future Fellowship (FT140101166). NB acknowledges support from EC FP7 SPACE project ASTRODEEP (Ref. No: 312725). EI acknowledges funding from CONICYT/FONDECYT post-doctoral project no: 3130504. MALL acknowledges support from UNAM through PAPIIT project IA101315. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship, the European Research Council, through receipt of a Starting Grant (DEGAS-259586) and support of the Science and Technology Facilities Council (ST/L00075X/1).; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; The VIKING survey is based on observations with ESO Telescopes at the La Silla Paranal Observatory under the programme ID 179.A-2004.; GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the SDSS and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/.; This work is supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. NR 96 TC 14 Z9 14 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2016 VL 455 IS 4 BP 3911 EP 3942 DI 10.1093/mnras/stv2505 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UH UT WOS:000368009300042 ER PT J AU Davies, LJM Robotham, ASG Driver, SP Alpaslan, M Baldry, IK Bland-Hawthorn, J Brough, S Brown, MJI Cluver, ME Holwerda, BW Hopkins, AM Lara-Lopez, MA Mahajan, S Moffett, AJ Owers, MS Phillipps, S AF Davies, L. J. M. Robotham, A. S. G. Driver, S. P. Alpaslan, M. Baldry, I. K. Bland-Hawthorn, J. Brough, S. Brown, M. J. I. Cluver, M. E. Holwerda, B. W. Hopkins, A. M. Lara-Lopez, M. A. Mahajan, S. Moffett, A. J. Owers, M. S. Phillipps, S. TI Galaxy And Mass Assembly (GAMA): growing up in a bad neighbourhood - how do low-mass galaxies become passive? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: interactions ID STAR-FORMATION HISTORIES; DIGITAL SKY SURVEY; STELLAR MASS; DWARF GALAXIES; GALACTIC CONFORMITY; RED SEQUENCE; DATA RELEASE; TIME-SCALES; LOCAL GROUP; EVOLUTION AB Both theoretical predictions and observations of the very nearby Universe suggest that lowmass galaxies(log(10)[M-*/M-circle dot] < 9.5) are likely to remain star-forming unless they are affected by their local environment. To test this premise, we compare and contrast the local environment of both passive and star-forming galaxies as a function of stellar mass, using the Galaxy and Mass Assembly survey. We find that passive fractions are higher in both interacting pair and group galaxies than the field at all stellar masses, and that this effect is most apparent in the lowest mass galaxies. We also find that essentially all passive log(10)[M-*/M-circle dot] < 8.5 galaxies are found in pair/group environments, suggesting that local interactions with a more massive neighbour cause them to cease forming new stars. We find that the effects of immediate environment (local galaxy-galaxy interactions) in forming passive systems increase with decreasing stellar mass, and highlight that this is potentially due to increasing interaction time-scales giving sufficient time for the galaxy to become passive via starvation. We then present a simplistic model to test this premise, and showthat given our speculative assumptions, it is consistent with our observed results. C1 [Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Moffett, A. J.] Univ Western Australia, ICRAR, Crawley, WA 6009, Australia. [Driver, S. P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Alpaslan, M.] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Baldry, I. K.] Liverpool John Moores Univ, Astrophys Res Inst, IC2, Liverpool L3 5RF, Merseyside, England. [Bland-Hawthorn, J.] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Brough, S.; Hopkins, A. M.; Owers, M. S.] Australian Astron Observ, N Ryde, NSW 1670, Australia. [Brown, M. J. I.] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia. [Cluver, M. E.] Univ Western Cape, ZA-7535 Bellville, South Africa. [Holwerda, B. W.] Leiden Univ, Sterrewacht Leiden, NL-2333 CA Leiden, Netherlands. [Lara-Lopez, M. A.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Mahajan, S.] Indian Inst Sci Educ & Res Mohali, Manauli 140306, Punjab, India. [Owers, M. S.] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia. [Phillipps, S.] Univ Bristol, Sch Phys, Bristol BS8 1TL, Avon, England. RP Davies, LJM (reprint author), Univ Western Australia, ICRAR, 35 Stirling Highway, Crawley, WA 6009, Australia. EM luke.j.davies@uwa.edu.au RI Brown, Michael/B-1181-2015; OI Baldry, Ivan/0000-0003-0719-9385; Brown, Michael/0000-0002-1207-9137; Owers, Matt/0000-0002-2879-1663 FU STFC (UK); ARC (Australia); AAO; Australian Research Council [FT140101166, FT140100255]; Department of Science (DST) Science Education and Research Board (SERB) [SB/FTP/PS-054/2013] FX GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV-to-radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO and the participating institutions. The GAMA website is http://www.gama-survey.org/. SB acknowledges the funding support from the Australian Research Council through a Future Fellowship (FT140101166). MSO acknowledges the funding support of the Australian Research Council through a Future Fellowship (FT140100255). SM is a Fast track fellow at IISER, Mohali funded by the Department of Science (DST) Science Education and Research Board (SERB) grant number SB/FTP/PS-054/2013. We thank the anonymous referee for their extremely helpful comments and suggestions in improving the overall quality and clarity of this paper. NR 73 TC 9 Z9 9 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2016 VL 455 IS 4 BP 4013 EP 4029 DI 10.1093/mnras/stv2573 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UH UT WOS:000368009300050 ER PT J AU Crocce, M Carretero, J Bauer, AH Ross, AJ Sevilla-Noarbe, I Giannantonio, T Sobreira, F Sanchez, J Gaztanaga, E Kind, MC Sanchez, C Bonnett, C Benoit-Levy, A Brunner, RJ Rosell, AC Cawthon, R Fosalba, P Hartley, W Kim, EJ Leistedt, B Miquel, R Peiris, HV Percival, WJ Rosenfeld, R Rykoff, ES Sanchez, E Abbott, T Abdalla, FB Allam, S Banerji, M Bernstein, GM Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Castander, FJ Cunha, CE D'Andrea, CB Da Costa, LN Desai, S Diehl, HT Eifler, TF Evrard, AE Neto, AF Fernandez, E Finley, DA Flaugher, B Frieman, J Gerdes, DW Gruen, D Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M Maia, MAG March, M Marshall, JL Martini, P Melchior, P Miller, CJ Neilsen, E Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Sako, M Santiago, B Schubnell, M Smith, RC Soares-Santos, M Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Vikram, V Walker, AR Wechsler, RH Weller, J Zuntz, J AF Crocce, M. Carretero, J. Bauer, A. H. Ross, A. J. Sevilla-Noarbe, I. Giannantonio, T. Sobreira, F. Sanchez, J. Gaztanaga, E. Kind, M. Carrasco Sanchez, C. Bonnett, C. Benoit-Levy, A. Brunner, R. J. Carnero Rosell, A. Cawthon, R. Fosalba, P. Hartley, W. Kim, E. J. Leistedt, B. Miquel, R. Peiris, H. V. Percival, W. J. Rosenfeld, R. Rykoff, E. S. Sanchez, E. Abbott, T. Abdalla, F. B. Allam, S. Banerji, M. Bernstein, G. M. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Castander, F. J. Cunha, C. E. D'Andrea, C. B. Da Costa, L. N. Desai, S. Diehl, H. T. Eifler, T. F. Evrard, A. E. Fausti Neto, A. Fernandez, E. Finley, D. A. Flaugher, B. Frieman, J. Gerdes, D. W. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. Maia, M. A. G. March, M. Marshall, J. L. Martini, P. Melchior, P. Miller, C. J. Neilsen, E. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Sako, M. Santiago, B. Schubnell, M. Smith, R. C. Soares-Santos, M. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Vikram, V. Walker, A. R. Wechsler, R. H. Weller, J. Zuntz, J. CA DES Collaboration TI Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys - cosmology; observations - large-scale structure of Universe ID DARK ENERGY SURVEY; DIGITAL SKY SURVEY; CHALLENGE LIGHTCONE SIMULATION; ANGULAR-CORRELATION FUNCTION; LUMINOUS RED GALAXIES; VLT DEEP SURVEY; SDSS-III; COSMOLOGICAL IMPLICATIONS; SPECTROSCOPIC SURVEY; POWER SPECTRUM AB We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 Chi 10(6) galaxies over a contiguous 116 deg(2) region in five bins of photometric redshift width triangle z = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-z algorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterize and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck A cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with X-2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. We test a ' linear bias ' model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 per cent accuracy down to scales at least 4-10 times smaller than those on which linear theory is expected to be sufficient. C1 [Crocce, M.; Carretero, J.; Bauer, A. H.; Gaztanaga, E.; Fosalba, P.; Castander, F. J.] IEEC CSIC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Carretero, J.; Sanchez, C.; Bonnett, C.; Miquel, R.; Fernandez, E.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Ross, A. J.; Honscheid, K.; Martini, P.; Melchior, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Sevilla-Noarbe, I.; Sanchez, J.; Sanchez, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, E-28040 Madrid, Spain. [Sevilla-Noarbe, I.; Kind, M. Carrasco; Brunner, R. J.; Kim, E. J.; Gruendl, R. A.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Giannantonio, T.; Banerji, M.] Univ Cambridge, Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Giannantonio, T.; Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Giannantonio, T.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Cambridge CB3 0WA, England. [Sobreira, F.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Soares-Santos, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sobreira, F.; Carnero Rosell, A.; Rosenfeld, R.; Da Costa, L. N.; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.] Lab Interinst & E Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Brunner, R. J.; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Benoit-Levy, A.; Leistedt, B.; Peiris, H. V.; Abdalla, F. B.; Brooks, D.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carnero Rosell, A.; Da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Cawthon, R.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Hartley, W.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Percival, W. J.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Rosenfeld, R.] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Rosenfeld, R.] Univ Estadual Paulista, ICTP SAIFR, BR-01140070 Sao Paulo, SP, Brazil. [Rykoff, E. S.; Burke, D. L.; Cunha, C. E.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Rykoff, E. S.; Burke, D. L.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, ZA-6140 Grahamstown, South Africa. [Abdalla, F. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Bernstein, G. M.; Eifler, T. F.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Desai, S.; Weller, J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.; Weller, J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gruen, D.; Weller, J.] Univ Munich, Univ Sternwarte, Fak Phys, D-81679 Munich, Germany. [Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Vikram, V.] Argonne Natl Lab, Argonne, IL 60439 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP Crocce, M (reprint author), IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. EM martincrocce@gmail.com RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sanchez, Eusebio/H-5228-2015; Fosalba Vela, Pablo/I-5515-2016; Rosenfeld, Rogerio/L-5845-2016; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; Gaztanaga, Enrique/L-4894-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Abdalla, Filipe/0000-0003-2063-4345; Sanchez, Eusebio/0000-0002-9646-8198; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Gaztanaga, Enrique/0000-0001-9632-0815; Weller, Jochen/0000-0002-8282-2010; Carrasco Kind, Matias/0000-0002-4802-3194 FU US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766] FX Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.r The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329 and 306478. MC has been partially funded by AYA2013-44327. FS acknowledges financial support provided by CAPES under contract no. 3171-13-2. We thank Jean Coupon and Martin Kilbinger for useful discussions and help at different stages of this work.r This paper has gone through internal review by the DES collaboration. The DES publication number for this article is DES-2015-0055. The Fermilab pre-print number is FERMILAB-PUB-15-305. NR 74 TC 18 Z9 18 U1 1 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2016 VL 455 IS 4 BP 4301 EP 4324 DI 10.1093/mnras/stv2590 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UH UT WOS:000368009300069 ER PT J AU Moorhead, AV AF Moorhead, Althea V. TI Performance of D-criteria in isolating meteor showers from the sporadic background in an optical data set SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE meteorites; meteors; meteoroids ID STREAMS; RADAR AB Separating meteor showers from the sporadic meteor background is critical for the study of both showers and the sporadic complex. The linkage of meteors to meteor showers, to parent bodies, and to other meteors is done using measures of orbital similarity. These measures often take the form of so-called D-parameters and are generally paired with some cutoff value within which two orbits are considered related. The appropriate cut-off value can depend on the size of the data set (Southworth & Hawkins 1963), the sporadic contribution within the observed size range (Jopek 1995), or the inclination of the shower (Galligan 2001). If the goal is to minimize sporadic contamination of the extracted shower, the cut-off value should also reflect the strength of the shower compared to the local sporadic background. In this paper, we present a method for determining, on a per-shower basis, the orbital similarity cut-off value that corresponds to a chosen acceptable false-positive rate. This method also assists us in distinguishing which showers are significant within a set of data. We apply these methods to optical meteor observations from the NASA All-Sky and Southern Ontario Meteor Networks. C1 [Moorhead, Althea V.] NASA, Meteoroid Environm Off, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Moorhead, AV (reprint author), NASA, Meteoroid Environm Off, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM althea.moorhead@nasa.gov NR 19 TC 1 Z9 1 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2016 VL 455 IS 4 BP 4329 EP 4338 DI 10.1093/mnras/stv2610 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UH UT WOS:000368009300071 ER PT J AU Alsing, J Heavens, A Jaffe, AH Kiessling, A Wandelt, B Hoffmann, T AF Alsing, Justin Heavens, Alan Jaffe, Andrew H. Kiessling, Alina Wandelt, Benjamin Hoffmann, Till TI Hierarchical cosmic shear power spectrum inference SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: statistical ID LARGE-SCALE STRUCTURE; WEAK LENSING SURVEYS; BAYESIAN-INFERENCE; DARK ENERGY; SKY MAPS; PROBE; COSMOLOGY; TOMOGRAPHY; PARAMETERS; MODELS AB We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E-and B-modes. C1 [Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Imperial Ctr Inference & Cosmol, Blackett Lab, London SW7 2AZ, England. [Kiessling, Alina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wandelt, Benjamin] Univ Paris 06, Inst Astrophys Paris, UMR CNRS 7095, F-75014 Paris, France. [Wandelt, Benjamin] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Hoffmann, Till] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. RP Alsing, J (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Phys, Imperial Ctr Inference & Cosmol, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. EM j.alsing12@imperial.ac.uk OI Kiessling, Alina/0000-0002-2590-1273 FU JPL; Caltech for NASA; NASA ROSES [13-ATP13-0019]; ANR Chaire d'Excellence [ANR-10-CEXC-004-01]; UPMC Chaire Internationale in Theoretical Cosmology; Labex Institut Lagrange de Paris part of the Idex SUPER [ANR-10-LABX-63] FX We would like to thank Thomas Kitching, Guilhem Lavaux, Daniel Mortlock and others for stimulating discussions. AK was supported in part by JPL, run under contract by Caltech for NASA. AK was also supported in part by NASA ROSES 13-ATP13-0019. BW acknowledges funding from an ANR Chaire d'Excellence (ANR-10-CEXC-004-01), the UPMC Chaire Internationale in Theoretical Cosmology and the Labex Institut Lagrange de Paris (ANR-10-LABX-63) part of the Idex SUPER. NR 56 TC 6 Z9 6 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2016 VL 455 IS 4 BP 4452 EP 4466 DI 10.1093/mnras/stv2501 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UH UT WOS:000368009300080 ER PT J AU Oliveira, DM Raeder, J Tsurutani, BT Gjerloev, JW AF Oliveira, D. M. Raeder, J. Tsurutani, B. T. Gjerloev, J. W. TI Effects of Interplanetary Shock Inclinations on Nightside Auroral Power Intensity SO BRAZILIAN JOURNAL OF PHYSICS LA English DT Article DE Space physics; Ionosphere-magnetosphere interaction; Plasma physics ID IMPACT ANGLE CONTROL; MAGNETOSPHERIC COMPRESSIONS; SUBSTORMS; SYSTEM; POLAR; GEOEFFECTIVENESS; ORIENTATIONS; EXPANSIONS; DISRUPTION; EVENTS AB We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectiveness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and Wind spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanced versions of the traditional geomagnetic indices. The SuperMAG auroral electroject SME index, an enhanced version of the traditional AE index, is used as an auroral power (AP) indicator. AP intensity jumps triggered by shock impacts are correlated with both shock speed and impact angle. It is found that high AP intensity events typically occur when high speed IP shocks impact the Earth's magnetosphere with the shock normal almost parallel to the Sun-Earth line. This result suggests that symmetric and strong magnetospheric compression leads to favorable conditions for intense auroral power release, as shown previously by simulations and observations. Some potential mechanisms will be discussed. C1 [Oliveira, D. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Oliveira, D. M.] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA. [Raeder, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Raeder, J.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Gjerloev, J. W.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Gjerloev, J. W.] Univ Bergen, Birkeland Ctr Excellence, Bergen, Norway. RP Oliveira, DM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM dennymauricio@gmail.com RI Oliveira, Denny/B-9818-2015 OI Oliveira, Denny/0000-0003-2078-7229 FU National Science Foundation [AGS-1143895]; Air Force Office of Sponsored Research [FA-9550-120264] FX This work was supported by grant AGS-1143895 from the National Science Foundation and grant FA-9550-120264 from the Air Force Office of Sponsored Research. We thank the Wind and ACE teams for the solar wind data and CDAWeb interface for data availability. We thank Dr. C. W. Smith, the ACE team, and Dr. J. C. Kasper for their list compilations. For the ground magnetometer data, we gratefully acknowledge: Intermagnet; USGS, Jeffrey J. Love; CARISMA, PI Ian Mann; CANMOS; The S-RAMP Database, PI K. Yumoto and Dr. K. Shiokawa; The SPIDR database; AARI, PI Oleg Troshichev; The MACCS program, PI M. Engebretson, Geomagnetism Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP and Florida Institute of Technology; SAMBA, PI Eftyhia Zesta; 210 Chain, PI K. Yumoto; SAMNET, PI Farideh Honary; The institutes who maintain the IMAGE magnetometer array, PI Eija Tanskanen; PENGUIN; AUTUMN, PI Martin Conners; DTU Space, PI Dr. J'urgen Matzka; South Pole and McMurdo Magnetometer, PI's Louis J. Lanzarotti and Alan T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Artarctic Survey; McMac, PI Dr. Peter Chi; BGS, PI Dr. Susan Macmillan; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, PI Dr. J"urgen Matzka; MFGI, PI B. Heilig; IGFPAS, PI J. Reda; University of L'Aquila, PI M. Vellante; SuperMAG, PI Jesper W. Gjerloev. D.M.O. thanks the SuperMAG PI J. W. Gjerloev for the straightforward SuperMAG website for its convenience of data visualization and download. NR 54 TC 1 Z9 3 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0103-9733 EI 1678-4448 J9 BRAZ J PHYS JI Braz. J. Phys. PD FEB PY 2016 VL 46 IS 1 BP 97 EP 104 DI 10.1007/s13538-015-0389-9 PG 8 WC Physics, Multidisciplinary SC Physics GA DA4RX UT WOS:000367789100012 ER PT J AU Marlow, SL Salas, E Landon, LB Presnell, B AF Marlow, Shannon L. Salas, Eduardo Landon, Lauren B. Presnell, Bart TI Eliciting teamwork with game attributes: A systematic review and research agenda SO COMPUTERS IN HUMAN BEHAVIOR LA English DT Review DE Simulation/gaming; Game-based training; Teamwork; Game attribute; Review ID GROUP COHESION; ORGANIZATIONAL-PSYCHOLOGY; SOCIAL-EXCHANGE; PERFORMANCE; METAANALYSIS; FEEDBACK; TEAMS; INTERDEPENDENCE; WORK; TASK AB The modern workplace has become increasingly complex as a function of numerous factors, including technological and economic growth. Teams are more frequently implemented within organizations to facilitate high performance within these complex, dynamic conditions. Game-based training has become a common method of delivering training to teams, paralleling the recent trend towards gamification, which refers to integrating games into traditionally non-game based settings. However, the extant literature remains nascent as there is a dearth of theory relating independent game attributes to teamwork behaviors. Specifically, it is unknown why or how game-based training may foster desired competencies within teams. To address this gap, the present article conducts a systematic review to identify opportunities for research and potential relationships between game attributes and teamwork behaviors. These proposed relationships are ultimately intended to uncover the manner in which game-based training can be leveraged to facilitate effective teamwork. