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ADbreak NIMBLE language function to break tracking of derivatives

Description

This function is used in a method of a nimbleFunction that has derivatives enabled. It returns its
value but breaks tracking of derivatives.

Usage

ADbreak (x)

Arguments

X

Details

scalar value

This funcion only works with scalars.
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ADNimblelList Data type for the return value of nimDerivs

Description

nimblelList definition for the type of nimbleList returned by nimDerivs.

Usage
ADNimblelist

Format

An object of class 1ist of length 1.

Fields
value The value of the function evaluated at the given input arguments.
jacobian The Jacobian of the function evaluated at the given input arguments.
hessian The Hessian of the function evaluated at the given input arguments.

See Also

nimDerivs

ADproxyModelClass-class
create an ADproxyModelClass object

Description

create an ADproxyModelClass object. For internal use.

Arguments

Rmodel The name of an uncompiled model

Details

This is a proxy model for model_AD. The class needs just enough pieces to be used like a model
for purposes of nodeFunction compilation. The model will contain an ADproxyModel and then
the nodeFunction setup code will extract it. The model interface will population the proxy model’s
Cobjectlnterface

Author(s)
NIMBLE development team
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any_na Determine if any values in a vector are NA or NaN

Description

NIMBLE language functions that can be used in either compiled or uncompiled nimbleFunctions
to detect if there are any NA or NaN values in a vector.

Usage

any_na(x)

any_nan(x)

Arguments

X vector of values

Author(s)
NIMBLE Development Team

as.carAdjacency Convert CAR structural parameters to adjacency, weights, num format

Description

This will convert alternate representations of CAR process structure into (adj, weights, num) form
required by dcar_normal.

Usage

as.carAdjacency(...)

Arguments

Either: a symmetric matrix of unnormalized weights, or two lists specifying
adjacency indices and the corresponding unnormalized weights.

Details

Two alternate representations are handled:
A single matrix argument will be interpreted as a matrix of symmetric unnormalized weights.

Two lists will be interpreted as (the first) a list of numeric vectors specifying the adjacency (neigh-
boring) indices of each CAR process component, and (the second) a list of numeric vectors giving
the unnormalized weights for each of these neighboring relationships.



as.carCM 9

Author(s)

Daniel Turek

See Also

CAR-Normal

as.carCM Convert weights vector to parameters of dcar_proper distributio

Description

Convert weights vector to C and M parameters of dcar_proper distribution

Usage

as.carCM(adj, weights, num)

Arguments
adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.
weights vector of symmetric unnormalized weights associated with each pair of adjacent
locations, of the same length as adj. This is a sparse representation of the full
(unnormalized) weight matrix.
num vector giving the number of neighbors of each spatial location, with length equal
to the total number of locations.
Details

Given a symmetric matrix of unnormalized weights, this function will calculate corresponding val-
ues for the C and M arguments suitable for use in the dcar_proper distribution. This function can
be used to transition between usage of dcar_normal and dcar_proper, since dcar_normal uses
the adj, weights, and num arguments, while dcar_proper requires adj, num, and also the C and M
as returned by this function.

Here, C is a sparse vector representation of the row-normalized adjacency matrix, and M is a vector
containing the conditional variance for each region. The resulting values of C and M are guaranteed
to satisfy the symmetry constraint imposed on C' and M, that M ~1C' is symmetric, where M is a
diagonal matrix and C' is the row-normalized adjacency matrix.

Value

A named list with elements C and M. These may be used as the C and M arguments to the dcar_proper
distribution.
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Author(s)

Daniel Turek

See Also

CAR-Normal, CAR-Proper

asRow Turn a numeric vector into a single-row or single-column matrix

Description

Turns a numeric vector into a matrix that has 1 row or 1 column. Part of NIMBLE language.

Usage

asRow(x)

asCol (x)

Arguments

X Numeric to be turned into a single row or column matrix

Details

In the NIMBLE language, some automatic determination of how to turn vectors into single-row or
single-column matrices is done. For example, in A %*% x, where A is a matrix and x a vector, X will
be turned into a single-column matrix unless it is known at compile time that A is a single column,
in which case x will be turned into a single-row matrix. However, if it is desired that x be turned
into a single row but A cannot be determined at compile time to be a single column, then one can
use A %*% asRow(x) to force this conversion.

Author(s)

Perry de Valpine
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autoBlock Automated parameter blocking procedure for efficient MCMC sam-
pling
Description

The automated parameter blocking algorithm is no longer actively maintained. In some cases, it
may not operate correctly with more recent system features and/or distributions.

Usage

autoBlock(

Rmodel,
autolt

20000,

run = list("all”, "default"),
setSeed = TRUE,

verbose

makePlots
round = TRUE

Arguments

Rmodel

autolt

run

setSeed

verbose

makePlots

round

FALSE,
FALSE,

A NIMBLE model object, created from nimbleModel.

The number of MCMC iterations to run intermediate MCMC algorithms, through
the course of the procedure. Default 20,000.

List of additional MCMC algorithms to compare against the automated blocking
MCMC. These may be specified as: the character string *all’ to denote blocking
all continuous-valued nodes; the character string ’default’ to denote NIMBLE’s
default MCMC configuration; a named list element consisting of a quoted code
block, which when executed returns an MCMC configuration object for com-
parison; a custom-specificed blocking scheme, specified as a named list element
which itself is a list of character vectors, where each character vector specifies
the nodes in a particular block. Default is c(all’, *default’).

Logical specificying whether to call set.seed(0) prior to beginning the blocking
procedure. Default TRUE.

Logical specifying whether to output considerable details of the automated block
procedure, through the course of execution. Default FALSE.

Logical specifying whether to plot the hierarchical clustering dendrograms, through
the course of execution. Default FALSE.

Logical specifying whether to round the final output results to two decimal
places. Default TRUE.
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Details

Runs NIMBLE's automated blocking procedure for a given model object, to dynamically determine
a blocking scheme of the continuous-valued model nodes. This blocking scheme is designed to
produce efficient MCMC sampling (defined as number of effective samples generated per second
of algorithm runtime). See Turek, et al (2015) for details of this algorithm. This also (optionally)
compares this blocked MCMC against several static MCMC algorithms, including all univariate
sampling, blocking of all continuous-valued nodes, NIMBLE’s default MCMC configuration, and
custom-specified blockings of parameters.

This method allows for fine-tuned usage of the automated blocking procedure. However, the main
entry point to the automatic blocking procedure is intended to be through either buildMCMC(...,
autoBlock = TRUE), or configureMCMC(X..., autoBlock = TRUE).

Value

Returns a named list containing elements:

* summary: A data frame containing a numerical summary of the performance of all MCMC
algorithms (including that from automated blocking)

* autoGroups: A list specifying the parameter blockings converged on by the automated block-
ing procedure

* conf: A NIMBLE MCMC configuration object corresponding to the results of the automated
blocking procedure
Author(s)
Daniel Turek

References
Turek, D., de Valpine, P., Paciorek, C., and Anderson-Bergman, C. (2015). Automated Parameter
Blocking for Efficient Markov-Chain Monte Carlo Sampling. <arXiv:1503.05621>.

See Also
configureMCMC buildMCMC

BUGSdeclClass-class BUGSdeclClass contains the information extracted from one BUGS
declaration

Description

BUGSdeclIClass contains the information extracted from one BUGS declaration
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buildAGHQGrid Build Adaptive Gauss-Hermite Quadrature Grid

Description

Create quadrature grid for use in AGHQuad methods in Nimble.

Arguments
d Dimension of quadrature grid being requested.
nQuad Number of quadrature nodes requested on build.
Details

This function is used by used by buildOneAGHQuad1D and buildOneAGHQuad create the quadra-
ture grid using adaptive Gauss-Hermite quadrature. Handles single or multiple dimension grids and
computes both grid locations and weights. Additionally, acts as a cache system to do transforma-
tions, and return marginalized log density.

Any of the input node vectors, when provided, will be processed using nodes <- model $expandNodeNames (nodes),
where nodes may be paramNodes, randomEffectsNodes, and so on. This step allows any of

the inputs to include node-name-like syntax that might contain multiple nodes. For example,

paramNodes = 'betal[1:10]" can be provided if there are actually 10 scalar parameters, "beta[1]’

through *beta[10]’. The actual node names in the model will be determined by the exapndNodeNames

step.

Available methods include

* buildAGHQ. Builds a adaptive Gauss-Hermite quadrature grid in d dimensions. Calls buildAGHQOne
to build the one dimensional grid and then expands in each dimension. Some numerical is-
sues occur in Eigen decomposition making the grid weights only accurate up to 35 quadrature
nodes.

* Options to get internally cached values are getGridSize, getModeIndex for when there are
an odd number of quadrature nodes, getLogDensity for the cached values, getAl1Nodes for
the quadrature grids, getNodes for getting a single indexed nodes, getAl1NodesTransformed
for nodes transformed to the parameter scale, getNodesTransformed for a single transformed
node, getAllWeights to get all quadrature weights, getWeights single indexed weight.

* transformGrid(cholNegHess, inner_mode, method) transforms the grid using either cholesky
trasnformations, as default, or spectral that makes use of the Eigen decomposition. For a single
dimension transformGridiD is used.

* As the log density is evaluated externally, it is saved via saveLogDens, which then is summed
via quadSum.

* buildGrid builds the grid the initial time and is only run once in code. After, the user must
choose to setGridSize to update the grid size.

e check. If TRUE (default), a warning is issued if paramNodes, randomEffectsNodes and/or
calcNodes are provided but seek to have missing elements or unnecessary elements based
on some default inspection of the model. If unnecessary warnings are emitted, simply set
check=FALSE.
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innerOptimControl. A list of control parameters for the inner optimization of Laplace ap-
proximation using optim. See ’Details’ of optim for further information.

innerOptimMethod. Optimization method to be used in optim for the inner optimization. See
"Details’ of optim. Currently optim in NIMBLE supports: "Nelder-Mead", "BFGS", "CG",
and "L-BFGS-B". By default, method "CG" is used when marginalizing over a single (scalar)
random effect, and "BFGS" is used for multiple random effects being jointly marginalized over.

innerOptimStart. Choice of starting values for the inner optimization. This could be
"last”, "last.best"”, or a vector of user provided values. "last” means the most recent
random effects values left in the model will be used. When finding the MLE, the most re-
cent values will be the result of the most recent inner optimization for Laplace. "last.best"
means the random effects values corresponding to the largest Laplace likelihood (from any
call to the calcLaplace or calcLoglik method, including during an MLE search) will be
used (even if it was not the most recent Laplace likelihood). By default, the initial random
effects values will be used for inner optimization.

outOptimControl. A list of control parameters for maximizing the Laplace log-likelihood
using optim. See ’Details’ of optim for further information.

References

Golub, G. H. and Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of
Computation 23 (106): 221-230.

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-

629.

Jackel, P. (2005). A note on multivariate Gauss-Hermite quadrature. London: ABN-Amro. Re.

buildAuxiliaryFilter  Placeholder for buildAuxiliaryFilter

Description

This function has been moved to the ‘nimbleSMC* package.

Usage

buildAuxiliaryFilter(...)

Arguments

arguments
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buildBootstrapFilter  Placeholder for buildBootstrapFilter

Description

This function has been moved to the ‘nimbleSMC* package.

Usage

buildBootstrapFilter(...)

Arguments
arguments
buildEnsembleKF Placeholder for buildEnsembleKF
Description

This function has been moved to the ‘nimbleSMC* package.

Usage
buildEnsembleKF(...)

Arguments

arguments

buildIteratedFilter2  Placeholder for buildlteratedFilter2

Description

This function has been moved to the ‘nimbleSMC* package.

Usage
buildIteratedFilter2(...)

Arguments

arguments
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buildLaplace Laplace approximation and adaptive Gauss-Hermite quadrature

Description

Build a Laplace or AGHQ approximation algorithm for a given NIMBLE model.

Usage
buildLaplace(
model,
paramNodes,
randomeffectsNodes,
calcNodes,
calcNodesOther,
control = list()
)
buildAGHQ(
model,
nQuad = 1,
paramNodes,
randomEffectsNodes,
calcNodes,
calcNodesOther,
control = list()
)
Arguments
model a NIMBLE model object, such as returned by nimbleModel. The model must
have automatic derivatives (AD) turned on, e.g. by using buildDerivs=TRUE in
nimbleModel.
paramNodes a character vector of names of parameter nodes in the model; defaults are pro-
vided by setupMargNodes. Alternatively, paramNodes can be a list in the format
returned by setupMargNodes, in which case randomEffectsNodes, calcNodes,
and calcNodesOther are not needed (and will be ignored).
randomEffectsNodes
a character vector of names of continuous unobserved (latent) nodes to marginal-
ize (integrate) over using Laplace approximation; defaults are provided by setupMargNodes.
calcNodes a character vector of names of nodes for calculating the integrand for Laplace

approximation; defaults are provided by setupMargNodes. There may be de-
terministic nodes between paramNodes and calcNodes. These will be included
in calculations automatically and thus do not need to be included in calcNodes
(but there is no problem if they are).
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calcNodesOther a character vector of names of nodes for calculating terms in the log-likelihood
that do not depend on any randomEffectsNodes, and thus are not part of the
marginalization, but should be included for purposes of finding the MLE. This
defaults to stochastic nodes that depend on paramNodes but are not part of and
do not depend on randomeffectsNodes. There may be deterministic nodes
between paramNodes and calcNodesOther. These will be included in calcula-
tions automatically and thus do not need to be included in calcNodesOther (but
there is no problem if they are).

control a named list for providing additional settings used in Laplace approximation.
See control section below. Most of these can be updated later with the ‘up-
dateSettings‘ method.

nQuad number of quadrature points for AGHQ (in one dimension). Laplace approx-
imation is AGHQ with ‘nQuad=1°. Only odd numbers of nodes really make
sense. Often only one or a few nodes can achieve high accuracy. A maximum
of 35 nodes is supported. Note that for multivariate quadratures, the number of
nodes will be (number of dimensions)*nQuad.

buildLaplace

buildLaplace creates an object that can run Laplace approximation and for a given model or part
of a model. buildAGHQ creates an object that can run adaptive Gauss-Hermite quadrature (AGHQ,
sometimes called "adaptive Gaussian quadrature") for a given model or part of a model. Laplace ap-
proximation is AGHQ with one quadrature point, hence ‘buildLaplace* simply calls ‘build AGHQ*
with ‘nQuad=1°. These methods approximate the integration over continuous random effects in a
hierarchical model to calculate the (marginal) likelihood.

buildAGHQ and buildLaplace will by default (unless changed manually via ‘control$split) deter-
mine from the model which random effects can be integrated over (marginalized) independently.
For example, in a GLMM with a grouping factor and an independent random effect intercept for
each group, the random effects can be marginalized as a set of univariate approximations rather
than one multivariate approximation. On the other hand, correlated or nested random effects would
require multivariate marginalization.

Maximum likelihood estimation is available for Laplace approximation (‘nQuad=1°) with univariate
or multivariate integrations. With ‘nQuad > 1°, maximum likelihood estimation is available only
if all integrations are univariate (e.g., a set of univariate random effects). If there are multivariate
integrations, these can be calculated at chosen input parameters but not maximized over parameters.
For example, one can find the MLE based on Laplace approximation and then increase ‘nQuad’
(using the ‘updateSettings‘ method below) to check on accuracy of the marginal log likelihood at
the MLE.

Beware that quadrature will use ‘nQuad”k‘ quadrature points, where ‘k‘ is the dimension of each
integration. Therefore quadrature for ‘k‘ greater that 2 or 3 can be slow. As just noted, ‘build AGHQ*
will determine independent dimensions of quadrature, so it is fine to have a set of univariate random
effects, as these will each have k=1. Multivariate quadrature (k>1) is only necessary for nested,
correlated, or otherwise dependent random effects.

The recommended way to find the maximum likelihood estimate and associated outputs is by calling
runLaplace or runAGHQ. The input should be the compiled Laplace or AGHQ algorithm object.
This would be produced by running compileNimble with input that is the result of buildLaplace
or buildAGHQ.
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For more granular control, see below for methods findMLE and summary. See function summarylLaplace
for an easier way to call the summary method and obtain results that include node names. These
steps are all done within runLaplace and runAGHQ.

The NIMBLE User Manual at r-nimble.org also contains an example of Laplace approximation.

How input nodes are processed

buildLaplace and buildAGHQ make good tries at deciding what to do with the input model and
any (optional) of the node arguments. However, random effects (over which approximate integration
will be done) can be written in models in multiple equivalent ways, and customized use cases may
call for integrating over chosen parts of a model. Hence, one can take full charge of how different
parts of the model will be used.

Any of the input node vectors, when provided, will be processed using nodes <- model$expandNodeNames(nodes),
where nodes may be paramNodes, randomEffectsNodes, and so on. This step allows any of

the inputs to include node-name-like syntax that might contain multiple nodes. For example,

paramNodes = 'betal[1:10]" can be provided if there are actually 10 scalar parameters, "beta[1]’

through *beta[10]’. The actual node names in the model will be determined by the exapndNodeNames

step.

In many (but not all) cases, one only needs to provide a NIMBLE model object and then the func-
tion will construct reasonable defaults necessary for Laplace approximation to marginalize over all
continuous latent states (aka random effects) in a model. The default values for the four groups of
nodes are obtained by calling setupMargNodes, whose arguments match those here (except for a
few arguments which are taken from control list elements here).

setupMargNodes tries to give sensible defaults from any combination of paramNodes, randomEffectsNodes,
calcNodes, and calcNodesOther that are provided. For example, if you provide only randomEffectsNodes
(perhaps you want to marginalize over only some of the random effects in your model), setupMargNodes

will try to determine appropriate choices for the others.

setupMargNodes also determines which integration dimensions are conditionally independent, i.e.,
which can be done separately from each other. For example, when possible, 10 univariate ran-
dom effects will be split into 10 univariate integration problems rather than one 10-dimensional
integration problem.

The defaults make general assumptions such as that randomEffectsNodes have paramNodes as
parents. However, The steps for determining defaults are not simple, and it is possible that they will
be refined in the future. It is also possible that they simply don’t give what you want for a particular
model. One example where they will not give desired results can occur when random effects have
no prior parameters, such as ‘N(0,1)‘ nodes that will be multiplied by a scale factor (e.g. sigma) and
added to other explanatory terms in a model. Such nodes look like top-level parameters in terms of
model structure, so you must provide a randomEffectsNodes argument to indicate which they are.

It can be helpful to call setupMargNodes directly to see exactly how nodes will be arranged for
Laplace approximation. For example, you may want to verify the choice of randomEffectsNodes
or get the order of parameters it has established to use for making sense of the MLE and results
from the summary method. One can also call setupMargNodes, customize the returned list, and
then provide that to buildLaplace as paramNodes. In that case, setupMargNodes will not be
called (again) by buildLaplace.

