Package ‘kerasnip’

September 3, 2025

Title A Bridge Between 'keras' and 'tidymodels'
Version 0.0.1

Description Provides a seamless bridge between 'keras' and the 'tidymodels'
ecosystem. It allows for the dynamic creation of 'parsnip' model
specifications for 'keras' models.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

Imports abind, parsnip (>= 1.0.0), rlang, keras3, tibble, purrr,
dplyr, cli, recipes, reticulate

Suggests testthat (>= 3.0.0), modeldata, tidymodels, finetune, tune,
dials, workflows, rsample, knitr, Ime4, rmarkdown, future,

ggplot2
VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author David Diaz [aut, cre]

Maintainer David Diaz <daviddrsch@gmail.com>
Depends R (>=4.1.0)

Repository CRAN

Date/Publication 2025-09-03 08:00:07 UTC

Contents
compile_keras_grid 2
create_keras_functional_spec oL 4
create_keras_sequential_spec 6
extract_keras_history L 9
extract_keras_model 10
extract_valid_grid L 10
INFOrM__EITOTS o o o e e e e e e e e e e e 11

2 compile_keras_grid

INP_SPEC .« v vt o e e e e e e e e e e e 12
keras_evaluate 13
register_keras_loss 15
register_Keras_metric 16
register_keras_optimizer e 16
TEMOVE_KETAS_SPEC . . .+ v v v v i v e i e e e e e e e e e e 17
step_collapse e e e e 19

Index 21

compile_keras_grid Compile Keras Models Over a Grid of Hyperparameters
Description

Pre-compiles Keras models for each hyperparameter combination in a grid.

This function is a powerful debugging tool to use before running a full tune: :tune_grid(). It
allows you to quickly validate multiple model architectures, ensuring they can be successfully built
and compiled without the time-consuming process of actually fitting them. It helps catch common
errors like incompatible layer shapes or invalid argument values early.

Usage

compile_keras_grid(spec, grid, x, y)

Arguments
spec A parsnip model specification created by create_keras_sequential_spec()
or create_keras_functional_spec().
grid A tibble or data.frame containing the grid of hyperparameters to evaluate.
Each row represents a unique model architecture to be compiled.
X A data frame or matrix of predictors. This is used to infer the input_shape for
the Keras model.
y A vector or factor of outcomes. This is used to infer the output shape and the
default loss function for the Keras model.
Details

Compile and Validate Keras Model Architectures

The function iterates through each row of the provided grid. For each hyperparameter combination,
it attempts to build and compile the Keras model defined by the spec. The process is wrapped in
a try-catch block to gracefully handle and report any errors that occur during model instantiation
or compilation.

The output is a tibble that mirrors the input grid, with additional columns containing the compiled
model object or the error message, making it easy to inspect which architectures are valid.

compile_keras_grid 3

Value

A tibble with the following columns:

e Columns from the input grid.

» compiled_model: A list-column containing the compiled Keras model objects. If compilation
failed, the element will be NULL.

* error: A list-column containing NA for successes or a character string with the error message
for failures.

Examples

if (requireNamespace("keras3”, quietly = TRUE)) {

1. Define a kerasnip model specification
create_keras_sequential_spec(
model_name = "my_mlp",
layer_blocks = list(
input_block,
hidden_block,
output_block
),

mode = "classification”

mlp_spec <- my_mlp(
hidden_units = tune(),
compile_loss = "categorical_crossentropy”,
compile_optimizer = "adam”

)

2. Create a hyperparameter grid
Include an invalid value (-10) to demonstrate error handling
param_grid <- tibble::tibble(
hidden_units = c(32, 64, -10)
)

3. Prepare dummy data
x_train <- matrix(rnorm(100 * 10), ncol = 10)
y_train <- factor(sample(@:1, 100, replace = TRUE))

4. Compile models over the grid
compiled_grid <- compile_keras_grid(
spec = mlp_spec,
grid = param_grid,
X = x_train,
y = y_train
)

print(compiled_grid)

5. Inspect the results

4 create_keras_functional_spec

The row with “hidden_units = -10~ will show an error.

}

create_keras_functional_spec

Create a Custom Keras Functional API Model Specification for Tidy-
models

Description

This function acts as a factory to generate a new parsnip model specification based on user-defined
blocks of Keras layers using the Functional API. This allows for creating complex, tunable archi-
tectures with non-linear topologies that integrate seamlessly with the tidymodels ecosystem.