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Marlow, Shannon L.; Salas, Eduardo] Rice Univ, Houston, TX 77005 USA. [Landon, Lauren B.] NASA, Johnson Space Ctr, Wyle Labs Inc, Houston, TX 77058 USA. [Presnell, Bart] Stottler Henke Associates Inc, San Mateo, CA 94402 USA. RP Salas, E (reprint author), Rice Univ, Dept Psychol, MS 25,Sewall Hall 429c, Houston, TX 77005 USA. EM Shannon.l.marlow@rice.edu FU National Aeronautics and Space Administration (NASA) [NNX13CJ43C] FX This work was supported in part by contract (No. NNX13CJ43C) with the National Aeronautics and Space Administration (NASA) to Stottler Henke Associates, Inc. The views expressed in this work are those of the authors and do not necessarily reflect the organizations with which they are affiliated or their sponsoring institutions or agencies. NR 106 TC 1 Z9 1 U1 13 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0747-5632 EI 1873-7692 J9 COMPUT HUM BEHAV JI Comput. Hum. Behav. PD FEB PY 2016 VL 55 BP 413 EP 423 DI 10.1016/j.chb.2015.09.028 PN A PG 11 WC Psychology, Multidisciplinary; Psychology, Experimental SC Psychology GA DA4FL UT WOS:000367755400044 ER PT J AU Eddy, C Brill, R Bernal, D AF Eddy, Corey Brill, Richard Bernal, Diego TI Rates of at-vessel mortality and post-release survival of pelagic sharks captured with tuna purse seines around drifting fish aggregating devices (FADs) in the equatorial eastern Pacific Ocean SO FISHERIES RESEARCH LA English DT Article DE Carcharhinus falciformis; Sphyrna; lewini; PSAT; Purse seine; Total mortality ID GULF-OF-MEXICO; CARCHARHINUS-FALCIFORMIS; SILKY SHARKS; ATLANTIC; ECOSYSTEM; BYCATCH; STRESS; CONSEQUENCES; SURVIVORSHIP; EXPLOITATION AB Pelagic fishes are well known to aggregate in large numbers under floating objects and this behavior is frequently exploited by purse seine fisheries targeting tunas. Non-target species (e.g., sharks) are often caught as well, but they are typically discarded as they do not have sufficient commercial value. To investigate the total mortality of pelagic sharks in the equatorial Eastern Pacific Ocean associated with the tuna purse seine fishery deploying drifting fish aggregating devices (FADS), we measured rates of at-vessel mortality and deployed pop-up satellite archival tags (PSATs) to monitor post-release survival and behavior. Between 2011 and 2012, at-vessel mortality rate ranged from 15% to 70%, and total mortality rate (i.e. the combination of at-vessel and post-release mortalities) ranged from 80% to 95%. Taken together, our findings document the high mortality of sharks incidentally captured in the tuna purse seine fishery that employs drifting FADS, indicate a correlation to set size, and suggest the need to develop methods that minimize shark bycatch in this fishery. (C) 2015 Elsevier B.V. All rights reserved. C1 [Eddy, Corey; Bernal, Diego] Univ Massachusetts Dartmouth, Dept Biol, N Dartmouth, MA 02747 USA. [Brill, Richard] Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, James J Howard Marine Sci Lab, Highlands, NJ 07732 USA. RP Eddy, C (reprint author), Univ Massachusetts Dartmouth, Dept Biol, 285 Old Westport Rd, N Dartmouth, MA 02747 USA. EM corey.eddy@umassd.edu; rbrill@vims.edu; dbernal@umassd.edu FU National Science Foundation [DGE-1144241]; University of Massachusetts Dartmouth Office of Graduate Studies; University of Massachusetts; International Seafood Sustainability Foundation FX The authors wish to thank the International Seafood Sustainability Foundation for funding this research, Kurt Schaefer and Daniel Fuller from the Inter-American Tropical Tuna Commission, as well as Captain Ricardo Diaz (F/V Yolanda L), Captain Alfredo Heres Iriarte (F/V Via Simoun), and the crews of each vessel. The authors appreciate the logistical support offered by T. Tazo, J. Valdez, T. Reposado, and S. Malt. This work was also supported by the National Science Foundation Graduate Research Fellowship Program (DGE-1144241), the University of Massachusetts Dartmouth Office of Graduate Studies, and the University of Massachusetts Intercampus Marine Science Graduate Program. NR 53 TC 4 Z9 4 U1 8 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD FEB PY 2016 VL 174 BP 109 EP 117 DI 10.1016/j.fishres.2015.09.008 PG 9 WC Fisheries SC Fisheries GA DA3LU UT WOS:000367700000012 ER PT J AU Yamakov, V Hochhalter, JD Leser, WP Warner, JE Newman, JA Pun, GPP Mishin, Y AF Yamakov, V. Hochhalter, J. D. Leser, W. P. Warner, J. E. Newman, J. A. Pun, G. P. Purja Mishin, Y. TI Multiscale modeling of sensory properties of Co-Ni-Al shape memory particles embedded in an Al metal matrix SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID MOLECULAR-DYNAMICS AB The concept of utilizing ferromagnetic shape memory alloys as embedded sensory particles in aluminum alloys for damage detection is discussed. When embedded in a material, a shape memory particle can undergo an acoustically detectable solid-state phase transformation when the local strain reaches a critical value. The emitted acoustic signal can be used for real-time damage detection. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction. These results serve as a basis for understanding the efficacy and variability in the sensory particle transformation to detect damage processes. C1 [Yamakov, V.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Hochhalter, J. D.; Leser, W. P.; Warner, J. E.; Newman, J. A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Pun, G. P. Purja; Mishin, Y.] George Mason Univ, Fairfax, VA 22030 USA. RP Yamakov, V (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA. EM yamakov@nianet.org RI Mishin, Yuri/P-2020-2015 FU National Institute of Aerospace [NCC-1-02043]; National Aeronautics and Space Administration through the NASA Langley Research Center (NRA) [NNX08AC07A] FX V. Yamakov is sponsored through cooperative agreement NCC-1-02043 with the National Institute of Aerospace. G. P. Purja Pun and Y. Mishin were supported by the National Aeronautics and Space Administration through the NASA Langley Research Center (cooperative agreement NRA # NNX08AC07A). The use of FEAWDX software for explicit FE integration, developed by G. Heber is gratefully acknowledged. NR 19 TC 3 Z9 3 U1 3 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2016 VL 51 IS 3 BP 1204 EP 1216 DI 10.1007/s10853-015-9153-3 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA DA2GE UT WOS:000367612500005 ER PT J AU Wang, WL Nemani, R AF Wang, Weile Nemani, Ramakrishna TI Dynamic responses of atmospheric carbon dioxide concentration to global temperature changes between 1850 and 2010 SO ADVANCES IN ATMOSPHERIC SCIENCES LA English DT Article DE atmospheric CO2 dynamics; climate-carbon interactions; climate change; carbon cycle ID CLIMATE-CHANGE; CYCLE FEEDBACK; CO2 GROWTH; INTERANNUAL VARIABILITY; SURFACE-TEMPERATURE; NORTHERN ECOSYSTEMS; AIRBORNE FRACTION; AIR-TEMPERATURE; OCEAN; MODEL AB Changes in Earth's temperature have significant impacts on the global carbon cycle that vary at different time scales, yet to quantify such impacts with a simple scheme is traditionally deemed difficult. Here, we show that, by incorporating a temperature sensitivity parameter (1.64 ppm yr(-1) A degrees C-1) into a simple linear carbon-cycle model, we can accurately characterize the dynamic responses of atmospheric carbon dioxide (CO2) concentration to anthropogenic carbon emissions and global temperature changes between 1850 and 2010 (r (2) > 0.96 and the root-mean-square error < 1 ppm for the period from 1960 onward). Analytical analysis also indicates that the multiplication of the parameter with the response time of the atmospheric carbon reservoir (similar to 12 year) approximates the long-term temperature sensitivity of global atmospheric CO2 concentration (similar to 15 ppm A degrees C-1), generally consistent with previous estimates based on reconstructed CO2 and climate records over the Little Ice Age. Our results suggest that recent increases in global surface temperatures, which accelerate the release of carbon from the surface reservoirs into the atmosphere, have partially offset surface carbon uptakes enhanced by the elevated atmospheric CO2 concentration and slowed the net rate of atmospheric CO2 sequestration by global land and oceans by similar to 30% since the 1960s. The linear modeling framework outlined in this paper thus provides a useful tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes. C1 [Wang, Weile] Calif State Univ Monterey Bay, Dept Sci & Environm Policy, Seaside, CA 93955 USA. [Wang, Weile] NASA, Div Earth Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Nemani, Ramakrishna] NASA, Adv Supercomput Div, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Wang, WL (reprint author), Calif State Univ Monterey Bay, Dept Sci & Environm Policy, Seaside, CA 93955 USA. EM weile.wang@nasa.gov NR 74 TC 0 Z9 0 U1 6 U2 46 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 0256-1530 EI 1861-9533 J9 ADV ATMOS SCI JI Adv. Atmos. Sci. PD FEB PY 2016 VL 33 IS 2 BP 247 EP 258 DI 10.1007/s00376-015-5090-y PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CZ9ZW UT WOS:000367457500010 ER PT J AU Raj, SV AF Raj, S. V. TI Thermal expansion behavior of hot-pressed engineered matrices SO CERAMICS INTERNATIONAL LA English DT Article DE Engineered matrix composites; Silicon carbide; Silicon nitride; Silicides; Thermal expansion; Engineered matrix ID TOUGHNESS; CERAMICS AB Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept Powder mixtures of seven engineered matrices were formulated based on ROM calculations and hot-pressed for thermal expansion measurements: 10(vol%)CrSi2-70%SiC-20%Si3N4 (CrSi2-EM); 10(vol%)CrMoSi-60%SiC-30%Si3N4 (CrMoSi-EM); 10(vol%)MoSi2-70%SiC-20%Si3N4 (MoSi2-EM); 10(vol%)TiSi2-70%SiC-20%Si3N4 (TiSi2-EM); 10(vol%)WSi2-70%SiC-20%Si3N4 (WSi2-EM); 50(vol%)MoSi2-50%Si3N4 and 20(vol%)TiSi2-80%Si3N4. Density measurements conducted on the hot-pressed specimens revealed that the volume fractions of total porosity varied between 36% and 43%. Thermal expansion measurements were conducted between room temperature and 1523 K during three heat-cool cycles. The corrected thermal expansion, (Delta L/L-0)(thermal), Varied with the absolute temperature, T, as (Delta L/L-0)(thermal) =A(T-293)(3)+B(T-293)(2)+ C(T-293) +D where A, B, C and D are regression constants. The magnitudes of (Delta L/L-0)(thermai) for the 50(vol%)MoSi2-50%Si3N4 and 20(vol%)TiSi2-80% Si3N4 specimens increased with increasing thermal cycle due to an increase in the global residual tensile stresses. In contrast, excellent reproducibility was observed for the other five engineered matrix compositions containing SiC after the first heat-up cycle had relieved residual stresses due to hot-pressing. The experimental (Delta L/L-0)(thermal) data on these engineered matrices are shown to be close to those for SiC thereby proving the validity of the proposed concept Published by Elsevier Ltd and Techna Group S.r.l. C1 [Raj, S. V.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Raj, SV (reprint author), NASA Glenn Res Ctr, MS 106-5,21000 Brookpk Rd, Cleveland, OH 44135 USA. EM sai.v.raj@nasa.gov FU NASA's Aeronautics Research and Mission Directorate's Seedling Fund FX The author thanks the late Ms. Anna Palczer for making the thermal expansion measurements. Drs. John MacKay and Rick Rodgers were instrumental in conducting the x-ray analyses, and their help is gratefully acknowledged. This research was funded by NASA's Aeronautics Research and Mission Directorate's Seedling Fund, and this support is gratefully acknowledged. NR 22 TC 0 Z9 0 U1 8 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 EI 1873-3956 J9 CERAM INT JI Ceram. Int. PD FEB 1 PY 2016 VL 42 IS 2 BP 2557 EP 2569 DI 10.1016/j.ceramint.2015.10.058 PN A PG 13 WC Materials Science, Ceramics SC Materials Science GA CZ7JZ UT WOS:000367277000056 ER PT J AU Wiesner, VL Rueschhoff, LM Diaz-Cano, AI Trice, RW Youngblood, JP AF Wiesner, Valerie L. Rueschhoff, Lisa M. Diaz-Cano, Andres I. Trice, Rodney W. Youngblood, Jeffrey P. TI Producing dense zirconium diboride components by room-temperature injection molding of aqueous ceramic suspensions SO CERAMICS INTERNATIONAL LA English DT Article DE Injection molding; Borides; Suspensions ID ALUMINA SUSPENSIONS; CARBIDE ADDITIONS; PARTICLE PACKING; COMPOSITES; DENSIFICATION; RHEOLOGY AB Aqueous suspensions of zirconium diboride (ZrB2), boron carbide (B4C) and tungsten carbide (WC) with dispersant and water-soluble polyvinylpyrrolidone (PVP) were investigated for processing by room-temperature injection molding, a novel, environmentally benign ceramic processing method. B4C and WC were used as sintering aids, and the as-received powders were attrition milled to reduce particle size to promote full densification of ZrB2 specimens by pressureless sintering. Zeta potential measurements of individual ZrB2, B4C and WC powders and of powder mixtures revealed that maximum stability was achieved in aqueous solutions of attrition milled powder mixtures dispersed using an ammonium polyacrylate dispersant. A maximum powder loading of 49 vol% with <= 5 vol% PVP was attained for ZrB2/B4C/VVC suspensions with dispersant. Although exhibiting a time-dependent rheological response determined by parallel-plate rheometry, suspensions containing 49 vol% powders and <= 3 vol% PVP, as well as suspensions of 46 vol% powders and <= 4 vol% PVP, were flowable under the conditions of the process. ZrB2 rings prepared by room-temperature injection molding were machinable prior to binder removal and exhibited maximum brown densities of 56% true density (TD). Sintered densities were > 98%TD with similar to 20% linear shrinkage. Scanning electron microscopy revealed an average grain size of 7.3 +/- 2.8 mu m, and chemical analysis confirmed that no undesirable oxide phases remained in the sintered ZrB2 specimens. Aqueous ZrB2-based suspensions containing B4C and WC sintering aids and PVP were effectively processed via room-temperature injection molding to yield dense ZrB2 rings after binder burnout and pressureless sintering. Published by Elsevier Ltd and Techna Group S.r.l. C1 [Wiesner, Valerie L.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Rueschhoff, Lisa M.; Diaz-Cano, Andres I.; Trice, Rodney W.; Youngblood, Jeffrey P.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP Wiesner, VL (reprint author), NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM valerie.l.wiesner@nasa.gov FU National Science Foundation Materials and Surface Engineering CMMI Grant [0726304]; U.S. Department of Education GAANN Grant [P200A10036]; Army Research Office Grant [W911NF-13-1-0425] FX This work was funded by National Science Foundation Materials and Surface Engineering CMMI Grant 0726304, U.S. Department of Education GAANN Grant P200A10036 and Army Research Office Grant W911NF-13-1-0425. Additional support and access to resources at NASA Glenn Research Center were provided through the NASA Pathways Program. Thanks are due to Dr. Manuel Acosta for guidance and input throughout the investigation, Dr. Joe Grady for his support and valuable discussions, Prof. Kendra Erk and her research group for training and use of rheometric equipment, Dr. Bryan Harder and Dr. Richard Rogers for XRD assistance, Mr. Dereck Johnson for chemical analysis and Mr. Bob Angus and Mr. Gerald Hurd for sintering work. NR 40 TC 4 Z9 4 U1 1 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 EI 1873-3956 J9 CERAM INT JI Ceram. Int. PD FEB 1 PY 2016 VL 42 IS 2 BP 2750 EP 2760 DI 10.1016/j.ceramint.2015.11.005 PN A PG 11 WC Materials Science, Ceramics SC Materials Science GA CZ7JZ UT WOS:000367277000079 ER PT J AU Fortes, ECFS Pleitez, V Stecker, FW AF Fortes, E. C. F. S. Pleitez, V. Stecker, F. W. TI Secluded WIMPs, dark QED with massive photons, and the galactic center gamma-ray excess SO ASTROPARTICLE PHYSICS LA English DT Article DE Secluded dark matter; Gamma-rays; Antiprotons ID MATTER; MODELS; ANNIHILATION; SPECTRUM; PHYSICS AB We discuss a particular secluded WIMP dark matter model consisting of neutral fermions as the dark matter candidate and a Proca-Wentzel (PW) field as a mediator. In the model that we consider here, dark matter WIMPs interact with standard model (SM) particles only through the PW field of similar to MeV-multi-GeV mass particles. The interactions occur via a U(1)' mediator, V-mu', which couples to the SM by kinetic mixing with U(1) hypercharge bosons, B-mu'. One important difference between our model and other such models in the literature is the absence of an extra singlet scalar, so that the parameter with dimension of mass M-V(2) is not related to a spontaneous symmetry breaking. This QED based model is also renormalizable. The mass scale of the mediator and the absence of the singlet scalar can lead to interesting astrophysical signatures. The dominant annihilation channels are different from those usually considered in previous work. We show that the GeV-energy gamma-ray excess in the galactic center region, as derived from Fermi-LAT Gamma-ray Space Telescope data, can be attributed to such secluded dark matter WIMPs, given parameters of the model that are consistent with both the cosmological dark matter density and the upper limits on WIMP spin-independent elastic scattering. Secluded WIMP models are also consistent with suggested upper limits on a DM contribution to the cosmic-ray antiproton flux. Published by Elsevier B.V. C1 [Fortes, E. C. F. S.; Pleitez, V.] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Stecker, F. W.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Stecker, FW (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM floyd.w.stecker@nasa.gov FU FAPESP [14/05505-6, 11/21945-8]; CNPq FX We thank Julian Heeck and Matthew Wood for helpful discussions. E.C.F.S.F. thanks NASA Goddard Space Flight Center for its hospitality during the preparation of this paper and FAPESP for full support under contracts numbers 14/05505-6 and 11/21945-8. VP thanks to CNPq for partial support. NR 78 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2016 VL 74 BP 87 EP 95 DI 10.1016/j.astropartphys.2015.10.010 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ0GX UT WOS:000366784200012 ER PT J AU Hartwig, J Darr, S Asencio, A AF Hartwig, Jason Darr, Samuel Asencio, Anthony TI Assessment of existing two phase heat transfer coefficient and critical heat flux correlations for cryogenic flow boiling in pipe quenching experiments SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Liquid hydrogen; Liquid nitrogen; Quenching; Critical heat flux; Nucleate boiling; Film boiling; SINDA/FLUINT ID MINI/MICRO-CHANNEL FLOWS; FRICTIONAL PRESSURE-DROP; GENERAL CORRELATION; UNIVERSAL APPROACH; VERTICAL TUBES; LIQUID-HYDROGEN; WATER-FLOW; PREDICTIVE METHODS; SUBCOOLED WATER; CHILLDOWN AB To enable efficient design and analysis of cryogenic propellant transfer systems, high accuracy models are required for predicting two phase flow boiling and heat transfer at reduced temperatures. The penalty for poor models translates into higher margin, safety factor, and ultimately cost in design. Recently, there has been a drive towards developing universal correlations to cover a broad range of fluids, tube diameters, and thermodynamic conditions for predicting heat flux and pressure drop. These correlations do not, however, cover cryogenic fluids like liquid hydrogen. Therefore the purpose of this paper is to apply popular two phase heat transfer correlations used in commercial codes against available flow boiling data for cryogenic fluids. Specifically, quenching test data for critical heat flux and two phase heat transfer coefficient are compared against the correlations. Results show that existing correlations over-predict heat transfer by as much as 20,000% and that significant model improvements are warranted. Published by Elsevier Ltd. C1 [Hartwig, Jason] NASA, Glenn Res Ctr, Prop & Propellants Branch, Cleveland, OH 44135 USA. [Darr, Samuel] Univ Florida, Mech & Aerosp Engn, Gainesville, FL 32611 USA. [Asencio, Anthony] Inter Amer Univ Puerto Rico, Mech Engn, Bayamon, PR USA. RP Hartwig, J (reprint author), NASA, Glenn Res Ctr, Prop & Propellants Branch, Cleveland, OH 44135 USA. EM Jason.W.Hartwig@nasa.gov OI Darr, Samuel/0000-0002-1891-405X NR 128 TC 4 Z9 4 U1 9 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD FEB PY 2016 VL 93 BP 441 EP 463 DI 10.1016/j.ijheatmasstransfer.2015.09.028 PG 23 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CZ4XZ UT WOS:000367107700041 ER PT J AU Blewett, DT Denevi, BW Le Corre, L Reddy, V Schroder, SE Pieters, CM Tosi, F Zambon, F De Sanctis, MC Ammannito, E Roatsch, T Raymond, CA Russell, CT AF Blewett, David T. Denevi, Brett W. Le Corre, Lucille Reddy, Vishnu Schroeder, Stefan E. Pieters, Carle M. Tosi, Federico Zambon, Francesca De Sanctis, Maria Cristina Ammannito, Eleonora Roatsch, Thomas Raymond, Carol A. Russell, Christopher T. TI Optical space weathering on Vesta: Radiative-transfer models and Dawn observations SO ICARUS LA English DT Article DE Asteroid Vesta; Asteroids, composition; Asteroids, surfaces; Geological processes; Spectroscopy ID ASTEROID 4 VESTA; SPECTRAL REFLECTANCE PROPERTIES; IN-FLIGHT CALIBRATION; FRAMING CAMERA; CARBONACEOUS CHONDRITES; COLOR VARIATIONS; DARK MATERIAL; MINERALOGICAL ANALYSIS; OPPIA QUADRANGLE; LUNAR REGOLITH AB Exposure to ion and micrometeoroid bombardment in the space environment causes physical and chemical changes in the surface of an airless planetary body. These changes, called space weathering, can strongly influence a surface's optical characteristics, and hence complicate interpretation of composition from reflectance spectroscopy. Prior work using data from the Dawn spacecraft (Pieters, C.M. et al. [2012]. Nature 491, 79-82) found that accumulation of nanophase metallic iron (npFe(0)), which is a key space-weathering product on the Moon, does not appear to be important on Vesta, and instead regolith evolution is dominated by mixing with carbonaceous chondrite (CC) material delivered by impacts. In order to gain further insight into the nature of space weathering on Vesta, we constructed model reflectance spectra using Hapke's radiative-transfer theory and used them as an aid to understanding multispectral observations obtained by Dawn's Framing Cameras (FC). The model spectra, for a howardite mineral assemblage, include both the effects of npFe(0) and that of a mixed CC component. We found that a plot of the 438-nm/555-nm ratio vs. the 555-nm reflectance for the model spectra helps to separate the effects of lunar-style space weathering (LSSW) from those of CC-mixing. We then constructed ratio-reflectance pixel scatterplots using FC images for four areas of contrasting composition: a eucritic area at Vibidia crater, a diogenitic area near Antonia crater, olivine-bearing material within Bellicia crater, and a light mantle unit (referred to as an "orange patch" in some previous studies, based on steep spectral slope in the visible) northeast of Oppia crater. In these four cases the observed spectral trends are those expected from CC-mixing, with no evidence for weathering dominated by production of npFe(0). In order to survey a wider range of surfaces, we also defined a spectral parameter that is a function of the change in 438-nm/555-nm ratio and the 555-nm reflectance between fresh and mature surfaces, permitting the spectral change to be classified as LSSW-like or CC-mixing-like. When applied to 21 fresh and mature FC spectral pairs, it was found that none have changes consistent with LSSW. We discuss Vesta's lack of LSSW in relation to the possible agents of space weathering, the effects of physical and compositional differences among asteroid surfaces, and the possible role of magnetic shielding from the solar wind. (C) 2015 Elsevier Inc. All rights reserved. C1 [Blewett, David T.; Denevi, Brett W.] Johns Hopkins Univ, Appl Phys Lab, Planetary Explorat Grp, Laurel, MD 20723 USA. [Le Corre, Lucille; Reddy, Vishnu] Planetary Sci Inst, Tucson, AZ 85719 USA. [Schroeder, Stefan E.; Roatsch, Thomas] German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. [Pieters, Carle M.