
Package ‘AssocBin’
September 3, 2025

Version 1.1-2

Encoding UTF-8

Title Measuring Association with Recursive Binning

Description
An iterative implementation of a recursive binary partitioning algorithm to measure pairwise de-
pendence with a modular design that allows user specification of the splitting logic and stop cri-
teria. Helper functions provide suggested versions of both and support visualization and the com-
putation of summary statistics on final binnings. For a thorough discussion and demonstra-
tion of the algorithm, see Salahub and Oldford (2025) <doi:10.1002/sam.70042>.

Maintainer Chris Salahub <chris.salahub@uwaterloo.ca>

Depends R (>= 4.5.0)

Suggests knitr, rmarkdown

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

VignetteBuilder knitr

RoxygenNote 7.3.2

Author Chris Salahub [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3770-6798>),

Wayne Oldford [aut]

Date/Publication 2025-09-02 22:30:13 UTC

Contents
binChi . 2
binner . 3
catBinner . 5
chiScores . 5
depDisplay . 7
DepSearch . 8
depthFill . 10

1

https://doi.org/10.1002/sam.70042
https://orcid.org/0000-0003-3770-6798

2 binChi

halfCutTie . 12
halfSplit . 13
heart . 14
makeBin . 15
makeCriteria . 16
maxScoreSplit . 17
numNumFittedDf . 18
plotBinning . 19
rIntSplit . 20
rUnifSplit . 21
sandboxMaxSplit . 22
singleBinner . 23
sp500pseudo . 24
splitX . 24
stopper . 25
summary.DepSearch . 26
uniBinner . 28
uniMaxScoreSplit . 29
uniRIntSplit . 29

Index 31

binChi Statistics for bins

Description

These functions compute statistics based on observed and expected counts for a list of bins.

Usage

binChi(bins, agg = sum)

binMI(bins, agg = sum)

binAbsDif(bins, agg = sum)

Arguments

bins a list of bins, each a list with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements
‘x‘ and ‘y‘), ‘expn‘, ‘n‘

agg function which is aggregates the individual statistics computed over each bin

binner 3

Details

Binstatistics

Three functions are provided by default, ‘binChi‘ computes the chi-squared statistic by taking the
squared difference between observed and expected counts and dividing this by the expected counts.
‘binMi‘ computes the mutual information for each bin using the observed and expected counts.
Finally, ‘binAbsDif‘ computes the absolute difference between observed and expected counts. Each
function first computes a value on every bin independently and stores all these values in memory
before using the function provided in the optional argument ‘agg‘ to aggregate these values.

Value

A list with elements ‘residuals‘, ‘stat‘, and ‘nbins‘ reporting the individual statistic values (possibly
transformed), the aggegrated statistic value, and the number of bins in ‘bins‘

Functions

• binChi(): Chi-squared statistic

• binMI(): Mutual information

• binAbsDif(): Absolute difference between observed and expected

Author(s)

Chris Salahub

Examples

binList1 <- list(list(x = c(1,2), y = c(3,1), depth = 1, n = 2,
expn = 2),

list(x = c(3,4), y = c(2,4), depth = 1, n = 2,
expn = 2))

binList2 <- list(list(x = c(1,2), y = c(3,1), depth = 6, n = 2,
expn = 4),

list(x = c(), y = c(), depth = 1, n = 0, expn = 1))
binChi(binList1)
binChi(binList2)
binMI(binList1)
binMI(binList2)
binAbsDif(binList2)

binner Many split recursive binning

Description

‘binner‘ is an iterative implementation of a recursive binary partitioning algorithm which accepts
the splitting and stopping functions that guide partitioning as arguments.

4 binner

Usage

binner(x, y, stopper, splitter, init = halfSplit, dropPoints = FALSE)

Arguments

x numeric vector of the first variable to be binned

y numeric vector of the second variable to be binned

stopper function which accepts a list with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and ‘n‘ and
returns a logical indicating whether a split should occur for the bin defined by
that list

splitter function which accepts a list of lists with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and
‘n‘ and returns a list where each element is a list of two corresponding to a split
of the bin at that position in the original list

init function like ‘splitter‘ applied to the first bin

dropPoints logical; should points be dropped from final bins?

Details

‘binner‘ creates a two-dimensional histogram of the sample space of ‘x‘ and ‘y‘ by recursively
splitting partitions of the data using ‘splitter‘ until ‘stopper‘ indicates that all partitions are not to be
split. An optional argument ‘init‘ gives the function applied to the first bin containing all points to
initialize the binning algorithm.