If setupMargNodes is emitting an unnecessary warning, simply use control=1ist (check=FALSE).
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Managing parameter transformations that may be used internally

If any paramNodes (parameters) or randomEffectsNodes (random effects / latent states) have con-
straints on the range of valid values (because of the distribution they follow), they will be used on
a transformed scale determined by parameterTransform. This means the Laplace approximation
itself will be done on the transformed scale for random effects and finding the MLE will be done
on the transformed scale for parameters. For parameters, prior distributions are not included in
calculations, but they are used to determine valid parameter ranges and hence to set up any trans-
formations. For example, if sigma is a standard deviation, you can declare it with a prior such as
sigma ~ dhalfflat() to indicate that it must be greater than 0.

For default determination of when transformations are needed, all parameters must have a prior
distribution simply to indicate the range of valid values. For a param p that has no constraint, a
simple choice is p ~ dflat().

Understanding inner and outer optimizations

Note that there are two numerical optimizations when finding maximum likelihood estimates with
a Laplace or (1D) AGHQ algorithm: (1) maximizing the joint log-likelihood of random effects
and data given a parameter value to construct the approximation to the marginal log-likelihood at
the given parameter value; (2) maximizing the approximation to the marginal log-likelihood over
the parameters. In what follows, the prefix ’inner’ refers to optimization (1) and ’outer’ refers to
optimization (2). Currently both optimizations default to using method "BFGS". However, one can
use other optimizers or simply run optimization (2) manually from R; see the example below. In
some problems, choice of inner and/or outer optimizer can make a big difference for obtaining
accurate results, especially for standard errors. Hence it is worth experimenting if one is in doubt.

control list arguments

The control list allows additional settings to be made using named elements of the list. Most (or
all) of these can be updated later using the ‘updateSettings‘ method. Supported elements include:

e split. If TRUE (default), randomEffectsNodes will be split into conditionally indepen-
dent sets if possible. This facilitates more efficient Laplace or AGHQ approximation be-
cause each conditionally independent set can be marginalized independently. If FALSE,
randomeffectsNodes will be handled as one multivariate block, with one multivariate ap-
proximation. If split is a numeric vector, randomEffectsNodes will be split by calling
split(randomEffectsNodes, control$split). The last option allows arbitrary control over
how randomEffectsNodes are blocked.

* check. If TRUE (default), a warning is issued if paramNodes, randomEffectsNodes and/or
calcNodes are provided but seem to have missing or unnecessary elements based on some de-
fault inspections of the model. If unnecessary warnings are emitted, simply set check=FALSE.

e innerOptimControl. A list (either an R list or a ‘optimControlNimbleList‘) of control pa-
rameters for the inner optimization of Laplace approximation using nimOptim. See ’Details’
of nimOptim for further information. Default is ‘nimOptimDefaultControl()*.

* innerOptimMethod. Optimization method to be used in nimOptim for the inner optimiza-
tion. See ’Details’ of nimOptim. Currently nimOptim in NIMBLE supports: "Nelder-Mead",
"BFGS", "CG", "L-BFGS-B", "nlminb", and user-provided optimizers. By default, method
"BFGS" is used for both univariate and multivariate cases. For "nlminb"” or user-provided



20

buildLaplace

optimizers, only a subset of elements of the innerOptimControllList are supported. (Note
that control over the outer optimization method is available as an argument to ‘findMLE®).
Choice of optimizers can be important and so can be worth exploring.

innerOptimStart. Method for determining starting values for the inner optimization. Op-
tions are:

— "zero" (default): use all zeros;

— "last": use the result of the last inner optimization;

— "last.best": use the result of the best inner optimization so far for each conditionally
independent part of the approximation;

— "constant": always use the same values, determined by innerOptimStartValues;

— "random”: randomly draw new starting values from the model (i.e., from the prior);

— "model”: use values for random effects stored in the model, which are determined from
the first call.

Note that "model” and "zero” are shorthand for "constant” with particular choices of
innerOptimStartValues. Note that "last” and "last.best"” require a choice for the very

first values, which will come from innerOptimStartValues. The defaultis innerOptimStart="zero"

and may change in the future.

innerOptimStartValues. Values for some of innerOptimStart approaches. If a scalar is
provided, that value is used for all elements of random effects for each conditionally indepen-
dent set. If a vector is provided, it must be the length of *all* random effects. If these are
named (by node names), the names will be used to split them correctly among each condition-
ally independent set of random effects. If they are not named, it is not always obvious what
the order should be because it may depend on the conditionally independent sets of random
effects. It should match the order of names returned as part of ‘summaryLaplace".

innerOptimWarning. If FALSE (default), do not emit warnings from the inner optimiza-
tion. Optimization methods may sometimes emit a warning such as for bad parameter values
encountered during the optimization search. Often, a method can recover and still find the op-
timum. In the approximations here, sometimes the inner optimization search can fail entirely,
yet the outer optimization see this as one failed parameter value and can recover. Hence, it is
often desirable to silence warnings from the inner optimizer, and this is done by default. Set
innerOptimWarning=TRUE to see all warnings.

useInnerCache. If TRUE (default), use caching system for efficiency of inner optimizations.
The caching system records one set of previous parameters and uses the corresponding results
if those parameters are used again (e.g., in a gradient call). This should generally not be
modified.

outerOptimControl. A list of control parameters for maximizing the Laplace log-likelihood
using nimOptim. See ’Details’ of nimOptim for further information.

computeMethod. There are three approaches available for internal details of how the approx-
imations, and specifically derivatives involved in their calculation, are handled. These are
labeled simply 1, 2, and 3, and the default is 2. The relative performance of the methods will
depend on the specific model. Users wanting to explore efficiency can try switching from
method 2 (default) to methods 1 or 3 and comparing performance. The first Laplace approx-
imation with each method will be (much) slower than subsequent Laplace approximations.
Further details are not provided at this time.
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* gridType (relevant only nQuad>1). For multivariate AGHQ, a grid must be constructed based
on the Hessian at the inner mode. Options include "cholesky" (default) and "spectral” (i.e.,
eigenvectors and eigenvalues) for the corresponding matrix decompositions on which the grid
can be based.

# end itemize

Available methods

The object returned by buildLaplace is a nimbleFunction object with numerous methods (func-
tions). Here these are described in three tiers of user relevance.

Most useful methods

The most relevant methods to a user are:

* calcLoglLik(p, trans=FALSE). Calculate the approximation to the marginal log-likelihood

function at parameter value p, which (if trans is FALSE) should match the order of paramNodes.
For any non-scalar nodes in paramNodes, the order within the node is column-major. The or-
der of names can be obtained from method getNodeNamesVec(TRUE). Return value is the
scalar (approximate, marginal) log likelihood.
If trans is TRUE, then p is the vector of parameters on the transformed scale, if any, de-
scribed above. In this case, the parameters on the original scale (as the model was written)
will be determined by calling the method pInverseTransform(p). Note that the length of the
parameter vector on the transformed scale might not be the same as on the original scale (be-
cause some constraints of non-scalar parameters result in fewer free transformed parameters
than original parameters).

* calcLaplace(p, trans). This is the same as calcLogl ik but requires that the approximation
be Laplace (i.e nQuad is 1), and results in an error otherwise.

e findMLE(pStart, method, hessian). Find the maximum likelihood estimates of parame-
ters using the approximated marginal likelihood. This can be used if nQuad is 1 (Laplace
case) or if nQuad>1 and all marginalizations involve only univariate random effects. Argu-
ments include pStart: initial parameter values (defaults to parameter values currently in the
model); method: (outer) optimization method to use in nimOptim (defaults to "BFGS", al-
though some problems may benefit from other choices); and hessian: whether to calculate
and return the Hessian matrix (defaults to TRUE, which is required for subsequent use of ‘sum-
mary‘ method). Second derivatives in the Hessian are determined by finite differences of the
gradients obtained by automatic differentiation (AD). Return value is a nimbleList of type
optimResultNimblelList, similar to what is returned by R’s optim. See help(nimOptim).
Note that parameters (‘par’) are returned for the natural parameters, i.e. how they are defined
in the model. But the ‘hessian‘, if requested, is computed for the parameters as transformed for
optimization if necessary. Hence one must be careful interpreting ‘hessian‘ if any parameters
have constraints, and the safest next step is to use the ‘summary ‘ method or ‘summaryLaplace’
function.

e summary(MLEoutput, originalScale, randomEffectsStdError, jointCovariance). Sum-
marize the maximum likelihood estimation results, given object MLEoutput that was returned
by findMLE. The summary can include a covariance matrix for the parameters, the random
effects, or both), and these can be returned on the original parameter scale or on the (poten-
tially) transformed scale(s) used in estimation. It is often preferred instead to call function
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(not method) ‘summaryLaplace‘ because this will attach parameter and random effects names
(i.e., node names) to the results.

In more detail, summary accepts the following optional arguments:

— originalScale. Logical. If TRUE, the function returns results on the original scale(s) of
parameters and random effects; otherwise, it returns results on the transformed scale(s).
If there are no constraints, the two scales are identical. Defaults to TRUE.

— randomEffectsStdError. Logical. If TRUE, standard errors of random effects will be
calculated. Defaults to FALSE.

— jointCovariance. Logical. If TRUE, the joint variance-covariance matrix of the param-
eters and the random effects will be returned. If FALSE, the variance-covariance matrix
of the parameters will be returned. Defaults to FALSE.

The object returned by summary is an AGHQuad_summary nimbleList with elements:

— params. A nimbleList that contains estimates and standard errors of parameters (on the
original or transformed scale, as chosen by originalScale).

— randomEffects. A nimbleList that contains estimates of random effects and, if requested
(randomeffectsStdError=TRUE) their standard errors, on original or transformed scale.
Standard errors are calculated following the generalized delta method of Kass and Steffey
(1989).

— vcov. Ifrequested (i.e. jointCovariance=TRUE), the joint variance-covariance matrix of
the parameters and random effects, on original or transformed scale. If jointCovariance=FALSE,
the covariance matrix of the parameters, on original or transformed scale.

— scale. "original” or "transformed”, the scale on which results were requested.

Methods for more advanced uses

Additional methods to access or control more details of the Laplace approximation include:

» updateSettings. This provides a single function through which many of the settings de-
scribed above (mostly for the control list) can be later changed. Options that can be changed
include: innerOptimMethod, innerOptimStart, innerOptimStartValues, useInnerCache,
nQuad, gridType, innerOptimControl, outerOptimControl, and computeMethod. For
innerOptimStart, method "zero" cannot be specified but can be achieved by choosing method
"constant”" with innerOptimStartValues=0. Only provided options will be modified. The
exceptions are innerOptimControl, outerOptimControl, which are replaced only replace_innerOptimControl=TR
or replace_outerOptimControl=TRUE, respectively.

» getNodeNamesVec(returnParams). Return a vector (>1) of names of parameters/random
effects nodes, according to returnParams = TRUE/FALSE. Use this if there is more than one
node.

* getNodeNameSingle(returnParams). Return the name of a single parameter/random effect
node, according to returnParams = TRUE/FALSE. Use this if there is only one node.

* checkInnerConvergence(message). Checks whether all internal optimizers converged. Re-
turns a zero if everything converged and one otherwise. If message = TRUE, it will print more
details about convergence for each conditionally independent set.

* gr_logLik(p, trans). Gradient of the (approximated) marginal log-likelihood at parameter
value p. Argument trans is similar to that in calcLaplace. If there are multiple parameters,
the vector p is given in the order of parameter names returned by getNodeNamesVec (returnParams=TRUE).
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e gr_Laplace(p, trans). This is the same as gr_loglLik.

* otherLoglLik(p). Calculate the calcNodesOther nodes, which returns the log-likelihood of
the parts of the model that are not included in the Laplace or AGHQ approximation.

* gr_otherLoglLik(p). Gradient (vector of derivatives with respect to each parameter) of
otherLoglLik(p). Results should match gr_otherLoglLik_internal(p) but may be more
efficient after the first call.

Internal or development methods

Some methods are included for calculating the (approximate) marginal log posterior density by in-
cluding the prior distribution of the parameters. This is useful for finding the maximum a posteriori
probability (MAP) estimate. Currently these are provided for point calculations without estimation
methods.

* calcPrior_p(p). Log density of prior distribution.

e calcPrior_pTransformed(pTransform). Log density of prior distribution on transformed
scale, includes the Jacobian.

* calcPostLogDens(p). Marginal log posterior density in terms of the parameter p.

* calcPostLogDens_pTransformed (pTransform). Marginal log posterior density in terms of
the transformed parameter, which includes the Jacobian transformation.

* gr_postLogDens_pTransformed(pTransform). Graident of marginal log posterior density
on the transformed scale. Other available options that are used in the derivative for more
flexible include logDetJacobian(pTransform) and gr_logDeJacobian(pTransform), as
well as gr_prior(p).

Finally, methods that are primarily for internal use by other methods include:

* gr_loglLik_pTransformed. Gradient of the Laplace approximation (calcLoglLik_pTransformed(pTransform))
at transformed (unconstrained) parameter value pTransform.

* pInverseTransform(pTransform). Back-transform the transformed parameter value pTransform
to original scale.

e derivs_pInverseTransform(pTransform, order). Derivatives of the back-transformation
(i.e. inverse of parameter transformation) with respect to transformed parameters at pTransform.
Derivative order is given by order (any of 0, 1, and/or 2).

e relnverseTransform(reTrans). Back-transform the transformed random effects value reTrans
to original scale.

e derivs_relnverseTransform(reTrans, order). Derivatives of the back-transformation
(i.e. inverse of random effects transformation) with respect to transformed random effects
at reTrans. Derivative order is given by order (any of 0, 1, and/or 2).

* optimRandomEffects(pTransform). Calculate the optimized random effects given trans-
formed parameter value pTransform. The optimized random effects are the mode of the
conditional distribution of random effects given data at parameters pTransform, i.e. the cal-
culation of calcNodes.

* inverse_negHess(p, reTransform). Calculate the inverse of the negative Hessian matrix of
the joint (parameters and random effects) log-likelihood with respect to transformed random
effects, evaluated at parameter value p and transformed random effects reTransform.
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hess_loglLik_wrt_p_wrt_re(p, reTransform). Calculate the Hessian matrix of the joint
log-likelihood with respect to parameters and transformed random effects, evaluated at pa-
rameter value p and transformed random effects reTransform.

one_time_fixes(). Users never need to run this. Is is called when necessary internally to fix
dimensionality issues if there is only one parameter in the model.

calcloglik_pTransformed(pTransform). Laplace approximation at transformed (uncon-
strained) parameter value pTransform. To make maximizing the Laplace likelihood uncon-
strained, an automated transformation via parameterTransform is performed on any param-
eters with constraints indicated by their priors (even though the prior probabilities are not
used).

gr_otherLogLik_internal(p). Gradient (vector of derivatives with respect to each param-
eter) of otherLogLik(p). This is obtained using automatic differentiation (AD) with single-
taping. First call will always be slower than later calls.

cache_outer_loglik(logLikVal). Save the marginal log likelihood value to the inner
Laplace mariginlization functions to track the outer maximum internally.

reset_outer_inner_loglLik(). Reset the internal saved maximum marginal log likelihood.

get_inner_cholesky(atOuterMode = integer (@, default = @)). Returns the cholesky of
the negative Hessian with respect to the random effects. If atOuterMode = 1 then returns the
value at the overall best marginal likelihood value, otherwise atOuterMode = @ returns the
last.

get_inner_mode(atOuterMode = integer (@, default = @)). Returns the mode of the ran-
dom effects for either the last call to the innner quadrature functions (atOuterMode =@ ), or
the last best value for the marginal log likelihood, atOuterMode = 1.

Author(s)

Wei Zhang, Perry de Valpine, Paul van Dam-Bates
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Examples

pumpCode <- nimbleCode ({
for (i in 1:N){

thetal[i] ~ dgamma(alpha, beta)
lambdal[i] <- thetal[i] * t[i]
x[i] ~ dpois(lambdal[il])
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}

alpha ~ dexp(1.0)

beta ~ dgamma(@.1, 1.9)
1)
pumpConsts <- list(N = 10, t = c(94.3, 15.7, 62.9, 126, 5.24, 31.4, 1.05, 1.05, 2.1, 10.5))
pumpData <- list(x = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22))
pumpInits <- list(alpha = 0.1, beta = 0.1, theta = rep(0.1, pumpConsts$N))
pump <- nimbleModel(code = pumpCode, name = "pump”, constants = pumpConsts,

data = pumpData, inits = pumpInits, buildDerivs = TRUE)

# Build Laplace approximation
pumpLaplace <- buildLaplace(pump)

## Not run:

# Compile the model

Cpump <- compileNimble(pump)

CpumpLaplace <- compileNimble(pumpLaplace, project = pump)

# Calculate MLEs of parameters

MLEres <- CpumpLaplace$findMLE()

# Calculate estimates and standard errors for parameters and random effects on original scale
allres <- CpumpLaplace$summary(MLEres, randomEffectsStdError = TRUE)

# Change the settings and also illustrate runLaplace
CpumpLaplace$updateSettings(innerOptimMethod = "nlminb”, outerOptimMethod = "nlminb")
newres <- runLaplace(CpumplLaplace)

# Illustrate use of the component log likelihood and gradient functions to
# run an optimizer manually from R.
# Use nlminb to find MLEs
MLEres.manual <- nlminb(c(0.1, 0.1),
function(x) -CpumplLaplace$calclLoglik(x),
function(x) -CpumpLaplace$gr_Laplace(x))

## End(Not run)

buildLiuWestFilter Placeholder for buildLiuWestFilter

Description

This function has been moved to the ‘nimbleSMC* package.

Usage
buildLiuWestFilter(...)

Arguments

arguments
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buildMCEM Builds an MCEM algorithm for a given NIMBLE model

Description

Takes a NIMBLE model (with some missing data, aka random effects or latent state nodes) and
builds a Monte Carlo Expectation Maximization (MCEM) algorithm for maximum likelihood esti-
mation. The user can specify which latent nodes are to be integrated out in the E-Step, or default
choices will be made based on model structure. All other stochastic non-data nodes will be maxi-
mized over. The E-step is done with a sample from a nimble MCMC algorithm. The M-step is done
by a call to optim.