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Tosi, Federico; Zambon, Francesca; De Sanctis, Maria Cristina; Ammannito, Eleonora] INAF, Ist Astrofis & Planetol Spaziali, Rome, Italy. [Ammannito, Eleonora; Russell, Christopher T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Raymond, Carol A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Blewett, DT (reprint author), Johns Hopkins Univ, Appl Phys Lab, Planetary Explorat Grp, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM david.blewett@jhuapl.edu RI Blewett, David/I-4904-2012; Denevi, Brett/I-6502-2012; Schroder, Stefan/D-9709-2013; OI Blewett, David/0000-0002-9241-6358; Denevi, Brett/0000-0001-7837-6663; Schroder, Stefan/0000-0003-0323-8324; De Sanctis, Maria Cristina/0000-0002-3463-4437; Le Corre, Lucille/0000-0003-0349-7932; Tosi, Federico/0000-0003-4002-2434; Zambon, Francesca/0000-0002-4190-6592 FU NASA Dawn at Vesta Participating Scientist grants [NNX10AR57G, NNX11AC28G]; NASA Planetary Mission Data Analysis Program [NNX14AN16G] FX Reviews provided by P. Vernazza and T. Kohout helped us to improve this paper. We are grateful to the Dawn flight, instrument, and science teams for their efforts that led to the successful mission at Vesta and the collection and processing of the data used in this study. D.T.B. thanks Sam Lawrence (Arizona State University) for sharing and collaborating on radiative-transfer code. This work made use of data from the RELAB spectral database at Brown University (http://www.planetary.brown.edu/relab/). The work of D.T.B. and B.W.D. was made possible by NASA Dawn at Vesta Participating Scientist grants (NNX10AR57G and NNX11AC28G, respectively). L.L. is supported by NASA Planetary Mission Data Analysis Program grant NNX14AN16G. NR 104 TC 2 Z9 2 U1 4 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD FEB PY 2016 VL 265 BP 161 EP 174 DI 10.1016/j.icarus.2015.10.012 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY3YH UT WOS:000366345300014 ER PT J AU Scheinert, M Ferraccioli, F Schwabe, J Bell, R Studinger, M Damaske, D Jokat, W Aleshkova, N Jordan, T Leitchenkov, G Blankenship, DD Damiani, TM Young, D Cochran, JR Richter, TD AF Scheinert, M. Ferraccioli, F. Schwabe, J. Bell, R. Studinger, M. Damaske, D. Jokat, W. Aleshkova, N. Jordan, T. Leitchenkov, G. Blankenship, D. D. Damiani, T. M. Young, D. Cochran, J. R. Richter, T. D. TI New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SUBGLACIAL LAKE VOSTOK; DRONNING MAUD LAND; EAST ANTARCTICA; TRANSANTARCTIC MOUNTAINS; AEROGEOPHYSICAL DATA; ICE-SHEET; GLACIER REGION; FIELD MODEL; GOCE DATA; GEOLOGY AB Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne, and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km(2), which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated leveling of the different gravity data sets with respect to an Earth gravity model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth gravity models to be derived and represent a major step forward toward solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica. C1 [Scheinert, M.; Schwabe, J.] Tech Univ Dresden, Inst Planetare Geodasie, D-01062 Dresden, Germany. [Ferraccioli, F.; Jordan, T.] British Antarctic Survey, Cambridge CB3 0ET, England. [Schwabe, J.] Bundesamt Kartog & Geodasie, Leipzig, Germany. [Bell, R.; Cochran, J. R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Studinger, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Damaske, D.] Bundesanstalt Geowissensch & Rohstoffe, Hannover, Germany. [Jokat, W.] Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Bremerhaven, Germany. [Jokat, W.] Univ Bremen, Dept Geosci, D-28359 Bremen, Germany. [Aleshkova, N.; Leitchenkov, G.] VNIIOkeangeologia, St Petersburg, Russia. [Leitchenkov, G.] St Petersburg State Univ, Dept Geophys, St Petersburg 199034, Russia. [Blankenship, D. D.; Young, D.; Richter, T. D.] Univ Texas Austin, Jackson Sch Geosci, Inst Geophys, Austin, TX 78712 USA. [Damiani, T. M.] NOAA, Natl Geodet Survey, Silver Spring, MD USA. RP Scheinert, M (reprint author), Tech Univ Dresden, Inst Planetare Geodasie, D-01062 Dresden, Germany. EM mirko.scheinert@tu-dresden.de RI Young, Duncan/G-6256-2010; OI Young, Duncan/0000-0002-6866-8176; Jokat, Wilfried/0000-0002-7793-5854 NR 67 TC 3 Z9 4 U1 3 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2016 VL 43 IS 2 BP 600 EP 610 DI 10.1002/2015GL067439 PG 11 WC Geosciences, Multidisciplinary SC Geology GA DG4QG UT WOS:000372056400015 ER PT J AU Clarizia, MP Ruf, C Cipollini, P Zuffada, C AF Clarizia, Maria Paola Ruf, Christopher Cipollini, Paolo Zuffada, Cinzia TI First spaceborne observation of sea surface height using GPS-Reflectometry SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID OCEAN ALTIMETRY; REFLECTIONS; SIGNALS; SYSTEM AB An analysis of spaceborne Global Positioning System reflectometry (GPS-R) data from the TechDemoSat-1 (TDS-1) satellite is carried out to image the ocean sea surface height (SSH). An SSH estimation algorithm is applied to GPS-R delay waveforms over two regions in the South Atlantic and the North Pacific. Estimates made from TDS-1 overpasses during a 6 month period are aggregated to produce SSH maps of the two regions. The maps generally agree with the global DTU10 mean sea surface height. The GPS-R instrument is designed to make bistatic measurements of radar cross section for ocean wind observations, and its altimetric performance is not optimized. The differences observed between measured and DTU10 SSH can be attributed to limitations with the GPS-R instrument and the lack of precision orbit determination by the TDS-1 platform. These results represent the first observations of SSH by a spaceborne GPS-R instrument. C1 [Clarizia, Maria Paola; Ruf, Christopher] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Cipollini, Paolo] Natl Oceanog Ctr, Southampton, Hants, England. [Zuffada, Cinzia] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Clarizia, MP (reprint author), Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. EM clarizia@umich.edu FU NASA Science Mission Directorate [NNL13AQ00C]; JPL Innovative Spontaneous Concept RTD Program [R.15.021.048]; National Aeronautics and Space Administration FX The authors are grateful to P. Jales at SSTL for providing additional information on the data via personal communications and to the TDS-1 Team at SSTL for the work undertaken for this mission and for making the data collected over a 6 month period publicly available, at www.merrbys.co.uk. The authors would like to thank S. Lowe and E. Cardellach for their useful discussions. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The work presented was supported by NASA Science Mission Directorate contract NNL13AQ00C and by the JPL Innovative Spontaneous Concept R&TD Program award R.15.021.048. NR 24 TC 6 Z9 6 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2016 VL 43 IS 2 BP 767 EP 774 DI 10.1002/2015GL066624 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DG4QG UT WOS:000372056400035 ER PT J AU Lau, WKM Shi, JJ Tao, WK Kim, KM AF Lau, William K. M. Shi, J. J. Tao, W. K. Kim, K. M. TI What would happen to Superstorm Sandy under the influence of a substantially warmer Atlantic Ocean? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TROPICAL CYCLONES; MAXIMUM INTENSITY; HURRICANES; IMPACT; MODEL; EVENTS; MOTION AB Based on ensemble numerical simulations, we find that possible responses of Sandy-like superstorms under the influence of a substantially warmer Atlantic Ocean bifurcate into two groups. In the first group, storms are similar to present-day Sandy from genesis to extratropical transition, except they are much stronger, with peak Power Destructive Index (PDI) increased by 50-80%, heavy rain by 30-50%, and maximum storm size (MSS) approximately doubled. In the second group, storms amplify substantially over the interior of the Atlantic warm pool, with peak PDI increased by 100-160%, heavy rain by 70-180%, and MSS more than tripled compared to present-day Superstorm Sandy. These storms when exiting the warm pool, recurve northeastward out to sea, subsequently interact with the developing midlatitude storm by mutual counterclockwise rotation around each other and eventually amplify into a severe Northeastern coastal storm, making landfall over the extreme northeastern regions from Maine to Nova Scotia. C1 [Lau, William K. M.] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Lau, William K. M.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. [Shi, J. J.] NASA GSFC, Mesoscale Atmospher Processes Lab, Greenbelt, MD USA. [Tao, W. K.; Kim, K. M.] NASA GSFC, Climate & Radiat Lab, Greenbelt, MD USA. RP Lau, WKM (reprint author), Univ Maryland, ESSIC, College Pk, MD 20742 USA.; Lau, WKM (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. EM wkmlau@umd.edu RI Lau, William /E-1510-2012 OI Lau, William /0000-0002-3587-3691 FU Precipitation Measuring Mission (PMM); DOE/PNNL [4331620] FX This work was supported by the Precipitation Measuring Mission (PMM), NASA Headquarters, Program Manager R. Kakar. Partial support for this work was also provided by a DOE/PNNL grant 4331620 to the Earth System Science Interdisciplinary Center, University of Maryland. NR 31 TC 3 Z9 3 U1 3 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2016 VL 43 IS 2 BP 802 EP 811 DI 10.1002/2015GL067050 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DG4QG UT WOS:000372056400039 ER PT J AU Kandel, S Salomon-Ferrer, R Larsen, AB Jain, A Vaidehi, N AF Kandel, Saugat Salomon-Ferrer, Romelia Larsen, Adrien B. Jain, Abhinandan Vaidehi, Nagarajan TI Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CLASSICAL STATISTICAL-MECHANICS; LINKED RIGID BODIES; BROWNIAN DYNAMICS; POLYMER-CHAIN; STRUCTURE REFINEMENT; FORCE-FIELD; PROTEINS; EQUILIBRIUM; CONFORMATIONS; MODELS AB The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules. (C) 2016 AIP Publishing LLC. C1 [Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Vaidehi, Nagarajan] City Hope Natl Med Ctr, Beckman Res Inst, Div Immunol, Duarte, CA 91010 USA. [Jain, Abhinandan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vaidehi, N (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Abhi.Jain@jpl.nasa.gov; nvaidehi@coh.org FU National Institutes of Health [RO1GM082896]; National Aeronautics and Space Administration FX This work was supported by Grant No. RO1GM082896 from the National Institutes of Health. The research described in this paper was also performed in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration. Government sponsorship is acknowledged. NR 38 TC 0 Z9 0 U1 6 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2016 VL 144 IS 4 AR 044112 DI 10.1063/1.4939532 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DD4KZ UT WOS:000369893100015 PM 26827207 ER PT J AU Margevicius, KJ Generous, N Abeyta, E Althouse, B Burkom, H Castro, L Daughton, A Del Valle, SY Fairchild, G Hyman, JM Kiang, R Morse, AP Pancerella, CM Pullum, L Ramanathan, A Schlegelmilch, J Scott, A Taylor-McCabe, KJ Vespignani, A Deshpande, A AF Margevicius, Kristen J. Generous, Nicholas Abeyta, Esteban Althouse, Ben Burkom, Howard Castro, Lauren Daughton, Ashlynn Del Valle, Sara Y. Fairchild, Geoffrey Hyman, James M. Kiang, Richard Morse, Andrew P. Pancerella, Carmen M. Pullum, Laura Ramanathan, Arvind Schlegelmilch, Jeffrey Scott, Aaron Taylor-McCabe, Kirsten J. Vespignani, Alessandro Deshpande, Alina TI The Biosurveillance Analytics Resource Directory (BARD): Facilitating the Use of Epidemiological Models for Infectious Disease Surveillance SO PLOS ONE LA English DT Article ID DECISION-MAKING; POLICY; REAL; TOOL AB Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subject matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models. C1 [Margevicius, Kristen J.; Generous, Nicholas; Abeyta, Esteban; Castro, Lauren; Daughton, Ashlynn; Del Valle, Sara Y.; Fairchild, Geoffrey; Taylor-McCabe, Kirsten J.; Deshpande, Alina] Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA. [Althouse, Ben] Santa Fe Inst, Santa Fe, NM 87501 USA. [Burkom, Howard] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Hyman, James M.] Tulane Univ, Dept Math, New Orleans, LA 70118 USA. [Kiang, Richard] Natl Aeronaut & Space Adm, Greenbelt, MD USA. [Morse, Andrew P.] Univ Liverpool, Sch Environm Sci, Dept Geog & Planning, Liverpool L69 3BX, Merseyside, England. [Morse, Andrew P.] NIHR Hlth Protect Res Unit Emerging & Zoonot Infe, Liverpool, Merseyside, England. [Pancerella, Carmen M.] Sandia Natl Labs, Distributed Syst Res, Livermore, CA USA. [Pullum, Laura; Ramanathan, Arvind] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Schlegelmilch, Jeffrey] Columbia Univ, Earth Inst, Natl Ctr Disaster Preparedness, New York, NY USA. [Scott, Aaron] USDA APHIS Vet Serv, Sci, Technol, Anal Serv, Ft Collins, CO USA. [Vespignani, Alessandro] Northeastern Univ, Lab Modeling Biol & Sociotech Syst, Boston, MA 02115 USA. RP Deshpande, A (reprint author), Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA. EM Deshpande_a@lanl.gov OI burkom, howard/0000-0003-0667-9467; Margevicius, Kristen/0000-0002-4116-8307 FU Defense Threat Reductions Agency - Joint Science and Technology Office [CB10007, DTRA10027-10845] FX This project was funded by the Defense Threat Reductions Agency - Joint Science and Technology Office (Grant # CB10007, DTRA10027-10845). NR 29 TC 0 Z9 0 U1 3 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 28 PY 2016 VL 11 IS 1 AR e0146600 DI 10.1371/journal.pone.0146600 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC9GF UT WOS:000369528400008 PM 26820405 ER PT J AU White, RA Chan, AM Gavelis, GS Leander, BS Brady, AL Slater, GF Lim, DSS Suttle, CA AF White, Richard Allen, III Chan, Amy M. Gavelis, Gregory S. Leander, Brian S. Brady, Allyson L. Slater, Gregory F. Lim, Darlene S. S. Suttle, Curtis A. TI Metagenomic Analysis Suggests Modern Freshwater Microbialites Harbor a Distinct Core Microbial Community SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE microbialites; Pavilion Lake; metagenomics; thrombolites; metabolic potential ID PAVILION LAKE; SHARK BAY; CARBONATE PRECIPITATION; MARINE STROMATOLITES; BACTERIAL DIVERSITY; MAT COMMUNITIES; CANADA; LITHIFICATION; ENVIRONMENT; VIRUSES AB Modern microbialites are complex microbial communities that interface with abiotic factors to form carbonate-rich organosedimentary structures whose ancestors provide the earliest evidence of life. Past studies primarily on marine microbialites have inventoried diverse taxa and metabolic pathways, but it is unclear which of these are members of the microbialite community and which are introduced from adjacent environments. Here we control for these factors by sampling the surrounding water and nearby sediment, in addition to the microbialites and use a metagenomics approach to interrogate the microbial community. Our findings suggest that the Pavilion Lake microbialite community profile, metabolic potential and pathway distributions are distinct from those in the neighboring sediments and water. Based on RefSeq classification, members of the Proteobacteria (e.g., alpha and delta classes) were the dominant taxa in the microbialites, and possessed novel functional guilds associated with the metabolism of heavy metals, antibiotic resistance, primary alcohol biosynthesis and urea metabolism; the latter may help drive biomineralization. Urea metabolism within Pavilion Lake microbialites is a feature not previously associated in other microbialites. The microbialite communities were also significantly enriched for cyanobacteria and acidobacteria, which likely play an important role in biomineralization. Additional findings suggest that Pavilion Lake microbialites are under viral selection as genes associated with viral infection (e.g CRISPR-Cas, phage shock and phage excision) are abundant within the microbialite metagenomes. The morphology of Pavilion Lake microbialites changes dramatically with depth; yet, metagenomic data did not vary significantly by morphology or depth, indicating that microbialite morphology is altered by other factors, perhaps transcriptional differences or abiotic conditions. This work provides a comprehensive metagenomic perspective of the interactions and differences between microbialites and their surrounding environment, and reveals the distinct nature of these complex communities. C1 [White, Richard Allen, III; Suttle, Curtis A.] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z4, Canada. [Chan, Amy M.; Suttle, Curtis A.] Univ British Columbia, Dept Earth Ocean & Atmospher Sci, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada. [Gavelis, Gregory S.; Leander, Brian S.] Univ British Columbia, Dept Zool, 6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada. [Leander, Brian S.; Suttle, Curtis A.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Brady, Allyson L.; Slater, Gregory F.] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON, Canada. [Lim, Darlene S. S.] Bay Area Environm Inst, Petaluma, CA USA. [Lim, Darlene S. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Suttle, Curtis A.] Canadian Inst Adv Res, Toronto, ON, Canada. RP Suttle, CA (reprint author), Univ British Columbia, Dept Earth Ocean & Atmospher Sci, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada.; Suttle, CA (reprint author), Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada.; Suttle, CA (reprint author), Canadian Inst Adv Res, Toronto, ON, Canada. EM suttle@science.ubc.ca FU MARSHFE Project - Canadian Space Agency [9F052-10-0176]; NASA MMAMA program; Discovery Grant from the Natural Science and Engineering Council of Canada FX Financial support was provided by the MARSHFE Project (9F052-10-0176) funded by the Canadian Space Agency, the NASA MMAMA program and a Discovery Grant from the Natural Science and Engineering Council of Canada to CAS. NR 80 TC 3 Z9 3 U1 12 U2 48 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD JAN 28 PY 2016 VL 6 AR 1531 DI 10.3389/fmicb.2015.01531 PG 14 WC Microbiology SC Microbiology GA DB8XY UT WOS:000368801700001 ER PT J AU Young, DA Schroeder, DM Blankenship, DD Kempf, SD Quartini, E AF Young, D. A. Schroeder, D. M. Blankenship, D. D. Kempf, Scott D. Quartini, E. TI The distribution of basal water between Antarctic subglacial lakes from radar sounding SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE glaciology; remote sensing; Antarctica ID ICE-PENETRATING RADAR; ACTIVE RESERVOIR BENEATH; WEST ANTARCTICA; EAST ANTARCTICA; THWAITES GLACIER; AIRBORNE-RADAR; STREAM-C; BYRD GLACIER; PINE ISLAND; SHEET AB Antarctica's subglacial lakes have two end member geophysical expressions: as hydraulically flat, radar reflective regions highlighted in ice surface topography and radar sounding profiles ('definite lakes'), and as localized sites of elevation change identified from repeat elevation observations ('active lakes') that are often found in fast flowing ice streams or enhanced ice flow tributaries. While 'definite lakes' can be identified readily by high bed reflectivity in radar sounding, the identification and characterization of less distinct subglacial lakes and water systems with radar sounding are complicated by variable radio-wave attenuation in the overlying ice. When relying on repeat elevation observations, the relatively short times series and biased distribution of elevation observations, along with the episodic nature of 'active lake' outflow and replenishment, limit our understanding of how water flows under the ice sheet. Using recently developed methods for quantifying the radar scattering behaviour of the basal interface of the ice, we can avoid the problem of attenuation, and observe the plumbing of the subglacial landscape. In West Antarctica's Ross Sea Embayment, we confirm that extensive distributed water systems underlie these ice streams. Distributed water sheets are upstream in the onset regions of fast flow, while canal systems underly downstream regions of fast flow. In East Antarctica, we use specularity analysis to recover substantial hydraulic connectivity extending beyond previous knowledge, connecting the lakes already delineated by traditional radar sounding or surface elevation transients. C1 [Young, D. A.; Blankenship, D. D.; Kempf, Scott D.; Quartini, E.] Univ Texas Austin, Inst Geophys, Austin, TX 78712 USA. [Schroeder, D. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Young, DA (reprint author), Univ Texas Austin, Inst Geophys, Austin, TX 78712 USA. EM duncan@ig.utexas.edu RI Young, Duncan/G-6256-2010; OI Young, Duncan/0000-0002-6866-8176; Quartini, Enrica/0000-0001-7485-543X; Schroeder, Dustin/0000-0003-1916-3929 FU Jackson School of Geophysics; NSF [PLR-1043761, PLR-0636724, PLR-104376, CDI-0941678]; NASA's Cryosphere program; G. Unger Vetlesen Foundation; National Science Foundation [PLR-0733025]; National Aeronautics and Space Administration [NNX09AR52G, NNG10HPO6C, NNX11AD33G]; Australian Antarctic Division projects [3013, 4077]; NERC [NE/D003733/1]; Jackson School of Geosciences; Antarctic Climate and Ecosystems Cooperative Research Centre; NASA [NNX08AN68G]; [PLR-0086316]; [PLR-0230197] FX D.A.Y. was supported by the Jackson School of Geophysics and NSF grant no. PLR-1043761 (GIMBLE). D.M.S. developed the specularity content methodology under a NSF Graduate Fellowship; his work on this paper was supported by a grant from NASA's Cryosphere program. S.D.K. was supported by PLR-1043761 (GIMBLE). D.D.B. was supported by the Jackson School of Geophysics and NSF grant no. PLR-1043761 (GIMBLE). E.Q. was supported by NSF grant no. PLR-1043761 (GIMBLE) and the G. Unger Vetlesen Foundation. Funding for ICECAP data acquisition was provided by the National Science Foundation grant no. PLR-0733025, National Aeronautics and Space Administration grant nos. NNX09AR52G, NNG10HPO6C and NNX11AD33G (Operation Ice Bridge and the American Recovery and Reinvestment Act), Australian Antarctic Division projects 3013 and 4077, NERC grant no. NE/D003733/1, the Jackson School of Geosciences and the Antarctic Climate and Ecosystems Cooperative Research Centre. West Antarctic data were collected under grant nos. PLR-1043761, PLR-0086316 and PLR-0230197. These data analysis methods were developed under NSF grant nos. PLR-0636724, PLR-104376 and CDI-0941678, NASA grant no. NNX08AN68G and the G. Unger Vetlesen Foundation. NR 84 TC 1 Z9 1 U1 1 U2 9 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JAN 28 PY 2016 VL 374 IS 2059 AR 20140297 DI 10.1098/rsta.2014.0297 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DA0FC UT WOS:000367471500007 ER PT J AU Witek, ML Diner, DJ Garay, MJ AF Witek, Marcin L. Diner, David J. Garay, Michael J. TI Satellite assessment of sea spray aerosol productivity: Southern Ocean case study SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE sea spray aerosol; MISR; MODIS; AOD; SSA emission parameterization; sea surface temperature ID PRIMARY MARINE AEROSOL; ENCAPSULATING WAVE STATE; SALT AEROSOL; OPTICAL DEPTH; WATER TEMPERATURE; WHITECAP COVERAGE; SIMULATION TANK; BREAKING-WAVE; DARK WATER; WIND-SPEED AB Despite many years of observations by multiple sensors, there is still substantial ambiguity regarding aerosol optical depths (AOD) over remote oceans, in particular, over the pristine Southern Ocean. Passive satellite retrievals (e.g., Multiangle Imaging Spectroradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS)) and global aerosol transport models show a distinct AOD maximum around the 60 degrees S latitude band. Sun photometer measurements performed by the Maritime Aerosol Network (MAN), on the other hand, indicate no increased AODs over the Southern Ocean. In this study elevated Southern Ocean AODs are examined from the modeling perspective. The primary aerosol component over the Southern Ocean is sea spray aerosol (SSA). Multiple simulations of SSA concentrations and optical depths are carried out using a single modeling framework, the Navy Aerosol Analysis and Prediction System (NAAPS) model. Several SSA emission functions are examined, including recently proposed formulations with sea surface temperature corrections. The differences between NAAPS simulations are primarily due to different SSA emission formulations. The results are compared against satellite-derived AODs from the MISR and MODIS instruments. MISR and MODIS AOD retrievals are further filtered to eliminate retrievals potentially affected by cloud contamination and cloud adjacency effects. The results indicate a very large impact of SSA emission parameterization on the simulated AODs. For some scenarios, the Southern Ocean AOD maximum almost completely disappears. Further MISR and MODIS AOD quality screening substantially improves model/satellite agreement. Based on these comparisons, an optimal SSA emission function for global aerosol transport models is recommended. C1 [Witek, Marcin L.; Diner, David J.; Garay, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Witek, ML (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM marcin.l.witek@jpl.nasa.gov RI Witek, Marcin/G-9440-2016 FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. MISR data were obtained from the NASA Langley Atmospheric Science Data Center, available at ftp://l5eil01.larc.nasa.gov/MISR/MIL2ASAE.002/ (files MISR_AM1_AS_AEROSOL_Pxxx_Oyyyyyy_F12_0022.hdf, where xxx denotes the path number, and yyyyyy denotes the orbit number). MODIS data were obtained from the NASA MODIS Level 1 and Atmosphere Archive and Distribution System, available at ftp://ladsweb.nascom.nasa.gov/allData/6/MOD04_L2/. We thank three anonymous reviewers for constructive comments and suggestions that significantly improved the paper. NR 71 TC 1 Z9 1 U1 3 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2016 VL 121 IS 2 BP 872 EP 894 DI 10.1002/2015JD023726 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DE2QM UT WOS:000370471800019 ER PT J AU Duncan, BN Lamsal, LN Thompson, AM Yoshida, Y Lu, ZF Streets, DG Hurwitz, MM Pickering, KE AF Duncan, Bryan N. Lamsal, Lok N. Thompson, Anne M. Yoshida, Yasuko Lu, Zifeng Streets, David G. Hurwitz, Margaret M. Pickering, Kenneth E. TI A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005-2014) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE OMI; NO2; global changes; NOx emissions; Aura ID OZONE MONITORING INSTRUMENT; THERMAL POWER-PLANTS; TROPOSPHERIC NITROGEN-DIOXIDE; EMISSION TRENDS; AIR-QUALITY; EAST-ASIA; SATELLITE INSTRUMENTS; TEMPORAL VARIABILITY; ECONOMIC-GROWTH; SULFUR-DIOXIDE AB Nitrogen oxides (NOx=NO+NO2) are produced during combustion processes and, thus may serve as a proxy for fossil fuel-based energy usage and coemitted greenhouse gases and other pollutants. We use high-resolution nitrogen dioxide (NO2) data from the Ozone Monitoring Instrument (OMI) to analyze changes in urban NO2 levels around the world from 2005 to 2014, finding complex heterogeneity in the changes. We discuss several potential factors that seem to determine these NOx changes. First, environmental regulations resulted in large decreases. The only large increases in the United States may be associated with three areas of intensive energy activity. Second, elevated NO2 levels were observed over many Asian, tropical, and subtropical cities that experienced rapid economic growth. Two of the largest increases occurred over recently expanded petrochemical complexes in Jamnagar (India) and Daesan (Korea). Third, pollution transport from China possibly influenced the Republic of Korea and Japan, diminishing the impact of local pollution controls. However, in China, there were large decreases over Beijing, Shanghai, and the Pearl River Delta, which were likely associated with local emission control efforts. Fourth, civil unrest and its effect on energy usage may have resulted in lower NO2 levels in Libya, Iraq, and Syria. Fifth, spatial heterogeneity within several megacities may reflect mixed efforts to cope with air quality degradation. We also show the potential of high-resolution data for identifying NOx emission sources in regions with a complex mix of sources. Intensive monitoring of the world's tropical/subtropical megacities will remain a priority, as their populations and emissions of pollutants and greenhouse gases are expected to increase significantly. C1 [Duncan, Bryan N.; Lamsal, Lok N.; Thompson, Anne M.; Yoshida, Yasuko; Hurwitz, Margaret M.; Pickering, Kenneth E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lamsal, Lok N.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Yoshida, Yasuko] Sci Syst & Applicat Inc, Greenbelt, MD USA. [Lu, Zifeng; Streets, David G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Hurwitz, Margaret M.] Morgan State Univ, GESTAR, Baltimore, MD 21239 USA. RP Duncan, BN (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM Bryan.N.Duncan@nasa.gov RI Pickering, Kenneth/E-6274-2012; Duncan, Bryan/A-5962-2011; Thompson, Anne /C-3649-2014 OI Thompson, Anne /0000-0002-7829-0920 FU NASA Aura Mission; NASA Applied Sciences Program FX This work was supported by funding from the NASA Aura Mission and the NASA Applied Sciences Program. We thank Can Li (NASA) and Debra Wicks Kollonige (University of Maryland) for very helpful comments. The data are publicly available from the NASA Goddard Earth Sciences Data Active Archive Center (GES DISC; http://disc.sci.gsfc.nasa.gov). NR 102 TC 20 Z9 21 U1 20 U2 68 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2016 VL 121 IS 2 BP 976 EP 996 DI 10.1002/2015JD024121 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DE2QM UT WOS:000370471800025 ER PT J AU Kang, DH Gao, HL Shi, XG ul Islam, S Dery, SJ AF Kang, Do Hyuk Gao, Huilin Shi, Xiaogang ul Islam, Siraj Dery, Stephen J. TI Impacts of a Rapidly Declining Mountain Snowpack on Streamflow Timing in Canada's Fraser River Basin SO SCIENTIFIC REPORTS LA English DT Article ID CLIMATE-CHANGE; BRITISH-COLUMBIA; SOCKEYE-SALMON; NORTH-AMERICA; TRENDS; WATER; LAND; ADAPTATION; DISCHARGE; FLUXES AB With its headwaters in the water towers of the western Cordillera of North America, the Fraser River is one of the continent's mightiest rivers by annual flows, supplies vital freshwater resources to populous downstream locations, and sustains the world's largest stocks of sockeye salmon along with four other salmon species. Here we show the Variable Infiltration Capacity (VIC) model's ability to reproduce accurately observed trends in daily streamflow for the Fraser River's main stem and six of its major tributaries over 1949-2006 when air temperatures rose by 1.4 degrees C while annual precipitation amounts remained stable. Rapidly declining mountain snowpacks and earlier melt onsets result in a 10-day advance of the Fraser River's spring freshet with subsequent reductions in summer flows when up-river salmon migrations occur. Identification of the sub-basins driving the Fraser River's most significant changes provides a measure of seasonal predictability of future floods or droughts in a changing climate. C1 [Kang, Do Hyuk; ul Islam, Siraj; Dery, Stephen J.] Univ British Columbia, Environm Sci & Engn Program, Prince George, BC, Canada. [Kang, Do Hyuk] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Gao, Huilin] Texas A&M Univ, Dept Civil Engn, College Stn, TX 77843 USA. [Shi, Xiaogang] CSIRO Land & Water, Canberra, ACT, Australia. RP Dery, SJ (reprint author), Univ British Columbia, Environm Sci & Engn Program, Prince George, BC, Canada. EM sdery@unbc.ca FU Canada Research Chair (CRC) program; NSERC FX Thanks to Dennis P. Lettenmaier (UCLA), Justin Sheffield (Princeton University), Francis Zwiers and colleagues (Pacific Climate Impacts Consortium) for their assistance and contributions. Thanks to Michael Allchin (UNBC) for drafting Figure 1 as well as Marco Hernandez-Henraquez (UNBC) for reviewing the manuscript. This work was supported by the Canada Research Chair (CRC) program, NSERC Discovery and Accelerator Grants to SJD, and the NSERC-funded Canadian Sea Ice and Snow Evolution (CanSISE) Network. NR 35 TC 2 Z9 2 U1 8 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 27 PY 2016 VL 6 AR 19299 DI 10.1038/srep19299 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DB7GJ UT WOS:000368682500001 ER PT J AU Lindensmith, CA Rider, S Bedrossian, M Wallace, JK Serabyn, E Showalter, GM Deming, JW Nadeau, JL AF Lindensmith, Christian A. Rider, Stephanie Bedrossian, Manuel Wallace, J. Kent Serabyn, Eugene Showalter, G. Max Deming, Jody W. Nadeau, Jay L. TI A Submersible, Off-Axis Holographic Microscope for Detection of Microbial Motility and Morphology in Aqueous and Icy Environments SO PLOS ONE LA English DT Article ID SEA-ICE; BACTERIAL MOTILITY; ARCTIC WINTER; PERMAFROST; GREENLAND; MICROORGANISMS; ECOLOGY; GLACIER; LIFE; BIODIVERSITY AB Sea ice is an analog environment for several of astrobiology's near-term targets: Mars, Europa, Enceladus, and perhaps other Jovian or Saturnian moons. Microorganisms, both eukaryotic and prokaryotic, remain active within brine channels inside the ice, making it unnecessary to penetrate through to liquid water below in order to detect life. We have developed a submersible digital holographic microscope (DHM) that is capable of resolving individual bacterial cells, and demonstrated its utility for immediately imaging samples taken directly from sea ice at several locations near Nuuk, Greenland. In all samples, the appearance and motility of eukaryotes were conclusive signs of life. The appearance of prokaryotic cells alone was not sufficient to confirm life, but when prokaryotic motility occurred, it was rapid and conclusive. Warming the samples to above-freezing temperatures or supplementing with serine increased the number of motile cells and the speed of motility; supplementing with serine also stimulated chemotaxis. These results show that DHM is a useful technique for detection of active organisms in extreme environments, and that motility may be used as a biosignature in the liquid brines that persist in ice. These findings have important implications for the design of missions to icy environments and suggest ways in which DHM imaging may be integrated with chemical life-detection suites in order to create more conclusive life detection packages. C1 [Rider, Stephanie; Bedrossian, Manuel; Nadeau, Jay L.] CALTECH, Grad Aerosp Labs GALCIT, Pasadena, CA 91125 USA. [Lindensmith, Christian A.; Wallace, J. Kent; Serabyn, Eugene] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Showalter, G. Max; Deming, Jody W.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. RP Nadeau, JL (reprint author), CALTECH, Grad Aerosp Labs GALCIT, Pasadena, CA 91125 USA. EM jnadeau@caltech.edu FU Gordon and Betty Moore Foundation (GBMF) [4037, 4038] FX This work was supported by the Gordon and Betty Moore Foundation (GBMF) grant numbers 4037 (McGill University, JN, subcontract to University of Washington, JWD, GMS) and 4038 (California Institute of Technology, CAL, SR, MB, JKW, ES). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 55 TC 2 Z9 2 U1 7 U2 23 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 26 PY 2016 VL 11 IS 1 AR e0147700 DI 10.1371/journal.pone.0147700 PG 23 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC9GB UT WOS:000369528000049 PM 26812683 ER PT J AU Walker, RT Parizek, BR Alley, RB Nowicki, SMJ AF Walker, Ryan T. Parizek, Byron R. Alley, Richard B. Nowicki, Sophie M. J. TI A Viscoelastic Model of Ice Stream Flow with Application to Stick-Slip Motion SO Frontiers in Earth Science LA English DT Article DE ice stream dynamics; stick-slip; viscoelasticity; ice rheology; Whillans ice stream; numerical ice sheet modeling ID WEST ANTARCTICA; GLACIER; BENEATH; SPEED; SHELF; SEDIMENT; FLEXURE AB Stick-slip motion such as that observed at Whillans Ice Stream, West Antarctica, is one example of transient forcing significantly affecting longer-term ice-stream dynamics. We develop and present a two-dimensional map-plane viscoelastic model of perturbations to ice-stream dynamics suitable for simulating and analyzing stick-slip behavior. Model results suggest important roles in stick-slip motion for both the elastic and viscous components of ice rheology, confirming and extending inferences drawn from simple models and observations. Elastic behavior depends on the rate of applied stress, at times allowing significant velocity perturbations with little change in accumulated stress perturbation; in contrast, viscous behavior depends on total accumulated stress and can lead to changes in ice-stream thickness over many stick-slip cycles. C1 [Walker, Ryan T.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Walker, Ryan T.; Nowicki, Sophie M. J.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. [Parizek, Byron R.] Penn State DuBois, Math & Geosci, Du Bois, PA USA. [Alley, Richard B.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. RP Walker, RT (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.; Walker, RT (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. EM ryan.t.walker@nasa.gov FU NASA [NNX12AD03A, NNX12AP50G, NNX15AH84G]; NSF [AGS 13-38832, PLR 14-43190, PLR 04-24589]; NASA through its Cryospheric Sciences and Modeling Analysis and Prediction Programs FX This research was supported by NASA under grants NNX12AD03A (RW), NNX12AP50G (RW) and NNX15AH84G (BP), and by the NSF under grants AGS 13-38832 (RA, BP), PLR 14-43190 (BP, RW), and PLR 04-24589 (RA, BP) to the Center for Remote Sensing of Ice Sheets (CReSIS). Additional funding was provided to SN by NASA through its Cryospheric Sciences and Modeling Analysis and Prediction Programs. NR 34 TC 0 Z9 0 U1 0 U2 0 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 2296-6463 J9 FRONT EARTH SCI JI Front. Earth Sci. PD JAN 26 PY 2016 VL 4 AR UNSP 2 DI 10.3389/feart.2016.00002 PG 11 WC Geosciences, Multidisciplinary SC Geology GA EJ2SO UT WOS:000393061600001 ER PT J AU Wang, CM Rosen, IG Tsurutani, BT Verkhoglyadova, OP Meng, X Mannucci, AJ AF Wang, Chunming Rosen, Irvin Gary Tsurutani, Bruce T. Verkhoglyadova, Olga P. Meng, Xing Mannucci, Anthony J. TI Statistical characterization of ionosphere anomalies and their relationship to space weather events SO JOURNAL OF SPACE WEATHER AND SPACE CLIMATE LA English DT Article DE Thermosphere-ionosphere anomaly; Statistical analysis; Space weather forecast ID GROUND-BASED GPS; GEOMAGNETIC STORMS; EARTHQUAKE; VARIABILITY AB The statistical characterization of the relationship between thermosphere-ionosphere anomalies and space weather events, also referred to as space weather anomalies, such as solar coronal mass ejections (CMEs) and geomagnetic storms, is a crucial component in the development of a forecast capability for thermosphere-ionosphere disturbances. This manuscript presents a systematic statistical approach for analyzing historical ionosphere and space weather observations to derive a quantitative characterization of the relationships between the thermosphere-ionosphere anomalies and space weather anomalies. Based on 2 years of historical data, our analysis reveals the complex nature of the relationship between space weather disturbances and ionospheric responses. C1 [Wang, Chunming; Rosen, Irvin Gary] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA. [Tsurutani, Bruce T.; Verkhoglyadova, Olga P.; Meng, Xing; Mannucci, Anthony J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Wang, CM (reprint author), Univ So Calif, Dept Math, Los Angeles, CA 90089 USA. EM cwang@usc.edu FU Living With a Star Targeted Research and Technology NASA/NSF FX Sponsorship of the Living With a Star Targeted Research and Technology NASA/NSF Partnership for Collaborative Space Weather Modeling grant is gratefully acknowledged. Portions of the research for this paper were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. The editor thanks two anonymous referees for their assistance in evaluating this paper. NR 32 TC 2 Z9 2 U1 2 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 2115-7251 J9 J SPACE WEATHER SPAC JI J. Space Weather Space Clim. PD JAN 25 PY 2016 VL 6 AR A5 DI 10.1051/swsc/2015046 PG 16 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DD3AG UT WOS:000369792700004 ER PT J AU Miyatake, H More, S Takada, M Spergel, DN Mandelbaum, R Rykoff, ES Rozo, E AF Miyatake, Hironao More, Surhud Takada, Masahiro Spergel, David N. Mandelbaum, Rachel Rykoff, Eli S. Rozo, Eduardo TI Evidence of Halo Assembly Bias in Massive Clusters SO PHYSICAL REVIEW LETTERS LA English DT Article ID DARK-MATTER HALOES; GALAXY CLUSTERS; DEPENDENCE; MODEL; CALIBRATION; IMPACT AB We present significant evidence of halo assembly bias for SDSS redMaPPer galaxy clusters in the redshift range [0.1, 0.33]. By dividing the 8,648 clusters into two subsamples based on the average member galaxy separation from the cluster center, we first show that the two subsamples have very similar halo mass of M-200m similar or equal to 1.9 x 10(14) h(-1) M-circle dot based on the weak lensing signals at small radii R less than or similar to 10 h(-1)Mpc. However, their halo bias inferred from both the large-scale weak lensing and the projected autocorrelation functions differs by a factor of similar to 1.5, which is a signature of assembly bias. The same bias hypothesis for the two subsamples is excluded at 2.5 sigma in the weak lensing and 4.4 sigma in the autocorrelation data, respectively. This result could bring a significant impact on both galaxy evolution and precision cosmology. C1 [Miyatake, Hironao; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Miyatake, Hironao; More, Surhud; Takada, Masahiro; Spergel, David N.] Univ Tokyo, UTIAS, Kavli Inst Phys & Math Universe WPI, Chiba 2778583, Japan. [Miyatake, Hironao] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mandelbaum, Rachel] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Rykoff, Eli S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Rykoff, Eli S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rozo, Eduardo] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85721 USA. RP Miyatake, H (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.; Miyatake, H (reprint author), Univ Tokyo, UTIAS, Kavli Inst Phys & Math Universe WPI, Chiba 2778583, Japan.; Miyatake, H (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Hironao.Miyatake@jpl.nasa.gov RI Mandelbaum, Rachel/N-8955-2014 OI Mandelbaum, Rachel/0000-0003-2271-1527 FU Japan Society for the Promotion of Science (JSPS); Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; FIRST program "Subaru Measurements of Images and Redshifts (SuMIRe)," CSTP, Japan; JSPS Promotion of Science [15K17600, 23340061, 26610058]; MEXT [15H05893]; JSPS; NSF [AST-1311756]; NASA [NNX14AH67G]; Department of Energy Early Career Award program; U. S. Department of Energy [DE-AC02-76SF00515]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We thank Tom Abel, Neal Dalal, Oliver Hahn, Benedikt Diemer, and Andrey Kravtsov for enlightening discussions. We also thank the anonymous referees for a careful reading of the manuscript and their suggestions. H. M. is supported in part by Japan Society for the Promotion of Science (JSPS) Research Fellowships for Young Scientists and by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. M. T. and S. M. are supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and by the FIRST program "Subaru Measurements of Images and Redshifts (SuMIRe)," CSTP, Japan. S. M. and M. T. are also supported by Grant-in-Aid for Scientific Research from the JSPS Promotion of Science (No. 15K17600, No. 23340061, and No. 26610058), MEXT Grant-in-Aid for Scientific Research on Innovative Areas (No. 15H05893) and by JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers. D. N. S. is partially supported by the NSF AST-1311756 and NASA NNX14AH67G. R. M. acknowledges the support of the Department of Energy Early Career Award program. E. S. R. is partially supported by the U. S. Department of Energy contract to SLAC No. DE-AC02-76SF00515. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 34 TC 12 Z9 12 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2016 VL 116 IS 4 AR 041301 DI 10.1103/PhysRevLett.116.041301 PG 5 WC Physics, Multidisciplinary SC Physics GA DC6NI UT WOS:000369336400001 PM 26871319 ER PT J AU Martin, AK AF Martin, A. K. TI Performance scaling of inductive pulsed plasma thrusters with coil angle and pulse rate SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article DE electric propulsion; plasma physics; circuit modeling ID ACCELERATION; SYSTEMS AB A circuit model for an inductive pulsed plasma thruster was developed in order to investigate the performance of thrusters with conical coils; the model can accommodate cone-angles from 0 degrees (a straight theta-pinch coil) to 90 degrees (a planar coil). The plasma is treated as a deformable slug that moves both radially and axially in response to the force applied by the coil. The radial equation of motion includes a restoring force due to the plasma pressure, which is derived under the assumption that the electron population is isothermal, while the ions are isothermal, adiabatic, or shock-heated depending on the magnitude and sign of the radial velocity. The inductance of the coil and the plasma slug, and their mutual inductance, was determined using QuickField. A local maximum in efficiency and specific impulse was found for angles less than 90 degrees; however the absolute maximum for both these quantities occurs at 90 degrees. High pulse-rate operation was found to yield dynamic efficiencies (excluding ionization cost) as high as 60-70% for I-SP in the range of 3000-5000 s, even for a device with modest jet-power (5 kW). This mode of operation also permits elimination of the pulsed gas valve, which would be a significant system-level simplification. An alternate mode of inductive recapture, in which the current is interrupted at the second zero-crossing, was found to result in a sacrifice of only 1-2% in efficiency, while offering other significant system-level benefits for this kind of thruster. C1 [Martin, A. K.] NASA, MSFC, ER24, Huntsville, AL 35812 USA. RP Martin, AK (reprint author), NASA, MSFC, ER24, Huntsville, AL 35812 USA. EM Adam.K.Martin@nasa.gov NR 24 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JAN 21 PY 2016 VL 49 IS 2 AR 025201 DI 10.1088/0022-3727/49/2/025201 PG 16 WC Physics, Applied SC Physics GA DA8XC UT WOS:000368089200008 ER PT J AU Chan, QHS Chikaraishi, Y Takano, Y Ogawa, NO Ohkouchi, N AF Chan, Queenie Hoi Shan Chikaraishi, Yoshito Takano, Yoshinori Ogawa, Nanako O. Ohkouchi, Naohiko TI Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios SO EARTH PLANETS AND SPACE LA English DT Article DE Carbonaceous chondrites; Meteorites; Astrochemistry; Compound-specific isotopic analysis; Nitrogen isotopes; Amino acids; Organic materials; Meteoritic composition; Gas chromatography/combustion/isotope ratio mass spectrometry ID INSOLUBLE ORGANIC-MATTER; CHROMATOGRAPHY-MASS-SPECTROMETRY; MURCHISON METEORITE; GAS-CHROMATOGRAPHY; PARENT-BODY; CO3 CHONDRITES; SOLAR-SYSTEM; THERMAL METAMORPHISM; INTERSTELLAR CLOUDS; AQUEOUS ALTERATION AB A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 degrees C) Antarctic carbonaceous chondrites Ivuna-like (CI) 1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO) 3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the delta N-15 values of selected amino acids (glycine +144.8 %; alpha-alanine + 121.2%) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals. C1 [Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko] Japan Agcy Marine Earth Sci & Technol, Dept Biogeochem, Yokosuka, Kanagawa 2370061, Japan. RP Chan, QHS (reprint author), NASA, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM hschan@nasa.gov FU Japan Society for the Promotion of Science (JSPS); JSPS FX We thank NIPR for providing the meteorite samples. This study was funded by the Japan Society for the Promotion of Science (JSPS). QHSC acknowledges support from the postdoctoral fellowship offered by JSPS and is currently supported by an appointment to the NASA Postdoctoral Program at the Johnson Space Center, administered by Oak Ridge Associated Universities through a contract with NASA. We are grateful for A. Burton and the reviewers for their helpful comments and inspiring discussions. We would also like to thank J. Cheung, J. Law, and M. Shah for proofreading the entire manuscript. NR 70 TC 2 Z9 2 U1 4 U2 18 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1880-5981 J9 EARTH PLANETS SPACE JI Earth Planets Space PD JAN 21 PY 2016 VL 68 AR 7 DI 10.1186/s40623-016-0382-8 PG 13 WC Geosciences, Multidisciplinary SC Geology GA DB3CM UT WOS:000368387600001 ER PT J AU Zhang, X Sander, SP AF Zhang, Xu Sander, Stanley P. TI Matrix-Isolated Infrared Absorption Spectrum of CH2IOO Radical SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CRIEGEE INTERMEDIATE CH2OO; GAS-PHASE; ENERGY GRADIENT; PEROXY-RADICALS; BASIS-SETS; KINETICS; SPECTROSCOPY; ELECTRON; CH2BRO2; CCSD(T) AB The peroxyiodomethyl radical, CH2IOO, was generated in cryogenic matrices using tandem supersonic nozzles. One hyper thermal nozzle decomposes diiodomethane (CH2I2) to generate intense beams of CH2I radicals, while the second nozzle continuously deposits O-2/argon (Ar) on the matrix at 10 K. The CH2I and O-2 in the Ar matrix react to produce the target peroxy radical (CH2IOO). The absorption spectra of the products are monitored with a Fourier transform infrared spectrometer. Eight of the 12 fundamental infrared bands for CH2IOO were observed in an argon matrix at 5 K. The experimental frequencies (cm(-1))are v(3) = 1407.3, v(4) = 1230.4, v(5) = 1223.2, v(6) = 1085.3, v(7) = 919.9, v(8) = 839.9, v(9) = 567.5, and v(10) = 496.2. Additional confirmation for the vibrational assignment comes from a study of the (CH2IOO)-O-18-O-18 isotopic species. The six observed frequencies (cm(-1)) for (CH2IOO)-O-18-O-18 are v(3) = 1407.8, v(4) = 1228.0, v(6) = 1030.8, v(7) = 899.6, v(8) = 836.0, and v(10) = 494.6. Unlike (CH2IOO)-O-16-O-16, the v(5) and v(9) bands were not observed for (CH2IOO)-O-18-O-18. To guide the experimental analysis, ab initio calculations of the infrared spectrum based on second-order vibrational perturbation theory were performed using force fields computed with relativistic coupled-duster methods. The experimental frequencies are shown to be in good agreement with the computed fundamental frequencies except for v(9) (for CH2IOO) and v(10) (for (CH2IOO)-O-18-O-18). Our findings were compared with the study by Lee and Lee conducted in a para-H-2 matrix. The fundamental frequencies are in good agreement (within 6 cm(-1)) except for the two low-frequency modes, v(9) (for CH2IOO) and v(10) (for (CH2IOO)-O-18-O-18) likely due to different matrix shifts for para-H-2 and Ar matrices. In addition, our calculations are in somewhat better agreement with the experiment values than the calculations by Lee and Lee. Our study also shows that reaction CH2I + O-2 produces the peroxy radical CH2IOO in cold matrices (10 K) instead of Criegee intermediate CH2OO, which is generated in gas phase (300 K and low pressure); the same finding was also reported by Lee and Lee. C1 [Zhang, Xu; Sander, Stanley P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Zhang, X (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NASA Tropospheric Chemistry and Upper Atmosphere Research Programs; U.S. Department of Energy [DE-FG02-07ER15884]; U.S. National Science Foundation [CHE-B61031]; National Aeronautics and Space Administration FX This work was supported by the NASA Tropospheric Chemistry and Upper Atmosphere Research Programs. Additional support for this work to J.F.S. comes from the U.S. Department of Energy (Contract No. DE-FG02-07ER15884) and the U.S. National Science Foundation (Grant No. CHE-B61031). The authors would also like to thank Dr. K. Bayes for helpful discussions. Government sponsorship is acknowledged. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 28 TC 2 Z9 2 U1 5 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 21 PY 2016 VL 120 IS 2 BP 260 EP 265 DI 10.1021/acs.jpca.5b12143 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DB6VC UT WOS:000368652800012 PM 26695757 ER PT J AU Hine, NK Geach, JE Alexander, DM Lehmer, BD Chapman, SC Matsuda, Y AF Hine, N. K. Geach, J. E. Alexander, D. M. Lehmer, B. D. Chapman, S. C. Matsuda, Y. TI An enhanced merger fraction within the galaxy population of the SSA22 protocluster at z=3.1 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: interactions ID STAR-FORMING GALAXIES; LY-ALPHA EMITTERS; HIGH-REDSHIFT GALAXIES; LARGE-SCALE STRUCTURE; GOODS NICMOS SURVEY; SIMILAR-TO 3; MASSIVE GALAXIES; DISTANT GALAXIES; RADIO GALAXY; ENVIRONMENTAL DEPENDENCE AB The overdense environments of protoclusters of galaxies in the early Universe (z > 2) are expected to accelerate the evolution of galaxies, with an increased rate of stellarmass assembly and black hole accretion compared to co-eval galaxies in the average density 'field'. These galaxies are destined to form the passive population of massive galaxies that dominate the cores of rich clusters today. While signatures of the accelerated growth of galaxies in the SSA22 protocluster (z = 3.1) have been observed, the mechanism driving this remains unclear. Here we showan enhanced rate of galaxy-galaxy mergers could be responsible. We morphologically classify Lyman-break Galaxies (LBGs) in the SSA22 protocluster and compare these to those of galaxies in the field at z = 3.1 as either active mergers or non-merging using Hubble Space Telescope ACS/F814W imaging, probing the rest-frame ultraviolet stellar light. We measure a merger fraction of 48 +/- 10 per cent for LBGs in the protocluster compared to 30 +/- 6 per cent in the field. Although the excess is marginal, an enhanced rate of mergers in SSA22 hints that galaxy-galaxy mergers are one of the key channels driving accelerated star formation and AGN growth in protocluster environments. C1 [Hine, N. K.; Geach, J. E.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Alexander, D. M.] Univ Durham, Dept Phys, Ctr Extragalact Astron, Durham DH1 3LE, England. [Lehmer, B. D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Lehmer, B. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lehmer, B. D.] Univ Arkansas, Fayetteville, AR 72701 USA. [Chapman, S. C.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Matsuda, Y.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Matsuda, Y.] Grad Univ Adv Studies SOKENDAI, Mitaka, Tokyo 1810015, Japan. RP Hine, NK (reprint author), Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. EM n.hine@herts.ac.uk FU Science and Technology Facilities Council; Royal Society University Research Fellowship; Japan Society for the Promotion of Science KAKENHI [20647268]; NASA [NAS5-26555] FX We thank the anonymous referee for comments that have improved this paper. We thank Chris Conselice and Ian Smail for useful discussions and comments and Neil Cook and Emma Lofthouse for helpful assistance. NH is supported by the Science and Technology Facilities Council. JEG is supported by a Royal Society University Research Fellowship. YM acknowledges support from Japan Society for the Promotion of Science KAKENHI grant number 20647268. All of the data presented in this paper are publicly available through the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. This research made use of the following software packages: ASTROPY (Astropy Collaboration et al. 2013); MATPLOTLIB (Hunter 2007); SCIPY (Jones et al. 2001); MONTAGE (NASA/IPAC); The KAPETYN Package (Terlouw & Vogelaar 2012); TOPCAT (Taylor 2005); IRAF (Tody 1993); COSMOLOPY. NR 66 TC 5 Z9 5 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN 21 PY 2016 VL 455 IS 3 BP 2363 EP 2370 DI 10.1093/mnras/stv2448 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7TX UT WOS:000368008200008 ER PT J AU Ramsay, G Hakala, P Wood, MA Howell, SB Smale, A Still, M Barclay, T AF Ramsay, Gavin Hakala, Pasi Wood, Matt A. Howell, Steve B. Smale, Alan Still, Martin Barclay, Thomas TI Continuous 'stunted' outbursts detected from the cataclysmic variable KIC 9202990 using Kepler data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; instabilities; stars: individual: KIC 9202990; novae, cataclysmic variables ID PARTICLE HYDRODYNAMICS SIMULATIONS; V344 LYRAE; DWARF NOVA; FIELD; STARS; SUPERHUMPS; PERIOD; SPECTROSCOPY; EVOLUTION; DISCS AB Based on early Kepler data, Ostensen et al. found that KIC 9202990 showed a 4-h and a two-week photometric period. They suggested the 4-h period was a signature of an orbital period; the longer period was possibly due to precession of an accretion disc and KIC 9202990 was a cataclysmic variable with an accretion disc which is always in a bright state (a nova-like system). Using the full Kepler data set on KIC 9202990 which covers 1421 d (Quarter 2-17), and includes 1-min cadence data from the whole of Quarters 5 and 16, we find that the 4-h period is stable and therefore a signature of the binary orbital period. In contrast, the 10-12 d period is not stable and shows an amplitude between 20 and 50 per cent. This longer period modulation is similar to those nova-like systems which show 'stunted' outbursts. We discuss the problems that a precessing disc model has in explaining the observed characteristics and indicate why we favour a stunted outburst model. Although such stunted events are considered to be related to the standard disc instability mechanism, their origin is not well understood. KIC 9202990 shows the lowest amplitude and shortest period of continuous stunted outburst systems, making it an ideal target to better understand stunted outbursts and accretion instabilities in general. C1 [Ramsay, Gavin] Armagh Observ, Armagh BT61 9DG, North Ireland. [Hakala, Pasi] Univ Turku, Finnish Ctr Astron ESO FINCA, FI-21500 Piikkio, Finland. [Wood, Matt A.] Texas A&M Univ, Dept Phys & Astron, Commerce, TX 75429 USA. [Howell, Steve B.; Still, Martin; Barclay, Thomas] NASA, Ames Res Ctr, Moffett Field, CA 94095 USA. [Smale, Alan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Still, Martin; Barclay, Thomas] Bay Area Environm Res Inst Inc, Sonoma, CA 95476 USA. RP Ramsay, G (reprint author), Armagh Observ, Coll Hill, Armagh BT61 9DG, North Ireland. EM gar@arm.ac.uk FU NASA [NAS5-26555, 11-KEPLER11-0038]; NASA Office of Space Science [NNX09AF08G]; National Science Foundation [AST-1305799]; NASA Science Mission directorate; Northern Ireland Government through the Dept of Culture, Arts and Leisure FX The data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission and is (in part) supported by the National Science Foundation under Grant No. AST-1305799 to Texas A&M University-Commerce and by NASA under grant 11-KEPLER11-0038. Funding for the Kepler mission is provided by the NASA Science Mission directorate. This work made use of PYKE (Still & Barclay 2012), a software package for the reduction and analysis of Kepler data. This open source software project is developed and distributed by the NASA Kepler Guest Observer Office. Armagh Observatory is supported by the Northern Ireland Government through the Dept of Culture, Arts and Leisure. We thank the anonymous referee for a helpful report. NR 32 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN 21 PY 2016 VL 455 IS 3 BP 2772 EP 2777 DI 10.1093/mnras/stv2509 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7TX UT WOS:000368008200039 ER PT J AU Erfanianfar, G Popesso, P Finoguenov, A Wilman, D Wuyts, S Biviano, A Salvato, M Mirkazemi, M Morselli, L Ziparo, F Nandra, K Lutz, D Elbaz, D Dickinson, M Tanaka, M Altieri, MB Aussel, H Bauer, F Berta, S Bielby, RM Brandt, N Cappelluti, N Cimatti, A Cooper, MC Fadda, D Ilbert, O Le Floch, E Magnelli, B Mulchaey, JS Nordon, R Newman, JA Poglitsch, A Pozzi, F AF Erfanianfar, G. Popesso, P. Finoguenov, A. Wilman, D. Wuyts, S. Biviano, A. Salvato, M. Mirkazemi, M. Morselli, L. Ziparo, F. Nandra, K. Lutz, D. Elbaz, D. Dickinson, M. Tanaka, M. Altieri, M. B. Aussel, H. Bauer, F. Berta, S. Bielby, R. M. Brandt, N. Cappelluti, N. Cimatti, A. Cooper, M. C. Fadda, D. Ilbert, O. Le Floch, E. Magnelli, B. Mulchaey, J. S. Nordon, R. Newman, J. A. Poglitsch, A. Pozzi, F. TI Non-linearity and environmental dependence of the star-forming galaxies main sequence SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE Galaxy: evolution; Galaxy: structure; galaxies: groups: general; galaxies: haloes; galaxies: star formation; infrared: galaxies ID ACTIVE GALACTIC NUCLEI; DARK-MATTER HALOS; SUPERMASSIVE BLACK-HOLES; STELLAR MASS; FORMATION HISTORY; SATELLITE GALAXIES; DENSITY RELATION; FORMATION RATES; REDSHIFT SURVEY; FIELD GALAXIES AB Using data from four deep fields (COSMOS, AEGIS, ECDFS, and CDFN), we study the correlation between the position of galaxies in the star formation rate (SFR) versus stellar mass plane and local environment at z < 1.1. To accurately estimate the galaxy SFR, we use the deepest available Spitzer/MIPS 24 and Herschel/PACS data sets. We distinguish group environments (M-halo similar to 10(12.5-14.2)M(circle dot)) based on the available deep X-ray data and lower halo mass environments based on the local galaxy density. We confirm that the main sequence (MS) of star-forming galaxies is not a linear relation and there is a flattening towards higher stellar masses (M-* > 10(10.4-10.6) M-circle dot), across all environments. At high redshift (0.5 < z < 1.1), the MS varies little with environment. At low redshift (0.15 < z < 0.5), group galaxies tend to deviate from the mean MS towards the region of quiescence with respect to isolated galaxies and less-dense environments. We find that the flattening of the MS towards low SFR is due to an increased fraction of bulge-dominated galaxies at high masses. Instead, the deviation of group galaxies from the MS at low redshift is caused by a large fraction of red disc-dominated galaxies which are not present in the lower density environments. Our results suggest that above a mass threshold (similar to 10(10.4)-10(10.6) M-circle dot) stellar mass, morphology and environment act together in driving the evolution of the star formation activity towards lower level. The presence of a dominating bulge and the associated quenching processes are already in place beyond z similar to 1. The environmental effects appear, instead, at lower redshifts and have a long time-scale. C1 [Erfanianfar, G.; Popesso, P.; Mirkazemi, M.; Morselli, L.] Excellence Cluster Universe, D-85748 Garching, Germany. [Erfanianfar, G.; Popesso, P.; Wilman, D.; Wuyts, S.; Salvato, M.; Nandra, K.; Lutz, D.; Berta, S.; Poglitsch, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Finoguenov, A.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Wuyts, S.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Biviano, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Ziparo, F.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Elbaz, D.; Aussel, H.; Le Floch, E.] Univ Paris Diderot, CEA Saclay, CEA DSM CNRS, IRFU Serv Astrophys,Lab AIM, F-91191 Gif Sur Yvette, France. [Dickinson, M.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Tanaka, M.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Altieri, M. B.] ESA, European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Bauer, F.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, F.] Space Sci Inst, Boulder, CO 80301 USA. [Bielby, R. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Brandt, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Cappelluti, N.] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Cimatti, A.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Cooper, M. C.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Fadda, D.] NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Ilbert, O.] UNiv Aix Marseille, CNRS, LAM, F-13013 Marseille, France. [Magnelli, B.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Mulchaey, J. S.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Nordon, R.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Nordon, R.