Value

A list of lists each with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, ‘n‘, and ‘stopped‘.

Author(s)

Chris Salahub

Examples

necessary set up
crits <- makeCriteria(depth >= 4, n < 10, expn <= 5)
stopFn <- function(bns) stopper(bns, crits)
spltFn <- function(bn) maxScoreSplit(bn, chiScores)
generate data
x <- sample(1:100)
y <- sample(1:100)
run binner
bins <- binner(x, y, stopper = stopFn, splitter = spltFn)

catBinner 5

catBinner Binning of categorical variable pairs

Description

‘catBinner‘ converts the cross-tabulation of two categorical variables into bins which work with all
of the functionality on bins built into ‘AssocBin‘.

Usage

catBinner(x, y, dropPoints = FALSE)

Arguments

x factor vector for the first categorical variable

y factor vector for the second categorical variable

dropPoints logical; should points be dropped from final bins?

Details

As both variables are already categorical, ‘catBinner‘ performs no splits and does not merge any
categories by default.

Value

A list of lists each with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, ‘n‘, and ‘stopped‘.

Author(s)

Chris Salahub

chiScores Scoring functions

Description

These functions define scores to evaluate candidate splits along a single margin within a partition.

Usage

chiScores(bounds, nbelow, n)

miScores(bounds, nbelow, n)

randScores(bounds, nbelow, n)

6 chiScores

Arguments

bounds numeric vector giving candidate split bounds in increasing order

nbelow integer vector giving the number of points below each candidate split

n the total number of points in the bin to be split

Details

Scorings

Each of these functions accepts ‘bounds‘, an ordered numeric vector containing the candidate splits
within a bin and the bin bounds all in increasing order, and ‘nbelow‘ which gives the count of points
below each split. ‘n‘ is used to determine the number of points above the split.

This implementation choice was made because AssocBin only considers splits on observed points.
It can be proven that, for any convex scoring function, the internal maximum will occur at an
observed point. This choice therefore limits the computational search required to identify and split
at the optimal coordinate.

Value

A vector of scores.

Functions

• chiScores(): A chi-squared statistic score

• miScores(): A mutual information score

• randScores(): A random score for random splitting

Author(s)

Chris Salahub

Examples

vals <- c(2, 5, 12, 16, 19)
chiScores(vals, 1:3, 3)
same for the miScores
miScores(vals, 1:3, 3)
random scoring produces different output every time
randScores(vals, 1:3, 3)
randScores(vals, 1:3, 3)

depDisplay 7

depDisplay Generate a departure display

Description

This is a generic function which generates a departure display to show the dependence between
pairs of variables for several common data structures.

Usage

depDisplay(x, y, ..., pair, quants)

Default S3 method:
depDisplay(x, y, ..., quants, border)

S3 method for class 'data.frame'
depDisplay(x, ..., pair, quants, border)

S3 method for class 'DepSearch'
depDisplay(x, ..., pair, quants, border)

Arguments

x a ‘data.frame‘, ‘DepSearch‘ object, or a vector

y an optional vector, only used if ‘x‘ is a vector

... additional arguments to pass to plot

pair the pair of variables to display when ‘x‘ is a ‘data.frame‘ or an ‘DepSearch‘. If
‘x‘ is a ‘data.frame‘, pair can be specified in three ways: as a string with format
"<y>:<z>", as a character vector of length two, or as a numeric vector of length
two specifying the pair of variables to bin. If ‘x‘ is an ‘DepSearch‘, pair must
be either a number or a string of the format "<y>:<z>" specifying which binned
pair of ‘x‘ to display.

quants list of two named vectors ‘x‘ and ‘y‘ providing the quantiles to display on the
corresponding axis in the case it is a continuous variable. Defaults to the five
number summary.

border string providing the colour of bin borders to draw, NA suppresses borders

Details

depDisplay

‘depDisplay‘ is a wrapper of the ‘plotBinning‘ function with defaults set to be informative for most
investigations.

Value

Invisibly returns the binning obtained and generates a departure display of the pairwise dependence.

