
Package ‘rasterdiv’
November 6, 2024

Type Package

Title Diversity Indices for Numerical Matrices

Version 0.3.6

Date 2024-11-06

Maintainer Matteo Marcantonio <marcantoniomatteo@gmail.com>

Description Provides methods to calculate diversity indices on numerical matrices
based on information theory, as described in Rocchini, Marcantonio and Ri-
cotta (2017) <doi:10.1016/j.ecolind.2016.07.039>,
and Rocchini et al. (2021) <doi:10.1101/2021.01.23.427872>.

Depends R (>= 4.0.0)

Imports doParallel, foreach, ggforce, ggplot2, methods, proxy,
progress, terra, twdtw, viridis

Suggests knitr, rmarkdown, rasterVis, RColorBrewer, gridExtra, gstat,
latticeExtra, COVID19

License GPL (>= 2)

Encoding UTF-8

URL https://mattmar.github.io/rasterdiv/

BugReports https://github.com/mattmar/rasterdiv/issues

VignetteBuilder knitr

RoxygenNote 7.3.2

Language en-GB

NeedsCompilation no

Author Matteo Marcantonio [aut, cre],
Martina Iannacito [aut, ctb],
Elisa Marchetto [ctb],
Elisa Thouverai [aut, ctb],
Michele Torresani [aut, ctb],
Daniele Da Re [aut],
Clara Tattoni [aut],
Giovanni Bacaro [aut],

1

https://doi.org/10.1016/j.ecolind.2016.07.039
https://doi.org/10.1101/2021.01.23.427872
https://mattmar.github.io/rasterdiv/
https://github.com/mattmar/rasterdiv/issues

2 Contents

Saverio Vicario [aut, ctb],
Carlo Ricotta [aut],
Duccio Rocchini [aut, ctb]

Repository CRAN

Date/Publication 2024-11-06 11:20:03 UTC

Contents

.CRE_ . 3

.CumRes . 3

.Deltas . 4

.Prob . 4

.Reorder . 5
BergerParker . 5
BergerParkerP . 7
BergerParkerS . 8
copNDVI . 9
CRE . 9
heliPlot . 11
heliPrep . 12
Hill . 13
load_copNDVI . 15
mpaRaoAreaS . 15
mpaRaoS . 16
ndviForestTS . 18
openCluster . 18
paRao . 19
paRaoP . 22
paRaoS . 23
Pielou . 24
PielouP . 25
PielouS . 26
process_raster_result . 28
Rao . 29
RaoAUC . 30
Renyi . 32
RenyiP . 33
RenyiS . 34
Shannon . 35
ShannonP . 36
ShannonS . 37
validateInputs . 38

Index 39

.CRE_ 3

.CRE_ Cumulative Residual Entropy

Description

This function calculates the Cumulative Residual Entropy (CRE) for a given set of values.

Usage

.CRE_(B, base = exp(1))

Arguments

B A numeric vector or matrix representing the values for which CRE is to be cal-
culated.

base The base of the logarithm used in the calculation. The default is the natural
logarithm (e).

Value

A numeric value representing the CRE.

Examples

B <- c(1, 2, 3, 4)
.CRE_(B)

.CumRes Calculate Cumulative Residual Probability

Description

This function computes the cumulative residual probability for a given set of probabilities.

Usage

.CumRes(a)

Arguments

a A numeric vector or matrix representing probabilities.

Value

A numeric vector or matrix of cumulative residual probabilities.

4 .Prob

Examples

a <- data.frame(V1= c(0.2, 0.3, 0.5), V2 =c(0.2, 0.3, 0.5))
.CumRes(a)

.Deltas Calculate Differences Among Values

Description

This function computes the differences among values of a table, used in probability calculations.

Usage

.Deltas(P, first = 0)

Arguments

P A numeric vector or matrix representing probabilities.

first The starting value for difference calculation.

Value

A vector or matrix of differences.

Examples

P <- c(0.2, 0.3, 0.5)
.Deltas(P)

.Prob Calculate Point Probability

Description

This function computes the probability of each point in a given vector or matrix.

Usage

.Prob(C)

Arguments

C A numeric vector or matrix.

Value

A vector of probabilities corresponding to each point in ‘C‘.

.Reorder 5

Examples

C <- c(1, 1, 2, 2, 3)
.Prob(C)

.Reorder Additional supporting functions like ‘.Reorder‘, ‘.Cumsum‘, ‘.Rev‘

Description

These functions provide utility operations like reordering dimensions, computing cumulative sums,
and reversing order along a specific dimension.

Usage

.Reorder(a, ax)

Arguments

a ax Additional parameters specific to each function.

ax Additional parameters specific to each function.

Value

Output varies depending on the function.

BergerParker Berger-Parker’s diversity index

Description

Computes Berger-Parker’s diversity index on different classes of numeric matrices using a moving
window algorithm.

Usage

BergerParker(
x,
window = 3,
rasterOut = TRUE,
np = 1,
na.tolerance = 1,
cluster.type = "SOCK",
debugging = FALSE

)

6 BergerParker

Arguments

x Input data may be a matrix, a Spatial Grid Data Frame, a SpatRaster, or a list
of these objects. In the latter case, only the first element of the list will be
considered.

window The side of the square moving window, it must be an odd numeric value greater
than 1 to ensure that the target pixel is in the centre of the moving window.
Default value is 3.

rasterOut Boolean, if TRUE, output will be in SpatRaster format with x as a template.
np The number of processes (cores) which will be spawned. Default value is 1.
na.tolerance A numeric value (0.0-1.0) which indicates the proportion of NA values that will

be tolerated to calculate Berger-Parker’s index in each moving window over x. If
the relative proportion of NA’s in a moving window is bigger than na.tolerance,
then the value of the window will be set as NA, otherwise, Rao’s index will
be calculated considering the non-NA values. Default values are 1.0 (i.e., no
tolerance for NA’s).

cluster.type The type of cluster which will be created. The options are "MPI" (calls "makeM-
PIcluster"), "FORK", and "SOCK" (call "makeCluster"). Default type is "SOCK".

debugging A boolean variable set to FALSE by default. If TRUE, additional messages will
be printed. For de-bugging only.

Details

Berger-Parker’s index is the relative abundance of the most abundant category (i.e., unique numer-
ical values in the considered numerical matrix). Berger-Parker’s index equals the logarithm of the
inverse Renyi’s index of order infinity, log(1/∞H) or the inverse of Hill’s index of order infinity,
1/∞D.

Value

A numerical matrix with dimensions as dim(x).