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Newman, J. A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Newman, J. A.] PITT PACC, Pittsburgh, PA 15260 USA. RP Erfanianfar, G (reprint author), Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. EM erfanian@mpe.mpg.de OI Cappelluti, Nico/0000-0002-1697-186X; Wilman, David/0000-0002-1822-4462; Bielby, Richard/0000-0001-9070-9969 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI (Italy); CICYT/MCYT (Spain); Sloan Foundation; NSF; US Department of Energy; NASA; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council of England; DLR [50OR1013] FX PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy) and CICYT/MCYT (Spain).; This research has made use of NASA's Astrophysics Data System, of NED, which is operated by JPL/Caltech, under contract with NASA, and of SDSS, which has been funded by the Sloan Foundation, NSF, the US Department of Energy, NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council of England. The SDSS is managed by the participating institutions (www.sdss.org/collaboration/credits.html).; We gratefully acknowledge the contributions of the entire COSMOS collaboration consisting of more than 100 scientists. More information about the COSMOS survey is available at http://www.astro.caltech.edu/cosmos. This project has been supported by the DLR grant 50OR1013 to MPE. NR 79 TC 9 Z9 9 U1 6 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN 21 PY 2016 VL 455 IS 3 BP 2839 EP 2851 DI 10.1093/mnras/stv2485 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7TX UT WOS:000368008200044 ER PT J AU Gruen, D Friedrich, O Amara, A Bacon, D Bonnett, C Hartley, W Jain, B Jarvis, M Kacprzak, T Krause, E Mana, A Rozo, E Rykoff, ES Seitz, S Sheldon, E Troxel, MA Vikram, V Abbott, TMC Abdalla, FB Allam, S Armstrong, R Banerji, M Bauer, AH Becker, MR Benoit-Levy, A Bernstein, GM Bernstein, RA Bertin, E Bridle, SL Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Crocce, M Cunha, CE D'Andrea, CB da Costa, LN DePoy, DL Desai, S Diehl, HT Dietrich, JP Doel, P Eifler, TF Neto, AF Fernandez, E Flaugher, B Fosalba, P Frieman, J Gerdes, DW Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M Maia, MAG March, M Martini, P Melchior, P Miller, CJ Miquel, R Mohr, JJ Nord, B Ogando, R Plazas, AA Reil, K Romer, AK Roodman, A Sako, M Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Walker, AR Wechsler, RH Weller, J Zhang, Y Zuntz, J AF Gruen, D. Friedrich, O. Amara, A. Bacon, D. Bonnett, C. Hartley, W. Jain, B. Jarvis, M. Kacprzak, T. Krause, E. Mana, A. Rozo, E. Rykoff, E. S. Seitz, S. Sheldon, E. Troxel, M. A. Vikram, V. Abbott, T. M. C. Abdalla, F. B. Allam, S. Armstrong, R. Banerji, M. Bauer, A. H. Becker, M. R. Benoit-Levy, A. Bernstein, G. M. Bernstein, R. A. Bertin, E. Bridle, S. L. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. DePoy, D. L. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Eifler, T. F. Fausti Neto, A. Fernandez, E. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. Maia, M. A. G. March, M. Martini, P. Melchior, P. Miller, C. J. Miquel, R. Mohr, J. J. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Roodman, A. Sako, M. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Walker, A. R. Wechsler, R. H. Weller, J. Zhang, Y. Zuntz, J. TI Weak lensing by galaxy troughs in DES Science Verification data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; cosmology: observations ID DIGITAL SKY SURVEY; DARK-MATTER; COSMIC SHEAR; HALO MASSES; VOIDS; CLUSTERS; SDSS; CFHTLENS; DEPENDENCE; CATALOG AB We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10 sigma-15 sigma for the smallest angular scales) for troughs with the redshift range z is an element of[0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin... 1 degrees These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Lambda cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field. C1 [Gruen, D.; Friedrich, O.; Amara, A.; Mana, A.; Seitz, S.; Weller, J.] Univ Munich, Univ Sternwarte, Fak Phys, D-81679 Munich, Germany. [Gruen, D.; Friedrich, O.; Mana, A.; Seitz, S.; Mohr, J. J.; Weller, J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Amara, A.; Hartley, W.; Kacprzak, T.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Bacon, D.; Capozzi, D.; D'Andrea, C. B.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Bonnett, C.; Carretero, J.; Fernandez, E.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Jain, B.; Jarvis, M.; Bernstein, G. M.; Eifler, T. F.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Krause, E.; Rykoff, E. S.; Becker, M. R.; Burke, D. L.; Cunha, C. E.; Roodman, A.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Rykoff, E. S.; Burke, D. L.; Reil, K.; Roodman, A.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Sheldon, E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Troxel, M. A.; Bridle, S. L.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Vikram, V.] Argonne Natl Lab, Lemont, IL 60439 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, ZA-6140 Grahamstown, South Africa. [Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Bauer, A. H.; Carretero, J.; Crocce, M.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Becker, M. R.; Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bernstein, R. A.] Carnegie Observ, Pasadena, CA 91101 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observat Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [DePoy, D. L.; Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, D-81679 Munich, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.; Weller, J.] Excellence Cluster Univ, D-85748 Garching, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Honscheid, K.; Martini, P.; Melchior, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambient Tecnol CIEMAT, E-28040 Madrid, Spain. [Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Thomas, D.] SEPnet, South East Phys Network, Southampton, Hants, England. RP Gruen, D (reprint author), Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. EM dgruen@usm.uni-muenchen.de RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sanchez, Eusebio/H-5228-2015; Fosalba Vela, Pablo/I-5515-2016; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Sanchez, Eusebio/0000-0002-9646-8198; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Becker, Matthew/0000-0001-7774-2246; Carrasco Kind, Matias/0000-0002-4802-3194; Dietrich, Jorg/0000-0002-8134-9591; Weller, Jochen/0000-0002-8282-2010; Abdalla, Filipe/0000-0003-2063-4345 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DESBrazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; Deutsche Forschungsgemeinschaft (DFG) [SFB-Transregio 33]; DFG cluster of excellence 'Origin and Structure of the Universe'; DOE [DEAC02-98CH10886] FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DESBrazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.r This project was supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG) and the DFG cluster of excellence 'Origin and Structure of the Universe'. ES is supported by DOE grant DEAC02-98CH10886. DG and OF acknowledge helpful discussions with Yan-Chuan Cai, Joseph Clampitt, Stefan Hilbert, Ben Hoyle, Richard Kessler, and Carles Sanchez. Measurements of the shear and angular two-point correlation were made using the tree code athena by Martin Kilbinger (Schneider et al. 2002; Kilbinger et al. 2014). NR 58 TC 11 Z9 11 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN 21 PY 2016 VL 455 IS 3 BP 3367 EP 3380 DI 10.1093/mnras/stv2506 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7TX UT WOS:000368008200084 ER PT J AU Filacchione, G De Sanctis, MC Capaccioni, F Raponi, A Tosi, F Ciarniello, M Cerroni, P Piccioni, G Capria, MT Palomba, E Bellucci, G Erard, S Bockelee-Morvan, D Leyrat, C Arnold, G Barucci, MA Fulchignoni, M Schmitt, B Quirico, E Jaumann, R Stephan, K Longobardo, A Mennella, V Migliorini, A Ammannito, E Benkhoff, J Bibring, JP Blanco, A Blecka, MI Carlson, R Carsenty, U Colangeli, L Combes, M Combi, M Crovisier, J Drossart, P Encrenaz, T Federico, C Fink, U Fonti, S Ip, WH Irwin, P Kuehrt, E Langevin, Y Magni, G McCord, T Moroz, L Mottola, S Orofino, V Schade, U Taylor, F Tiphene, D Tozzi, GP Beck, P Biver, N Bonal, L Combe, JP Despan, D Flamini, E Formisano, M Fornasier, S Frigeri, A Grassi, D Gudipati, MS Kappel, D Mancarella, F Markus, K Merlin, F Orosei, R Rinaldi, G Cartacci, M Cicchetti, A Giuppi, S Hello, Y Henry, F Jacquinod, S Reess, JM Noschese, R Politi, R Peter, G AF Filacchione, G. De Sanctis, M. C. Capaccioni, F. Raponi, A. Tosi, F. Ciarniello, M. Cerroni, P. Piccioni, G. Capria, M. T. Palomba, E. Bellucci, G. Erard, S. Bockelee-Morvan, D. Leyrat, C. Arnold, G. Barucci, M. A. Fulchignoni, M. Schmitt, B. Quirico, E. Jaumann, R. Stephan, K. Longobardo, A. Mennella, V. Migliorini, A. Ammannito, E. Benkhoff, J. Bibring, J. P. Blanco, A. Blecka, M. I. Carlson, R. Carsenty, U. Colangeli, L. Combes, M. Combi, M. Crovisier, J. Drossart, P. Encrenaz, T. Federico, C. Fink, U. Fonti, S. Ip, W. H. Irwin, P. Kuehrt, E. Langevin, Y. Magni, G. McCord, T. Moroz, L. Mottola, S. Orofino, V. Schade, U. Taylor, F. Tiphene, D. Tozzi, G. P. Beck, P. Biver, N. Bonal, L. Combe, J-Ph. Despan, D. Flamini, E. Formisano, M. Fornasier, S. Frigeri, A. Grassi, D. Gudipati, M. S. Kappel, D. Mancarella, F. Markus, K. Merlin, F. Orosei, R. Rinaldi, G. Cartacci, M. Cicchetti, A. Giuppi, S. Hello, Y. Henry, F. Jacquinod, S. Reess, J. M. Noschese, R. Politi, R. Peter, G. TI Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko SO NATURE LA English DT Article ID OPTICAL-CONSTANTS; CRYSTALLINE H2O-ICE; OSIRIS OBSERVATIONS; CASSINI-VIMS; H2O ICE; MU-M; SURFACE; ROSETTA; VIRTIS AB Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko(1,2) and water is the major constituent of cometary nuclei(3,4), limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far(5,6). The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far(7-9). The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material(10). Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations(6,7-9). Although micrometresized water-ice grains are the usual result of vapour recondensation in ice-free layers(6), the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust(10) is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko(11,12) is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation. C1 [Filacchione, G.; De Sanctis, M. C.; Capaccioni, F.; Raponi, A.; Tosi, F.; Ciarniello, M.; Cerroni, P.; Piccioni, G.; Capria, M. T.; Palomba, E.; Bellucci, G.; Longobardo, A.; Migliorini, A.; Magni, G.; Formisano, M.; Frigeri, A.; Grassi, D.; Rinaldi, G.; Cartacci, M.; Cicchetti, A.; Giuppi, S.; Noschese, R.; Politi, R.] IAPS, INAF, Rome, Italy. [Erard, S.; Bockelee-Morvan, D.; Leyrat, C.; Barucci, M. A.; Fulchignoni, M.; Combes, M.; Crovisier, J.; Drossart, P.; Encrenaz, T.; Tiphene, D.; Biver, N.; Despan, D.; Fornasier, S.; Merlin, F.; Hello, Y.; Henry, F.; Jacquinod, S.; Reess, J. M.] Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris, Meudon, France. [Arnold, G.; Jaumann, R.; Stephan, K.; Carsenty, U.; Kuehrt, E.; Moroz, L.; Mottola, S.; Kappel, D.; Markus, K.] DLR, Inst Planetary Res, Berlin, Germany. [Schmitt, B.; Quirico, E.; Beck, P.; Bonal, L.] Univ Grenoble Alpes, CNRS, IPAG, Grenoble, France. [Mennella, V.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Ammannito, E.] Univ Calif Los Angeles, Los Angeles, CA USA. [Benkhoff, J.; Colangeli, L.] European Space Agcy ESTEC, Noordwijk, Netherlands. [Bibring, J. P.; Langevin, Y.] CNRS, Inst Astrophys Spatial, F-91405 Orsay, France. [Blanco, A.; Fonti, S.; Orofino, V.; Mancarella, F.] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Lecce, Italy. [Blecka, M. I.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Carlson, R.; Gudipati, M. S.] NASA JPL, Pasadena, CA USA. [Combi, M.] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA. [Federico, C.] Univ Perugia, I-06100 Perugia, Italy. [Fink, U.] Univ Arizona, Lunar Planetary Lab, Tucson, AZ USA. [Ip, W. H.] Natl Cent Univ, Taipei, Taiwan. [Irwin, P.; Taylor, F.] Univ Oxford, Dept Phys, Oxford, England. [McCord, T.; Combe, J-Ph.] Bear Fight Inst, Winthrop, WA USA. [Schade, U.] Helmholtz Zentrum Berlin Mat & Energie, Berlin, Germany. [Tozzi, G. P.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Flamini, E.] Agenzia Spaziale Italiana, Rome, Italy. [Orosei, R.] INAF, Ist Radioastron, Bologna, Italy. [Peter, G.] DLR, Inst Opt Sensor Syst, Berlin, Germany. RP Filacchione, G (reprint author), IAPS, INAF, Rome, Italy. EM gianrico.filacchione@iaps.inaf.it RI Gudipati, Murthy/F-7575-2011; Combi, Michael/J-1697-2012; Frigeri, Alessandro/F-2151-2010; quirico, eric/K-9650-2013; OI Combi, Michael/0000-0002-9805-0078; Frigeri, Alessandro/0000-0002-9140-3977; quirico, eric/0000-0003-2768-0694; Migliorini, Alessandra/0000-0001-7386-9215; Filacchione, Gianrico/0000-0001-9567-0055; Irwin, Patrick/0000-0002-6772-384X; Schmitt, Bernard/0000-0002-1230-6627; Palomba, Ernesto/0000-0002-9101-6774; Tosi, Federico/0000-0003-4002-2434 FU Italian Space Agency (ASI, Italy); Centre National d'Etudes Spatiales (CNES, France); Deutsches Zentrum fur Luft - und Raumfahrt (DLR, Germany); National Aeronautic and Space Administration (NASA, USA); ASI; CNES; DLR FX We thank the following institutions and agencies, which supported this work: Italian Space Agency (ASI, Italy), Centre National d'Etudes Spatiales (CNES, France), Deutsches Zentrum fur Luft - und Raumfahrt (DLR, Germany), National Aeronautic and Space Administration (NASA, USA). VIRTIS was built by a consortium from Italy, France and Germany, under the scientific responsibility of the Istituto di Astrofisica e Planetologia Spaziali (IAPS) of INAF, Rome (Italy), which also led the scientific operations. The VIRTIS instrument development for the ESA has been funded and managed by ASI, with contributions from Observatoire de Meudon financed by CNES and from the DLR. The VIRTIS instrument industrial prime contractor was former Officine Galileo, now Selex ES (Finmeccanica Group) in Campi Bisenzio, Florence, Italy. We also thank the Rosetta Liaison Scientists, the Rosetta Science Ground Segment and the Rosetta Mission Operations Centre for their support in planning the VIRTIS observations. This research has made use of NASA's Astrophysics Data System. This work is dedicated to Angioletta Coradini, conceiver of the VIRTIS instrument. NR 35 TC 15 Z9 15 U1 12 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JAN 21 PY 2016 VL 529 IS 7586 BP 368 EP + DI 10.1038/nature16190 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DB2QT UT WOS:000368354800040 PM 26760209 ER PT J AU Abeysekara, AU Alfaro, R Alvarez, C Alvarez, JD Arceo, R Arteaga-Velazquez, JC Solares, HAA Barber, AS Baughman, BM Bautista-Elivar, N Reyes, ADB Belmont, E BenZvi, SY Bernal, A Braun, J Caballero-Mora, KS Capistran, T Carraminana, A Casanova, S Castillo, M Cotti, U Cotzomi, J de Leon, SC de la Fuente, E De Leon, C DeYoung, T Hernandez, RD Dingus, BL DuVernois, MA Ellsworth, RW Enriquez-Rivera, O Fiorino, DW Fraija, N Garfias, F Gonzalez, MM Goodman, JA Gussert, M Hampel-Arias, Z Harding, JP Hernandez, S Huntemeyer, P Hui, CM Imran, A Iriarte, A Karn, P Kieda, D Lara, A Lauer, RJ Lee, WH Lennarz, D Vargas, HL Linnemann, JT Longo, M Raya, GL Malone, K Marinelli, A Marinelli, SS Martinez, H Martinez, O Martinez-Castro, J Matthews, JA Miranda-Romagnoli, P Moreno, E Mostafa, M Nellen, L Newbold, M Noriega-Papaqui, R Patricelli, B Pelayo, R Perez-Perez, EG Pretz, J Ren, Z Riviere, C Rosa-Gonzalez, D Salazar, H Greus, FS Sandoval, A Schneider, M Sinnis, G Smith, AJ Woodle, KS Springer, RW Taboada, I Tibolla, O Tollefson, K Torres, I Ukwatta, TN Villasenor, L Vrabel, K Weisgarber, T Westerhoff, S Wisher, IG Wood, J Yapici, T Yodh, GB Younk, PW Zaborov, D Zepeda, A Zhou, H AF Abeysekara, A. U. Alfaro, R. Alvarez, C. Alvarez, J. D. Arceo, R. Arteaga-Velazquez, J. C. Solares, H. A. Ayala Barber, A. S. Baughman, B. M. Bautista-Elivar, N. Becerril Reyes, A. D. Belmont, E. BenZvi, S. Y. Bernal, A. Braun, J. Caballero-Mora, K. S. Capistran, T. Carraminana, A. Casanova, S. Castillo, M. Cotti, U. Cotzomi, J. de Leon, S. Coutino de la Fuente, E. De Leon, C. DeYoung, T. Diaz Hernandez, R. Dingus, B. L. DuVernois, M. A. Ellsworth, R. W. Enriquez-Rivera, O. Fiorino, D. W. Fraija, N. Garfias, F. Gonzalez, M. M. Goodman, J. A. Gussert, M. Hampel-Arias, Z. Harding, J. P. Hernandez, S. Huentemeyer, P. Hui, C. M. Imran, A. Iriarte, A. Karn, P. Kieda, D. Lara, A. Lauer, R. J. Lee, W. H. Lennarz, D. Leon Vargas, H. Linnemann, J. T. Longo, M. Luis Raya, G. Malone, K. Marinelli, A. Marinelli, S. S. Martinez, H. Martinez, O. Martinez-Castro, J. Matthews, J. A. Miranda-Romagnoli, P. Moreno, E. Mostafa, M. Nellen, L. Newbold, M. Noriega-Papaqui, R. Patricelli, B. Pelayo, R. Perez-Perez, E. G. Pretz, J. Ren, Z. Riviere, C. Rosa-Gonzalez, D. Salazar, H. Salesa Greus, F. Sandoval, A. Schneider, M. Sinnis, G. Smith, A. J. Sparks Woodle, K. Springer, R. W. Taboada, I. Tibolla, O. Tollefson, K. Torres, I. Ukwatta, T. N. Villasenor, L. Vrabel, K. Weisgarber, T. Westerhoff, S. Wisher, I. G. Wood, J. Yapici, T. Yodh, G. B. Younk, P. W. Zaborov, D. Zepeda, A. Zhou, H. CA HAWC Collaboration TI SEARCH FOR TeV GAMMA-RAY EMISSION FROM POINT-LIKE SOURCES IN THE INNER GALACTIC PLANE WITH A PARTIAL CONFIGURATION OF THE HAWC OBSERVATORY SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; gamma rays: diffuse background; gamma rays: general ID SOURCE MGRO J1908+06; CRAB-NEBULA; MAGIC TELESCOPE; SOURCE CATALOG; ARGO-YBJ; HESS; MORPHOLOGY; MILAGRO; PULSAR; RADIATION AB A survey of the inner Galaxy region of Galactic longitude l is an element of [+15 degrees, + 50 degrees] and latitude b is an element of[-4 degrees, + 4 degrees] is performed using one-third of the High Altitude Water Cherenkov Observatory, operated during its construction phase. To address the ambiguities arising from unresolved sources in the data, we use a maximum likelihood technique to identify point source candidates. Ten sources and candidate sources are identified in this analysis. Eight of these are associated with known TeV sources but not all have differential fluxes that are compatible with previous measurements. Three sources are detected with significances >5 sigma after accounting for statistical trials, and are associated with known TeV sources. C1 [Abeysekara, A. U.; DeYoung, T.; Linnemann, J. T.; Marinelli, S. S.; Tollefson, K.; Ukwatta, T. N.; Yapici, T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Abeysekara, A. U.; Barber, A. S.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA. [Alfaro, R.; Becerril Reyes, A. D.; Belmont, E.; Hernandez, S.; Leon Vargas, H.; Marinelli, A.; Sandoval, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico. [Alfaro, R.; Baughman, B. M.; Braun, J.; Ellsworth, R. W.; Gonzalez, M. M.; Goodman, J. A.; Riviere, C.; Smith, A. J.; Wood, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Alvarez, C.; Arceo, R.; Tibolla, O.] Univ Autonoma Chiapas, Tuxtla Gutierrez, Chiapas, Mexico. [Alvarez, J. D.; Arteaga-Velazquez, J. C.; Castillo, M.; Cotti, U.; De Leon, C.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Solares, H. A. Ayala; Huentemeyer, P.; Hui, C. M.; Zhou, H.] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Bautista-Elivar, N.; Luis Raya, G.; Perez-Perez, E. G.] Univ Politecn Pachuca, Municipio De Zempoala, Hidalgo, Mexico. [BenZvi, S. Y.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [BenZvi, S. Y.; Braun, J.; DuVernois, M. A.; Fiorino, D. W.; Hampel-Arias, Z.; Imran, A.; Karn, P.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.] Univ Wisconsin, WIPAC, Madison, WI USA. [BenZvi, S. Y.; Braun, J.; DuVernois, M. A.; Fiorino, D. W.; Hampel-Arias, Z.; Imran, A.; Karn, P.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Bernal, A.; Fraija, N.; Garfias, F.; Gonzalez, M. M.; Iriarte, A.; Lee, W. H.; Patricelli, B.; Riviere, C.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Caballero-Mora, K. S.; Martinez, H.; Zepeda, A.] Inst Politecn Nacl, Ctr Invest Estudios Avanzados, Mexico City, DF, Mexico. [Capistran, T.; Carraminana, A.; de Leon, S. Coutino; Diaz Hernandez, R.; Rosa-Gonzalez, D.; Torres, I.] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico. [Casanova, S.; Salesa Greus, F.] Polskiej Akad Nauk, Inst Fizyki Jadrowej Henryka Niewodniczanskie, IFJ PAN, Krakow, Poland. [Cotzomi, J.; Martinez, O.; Moreno, E.; Salazar, H.] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Ciudad Univ, Puebla, Mexico. [de la Fuente, E.] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Dept Fis, Guadalajara 44430, Jalisco, Mexico. [Dingus, B. L.; Harding, J. P.; Imran, A.; Sinnis, G.; Ukwatta, T. N.; Younk, P. W.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Ellsworth, R. W.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Enriquez-Rivera, O.; Lara, A.] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. [Gussert, M.; Longo, M.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Karn, P.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Lauer, R. J.; Matthews, J. A.; Ren, Z.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Lennarz, D.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Lennarz, D.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Malone, K.; Mostafa, M.; Pretz, J.; Sparks Woodle, K.; Vrabel, K.; Zaborov, D.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Martinez-Castro, J.; Pelayo, R.; Salesa Greus, F.] Inst Politecn Nacl, Ctr Invest Computac, Mexico City, DF, Mexico. [Miranda-Romagnoli, P.; Noriega-Papaqui, R.] Univ Autonoma Estado Hidalgo, Pachuca, Hidalgo, Mexico. [Nellen, L.