8 DepSearch

Methods (by class)

• depDisplay(default): Default depDisplay method

• depDisplay(data.frame): data.frame method for depDisplay

• depDisplay(DepSearch): DepSearch method for depDisplay

Author(s)

Chris Salahub

Examples

x <- rnorm(100)
y <- factor(abs(round(x*2)))
depDisplay(x, y)

on the iris data
data(iris)
firstPair <- depDisplay(iris, pair = c(1,2))
another way
firstPair2 <- depDisplay(iris, pair = c("Sepal.Length", "Sepal.Width"))
a final way
firstPair2 <- depDisplay(iris, pair = "Sepal.Length:Sepal.Width")

DepSearch Test pairwise variable independence

Description

This is a high-level function which accepts a data set, stop criteria, and split functions for continu-
ous variables and then applies a chi-square test for independence to bins generated by recursively
binning the ranks of continuous variables or implied by the combinations of levels of categorical
variables.

Usage

DepSearch(
data,
stopCriteria,
catCon = uniRIntSplit,
conCon = rIntSplit,
ptype = c("simple", "conservative", "gamma", "fitted"),
dropPoints = FALSE

)

DepSearch 9

Arguments

data ‘data.frame‘ or object coercible to a ‘data.frame‘

stopCriteria output of ‘makeCriteria‘ providing criteria used to stop binning to be passed to
binning functions

catCon splitting function to apply to pairs of one cateogorical and one continuous vari-
able

conCon splitting function to apply to pairs of continuous variables

ptype one of ’simple’, ’conservative’, ’gamma’, or ’fitted’: the type of p-values to
compute for continuous pairs and pairs of mixed type. ’Conservative’ assumes
a chi-square distribution for the statistic with highly conservative degrees of
freedom based on continuous uniform margins that do not account for the con-
straints introduced by the ranks. ’Simple’ assumes a chi-square distribution
but uses contingency-table inspired degrees of freedom which can be slightly
anti-conservative in the case of continuous pairs but work well for continu-
ous/categorical comparisons. ’Gamma’ assumes a gamma distribution on the
resulting statistics with parameters determined by empirical investigation. ’Fit-
ted’ mixes the gamma approach and the chi-squared approach these by applying
’gamma’ to continuous-categorical comparisons and a least squares fitted ver-
sion of the simple approximation to continuous-continuous comparisons with
parameters determined by empirical study. For all categorical-categorical com-
parisons the contingency table degrees of freedom are used in a chi-square dis-
tribution.

dropPoints logical; should returned bins contain points?

Details

‘DepSearch‘ is a wrapper function which organizes and executes pairwise binning to test inde-
pendence between all variable pairs in ‘data‘. While splitting logic of any sort is supported for
continuous margins through the use of the ‘catCon‘ and ‘conCon‘ arguments, the default settings
apply rRandom recursive binning, which proceeds for a single pair in three basic steps.

First, the types of the two pairs are identified and rank transformations are applied. If one or both
are continuous, the continuous variables are transformed to their ranks. Categorical, logical, and
ordinal variables are not transformed.

Second, the ranks of the continuous margins are partitioned by edges added at random positions
recursively. For the case of dual continuous variables, the edge at each recursive step is added on
a randomly selected margin. If one variable is not continuous, then only the continuous margin is
recursively split.

Finally, the resulting partition is evaluated using a chi-square test. For non-continuous variables,
this is the classic contingency table test. For continuous variables, expected counts for each cell of
the partition are determined based on the area of the cell. The degrees of freedom for the case of a
continuous margin are motivated by the contingency table case verified by empirical investigations.
Alternatively, several other options are provided to allow a user to select the degrees of freedom
approximation they prefer.

This procedure produces a p-value for every pairwise test, placing all pairwise measures on a com-
parable scale to each other. By placing edges randomly, the method avoids any systematic bias

10 depthFill

against particular patterns while still remaining powerful in the detection of function and non-
function dependencies of any type.

The output of ‘DepSearch‘ is a list, the first element of which is a list of lists, each of which records
the details of the binning of a particular pair of variables.