Usage
create_keras_functional_spec(
model_name,
layer_blocks,
mode = c("regression”, "classification"),

’

env = parent.frame()

Arguments

model_name A character string for the name of the new model specification function (e.g.,
"custom_resnet"). This should be a valid R function name.

layer_blocks A named list of functions where each function defines a "block" (a node) in the
model graph. The list names are crucial as they define the names of the nodes.
The arguments of each function define how the nodes are connected. See the
"Model Graph Connectivity" section for details.

mode A character string, either "regression” or "classification".
Reserved for future use. Currently not used.

env The environment in which to create the new model specification function and its
associated update () method. Defaults to the calling environment (parent. frame()).

Details

This function generates all the boilerplate needed to create a custom, tunable parsnip model spec-
ification that uses the Keras Functional API. This is ideal for models with complex, non-linear
topologies, such as networks with multiple inputs/outputs or residual connections.

The function inspects the arguments of your layer_blocks functions and makes them available
as tunable parameters in the generated model specification, prefixed with the block’s name (e.g.,
dense_units). Common training parameters such as epochs and learn_rate are also added.

create_keras_functional_spec 5

Value

Invisibly returns NULL. Its primary side effect is to create a new model specification function (e.g.,
custom_resnet()) in the specified environment and register the model with parsnip so it can be
used within the tidymodels framework.

Model Graph Connectivity

kerasnip builds the model’s directed acyclic graph by inspecting the arguments of each function
in the layer_blocks list. The connection logic is as follows:

1. The names of the elements in the layer_blocks list define the names of the nodes in your
graph (e.g., main_input, dense_path, output).

2. The names of the arguments in each block function specify its inputs. A block function like
my_block <- function(input_a, input_b, ...) declares that it needs input from the
nodes named input_a and input_b. kerasnip will automatically supply the output tensors
from those nodes when calling my_block.

There are two special requirements:

* Input Block: The first block in the list is treated as the input node. Its function should
not take other blocks as input, but it can have an input_shape argument, which is supplied
automatically during fitting.

e Output Block: Exactly one block must be named "output”. The tensor returned by this
block is used as the final output of the Keras model.

A key feature is the automatic creation of num_{block_name} arguments (e.g., num_dense_path).
This allows you to control how many times a block is repeated, making it easy to tune the depth of
your network. A block can only be repeated if it has exactly one input from another block in the
graph.

The new model specification function and its update() method are created in the environment
specified by the env argument.

See Also

remove_keras_spec(), parsnip: :new_model_spec(), create_keras_sequential_spec()

Examples

if (requireNamespace("keras3"”, quietly = TRUE)) {
library(keras3)
library(parsnip)

1. Define block functions. These are the building blocks of our model.
An input block that receives the data's shape automatically.
input_block <- function(input_shape) layer_input(shape = input_shape)

A dense block with a tunable “units™ parameter.
dense_block <- function(tensor, units) {
tensor |> layer_dense(units = units, activation = "relu")

3

6 create_keras_sequential_spec

A block that adds two tensors together (for the residual connection).
add_block <- function(input_a, input_b) layer_add(list(input_a, input_b))

An output block for regression.
output_block_reg <- function(tensor) layer_dense(tensor, units = 1)

2. Create the spec. The ~layer_blocks™ list defines the graph.
create_keras_functional_spec(
model_name = "my_resnet_spec”,
layer_blocks = list(
The names of list elements are the node names.
main_input = input_block,

The argument “main_input™ connects this block to the input node.
dense_path = function(main_input, units = 32) dense_block(main_input, units),

This block's arguments connect it to the original input AND the dense layer.
add_residual = function(main_input, dense_path) add_block(main_input, dense_path),

This block must be named 'output'. It connects to the residual add layer.
output = function(add_residual) output_block_reg(add_residual)

)!

mode = "regression”

)

3. Use the newly created specification function!
The ~dense_path_units™ argument was created automatically.
model_spec <- my_resnet_spec(dense_path_units = 64, epochs = 10)

You could also tune the number of dense layers since it has a single input:
model_spec <- my_resnet_spec(num_dense_path = 2, dense_path_units = 32)

print(model_spec)
tune::tunable(model_spec)

create_keras_sequential_spec
Create a Custom Keras Sequential Model Specification for Tidymodels

