The S3 type system allows for dispatch based on the first argument of
a function. In the situation where we are developing functions that use
dataframes as input selecting a dispatch function needs to be based on
the structure of the input rather than its class.
interfacer
can use iface
specifications to
associate a particular action with a specific input type.
Dispatching to one of a number of functions based on the nature of a
dataframe input is enabled by idispatch(...)
. This emulates
the behaviour of S3
classes but for dataframes, based on
their columns and also their grouping. Consider the following
iface
specifications:
i_test = iface(
id = integer ~ "an integer ID",
test = logical ~ "the test result"
)
# Extends the i_test to include an additional column
i_test_extn = iface(
i_test,
extra = character ~ "a new value",
.groups = FALSE
)
We can create specific handlers for each type of data and decide which function to dispatch to at runtime based on the input dataframe.
# The generic function
disp_example = function(x, ...) {
idispatch(x,
disp_example.extn = i_test_extn,
disp_example.no_extn = i_test
)
}
# The handler for extended input dataframe types
disp_example.extn = function(x = i_test_extn, ...) {
message("extended data function")
return(colnames(x))
}
# The handler for non-extended input dataframe types
disp_example.no_extn = function(x = i_test, ...) {
message("not extended data function")
return(colnames(x))
}
If we call disp_example()
with data that matches the
i_test_extn
specification we get one type of behaviour:
tmp = tibble::tibble(
id=c("1","2","3"),
test = c(TRUE,FALSE,TRUE),
extra = 1.1
)
tmp %>% disp_example()
#> extended data function
#> [1] "id" "test" "extra"
But if we call disp_example()
with data that only
matches the i_test
specification we get different
behaviour:
# this matches the i_test_extn specification:
tmp2 = tibble::tibble(
id=c("1","2","3"),
test = c(TRUE,FALSE,TRUE)
)
tmp2 %>% disp_example()
#> not extended data function
#> [1] "id" "test"
I’ve used this mechanism, for example, to configure how plots are produced depending on the input.
The order of the rules is important. In general the more detailed
specifications needing to be provided first, and the more generic
specifications last. We can leverage this to create a recursive
functional pattern of dataframe processing that allows multiple inputs
to converge on a single output, this also demonstrates the use of
itest()
which simply checks an input conforms to an
iface
specification:
# generic type 1 input
i_input_1 = iface(
x = integer ~ "the positives",
n = default(100) + integer ~ "the total"
)
# generic type 2 input
i_input_2 = iface(
p = proportion ~ "the proportion",
n = default(100) + integer ~ "the total"
)
# more detailed combined type 1 and 2 input
i_interim = iface(
i_input_1,
i_input_2
)
# most detailed input format
i_final = iface(
i_interim,
lower = double ~ "wilson lower CI",
upper = double ~ "wilson lower CI",
mean = double ~ "wilson mean"
)
# final target output format
i_target = iface(
i_final,
label = character ~ "a printable label"
)
# processes input of type 1 and
process.input_1 = function(x = i_input_1,...) {
message("process input 1")
ireturn(x %>% dplyr::mutate(p = x/n), iface = i_interim)
}
process.input_2 = function(x = i_input_2,...) {
message("process input 2")
ireturn(x %>% dplyr::mutate(x = floor(p*n)), iface = i_interim)
}
process.interim = function(x) {
message("process interim")
ireturn(x %>% dplyr::mutate(binom::binom.wilson(x,n)), iface = i_final)
}
process.final = function(x) {
message("process final")
ireturn(x %>% dplyr::mutate(label = sprintf("%1.1f%% [%1.1f%% - %1.1f%%] (%d/%d)",
mean*100, lower*100, upper*100, x, n)), iface = i_target)
}
process = function(x,...) {
# this test must be at the front to prevent infinite recursion
if (itest(x, i_target)) return(x)
out = idispatch(x,
process.final = i_final,
process.interim = i_interim,
process.input_2 = i_input_2,
process.input_1 = i_input_1
)
return(process(out))