Value

A ‘DepSearch‘ object, with slots ‘data‘, ‘types‘, ‘pairs‘, ‘binnings‘, ‘residuals‘, ‘statistics‘, ‘K‘,
‘logps‘, and ‘pvalues‘ that stores the results of using recursive binning with the specified splitting
logic to test independence on a data set. ‘data‘ gives the name of the data object in the global
environment which was split, ‘types‘ is a character vector giving the data types of each pair, ‘pairs‘
is a character vector of the variable names of each pair, ‘binnings‘ is a list of lists where each
list is the binning fir to the corresponding pair by the recursive binning algorithm, ‘residuals‘ is
list of numeric vectors giving the residual for each bin of each pairwise binning, ‘statistics‘ is a
numeric vector giving the chi-squared statistic for each binning, ‘K‘ is a numeric vector giving
the number of bins in each binning, ‘logps‘ gives the natural logarithm of the statistic’s p-value,
and finally ‘pvalues‘ is a numeric vector of p-values for ‘statistics‘ based on the specified p-value
computation, which defaults to ’simple’. Internally, the p-values are computed on the log scale to
better distinguish between strongly dependent pairs and the ‘pvalues‘ returned are computed by
calling ‘exp(logps)‘. The order of all returned values is by increasing ‘logps‘.

Author(s)

Chris Salahub

Examples

load the iris data set
data(iris)
evaluate dependence in the iris data
iris_binnings <- DepSearch(iris)
plot top departure displays
plot(iris_binnings)
summarize reults
summary(iris_binnings)

depthFill Encoding bin features to bin colour fills

Description

These functions all accept a list of bins and return a vector of colours of the same length that encode
some feature of the bins. importanceFill is a special case which adjusts the residuals obtained by
the binChi function by the variance of each bin to obtain a better normal approximation and then
only shades those bins which are greater than 2 standard deviations from the mean with a color
ramp that fully saturates for any bins which are greater than a 0.001 standard normal quantile with
a Bonferroni correction applied to account for the number of bins.

depthFill 11

Usage

depthFill(bins, colrng = c("white", "firebrick"))

residualFill(
bins,
resFun = binChi,
maxRes,
colrng = c("steelblue", "white", "firebrick"),
breaks = NA,
nbr = NA

)

importanceFill(
bins,
nbr = NA,
breaks = NA,
colrng = c("steelblue", "white", "firebrick")

)

Arguments

bins list of bins to be visualized

colrng hue range to be passed to ‘colorRampPalette‘ to generate the final hue scale

resFun function which returns a result with a name element ‘residuals‘ that is a numeric
vector of the same length as ‘bins‘

maxRes numeric maximum value of the residuals to maintain the correct origin and scale
the saturation correctly, taken to be the maximum observed residual if not pro-
vided

breaks numeric vector of breakpoints to control hues, defaults to breakpoints that in-
dicate Pearson residuals outside the asymptotic 95 percent confidence interval
around zero under the null

nbr number of breakpoints for automatic breakpoint generation if ‘breaks‘ is not
provided

Details

Shadings

depthFill and residualFill do as indicated: mapping the bin depths and residual colours to saturations
applied to the bins.

Value

A vector of colours the same length as ‘bins‘.

12 halfCutTie

Functions

• depthFill(): Fill by depth

• residualFill(): Fill by residual values

• importanceFill(): Fill by variance-adjusted chi residuals

Author(s)

Chris Salahub

Examples

bin <- makeBin(x = 1:10, y = sample(1:10))
bin2 <- halfSplit(bin, "x")
bin3 <- unlist(lapply(bin2, maxScoreSplit,

scorer = chiScores, minExp = 2),
recursive = FALSE)

plotBinning(bin3, fill = depthFill(bin3)) # all the same depth
plotBinning(bin3, fill = residualFill(bin3)) # chi resids

halfCutTie Halve continuously to break ties

Description

This function halves a bin based on the midpoint of the bounds along whichever margin produces
the larger score.

Usage

halfCutTie(bin, xscore, yscore, wider, squarify = FALSE)

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

xscore numeric value giving the score for all splits along x

yscore numeric value giving the score for all splits along y

wider logical; is the bin wider than it is tall?

squarify logical value, should we force splitting on the longer side regardless of scores?

Details

The goal of this function is to break ties within bin splitting in a way which prevents very small or
lopsided bins from forming, a common problem with the ‘halfSplit‘ function

halfSplit 13

Value

A list of two bins resulting from the split of ‘bin‘ in half along the margin corresponding to the
larger score.

Author(s)

Chris Salahub

Examples

bin <- makeBin(x = 1:10, y = sample(1:10))
halfCutTie(bin, 1, 2, wider = FALSE) # splits on y
halfCutTie(bin, 2, 1, wider = FALSE) # splits on x
halfCutTie(bin, 1, 1, wider = FALSE) # ties are random

halfSplit Halve at an observed point

Description

This function halves a bin under the restriction that splits can only occur at observation coordinates.