Description

This function acts as a factory to generate a new parsnip model specification based on user-
defined blocks of Keras layers using the Sequential API. This is the ideal choice for creating mod-
els that are a simple, linear stack of layers. For models with complex, non-linear topologies, see
create_keras_functional_spec().

create_keras_sequential_spec 7

Usage

create_keras_sequential_spec(
model_name,
layer_blocks,
mode = c("regression”, "classification”),

’

env = parent.frame()

Arguments
model_name A character string for the name of the new model specification function (e.g.,
"custom_cnn"). This should be a valid R function name.

layer_blocks A named, ordered list of functions. Each function defines a "block" of Keras
layers. The function must take a Keras model object as its first argument and
return the modified model. Other arguments to the function will become tunable
parameters in the final model specification.

mode A character string, either "regression” or "classification".
Reserved for future use. Currently not used.

env The environment in which to create the new model specification function and its
associated update () method. Defaults to the calling environment (parent. frame()).

Details
This function generates all the boilerplate needed to create a custom, tunable parsnip model spec-
ification that uses the Keras Sequential API.

The function inspects the arguments of your layer_blocks functions (ignoring special arguments
like input_shape and num_classes) and makes them available as arguments in the generated
model specification, prefixed with the block’s name (e.g., dense_units).

The new model specification function and its update() method are created in the environment
specified by the env argument.

Value

Invisibly returns NULL. Its primary side effect is to create a new model specification function (e.g.,
my_mlp()) in the specified environment and register the model with parsnip so it can be used
within the tidymodels framework.

Model Architecture (Sequential APT)

kerasnip builds the model by applying the functions in layer_blocks in the order they are pro-
vided. Each function receives the Keras model built by the previous function and returns a modified
version.

1. The first block must initialize the model (e.g., with keras_model_sequential()). It can
accept an input_shape argument, which kerasnip will provide automatically during fitting.

2. Subsequent blocks add layers to the model.

8 create_keras_sequential_spec

3. The final block should add the output layer. For classification, it can accept a num_classes
argument, which is provided automatically.

A key feature of this function is the automatic creation of num_{block_name} arguments (e.g.,
num_hidden). This allows you to control how many times each block is repeated, making it easy to
tune the depth of your network.

See Also

remove_keras_spec(), parsnip: :new_model_spec(), create_keras_functional_spec()

Examples

if (requireNamespace("keras3”, quietly = TRUE)) {
library(keras3)

library(parsnip)

library(dials)

1. Define layer blocks for a complete model.
The first block must initialize the model. ~input_shape” is passed automatically.
input_block <- function(model, input_shape) {
keras_model_sequential (input_shape = input_shape)
3
A block for hidden layers. “units™ will become a tunable parameter.
hidden_block <- function(model, units = 32) {
model |> layer_dense(units = units, activation = "relu")

3

The output block. “num_classes™ is passed automatically for classification.
output_block <- function(model, num_classes) {
model |> layer_dense(units = num_classes, activation = "softmax")

}

2. Create the spec, providing blocks in the correct order.
create_keras_sequential_spec(
model_name = "my_mlp",
layer_blocks = list(
input = input_block,
hidden = hidden_block,
output = output_block
),
mode = "classification”

)

3. Use the newly created specification function!
Note the new arguments “num_hidden™ and ~hidden_units”.
model_spec <- my_mlp(

num_hidden = 2,

hidden_units = 64,

epochs = 10,

learn_rate = 0.01

extract_keras_history 9

print(model_spec)
3

extract_keras_history Extract Keras Training History

Description

Extracts and returns the training history from a parsnip model_fit object created by kerasnip.

Usage

extract_keras_history(object)

Arguments

object A model_fit object produced by a kerasnip specification.

Details

Extract Keras Training History

The history object contains the metrics recorded during model training, such as loss and accuracy,
for each epoch. This is highly useful for visualizing the training process and diagnosing issues like
overfitting. The returned object can be plotted directly.

Value

A keras_training_history object. You can call plot() on this object to visualize the learning
curves.

See Also

keras_evaluate, extract_keras_model

10 extract_valid_grid

extract_keras_model Extract Keras Model from a Fitted Kerasnip Object

Description
Extracts and returns the underlying Keras model object from a parsnip model_fit object created
by kerasnip.

Usage

extract_keras_model (object)

Arguments

object A model_fit object produced by a kerasnip specification.