Note

Linux users need to install libopenmpi for MPI parallel computing. Linux Ubuntu users may try:
apt-get update; apt-get upgrade; apt-get install mpi; apt-get install libopenmpi-dev; apt-get install
r-cran-rmpi

Microsoft Windows users may need some additional work to use "MPI", see:
https://bioinfomagician.wordpress.com/2013/11/18/installing-rmpi-mpi-for-r-on-mac-and-windows/

Author(s)

Marcantonio Matteo <marcantoniomatteo@gmail.com>, Martina Iannacito <martina.iannacito@inria.fr>,
Duccio Rocchini <duccio.rocchini@unibo.it>

References

Berger, W.H., Parker, F.L. (1970). Diversity of planktonic foraminifera in deep-sea sediments".
Science, 168: 1345-1347.

https://bioinfomagician.wordpress.com/2013/11/18/installing-rmpi-mpi-for-r-on-mac-and-windows/

BergerParkerP 7

Examples

Not run:
Minimal example; compute Renyi's index with alpha 1:5
a <- matrix(c(10,10,10,20,20,20,20,30,30),ncol=3,nrow=3)
berpar <- BergerParker(x=a, window=3)

End(Not run)

BergerParkerP Calculate Berger-Parker Index on a Matrix

Description

This function computes Berger-Parker Index for each cell of a matrix, using a parallelized approach
and considering a specified moving window.

Usage

BergerParkerP(x, window = 1, na.tolerance = 1, debugging = FALSE, np = 1)

Arguments

x A numeric matrix representing the data on which the index is to be calculated.

window The width of the moving window to consider for each cell. The actual window
size will be ‘(2 * window + 1) x (2 * window + 1)‘. Default is 1.

na.tolerance The tolerance level for missing data within the moving window. A window will
be processed only if the proportion of non-missing data is above this threshold.
Value should be between 0 and 1. Default is 1.

debugging Boolean flag to enable or disable debugging messages. Default is FALSE.

np The number of processes (cores) which will be spawned. Default value is 2.

Value

A matrix of the same dimensions as ‘x‘, where each cell contains the Berger-Parker Index calculated
for the window around the cell.

Examples

Not run:
data <- matrix(runif(100), nrow = 10)
bp_index <- BergerParkerP(data, window = 1, np=2)

End(Not run)

8 BergerParkerS

BergerParkerS Sequential Berger-Parker’s diversity index

Description

This function calculates the Berger-Parker’s diversity index for each cell in a matrix, considering a
specified moving window around each cell.

Usage

BergerParkerS(x, window = 1, na.tolerance = 1, debugging = FALSE)

Arguments

x A numeric matrix representing the data on which the index is to be calculated.

window The width of the moving window to consider for each cell. The actual window
size will be ‘(2 * window + 1) x (2 * window + 1)‘. Default is 1.

na.tolerance The tolerance level for missing data within the moving window. A window will
be processed only if the proportion of non-missing data is above this threshold.
Value should be between 0 and 1. Default is 1.

debugging Boolean flag to enable or disable debugging messages. Default is FALSE.

Details

Berger-Parker’s diversity index calculated sequentially over a raster matrix.

Value

A matrix of the same dimensions as ‘x‘, where each cell contains the Berger-Parker’s diversity index
calculated for the window around the cell.

Examples

data <- matrix(runif(100), nrow = 10)
bp_index <- BergerParkerS(data, window = 1)

copNDVI 9

copNDVI Copernicus Long Term (1999-2017) NDVI Overview (5km)

Description

A ‘SpatRaster‘ (EPSG: 4326) of the global average NDVI value per pixel for the 21st of June over
the period 1999-2017.

Format

A ‘SpatRaster‘ containing the following elements:

NDVI Normalised Difference Vegetation Index value (0-255) for each 5 km pixel. This index
provides an indication of the presence of live green vegetation in the area.

Details

This dataset provides a long-term overview of the Normalised Difference Vegetation Index (NDVI)
across the globe. Each pixel represents a 5 km area, with NDVI values ranging from 0 to 255.

Source

https://land.copernicus.eu/en/products/vegetation

References

https://land.copernicus.eu/en/products/vegetation

Examples

copNDVI <- load_copNDVI()

CRE Cumulative Residual Entropy (CRE) Function

Description

Computes the Cumulative Residual Entropy (CRE) for spatial raster data. This function can be used
with either a single raster layer or a list of raster layers. It supports both classic and multidimensional
methods for CRE computation.

https://land.copernicus.eu/en/products/vegetation
https://land.copernicus.eu/en/products/vegetation

10 CRE

Usage

CRE(
x,
window = 3,
method = "classic",
rasterOut = TRUE,
rescale = FALSE,
na.tolerance = 1,
simplify = 2,
np = 1,
cluster.type = "SOCK",
progBar = TRUE,
debugging = FALSE

)

Arguments

x A matrix, SpatRaster, or a list of SpatRaster objects.

window The size of the moving window, must be an odd integer.

method The method for CRE computation, either "classic" or "multidimensional".

rasterOut Logical, if TRUE, returns a SpatRaster, else returns a matrix.

rescale Logical, if TRUE, rescales the data before processing.

na.tolerance A numeric value between 0 and 1, indicating the tolerance level for NA values.

simplify Integer, the number of decimal places for data rounding in case of float numbers.

np The number of parallel processes to use.

cluster.type The type of parallel cluster to use, options are "SOCK", "FORK", or "MPI".

progBar logical. If TRUE a progress bar is shown.

debugging Logical, if TRUE, provides additional debugging information during execution.

Value

Depending on the ’rasterOut’ parameter, this function returns either a SpatRaster or a matrix.

Examples

Not run:
For a matrix input:
result <- CRE(matrix_data, window=3, method="classic")

For a SpatRaster input:
result <- CRE(raster_data, window=3, method="classic", rasterOut=TRUE)

End(Not run)

heliPlot 11

heliPlot Create a Helical Plot for Time Series Data

Description

Creates a helical plot to visualize time series data, emphasizing both the magnitude and rate of
change over time.

Usage

heliPlot(
data,
group = NULL,
facet = FALSE,
xlabel = "Rate of Change",
ylabel = "Values",
arrow = TRUE,
dateFont = 3,
dateInterval = FALSE,
sizeRange = c(1, 3),
facetScales = "free",
dateFormat = "%d %b %y",
n = nrow(data),
...

)

Arguments

data A data frame containing the time series data with required columns: "values_avg",
"change_rate", and "date".

group (Optional) A string specifying the column name in ‘data‘ to use for grouping
data in the plot. If NULL, no grouping is applied.

facet Logical indicating whether to facet the plot based on the ‘group‘ variable. If
TRUE and ‘group‘ is NULL, an error is raised.

xlabel Label for the x-axis, defaults to "Rate of Change".

ylabel Label for the y-axis, defaults to "Values".

arrow Logical indicating whether to add an arrow to the end of each line, defaults to
TRUE.

dateFont Numeric specifying the size of the date font, defaults to 3.

dateInterval Numeric specifying the interval at which date labels should be displayed. If
FALSE, no date labels are shown.

sizeRange Numeric vector of length 2 specifying the range of line widths.

facetScales Character string indicating whether scales should be "fixed", "free_x", "free_y",
or "free".