Usage

halfSplit(bin, margin = sample(c("x", "y"), 1))

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

margin string, one of ‘x‘ or ‘y‘

Details

Given a bin and a margin, this function splits the bin so half the points are above the new split point
and half are below.

Value

A list of two bins resulting from the split of ‘bin‘ in half along the specified margin

Author(s)

Chris Salahub

14 heart

Examples

bin <- list(x = 1:10, y = sample(1:10),
bnds = list(x = c(0, 10), y = c(0, 10)),
expn = 10, n = 10, depth = 0)

halfSplit(bin)
halfSplit(bin, margin = "y")

heart Heart Disease Diagnosis Data

Description

This data (adapted from the UCI Machine Learning Repository at https://archive.ics.uci.edu/) presents
a single data frame reporting heart disease diagnosis results for patients from studies carried out by
Andras Janosi at the Hungarian Institute of Cardiology; William Steinbrunn and Matthias Pfisterer
at the University Hospitals of Zurich and Basel; and two separate studies by Robert Detrano carried
out at the Cleveland Clinic Foundation and Long Beach V.A. Medical Center. The data contains
measurements of 15 variables collected on 920 participants:

age Age in years
sex Sex
cp Reported chest pain type: typical angina, non-typical angina, non-angina, or no pain
trestbps Resting blood pressure (mmHg on admission to hospital)
chol Serum cholesterol in mg/dl
fbs Indicator of fasting blood sugar >120 mg/dl
restecg Resting electrocardiographic results: normal, indicating ventricular hypertrophy, or dis-

playing ST-T wave abnormality
thalach Maximum measured heart rate
exang Indicator of exercise induced angina
oldpeak ST wave depression induced by exercise relative to rest
slope The slope of the ST segment during peak exercise
ca Number of major blood vessels coloured by fluoroscopy
thal Type of heart defect
num Diagnosis of heart disease. Values greater than one indicate heart disease of different sorts

while a value of zero indicates no heart disease
study The study where the participant’s data was collected

Usage

data(heart)

Format

A matrix with 920 rows and 15 columns, with each row reporting measurements for a participant in
one of the heart disease studies.

makeBin 15

makeBin Make a bin

Description

Creating a new bin object

Usage

makeBin(
x,
y,
bnds = list(x = range(x) - c(1, 0), y = range(y) - c(1, 0)),
expn = length(x),
n = length(x),
depth = 0,
stopped = FALSE

)

Arguments

x numeric vector of observations on the first variable

y numeric vector of observations on the second variable

bnds list of length two with named elements ‘x‘ and ‘y‘ each a vector of length two
giving respective bin boundaries

expn expected number of points in the bin, can be non-integer

n observed count of points in the bin

depth number of splits from the initial bin to the bin

stopped logical; should the bin be split further?

Details

‘makeBin‘ creates a bin list based on the arguments provided to it. Should some be missing, basic
defaults ensure that the complete set of bin characteristics are created in the resulting list represent-
ing the bin object.

Value

A list with named elements matching these arguments

Author(s)

Chris Salahub

16 makeCriteria

Examples

makeBin(x = 1:10, y = sample(1:10),
bnds = list(x = c(0,10), y = c(0, 10)), expn = 10, n = 10,
depth = 0, stopped = FALSE)

makeCriteria Make stop crteria

Description

Capture a sequence of logical statements and append them into a single expression.

Usage

makeCriteria(...)

Arguments

... an arbitrary number of expressions which evaluate to logicals

Details

This function, along with ‘stopper‘ dictates the stop behaviour of recursive binning. It accepts an
arbitrary number of arguments, each a logical statement, and appends them all into a string separated
by the pipe character.

Value

A string which appends all expressions together.

Author(s)

Chris Salahub

Examples

makeCriteria(depth >= 5, n < 1)

maxScoreSplit 17

maxScoreSplit Size-restricted bivariate score maximizing splitting

Description

Splits a bin based on the location maximizing a score function with restrictions on minimum bin
size.

Usage

maxScoreSplit(bin, scorer, minExp = 5, squarify = FALSE)

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

scorer function which accepts a numeric vector of potential split coordinates and the
bounds of ‘bin‘ and returns a numeric vector of scores for each

minExp value giving the smallest expected count allowed for bin splits

squarify logical value, should we force splitting on the longer side regardless of scores?