Details

Extract the Raw Keras Model from a Kerasnip Fit

This is useful when you need to work directly with the Keras model object for tasks like inspecting
layer weights, creating custom plots, or passing it to other Keras-specific functions.

Value

The raw Keras model object (keras_model).

See Also

keras_evaluate, extract_keras_history

extract_valid_grid Extract Valid Grid from Compilation Results

Description

This helper function filters the results from compile_keras_grid() to return a new hyperparameter
grid containing only the combinations that compiled successfully.

Usage

extract_valid_grid(compiled_grid)

Arguments

compiled_grid A tibble, the result of a call to compile_keras_grid().

inform_errors 11

Details

Filter a Grid to Only Valid Hyperparameter Sets

After running compile_keras_grid(), you can use this function to remove problematic hyperpa-
rameter combinations before proceeding to the full tune: : tune_grid().

Value

A tibble containing the subset of the original grid that resulted in a successful model compilation.
The compiled_model and error columns are removed, leaving a clean grid ready for tuning.

Examples

Continuing the example from ~compile_keras_grid™:

~compiled_grid® contains one row with an error.
valid_grid <- extract_valid_grid(compiled_grid)

“valid_grid® now only contains the rows that compiled successfully.
print(valid_grid)

This clean grid can now be passed to tune::tune_grid().

inform_errors Inform About Compilation Errors

Description
This helper function inspects the results from compile_keras_grid() and prints a formatted, easy-
to-read summary of any compilation errors that occurred.

Usage

inform_errors(compiled_grid, n = 10)

Arguments

compiled_grid A tibble, the result of a call to compile_keras_grid().

n A single integer for the maximum number of distinct errors to display in detail.

Details

Display a Summary of Compilation Errors

This is most useful for interactive debugging of complex tuning grids where some hyperparameter
combinations may lead to invalid Keras models.

12 inp_spec

Value

Invisibly returns the input compiled_grid. Called for its side effect of printing a summary to the
console.

Examples
Continuing the example from ~compile_keras_grid™:
~compiled_grid® contains one row with an error.

This will print a formatted summary of that error.
inform_errors(compiled_grid)

inp_spec Remap Layer Block Arguments for Model Specification

Description

Creates a wrapper function around a Keras layer block to rename its arguments. This is a powerful

helper for defining the 1ayer_blocks in create_keras_functional_spec() and create_keras_sequential_spec(),
allowing you to connect reusable blocks into a model graph without writing verbose anonymous

functions.

Usage

inp_spec(block, input_map)

Arguments
block A function that defines a Keras layer or a set of layers. The first arguments
should be the input tensor(s).
input_map A single character string or a named character vector that specifies how to re-
name/remap the arguments of block.
Details

inp_spec() makes your model definitions cleaner and more readable. It handles the metapro-
gramming required to create a new function with the correct argument names, while preserving the
original block’s hyperparameters and their default values.

The function supports two modes of operation based on input_map:

1. Single Input Renaming: If input_map is a single character string, the wrapper function
renames the first argument of the block function to the provided string. This is the common
case for blocks that take a single tensor input.

2. Multiple Input Mapping: If input_map is a named character vector, it provides an explicit
mapping from new argument names (the names of the vector) to the original argument names
in the block function (the values of the vector). This is used for blocks with multiple inputs,
like a concatenation layer.

keras_evaluate 13

Value

A new function (a closure) that wraps the block function with renamed arguments, ready to be used
in a layer_blocks list.

Examples

--- Example Blocks ---
A standard dense block with one input tensor and one hyperparameter.
dense_block <- function(tensor, units = 16) {

tensor |> keras3::layer_dense(units = units, activation = "relu")

3

A block that takes two tensors as input.
concat_block <- function(input_a, input_b) {
keras3::layer_concatenate(list(input_a, input_b))

}

An output block with one input.
output_block <- function(tensor) {
tensor |> keras3::layer_dense(units = 1)

}

--- Usage ---
layer_blocks <- list(
main_input = keras3::layer_input,
path_a = inp_spec(dense_block, "main_input"),
path_b = inp_spec(dense_block, "main_input"),
concatenated = inp_spec(
concat_block,
c(path_a = "input_a", path_b = "input_b")

) ’
output = inp_spec(output_block, "concatenated")
)
keras_evaluate Evaluate a Kerasnip Model
Description

This function provides an kera_evaluate() method for model_fit objects created by kerasnip.
It preprocesses the new data into the format expected by Keras and then calls keras3: :evaluate()
on the underlying model to compute the loss and any other metrics.