Usage

buildMCEM(
model,
paramNodes,
latentNodes,
calcNodes,
calcNodesOther,
control = list(),

Arguments

model a NIMBLE model object, either compiled or uncompiled.

paramNodes a character vector of names of parameter nodes in the model; defaults are pro-
vided by setupMargNodes. Alternatively, paramNodes can be a list in the for-
mat returned by setupMargNodes, in which case latentNodes, calcNodes, and
calcNodesOther are not needed (and will be ignored).

latentNodes a character vector of names of unobserved (latent) nodes to marginalize (sum or
integrate) over; defaults are provided by setupMargNodes (as the randomEffectsNodes
in its return list).

calcNodes a character vector of names of nodes for calculating components of the full-data

likelihood that involve latentNodes; defaults are provided by setupMargNodes.
There may be deterministic nodes between paramNodes and calcNodes. These
will be included in calculations automatically and thus do not need to be in-
cluded in calcNodes (but there is no problem if they are).

calcNodesOther a character vector of names of nodes for calculating terms in the log-likelihood
that do not depend on any latentNodes, and thus are not part of the marginal-
ization, but should be included for purposes of finding the MLE. This defaults to
stochastic nodes that depend on paramNodes but are not part of and do not de-
pend on latentNodes. There may be deterministic nodes between paramNodes
and calcNodesOther. These will be included in calculations automatically and
thus do not need to be included in calcNodesOther (but there is no problem if
they are).
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control a named list for providing additional settings used in MCEM. See control sec-
tion below.

provided only as a means of checking if a user is using the deprecated interface
to ‘buildMCEM' in nimble versions < 1.2.0.

Details

buildMCEM is a nimbleFunction that creates an MCEM algorithm for a model and choices (perhaps
default) of nodes in different roles in the model. The MCEM can then be compiled for fast execution
with a compiled model.

Note that buildMCEM was re-written for nimble version 1.2.0 and is not backward-compatible with
previous versions. The new version is considered to be in beta testing.

Denote data by Y, latent states (or missing data) by X, and parameters by T. MCEM works by the
following steps, starting from some T:

1. Draw a sample of size M from P(X | Y, T) using MCMC.

2. Update T to be the maximizer of E[log P(X, Y | T)] where the expectation is approximated as
a Monte Carlo average over the sample from step(1)

3. Repeat until converged.

The default version of MCEM is the ascent-based MCEM of Caffo et al. (2015). This attempts to
update M when necessary to ensure that step 2 really moves uphill given that it is maximizing a
Monte Carlo approximation and could accidently move downhill on the real surface of interest due
to Monte Carlo error. The main tuning parameters include alpha, beta, gamma, Mfactor, C, and
tol (tolerance).

If the model supports derivatives via nimble’s automatic differentiation (AD) (and buildDerivs=TRUE
in nimbleModel), the maximization step can use gradients from AD. You must manually set useDerivs=FALSE
in the control list if derivatives aren’t supported or if you don’t want to use them.

In the ascent-based method, after maximization in step 2, the Monte Carlo standard error of the
uphill movement is estimated. If the standardized uphill step is bigger than 0 with Type I error rate
alpha, the iteration is accepted and the algorithm continues. Otherwise, it is not certain that step
2 really moved uphill due to Monte Carlo error, so the MCMC sample size M is incremented by a
fixed factor (e.g. 0.33 or 0.5, called Mfactor in the control list), the additional samples are added by
continuing step 1, and step 2 is tried again. If the Monte Carlo noise still overwhelms the magnitude
of uphill movement, the sample size is increased again, and so on. alpha should be between 0 and
0.5. A larger value than usually used for inference is recommended so that there is an easy threshold
to determine uphill movement, which avoids increasing M prematurely. M will never be increased
above maxM.

Convergence is determined in a similar way. After a definite move uphill, we determine if the uphill
increment is less than tol, with Type I error rate gamma. (But if M hits a maximum value, the
convergence criterion changes. See below.)

beta is used to help set M to a minimal level based on previous iterations. This is a desired Type
IT error rate, assuming an uphill move and standard error based on the previous iteration. Set
adjustM=FALSE in the control list if you don’t want this behavior.

There are some additional controls on convergence for practical purposes. Set C in the control list
to be the number of times the convergence criterion mut be satisfied in order to actually stop. E.g
setting C=2 means there will always be a restart after the first convergence.
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One problem that can occur with ascent-based MCEM is that the final iteration can be very slow if
M must become very large to satisfy the convergence criterion. Indeed, if the algorithm starts near
the MLE, this can occur. Set maxM in the control list to set the MCMC sample size that should never
be exceeded.

If M==maxM, a softer convergence criterion is used. This second convergence criterion is to stop if
we can’t be sure we moved uphill using Type I error rate delta. This is a soft criterion because for
small delta, Type II errors will be common (e.g. if we really did move uphill but can’t be sure from
the Monte Carlo sample), allowing the algorithm to terminate. One can continue the algorithm from
where it stopped, so it is helpful to not have it get stuck when having a very hard time with the first
(stricter) convergence criterion.

All of alpha, beta, delta, and gamma are utilized based on asymptotic arguments but in practice
must be chosen heuristically. In other words, their theoretical basis does not exactly yield practical
advice on good choices for efficiency and accuracy, so some trial and error will be needed.

It can also be helpful to set a minimum and maximum of allowed iterations (of steps 1 and 2
above). Setting minIter>1 in the control list can sometimes help avoid a false convergence on the
first iteration by forcing at least one more iteration. Setting maxIter provides a failsafe on a stuck
run.

If you don’t want the ascent-based method at all and simply want to run a set of iterations, set
ascent=FALSE in the control list. This will use the second (softer) convergence criterion.

Parameters to be maximized will by default be handled in an unconstrained parameter space, trans-
formed if necessary by a parameterTransform object. In that case, the default optim method will

be "BFGS" and can can be changed by setting optimMehod in the control list. Set useTransform=FALSE

in the control list if you don’t want the parameters transformed. In that case the default optimMethod
will be "L-BFGS-B" if there are any actual constraints, and you can provide a list of boxConstraints
in the control list. (Constraints may be determined by priors written in the model for parameters,
even though their priors play no other role in MLE. E.g. sigma ~ halfflat() indicates sigma > 0).

Most of the control list elements can be overridden when calling the findMLE method. The findMLE
argument continue=TRUE results in attempting to continue the algorithm where the previous call
finished, including whatever settings were in use.

See setupMargNodes (which is called with the given arguments for paramNodes, calcNodes, and
calcNodesOther; and with allowDiscreteLatent=TRUE, randomEffectsNodes=1latentNodes,
and check=check) for more about how the different groups of nodes are determined. In gen-
eral, you can provide none, one, or more of the different kinds of nodes and setupMargNodes
will try to determine the others in a sensible way. However, note that this cannot work for all
ways of writing a model. One key example is that if random (latent) nodes are written as top-
level nodes (e.g. following N(@, 1)), they appear structurally to be parameters and you must tell
buildMCEM that they are latentNodes. The various "Nodes" arguments will all be passed through
model$expandNodeNames, allowing for example simply "x" to be provided when there are many
nodes within "x".

Estimating the Monte Carlo standard error of the uphill step is not trivial because the sample was
obtained by MCMC and so likely is autocorrelated. This is done by calling whatever function in R’s
global environment is called "MCEM_mcse", which is required to take two arguments: samples
(which will be a vector of the differences in log(P(Y, X | T)) between the new and old values of T,
across the sample of X) and m, the sample size. It must return an estimate of the standard error of the
mean of the sample. NIMBLE provides a default version (exported from the package namespace),
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which calls mecmcse: :mcse with method "obm". Simply provide a different function with this name
in your R session to override NIMBLE'’s default.

Control list details

The control list accepts the following named elements:

initM initial MCMC sample size, M. Default=1000.

Mfactor Factor by which to increase MCMC sample size when step 2 results in noise over-
whelming the uphill movement. The new M will be 1+Mfactor)*M (rounded up). Mfactor is
1/k of Caffo et al. (2015). Default=1/3.

maxM Maximum allowed value of M (see above). Default=initM%20.

burnin Number of burn-in iterations for the MCMC in step 1. Note that the initial states of
one MCMC will be the last states from the previous MCMC, so they will often be good initial
values after multiple iterations. Default=500.

thin Thinning interval for the MCMC in step 1. Default=1.

alpha Type I error rate for determining when step 2 has moved uphill. See above. De-
fault=0.25.

beta Used for determining a minimal value of $M$ based on previous iteration, if adjustM is
TRUE. beta is a desired Type II error rate for determining uphill moves. Default=0.25.

delta Type I error rate for the soft convergence approach (second approach above). De-
fault=0.25.

gamma Type I error rate for determining when step 2 has moved less than tol uphill, in which
case ascent-based convergence is achieved (first approach above). Default=0.05.

buffer A small amount added to lower box constraints and substracted from upper box con-
straints for all parameters, relevant only if useTransform=FALSE and some parameters do
have boxConstraints set or have bounds that can be determined from the model. Default=1e-
6.

tol Ascent-based convergence tolerance. Default=0.001.

ascent Logical to determine whether to use the ascent-based method of Caffo et al. De-
fault=TRUE.

C Number of convergences required to actually stop the algorithm. Default = 1.
maxIter Maximum number of MCEM iterations to run.
minIter Minimum number of MCEM iterations to run.

adjustM Logical indicating whether to see if M needs to be increased based on statistical
power argument in each iteration (using beta). Default=TRUE.

verbose Logical indicating whether verbose output is desired. Default=TRUE.

MCMCprogressBar Logical indicating whether MCMC progress bars should be shown for ev-
ery iteration of step 1. This argument is passed to configureMCMC, or to config if provided.
Default=TRUE.

derivsDelta If AD derivatives are not used, then the method vcov must use finite difference
derivatives to implement the method of Louis (1982). The finite differences will be delta or
delta/2 for various steps. This is the same for all dimensions. Default=0.0001.
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* mcmcControl This is passed to configureMCMC, or config if provided, as the control argu-
ment. i.e. control=mcmcControl.

* boxContrainst List of box constraints for the nodes that will be maximized over, only rel-
evant if useTransform=FALSE and forceNoConstraints=FALSE (and ignored otherwise).
Each constraint is a list in which the first element is a character vector of node names to
which the constraint applies and the second element is a vector giving the lower and upper
limits. Limits of -Inf or Inf are allowed. Any nodes that are not given constrains will have
their constraints automatically determined by NIMBLE. See above. Default=list().

» forceNoConstraints Logical indicating whether to force ignoring constraints even if they
might be necessary. Default=FALSE.

* useTransform Logical indicating whether to use a parameter transformation (see parameterTransform)
to create an unbounded parameter space for the paramNodes. This allows unconstrained max-
imization algorithms to be used. Default=TRUE.

* check Logical passed as the check argument to setupMargNodes. Default=TRUE.

* useDerivs Logical indicating whether to use AD. If TRUE, the model must have been build
with ‘buildDerivs=TRUE®. It is not automatically determined from the model whether deriva-
tives are supported. Default=TRUE.

* config Function to create the MCMC configuration used for step 1. The MCMC configuration
is created by calling

config(model, nodes = latentNodes, monitors = latentNodes,
thin = thinDefault, control = mcmcControl, print = FALSE)

The default for config (if it is missing) is configureMCMC, which is nimble’s general default
MCMC configuration function.

Methods in the returned algorithm

The object returned by buildMCEM is a nimbleFunction object with the following methods

e findMLE is the main method of interest, launching the MCEM algorithm. It takes the following
arguments:

— pStart. Vector of initial parameter values. If omitted, the values currently in the model
object are used.

— returnTrans. Logical indicating whether to return parameters in the transformed space,
if a parameter transformation is in use. Default=FALSE.

— continue. Logical indicating whether to continue the MCEM from where the last call
stopped. In addition, if TRUE, any other control setting provided in the last call will
be used again. If FALSE, all control settings are reset to the values provided when
buildMCEM was called. Any control settings provided in the same call as continue=TRUE
will over-ride these behaviors and be used in the continued run.

— All run-time control settings available in the control list for buildMCEM (except for
buffer, boxConstraints, forceNoConstraints, useTransform, and useDerivs) are
accepted as individual arguments to over-ride the values provided in the control list.

findMLE returns on object of class optimResultNimblelList with the results of the final op-
timization of step 2. The par element of this list is the vector of maximum likelihood (MLE)
parameters.
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* vcov computes the approximate variance-covariance matrix of the MLE using the method of
Louis (1982). It takes the following arguments:

— params. Vector of parameters at which to compute the Hessian matrix used to obtain the
veov result. Typically this will be MLE$par, if MLE is the output of findMLE.

— trans. Logical indicating whether params is on the transformed prameter scale, if a
parameter transformation is in use. Typically this should be the same as the returnTrans
argument to findMLE. Default=FALSE.

— returnTrans. Logical indicting whether the vcov result should be for the transformed
parameter space. Default matches trans.

— M. Number of MCMC samples to obtain if resetSamples=TRUE. Default is the final value
of M from the last call to findMLE. It can be helpful to increase M to obtain a more accurate
vcov result (i.e. with less Monte Carlo noise).

— resetSamples. Logical indicating whether to generate a new MCMC sample from P(X
'Y, T), where T is params. If FALSE, the last sample from findMLE will be used. If
MLE convergence was reasonable, this sample can be used. However, if the last MCEM
step made a big move in parameter space (e.g. if convergence was not achieved), the last
MCMC sample may not be accurate for obtaining vcov. Default=FALSE.

— atMLE. Logical indicating whether you believe the params represents the MLE. If TRUE,
one part of the computation will be skipped because it is expected to be 0 at the MLE. If
there are parts of the model that are not connected to the latent nodes, i.e. of calcNodesOther
is not empty, then atMLE will be ignored and set to FALSE. Default=FALSE. It is not re-
ally worth using TRUE unless you are confident and the time saving is meaningful, which
is not very likely. In other words, this argument is provided for technical completeness.

vcov returns a matrix that is the inverse of the negative Hessian of the log likelihood surface,
i.e. the usual asymptotic approximation of the parameter variance-covariance matrix.

e doMCMC. This method runs the MCMC to sample from P(X | Y, T). One does not need to
call this, as it is called via the MCEM algorithm in findMLE. This method is provided for
users who want to use the MCMC for latent states directly. Samples should be retrieved by
as.matrix (MCEM$mvSamples), where MCEM is the (compiled or uncompiled) MCEM algo-
rithm object. This method takes the following arguments:

— M. MCMC sample size.

— thin. MCMC thinning interval.

— reset. Logical indicating whether to reset the MCMC (passed to the MCMC run method
as reset).

* transformand inverseTransform. Convert a parameter vector to an unconstrained parame-
ter space and vice-versa, if useTransform=TRUE in the call to buildDerivs.

* resetControls. Reset all control arguments to the values provided in the call to buildMCEM.
The user does not normally need to call this.

Author(s)
Perry de Valpine, Clifford Anderson-Bergman and Nicholas Michaud

References

Caffo, Brian S., Wolfgang Jank, and Galin L. Jones (2005). Ascent-based Monte Carlo expectation-
maximization. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2),
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235-251.

Louis, Thomas A (1982). Finding the Observed Information Matrix When Using the EM Algo-
rithm. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 44(2), 226-233.

Examples

## Not run:
pumpCode <- nimbleCode({
for (i in 1:N){
theta[i] ~ dgamma(alpha,beta);
lambdal[i] <- thetal[iJxt[i];
x[i] ~ dpois(lambdalil)
}
alpha ~ dexp(1.0);
beta ~ dgamma(0.1,1.0);
»

pumpConsts <- list(N = 10,
t = c(94.3, 15.7, 62.9, 126, 5.24,
31.4, 1.05, 1.05, 2.1, 10.5))
pumpData <- list(x = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22))
pumpInits <- list(alpha = 1, beta =1,
theta = rep(0.1, pumpConsts$N))
pumpModel <- nimbleModel(code = pumpCode, name = 'pump', constants = pumpConsts,
data = pumpData, inits = pumplnits,
buildDerivs=TRUE)
pumpMCEM <- buildMCEM(model = pumpModel)
CpumpModel <- compileNimble(pumpModel)
CpumpMCEM <- compileNimble (pumpMCEM, project=pumpModel)
MLE <- CpumpMCEM$findMLE ()
vcov <- CpumpMCEM$vcov(MLE$par)

## End(Not run)

buildMCMC Create an MCMC object from a NIMBLE model, or an MCMC config-
uration object

Description

First required argument, which may be of class MCMCconf (an MCMC configuration object), or
inherit from class modelBaseClass (a NIMBLE model object). Returns an uncompiled executable
MCMC object. See details.
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Usage
buildMCMC(conf, print, ...)

Arguments

conf Either an MCMC configuration object of class MCMCconf or a NIMBLE model
object. An MCMC configuration object would be returned from configureMCMC
and contains information on the model, samplers, monitors, and thinning inter-
vals to be used. Alternatively, conf may a NIMBLE model object, in which case
default configuration from calling configureMCMC(model, ...1) will be used.

print A logical argument, specifying whether to print details of the MCMC samplers
and monitors.

Additional arguments to be passed to configureMCMC if conf is a NIMBLE
model object (see help(configureMCMC)).

Details

Calling buildMCMC(conf) will produce an uncompiled MCMC object. The object contains several
methods, including the main run function for running the MCMC, a getTimes function for deter-
mining the computation time spent in each sampler (see ’getTimes’ section below), and functions
related to WAIC (getWAIC, getWAICdetails, calculateWAIC (see help(waic)).

The uncompiled run function will have arguments:
niter: The number of iterations to run the MCMC.
nburnin: Number of initial, pre-thinning, MCMC iterations to discard (default = 0).

thin: The thinning interval for the monitors that were specified in the MCMC configuration. If
this argument is provided at MCMC runtime, it will take precedence over the thin interval that was
specified in the MCMC configuration. If omitted, the thin interval from the MCMC configuration
will be used.

thin2: The thinning interval for the second set of monitors (monitors?2) that were specified in the
MCMC configuration. If this argument is provided at MCMC runtime, it will take precedence over
the thin2 interval that was specified in the MCMC configuration. If omitted, the thin2 interval
from the MCMC configuration will be used.

reset: Boolean specifying whether to reset the internal MCMC sampling algorithms to their initial
state (in terms of self-adapting tuning parameters), and begin recording posterior sample chains
anew. Specifying reset = FALSE allows the MCMC algorithm to continue running from where it
left off, appending additional posterior samples to the already existing sample chains. Generally,
reset = FALSE should only be used when the MCMC has already been run (default = TRUE).

resetMV: Boolean specifying whether to begin recording posterior sample chains anew. This argu-
ment is only considered when using reset = FALSE. Specifying reset = FALSE, resetMV = TRUE
allows the MCMC algorithm to continue running from where it left off, but without appending the
new posterior samples to the already existing samples, i.e. all previously obtained samples will be
erased. This option can help reduce memory usage during burn-in (default = FALSE).

resetWAIC: Boolean specifying whether to reset the WAIC summary statistics to their initial states
and thereby begin the WAIC calculation anew (default = TRUE). Specifying resetWAIC = FALSE
allows the WAIC calculation to continue running from where it left off.
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initializeModel: Boolean specifying whether to run the initializeModel routine on the underlying
model object, prior to beginning MCMC sampling (default = TRUE).

chain: Integer specifying the MCMC chain number. The chain number is passed to each MCMC
sampler’s before_chain and after_chain methods. The value for this argument is specified automat-
ically from invocation via runMCMC, and genernally need not be supplied when calling mecmcS$run
(default = 1). time: Boolean specifying whether to record runtimes of the individual internal
MCMC samplers. When time = TRUE, a vector of runtimes (measured in seconds) can be extracted
from the MCMC using the method mcmc$getTimes () (default = FALSE).

progressBar: Boolean specifying whether to display a progress bar during MCMC execution
(default = TRUE). The progress bar can be permanently disabled by setting the system option
nimbleOptions(MCMCprogressBar = FALSE).