Details

This function serves as a wrapper which manages the logic of splitting bins using a score function
while maintaining a minimum size and allowing forced splits along the wider edge.

Value

A list of two bins resulting from the split of ‘bin‘ along the corresponding margin at the maximum
location

Author(s)

Chris Salahub

Examples

bin <- makeBin(x = 1:10, y = sample(1:10))
maxScoreSplit(bin, chiScores)
maxScoreSplit(bin, miScores) # pretty similar for both
maxScoreSplit(bin, randScores)
maxScoreSplit(bin, randScores) # different every time

18 numNumFittedDf

numNumFittedDf Computing a binning’s degrees of freedom

Description

Functions which compute the degrees of freedom of a binning for a chi-squared approximation or
parameters for a gamma approximation based on empirical results.

Usage

numNumFittedDf(nbins)

numNumSimpleDf(nbins)

numNumGammaShape(nbins)

numNumGammaScale(nbins)

facNumSimpleDf(nbins, ncat)

facNumFittedDf(nbins, ncat)

facNumGammaShape(nbins, ncat)

facNumGammaScale(nbins, ncat)

Arguments

nbins the number of bins resulting from recursive random binning

ncat if one variable is categorical, the number of values the variable can take

Details

These exported functions are used to compute parameters needed to approximate the distribution of
the chi-squared statistic computed over bins. A full discussion can be found in the accompanying
paper.

Value

A numeric estimate of the paramter. In the case of degrees of freedom, this is generally not an
integer.

Functions

• numNumFittedDf(): Dual continuous fitted df

• numNumSimpleDf(): Dual continuous simple df

• numNumGammaShape(): Dual continuous gamma shape

plotBinning 19

• numNumGammaScale(): Dual continuous gamma scale

• facNumSimpleDf(): Mixed type simple df

• facNumFittedDf(): Mixed type fitted df

• facNumGammaShape(): Mixed type gamma shape

• facNumGammaScale(): Mixed type gamma scale

Author(s)

Chris Salahub

plotBinning Plot a binning using shaded rectangles

Description

Use a binning and vector of fill colours to visualize the sample space of pairwise data.

Usage

plotBinning(
bins,
fill,
add = FALSE,
factor = 0.5,
xlab = "x",
ylab = "y",
showXax = FALSE,
showYax = FALSE,
border = "black",
...

)

Arguments

bins list of lists each with a named elements ‘x‘, ‘y‘, and ‘bnds‘, the last of which is
a list having named elements ‘x‘ and ‘y‘

fill vector of values which can be interpreted as colours of the same length as ‘bins‘

add logical, should the plot of bins be added to the current plot area?

factor number between 0 and 1 giving the factor applied to jitter categorical variables

xlab string, the label to be placed on the x axis

ylab string, the label to be placed on the y axis

showXax logical indicating whether to plot x axis markings

showYax logical indicating whether to plot y axis markings

border argument to be passed to ‘rect‘ internally giving the border colour

... optional additional arguments to be passed to ‘plot‘, ‘points‘

20 rIntSplit

Details

‘plotBinning‘ plots each bin within a list of bins with custom shading to communicate large resid-
uals, the depth of bins, or highlight particular bins. It automatically jitters points within categorical
levels to avoid overplotting.

Value

A list of lists each with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and ‘n‘.

Author(s)

Chris Salahub

Examples

bin <- list(x = 1:10, y = sample(1:10),
bnds = list(x = c(0, 10), y = c(0, 10)),
expn = 10, n = 10, depth = 0)

bin2 <- halfSplit(bin, "x")
bin3 <- unlist(lapply(bin2, maxScoreSplit, scorer = chiScores),

recursive = FALSE)
plotBinning(bin3)

rIntSplit Random integer splitting

Description

A function which splits a bin at a random integer conforming to limits on minimum bin size.

Usage

rIntSplit(bin, minExp = 5, squarify = TRUE)

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

minExp numeric giving the minimum expected count allowed in a bin

squarify logical value, should we force splitting on the longer side?