12 heliPrep

dateFormat Format for the date labels, defaults to d-b-y.

n Numeric specifying the number of points to interpolate along the spline, defaults
to the number of rows in ‘data‘.

... Additional arguments passed on to ‘ggplot2‘ layer functions.

Value

A ‘ggplot‘ object representing the helical plot.

Examples

Assuming `dataPrep` is a data frame prepared with the required structure:

Not run:
heliPlot(dataPrep, group = "myGroup", arrow = TRUE,
dateFont = 3, dateInterval = 30, sizeRange = c(1, 3))

End(Not run)

heliPrep Prepare Data for Helical Plotting

Description

This function preprocesses a time series data for helical plotting by applying a moving average and
smoothing the values and their rate of change. It also handles conversion of numeric dates to Date
objects and ensures proper alignment of the time series for plotting.

Usage

heliPrep(dates, values, filterWidth = 7)

Arguments

dates A vector of dates associated with the values; can be numeric or Date objects. If
numeric, they are treated as days since a given start date.

values A numeric vector of the time series values corresponding to the dates.

filterWidth The size of the moving window to calculate the moving average. Defaults to 7

Value

A data frame suitable for helical plotting, containing the original dates, the smoothed values (‘ch_avg‘),
the smoothed rate of change (‘ch_rate‘), and the endpoints for plotting (‘yend‘, ‘xend‘).

Hill 13

Examples

Not run:
Assume 'dates' and 'values' are available time series data
prepared_data <- heliPrep(dates, values)
Now 'prepared_data' can be used for helical plotting with 'heliPlot'

End(Not run)

Hill Hill’s index of diversity - Hill numbers (D)

Description

Computes Hill’s index of diversity (Hill numbers) on different classes of numeric matrices using a
moving window algorithm.

Usage

Hill(
x,
window = 3,
alpha = 1,
base = exp(1),
rasterOut = TRUE,
np = 1,
na.tolerance = 1,
cluster.type = "SOCK",
debugging = FALSE

)

Arguments

x Input data may be a matrix, a Spatial Grid Data Frame, a SpatRaster, or a list
of these objects. In the latter case, only the first element of the list will be
considered.

window The side of the square moving window. It must be an odd numeric value greater
than 1 to ensure that the target pixel is in the centre of the moving window.
Default value is 3.

alpha Order of the Hill number to compute the index. If alpha is a vector with length
greater than 1, then the index will be calculated over x for each value in the
sequence.

base The logarithm base for the calculation, default is natural logarithm.

rasterOut Boolean; if TRUE, the output will be in SpatRaster format with x as the tem-
plate.

np The number of processes (cores) which will be spawned. Default value is 1.

14 Hill

na.tolerance A numeric value between 0.0 and 1.0, which indicates the proportion of NA
values that will be tolerated to calculate Hill’s index in each moving window
over x. If the relative proportion of NA’s in a moving window is bigger than
na.tolerance, then the value of the window will be set as NA; otherwise, Hill’s
index will be calculated considering the non-NA values. Default value is 1.0
(i.e., full tolerance for NA’s).

cluster.type The type of cluster which will be created. Options are "MPI" (calls "makeMPI-
cluster"), "FORK," and "SOCK" (call "makeCluster"). Default type is "SOCK".

debugging A boolean variable set to FALSE by default. If TRUE, additional messages will
be printed for debugging purposes.

Details

Hill numbers (qD) are calculated on numerical matrices as qD = (
∑R

i=1 p
q
i)

1/(1−q), where q is
the order of the Hill number, R is the total number of categories (i.e., unique numerical values in
a numerical matrix), and p is the relative abundance of each category. When q=1, Shannon.R is
called to calculate exp(H1) instead of the indefinite 1D. If q > 2 ∗ 109, BergerParker.R is called to
calculate 1/∞D. Hill numbers of low order weight more rare categories, whereas Hill numbers of
higher order weight more dominant categories.

Value

A list of matrices of dimension dim(x) with length equal to the length of alpha.

Note

Linux users need to install libopenmpi for MPI parallel computing. Linux Ubuntu users may try:
apt-get update; apt-get upgrade; apt-get install mpi; apt-get install libopenmpi-dev;
apt-get install r-cran-rmpi

Microsoft Windows users may need some additional work to use "MPI". For more details, see:
https://bioinfomagician.wordpress.com/2013/11/18/installing-rmpi-mpi-for-r-on-mac-and-windows/

References

Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology 54,
427-432.

See Also

BergerParker, Shannon

Examples

Minimal example; compute Hill's index with alpha 1:5
a <- matrix(c(10,10,10,20,20,20,20,30,30),ncol=3,nrow=3)
hill <- Hill(x=a,window=3,alpha=1:5)

https://bioinfomagician.wordpress.com/2013/11/18/installing-rmpi-mpi-for-r-on-mac-and-windows/

load_copNDVI 15

load_copNDVI Load Copernicus NDVI data

Description

This function loads and returns the Copernicus Long Term (1999-2017) NDVI Overview stored
within the package.

Usage

load_copNDVI()

Value

A ‘SpatRaster‘ object representing the Copernicus NDVI data.

Examples

copNDVI <- load_copNDVI()

mpaRaoAreaS Area-Based Sequential Parametric Rao’s index of quadratic entropy
(Q)

Description

Calculates an area-based sequential version of the parametric Rao’s index of quadratic entropy (Q).
This function is designed for situations where the diversity index needs to consider geographical
areas and works with raster data representing the distribution of species or other measures.

Usage

mpaRaoAreaS(rasterm, area, alpha, simplify, dist_m, rescale, lambda, window)

Arguments

rasterm Raster; the input raster data representing variables across a geographic space.

area Numeric; the input vector data representing the areas of interest.

alpha Numeric; alpha value for order of diversity in Hill’s Index.

simplify Numeric; the parameter that determines the rounding off of the calculations.

dist_m Character; type of distance metric used (e.g., "euclidean", "manhattan", etc.).

rescale Logical; whether to scale and centre the values in each element of the raster
data.

lambda Numeric; lambda parameter for Minkowski distance calculation.

window Numeric; defines the size of the moving window for the analysis.

16 mpaRaoS

Value

A vector similar to the input, with additional columns representing Rao’s index values for each area.

Author(s)

Matteo Marcantonio <marcantoniomatteo@gmail.com>, Duccio Rocchini <duccio.rocchini@unibo.it>,
Michele Torresani <michele.torresani@unibo.it>

See Also

paRao for a related function dealing with the parallel computation of Rao’s index.

mpaRaoS Multidimensional sequential Parametric Rao’s index of quadratic en-
tropy (Q)

Description

This function calculates the multidimensional parametric Rao’s index of quadratic entropy (Q) using
a sequential method. It is particularly useful in contexts where parallel computation is not feasible
or desired. The function applies a moving window approach to the provided raster data stack.