Samples corresponding to the monitors and monitors2 from the MCMCconf are stored into the
interval variables mvSamples and mvSamples2, respectively. These may be accessed and con-
verted into R matrix or list objects via: as.matrix(memc$mvSamples) as.list(mcmc$mvSamples)
as.matrix(mcmc$mvSamples2) as.list(mcmc$mvSamples?2)

The uncompiled MCMC function may be compiled to a compiled MCMC object, taking care
to compile in the same project as the R model object, using: Cmcmc <- compileNimble (Rmcmc,
project = Rmodel)

The compiled object will function identically to the uncompiled object except acting on the com-
piled model object.

Timing the MCMC samplers

If you want to obtain the computation time spent in each sampler, you can set time=TRUE as a
run-time argument to run() and then use the method getTimes() to obtain the times.

Calculating WAIC

Please see help(waic) for more information.

Author(s)

Daniel Turek

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. Journal of Machine Learning Research 11: 3571-
3594.

Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24(6): 997-1016.

Ariyo, O., Quintero, A., Munoz, J., Verbeke, G. and Lesaffre, E. (2019). Bayesian model selection
in linear mixed models for longitudinal data. Journal of Applied Statistics 47: 890-913.

See Also

configureMCMC runMCMC nimbleMCMC
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Examples

## Not run:
code <- nimbleCode({
mu ~ dnorm(@, 1)
x ~ dnorm(mu, 1)
y ~ dnorm(x, 1)
»
Rmodel <- nimbleModel(code, data = list(y = 0))
conf <- configureMCMC(Rmodel, monitors = c('mu', 'x'), enableWAIC = TRUE)
Rmemc <- buildMCMC(conf)
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project=Rmodel)

## Running the MCMC with “run”
Cmcmc$run(10000)

samples <- as.matrix(Cmcmc$mvSamples)
samplesAsList <- as.list(Cmcmc$mvSamples)
head(samples)

## Getting WAIC

waicInfo <- Cmcmc$getWAIC()
waicInfo$WAIC
waicInfo$pWAIC

## Timing the samplers (must set “time = TRUE® when running the MCMC)
Cmcmc$run(10000, time = TRUE)
Cmcmc$getTimes ()

## End(Not run)

calculateWAIC Calculating WAIC using an offline algorithm

Description

In addition to the core online algorithm, NIMBLE implements an offline WAIC algorithm that can
be computed on the results of an MCMC. In contrast to NIMBLE’s built-in online WAIC, offline
WAIC can compute only conditional WAIC and does not allow for grouping data nodes.

Usage

calculateWAIC(mcmc, model, nburnin = @, thin = 1)

Arguments

mcme An MCMC object (compiled or uncompiled) or matrix or dataframe of MCMC
samples as the first argument of calculateWAIC.
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model A model (compiled or uncompiled) as the second argument of calculateWAIC.
Only required if mcmc is a matrix/dataframe of samples.
nburnin The number of pre-thinning MCMC samples to remove from the beginning of
the posterior samples for offline WAIC calculation via calculateWAIC (default
= (0). These samples are discarded in addition to any burn-in specified when
running the MCMC.
thin Thinning factor interval to apply to the samples for offline WAIC calculation
using calculateWAIC (default = 1, corresponding to no thinning).
Details

The ability to calculate WAIC post hoc after all MCMC sampling has been done has certain ad-
vantages (e.g., allowing a user to calculate WAIC from MCMC chains run separately) in addition
to providing compatibility with versions of NIMBLE before 0.12.0. This functionality includes the
ability to call the calculateWAIC function on an MCMC object or matrix of samples after running
an MCMC and without setting up the MCMC initially to use WAIC.

Important: The necessary variables to compute WAIC (all stochastic parent nodes of the data nodes)
must have been monitored when setting up the MCMC.

Also note that while the model argument can be either a compiled or uncompiled model, the model
must have been compiled prior to calling calculateWAIC.

See help(waic) for details on using NIMBLE’s recommended online algorithm for WAIC.

Offline WAIC (WAIC computed after MCMC sampling)

As an alternative to online WAIC, NIMBLE also provides a function, calculateWAIC, that can be
called on an MCMC object or a matrix of samples, after running an MCMC. This function does
not require that one set enableWAIC = TRUE nor WAIC = TRUE when calling runMCMC. The function
checks that the necessary variables were monitored in the MCMC and returns an error if they were
not. This function behaves identically to the calculateWAIC method of an MCMC object. Note
that to use this function when using nimb1eMCMC one would need to build the model outside of
nimbleMCMC.

The calculateWAIC function requires either an MCMC object or a matrix (or dataframe) of poste-
rior samples plus a model object. In addition, one can provide optional burnin and thin arguments.

In addition, for compatibility with older versions of NIMBLE (prior to v0.12.0), one can also use
the calculateWAIC method of the MCMC object to calculate WAIC after all sampling has been
completed.

The calculateWAIC() method accepts a single argument, nburnin, equivalent to the nburnin
argument of the calculateWAIC function described above.

The calculateWAIC method can only be used if the enableWAIC argument to configureMCMC or to
buildMCMC is set to TRUE, or if the NIMBLE option enableWAIC is set to TRUE. If a user attempts to
call calculateWAIC without having set enableWAIC = TRUE (either in the call to configureMCMC,
or buildMCMC, or as a NIMBLE option), an error will occur.

The calculateWAIC function and method calculate the WAIC based on Equations 5, 12, and 13 in
Gelman et al. (2014) (i.e., using pWAIC2).

Note that there is not a unique value of WAIC for a model. The calculateWAIC function and
method only provide the conditional WAIC, namely the version of WAIC where all parameters
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directly involved in the likelihood are treated as theta for the purposes of Equation 5 from Gelman
et al. (2014). As a result, the user must set the MCMC monitors (via the monitors argument) to
include all stochastic nodes that are parents of any data nodes; by default the MCMC monitors are
only the top-level nodes of the model. For more detail on the use of different predictive distributions,
see Section 2.5 from Gelman et al. (2014) or Ariyo et al. (2019). Also note that WAIC relies on
a partition of the observations, i.e., ’pointwise’ prediction. In calculateWAIC the sum over log
pointwise predictive density values treats each data node as contributing a single value to the sum.
When a data node is multivariate, that data node contributes a single value to the sum based on
the joint density of the elements in the node. Note that if one wants the WAIC calculation via
calculateWAIC to be based on the joint predictive density for each group of observations (e.g.,
grouping the observations from each person or unit in a longitudinal data context), one would need
to use a multivariate distribution for the observations in each group (potentially by writing a user-
defined distribution).

For more control over and flexibility in how WAIC is calculated, see help(waic).

Author(s)

Joshua Hug and Christopher Paciorek

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. Journal of Machine Learning Research 11: 3571-
3594.

Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24(6): 997-1016.

Ariyo, O., Quintero, A., Munoz, J., Verbeke, G. and Lesaffre, E. (2019). Bayesian model selection
in linear mixed models for longitudinal data. Journal of Applied Statistics 47: 890-913.

Vehtari, A., Gelman, A. and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing 27: 1413-1432.

Hug, J.E. and Paciorek, C.J. (2021). A numerically stable online implementation and exploration of
WAIC through variations of the predictive density, using NIMBLE. arXiv e-print <arXiv:2106.13359>.

See Also

waic configureMCMC buildMCMC runMCMC nimbleMCMC

Examples

code <- nimbleCode({
for(j in 1:7) {
for(i in 1:n)
y[j, i1 ~ dnorm(mu[j], sd = sigma)
mu[j] ~ dnorm(mu@, sd = tau)
}
tau ~ dunif(e@, 10)
sigma ~ dunif (@, 10)
»
J <=5
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n<-10

y <= matrix(rnorm(J*n), J, n)

Rmodel <- nimbleModel(code, constants = list(J = J, n = n), data = list(y = vy),
inits = list(tau = 1, sigma = 1))

## Make sure the needed variables are monitored.

## Only conditional WAIC without data grouping is available via this approach.

conf <- configureMCMC(Rmodel, monitors = c('mu', 'sigma'))

## Not run:

Cmodel <- compileNimble(Rmodel)

Rmemc <- buildMCMC(conf)

Cmemc <- compileNimble(Rmcmc, project = Rmodel)

output <- runMCMC(Cmcmc, niter = 1000)

calculateWAIC(Cmcmc) # Can run on the MCMC object

calculateWAIC(output, Rmodel) # Can run on the samples directly

## Apply additional burnin (additional to any burnin already done in the MCMC.
calculateWAIC(Cmcmc, burnin = 500)

## End(Not run)

CAR-Normal The CAR-Normal Distribution

Description

Density function and random generation for the improper (intrinsic) Gaussian conditional autore-
gressive (CAR) distribution.

Usage

dcar_normal(
X,
adj,
weights = adj/adj,
num,
tau,
¢ = CAR_calcNumIslands(adj, num),
zero_mean = 0,
log = FALSE

rcar_normal(
n=1,
adj,
weights = adj/adj,
num,
tau,
¢ = CAR_calcNumIslands(adj, num),
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Zero_mean

)

Arguments

X

adj

weights

num

tau

zero_mean

log

Details
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vector of values.

vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.

vector of symmetric unnormalized weights associated with each pair of adjacent
locations, of the same length as adj. If omitted, all weights are taken to be one.

vector giving the number of neighboring locations of each spatial location, with
length equal to the total number of locations.

scalar precision of the Gaussian CAR prior.

integer number of constraints to impose on the improper density function. If
omitted, c is calculated as the number of disjoint groups of spatial locations in
the adjacency structure, which implicitly assumes a first-order CAR process for
each group. Note that ¢ should be equal to the number of eigenvalues of the
precision matrix that are zero. For example, if the neighborhood structure is
based on a second-order Markov random field in one dimension then the matrix
has two zero eigenvalues and in two dimensions it has three zero eigenvalues.
See Rue and Held (2005) and the NIMBLE User Manual for more information.

integer specifying whether to set the mean of all locations to zero during MCMC
sampling of a node specified with this distribution in BUGS code (default 0).
This argument is used only in BUGS model code when specifying models in
NIMBLE. If 0, the overall process mean is included implicitly in the value of
each location in a BUGS model; if 1, then during MCMC sampling, the mean of
all locations is set to zero at each MCMC iteration, and a separate intercept term
should be included in the BUGS model. Note that centering during MCMC as
implemented in NIMBLE follows the ad hoc approach of WinBUGS and does
not sample under the constraint that the mean is zero as discussed on p. 36 of
Rue and Held (2005). See ‘Details’.

logical; if TRUE, probability density is returned on the log scale.

number of observations.

When specifying a CAR distribution in BUGS model code, the zero_mean parameter should be
specified as either @ or 1 (rather than TRUE or FALSE).

Note that because the distribution is improper, rcar_normal does not generate a sample from the
distribution. However, as discussed in Rue and Held (2005), it is possible to generate a sample from
the distribution under constraints imposed based on the eigenvalues of the precision matrix that are

Z€10.

Value

dcar_normal gives the density, while rcar_normal returns the current process values, since this
distribution is improper.


https://r-nimble.org/html_manual/cha-welcome-nimble.html

40 CAR-Proper

Author(s)
Daniel Turek

References

Banerjee, S., Carlin, B.P,, and Gelfand, A.E. (2015). Hierarchical Modeling and Analysis for Spa-
tial Data, 2nd ed. Chapman and Hall/CRC.

Rue, H. and L. Held (2005). Gaussian Markov Random Fields, Chapman and Hall/CRC.

See Also

CAR-Proper, Distributions for other standard distributions

Examples

x <- c(1, 3, 3, 4)

num <- c(1, 2, 2, 1)

adj <- c(2, 1,3, 2,4, 3)

weights <- c(1, 1, 1, 1, 1, 1)

lp <- dcar_normal(x, adj, weights, num, tau = 1)

CAR-Proper The CAR-Proper Distribution

Description

Density function and random generation for the proper Gaussian conditional autoregressive (CAR)

distribution.
Usage

dcar_proper(
X )
mu,
C = CAR_calcC(adj, num),
adj,
num,
M = CAR_calcM(num),
tau,
gamma,
evs = CAR_calcEVs3(C, adj, num),
log = FALSE

)

rcar_proper (
n=1,
mu,
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C = CAR_calcC(adj, num),

adj,
num,
M = CAR_calcM(num),
tau,
gamma,
evs = CAR_calcEVs3(C, adj, num)
)
Arguments
X vector of values.
mu vector of the same length as x, specifying the mean for each spatial location.
C vector of the same length as adj, giving the weights associated with each pair
of neighboring locations. See ‘Details’.
adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.
num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.
M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations. See ‘Details’.
tau scalar precision of the Gaussian CAR prior.
gamma scalar representing the overall degree of spatial dependence. See ‘Details’.
evs vector of eigenvalues of the adjacency matrix implied by C, adj, and num. This
parameter should not be provided; it will always be calculated using the adja-
cency information.
log logical; if TRUE, probability density is returned on the log scale.
n number of observations.
Details

If both C and M are omitted, then all weights are taken as one, and corresponding values of C and M
are generated.

The C and M parameters must jointly satisfy a symmetry constraint: that M* (-1) %*% C is symmetric,
where M is a diagonal matrix and C is the full weight matrix that is sparsely represented by the
parameter vector C.

For a proper CAR model, the value of gamma must lie within the inverse minimum and maximum
eigenvalues of M*(-0.5) %*% C %*% M*(@.5), where M is a diagonal matrix and C is the full weight
matrix. These bounds can be calculated using the deterministic functions carMinBound(C, adj,
num, M) and carMaxBound(C, adj, num, M), or simultaneously using carBounds(C, adj, num,
M). In the case where C and M are omitted (all weights equal to one), the bounds on gamma are
necessarily (-1, 1).

Value

dcar_proper gives the density, and rcar_proper generates random deviates.
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Author(s)
Daniel Turek

References

Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2015). Hierarchical Modeling and Analysis for Spa-
tial Data, 2nd ed. Chapman and Hall/CRC.

See Also

CAR-Normal, Distributions for other standard distributions

Examples

x <- c(1, 3, 3, 4)

mu <- rep(3, 4)

adj <- c(2, 1,3, 2,4, 3)
num <- c(1, 2, 2, 1)

## omitting C and M uses all weights = 1
dcar_proper(x, mu, adj = adj, num = num, tau = 1, gamma = 0.95)

## equivalent to above: specifying all weights = 1,

## then using as.carCM to generate C and M arguments
weights <- rep(1, 6)

CM <- as.carCM(adj, weights, num)

C <- CM$C

M <- CM$M

dcar_proper(x, mu, C, adj, num, M, tau = 1, gamma = 0.95)

## now using non-unit weights

weights <- c(2, 2, 3, 3, 4, 4)

CM2 <- as.carCM(adj, weights, num)

C2 <- CM2%C

M2 <- CM2$M

dcar_proper(x, mu, C2, adj, num, M2, tau = 1, gamma = 0.95)

carBounds Calculate bounds for the autocorrelation parameter of the
dcar_proper distribution

Description

Calculate the lower and upper bounds for the gamma parameter of the dcar_proper distribution

Usage

carBounds(C, adj, num, M)
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Arguments
C vector of the same length as adj, giving the normalized weights associated with
each pair of neighboring locations.
adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.
num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.
M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations.
Details

Bounds for gamma are the inverse of the minimum and maximum eigenvalues of: M (—0.5)CM(0.5).
The lower and upper bounds are returned in a numeric vector.

Value
A numeric vector containing the bounds (minimum and maximum allowable values) for the gamma

parameter of the dcar_proper distribution.

Author(s)

Daniel Turek

See Also

CAR-Proper, carMinBound, carMaxBound

carMaxBound Calculate the upper bound for the autocorrelation parameter of the
dcar_proper distribution

Description

Calculate the upper bound for the gamma parameter of the dcar_proper distribution

Usage

carMaxBound(C, adj, num, M)
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Arguments
C vector of the same length as adj, giving the normalized weights associated with
each pair of neighboring locations.
adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.
num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.
M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations.
Details

Bounds for gamma are the inverse of the minimum and maximum eigenvalues of M(—0.5)C'M(0.5).

Value

The upper bound (maximum allowable value) for the gamma parameter of the dcar_proper distri-
bution.

Author(s)
Daniel Turek

See Also

CAR-Proper, carMinBound, carBounds

carMinBound Calculate the lower bound for the autocorrelation parameter of the
dcar_proper distribution

Description

Calculate the lower bound for the gamma parameter of the dcar_proper distribution

Usage

carMinBound(C, adj, num, M)

Arguments
C vector of the same length as adj, giving the normalized weights associated with
each pair of neighboring locations.
adj vector of indices of the adjacent locations (neighbors) of each spatial location.

This is a sparse representation of the full adjacency matrix.
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num vector giving the number of neighboring locations of each spatial location, with
length equal to the number of locations.

M vector giving the diagonal elements of the conditional variance matrix, with
length equal to the number of locations.

Details

Bounds for gamma are the inverse of the minimum and maximum eigenvalues of: M (—0.5)CM(0.5).

Value

The lower bound (minimum allowable value) for the gamma parameter of the dcar_proper distri-
bution.

Author(s)
Daniel Turek

See Also

CAR-Proper, carMaxBound, carBounds

CAR_calcNumIslands Calculate number of islands based on a CAR adjacency matrix.

Description

Calculate number of islands (distinct connected groups) based on a CAR adjacency matrix.

Usage
CAR_calcNumIslands(adj, num)

Arguments
adj vector of indices of the adjacent locations (neighbors) of each spatial location.
This is a sparse representation of the full adjacency matrix.
num vector giving the number of neighbors of each spatial location, with length equal
to the total number of locations.
Author(s)
Daniel Turek
See Also

CAR-Normal
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Categorical The Categorical Distribution

Description

Density and random generation for the categorical distribution

Usage

dcat(x, prob, log = FALSE)

rcat(n = 1, prob)

Arguments
X non-negative integer-value numeric value.
prob vector of probabilities, internally normalized to sum to one.
log logical; if TRUE, probability density is returned on the log scale.
n number of observations.
Details

See the BUGS manual for mathematical details.

Value

dcat gives the density and rcat generates random deviates.

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

probs <- c(1/4, 1/10, 1 - 1/4 - 1/10)
x <- rcat(n = 30, probs)
dcat(x, probs)
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checkInterrupt Check for interrupt (e.g. Ctrl-C) during nimbleFunction execution.
Part of the NIMBLE language.

Description

Check for interrupt (e.g. Ctrl-C) during nimbleFunction execution. Part of the NIMBLE language.