Details

This function serves as a wrapper which manages the interaction of a score function, marginal
splitting functions, tie breaking function, and a maximum selection function to split a bin at the
observation coordinate which maximizes the score function.

rUnifSplit 21

Value

A list of two bins resulting from the split of ‘bin‘ along the corresponding margin at the maximum
location

Author(s)

Chris Salahub

Examples

bin <- makeBin(x = 1:10, y = sample(1:10))
rIntSplit(bin, minExp = 2)

rUnifSplit Random uniform splitting

Description

Split bins randomly and uniformly

Usage

rUnifSplit(bin, minExp = 0, squarify = FALSE)

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

minExp numeric giving the minimum expected count allowed in a bin
squarify logical value, should we force splitting on the longer side?

Details

This function samples a coordinate uniformly along a random margin and splits a bin at that coordi-
nate. In contrast to maxScoreSplit with randScores, this can introduce splits at locations other than
the points.

Value

A list of two bins resulting from the split of ‘bin‘ at a random location on a random margin

Author(s)

Chris Salahub

Examples

bin <- makeBin(x = 1:10, y = sample(1:10))
rUnifSplit(bin, minExp = 2)

22 sandboxMaxSplit

sandboxMaxSplit Bivariate score maximizing splitting

Description

A function which splits a bin based on the location maximizing a score function.

Usage

sandboxMaxSplit(
bin,
scorer,
ties = halfCutTie,
minExp = 5,
pickMax = which.max,
...

)

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

scorer function which accepts a numeric vector of potential split coordinates and the
bounds of ‘bin‘ and returns a numeric vector of scores for each

ties function which is called to break ties when all splits generate the same score

minExp value giving the smallest expected count allowed for bin splits

pickMax function which accepts a list of scores and returns the element of the largest
score according to some rule

... optional additional arguments to ‘scorer‘

Details

This function serves as a wrapper which manages the interaction of a score function, marginal
splitting functions, tie breaking function, and a maximum selection function to split a bin at the
observation coordinate which maximizes the score function.

Value

A list of two bins resulting from the split of ‘bin‘ along the corresponding margin at the maximum
location

Author(s)

Chris Salahub

singleBinner 23

singleBinner Single split recursive binning

Description

‘singleBinner‘ is an iterative implementation of a recursive binary partitioning algorithm which
accepts the splitting and stopping functions that guide partitioning as arguments.

Usage

singleBinner(
x,
y,
stopper,
splitter,
init = halfSplit,
maxK = 5,
dropPoints = FALSE

)

Arguments

x numeric vector of the first variable to be binned

y numeric vector of the second variable to be binned

stopper function which accepts a list with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and ‘n‘ and
returns a logical indicating whether a split should occur for the bin defined by
that list

splitter function which accepts a list of lists with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and
‘n‘ and returns a list where each element is a list of two corresponding to a split
of the bin at that position in the original list

init function like ‘splitter‘ applied to the first bin

maxK integer giving the number of bins where splitting is stopped regardless of stop
criteria

dropPoints logical; should points be dropped from final bins?

Details

‘singleBinner‘ creates a two-dimensional histogram of the sample space of ‘x‘ and ‘y‘ by recursively
splitting partitions of the data using ‘splitter‘ until ‘stopper‘ indicates that all partitions are not to be
split. An optional argument ‘init‘ gives the function applied to the first bin containing all points to
initialize the binning algorithm. Unlike ‘binner‘, it does this by splitting one bin at a time, and so
accepts an argument to specify exactly how many bins to produce.

Value

A list of lists each with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, ‘n‘, and ‘stopped‘.

24 splitX

Author(s)

Chris Salahub

Examples

necessary set up
crits <- makeCriteria(depth >= 4, n < 10, expn <= 5)
stopFn <- function(bns) stopper(bns, crits)
spltFn <- function(bn) rIntSplit(bn, minExp = 5)
generate data
x <- sample(1:100)
y <- sample(1:100)
run binner
bins <- singleBinner(x, y, stopper = stopFn, splitter = spltFn)

sp500pseudo De-Garched S&P 500 returns

Description

This data is the result of code from the ’zenplots’ package to process S&P 500 consituent stock
returns into uniform pseudo-observations for measuring association.

Usage

data(sp500pseudo)

Format

A matrix with 755 rows and 461 columns, the rows correspond to dates between 2007 and 2009 and
the columns correspond to the different S&P 500 constituent stocks.

splitX Helper functions for marginal splitting

Description

These functions are helpers to safely split bins along X or Y.