Usage

mpaRaoS(
x,
alpha,
window,
dist_m,
na.tolerance,
rescale,
lambda,
diag,
time_vector,
stepness,
midpoint,
cycle_length,
time_scale,
debugging,
isfloat,
mfactor,
np,
progBar

)

mpaRaoS 17

Arguments

x input list.

alpha Numeric; alpha value for order of diversity in Hill’s Index.

window Numeric; half of the side of the square moving window used for calculation.

dist_m Character; type of distance used in the analysis.

na.tolerance Numeric; a threshold between 0.0 and 1.0 indicating the allowable proportion of
NA values within each moving window. If the proportion of NA values exceeds
this, the window’s value is set as NA; otherwise, the computation uses the non-
NA values.

rescale Logical; if TRUE, scales and centres the values in each element of ’x’.

lambda Numeric; lambda value used for Minkowski distance calculation.

diag Logical; if TRUE, includes the diagonal of the distance matrix in computations.

time_vector time;

stepness numeric; steepness of the logistic function.

midpoint numeric; midpoint of the logistic function

cycle_length string; The length of the cycle. Can be a numeric value or a string specifying
the units (’year’, ’month’, ’day’, ’hour’, ’minute’, ’second’). When numeric, the
cycle length is in the same units as time_scale. When a string, it specifies the
time unit of the cycle.

time_scale string; Specifies the time scale for the conversion. Must be one of ’year’,
’month’, ’day’, ’hour’, ’minute’, ’second’. When cycle_length is a string, time_scale
changes the unit in which the result is expressed. When cycle_length is numeric,
time_scale is used to compute the elapsed time in seconds.

debugging Logical; if TRUE, additional diagnostic messages are output, useful for debug-
ging. Default is FALSE.

isfloat Logical; specifies if the input data are floats.

mfactor Numeric; multiplication factor applied if input data are float numbers.

np Number of processes for parallel computation.

progBar logical. If TRUE a progress bar is shown.

Value

A list of matrices, each representing a layer of the input RasterStack, containing calculated Rao’s
index values. The dimensions correspond to those of the input, and the list length is equal to the
length of ’alpha’.

Author(s)

Duccio Rocchini <duccio.rocchini@unibo.it>, Matteo Marcantonio <marcantoniomatteo@gmail.com>

See Also

paRao for the parallelized version of the Rao’s index computation.

18 openCluster

ndviForestTS Simulated NDVI dataset

Description

A list of 8-bit matrices.

Format

A list containing matrices:

ndviForestTS List of matrixes of 9 cells simulating NDVI of a patch of forests over 3 years. Each
matrix represents a day in the time series.

Details

This list represents a time series of NDVI values of a patch of forest over 3 years. It is stored as a
list, suitable for explaining how to make helical plots.

Examples

ndviForestTS <- readRDS(system.file("extdata", "ndviForestTS.rds", package = "rasterdiv"))

openCluster Open a Parallel Cluster

Description

Opens a parallel cluster for computation, registers it for parallel operations, and ensures its closure
on script exit.

Usage

openCluster(cluster.type = "SOCK", np = 2, progBar = TRUE, debugging = FALSE)

Arguments

cluster.type A character string specifying the type of cluster. Accepted values are "SOCK",
"FORK", or "MPI".

np An integer specifying the number of processes to be used in the parallel cluster.

progBar logical. If TRUE a progress bar is shown.

debugging logical. For developer use.

Value

An object representing the parallel cluster.

paRao 19

Examples

Not run:
Open a SOCK cluster with 4 cores
cls <- openCluster("SOCK", 4)
Your parallel computation code here
The cluster will automatically close when the script exits

End(Not run)

paRao Parametric Rao’s index of quadratic entropy (Q)

Description

It computes the parametric version of Rao’s index of quadratic entropy (Q) on different classes of
numeric matrices using a moving window algorithm.

Usage

paRao(
x,
area = NULL,
field = NULL,
dist_m = "euclidean",
window = 9,
alpha = 1,
method = "classic",
rasterOut = TRUE,
lambda = 0,
na.tolerance = 1,
rescale = FALSE,
diag = TRUE,
simplify = 0,
np = 1,
cluster.type = "SOCK",
progBar = TRUE,
debugging = FALSE,
time_vector = NA,
stepness = -0.5,
midpoint = 35,
cycle_length = "year",
time_scale = "day"

)

20 paRao

Arguments

x Input data may be a matrix, a Spatial Grid Data Frame, a SpatRaster, or a list of
these objects.

area Input vector area layer for area-based calculation.
field Column name of the vector area layer to use to calculate the index.
dist_m Define the type of distance to be calculated between numerical categories. ‘dist_m‘

can be a character string which defines the name of the distance to derive such
as "euclidean". The distance names allowed are the same as for proxy::dist.
Alternatively, ‘dist_m‘ can be a function which calculates a user-defined dis-
tance, (i.e., function(x,y) {return(cos(y-x)-sin(y-x))}) or a matrix of
distances. If ‘method="multidimension"‘ then only "euclidean", "manhattan",
"canberra", "minkowski" and "mahalanobis" can be used. Default value is "eu-
clidean". If ‘dist_m‘ is a matrix, then the function will assume that the matrix
contains the distances. Moreover "twdtw" (time weighted dynamic time warp-
ing) can be used as a way to calculate distances for time series in the ‘paRao‘
multidimensional mode.

window The side of the square moving window, it must be a vector of odd numeric
values greater than 1 to ensure that the target pixel is in the centre of the moving
window. Default value is 3. ‘window‘ can be a vector with length greater than 1,
in this case, Rao’s index will be calculated over ‘x‘ for each value in the vector.

alpha Weight for the distance matrix. If ‘alpha = 0‘, distances will be averaged with
a geometric average, if ‘alpha=1‘ with an arithmetic mean, if ‘alpha = 2‘ with
a quadratic mean, ‘alpha = 3‘ with a cubic mean, and so on. if ‘alpha‘ tends to
infinite (i.e., higher than the maximum integer allowed in R) or ‘alpha=Inf‘, then
the maximum distance will be taken. ‘alpha‘ can be a vector with length greater
than 1, in this case, Rao’s index will be calculated over ‘x‘ for each value in the
vector.

method Currently, there are two ways to calculate the parametric version of Rao’s index.
If ‘method="classic"‘, then the normal parametric Rao’s index will be calcu-
lated on a single matrix. If ‘method="multidimension"‘ (experimental!), a list
of matrices must be provided as input. In the latter case, the overall distance
matrix will be calculated in a multi- or hyper-dimensional system by using the
distance measure defined through the function argument ‘dist_m‘. Each pair-
wise distance is then multiplied by the inverse of the squared number of pixels
in the considered moving window, and the Rao’s Q is finally derived by applying
a summation. Default value is ‘"classic"‘.