Usage

checkInterrupt()

Details

During execution of nimbleFunctions that take a long time, it is nice to occassionally check if
the user has entered an interrupt and bail out of execution if so. This function does that. Dur-
ing uncompiled nimbleFunction execution, it does nothing. During compiled execution, it calls
R_checkUserInterrupt() of the R headers.

Author(s)

Perry de Valpine

ChineseRestaurantProcess
The Chinese Restaurant Process Distribution

Description

Density and random generation for the Chinese Restaurant Process distribution.

Usage

dCRP(x, conc = 1, size, log = 0)

rCRP(n, conc = 1, size)

Arguments
X vector of values.
conc scalar concentration parameter.
size integer-valued length of x (required).
log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n = 1 is handled currently).
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Details

The Chinese restaurant process distribution is a distribution on the space of partitions of the positive
integers. The distribution with concentration parameter « equal to conc has probability function

1 i—1 a
f(xl | T1ye-- ,xifl) = m ;517 + m(sxnew’

where £™¢" is a new integer not in x1,...,2;_1.

If conc is not specified, it assumes the default value of 1. The conc parameter has to be larger than
zero. Otherwise, NaN are returned.

Value

dCRP gives the density, and rCRP gives random generation.

Author(s)
Claudia Wehrhahn

References

Blackwell, D., and MacQueen, J. B. (1973). Ferguson distributions via Pdlya urn schemes. The
Annals of Statistics, 1: 353-355.

Aldous, D. J. (1985). Exchangeability and related topics. In Ecole d’Eté de Probabilités de Saint-
Flour XIII - 1983 (pp. 1-198). Springer, Berlin, Heidelberg.

Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. IMS Lecture
Notes-Monograph Series, 30: 245-267.

Examples

x <= rCRP(n=1, conc = 1, size=10)
dCRP(x, conc = 1, size=10)

clearCompiled Clear compiled objects from a project and unload shared library

Description

Clear all compiled objects from a project and unload the shared library produced by the C++ com-
piler. Has no effect on Windows.

Usage

clearCompiled(obj)
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Arguments

obj A compiled nimbleFunction or nimble model

Details

This will clear all compiled objects associated with your NIMBLE project. For example, if cModel
is a compiled model, clearCompiled(cModel) will clear both the model and all associated nim-
bleFunctions such as compiled MCMC:s that use that model.

Use of this function can be dangerous. There is some risk that if you have copies of the R objects
that interfaced to compiled C++ objects that have been removed, and you attempt to use those R
objects after clearing their compiled counterparts, you will crash R. We have tried to minimize that
risk, but we can’t guarantee safe behavior.

CmodelBaseClass-class Class CmodelBaseClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

CnimbleFunctionBase-class
Class CnimbleFunctionBase

Description

Classes used internally in NIMBLE and not expected to be called directly by users.

codeBlockClass-class Class codeBlockClass

Description

Classes used internally in NIMBLE and not expected to be called directly by users.
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compileNimble

compileNimble

compile NIMBLE models and nimbleFunctions

Description

compile a collection of models and nimbleFunctions: generate C++, compile the C++, load the
result, and return an interface object

Usage

compileNimble(

project,

dirName = NULL,

projectName =

nn

control = list(),
resetFunctions = FALSE,
showCompilerOutput = getNimbleOption("”showCompilerOutput")

)
Arguments
An arbitrary set of NIMBLE models and nimbleFunctions, or lists of them. If
given as named parameters, those names may be used in the return list.
project Optional NIMBLE model or nimbleFunction already associated with a project,
which the current units for compilation should join. If not provided, a new
project will be created and the current compilation units will be associated with
it.
dirName Optional directory name in which to generate the C++ code. If not provided, a
temporary directory will be generated using R’s tempdir function.
projectName Optional character name for labeling the project if it is new
control A list mostly for internal use. See details.
resetFunctions Logical value stating whether nimbleFunctions associated with an existing project
should all be reset for compilation purposes. See details.
showCompilerOutput
Logical value indicating whether details of C++ compilation should be printed.
Details

This is the main function for calling the NIMBLE compiler. A set of compiler calls and output will
be seen. Compiling in NIMBLE does 4 things: 1. It generates C++ code files for all the model
and nimbleFunction components. 2. It calls the system’s C++ compiler. 3. It loads the compiled
object(s) into R using dyn.load. And 4. it generates R objects for using the compiled model and
nimbleFunctions.
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When the units for compilation provided in . . . include multiple models and/or nimbleFunctions,
models are compiled first, in the order in which they are provided. Groups of nimbleFunctions that
were specialized from the same nimbleFunction generator (the result of a call to nimbleFunction,
which then takes setup arguments and returns a specialized nimbleFunction) are then compiled as a
group, in the order of first appearance.

The behavior of adding new compilation units to an existing project is limited. For example, one
can compile a model in one call to compileNimble and then compile a nimbleFunction that uses
the model (i.e. was given the model as a setup argument) in a second call to compileNimble, with
the model provided as the project argument. Either the uncompiled or compiled model can be
provided. However, compiling a second nimbleFunction and adding it to the same project will only
work in limited circumstances. Basically, the limitations occur because it attempts to re-use already
compiled pieces, but if these do not have all the necessary information for the new compilation,
it gives up. An attempt has been made to give up in a controlled manner and provide somewhat
informative messages.

When compilation is not allowed or doesn’t work, try using resetFunctions = TRUE, which will
force recompilation of all nimbleFunctions in the new call. Previously compiled nimbleFunctions
will be unaffected, and their R interface objects should continue to work. The only cost is additional
compilation time for the current compilation call. If that doesn’t work, try re-creating the model
and/or the nimbleFunctions from their generators. An alternative possible fix is to compile multiple
units in one call, rather than sequentially in multiple calls.

The control list can contain the following named elements, each with TRUE or FALSE: debug, which
sets a debug mode for the compiler for development purposes; debugCpp, which inserts an out-
put message before every line of C++ code for debugging purposes; compileR, which determines
whether the R-only steps of compilation should be executed; writeCpp, which determines whether
the C++ files should be generated; compileCpp, which determines whether the C++ should be com-
piled; loadSO, which determines whether the DLL or shared object should be loaded and interfaced;
and returnAsList, which determines whether calls to the compiled nimbleFunction should return
only the returned value of the call (returnAsList = FALSE) or whether a list including the input
arguments, possibly modified, should be returned in a list with the returned value of the call at the
end (returnAsList = TRUE). The control list is mostly for developer use, although returnAsArgs
may be useful to a user. An example of developer use is that one can have the compiler write the
C++ files but not compile them, then modify them by hand, then have the C++ compiler do the
subsequent steps without over-writing the files.

See the NIMBLE User Manual Manual for examples

Value

If there is only one compilation unit (one model or nimbleFunction), an R interface object is re-
turned. This object can be used like the uncompiled model or nimbleFunction, but execution will
call the corresponding compiled objects or functions. If there are multiple compilation units, they
will be returned as a list of interface objects, in the order provided. If names were included in the ar-
guments, or in a list if any elements of . . . are lists, those names will be used for the corresponding
element of the returned list. Otherwise an attempt will be made to generate names from the argu-
ment code. For example compileNimble(A = fun1, B = fun2, project = myModel) will return a
list with named elements A and B, while compileNimble(fun1, fun2, project = myModel) will
return a list with named elements funl and fun2.
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Author(s)

Perry de Valpine

configureMCMC Build the MCMCconf object for construction of an MCMC object

Description

Creates a default MCMC configuration for a given model.

Usage

configureMCMC(
model,
nodes,
control = list(),
monitors,
thin = 1,
monitors2 = character(),
thin2 = 1,
useConjugacy = getNimbleOption("MCMCuseConjugacy"),
onlyRW = FALSE,
onlySlice = FALSE,
multivariateNodesAsScalars = getNimbleOption("MCMCmultivariateNodesAsScalars”),
enableWAIC = getNimbleOption("MCMCenableWAIC"),
controlWAIC = list(),
print = getNimbleOption("verbose"),
autoBlock = FALSE,

oldConf,
)
Arguments

model A NIMBLE model object, created from nimbleModel

nodes An optional character vector, specifying the nodes and/or variables for which
samplers should be created. Nodes may be specified in their indexed form, y[1,
3]. Alternatively, nodes specified without indexing will be expanded fully, e.g.,
x will be expanded to x[1], x[2], etc. If missing, the default value is all non-
data stochastic nodes. If NULL, then no samplers are added.

control An optional list of control arguments to sampler functions. If a control list

is provided, the elements will be provided to all sampler functions which uti-
lize the named elements given. For example, the standard Metropolis-Hastings
random walk sampler (sampler_RW) utilizes control list elements adaptive,
adaptInterval, and scale. (Internally it also uses targetNode, but this should
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not generally be provided as a control list element). The default values for con-
trol list arguments for samplers (if not otherwise provided as an argument to
configureMCMC() ) are in the setup code of the sampling algorithms.

monitors A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval thin,
and the samples will be stored into the mvSamples object. The default value is
all top-level stochastic nodes of the model — those having no stochastic parent

nodes.
thin The thinning interval for monitors. Default value is one.
monitors?2 A character vector of node names or variable names, to record during MCMC

sampling. This set of monitors will be recorded with thinning interval thin2,
and the samples will be stored into the mvSamples2 object. The default value is
an empty character vector, i.e. no values will be recorded.

thin2 The thinning interval for monitors2. Default value is one.

useConjugacy A logical argument, with default value TRUE. If specified as FALSE, then no
conjugate samplers will be used, even when a node is determined to be in a
conjugate relationship.

onlyRW A logical argument, with default value FALSE. If specified as TRUE, then
Metropolis-Hastings random walk samplers (sampler_RW) will be assigned for
all non-terminal continuous-valued nodes nodes. Discrete-valued nodes are as-
signed a slice sampler (sampler_slice), and terminal nodes are assigned a poste-
rior_predictive sampler (sampler_posterior_predictive).

onlySlice A logical argument, with default value FALSE. If specified as TRUE, then a
slice sampler is assigned for all non-terminal nodes. Terminal nodes are still
assigned a posterior_predictive sampler.

multivariateNodesAsScalars
A logical argument, with default value FALSE. If specified as TRUE, then non-
terminal multivariate stochastic nodes will have scalar samplers assigned to each
of the scalar components of the multivariate node. The default value of FALSE
results in a single block sampler assigned to the entire multivariate node. Note,
multivariate nodes appearing in conjugate relationships will be assigned the cor-
responding conjugate sampler (provided useConjugacy == TRUE), regardless of
the value of this argument.

enableWAIC A logical argument, specifying whether to enable WAIC calculations for the re-
sulting MCMC algorithm. Defaults to the value of nimbleOptions('MCMCenableWAIC'),
which in turn defaults to FALSE. Setting nimbleOptions('enableWAIC' = TRUE)
will ensure that WAIC is enabled for all calls to configureMCMC and buildMCMC.

controlWAIC A named list of inputs that control the behavior of the WAIC calculation. See

help(waic).

print A logical argument, specifying whether to print the ordered list of default sam-
plers.

autoBlock A logical argument specifying whether to use an automated blocking procedure

to determine blocks of model nodes for joint sampling. If TRUE, an MCMC
configuration object will be created and returned corresponding to the results of
the automated parameter blocking. Default value is FALSE.
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oldConf An optional MCMCconf object to modify rather than creating a new MCMC-
conf from scratch

Additional named control list elements for default samplers, or additional argu-
ments to be passed to the autoBlock function when autoBlock = TRUE

Details

See MCMCconf for details on how to manipulate the MCMCconf object

Author(s)

Daniel Turek

See Also

buildMCMC runMCMC nimbleMCMC

configureRJ Configure Reversible Jump for Variable Selection

Description

Modifies an MCMC configuration object to perform a reversible jump MCMC sampling for variable
selection, using a univariate normal proposal distribution. Users can control the mean and scale of
the proposal. This function supports two different types of model specification: with and without
indicator variables.

Usage

configureRJ(
conf,
targetNodes,
indicatorNodes = NULL,
priorProb = NULL,
control = list(mean = NULL, scale = NULL, fixedValue = NULL)

Arguments
conf An MCMCconf object.
targetNodes A character vector, specifying the nodes and/or variables for which variable se-

lection is to be performed. Nodes may be specified in their indexed form, 'y[1,
3]'. Alternatively, nodes specified without indexing will be expanded, e.g., 'x'
will be expanded to 'x[1]", 'x[2]", etc.
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indicatorNodes An optional character vector, specifying the indicator nodes and/or variables
paired with targetNodes. Nodes may be specified in their indexed form, 'y[1,
3]'. Alternatively, nodes specified without indexing will be expanded, e.g., 'x'
will be expanded to 'x[1]"', 'x[2]"', etc. Nodes must be provided consistently
with targetNodes. See details.

priorProb An optional value or vector of prior probabilities for each node to be in the
model. See details.

control An optional list of control arguments:

* mean. The mean of the normal proposal distribution (default = 0).
* scale. The standard deviation of the normal proposal distribution (default =

D).

* fixedValue. Value for the variable when it is out of the model, which can
be used only when priorProb is provided (default = 0). If specified when
indicatorNodes is passed, a warning is given and fixedValue is ignored.

Details

This function modifies the samplers in MCMC configuration object for each of the nodes provided
in the targetNodes argument. To these elements two samplers are assigned: a reversible jump
sampler to transition the variable in/out of the model, and a modified version of the original sampler,
which performs updates only when the target node is already in the model.

configureRJ can handle two different ways of writing a NIMBLE model, either with or without
indicator variables. When using indicator variables, the indicatorNodes argument must be pro-
vided. Without indicator variables, the priorProb argument must be provided. In the latter case,
the user can provide a non-zero value for fixedValue if desired.

Note that this functionality is intended for variable selection in regression-style models but may be
useful for other situations as well. At the moment, setting a variance component to zero and thereby
removing a set of random effects that are explicitly part of a model will not work because MCMC
sampling in that case would need to propose values for multiple parameters (the random effects),
whereas the current functionality only proposes adding/removing a single model node.

Value

NULL configureRJ modifies the input MCMC configuration object in place.

Author(s)

Sally Paganin, Perry de Valpine, Daniel Turek

References
Peter J. Green. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4), 711-732.

See Also

samplers configureMCMC
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Examples

## Not run:
## Linear regression with intercept and two covariates, using indicator variables

code <- nimbleCode ({
beta® ~ dnorm(@, sd = 100)
betal ~ dnorm(@, sd = 100)
beta2 ~ dnorm(@, sd = 100)
sigma ~ dunif(@, 100)
z1 ~ dbern(psi)  ## indicator variable associated with betal
z2 ~ dbern(psi) ## indicator variable associated with beta2
psi ~ dunif(@, 1) ## hyperprior on inclusion probability
for(i in 1:N) {
Ypred[i] <- beta® + betal * z1 * x1[i] + beta2 * z2 * x2[i]
Y[i]l ~ dnorm(Ypred[i], sd = sigma)
}
»

## simulate some data

set.seed(1)

N <- 100

x1 <= runif(N, -1, 1)

x2 <= runif(N, -1, 1) ## this covariate is not included
Y <= rnorm(N, 1 + 2.5 x x1, sd = 1)

## build the model
rIndicatorModel <- nimbleModel(code, constants = list(N = N),
data = list(Y =Y, x1 = x1, x2 = x2),
inits = list(beta® = 0, betal = @, beta2 = 0, sigma = sd(Y),
z1 =1, z2 =1, psi = 0.5))

indicatorModelConf <- configureMCMC(rIndicatorModel)

## Add reversible jump

configureRJ(conf = indicatorModelConf, ## model configuration
targetNodes = c("betal”, "beta2"), ## coefficients for selection
indicatorNodes = c("z1", "z2"), ## indicators paired with coefficients

control = list(mean = @, scale = 2))
indicatorModelConf$addMonitors("betal”, "beta2", "z1", "z2")

rIndicatorMCMC <- buildMCMC(indicatorModelConf)
cIndicatorModel <- compileNimble(rIndicatorModel)
cIndicatorMCMC <- compileNimble(rIndicatorMCMC, project = rIndicatorModel)

set.seed(1)
samples <- runMCMC(cIndicatorMCMC, 10000, nburnin = 6000)

## posterior probability to be included in the mode
mean(samples[ , "z1"])
mean(samples[ , "z2"])
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## posterior means when in the model
mean(samples[ , "betal”][samples[ , "z1"] != @1)
mean(samples[ , "beta2"][samples[ , "z2"] != @])

## Linear regression with intercept and two covariates, without indicator variables

code <- nimbleCode({
beta® ~ dnorm(@, sd = 100)
betal ~ dnorm(@, sd = 100)
beta2 ~ dnorm(@, sd = 100)
sigma ~ dunif (@, 100)
for(i in 1:N) {
Ypred[i] <- beta@ + betal x x1[i] + beta2 * x2[i]
Y[i] ~ dnorm(Ypred[i], sd = sigma)
}
»

rNoIndicatorModel <- nimbleModel(code, constants = list(N = N),
data = list(Y =Y, x1 = x1, x2 = x2),
inits= list(beta@® = @, betal = 0, beta2 = 0, sigma = sd(Y)))
noIndicatorModelConf <- configureMCMC(rNoIndicatorModel)

## Add reversible jump

configureRJ(conf = nolIndicatorModelConf, ## model configuration
targetNodes = c("betal”, "beta2"), ## coefficients for selection
priorProb = 0.5, ## prior probability of inclusion

control = list(mean = @, scale = 2))

## add monitors
noIndicatorModelConf$addMonitors("betal”, "beta2")
rNoIndicatorMCMC <- buildMCMC(noIndicatorModelConf)

cNoIndicatorModel <- compileNimble(rNoIndicatorModel)
cNoIndicatorMCMC <- compileNimble(rNoIndicatorMCMC, project = rNoIndicatorModel)

set.seed(1)
samples <- runMCMC(cNoIndicatorMCMC, 10000, nburnin = 6000)

## posterior probability to be included in the mode
mean(samples[ , "betal”] != @)
mean(samples[ , "beta2"] != @)

## posterior means when in the model
mean(samples[ , "betal”][samples[ , "betal”] != @])
mean(samples[ , "beta2"][samples[ , "beta2"] != 0])

## End(Not run)
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Constraint Constraint calculations in NIMBLE

Description

Calculations to handle censoring

Usage

dconstraint(x, cond, log = FALSE)

rconstraint(n = 1, cond)

Arguments
X value indicating whether cond is TRUE or FALSE
cond logical value
log logical; if TRUE, probability density is returned on the log scale.
n number of observations (only n=1 is handled currently).
Details

Used for working with constraints in BUGS code. See the NIMBLE manual for additional details.

Value

dconstraint gives the density and rconstraint generates random deviates, but these are unusual
as the density is 1 if x matches cond and 0 otherwise and the deviates are simply the value of cond

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

constr <- 3 >2&& 4 >0

X <- rconstraint(1, constr)
dconstraint(x, constr)
dconstraint(e, 3 > 4)
dconstraint(1, 3 > 4)
rconstraint(1, 3 > 4)
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decide Makes the Metropolis-Hastings acceptance decision, based upon the
input (log) Metropolis-Hastings ratio

Description
This function returns a logical TRUE/FALSE value, indicating whether the proposed transition
should be accepted (TRUE) or rejected (FALSE).