Usage

keras_evaluate(object, x, y = NULL, ...)

14 keras_evaluate

Arguments
object A model_fit object produced by a kerasnip specification.
X A data frame or matrix of new predictor data.
y A vector or data frame of new outcome data corresponding to x.
Additional arguments passed on to keras3: :evaluate() (e.g., batch_size).
Details

Evaluate a Fitted Kerasnip Model on New Data

Value

A named list containing the evaluation results (e.g., loss, accuracy). The names are determined
by the metrics the model was compiled with.

Examples

if (requireNamespace("keras3"”, quietly = TRUE)) {

1. Define and fit a model ----
create_keras_sequential_spec(

model_name = "my_mlp",
layer_blocks = list(input_block, hidden_block, output_block),
mode = "classification”

mlp_spec <- my_mlp(
hidden_units = 32,

compile_loss = "categorical_crossentropy”,
compile_optimizer = "adam”,
compile_metrics = "accuracy”,

fit_epochs = 5
) |> set_engine("keras")

x_train <- matrix(rnorm(10@ * 10), ncol = 10)
y_train <- factor(sample(@:1, 100, replace = TRUE))
train_df <- data.frame(x = I(x_train), y = y_train)

fitted_mlp <- fit(mlp_spec, y ~ x, data = train_df)

2. Evaluate the model on new data ----
x_test <- matrix(rnorm(50 * 10), ncol = 10)
y_test <- factor(sample(@:1, 50, replace = TRUE))

eval_metrics <- keras_evaluate(fitted_mlp, x_test, y_test)
print(eval_metrics)

3. Extract the Keras model object ----
keras_model <- extract_keras_model(fitted_mlp)
summary (keras_model)

register_keras_loss 15

4. Extract the training history ----
history <- extract_keras_history(fitted_mlp)
plot(history)

3

register_keras_loss Register a Custom Keras Loss

Description

Allows users to register a custom loss function so it can be used by name within kerasnip model
specifications and tuned with dials.

Usage

register_keras_loss(name, loss_fn)

Arguments
name The name to register the loss under (character).
loss_fn The loss function.

Details

Registered losses are stored in an internal environment. When a model is compiled, kerasnip will
first check this internal registry for a loss matching the provided name before checking the keras3
package.

Value

No return value, called for side effects.

See Also

register_keras_optimizer(), register_keras_metric()

16 register_keras_optimizer

register_keras_metric Register a Custom Keras Metric

Description
Allows users to register a custom metric function so it can be used by name within kerasnip model
specifications.

Usage

register_keras_metric(name, metric_fn)

Arguments
name The name to register the metric under (character).
metric_fn The metric function.

Details

Registered metrics are stored in an internal environment. When a model is compiled, kerasnip
will first check this internal registry for a metric matching the provided name before checking the
keras3 package.

Value

No return value, called for side effects.

See Also

register_keras_optimizer(), register_keras_loss()

register_keras_optimizer
Register a Custom Keras Optimizer

Description
Allows users to register a custom optimizer function so it can be used by name within kerasnip
model specifications and tuned with dials.

Usage

register_keras_optimizer(name, optimizer_fn)

remove_keras_spec 17

Arguments

name The name to register the optimizer under (character).

optimizer_fn The optimizer function. It should return a Keras optimizer object.

Details

Registered optimizers are stored in an internal environment. When a model is compiled, kerasnip

will first check this internal registry for an optimizer matching the provided name before checking
the keras3 package.

The optimizer_fn can be a simple function or a partially applied function using purrr: :partial ().
This is useful for creating versions of Keras optimizers with specific settings.

Value

No return value, called for side effects.

See Also

register_keras_loss(), register_keras_metric()

Examples

if (requireNamespace("keras3”, quietly = TRUE)) {
Register a custom version of Adam with a different default beta_1
my_adam <- purrr::partial(keras3::optimizer_adam, beta_1 = 0.8)
register_keras_optimizer("my_adam”, my_adam)

Now "my_adam” can be used as a string in a model spec, e.g.,

my_model_spec(compile_optimizer = "my_adam")
3
remove_keras_spec Remove a Keras Model Specification and its Registrations
Description

This function completely removes a model specification that was previously created by create_keras_sequential_spec()
or create_keras_functional_spec(). It cleans up both the function in the user’s environment
and all associated registrations within the parsnip package.