rasterOut Boolean, if TRUE the output will be a SpatRaster object with ‘x‘ as a template.
lambda The value of the lambda of Minkowski’s distance. Considered only if ‘dist_m =

"minkowski"‘ and ‘method="multidimension"‘. Default value is 0.
na.tolerance Numeric value (0.0-1.0) which indicates the proportion of NA values that will

be tolerated to calculate Rao’s index in each moving window over ‘x‘. If the
relative proportion of NA’s in a moving window is bigger than ‘na.tolerance‘,
then the value of the window will be set as NA, otherwise Rao’s index will be
calculated considering the non-NA values. Default value is 1.0. In the rare event
that a moving window has NA cells number < ‘na.tolerance‘ threshold but has
only 1 non-NA value, then its resulting Rao value will always be 0.

paRao 21

rescale Boolean. Considered only if ‘method="multidimension"‘. If TRUE, each ele-
ment of ‘x‘ is rescaled and centred.

diag Boolean. If TRUE then the diagonal of the distance matrix is filled with 0’s,
otherwise with NA’s. If ‘diag=TRUE‘ and ‘alpha=0‘, the output matrix will
inexorably be 0’s.

simplify Number of decimal places to be retained to calculate distances in Rao’s index.
Default ‘simplify=0‘.

np The number of processes (cores) which will be spawned. Default value is 2.
cluster.type The type of cluster which will be created. The options are ‘"MPI"‘ (which calls

"makeMPIcluster"), ‘"FORK"‘, and ‘"SOCK"‘ (which call "makeCluster"). De-
fault type is ‘"SOCK"‘.

progBar logical. If TRUE a progress bar is shown.
debugging A boolean variable set to FALSE by default. If TRUE, additional messages will

be printed. For debugging only.
time_vector time;
stepness numeric; steepness of the logistic function.
midpoint numeric; midpoint of the logistic function
cycle_length string; The length of the cycle. Can be a numeric value or a string specifying

the units (’year’, ’month’, ’day’, ’hour’, ’minute’, ’second’). When numeric, the
cycle length is in the same units as time_scale. When a string, it specifies the
time unit of the cycle.

time_scale string; Specifies the time scale for the conversion. Must be one of ’year’,
’month’, ’day’, ’hour’, ’minute’, ’second’. When cycle_length is a string, time_scale
changes the unit in which the result is expressed. When cycle_length is numeric,
time_scale is used to compute the elapsed time in seconds.

Details

The parametric Rao’s Index (Q) is an extension of Rao’s Index which considers a generalized mean
between distances. The general formula for the parametric Rao’s index is Q_a =

Q =
∑
i,j

pipjd
α
ij

. Where ‘N‘ is the number of numerical categories, ‘i‘ and ‘j‘ are pair of numerical categories in the
same moving window, and ‘alpha‘ is a weight given to distances. In the "multidimension" Rao’s
index, first the distances among categories are calculated considering more than one feature, and
then the overall Rao’s Q is derived by using these distances.

Value

A list of matrices of dimension ‘dim(x)‘ with length equal to the length of ‘alpha‘. If ‘raster-
Out=TRUE‘ and ‘x‘ is a SpatRaster, then the output is a list of SpatRaster objects.

References

Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Popu-
lation Biology, 21(1), 24-43.

22 paRaoP

Examples

Not run:
loading data
data(volcano)
r <- terra::rast(volcano)

we want to compute Rao's index on this data using a 3x3 window
res <- paRao(x = r, window = 3, alpha = 2, method = "classic")
terra::plot(res[[1]][[1]])

End(Not run)

paRaoP Parallelized Parametric Rao’s index of quadratic entropy (Q)

Description

This function computes the parametric Rao’s index of quadratic entropy (Q), a measure of biodi-
versity that considers the evolutionary distances between species, utilizing parallel computing for
enhanced performance. The computation is applied over a moving window across the input data.

Usage

paRaoP(
x,
alpha,
window,
dist_m,
na.tolerance,
diag,
debugging,
isfloat,
mfactor,
np,
progBar

)

Arguments

x Matrix or data frame; the input data over which the index calculation is per-
formed.

alpha Numeric; specifies the alpha value for the order of diversity in Hill’s Index.

window Numeric; half of the side length of the square moving window used in the cal-
culation.

dist_m Character; specifies the type of distance metric used in calculations.

paRaoS 23

na.tolerance Numeric; the threshold proportion of NA values allowed in the moving window.
If exceeded, the calculation for that window is skipped. Values range from 0.0
(no tolerance) to 1.0.

diag Logical; indicates whether the diagonal of the distance matrix should be in-
cluded in the computation. Typically set to FALSE.

debugging Logical; set to FALSE by default. If TRUE, additional console messages will
be displayed for debugging purposes.

isfloat Logical; indicates whether the input data values are floating-point numbers.

mfactor Integer; multiplication factor in case of input data as float numbers.

np Number of processes for parallel computation.

progBar logical. If TRUE a progress bar is shown.

Value

A list of matrices corresponding to the computed Rao’s index values. Each matrix in the list repre-
sents the calculations performed over the moving window, with dimensions equal to dim(x).

Author(s)

Duccio Rocchini <duccio.rocchini@unibo.it>, Matteo Marcantonio <marcantoniomatteo@gmail.com>

See Also

paRao for the related non-parallelized function.

paRaoS Sequential Parametric Rao’s index of quadratic entropy (Q)

Description

Computes the sequential version of the parametric Rao’s index of quadratic entropy (Q), a measure
used in environmental and ecological studies to assess biodiversity by considering the evolutionary
distance between species. The function performs calculations in a sequential manner over a moving
window across the input data.

Usage

paRaoS(
x,
alpha,
window,
dist_m,
na.tolerance,
diag,
debugging,
isfloat,

24 Pielou

mfactor,
progBar

)

Arguments

x Matrix or data frame; the input data over which the index calculation is per-
formed.

alpha Numeric; specifies the alpha value for the order of diversity in Hill’s Index.

window Numeric; half of the side length of the square moving window used in the cal-
culation.

dist_m Character; specifies the type of distance metric used in calculations.

na.tolerance Numeric; the threshold proportion of NA values allowed in the moving window.
If exceeded, the calculation for that window is skipped. Values range from 0.0
(no tolerance) to 1.0.

diag Logical; indicates whether the diagonal of the distance matrix should be in-
cluded in the computation. Typically set to FALSE.

debugging Logical; set to FALSE by default. If TRUE, additional console messages will
be displayed for debugging purposes.

isfloat Logical; indicates whether the input data values are floating-point numbers.

mfactor Integer; indicates the decimal position to round.

progBar logical. If TRUE a progress bar is shown.

Value

A list of matrices corresponding to the computed Rao’s index values. Each matrix in the list repre-
sents the calculations performed over the moving window, with dimensions equal to dim(x).

Author(s)

Duccio Rocchini <duccio.rocchini@unibo.it>, Matteo Marcantonio <marcantoniomatteo@gmail.com>

See Also

paRao for the related non-sequential function.