Usage

decide(logMetropolisRatio)

Arguments
logMetropolisRatio

The log of the Metropolis-Hastings ratio, which is calculated from model prob-
abilities and forward/reverse transition probabilities. Calculated as the ratio of
the model probability under the proposal to that under the current values mul-
tiplied by the ratio of the reverse transition probability to the forward transition
probability.

Details

The Metropolis-Hastings accept/reject decisions is made as follows. If logMetropolisRatio is
greater than 0, accept (return TRUE). Otherwise draw a uniform random number between 0 and 1
and accept if it is less that exp(logMetropolisRatio. The proposed transition will be rejected
(return FALSE). If logMetropolisRatio is NA, NaN, or -Inf, a reject (FALSE) decision will be

returned.
Author(s)
Daniel Turek
decideAndJump Creates a nimbleFunction for executing the Metropolis-Hastings
Jjumping decision, and updating values in the model, or in a carbon
copy modelValues object, accordingly.
Description

This nimbleFunction generator must be specialized to three required arguments: a model, a model-
Values, and a character vector of node names.

Usage

decideAndJump(model, mvSaved, target, UNUSED)
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Arguments
model An uncompiled or compiled NIMBLE model object.
mvSaved A modelValues object containing identical variables and logProb variables as
the model. Can be created by modelValues(model).
target A character vector providing the target node.
UNUSED Unused placeholder argument.
Details

Calling decideAndJump(model, mvSaved, target) will generate a specialized nimbleFunction with
four required numeric arguments:

modelLP1: The model log-probability associated with the newly proposed value(s)
modelLPO: The model log-probability associated with the original value(s)
propLP1: The log-probability associated with the proposal forward-transition
propLPO: The log-probability associated with the proposal reverse-tranisiton

Executing this function has the following effects: — Calculate the (log) Metropolis-Hastings ratio,
as logMHR = modelLP1 - modelLPO - propLP1 + propLP0O — Make the proposal acceptance deci-
sion based upon the (log) Metropolis-Hastings ratio — If the proposal is accepted, the values and
associated logProbs of all calcNodes are copied from the model object into the mvSaved object —
If the proposal is rejected, the values and associated logProbs of all calcNodes are copied from the
mvSaved object into the model object — Return a logical value, indicating whether the proposal was
accepted

Author(s)

Daniel Turek

declare Explicitly declare a variable in run-time code of a nimbleFunction

Description
Explicitly declare a variable in run-time code of a nimbleFunction, for cases when its dimensions
cannot be inferred before it is used. Works in R and NIMBLE.

Usage

declare(name, def)
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Arguments
name Name of a variable to declare, without quotes
def NIMBLE type declaration, of the form TYPE(nDim, sizes), where TYPE is
integer, double, or logical, nDim is the number of dimensions, and sizes
is an optional vector of sizes concatenated with c. If nDim is omitted, it defaults
to 0, indicating a scalar. If sizes are provided, they should not be changed sub-
sequently in the function, including by assignment. Omitting nDim results in a
scalar. For logical, only scalar is currently supported.
Details

In a run-time function of a nimbleFunction (either the run function or a function provided in
methods when calling nimbleFunction), the dimensionality and numeric type of a variable is
inferred when possible from the statement first assigning into it. E.g. A <- B + C infers that A has
numeric types, dimensions and sizes taken from B + C. However, if the first appearance of A is e.g.
A[i] <- 5, Amust have been explicitly declared. In this case, declare (A, double(1)) would make
A a 1-dimensional (i.e. vector) double.

When sizes are not set, they can be set by a call to setSize or by assignment to the whole object.
Sizes are not automatically extended if assignment is made to elements beyond the current sizes. In
compiled nimbleFunctions doing so can cause a segfault and crash the R session.

This part of the NIMBLE language is needed for compilation, but it also runs in R. When run in R,
is works by the side effect of creating or modifying name in the calling environment.

Author(s)
NIMBLE development team

Examples
declare(A, logical()) ## scalar logical, the only kind allowed
declare(B, integer(2, c(10, 10))) ## 10 x 10 integer matrix
declare(C, double(3)) ## 3-dimensional double array with no sizes set.

deregisterDistributions

Remove user-supplied distributions from use in NIMBLE BUGS mod-
els

Description

Deregister distributional information originally supplied by the user for use in BUGS model code

Usage

deregisterDistributions(distributionsNames, userEnv = parent.frame())
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Arguments
distributionsNames
a character vector giving the names of the distributions to be deregistered.
userEnv environment in which to look for the nimbleFunctions that provide the distribu-
tion; this will generally not need to be set by the user as it will default to the
environment from which this function was called.
Author(s)
Christopher Paciorek
Dirichlet The Dirichlet Distribution
Description

Density and random generation for the Dirichlet distribution

Usage
ddirch(x, alpha, log = FALSE)

rdirch(n = 1, alpha)

Arguments
X vector of values.
alpha vector of parameters of same length as x
log logical; if TRUE, probability density is returned on the log scale.
n number of observations (only n=1 is handled currently).
Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value

ddirch gives the density and rdirch generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.
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See Also

Distributions for other standard distributions

Examples

alpha <- c(1, 10, 30)
x <= rdirch(1, alpha)
ddirch(x, alpha)

distributionInfo Get information about a distribution

Description

Give information about each BUGS distribution

Usage

getDistributionInfo(dist)
isUserDefined(dist)
pgDefined(dist)

getType(
dist,
params = NULL,
valueOnly = is.null(params) && !includeParams,
includeParams = !is.null(params)

)

getParamNames(dist, includeValue = TRUE)

Arguments
dist a character vector of length one, giving the name of the distribution (as used in
BUGS code), e.g. 'dnorm’
params an optional character vector of names of parameters for which dimensions are
desired (possibly including \’value\’ and alternate parameters)
valueOnly a logical indicating whether to only return the dimension of the value of the node

includeParams a logical indicating whether to return dimensions of parameters. If TRUE and
\’params\’ is NULL then dimensions of all parameters, including the dimension
of the value of the node, are returned

includeValue a logical indicating whether to return the string *value’, which is the name of the
node value
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Details

NIMBLE provides various functions to give information about a BUGS distribution. In some cases,
functions of the same name and similar functionality operate on the node(s) of a model as well (see
help(modelBaseClass)).

getDistributionInfo returns an internal data structure (a reference class object) providing vari-
ous information about the distribution. The output is not very user-friendly, but does contain all of
the information that NIMBLE has about the distribution.

isDiscrete tests if a BUGS distribution is a discrete distribution.
isUserDefined tests if a BUGS distribution is a user-defined distribution.
pgAvail tests if a BUGS distribution provides distribution ("p’) and quantile (’q’) functions.

getDimension provides the dimension of the value and/or parameters of a BUGS distribution. The
return value is a numeric vector with an element for each parameter/value requested.

getType provides the type (numeric, logical, integer) of the value and/or parameters of a BUGS
distribution. The return value is a character vector with an element for each parameter/value re-
quested. At present, all quantities are stored as numeric (double) values, so this function is of little
practical use but could be exploited in the future.

getParamNames provides the value and/or parameter names of a BUGS distribution.

Author(s)

Christopher Paciorek

Examples

distInfo <- getDistributionInfo('dnorm")
distInfo
distInfo$range

isDiscrete('dbin"')
isUserDefined('dbin")

pgDefined('dgamma’)
pgDefined('dmnorm')

getDimension('dnorm')

getDimension('dnorm', includeParams = TRUE)
getDimension('dnorm', c('var', 'sd'))
getDimension('dcat', includeParams = TRUE)
getDimension('dwish', includeParams = TRUE)

getType('dnorm')

getType('dnorm', includeParams = TRUE)
getType('dnorm', c('var', 'sd'))
getType('dcat', includeParams = TRUE)
getType('dwish', includeParams = TRUE)

getParamNames('dnorm', includeValue = FALSE)
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getParamNames('dmnorm')

Double-Exponential The Double Exponential (Laplace) Distribution

Description

Density, distribution function, quantile function and random generation for the double exponential
distribution, allowing non-zero location, mu, and non-unit scale, sigma, or non-unit rate, tau

Usage

ddexp(x, location = @, scale = 1, rate = 1/scale, log = FALSE)

rdexp(n, location = @, scale = 1, rate = 1/scale)

pdexp(
q,
location = 0,
scale = 1,
rate = 1/scale,
lower.tail = TRUE,

log.p = FALSE
)
gdexp(
P,
location = 0,
scale = 1,

rate = 1/scale,
lower.tail = TRUE,

log.p = FALSE
)
Arguments
X vector of values.
location vector of location values.
scale vector of scale values.
rate vector of inverse scale values.
log logical; if TRUE, probability density is returned on the log scale.
n number of observations.
q vector of quantiles.
lower.tail logical; if TRUE (default) probabilities are P[X < z]; otherwise, P[X > x].
log.p logical; if TRUE, probabilities p are given by user as log(p).

p vector of probabilities.
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Details

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

Value
ddexp gives the density, pdexp gives the distribution function, gdexp gives the quantile function,
and rdexp generates random deviates.

Author(s)

Christopher Paciorek

References
Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

x <- rdexp(50, location = 2, scale = 1)
ddexp(x, 2, 1)

eigenNimblelList eigenNimbleList definition

Description

nimblelList definition for the type of nimblelList returned by nimEigen.

Usage

eigenNimblelist

Format

An object of class 1ist of length 1.

Author(s)
NIMBLE development team

See Also

nimEigen
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Exponential The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential distri-
bution with rate (i.e., mean of 1/rate) or scale parameterizations.

Usage

dexp_nimble(x, rate = 1/scale, scale = 1, log = FALSE)

rexp_nimble(n = 1, rate = 1/scale, scale = 1)

pexp_nimble(q, rate = 1/scale, scale = 1, lower.tail = TRUE, log.p = FALSE)

gexp_nimble(p, rate = 1/scale, scale = 1, lower.tail = TRUE, log.p = FALSE)
Arguments

X vector of values.

rate vector of rate values.

scale vector of scale values.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations.

q vector of quantiles.

lower.tail logical; if TRUE (default) probabilities are P[X < z]; otherwise, P[X > x].

log.p logical; if TRUE, probabilities p are given by user as log(p).

p vector of probabilities.
Details

NIMBLE’s exponential distribution functions use Rmath’s functions under the hood, but are param-
eterized to take both rate and scale and to use ’rate’ as the core parameterization in C, unlike Rmath,
which uses ’scale’. See Gelman et al., Appendix A or the BUGS manual for mathematical details.
Value
dexp_nimble gives the density, pexp_nimble gives the distribution function, gexp_nimble gives
the quantile function, and rexp_nimble generates random deviates.
Author(s)

Christopher Paciorek
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References

extractControlElement

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

X <- rexp_nimble(50, scale = 3)
dexp_nimble(x, scale = 3)

extractControlElement Extract named elements from MCMC sampler control list

Description

Extract named elements from MCMC sampler control list

Usage

extractControlElement(controllList, elementName, defaultValue, error)

Arguments

controllist

elementName

defaultValue

error

Value

control list object, which is passed as an argument to all MCMC sampler setup
functions.

character string, giving the name of the element to be extracted from the control
list.

default value of the control list element, giving the value to be used when the
elementName does not exactly match the name of an element in the controllList.

character string, giving the error message to be printed if no defaultValue
is provided and elementName does not match the name of an element in the
controlList.

The element of controllList whose name matches elementName. If no controllList name matches
elementName, then defaultValue is returned.

Author(s)
Daniel Turek
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flat The Improper Uniform Distribution

Description

Improper flat distribution for use as a prior distribution in BUGS models

Usage

dflat(x, log = FALSE)
rflat(n = 1)
dhalfflat(x, log = FALSE)

rhalfflat(n = 1)

Arguments
X vector of values.
log logical; if TRUE, probability density is returned on the log scale.
n number of observations.

Value

dflat gives the pseudo-density value of 1, while rflat and rhalfflat return NaN, since one cannot
simulate from an improper distribution. Similarly, dhalfflat gives a pseudo-density value of 1
when x is non-negative.

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

dflat(1)
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getBound Get value of bound of a stochastic node in a model

Description

Get the value of the lower or upper bound for a single stochastic node in a model.

Usage

getBound(model, node, bound, nodeFunctionIndex)

Arguments
model A NIMBLE model object
node The name of a stochastic node in the model
bound Either 'lower' or 'upper' indicating the desired bound for the node
nodeFunctionIndex
For internal NIMBLE use only
Details

Standard usage is as a method of a model, in the form model$getBound(node, bound), but the
usage as a simple function with the model as the first argument as above is also allowed.

For nodes that do not involve truncation of the distribution this will return the lower or upper bound
of the distribution, which may be a constant or for a limited number of distributions a parameter or
functional of a parameter (at the moment in NIMBLE, the only case where a bound is a parameter is
for the uniform distribution. For nodes that are truncated, this will return the desired bound, which
may be a functional of other quantities in the model or may be a constant.

getBUGSexampleDir Get the directory path to one of the classic BUGS examples installed
with NIMBLE package

Description
NIMBLE comes with some of the classic BUGS examples. getBUGSexampleDir looks up the
location of an example from its name.

Usage
getBUGSexampleDir (example)

Arguments

example The name of the classic BUGS example.
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Value

Character string of the fully pathed directory of the BUGS example.

Author(s)

Christopher Paciorek

See Also

readBUGSmodel for usage in creating a model from a classic BUGS example

getConditionallyIndependentSets
Get a list of conditionally independent sets of nodes in a nimble model

Description

A conditionally independent set of nodes is such that the joint probability (density) of nodes in the
set will not change even if any non-given node outside the set is changed. Default given nodes are
data nodes and parameter nodes (aka "top-level” nodes, i.e. nodes with no parent nodes), but this
can be controlled.

Usage

getConditionallyIndependentSets(
model,
nodes,
givenNodes,
omit = integer(),
explore = c("both”, "down"”, "up"),
unknownAsGiven = TRUE,
returnType = "names”,
returnScalarComponents = FALSE,
endAsGiven = FALSE

)

Arguments
model A nimble model object (uncompiled or compiled), such as returned by nimbleModel.
nodes A vector of stochastic node names (or their graph IDs) to split into conditionally

independent sets, conditioned on the givenNodes. If unknownAsGiven=FALSE,
the nodes are the starting nodes from which conditionally independent sets of
nodes should be found, possibly including additional nodes not included in the
nodes argument. If nodes is omitted, the default will be all latent nodes (defined
as stochastic nodes that are not data and have at least one stochastic parent node,
possibly with determinstic nodes in-between) that are a parent of a givenNode
(either provided or default). Note that this will omit latent states that have no
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givenNodes

omit

explore

unknownAsGiven

returnType

getConditionallyIndependentSets

hyperparameters. An example is the first latent state in some state-space (time-
series) models, which is sometimes declared with known prior.

A vector of node names or their graph IDs that should be considered as fixed
(given) and hence can be conditioned on. If omitted, the default will be all data
nodes and all parameter nodes, the latter defined as nodes with no stochastic
parent nodes (skipping over deterministic parent nodes). See endAsGiven for a
variant on defaults.

A vector of node names or their graph IDs that should be omitted and should
block further graph exploration.

The method of graph exploration, which may corresond to what the nodes ar-
gument represents. For "down", graph exploration starts only down (towards
descendants) from nodes. For "up", graph exploration starts only up (towards
ancestors) from nodes. For "both" (the default and normal setting), both direc-
tions are explored.

Logical for whether a model node not in nodes or givenNodes should be treated
as given (default = TRUE). Otherwise (and by default) such a node may be
grouped into a conditionally independent set, resulting in more output nodes
than input nodes.

Either "names" for returned nodes to be node names or "ids" for returned nodes
to be graph IDs.

returnScalarComponents

endAsGiven

Details

If FALSE (default), multivariate nodes are returned as full names (e.g. x[1:31).
If TRUE, they are returned as scalar elements (e.g. x[1], x[2], x[3]).

If TRUE, end nodes (defined as nodes with stochastic parents but no stochastic
children, skipping through deterministic nodes) are included in the default for
givenNodes.

This function returns sets of conditionally independent nodes. Multiple input nodes might be in the
same set or different sets.

The nodes input and the returned sets include only stochastic nodes because conditional indepen-
dence is a property of random variables. Deterministic nodes are considered in determining the sets.
givenNodes may contain stochastic or deterministic nodes.

Value

List of nodes that are in conditionally independent sets. With each set, nodes are returned in topo-
logically sorted order. The sets themselves are returned in topologically sorted order of their first

nodes.

Other nodes (not in nodes) may be included in the output if unknownAsGiven=FALSE.

Author(s)

Perry de Valpine



getDefinition 73

getDefinition Get nimbleFunction definition

Description

Returns a list containing the nimbleFunction definition components (setup function, run function,
and other member methods) for the supplied nimbleFunction generator or specialized instance.

Usage
getDefinition(nf)
Arguments
nf A nimbleFunction generator, or a compiled or un-compiled specialized nimble-
Function.
Author(s)
Daniel Turek

getMacroParameters EXPERIMENTAL: Get list of parameter names generated by model
macros

Description

Get a list of all parameter names (or certain categories of parameters) generated by model macros
in the model code.

Usage
getMacroParameters(
model,
includelLHS = TRUE,
includeRHS = TRUE,

includeDeterm = TRUE,
includeStoch = TRUE,
includeIndexPars = FALSE
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Arguments
model A NIMBLE model object
includelLHS Include generated parameters on the left-hand side (LHS) of assignments (<- or
~) in the output
includeRHS Include generated parameters on the left-hand side (RHS) of assignments (<- or

~) in the output
includeDeterm Include deterministic generated parameters in the output

includeStoch Include stochastic generated parameters in the output

includeIndexPars
Include index parameters generated for use in for loops in the output

Details

Some model macros will generate new parameters to be included in the output code. NIMBLE
automatically detects these new parameters and records them in the model object. This function
allows easy access to this stored list, or subsets of it (see arguments).

Value

A named list of generated parameters, with the element names corresponding to the original source
macro.

Examples

nimbleOptions(enableModelMacros = TRUE)
nimbleOptions(enableMacroComments = FALSE)
nimbleOptions(verbose = FALSE)

testMacro <- list(process = function(code, modelInfo, .env){
code <- quote({
for (i_ in 1:n){
mu[i_] <- alpha + beta
y[i_] ~ dnorm(@, sigma)

}
alpha ~ dnorm(@, 1)
b))
list(code = code, modelInfo=modelInfo)

b

class(testMacro) <- "model_macro”
code <- nimbleCode ({

y[1:n] ~ testMacro()
»

const <- list(y = rnorm(10), n = 10)
mod <- nimbleModel(code, constants=const)

mod$getMacroParameters()
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# should be list(testMacro = list(c("mu”, "alpha", "beta”, "sigma")))

mod$getMacroParameters(includeRHS = FALSE)
# should be list(testMacro = list(c("mu”, "alpha")))

getNimbleOption Get NIMBLE Option

Description

Allow the user to get the value of a global _option_ that affects the way in which NIMBLE operates

Usage

getNimbleOption(x)
Arguments

X a character string holding an option name
Value

The value of the option.