Usage

remove_keras_spec(model_name, env = parent.frame())

18 remove_keras_spec

Arguments
model_name A character string giving the name of the model specification function to remove
(e.g., "my_mlp").
env The environment from which to remove the function and its update () method.
Defaults to the calling environment (parent. frame()).
Details

This function is essential for cleanly unloading a dynamically created model. It performs three main
actions:

1. It removes the model specification function (e.g., my_mlp()) and its corresponding update ()
method from the specified environment.

2. It searches parsnip’s internal model environment for all objects whose names start with the
model_name and removes them. This purges the fit methods, argument definitions, and other
registrations.

3. It removes the model’s name from parsnip’s master list of models.

This function uses the un-exported get_model_env () to perform the cleanup.

Value

Invisibly returns TRUE after attempting to remove the objects.

See Also

create_keras_sequential_spec(), create_keras_functional_spec()

Examples

if (requireNamespace("keras3"”, quietly = TRUE)) {
First, create a dummy spec
input_block <- function(model, input_shape) {
keras3::keras_model_sequential (input_shape = input_shape)
}
dense_block <- function(model, units = 16) {
model |> keras3::layer_dense(units = units)
}
create_keras_sequential_spec(
"my_temp_model”,
list(
input = input_block,
dense = dense_block

)7

"regression”

)

Check it exists in the environment and in parsnip
exists("my_temp_model™)
"my_temp_model” %in% parsnip::show_engines("my_temp_model”)$model

step_collapse 19

Now remove it
remove_keras_spec("my_temp_model”)

Check it's gone
lexists("my_temp_model"”)
I"my_temp_model” %in% parsnip::show_engines(NULL)$model

step_collapse Collapse Predictors into a single list-column

Description

step_collapse() creates a a specification of a recipe step that will convert a group of predictors
into a single list-column. This is useful for custom models that need the predictors in a different

format.
Usage
step_collapse(
recipe,
role = "predictor”,

trained = FALSE,
columns = NULL,

new_col = "predictor_matrix”,
skip = FALSE,
id = recipes::rand_id("collapse”)
)
Arguments
recipe A recipe object. The step will be added to the sequence of operations for this
recipe.
One or more selector functions to choose which variables are affected by the
step. See [selections ()] for more details. For the tidy method, these are not
currently used.
role For model terms created by this step, what analysis role should they be as-
signed?. By default, the new columns are used as predictors.
trained A logical to indicate if the quantities for preprocessing have been estimated.
columns A character string of the selected variable names. This is NULL until the step is
trained by [prep.recipe()].
new_col A character string for the name of the new list-column. The default is "predic-

tor_matrix".

20 step_collapse

skip A logical. Should the step be skipped when the recipe is baked by [bake.recipe()]1?
While all operations are baked when prep is run, skipping when bake is run may
be other times when it is desirable to skip a processing step.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that are affected and value
which is the type of collapse.

Examples
library(recipes)

2 predictors
dat <- data.frame(

x1 =1:10,
x2 = 11:20,
y =1:10

)

rec <- recipe(y ~ ., data = dat) %>%
step_collapse(x1, x2, new_col = "pred") %>%
prep()

bake(rec, new_data = NULL)

Index

compile_keras_grid, 2

create_keras_functional_spec, 4

create_keras_functional_spec(), 6, 8, 12,
17,18

create_keras_sequential_spec, 6

create_keras_sequential_spec(), 5, 12,
17, 18

extract_keras_history, 9
extract_keras_model, 10
extract_valid_grid, 10

inform_errors, 11
inp_spec, 12

keras_evaluate, 13
parsnip::new_model_spec(), 5, 8

register_keras_loss, 15
register_keras_loss(), 16, 17
register_keras_metric, 16
register_keras_metric(), 15,17
register_keras_optimizer, 16
register_keras_optimizer(), 15, 16
remove_keras_spec, 17
remove_keras_spec(), 5, 8

step_collapse, 19

21

	compile_keras_grid
	create_keras_functional_spec
	create_keras_sequential_spec
	extract_keras_history
	extract_keras_model
	extract_valid_grid
	inform_errors
	inp_spec
	keras_evaluate
	register_keras_loss
	register_keras_metric
	register_keras_optimizer
	remove_keras_spec
	step_collapse
	Index