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Schneider, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Hui, C. M.] NASA Marshall Space Flight Ctr, Huntsville, AL USA. [Imran, A.] AdRoll Inc, San Francisco, CA USA. [Zaborov, D.] Ecole Polytech, CNRS, LLR, IN2P3, F-91128 Palaiseau, France. RP Hui, CM; Zhou, H (reprint author), Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA.; Hui, CM (reprint author), NASA Marshall Space Flight Ctr, Huntsville, AL USA. EM cmhui@mtu.edu; hzhou1@mtu.edu OI Dingus, Brenda/0000-0001-8451-7450 FU US National Science Foundation (NSF); US Department of Energy Office of High-Energy Physics; Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico [55155, 105666, 122331, 132197]; Red de Fisica de Altas Energias, Mexico; DGAPA-UNAM [IG100414-3, IN108713, IN121309, IN115409, IN113612]; VIEP-BUAP [161-EXC-2011]; University of Wisconsin Alumni Research Foundation; Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory; Narodowe Centrum Nauki [DEC-2014/13/B/ST9/00945] FX We acknowledge the support from: the US National Science Foundation (NSF); the US Department of Energy Office of High-Energy Physics; the Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico (grants 55155, 105666, 122331, 132197); Red de Fisica de Altas Energias, Mexico; DGAPA-UNAM (grants IG100414-3, IN108713, IN121309, IN115409, IN113612); VIEP-BUAP (grant 161-EXC-2011); the University of Wisconsin Alumni Research Foundation; the Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory. The work of S.C. and F.S.G. is supported by Narodowe Centrum Nauki through research project DEC-2014/13/B/ST9/00945. NR 44 TC 4 Z9 4 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 3 DI 10.3847/0004-637X/817/1/3 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400003 ER PT J AU Greene, TP Line, MR Montero, C Fortney, JJ Lustig-Yaeger, J Luther, K AF Greene, Thomas P. Line, Michael R. Montero, Cezar Fortney, Jonathan J. Lustig-Yaeger, Jacob Luther, Kyle TI CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: statistical; planets and satellites: atmospheres; planets and satellites: composition; techniques: spectroscopic ID WEBB-SPACE-TELESCOPE; SYSTEMATIC RETRIEVAL ANALYSIS; NICMOS TRANSMISSION SPECTROSCOPY; HOT-JUPITER ATMOSPHERES; HD 209458B; SUPER-EARTHS; PLANET ATMOSPHERES; CARBON-MONOXIDE; GJ 1214B; THERMAL INVERSION AB We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the lambda = 1-11 mu m transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH4, CO, CO2, H2O, NH3) can be constrained. We find that lambda = 1-2.5 mu m transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1-11 mu m spectra for good constraints, and emission data may be more useful in cases of sufficiently high F-p and high F-p/F-*. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1-2.5+ mu m emission spectra, and 1-5+ mu m emission spectra will constrain the temperature-pressure profiles of warm planets. Transmission spectra over 1-5+ mu m will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known. C1 [Greene, Thomas P.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA. [Line, Michael R.; Montero, Cezar; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Lustig-Yaeger, Jacob] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Luther, Kyle] Univ Calif Berkeley, Dept Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA. [Line, Michael R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Line, Michael R.] Bay Area Environm Res Inst, Petaluma, CA USA. [Line, Michael R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. RP Greene, TP (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA. EM tom.greene@nasa.gov FU National Science Foundation [AST-1229745]; University of California, Santa Cruz; NASA [411672.04.01.02, 411672.05.05.02.02, NAS 5-26555]; NASA through Hubble Fellowship - Space Telescope Science Institute [51362]; NSF [AST-1312545] FX We are grateful to L. Albert, J. Barstow, J. Bean, S. Birkmann, J. Bouwman, R. Doyon, P. Ferruit, Th. Henning, L. Kreidberg, P.-O. Lagage, N. Lewis, M. Marley, and the JWST NIRCam and MIRI instrument teams for helpful science discussions, feedback, and information on instrument performance. We also thank the referee I. Crossfield whose numerous insightful recommendations and comments allowed us to substantially improve the paper. This research has made use of the Exoplanet Orbit Database and the Exoplanet Data Explorer at exoplanets.org. The simulations for this research were carried out on the UCSC supercomputer Hyades, which is supported by National Science Foundation (award number AST-1229745) and University of California, Santa Cruz. T.P.G. acknowledges support from the NASA JWST Project and Program for this work via WBSs 411672.04.01.02 and 411672.05.05.02.02. M.R.L. acknowledges support provided by NASA through Hubble Fellowship grant #51362 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under the contract NAS 5-26555. J.J.F. acknowledges the support of NSF grant AST-1312545. NR 94 TC 14 Z9 14 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 17 DI 10.3847/0004-637X/817/1/17 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400017 ER PT J AU Hamaguchi, K Corcoran, MF Gull, TR Takahashi, H Grefenstette, BW Yuasa, T Stuhlinger, M Russell, CMP Moffat, AFJ Sharma, N Madura, TI Richardson, ND Groh, J Pittard, JM Owocki, S AF Hamaguchi, Kenji Corcoran, Michael F. Gull, Theodore R. Takahashi, Hiromitsu Grefenstette, Brian W. Yuasa, Takayuki Stuhlinger, Martin Russell, Christopher M. P. Moffat, Anthony F. J. Sharma, Neetika Madura, Thomas I. Richardson, Noel D. Groh, Jose Pittard, Julian M. Owocki, Stanley TI ETA CARINAE'S THERMAL X-RAY TAIL MEASURED WITH XMM-NEWTON AND NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; stars: early-type; stars: individual (etacar); stars: winds, outflows; X-rays: stars ID PHOTON IMAGING CAMERA; EMISSION; BINARY; PERIASTRON; TELESCOPE; COMPANION; VARIABILITY; HOMUNCULUS; SPECTRUM; NEBULA AB The evolved, massive highly eccentric binary system eta Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with eta Car extending up to similar to 50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT similar to 6 keV plasma. This temperature Delta kT similar to 2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star 's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual.. Car observations. The column density to the hardest emission component, NH similar to 10(24) H cm(-2), marked one of the highest values ever observed for eta Car, strongly suggesting increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. If the nondetection by NuSTAR is caused by absorption, the power-law source must be small and located very near the wind-wind collision apex. Alternatively, it may be that the power-law source is not related to either eta Car or the GeV gamma-ray source. C1 [Hamaguchi, Kenji; Corcoran, Michael F.] NASA, CRESST & Xray Astrophys Lab, GSFC, Greenbelt, MD 20771 USA. [Hamaguchi, Kenji; Sharma, Neetika] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Corcoran, Michael F.; Madura, Thomas I.] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21044 USA. [Gull, Theodore R.; Russell, Christopher M. P.; Madura, Thomas I.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Takahashi, Hiromitsu] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Grefenstette, Brian W.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Yuasa, Takayuki] RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Stuhlinger, Martin] European Space Astron Ctr, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Moffat, Anthony F. J.; Richardson, Noel D.] Univ Montreal, Dept Phys, CP 6128, Montreal, PQ H3C 3J7, Canada. [Moffat, Anthony F. J.; Richardson, Noel D.] Univ Montreal, CRAQ, CP 6128, Montreal, PQ H3C 3J7, Canada. [Groh, Jose] Univ Geneva, Observ Geneva, Chemin Maillettes 51, CH-1290 Sauverny, Switzerland. [Pittard, Julian M.] Univ Leeds, Sch Phys & Astron, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England. [Owocki, Stanley] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. RP Hamaguchi, K (reprint author), NASA, CRESST & Xray Astrophys Lab, GSFC, Greenbelt, MD 20771 USA.; Hamaguchi, K (reprint author), Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. OI Pittard, Julian/0000-0003-2244-5070 FU Chandra grant [GO4-15019A]; XMM-Newton grant [NNX15AK62G]; ADAP grant [NNX15AM96G]; NASA Postdoctoral Program at the Goddard Space Flight Center FX This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEA-SARC), provided by NASA's Goddard Space Flight Center. This research has made use of NASA's Astrophysics Data System Bibliographic Services. We appreciate the XMM-Newton help desk and calibration team on helping resolve the XMM-Newton EPIC gain issue. K.H. is supported by the Chandra grant GO4-15019A, the XMM-Newton grant NNX15AK62G, and the ADAP grant NNX15AM96G. CMPR is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 36 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 23 DI 10.3847/0004-637X/817/1/23 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400023 ER PT J AU Kopparla, P Natraj, V Zhang, X Swain, MR Wiktorowicz, SJ Yung, YL AF Kopparla, Pushkar Natraj, Vijay Zhang, Xi Swain, Mark R. Wiktorowicz, Sloane J. Yung, Yuk L. TI A MULTIPLE SCATTERING POLARIZED RADIATIVE TRANSFER MODEL: APPLICATION TO HD 189733b SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: individual (HD 189733b); polarization; radiative transfer ID EXTRASOLAR PLANET; PHASE CURVES; WATER-VAPOR; HOT JUPITER; MU-M; EXOPLANETARY ATMOSPHERE; TRANSMISSION SPECTRUM; SPITZER OBSERVATIONS; REFLECTED LIGHT; POLARIMETRY AB We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet's atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper. C1 [Kopparla, Pushkar; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Natraj, Vijay; Swain, Mark R.] NASA, Jet Prop Lab, Pasadena, CA USA. [Zhang, Xi] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Zhang, Xi] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA. [Wiktorowicz, Sloane J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Kopparla, P (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM pkk@gps.caltech.edu NR 71 TC 1 Z9 1 U1 6 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 32 DI 10.3847/0004-637X/817/1/32 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400032 ER PT J AU Krissansen-Totton, J Schwieterman, EW Charnay, B Arney, G Robinson, TD Meadows, V Catling, DC AF Krissansen-Totton, Joshua Schwieterman, Edward W. Charnay, Benjamin Arney, Giada Robinson, Tyler D. Meadows, Victoria Catling, David C. TI IS THE PALE BLUE DOT UNIQUE? OPTIMIZED PHOTOMETRIC BANDS FOR IDENTIFYING EARTH-LIKE EXOPLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; planets and satellites: atmospheres; planets and satellites: gaseous planets; planets and satellites: surfaces; planets and satellites: terrestrial planets; techniques: photometric ID EXTRASOLAR GIANT PLANETS; MAIN-SEQUENCE STARS; HABITABLE ZONE; LIGHT-CURVES; SYNTHETIC SPECTRA; MASS EXOPLANET; JOVIAN PLANETS; ARCHEAN EARTH; SOLAR-SYSTEM; GJ 504 AB The next generation of ground- and space-based telescopes will image habitable planets around nearby stars. A growing literature describes how to characterize such planets with spectroscopy, but less consideration has been given to the usefulness of planet colors. Here, we investigate whether potentially Earth-like exoplanets could be identified using UV-visible-to-NIR wavelength broadband photometry (350-1000 nm). Specifically, we calculate optimal photometric bins for identifying an exo-Earth and distinguishing it from uninhabitable planets including both Solar System objects and model exoplanets. The color of some hypothetical exoplanets-particularly icy terrestrial worlds with thick atmospheres-is similar to Earth's because of Rayleigh scattering in the blue region of the spectrum. Nevertheless, subtle features in Earth's reflectance spectrum appear to be unique. In particular, Earth's reflectance spectrum has a "U-shape" unlike all our hypothetical, uninhabitable planets. This shape is partly biogenic because O-2-rich, oxidizing air is transparent to sunlight, allowing prominent Rayleigh scattering, while ozone absorbs visible light, creating the bottom of the "U" Whether such uniqueness has practical utility depends on observational noise. If observations are photon limited or dominated by astrophysical sources (zodiacal light or imperfect starlight suppression), then the use of broadband visible wavelength photometry to identify Earth twins has little practical advantage over obtaining detailed spectra. However, if observations are dominated by dark current, then optimized photometry could greatly assist preliminary characterization. We also calculate the optimal photometric bins for identifying extrasolar Archean Earths, and find that the Archean Earth is more difficult to unambiguously identify than a modern Earth twin. C1 [Krissansen-Totton, Joshua; Catling, David C.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98115 USA. [Krissansen-Totton, Joshua; Schwieterman, Edward W.; Charnay, Benjamin; Arney, Giada; Robinson, Tyler D.; Meadows, Victoria; Catling, David C.] NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA 98115 USA. [Krissansen-Totton, Joshua; Schwieterman, Edward W.; Charnay, Benjamin; Arney, Giada; Meadows, Victoria; Catling, David C.] Univ Washington, Astrobiol Program, Seattle, WA 98115 USA. [Schwieterman, Edward W.; Charnay, Benjamin; Arney, Giada; Meadows, Victoria] Univ Washington, Dept Astron, Seattle, WA 98115 USA. [Robinson, Tyler D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Krissansen-Totton, J (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98115 USA.; Krissansen-Totton, J (reprint author), NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA 98115 USA.; Krissansen-Totton, J (reprint author), Univ Washington, Astrobiol Program, Seattle, WA 98115 USA. EM joshkt@uw.edu OI Catling, David/0000-0001-5646-120X; Schwieterman, Edward/0000-0002-2949-2163 FU National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNH12ZDA002C, NNA13AA93A]; NAI in the NASA Postdoctoral Program FX We thank Shawn Domagal-Goldman, Aomawa Shields, Elena Amador, the anonymous reviewer, and the ATLAST study team for helpful feedback and discussions. This work was performed as part of the NASA Astrobiology Institute's Virtual Planetary Laboratory, supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under solicitation NNH12ZDA002C and Cooperative Agreement Number NNA13AA93A. B.C. and T.D.R. are supported by the NAI in the NASA Postdoctoral Program. Discussions with Shawn Domagal-Goldman and the ATLAST study team were enabled by a NASA Astrobiology Early Career Collaboration Award. This work benefited from the use of advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system at the University of Washington. NR 108 TC 1 Z9 1 U1 4 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 31 DI 10.3847/0004-637X/817/1/31 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400031 ER PT J AU Mori, S Okuzumi, S AF Mori, Shoji Okuzumi, Satoshi TI ELECTRON HEATING IN MAGNETOROTATIONAL INSTABILITY: IMPLICATIONS FOR TURBULENCE STRENGTH IN THE OUTER REGIONS OF PROTOPLANETARY DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; instabilities; magnetohydrodynamics (MHD) ID DENSE INTERSTELLAR CLOUDS; WEAKLY MAGNETIZED DISKS; PROTOSTELLAR DISKS; ACCRETION DISKS; DEAD ZONES; NONLINEAR EVOLUTION; AMBIPOLAR DIFFUSION; MAGNETOHYDRODYNAMIC SIMULATIONS; RELATIVE VELOCITIES; LAYERED ACCRETION AB The magnetorotational instability (MRI) drives vigorous turbulence in a region of protoplanetary disks where the ionization fraction is sufficiently high. It has recently been shown that the electric field induced by the MRI can heat up electrons and thereby affect the ionization balance in the gas. In particular, in a disk where abundant dust grains are present, the electron heating causes a reduction of the electron abundance, thereby preventing further growth of the MRI. By using the nonlinear Ohm's law that takes into account electron heating, we investigate where in protoplanetary disks this negative feedback between the MRI and ionization chemistry becomes important. We find that the "e-heating zone," the region where the electron heating limits the saturation of the MRI, extends out up to 80 AU in the minimum-mass solar nebula with abundant submicron-sized grains. This region is considerably larger than the conventional dead zone whose radial extent is similar to 20 AU in the same disk model. Scaling arguments show that the MRI turbulence in the e-heating zone should have a significantly lower saturation level. Submicron-sized grains in the e-heating zone are so negatively charged that their collisional growth is unlikely to occur. Our present model neglects ambipolar and Hall diffusion, but our estimate shows that ambipolar diffusion would also affect the MRI in the e-heating zone. C1 [Mori, Shoji; Okuzumi, Satoshi] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan. [Mori, Shoji] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Okuzumi, Satoshi] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Mori, S (reprint author), Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan.; Mori, S (reprint author), Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. EM mori.s@geo.titech.ac.jp FU MEXT of Japan [23103005, 26400224, 15H02065] FX The authors are grateful to Shigeru Ida, Taishi Nakamoto, and Shu-ichiro Inutsuka for the fruitful discussions and continuing support. The authors also thank the anonymous referee for comments that improved the paper. This work was supported by Grants-in-Aid for Scientific Research (#23103005, 26400224, and 15H02065) from MEXT of Japan. NR 80 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 52 DI 10.3847/0004-637X/817/1/52 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400052 ER PT J AU Patsourakos, S Georgoulis, MK Vourlidas, A Nindos, A Sarris, T Anagnostopoulos, G Anastasiadis, A Chintzoglou, G Daglis, IA Gontikakis, C Hatzigeorgiu, N Iliopoulos, AC Katsavrias, C Kouloumvakos, A Moraitis, K Nieves-Chinchilla, T Pavlos, G Sarafopoulos, D Syntelis, P Tsironis, C Tziotziou, K Vogiatzis, II Balasis, G Georgiou, M Karakatsanis, LP Malandraki, OE Papadimitriou, C Odstrcil, D Pavlos, EG Podlachikova, O Sandberg, I Turner, DL Xenakis, MN Sarris, E Tsinganos, K Vlahos, L AF Patsourakos, S. Georgoulis, M. K. Vourlidas, A. Nindos, A. Sarris, T. Anagnostopoulos, G. Anastasiadis, A. Chintzoglou, G. Daglis, I. A. Gontikakis, C. Hatzigeorgiu, N. Iliopoulos, A. C. Katsavrias, C. Kouloumvakos, A. Moraitis, K. Nieves-Chinchilla, T. Pavlos, G. Sarafopoulos, D. Syntelis, P. Tsironis, C. Tziotziou, K. Vogiatzis, I. I. Balasis, G. Georgiou, M. Karakatsanis, L. P. Malandraki, O. E. Papadimitriou, C. Odstrcil, D. Pavlos, E. G. Podlachikova, O. Sandberg, I. Turner, D. L. Xenakis, M. N. Sarris, E. Tsinganos, K. Vlahos, L. TI THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar-terrestrial relations; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: magnetic fields ID CORONAL MASS EJECTIONS; INTERPLANETARY MAGNETIC CLOUDS; DYNAMICS-OBSERVATORY SDO; INTER-PLANETARY SHOCK; IN-SITU OBSERVATIONS; GEOMAGNETIC STORMS; DRIVEN SHOCK; 1 AU; STANDOFF DISTANCE; PLASMA INSTRUMENT AB During the interval 2012 March 7-11 the geospace experienced a barrage of intense space weather phenomena including the second largest geomagnetic storm of solar cycle 24 so far. Significant ultra-low-frequency wave enhancements and relativistic-electron dropouts in the radiation belts, as well as strong energetic-electron injection events in the magnetosphere were observed. These phenomena were ultimately associated with two ultra-fast (>2000 km s(-1)) coronal mass ejections (CMEs), linked to two X-class flares launched on early 2012 March 7. Given that both powerful events originated from solar active region NOAA 11429 and their onsets were separated by less than an hour, the analysis of the two events and the determination of solar causes and geospace effects are rather challenging. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions a synergistic Sun-to-Earth study of diverse observational solar, interplanetary and magnetospheric data sets was performed. It was found that only the second CME was Earth-directed. Using a novel method, we estimated its near-Sun magnetic field at 13 R-circle dot to be in the range [0.01, 0.16] G. Steep radial fall-offs of the near-Sun CME magnetic field are required to match the magnetic fields of the corresponding interplanetary CME (ICME) at 1 AU. Perturbed upstream solar-wind conditions, as resulting from the shock associated with the Earth-directed CME, offer a decent description of its kinematics. The magnetospheric compression caused by the arrival at 1 AU of the shock associated with the ICME was a key factor for radiation-belt dynamics. C1 [Patsourakos, S.; Nindos, A.; Kouloumvakos, A.; Podlachikova, O.] Univ Ioannina, Dept Phys, Sect Astrogeophys, POB 1186, GR-45110 Ioannina, Greece. [Georgoulis, M. K.; Gontikakis, C.; Moraitis, K.; Syntelis, P.; Tziotziou, K.] Acad Athens, Res Ctr Astron & Appl Math, Athens, Greece. [Vourlidas, A.] Johns Hopkins Univ, Appl Phys Lab, Space Phys Div, Laurel, MD USA. [Sarris, T.; Anagnostopoulos, G.; Iliopoulos, A. C.; Pavlos, G.; Sarafopoulos, D.; Vogiatzis, I. I.; Karakatsanis, L. P.; Malandraki, O. E.; Pavlos, E. G.; Xenakis, M. N.; Sarris, E.] Democritus Univ Thrace, Dept Elect & Comp Engn, GR-67100 Xanthi, Greece. [Anastasiadis, A.; Tsironis, C.; Balasis, G.; Malandraki, O. E.; Papadimitriou, C.] Natl Observ Athens, IAASARS, GR-15236 Penteli, Greece. [Chintzoglou, G.; Odstrcil, D.] George Mason Univ, Sch Phys Astron & Computat Sci, 4400 Univ Dr,MSN 6A2, Fairfax, VA 22030 USA. [Daglis, I. A.; Katsavrias, C.; Syntelis, P.; Georgiou, M.; Papadimitriou, C.; Sandberg, I.; Tsinganos, K.] Univ Athens, Dept Phys, GR-10679 Athens, Greece. [Hatzigeorgiu, N.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Nieves-Chinchilla, T.] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, IACS,CUA, Greenbelt, MD 20771 USA. [Tsironis, C.] Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Turner, D. L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Tsinganos, K.] Natl Observ Athens, Athens, Greece. RP Patsourakos, S (reprint author), Univ Ioannina, Dept Phys, Sect Astrogeophys, POB 1186, GR-45110 Ioannina, Greece. RI Tsironis, Christos/C-1557-2015; Malandraki, Olga/F-3224-2010; Sandberg, Ingmar/C-6053-2014; Daglis, Ioannis/L-6100-2013; Tziotziou, Konstantinos/L-5415-2013; Nieves-Chinchilla, Teresa/F-3482-2016; Anastasiadis, Anastasios/G-8917-2011; Balasis, Georgios/G-8680-2012; Papadimitriou, Constantinos/M-4061-2013; Pavlos, Apostolos-Evgenios/A-5870-2017; Vourlidas, Angelos/C-8231-2009 OI Daglis, Ioannis/0000-0002-0764-3442; Chintzoglou, Georgios/0000-0002-1253-8882; Nieves-Chinchilla, Teresa/0000-0003-0565-4890; Balasis, Georgios/0000-0001-7342-0557; Vourlidas, Angelos/0000-0002-8164-5948 FU European Union (European Social Fund-ESF); Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)-Research Funding Program: "Thales. Investing in knowledge society through the European Social Fund"; FP7 Marie Curie Grant [FP7-PEOPLE-2010-RG/268288]; EU's Seventh Framework Programme [PIRG07-GA-2010-268245]; NASA; APL funds; European Union's Seventh Framework Programme [FP7-SPACE-2011-1, 284520] FX We thank the referee for useful comments/suggestions. This research has been partly co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)-Research Funding Program: "Thales. Investing in knowledge society through the European Social Fund." The authors would like to thank S. K. Antiochos, V. Angelopoulos, A. Bemporad, R. Colannino, P. DeMoulin, S. Dasso, P. Subramanian, B. Kliem, X. Li, and J. Zhang for useful discussions on various aspects of this work. Simulation results have been provided by the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). The CCMC is a multi-agency partnership between NASA, AFMC, AFOSR, AFRL, AFWA, NOAA, NSF, and ONR. The ENLIL Model was developed by D. Odstrcil at the University of Colorado at Boulder. We also thank the CCMC/NASA personnel, in particular M. Kuhlaki and R. Evans, for their help with the ENLIL runs. We acknowledge the open data policy of the various missions and instruments used in this study. S. P. and O.P. acknowledge support from an FP7 Marie Curie Grant (FP7-PEOPLE-2010-RG/268288). M.K.G. and K.T. wish to acknowledge support from the EU's Seventh Framework Programme under grant agreement no PIRG07-GA-2010-268245. A.V. was supported by NASA and APL funds. A.A., C.K., I.A.D., M.G., D.L.T., I.S., C.D., and G.B. acknowledge support from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analysing and Assessing Radiation Belt Energization and Loss) collaborative research project. NR 131 TC 5 Z9 5 U1 4 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 14 DI 10.3847/0004-637X/817/1/14 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400014 ER PT J AU Perley, DA Kruhler, T Schulze, S Postigo, AD Hjorth, J Berger, E Cenko, SB Chary, R Cucchiara, A Ellis, R Fong, W Fynbo, JPU Gorosabel, J Greiner, J Jakobsson, P Kim, S Laskar, T Levan, AJ Michalowski, MJ Milvang-Jensen, B Tanvir, NR Thone, CC Wiersema, K AF Perley, D. A. Kruhler, T. Schulze, S. de Ugarte Postigo, A. Hjorth, J. Berger, E. Cenko, S. B. Chary, R. Cucchiara, A. Ellis, R. Fong, W. Fynbo, J. P. U. Gorosabel, J. Greiner, J. Jakobsson, P. Kim, S. Laskar, T. Levan, A. J. Michalowski, M. J. Milvang-Jensen, B. Tanvir, N. R. Thoene, C. C. Wiersema, K. TI THE SWIFT GAMMA-RAY BURST HOST GALAXY LEGACY SURVEY. I. SAMPLE SELECTION AND REDSHIFT DISTRIBUTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: star formation; gamma-ray burst: general; surveys ID COSMIC STAR-FORMATION; CORE-COLLAPSE SUPERNOVAE; MASS-METALLICITY RELATION; DARK GRB 080325; SIMILAR-TO 2; LUMINOSITY FUNCTION; OPTICAL AFTERGLOW; FORMATION HISTORY; FORMING GALAXIES; ALERT TELESCOPE AB We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey ("SHOALS"), a multi-observatory high-redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host. galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host. galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs. in the sample are heavily dust. obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z similar to 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z similar to 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts. C1 [Perley, D. A.; Ellis, R.] CALTECH, Dept Astron, MC 249-17,1200 East Calif Blvd, Pasadena, CA 91125 USA. [Perley, D. A.; Kruhler, T.; Hjorth, J.; Fynbo, J. P. U.; Milvang-Jensen, B.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark. [Kruhler, T.] European So Observ, Alonso Cordova 3107,Casilla 19001, Santiago 19, Chile. [Schulze, S.; Kim, S.] Pontificia Univ Catolica Chile, Inst Astrofis, Fac Fis, Vicuna Mackenna 4860,7820436 Macul, Santiago 22, Chile. [Schulze, S.; Kim, S.] Millennium Inst Astrophys, Vicuna Mackenna 4860,7820436 Macul, Santiago, Chile. [de Ugarte Postigo, A.; Gorosabel, J.; Thoene, C. C.] CSIC, IAA, Glorieta Astron S-N, E-18008 Granada, Spain. [Berger, E.; Laskar, T.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Cenko, S. B.; Cucchiara, A.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Chary, R.] US Planck Data Ctr, MS220-6, Pasadena, CA 91125 USA. [Fong, W.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Greiner, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Jakobsson, P.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, Dunhagi 5, IS-107 Reykjavik, Iceland. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Michalowski, M. J.] Univ Edinburgh, Scottish Univ Phys Alliance, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Tanvir, N. R.; Wiersema, K.] Univ Leicester, Dept Phys & Ast3ron, Univ Rd, Leicester LE1 7RH, Leics, England. RP Perley, DA (reprint author), CALTECH, Dept Astron, MC 249-17,1200 East Calif Blvd, Pasadena, CA 91125 USA.; Perley, DA (reprint author), Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark. EM dperley@dark-cosmology.dk OI de Ugarte Postigo, Antonio/0000-0001-7717-5085; Kruehler, Thomas/0000-0002-8682-2384; Thone, Christina/0000-0002-7978-7648; Schulze, Steve/0000-0001-6797-1889 FU NASA [NAS 5-26555]; NASA - Space Telescope Science Institute [HST-HF-51296.01-A]; Marie Sklodowska-Curie Individual Fellowship within the Horizon 2020 European Union (EU) Framework Programme for Research and Innovation [H2020-MSCA-IF-2014-660113]; DNRF; European Research Council under the European Union's Seventh Framework Program (FP7)/ERC Grant [EGGS-278202]; CONICYT-Chile FONDECYT [3140534]; Basal-CATA [PFB-06/2007]; Millennium Institute of Astrophysics (MAS) of Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo [IC120009]; FONDECYT [3130488]; NASA Postdoctoral Program at the Goddard Space Flight Center; Ramon y Cajal fellowships; W. M. Keck Foundation; Leibniz-Prize (DFG) [HA 1850/28-1]; [GO-90062] FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. It is also based in part on observations with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-90062. Support for this work was provided by NASA through an award issued by JPL/Caltech. and through Hubble Fellowship grant HST-HF-51296.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. D.A.P. further acknowledges support from a Marie Sklodowska-Curie Individual Fellowship within the Horizon 2020 European Union (EU) Framework Programme for Research and Innovation (H2020-MSCA-IF-2014-660113). The Dark Cosmology Centre is funded by the DNRF. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement no. EGGS-278202. S.S. acknowledges support from CONICYT-Chile FONDECYT 3140534, Basal-CATA PFB-06/2007, and Project IC120009 "Millennium Institute of Astrophysics (MAS) of Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo. S.K. acknowledges support from FONDECYT 3130488. A.C. is supported by the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. A.d.U.P. and C.C.T. are supported by Ramon y Cajal fellowships.; Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory. and on observations made with the Gran Telescopio Canarias (GTC). Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). NR 232 TC 14 Z9 14 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 7 DI 10.3847/0004-637X/817/1/7 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400007 ER PT J AU Sankrit, R Raymond, JC Blair, WP Long, KS Williams, BJ Borkowski, KJ Patnaude, DJ Reynolds, SP AF Sankrit, Ravi Raymond, John C. Blair, William P. Long, Knox S. Williams, Brian J. Borkowski, Kazimierz J. Patnaude, Daniel J. Reynolds, Stephen P. TI SECOND EPOCH HUBBLE SPACE TELESCOPE OBSERVATIONS OF KEPLER'S SUPERNOVA REMNANT: THE PROPER MOTIONS OF BALMER FILAMENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (Kepler SN 1604, G4.5+6.8); ISM: supernova remnants ID SHOCK-WAVE; NONRADIATIVE SHOCKS; DOMINATED SHOCKS; ADVANCED CAMERA; CYGNUS LOOP; SN 1006; EMISSION; NOVA; PROGENITOR; DUST AB We report on the proper motions of Balmer-dominated filaments in Kepler's supernova remnant using high resolution images obtained with the Hubble Space Telescope at two epochs separated by about 10 years. We use the improved proper motion measurements and revised values of shock velocities to derive a distance to Kepler of 5.1(-70)(+0.8)kpc. The main shock around the northern rim of the remnant has a typical speed of 1690 km s(-1) and is encountering material with densities of about 8 cm(-3). We find evidence for the variation of shock properties over small spatial scales, including differences in the driving pressures as the shock wraps around a curved cloud surface. We find that the Balmer filaments ahead of the ejecta knot on the northwest boundary of the remnant are becoming fainter and more diffuse. We also find that the Balmer filaments associated with circumstellar material in the interior regions of the remnant are due to shocks with significantly lower velocities and that the brightness variations among these filaments trace the density distribution of the material, which may have a disk-like geometry. C1 [Sankrit, Ravi] NASA, Ames Res Ctr, SOFIA Sci Ctr, M-S N211-3, Moffett Field, CA 94035 USA. [Raymond, John C.; Patnaude, Daniel J.] Smithsonian Astrophys Observ, Cambridge, MA USA. [Blair, William P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Long, Knox S.] Space Telescope Sci Inst, Cambridge, MA USA. [Williams, Brian J.] NASA, GSFC, USRA, CRESST, Washington, DC USA. [Williams, Brian J.] NASA, GSFC, Xray Astrophys Lab, Washington, DC USA. [Borkowski, Kazimierz J.; Reynolds, Stephen P.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Sankrit, R (reprint author), NASA, Ames Res Ctr, SOFIA Sci Ctr, M-S N211-3, Moffett Field, CA 94035 USA. FU NASA [HST-GO-12885] FX We thank Derek Hammer (previously of STScI) for his expertise with the AstroDrizzle package and for providing us with the final aligned, CTE-corrected images used for analysis. Figures 9 and 10 were made using Veusz, a scientific plotting package written by Jeremy Sanders. This work was supported in part by NASA grant HST-GO-12885, awarded to the Universities Space Research Association and to the Johns Hopkins University. NR 43 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 36 DI 10.3847/0004-637X/817/1/36 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400036 ER PT J AU Taylor, SR Huerta, EA Gair, JR McWilliams, ST AF Taylor, S. R. Huerta, E. A. Gair, J. R. McWilliams, S. T. TI DETECTING ECCENTRIC SUPERMASSIVE BLACK HOLE BINARIES WITH PULSAR TIMING ARRAYS: RESOLVABLE SOURCE STRATEGIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; methods: data analysis; pulsars: general ID GAMMA-RAY BURSTS; GRAVITATIONAL WAVE-FORMS; GALACTIC NUCLEI; MERGERS; EVOLUTION; MASSES; MODEL; RADIATION; EFFICIENT; PACKAGE AB The couplings between supermassive black hole binaries (SMBHBs) and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system's gravitational-wave (GW) signal enters the pulsar-timing array (PTA) band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric SMBHB system with PTAs. Additionally, we generalize the PTA f(e)-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single GW sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study. C1 [Taylor, S. R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91106 USA. [Huerta, E. A.; McWilliams, S. T.] W Virginia Univ, Dept Phys & Astron, White Hall, Morgantown, WV 26506 USA. [Huerta, E. A.] Univ Illinois, NCSA, Urbana, IL 61801 USA. [Gair, J. R.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Gair, J. R.] Univ Edinburgh, Sch Math, Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Taylor, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91106 USA. EM Stephen.R.Taylor@jpl.nasa.gov OI Taylor, Stephen/0000-0003-0264-1453 FU NASA; Royal Society; National Science Foundation [PHYS-1066293, PHY-1430284] FX We thank the anonymous referee for their remarks, which significantly improved the depth and quality of this manuscript. This research was in part supported by SRT's appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. J. R. G.' s work is supported by the Royal Society. We thank Justin Ellis for useful feedback on this manuscript, and Alberto Sesana for fruitful discussions. We also thank the anonymous referee for many helpful suggestions which significantly improved this manuscript. This work was supported in part by National Science Foundation Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics. We are grateful for computational resources provided by the Leonard E Parker Center for Gravitation, Cosmology and Astrophysics at University of Wisconsin-Milwaukee. NANOGrav is supported by a Physics Frontier Center award (PHY-1430284) from the National Science Foundation. NR 80 TC 3 Z9 3 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2016 VL 817 IS 1 AR 70 DI 10.3847/0004-637X/817/1/70 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB9YA UT WOS:000368872400070 ER PT J AU Archambault, S Archer, A Aune, T Barnacka, A Benbow, W Bird, R Buchovecky, M Buckley, JH Bugaev, V Byrum, K Cardenzana, JV Cerruti, M Chen, X Ciupik, L Collins-Hughes, E Connolly, MP Cui, W Dickinson, HJ Dumm, J Eisch, JD Falcone, A Feng, Q Finley, JP Fleischhack, H Flinders, A Fortin, P Fortson, L Furniss, A Gillanders, GH Griffin, S Grube, J Gyuk, G Hutten, M Hakansson, N Hanna, D Holder, J Humensky, TB Johnson, CA Kaaret, P Kar, P Kelley-Hoskins, N Kertzman, M Khassen, Y Kieda, D Krause, M Krennrich, F Kumar, S Lang, MJ Maier, G McArthur, S McCann, A Meagher, K Millis, J Moriarty, P Mukherjee, R Nieto, D O'Brien, S de Bhroithe, AO Ong, RA Otte, AN Pandel, D Park, N Pelassa, V Pohl, M Popkow, A Pueschel, E Quinn, J Ragan, K Reynolds, PT Richards, GT Roache, E Rousselle, J Rulten, C Santander, M Sembroski, GH Shahinyan, K Smith, AW Staszak, D Telezhinsky, I Tucci, JV Tyler, J Vincent, S Wakely, SP Weiner, OM Weinstein, A Wilhelm, A Williams, DA Zitzer, B AF Archambault, S. Archer, A. Aune, T. Barnacka, A. Benbow, W. Bird, R. Buchovecky, M. Buckley, J. H. Bugaev, V. Byrum, K. Cardenzana, J. V. Cerruti, M. Chen, X. Ciupik, L. Collins-Hughes, E. Connolly, M. P. Cui, W. Dickinson, H. J. Dumm, J. Eisch, J. D. Falcone, A. Feng, Q. Finley, J. P. Fleischhack, H. Flinders, A. Fortin, P. Fortson, L. Furniss, A. Gillanders, G. H. Griffin, S. Grube, J. Gyuk, G. Huetten, M. Hakansson, N. Hanna, D. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kelley-Hoskins, N. Kertzman, M. Khassen, Y. Kieda, D. Krause, M. Krennrich, F. Kumar, S. Lang, M. J. Maier, G. McArthur, S. McCann, A. Meagher, K. Millis, J. Moriarty, P. Mukherjee, R. Nieto, D. O'Brien, S. de Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Pandel, D. Park, N. Pelassa, V. Pohl, M. Popkow, A. Pueschel, E. Quinn, J. Ragan, K. Reynolds, P. T. Richards, G. T. Roache, E. Rousselle, J. Rulten, C. Santander, M. Sembroski, G. H. Shahinyan, K. Smith, A. W. Staszak, D. Telezhinsky, I. Tucci, J. V. Tyler, J. Vincent, S. Wakely, S. P. Weiner, O. M. Weinstein, A. Wilhelm, A. Williams, D. A. Zitzer, B. TI EXCEPTIONALLY BRIGHT TEV FLARES FROM THE BINARY LS I+61 degrees 303 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: general; gamma-rays: general; stars: individual (LS I+61 degrees 303, VER J0240+612); X-rays: binaries ID GAMMA-RAY BINARIES; FERMI-LAT; EMISSION; LSI+61-DEGREES-303; +61-DEGREES-303; PERIODICITY; PARAMETERS; SWIFT/XRT AB The TeV binary system LS I +61 degrees 303 is known for its regular, non-thermal emission pattern that traces the orbital period of the compact object in its 26.5 day orbit around its B0 Ve star companion. The system typically presents elevated TeV emission around apastron passage with flux levels between 5% and 15% of the steady flux from the Crab Nebula (> 300 GeV). In this article, VERITAS observations of LS I + 61 degrees. 303 taken in late 2014 are presented, during which bright TeV flares around apastron at flux levels peaking above 30% of the Crab Nebula flux were detected. This is the brightest such activity from this source ever seen in the TeV regime. The strong outbursts have rise and fall times of less than a day. The short timescale of the flares, in conjunction with the observation of 10 TeV photons from LS I + 61 degrees 303 during the flares, provides constraints on the properties of the accelerator in the source. C1 [Archambault, S.; Griffin, S.; Hanna, D.; McCann, A.; Ragan, K.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Archer, A.; Buckley, J. H.; Bugaev, V.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Aune, T.; Buchovecky, M.; Ong, R. A.; Popkow, A.; Rousselle, J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Barnacka, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Pelassa, V.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; Collins-Hughes, E.; O'Brien, S.; Pueschel, E.; Quinn, J.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Byrum, K.; Zitzer, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Hakansson, N.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Chen, X.; Fleischhack, H.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Vincent, S.; Wilhelm, A.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Tucci, J. V.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Dumm, J.; Fortson, L.; Rulten, C.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Flinders, A.; Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Furniss, A.] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA. [Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Kumar, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.; Nieto, D.; Weiner, O. M.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA. [Millis, J.] Anderson Univ, Dept Phys, 1100 East 5th St, Anderson, IN 46012 USA. [Mukherjee, R.; Santander, M.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Pandel, D.] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA. [Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Sci, Cork, Ireland. [Smith, A. W.] Univ Maryland, NASA GSFC, College Pk, MD 20742 USA. RP de Bhroithe, AO (reprint author), DESY, Platanenallee 6, D-15738 Zeuthen, Germany. EM anna.ofaolain.de.bhroithe@desy.de RI Nieto, Daniel/J-7250-2015; OI Nieto, Daniel/0000-0003-3343-0755; Bird, Ralph/0000-0002-4596-8563 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Helmholtz Association; Fermi Cycle 7 Guest Investigator Program [NNH13ZDA001N] FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by NSERC in Canada. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible. A. O'FdB acknowledges support through the Young Investigators Program of the Helmholtz Association. A. W. Smith acknowledges support from the Fermi Cycle 7 Guest Investigator Program, grant number NNH13ZDA001N. NR 36 TC 1 Z9 1 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 20 PY 2016 VL 817 IS 1 AR L7 DI 10.3847/2041-8205/817/1/L7 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7AO UT WOS:000369370900007 ER PT J AU Gu, YL Carrizo, C Gilerson, AA Brady, PC Cummings, ME Twardowski, MS Sullivan, JM Ibrahim, AI Kattawar, GW AF Gu, Yalong Carrizo, Carlos Gilerson, Alexander A. Brady, Parrish C. Cummings, Molly E. Twardowski, Michael S. Sullivan, James M. Ibrahim, Amir I. Kattawar, George W. TI Polarimetric imaging and retrieval of target polarization characteristics in underwater environment SO APPLIED OPTICS LA English DT Article; Proceedings Paper CT OSA Topical Meeting on Digital Holography and 3D Imaging (DH) CY MAY, 2015 CL Shanghai, PEOPLES R CHINA ID BEAM SPREAD FUNCTIONS; POINT-SPREAD; MONTE-CARLO; RADIATIVE-TRANSFER; SCATTERING MEDIA; NATURAL-WATERS; MUELLER MATRIX; LIGHT; CAMOUFLAGE; VISIBILITY AB Polarized light fields contain more information than simple irradiance and such capabilities provide an advanced tool for underwater imaging. The concept of the beam spread function (BSF) for analysis of scalar underwater imaging was extended to a polarized BSF which considers polarization. The following studies of the polarized BSF in an underwater environment through Monte Carlo simulations and experiments led to a simplified underwater polarimetric imaging model. With the knowledge acquired in the analysis of the polarimetric imaging formation process of a manmade underwater target with known polarization properties, a method to extract the inherent optical properties of the water and to retrieve polarization characteristics of the target was explored. The proposed method for retrieval of underwater target polarization characteristics should contribute to future efforts to reveal the underlying mechanism of polarization camouflage possessed by marine animals and finally to generalize guidelines for creating engineered surfaces capable of similar polarization camouflage abilities in an underwater environment. (C) 2016 Optical Society of America C1 [Gu, Yalong; Carrizo, Carlos; Gilerson, Alexander A.; Ibrahim, Amir I.] CUNY, City Coll, Opt Remote Sensing Lab, New York, NY 10031 USA. [Gu, Yalong] Earth Resources Technol Inc, Laurel, MD 20707 USA. [Brady, Parrish C.; Cummings, Molly E.] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA. [Twardowski, Michael S.; Sullivan, James M.] Harbor Branch Oceanog Inst Inc, Ft Pierce, FL 34946 USA. [Ibrahim, Amir I.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Ibrahim, Amir I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kattawar, George W.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Gilerson, AA (reprint author), CUNY, City Coll, Opt Remote Sensing Lab, New York, NY 10031 USA. EM gilerson@ccny.cuny.edu OI Ibrahim, Amir/0000-0002-3290-056X FU Office of Naval Research (ONR) [N000140911054]; National Science Foundation (NSF) [OCE-1130906]; National Aeronautics and Space Administration (NASA) [NNX13AF44G]; National Oceanic and Atmospheric Administration (NOAA) [NA11SEC4810004] FX Office of Naval Research (ONR) (N000140911054); National Science Foundation (NSF) (OCE-1130906); National Aeronautics and Space Administration (NASA) (NNX13AF44G); National Oceanic and Atmospheric Administration (NOAA) (NA11SEC4810004). NR 45 TC 3 Z9 3 U1 2 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JAN 20 PY 2016 VL 55 IS 3 BP 626 EP 637 DI 10.1364/AO.55.000626 PG 12 WC Optics SC Optics GA DC2OD UT WOS:000369055100052 PM 26835939 ER EF