Author(s)

Christopher Paciorek

Examples

getNimbleOption('verifyConjugatePosteriors')

getParam Get value of a parameter of a stochastic node in a model

Description

Get the value of a parameter for any single stochastic node in a model.

Usage

getParam(model, node, param, nodeFunctionIndex, warn = TRUE)
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Arguments
model A NIMBLE model object
node The name of a stochastic node in the model
param The name of a parameter for the node
nodeFunctionIndex
For internal NIMBLE use only
warn For internal NIMBLE use only
Details

Standard usage is as a method of a model, in the form model$getParam(node, param), but the
usage as a simple function with the model as the first argument as above is also allowed.

For example, suppose node *x[1:5] follows a multivariate normal distribution (dmnorm) in a model
declared by BUGS code. model$getParam(’x[1:5]’, ’'mean’) would return the current value of the
mean parameter (which may be determined from other nodes). The parameter requested does not
have to be part of the parameterization used to declare the node. Rather, it can be any parameter
known to the distribution. For example, one can request the scale or rate parameter of a gamma
distribution, regardless of which one was used to declare the node.

getSamplesDPmeasure Get posterior samples for a Dirichlet process measure

Description

This function obtains posterior samples from a Dirichlet process distributed random measure of a
model specified using the dCRP distribution.

Usage
getSamplesDPmeasure(
MCMC,
epsilon = 1e-04,

setSeed = FALSE,
progressBar = getNimbleOption(”"MCMCprogressBar")

)
Arguments
MCMC an MCMC class object, either compiled or uncompiled.
epsilon used for determining the truncation level of the representation of the random
measure.
setSeed Logical or numeric argument. If a single numeric value is provided, R’s random

number seed will be set to this value. In the case of a logical value, if TRUE, then
R’s random number seed will be set to 1. Note that specifying the argument
setSeed = @ does not prevent setting the RNG seed, but rather sets the random
number generation seed to @. Default value is FALSE.
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progressBar Logical specifying whether to display a progress bar during execution (default
= TRUE). The progress bar can be permanently disabled by setting the system
option nimbleOptions(MCMCprogressBar = FALSE)

Details

This function provides samples from a random measure having a Dirichlet process prior. Realiza-
tions are almost surely discrete and represented by a (finite) stick-breaking representation (Sethu-
raman, 1994), whose atoms (or point masses) are independent and identically distributed. This
sampler can only be used with models containing a dCRP distribution.

The MCMC argument is an object of class MCMC provided by buildMCMC, or its compiled ver-
sion. The MCMC should already have been run, as getSamplesDPmeasure uses the posterior
samples to generate samples of the random measure. Note that the monitors associated with that
MCMC must include the cluster membership variable (which has the dCRP distribution), the clus-
ter parameter variables, all variables directly determining the dCRP concentration parameter, and
any stochastic parent variables of the cluster parameter variables. See help(configureMCMC) or
help(addMonitors) for information on specifying monitors for an MCMC.

The epsilon argument is optional and used to determine the truncation level of the random mea-
sure. epsilon is the tail probability of the random measure, which together with posterior samples
of the concentration parameter, determines the truncation level. The default value is 1e-4.

The output is a list of matrices. Each matrix represents a sample from the random measure. In
order to reduce the output’s dimensionality, the weights of identical atoms are added up. The stick-
breaking weights are named weights and the atoms are named based on the cluster variables in the
model.

For more details about sampling the random measure and determining its truncation level, see Sec-
tion 3 in Gelfand, A.E. and Kottas, A. 2002.

Author(s)

Claudia Wehrhahn and Christopher Paciorek

References

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 639-650.

Gelfand, A.E. and Kottas, A. (2002). A computational approach for full nonparametric Bayesian
inference under Dirichlet process mixture models. Journal of Computational and Graphical Statis-
tics, 11(2), 289-305.

See Also

buildMCMC, configureMCMC,

Examples

## Not run:
conf <- configureMCMC(model)
mcme <- buildMCMC(conf)
cmodel <- compileNimble(model)
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cmeme <- compileNimble(mcmc, project = model)
runMCMC(cmcmec, niter = 1000)
outputG <- getSamplesDPmeasure(cmcmc)

## End(Not run)

getsize Returns number of rows of modelValues

Description

Returns the number of rows of NIMBLE modelValues object. Works in R and NIMBLE.

Usage

getsize(container)
Arguments

container modelValues object
Details

See the User Manual or help(modelValuesBaseClass) for information about model Values objects

Author(s)

Clifford Anderson-Bergman

Examples

mvConf <- modelValuesConf(vars = 'a', types = 'double', sizes = list(a =1) )
mv <- modelValues(mvConf)

resize(mv, 10)

getsize(mv)


https://r-nimble.org/html_manual/cha-welcome-nimble.html
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identityMatrix Create an Identity matrix (Deprecated)

Description

Returns a d-by-d identity matrix (square matrix of 0’s, with 1’s on the main diagnol).

Usage

identityMatrix(d)

Arguments

d The size of the identity matrix to return, will return a d-by-d matrix

Details
This function can be used in NIMBLE run code. It is deprecated because now one can use diag(d)
instead.

Value

A d-by-d identity matrix

Author(s)
Daniel Turek

Examples

Id <- identityMatrix(d = 3)

initializeModel Performs initialization of nimble model node values and log probabil-
ities

Description

Performs initialization of nimble model node values and log probabilities

Usage

initializeModel (model, silent = FALSE)
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Arguments
model A setup argument, which specializes an instance of this nimble function to a
particular model.
silent logical indicating whether to suppress logging information
Details

This nimbleFunction may be used at the beginning of nimble algorithms to perform model initial-
ization. The intended usage is to specialize an instance of this nimbleFunction in the setup function
of an algorithm, then execute that specialied function at the beginning of the algorithm run function.

The specialized function takes no arguments.

Executing this function ensures that all right-hand-side only nodes have been assigned real values,
that all stochastic nodes have a real value, or otherwise have their simulate() method called, that all
deterministic nodes have their simulate() method called, and that all log-probabilities have been cal-
culated with the current model values. An error results if model initialization encounters a problem,

for example a missing right-hand-side only node value.

Author(s)
Daniel Turek

Examples

myNewAlgorithm <- nimbleFunction(
setup = function(model, ...) {
my_initializeModel <- initializeModel(model)

}!
run = function(...) {
my_initializeModel()

Interval Interval calculations

Description

Calculations to handle censoring

Usage

dinterval(x, t, c, log = FALSE)

rinterval(n = 1, t, ¢)
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Arguments
X vector of interval indices.
t vector of values.
c vector of one or more values delineating the intervals.
log logical; if TRUE, probability density is returned on the log scale.
n number of observations.
Details

Used for working with censoring in BUGS code. Taking c to define the endpoints of two or more
intervals (with implicit endpoints of plus/minus infinity), x (or the return value of rinterval) gives
the non-negative integer valued index of the interval in which t falls. See the NIMBLE manual for
additional details.

Value

dinterval gives the density and rinterval generates random deviates, but these are unusual as
the density is 1 if x indicates the interval in which t falls and O otherwise and the deviates are simply
the interval(s) in which t falls.

Author(s)

Christopher Paciorek

See Also

Distributions for other standard distributions

Examples

endpoints <- c(-3, 0, 3)

vals <- c(-4, -1, 1, 5)

x <- rinterval(4, vals, endpoints)
dinterval(x, vals, endpoints)
dinterval(c(1, 5, 2, 3), vals, endpoints)

Inverse-Gamma The Inverse Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the inverse gamma dis-
tribution with rate or scale (mean = scale / (shape - 1)) parameterizations.
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Usage

dinvgamma(x, shape, scale =

rinvgamma(n = 1, shape, scale

pinvgamma (

q,

shape,

scale = 1,

rate = 1/scale,
lower.tail = TRUE,

log.p = FALSE
)
ginvgamma(

P,

shape,

scale = 1,

rate = 1/scale,
lower.tail = TRUE,
log.p = FALSE

Arguments

X

shape
scale
rate
log

n
q

lower.tail
log.p

p

vector of values.

1, rate = 1/scale, log = FALSE)

= 1, rate = 1/scale)

vector of shape values, must be positive.
vector of scale values, must be positive.
vector of rate values, must be positive.

number of observations.

vector of quantiles.

vector of probabilities.

Details

Inverse-Gamma

logical; if TRUE, probability density is returned on the log scale.

logical; if TRUE (default) probabilities are P[X < z]; otherwise, P[X > x].
logical; if TRUE, probabilities p are given by user as log(p).

The inverse gamma distribution with parameters shape = o and scale = ¢ has density

f(CL‘) _ w—(a—&-l)e—o/:c

INCY

forz > 0,« > 0and o > 0. (Here I'(«v) is the function implemented by R’s gamma() and defined
in its help.

The mean and variance are E(X) = £ — 1 and Var(X) = #

only for a > 1 and the variance only for o > 2.

See Gelman et al., Appendix A or the BUGS manual for mathematical details.

with the mean defined
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Value
dinvgamma gives the density, pinvgamma gives the distribution function, ginvgamma gives the quan-
tile function, and rinvgamma generates random deviates.

Author(s)

Christopher Paciorek

References
Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

x <- rinvgamma(50, shape = 1, scale = 3)
dinvgamma(x, shape = 1, scale = 3)

Inverse-Wishart The Inverse Wishart Distribution

Description

Density and random generation for the Inverse Wishart distribution, using the Cholesky factor of
either the scale matrix or the rate matrix.

Usage
dinvwish_chol(x, cholesky, df, scale_param = TRUE, log = FALSE)

rinvwish_chol(n = 1, cholesky, df, scale_param = TRUE)

Arguments

X vector of values.

cholesky upper-triangular Cholesky factor of either the scale matrix (when scale_param
is TRUE) or rate matrix (otherwise).

df degrees of freedom.

scale_param logical; if TRUE the Cholesky factor is that of the scale matrix; otherwise, of
the rate matrix.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).
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Details
See Gelman et al., Appendix A for mathematical details. The rate matrix as used here is defined as
the inverse of the scale matrix, S™1, given in Gelman et al.

Value

dinvwish_chol gives the density and rinvwish_chol generates random deviates.

Author(s)

Christopher Paciorek

References

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

See Also

Distributions for other standard distributions

Examples

df <- 40

ch <- chol(matrix(c(1, .7, .7, 1), 2))
x <- rwish_chol(1, ch, df = df)
dwish_chol(x, ch, df = df)

is.nf check if a nimbleFunction

Description
Checks an object to determine if it is a nimbleFunction (i.e., a function created by nimbleFunction
using setup code).

Usage
is.nf(f, inputIsName = FALSE, where = -1)

Arguments
f object to be tested
inputIsName logical indicating whether the function is provided as the character name of the
function or the function object itself
where Optional argument needed due to R package namespace issues but which should

not need to be provided by a user.
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See Also

nimbleFunction for how to create a nimbleFunction

is.nl check if a nimbleList

Description

Checks an object to determine if it is a nimbleList (i.e., a list created by n1Def$new()).

Usage
is.nl(1l)

Arguments

1 object to be tested

See Also

nimblelList for how to create a nimbleList

LKJ The LKJ Distribution for the Cholesky Factor of a Correlation Matrix

Description

Density and random generation for the LKJ distribution for the Cholesky factor of a correlation
matrix.

Usage

dlkj_corr_cholesky(x, eta, p, log = FALSE)

rlkj_corr_cholesky(n = 1, eta, p)

Arguments

X upper-triangular Cholesky factor of a correlation matrix.

eta shape parameter.

p size of the correlation matrix (number of rows and columns); required because
random generation function has no information about dimension of matrix to
generate without this argument.

log logical; if TRUE, probability density is returned on the log scale.

n number of observations (only n=1 is handled currently).
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Details

See Stan Development Team for mathematical details.

Value

dlkj_corr_cholesky gives the density and rlkj_corr_cholesky generates random deviates.

Author(s)

Christopher Paciorek

References

Stan Development Team. Stan Reference Functions, version 2.27.

See Also

Distributions for other standard distributions

Examples

eta <- 3
x <- rlkj_corr_cholesky(1, eta, 5)
dlkj_corr_cholesky(x, eta, 5)

makeBoundInfo Make an object of information about a model-bound pairing for get-
Bound. Used internally

Description
Creates a simple getBound_info object, which has a list with a boundID and a type. Unlike
makeParamInfo this is more bare-bones, but keeping it for parallelism with getParam.

Usage

makeBoundInfo(model, nodes, bound)

Arguments

model A model such as returned by nimbleModel.

nodes A character string naming a stochastic nodes, such as 'mu’.

bound A character string naming a bound of the distribution, either ' lower' or 'upper'.
Details

This is used internally by getBound. It is not intended for direct use by a user or even a nimble-
Function programmer.
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makeModelDerivsInfo Information on model structure used for derivatives

Description

Inspect structure of a nimble model to determine nodes needed as "update" and/or "constant" entries
in usage of nimDerivs. This will typically be used in the setup code of a nimbleFunction.

Usage

makeModelDerivsInfo(model, wrtNodes, calcNodes, dataAsConstantNodes = TRUE)

Arguments
model a nimble model object, such as returned from nimbleModel.
wrtNodes a character vector of node names in the model with respect to which derivatives
will be taken through a call to nimDerivs (same as derivs).
calcNodes a character vector of node names in the model that will be used in model$calculate(calcNodes)

while derivatives are being recorded.

dataAsConstantNodes
logical indicating whether data nodes in the model should automatically be
treated as "constant” entries (TRUE) or "update" entries (FALSE). Defaults to
TRUE.

Details

In the compilable parts of a nimbleFunction (i.e. run or other method code, not setup code),
a call like nimDerivs(foo(x), ...) records derivatives of foo(x). If foo contains any calls to
model$calculate(calcNodes), it may be necessary to provide auxiliary information about the
model in further arguments to nimDerivs, specifically the model, updateNodes and constantNodes
arguments. ‘makeModelDerivsInfo is a utility to set up that information for typical use cases. It
returns a list with elements updateNodes and constantNodes to be passed as arguments of the
same name to nimDerivs (along with passing the model as the model argument).

The reason auxiliary information is needed is that recording of derivatives uses a different model
than for regular calculations. Together, updateNodes and constantNodes should contain all nodes
whose values are needed for the model calculations being recorded and that are not part of wrtNodes.
These may include parents of nodes that are in calcNodes but are not themselves in calcNodes, as
well as the values of stochastic nodes in calcNodes, which are needed to calculate the correspond-
ing log probabilities. updateNodes will have their values updated from the regular model every
time that recorded derivative calculations are used. constantNodes will not be updated every time,
which means their values will be permanently fixed either the first time the call to ‘nimDerivs® is in-
voked or on any subsequent call that has reset=TRUE. Use of constantNodes can be slightly more
efficient, but one must be careful to be aware that values will not be updated unless reset=TRUE.
See the automatic differentiation section of the User Manual for more information.

In the above explanation, care must be taken to understand what should be included in wrtNodes.
In a typical use case, some arguments to foo are put into the model using values(model, nodes)
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<-some_foo_arguments. Next there is typically a call to model$calculate(calcNodes). Here
the nodes are considered "with-respect-to" nodes because derivative tracking will follow the ar-
guments of foo, including when they are put into a model and hence used in model$calculate.
Therefore these nodes should be the wrtNodes for makeModelDerivsInfo.

Value

A list with elements updateNodes and constantNodes. These shouls be provided as the same-
named arguments to nimDerivs (same as derivs).

When using double-taping of derivatives (i.e. foo contains another call to nimDerivs), both calls
to nimDerivs should include the model, updateNodes, and constantNodes arguments.

makeParamInfo

Make an object of information about a model-parameter pairing for
getParam. Used internally

Description

Creates a simple getParam_info object, which has a list with a paramID and a type

Usage

makeParamInfo(model, nodes, param, vector = FALSE)

Arguments

model

nodes

param

vector

Details

A model such as returned by nimbleModel.

A character string naming one one or more stochastic nodes, such as "mu",
"cCmu’, ’beta[2]”)", or "eta[1:3, 2]". getParam only works for one node at a
time, but if it is indexed (nodes[i]), then makeParamInfo sets up the information
for the entire vector nodes. The processing pathway is used by the NIMBLE
compiler.

A character string naming a parameter of the distribution followed by node, such

as "mean", "rate", "lambda", or whatever parameter names are relevant for the
distribution of the node.

A logical indicating whether nodes should definitely be treated as a vector in
compiled code, even if it has length = 1. For type consistency, the compiler
needs this option. If nodes has length > 1, this argument is ignored.

This is used internally by getParam. It is not intended for direct use by a user or even a nimble-
Function programmer.
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MCMCconf-class Class MCMCconf

Description

Objects of this class configure an MCMC algorithm, specific to a particular model. Objects are
normally created by calling configureMCMC. Given an MCMCconf object, the actual MCMC func-
tion can be built by calling buildMCMC(conf). See documentation below for method initialize() for
details of creating an MCMCconf object.