}
Processing an input of type 1
results in one path
through the data pipeline:
# tibble::tibble(x=c(10,30), n=c(NA,50)) %>% itest(i_input_1)
process(tibble::tibble(x=c(10,30), n=c(NA,50))) %>% dplyr::glimpse()
#> process input 1
#> process interim
#> process final
#> Rows: 2
#> Columns: 8
#> $ x <int> 10, 30
#> $ n <int> 100, 50
#> $ p <dbl> 0.1, 0.6
#> $ method <chr> "wilson", "wilson"
#> $ mean <dbl> 0.1, 0.6
#> $ lower <dbl> 0.05522914, 0.46181438
#> $ upper <dbl> 0.1743657, 0.7239161
#> $ label <chr> "10.0% [5.5% - 17.4%] (10/100)", "60.0% [46.2% - 72.4%] (30/50)"
Processing an input of type 2
, results in a different
path through the data pipeline, but the same outcome:
# tibble::tibble(p=0.15,n=1000) %>% itest(i_input_2)
process(tibble::tibble(p=0.15,n=1000)) %>% dplyr::glimpse()
#> process input 2
#> process interim
#> process final
#> Rows: 1
#> Columns: 8
#> $ p <dbl> 0.15
#> $ n <int> 1000
#> $ x <int> 150
#> $ method <chr> "wilson"
#> $ mean <dbl> 0.15
#> $ lower <dbl> 0.1292101
#> $ upper <dbl> 0.1734687
#> $ label <chr> "15.0% [12.9% - 17.3%] (150/1000)"
Care must be taken though in this pattern, particularly if you are re-using column names,as data-type coercion could result in some column types being switched backwards and forwards, and other infinite loop problems.
It is often useful to have a function that can expects a specific
grouping but can handle additional groups. One way of handling these is
to use purrr
and nest columns extensively. Nesting data in
the unexpected groups and repeatedly applying the function you want. An
alternative dplyr
solution is to use a
group_modify
. interfacer
leverages this second
option to automatically determine a grouping necessary for a pipeline
function from the stated grouping requirements and automatically handle
them without additional coding in the package.
For example if we have the following iface
the input for
a function must be grouped only by the color
column:
i_diamond_price = interfacer::iface(
color = enum(`D`,`E`,`F`,`G`,`H`,`I`,`J`, .ordered=TRUE) ~ "the color column",
price = integer ~ "the price column",
.groups = ~ color
)
A package developer writing a pipeline function may use this fact to
handle possible additional grouping by using a
igroup_process(df, ...)
# exported function in package
# at param can use `r idocument(ex_mean, df)` for documentation
ex_mean = function(df = i_diamond_price, extra_param = ".") {
# dispatch based on groupings:
igroup_process(df,
# the real work of this function is provided as an anonymous inner
# function (but can be any other function e.g. package private function)
# or a purrr style lambda.
function(df, extra_param) {
message(extra_param, appendLF = FALSE)
return(df %>% dplyr::summarise(mean_price = mean(price)))
}
)
}
If we pass this to correctly grouped data conforming to
i_diamond_price
the inner function is executed once
transparently, after the input has been validated:
# The correctly grouped dataframe
ggplot2::diamonds %>%
dplyr::group_by(color) %>%
ex_mean(extra_param = "without additional groups...") %>%
dplyr::glimpse()
#> without additional groups...
#> Rows: 7
#> Columns: 2
#> $ color <ord> D, E, F, G, H, I, J
#> $ mean_price <dbl> 3169.954, 3076.752, 3724.886, 3999.136, 4486.669, 5091.875,…
If on the other hand additional groups are present the inner function is executed once for each of the additional groups. Data validation happens once per group, which affects interpretation of uniqueness.
# The incorrectly grouped dataframe
ggplot2::diamonds %>%
dplyr::group_by(cut, color) %>%
ex_mean() %>%
dplyr::glimpse()
#> .....
#> Rows: 35
#> Columns: 3
#> Groups: cut [5]
#> $ cut <ord> Fair, Fair, Fair, Fair, Fair, Fair, Fair, Good, Good, Good,…
#> $ color <ord> D, E, F, G, H, I, J, D, E, F, G, H, I, J, D, E, F, G, H, I,…
#> $ mean_price <dbl> 4291.061, 3682.312, 3827.003, 4239.255, 5135.683, 4685.446,…
The output of this is actually grouped by cut
as the
color
column grouping is consumed by the nested function in
igroup_process
.