Pielou Pielou’s Evenness Index

Description

Calculates Pielou’s Evenness Index for a given raster object over a specified window size. The
function can operate in either sequential or parallel mode.

PielouP 25

Usage

Pielou(
x,
window = 3,
rasterOut = TRUE,
np = 1,
na.tolerance = 1,
cluster.type = "SOCK",
debugging = FALSE

)

Arguments

x A raster object (matrix, SpatRaster, SpatialGridDataFrame, or a list containing
one of these).

window The size of the moving window to be used for the calculation. Must be an odd
integer.

rasterOut Logical, if TRUE the output will be a raster object; if FALSE a matrix.

np The number of processes to use in parallel mode. If np > 1, parallel computation
is enabled.

na.tolerance The tolerance level for NA values within the moving window, expressed as a
proportion (0 to 1).

cluster.type The type of cluster to use for parallel computation (e.g., "SOCK", "FORK").

debugging Logical, if TRUE debugging information will be printed.

Value

Returns a raster object or matrix containing the Pielou’s Evenness Index values.

PielouP Parallelised Pielou’s diversity index

Description

This function calculates Pielou’s diversity index in a parallelized manner, allowing for improved
performance on suitable hardware. The diversity index is computed using a moving window ap-
proach over the input data.

Usage

PielouP(x, window = 1, na.tolerance = 1, debugging = FALSE, np)

26 PielouS

Arguments

x Input raster data, representing the environmental variable(s) over which the di-
versity index should be calculated.

window The size of the half-side of the square moving window used in the calculation.
This determines the scale at which diversity is assessed.

na.tolerance A numeric value (between 0.0 and 1.0) indicating the proportion of NA values
that are acceptable in each moving window over the raster data. If the proportion
of NA values in a window exceeds this threshold, the resulting value for that
window is set as NA. The default is 0.0, indicating no tolerance for NA values.

debugging Boolean flag indicating whether additional console output should be generated
for debugging purposes. Defaults to FALSE.

np The number of processes (cores) which will be spawned. Default value is 2.

Value

A matrix or list of matrices, depending on the input, containing the calculated Pielou diversity
index values. Each cell in the output matrix represents the diversity index calculated from the
corresponding moving window of the input data.

Author(s)

Marcantonio Matteo <marcantoniomatteo@gmail.com>, Martina Iannacito <martina.iannacito@inria.fr>,
Duccio Rocchini <duccio.rocchini@unibo.it>

See Also

Pielou for the non-parallelized version of the Pielou’s diversity index calculation.

Examples

Not run:
Demonstration of function with hypothetical data
Ensure you replace this with actual raster data
demo_raster <- #... (your raster data here)
result <- PielouP(x = demo_raster, win = 3, na.tolerance = 0.1, debugging = FALSE)
proceed with analyzing 'result'

End(Not run)

PielouS Sequential Pielou’s diversity index

Description

Computes Pielou’s diversity index using a sequential method, particularly useful for handling large
datasets that might not be efficiently processed in a standard, non-sequential manner.

PielouS 27

Usage

PielouS(x, window = 1, na.tolerance = 1, debugging = FALSE)

Arguments

x Input raster data, representing the environmental variable(s) over which the di-
versity index should be calculated.

window The size of the half-side of the square moving window used in the calculation.
This determines the scale at which diversity is assessed.

na.tolerance A numeric value (between 0.0 and 1.0) indicating the proportion of NA values
that are acceptable in each moving window over the raster data. If the proportion
of NA values in a window exceeds this threshold, the resulting value for that
window is set as NA. The default is 0.0, indicating no tolerance for NA values.

debugging Boolean flag indicating whether additional console output should be generated
for debugging purposes. Defaults to FALSE.

Value

A matrix or list of matrices, depending on the input, containing the calculated Pielou diversity
index values. Each cell in the output matrix represents the diversity index calculated from the
corresponding moving window of the input data.

Author(s)

Marcantonio Matteo <marcantoniomatteo@gmail.com>, Martina Iannacito <martina.iannacito@inria.fr>,
Duccio Rocchini <duccio.rocchini@unibo.it>

See Also

Pielou for the standard computation of Pielou’s diversity index.

Examples

Not run:
Demonstration of function with hypothetical data
Ensure you replace this with actual raster data
demo_raster <- #... (your raster data here)
result <- PielouS(x = demo_raster, win = 3, na.tolerance = 0.1, debugging = FALSE)
proceed with analyzing 'result'

End(Not run)

28 process_raster_result

process_raster_result Process Raster Results

Description

This function processes the results of a list of calculations, packaging them into SpatRaster objects
and naming them appropriately.

Usage

process_raster_result(out, x, alpha, window)

Arguments

out A list containing the results of calculations that need to be transformed into Spa-
tRaster objects. Each element in the list corresponds to a different calculation
result.

x A list of SpatRaster objects or a similar object used as a template for creating
new SpatRaster objects. Specifically, ‘x[[1]]‘ is used as the template.

alpha Numeric or numeric vector indicating the weight(s) used in the distance calcu-
lations that generated ’out’. It is used to label the results appropriately.

window Numeric or numeric vector indicating the size(s) of the moving window(s) used
in the calculations that generated ’out’. It is used to label the results.

Details

The function is designed to post-process the results of spatial calculations performed on raster data.
The typical use case is to process results from a function that performs calculations on different
’windows’ of the data, using varying ’alpha’ parameters, and returns the results as a list. This
function takes that list, converts each element to a SpatRaster (using the first SpatRaster in ’x’ as a
template), and assigns appropriate names to each based on the ’alpha’ and ’window’ parameters.

Value

A list of SpatRaster objects corresponding to the different processed results. Each SpatRaster is
named based on the ’alpha’ and ’window’ parameters used in the calculation. The naming conven-
tion is ’alpha.<alpha value>’ for the inner lists and ’window.<window size>’ for the outer list.

Examples

Not run:

Assume 'result_list' is obtained from a previous calculation, containing
multiple results to be converted to SpatRaster objects.
'raster_template' is a list of SpatRaster objects used as templates.

processed_results <- process_raster_result(out = result_list,

Rao 29

x = raster_template,
alpha = c(1, 2),
window = c(3, 5))

End(Not run)

Rao Rao’s index

Description

An alias for ‘paRao‘ with ‘alpha‘ fixed at 2.

Usage

Rao(x, ...)

Arguments

x Input data may be a matrix, a Spatial Grid Data Frame, a SpatRaster, or a list of
these objects.

... Other parameters passed to ‘paRao‘.

Value

A return value description.

Examples

Not run:
data(volcano)
r <- terra::rast(volcano)
res <- Rao(x = r, window = 3)
terra::plot(res[[1]][[1]])

End(Not run)

30 RaoAUC

RaoAUC Accumulation function for parametric Rao’s index of quadratic en-
tropy (Q)

Description

RaoAUC computes the accumulation function (integral or area under the curve) of the parametric
version of Rao’s index of quadratic entropy (Q) on different classes of numeric matrices using a
moving window algorithm.