Methods

addDefaultSampler( nodes = character(), control =1list(), useConjugacy = getNimbleOption("MCMCuseConjug:
For internal use. Adds default MCMC samplers to the specified nodes.
addMonitors(..., ind=1, print = TRUE) Adds variables to the list of monitors.
Arguments:
.... One or more character vectors of indexed nodes, or variables, which are to be monitored.
These are added onto the current monitors list.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

addMonitors2(..., print = TRUE) Adds variables to the list of monitors2.
Arguments:
.... One or more character vectors of indexed nodes, or variables, which are to be monitored.
These are added onto the current monitors?2 list.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

addOneSampler( thisSamplerName, samplerFunction, targetOne, thisControllList, allowData, print)
For internal use only

addSampler( target = character(), type = "RW”, control =1ist(), print =NULL, name, targetByNode = FALSE, n
Adds a sampler to the list of samplers contained in the MCMCconf object.
Arguments:
target: The target node or nodes to be sampled. This may be specified as a character vector
of model node and/or variable names. For univariate samplers, only a single target node
should be provided (unless ’targetByNode’ is TRUE). For multivariate samplers, one instance
of the multivariate sampler will be assigned to all nodes specified. Nodes are specified in
combination with the ’targetByNode’ and multivariateNodesAsScalars’ arguments.
type: When ’default’ is FALSE, specifies the type of sampler to add, specified as either a char-
acter string or a nimbleFunction object. If the character argument type="newSamplerType’,
then either newSamplerType or sampler_newSamplerType must correspond to a nimbleFunc-
tion (i.e. a function returned by nimbleFunction, not a specialized nimbleFunction). Alter-
natively, the type argument may be provided as a nimbleFunction itself rather than its name.
In that case, the 'name’ argument may also be supplied to provide a meaningful name for
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this sampler. The default value is 'RW’ which specifies scalar adaptive Metropolis-Hastings
sampling with a normal proposal distribution. This default will result in an error if ’target’
specifies more than one target node (unless "targetByNode’ is TRUE). This argument is not
used when the *default’ argument is TRUE.

control: An optional list of control arguments to sampler functions. These will override those
specified in the control list argument to configureMCMC. If a control list is provided, the
elements will be provided to all sampler functions which utilize the named elements given.
For example, the standard Metropolis-Hastings random walk sampler (sampler_RW) utilizes
control list elements ’adaptive’, ’adaptinterval’, ’scale’. The default values for control list
arguments for samplers (if not otherwise provided as an argument to configureMCMC or
addSampler) are contained in the setup code of each sampling algorithm.

print: Logical argument, specifying whether to print the details of newly added sampler(s).

name: Optional character string name for the sampler, which is used by the printSamplers
method. If 'name’ is not provided, the ’type’ argument is used to generate the sampler name.
targetByNode: Logical argument, with default FALSE. This arguments controls whether sep-
arate instances of the specified sampler "type’ should be assigned to each node contained in
“target’. When FALSE, a single instance of sampler "type’ is assigned to operate on ’target’.
When TRUE, potentially multiple instances of sampler ’type’ will be added to the MCMC
configuration, operating on the distinct nodes which compose ’target’. For example, if ’target’
is a vector of distinct node names, then a separate sampler will be assigned to each node in this
vector. If target’ is a model variable which itself is comprised of multiple distinct nodes, then
a separate sampler is assigned to each node composing the ’target’ variable. Additional con-
trol of the handling of multivariate nodes is provided using the *multivariateNodesAsScalars’
argument.

multivariateNodesAsScalars: Logical argument, with default value FALSE. This argument is
used in two ways. Functionally, both uses result in separate instances of samplers being added
to the scalar components which compose multivariate nodes. See details below.

silent: Logical argument, specifying whether to print warning messages when assigning sam-
plers.

default: Logical argument, with default value FALSE. When FALSE, the ’type’ argument dic-
tates what sampling algorithm is assigned to the specified nodes. When TRUE, default sam-
plers will be assigned to the specified nodes following the same logic as the configureMCMC
method, and also using the 'useConjugacy’, ’onlyRW’, ’onlySlice’ and 'multivariateNode-
sAsScalars’ arguments.

useConjugacy: Logical argument, with default value TRUE. If specified as FALSE, then no
conjugate samplers will be used, even when a node is determined to be in a conjugate rela-
tionship. This argument is only used when the ’default’ argument is TRUE.

onlyRW: Logical argument, with default value FALSE. If specified as TRUE, then Metropolis-
Hastings random walk samplers will be assigned for all non-terminal continuous-valued nodes
nodes. Discrete-valued nodes are assigned a slice sampler, and terminal nodes are assigned
a posterior_predictive sampler. This argument is only used when the ’default’ argument is
TRUE.

onlySlice: Logical argument, with default value FALSE. If specified as TRUE, then a slice
sampler is assigned for all non-terminal nodes. Terminal nodes are still assigned a poste-
rior_predictive sampler. This argument is only used when the ’default’ argument is TRUE.

allowData: Logical argument, with default value FALSE. When FALSE, samplers will not be
assigned to operate on data nodes, even if data nodes are included in ’target’. When TRUE,
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samplers will be assigned to ’target’ without regard to whether nodes are designated as data.
... Additional named arguments passed through ... will be used as additional control list
elements.

Details:

Samplers are added to the end of the list of samplers for this MCMCconf object, and do not
replace any existing samplers. Samplers are removed using the removeSamplers method.
Invisibly returns a list of the current sampler configurations, which are samplerConf reference
class objects.

’multivariateNodesAsScalars’ has two usages. The first usage occurs when ’targetByNode’
is TRUE and therefore separate instances of sampler "type’ are assigned to each node which
compose ’target’. In this first usage, this argument controls how multivariate nodes (those
included in the *target’) are handled. If FALSE, any multivariate nodes in "target’” have a single
instance of sampler "type’ assigned. If TRUE, any multivariate nodes appearing in ’target’ are
themselves decomposed into their scalar elements, and a separate instance of sampler ’type’
is assigned to operate on each scalar element.

The second usage of *'multivariateNodesAsScalars’ occurs when ’default’ is TRUE, and there-
fore samplers are assigned according to the default logic of configureMCMC, which is further
controlled by the arguments 'useConjugacy’, >onlyRW’, ’onlySlice’ and multivariateNode-
sAsScalars’. In this second usage, if *'multivariateNodesAsScalars’ is TRUE, then multivari-
ate nodes will be decomposed into their scalar components, and separate samplers assigned to
each scalar element. Note, however, that multivariate nodes appearing in conjugate relation-
ships will still be assigned the corresponding conjugate sampler (provided "useConjugacy’ is
TRUE), regardless of the value of this argument. If *'multivariateNodesAsScalars’ is FALSE,
then a single multivarate sampler will be assigned to update each multivariate node. The
default value of this argument can be controlled using the nimble option "MCMCmultivari-
ateNodesAsScalars’.

getMonitors() Returns a character vector of the current monitors
Details:
See the initialize() function

getMonitors2() Returns a character vector of the current monitors2
Details:
See the initialize() function

getSamplerDefinition(ind, print = FALSE) Returns the nimbleFunction definition of an MCMC
sampler.
Arguments:
ind: A numeric vector or character vector. A numeric vector may be used to specify the index
of the sampler definition to return, or a character vector may be used to indicate a target node
for which the sampler acting on this nodes will be printed. For example, getSamplerDefini-
tion(’x[2]’) will return the definition of the sampler whose target is model node °x[2]’. If more
than one sampler function is specified, only the first is returned.
Returns a list object, containing the setup function, run function, and additional member meth-
ods for the specified nimbleFunction sampler.

getSamplerExecutionOrder () Returns a numeric vector, specifying the ordering of sampler func-
tion execution.
The indices of execution specified in this numeric vector correspond to the enumeration of
samplers printed by printSamplers(), or returned by getSamplers().
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getSamplers(ind) Returns a list of samplerConf objects.
Arguments:

ind: A numeric vector or character vector. A numeric vector may be used to specify the
indices of the samplerConf objects to return, or a character vector may be used to indicate
a set of target nodes and/or variables, for which all samplers acting on these nodes will be
returned. For example, getSamplers(’x’) will return all samplerConf objects whose target is
model node 'x’, or whose targets are contained (entirely or in part) in the model variable *x’.
If omitted, then all samplerConf objects in this MCMC configuration object are returned.

initialize( model, nodes, control =1list(), monitors, thin=1, monitors2 = character(), thin2 =1, useConj
Creates a MCMC configuration for a given model. The resulting object is suitable as an argu-
ment to buildMCMC.

Arguments:
model: A NIMBLE model object, created from nimbleModel(...)

nodes: An optional character vector, specifying the nodes for which samplers should be cre-
ated. Nodes may be specified in their indexed form, ’y[1, 3]’, or nodes specified without
indexing will be expanded fully, e.g., ’x” will be expanded to *x[1]’, *x[2]’, etc. If missing,
the default value is all non-data stochastic nodes. If NULL, then no samplers are added.
control: An optional list of control arguments to sampler functions. If a control list is provided,
the elements will be provided to all sampler functions which utilize the named elements given.
For example, the standard Metropolis-Hastings random walk sampler (sampler_RW) utilizes
control list elements "adaptive’, ’adaptInterval’, ’scale’. The default values for control list
arguments for samplers (if not otherwise provided as an argument to configureMCMC() or
addSampler()) are contained in the setup code of each sampling algorithm.

monitors: A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval ’thin’, and the samples
will be stored into the 'mvSamples’ object. The default value is all top-level stochastic nodes
of the model — those having no stochastic parent nodes.

monitors2: A character vector of node names or variable names, to record during MCMC
sampling. This set of monitors will be recorded with thinning interval "thin2’, and the samples
will be stored into the *'mvSamples2’ object. The default value is an empty character vector,
i.e. no values will be recorded.

thin: The thinning interval for *'monitors’. Default value is one.
thin2: The thinning interval for monitors2’. Default value is one.
useConjugacy: A logical argument, with default value TRUE. If specified as FALSE, then

no conjugate samplers will be used, even when a node is determined to be in a conjugate
relationship.

onlyRW: A logical argument, with default value FALSE. If specified as TRUE, then Metropolis-
Hastings random walk samplers will be assigned for all non-terminal continuous-valued nodes
nodes. Discrete-valued nodes are assigned a slice sampler, and terminal nodes are assigned a
posterior_predictive sampler.

onlySlice: A logical argument, with default value FALSE. If specified as TRUE, then a slice
sampler is assigned for all non-terminal nodes. Terminal nodes are still assigned a poste-
rior_predictive sampler.

multivariateNodesAsScalars: A logical argument, with default value FALSE. If specified as
TRUE, then non-terminal multivariate stochastic nodes will have scalar samplers assigned to
each of the scalar components of the multivariate node. The default value of FALSE results
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in a single block sampler assigned to the entire multivariate node. Note, multivariate nodes
appearing in conjugate relationships will be assigned the corresponding conjugate sampler
(provided useConjugacy == TRUE), regardless of the value of this argument.

enableWAIC: A logical argument, specifying whether to enable WAIC calculations for the
resulting MCMC algorithm. Defaults to the value of nimbleOptions(MCMCenable WAIC’),
which in turn defaults to FALSE. Setting nimbleOptions("MCMCenableWAIC’ = TRUE) will
ensure that WAIC is enabled for all calls to ‘configureMCMC* and ‘buildMCMC".
controlWAIC A named list of inputs that control the behavior of the WAIC calculation, passed
as the "control’ input to "buildWAIC’. See "help(waic)*.

print: A logical argument specifying whether to print the montiors and samplers. Default is
TRUE.

.... Additional named control list elements for default samplers, or additional arguments to be
passed to the autoBlock function when autoBlock = TRUE.

printMonitors() Prints all current monitors and monitors2
Details:
See the initialize() function

printSamplers( ..., ind, type, displayControlDefaults = FALSE, displayNonScalars = FALSE, displayConjuga
Prints details of the MCMC samplers.
Arguments:

... Character node or variable names, or numeric indices. Numeric indices may be used to
specify the indices of the samplers to print, or character strings may be used to indicate a set
of target nodes and/or variables, for which all samplers acting on these nodes will be printed.
For example, printSamplers(’x’) will print all samplers whose target is model node ’x’, or
whose targets are contained (entirely or in part) in the model variable *x’. If omitted, then all
samplers are printed.

ind: A numeric vector or character vector. A numeric vector may be used to specify the
indices of the samplers to print, or a character vector may be used to indicate a set of target
nodes and/or variables, for which all samplers acting on these nodes will be printed. For
example, printSamplers(’x’) will print all samplers whose target is model node ’x’, or whose
targets are contained (entirely or in part) in the model variable ’x’. If omitted, then all samplers
are printed.

type: a character vector containing sampler type names. Only samplers with one of these
specified types, as printed by this printSamplers method, will be displayed. Standard regular
expression mathing using is also applied.

displayConjugateDependencies: A logical argument, specifying whether to display the depen-
dency lists of conjugate samplers (default FALSE).

displayNonScalars: A logical argument, specifying whether to display the values of non-scalar
control list elements (default FALSE).

executionOrder: A logical argument, specifying whether to print the sampler functions in the
(possibly modified) order of execution (default FALSE).

byType: A logical argument, specifying whether the nodes being sampled should be printed,
sorted and organized according to the type of sampler (the sampling algorithm) which is acting
on the nodes (default FALSE).

removeSampler(...) Alias for removeSamplers method

removeSamplers(..., ind, print = FALSE) Removes one or more samplers from an MCMC-
conf object.



MCMCconf-class

This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the remaining set of samplers, sequentially, executing each sampler once.

Arguments:

.... Character node names or numeric indices. Character node names specify the node names
for samplers to remove, or numeric indices can provide the indices of samplers to remove.

ind: A numeric vector or character vector specifying the samplers to remove. A numeric vector
may specify the indices of the samplers to be removed. Alternatively, a character vector may
be used to specify a set of model nodes and/or variables, and all samplers whose ’target’ is
among these nodes will be removed. If omitted, then all samplers are removed.

print: A logical argument specifying whether to print the current list of samplers once the
removal has been done (default FALSE).
replaceSampler(...) Alias for replaceSamplers method

replaceSamplers(...) Replaces one or more samplers from an MCMCconf object with newly
specified sampler(s). Operation and arguments are identical to the ’addSampler’ method, with
the additional side effect of first removing any existing samplers which operate on the specified
node(s).
This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the remaining set of samplers, sequentially, executing each sampler once.
See ’addSamplers’ for a description of the arguments.
This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the newly specified set of samplers, sequentially, executing each sampler once.
resetMonitors() Resets the current monitors and monitors2 lists to nothing.
Details:
See the initialize() function

setMonitors(..., ind=1, print = TRUE) Sets new variables to the list of monitors.
Arguments:

.... One or more character vectors of indexed nodes, or variables, which are to be monitored.
These replace the current monitors list.

print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

setMonitors2(..., print = TRUE) Sets new variables to the list of monitors2.
Arguments:

.... One or more character vectors of indexed nodes, or variables, which are to be monitored.
These replace the current monitors?2 list.

print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function

setSampler(...) Alias for setSamplers method

setSamplerExecutionOrder (order, print = FALSE) Sets the ordering in which sampler func-
tions will execute.
This allows some samplers to be "turned off", or others to execute multiple times in a single
MCMC iteration. The ordering in which samplers execute can also be interleaved.
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Arguments:

order: A numeric vector, specifying the ordering in which the sampler functions will execute.
The indices of execution specified in this numeric vector correspond to the enumeration of
samplers printed by printSamplers(), or returned by getSamplers(). If this argument is omitted,
the sampler execution ordering is reset so as to sequentially execute each sampler once.

print: A logical argument specifying whether to print the current list of samplers in the modi-
fied order of execution (default FALSE).
setSamplers(..., ind, print = FALSE) Sets the ordering of the list of MCMC samplers.

This function also has the side effect of resetting the sampler execution ordering so as to iterate
over the specified set of samplers, sequentially, executing each sampler once.

Arguments:

... Chracter strings or numeric indices. Character names may be used to specify the node
names for samplers to retain. Numeric indices may be used to specify the indicies for the new
list of MCMC samplers, in terms of the current ordered list of samplers.

ind: A numeric vector or character vector. A numeric vector may be used to specify the
indicies for the new list of MCMC samplers, in terms of the current ordered list of samplers.
For example, if the MCMCconf object currently has 3 samplers, then the ordering may be
reversed by calling MCMCconf$setSamplers(3:1), or all samplers may be removed by calling
MCMCconf$setSamplers(numeric(0)).

Alternatively, a character vector may be used to specify a set of model nodes and/or variables,
and the sampler list will modified to only those samplers acting on these target nodes.

As another alternative, a list of samplerConf objects may be used as the argument, in which
case this ordered list of samplerConf objects will define the samplers in this MCMC config-
uration object, completely over-writing the current list of samplers. No checking is done to
ensure the validity of the contents of these samplerConf objects; only that all elements of the
list argument are, in fact, samplerConf objects.

print: A logical argument specifying whether to print the new list of samplers (default FALSE).

setThin(thin, print = TRUE, ind =1) Sets the value of thin.
Arguments:
thin: The new value for the thinning interval ’thin’.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:
See the initialize() function
setThin2(thin2, print = TRUE) Sets the value of thin2.
Arguments:
thin2: The new value for the thinning interval "thin2’.
print: A logical argument specifying whether to print all current monitors (default TRUE).
Details:

See the initialize() function

Author(s)

Daniel Turek
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See Also

configureMCMC

Examples

code <- nimbleCode({

mu ~ dnorm(@, 1)

x ~ dnorm(mu, 1)

»

Rmodel <- nimbleModel(code)
conf <- configureMCMC(Rmodel)
conf$setSamplers(1)
conf$addSampler(target = 'x', type = 'slice', control = list(adaptInterval = 100))
conf$addMonitors('mu")
conf$addMonitors2('x")
conf$setThin(5)
conf$setThin2(10)
conf$printMonitors()
conf$printSamplers()

modelBaseClass-class Class modelBaseClass

Description

This class underlies all NIMBLE model objects: both R model objects created from the return
value of nimbleModel(), and compiled model objects. The model object contains a variety of mem-
ber functions, for providing information about the model structure, setting or querying properties of
the model, or accessing various internal components of the model. These member functions of the
modelBaseClass are commonly used in the body of the setup function argument to nimbleFunc-
tion(), to aid in preparation of node vectors, nimbleFunctionLists, and other runtime inputs. See
documentation for nimbleModel for details of creating an R model object.

Methods

calculate(nodes) See ‘help(calculate)
calculateDiff(nodes) See ‘help(calculateDiff)*

check() Checks for errors in model specification and for missing values that prevent use of calcu-
late/simulate on any nodes

checkBasics() Checks for size/dimension mismatches and for presence of NAs in model vari-
ables (the latter is not an error but a note of this is given to the user)

checkConjugacy(nodeVector, restrictLink = NULL) Determines whether or not the input nodes
appear in conjugate relationships
Arguments:

nodeVector: A character vector specifying one or more node or variable names. If omitted, all
stochastic non-data nodes are checked for conjugacy.



modelBaseClass-class 97

Details: The return value is a named list, with an element corresponding to each conjugate
node. The list names are the conjugate node names, and list elements are the control list
arguments required by the corresponding MCMC conjugate sampler functions. If no model
nodes are conjugate, an empty list is returned.

expandNodeNames ( nodes, env = parent.frame(), returnScalarComponents = FALSE, returnType = "names”, sort
Takes a vector of names of nodes or variables and returns the unique and expanded names in
the model, i.e. ’x’ expands to "x[1]’, "x[2]’, ...
Arguments:
nodes: a vector of names of nodes (or variables) to be expanded. Alternatively, can be a vector
of integer graph IDs, but this use is intended only for advanced users
returnScalarComponents: should multivariate nodes (i.e. dmnorm or dmulti) be broken up
into scalar components?

returnType: return type. Options are 'names’ (character vector) or ’ids’ (graph IDs)
sort: should names be topologically sorted before being returned?

unique: should names be the unique names or should original ordering of nodes (after expan-
sion of any variable names into node names) be preserved

getBound(node, bound) See ‘help(getBound)*

getCode() Return the code for a model after processing if-then-else statements, expanding macros,
and replacing some keywords (e.g. nimStep for step) to avoid R ambiguity.

getConditionallyIndependentSets( nodes, givenNodes, omit = integer(), explore =c("both”, "down", "up"),
see "help(getConditionallyIndepe