Usage

RaoAUC(
alphas = 1:5,
x,
dist_m = "euclidean",
window = 9,
method = "classic",
rasterAUC = TRUE,
lambda = 0,
na.tolerance = 1,
rescale = FALSE,
diag = TRUE,
simplify = 0,
np = 1,
cluster.type = "SOCK",
debugging = FALSE

)

Arguments

alphas A continuous vector of alphas in the form start:end over which integrated the
parametric Rao’s index. Default value is 1:5.

x Input data may be a matrix, a Spatial Grid Data Frame, a SpatRaster, or a list of
these objects. In the latter case, if method="classic" only the first element of
the list will be considered.

dist_m Define the type of distance to be calculated between numerical categories. dist_m
can be a character string which defines the name of the distance to derive such
as "euclidean". The distance names allowed are the same as for proxy::dist.
Alternatively, dist_m can be a function which calculates a user-defined dis-
tance, (i.e., function(x,y) {return(cos(y-x)-sin(y-x))}) or a matrix of
distances. If method="multidimension" then only "euclidean", "manhattan",
"canberra", "minkowski" and "mahalanobis" can be used. Default value is "eu-
clidean". If proxy::dist is a matrix then the function will assume that this is
the distance matrix, and therefore no distance will be derived.

RaoAUC 31

window The side of the square moving window, it must be an odd numeric value greater
than 1 to ensure that the target pixel is in the centre of the moving window.
Default value is 3.

method Currently, there are two ways to calculate the parametric version of Rao’s index.
If method="classic", then the normal parametric Rao’s index will be calcu-
lated on a single matrix. If method="multidimension" (experimental!) a list
of matrices must be provided as input. In the latter case, the overall distance
matrix will be calculated in a multi- or hyper-dimensional system by using the
distance measure defined through the function argument dist_m. Each pairwise
distance is then multiplied by the inverse of the squared number of pixels in the
considered moving window, and the Rao’s Q is finally derived by applying a
summation. Default value is "classic".

rasterAUC Boolean, if TRUE the output will be a SpatRaster object with x as a raster tem-
plate.

lambda The value of the lambda of Minkowski’s distance. Considered only if dist_m =
"minkowski" and method="multidimension". Default value is 0.

na.tolerance Numeric value (0.0 − 1.0) which indicates the proportion of NA values that
will be tolerated to calculate parametric Rao’s index in each moving window
over x. If the relative proportion of NA’s in a moving window is bigger than
na.tolerance, then the value of the window will be set as NA, otherwise Rao’s
index will be calculated considering the non-NA values. Default values are 1.0
(i.e., no tolerance for NA’s). Default value is 1.0.

rescale Boolean. Considered only if method="multidimension". If TRUE, each ele-
ment of x is rescaled and centred.

diag Boolean. If TRUE then the diagonal of the distance matrix is filled with 0’s, oth-
erwise with NA’s. If diag=TRUE and alpha=0, the output matrix will inexorably
be composed of 0’s.

simplify Number of decimal places to be retained to calculate distances in Rao’s index.
Only if x is floats.

np The number of processes (cores) which will be spawned. Default value is 2.

cluster.type The type of cluster which will be created. The options are "MPI" (which calls
"makeMPIcluster"), "FORK" (which calls "makeForkCluster"), and "SOCK"
(which calls "makeCluster"). Default type is "SOCK".

debugging A boolean variable set to FALSE by default. If TRUE, additional messages will
be printed. For debugging only.

Details

The accumulation function for the parametric Rao’s Index (Q) is calculated integrating numerically
over a range of alphas. *RaoAUC* is therefore equal to (

∫ b

a
1

N4 · dαi,j)
1
α dx. Where N is the number

of pixels in a moving window, and alpha is a weight assigned to distances.

Value

A matrix of dimension dim(x). If rasterAUC=TRUE, then the output is a SpatRaster with x as a
template.

32 Renyi

Author(s)

Matteo Marcantonio <marcantoniomatteo@gmail.com>

References

Rocchini, D., M. Marcantonio, and C. Ricotta (2017). Measuring Rao’s Q diversity index from
remote sensing: An open source solution. Ecological Indicators. 72: 234–238.

See Also

paRao

Examples

Minimal example; RaoAUC with alphas ranging from 1 to 10
a <- matrix(c(10,10,10,20,20,20,20,30,30), ncol=3, nrow=3)
out <- RaoAUC(alphas=1:10, x=a, window=3, dist_m="euclidean", na.tolerance=1, rasterAUC=TRUE)

Renyi Renyi Diversity Index Calculation

Description

Computes Renyi diversity index for a given raster object. This function allows specifying window
size, alpha values, and various other parameters for the calculation of the Renyi index.

Usage

Renyi(
x,
window = 3,
alpha = 1,
base = exp(1),
rasterOut = TRUE,
np = 1,
na.tolerance = 1,
cluster.type = "SOCK",
debugging = FALSE

)

Arguments

x A raster object which can be a matrix, SpatialGridDataFrame, SpatRaster, list,
or RasterStack.

window The size of the moving window; must be an odd integer.

alpha A numeric vector of alpha values for the Renyi index.

RenyiP 33

base The logarithm base for the calculation, default is natural logarithm.

rasterOut Logical; if TRUE, returns a SpatRaster object, otherwise returns a list.

np Number of processes for parallel computation.

na.tolerance Tolerance level for NA values, must be within [0-1].

cluster.type Type of cluster for parallel computation, either "SOCK" or "MPI".

debugging Logical; if TRUE, provides additional console output for debugging.

Value

A SpatRaster object or a list of calculated Renyi indices.

Examples

Not run:
result <- Renyi(ndvi.8bit, window = 3, alpha = c(0, 1, 2))

End(Not run)

RenyiP Parallel Computation of Renyi’s Diversity Index

Description

This function computes Renyi’s diversity index for each cell of a matrix, using a parallelized ap-
proach and considering a specified moving window.

Usage

RenyiP(
x,
window = 1,
alpha = 1,
base = exp(1),
na.tolerance = 1,
debugging = FALSE,
np = 1

)

Arguments

x A numeric matrix representing the data on which the index is to be calculated.

window The width of the moving window to consider for each cell. The actual window
size will be ‘(2 * window + 1) x (2 * window + 1)‘. Default is 1.

alpha The alpha parameter for Renyi’s index, influencing sensitivity to species abun-
dance. Default is 1.

34 RenyiS

base The base of the logarithm used in Renyi’s formula. Default is ‘exp(1)‘ (natural
logarithm).

na.tolerance The tolerance level for missing data within the moving window. A window will
be processed only if the proportion of non-missing data is above this threshold.
Value should be between 0 and 1. Default is 1.

debugging Boolean flag to enable or disable debugging messages. Default is FALSE.

np Number of processes for parallel computation.#’

Value

A matrix of the same dimensions as ‘x‘, where each cell contains the Renyi’s diversity index calcu-
lated for the window around the cell.

Examples

data <- matrix(runif(100), nrow = 10)
renyi_index <- RenyiP(data, window = 1, np = 1)

RenyiS Sequential Renyi’s diversity index

Description

This function calculates the Renyi’s diversity index index for each cell in a matrix, considering a
specified moving window around each cell.

Usage

RenyiS(
x,
window = 1,
alpha = 1,
base = exp(1),
na.tolerance = 1,
debugging = FALSE

)

Arguments

x A numeric matrix representing the data on which the index is to be calculated.

window The width of the moving window to consider for each cell. The actual window
size will be ‘(2 * window + 1) x (2 * window + 1)‘. Default is 1.

alpha (Not used in this function, included for compatibility) The alpha parameter for
diversity indices, default is 1.

Shannon 35

base The base of the logarithm used in the Shannon formula, default is ‘exp(1)‘ (nat-
ural logarithm).

na.tolerance The tolerance level for missing data within the moving window. A window will
be processed only if the proportion of non-missing data is above this threshold.
Value should be between 0 and 1. Default is 1.

debugging Boolean flag to enable or disable debugging messages. Default is FALSE.

Details

Berger-Parker’s diversity index calculated sequentially over a raster matrix.

Value

A matrix of the same dimensions as ‘x‘, where each cell contains the Renyi’s diversity index calcu-
lated for the window around the cell.

Examples

data <- matrix(runif(100), nrow = 10)
renyi_index <- RenyiS(data, window = 1)

Shannon Shannon’s Evenness Index

Description

Calculates Shannon’s Evenness Index for a given raster object over a specified window size. The
function can operate in either sequential or parallel mode.

Usage

Shannon(
x,
window = 3,
rasterOut = TRUE,
np = 1,
na.tolerance = 1,
cluster.type = "SOCK",
debugging = FALSE

)

36 ShannonP

Arguments

x A raster object (matrix, SpatRaster, SpatialGridDataFrame, or a list containing
one of these).

window The size of the moving window to be used for the calculation. Must be an odd
integer.

rasterOut Logical, if TRUE the output will be a raster object; if FALSE a matrix.

np The number of processes to use in parallel mode. If np > 1, parallel computation
is enabled.

na.tolerance The tolerance level for NA values within the moving window, expressed as a
proportion (0 to 1).

cluster.type The type of cluster to use for parallel computation (e.g., "SOCK", "FORK").

debugging Logical, if TRUE debugging information will be printed.

Value

Returns a raster object or matrix containing the Shannon’s Evenness Index values.

ShannonP Calculate Shannon-Wiener Index on a Matrix

Description

This function computes Shannon-Wiener Index for each cell of a matrix, using a parallelized ap-
proach and considering a specified moving window.

Usage

ShannonP(x, window = 1, na.tolerance = 1, debugging = FALSE, np = 1)

Arguments

x A numeric matrix representing the data on which the index is to abe calculated.

window The width of the moving window to consider for each cell. The actual window
size will be ‘(2 * window + 1) x (2 * window + 1)‘. Default is 1.

na.tolerance The tolerance level for missing data within the moving window. A window will
be processed only if the proportion of non-missing data is above this threshold.
Value should be between 0 and 1. Default is 1.

debugging Boolean flag to enable or disable debugging messages. Default is FALSE.

np Number of processes for parallel computation.

Value

A matrix of the same dimensions as ‘x‘, where each cell contains the Shannon-Wiener Index calcu-
lated for the window around the cell.

ShannonS 37

Examples

data <- matrix(runif(100), nrow = 10)
shannon_index <- ShannonP(data, window = 1, np = 1)

ShannonS Calculate Shannon-Wiener Index on a Matrix

Description

This function calculates the Shannon-Wiener Index for each cell in a matrix, considering a specified
moving window around each cell.

Usage

ShannonS(x, window = 1, na.tolerance = 1, debugging = FALSE)

Arguments

x A numeric matrix representing the data on which the index is to be calculated.

window The width of the moving window to consider for each cell. The actual window
size will be ‘(2 * window + 1) x (2 * window + 1)‘. Default is 1.

na.tolerance The tolerance level for missing data within the moving window. A window will
be processed only if the proportion of non-missing data is above this threshold.
Value should be between 0 and 1. Default is 1.

debugging Boolean flag to enable or disable debugging messages. Default is FALSE.

Value

A matrix of the same dimensions as ‘x‘, where each cell contains the Shannon-Wiener Index calcu-
lated for the window around the cell.

Examples

data <- matrix(runif(100), nrow = 10)
shannon_index <- ShannonS(data, window = 1)

38 validateInputs

validateInputs Validate Input Parameters for Diversity Index Calculation

Description

Validates the input parameters for diversity index calculation functions. Checks for valid raster
types, window sizes, alpha values, and NA tolerance levels.

Usage

validateInputs(x, window, alpha = 1, na.tolerance)

Arguments

x Raster object to be validated.

window Size of the moving window for calculations.

alpha Diversity index parameter, default is 1.

na.tolerance Proportion of acceptable NA values within the window (range: 0 to 1).

Value

None. Throws an error if any input is invalid.

Index

∗ datasets
copNDVI, 9
ndviForestTS, 18

.CRE_, 3

.CumRes, 3

.Deltas, 4

.Prob, 4

.Reorder, 5

BergerParker, 5, 14
BergerParkerP, 7
BergerParkerS, 8

copNDVI, 9
CRE, 9

heliPlot, 11
heliPrep, 12
Hill, 13

load_copNDVI, 15

mpaRaoAreaS, 15
mpaRaoS, 16

ndviForestTS, 18

openCluster, 18

paRao, 16, 17, 19, 23, 24, 32
paRaoP, 22
paRaoS, 23
Pielou, 24, 26, 27
PielouP, 25
PielouS, 26
process_raster_result, 28

Rao, 29
RaoAUC, 30
Renyi, 32
RenyiP, 33

RenyiS, 34

Shannon, 14, 35
ShannonP, 36
ShannonS, 37

validateInputs, 38

39

	.CRE_
	.CumRes
	.Deltas
	.Prob
	.Reorder
	BergerParker
	BergerParkerP
	BergerParkerS
	copNDVI
	CRE
	heliPlot
	heliPrep
	Hill
	load_copNDVI
	mpaRaoAreaS
	mpaRaoS
	ndviForestTS
	openCluster
	paRao
	paRaoP
	paRaoS
	Pielou
	PielouP
	PielouS
	process_raster_result
	Rao
	RaoAUC
	Renyi
	RenyiP
	RenyiS
	Shannon
	ShannonP
	ShannonS
	validateInputs
	Index