Usage

splitX(bin, bd, above, below)

splitY(bin, bd, above, below)

stopper 25

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

bd numeric split point within the bin bounds

above indices of ‘x‘ and ‘y‘ points in the bin above ‘bd‘

below indices of ‘x‘ and ‘y‘ points in the bin below ‘bd‘

Details

These unexported functions have been defined primarily to clean up other code, but could be
changed to obtain different core functionality.

Value

A list of two bins resulting from the split of ‘bin‘ at ‘bds‘.

Functions

• splitX(): Splitting on x

• splitY(): Splitting on y

Author(s)

Chris Salahub

stopper Check bins against stop criteria

Description

Evaluate the stop ‘criteria‘ for each bin in ‘binList‘

Usage

stopper(binList, criteria)

Arguments

binList a list of bins, each a list which can be cast as an environment for evaluation

criteria string of logical expressions separated by pipes to be evaluated within each bin
of ‘binList‘

Details

This function makes use of R’s lexical scoping to evaluate ‘criteria‘ (a string), within each bin of
‘binList‘.

26 summary.DepSearch

Value

A logical vector of the same length as ‘binList‘.

Author(s)

Chris Salahub

Examples

crits <- makeCriteria(depth >= 5, n < 1)
binList1 <- list(makeBin(x = c(1,2), y = c(3,1), depth = 1, n = 2),

makeBin(x = c(3,4), y = c(2,4), depth = 1, n = 2))
binList2 <- list(makeBin(x = c(1,2), y = c(3,1), depth = 6, n = 2),

makeBin(x = c(), y = c(), depth = 1, n = 0))
stopper(binList1, crits)
stopper(binList2, crits)

summary.DepSearch S3 methods for ‘DepSearch‘

Description

The ‘summary‘ and ‘plot‘ methods outlined here support the quick description of an ‘DepSearch‘
object.

Usage

S3 method for class 'DepSearch'
summary(object, ..., adjustP = FALSE)

S3 method for class 'DepSearch'
print(x, ...)

S3 method for class 'DepSearch'
plot(
x,
...,
which = 1:5,
border = "black",
buffer = 0.01,
dropPoints = FALSE,
colrng = c("steelblue", "white", "firebrick"),
nbr = NA,
pch = "."

)

summary.DepSearch 27

Arguments

object ‘DepSearch‘ object to summarize

... additional arguments to pass on to the method

adjustP logical: should the p-values be adjusted for multiple testing?

x object with class ‘DepSearch‘

which indices of binnings to display from ‘x‘, where binnings are ordered by increasing
p-value

border colour of borders to be drawn on the binnings

buffer relative width of empty space separating categories

dropPoints logical: should points be dropped for the plot of the binnings?

colrng colour range to be passed to ‘residualFill‘ for plotting

nbr number of breaks to be passed to ‘residualFill‘ for plotting

pch point type passed to plot

Details

Methods

For each index in ‘which‘, this function produces a row of three plots. The first plot is the raw data,
the second plot is the ranks of the data, and the final plot is the binning contained in the ‘DepSearch‘
object.

Value

Nothing for the plot method, while summary quietly returns a summary of ‘DepSearch‘

Functions

• summary(DepSearch): Summary method for ‘DepSearch‘

• print(DepSearch): Print method for ‘DepSearch‘

• plot(DepSearch): Plot method for ‘DepSearch‘

Author(s)

Chris Salahub

28 uniBinner

uniBinner Single margin binning

Description

‘uniBinner‘ is an iterative implementation of a recursive binary partitioning algorithm which accepts
the splitting and stopping functions that guide partitioning as arguments and applies them to a
specified margin alone.

Usage

uniBinner(x, y, stopper, splitter, dropPoints = FALSE, on = "y")

Arguments

x factor vector for the the first variable

y numeric vector of the second variable (to be split)

stopper function which accepts a list with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and ‘n‘ and
returns a logical indicating whether a split should occur for the bin defined by
that list

splitter function which accepts a list of lists with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and
‘n‘ and returns a list where each element is a list of two corresponding to a split
of the bin at that position in the original list

dropPoints logical; should points be dropped from final bins?

on one of ’x’ or ’y’: the margin to split

Details

‘binner‘ creates a one-dimensional histogram of ‘y‘ or ‘x‘ for each categorical value of the other by
recursively splitting partitions of the data using ‘splitter‘ until ‘stopper‘ indicates that all partitions
are not to be split.

Value

A list of lists each with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, ‘n‘, and ‘stopped‘.

Author(s)

Chris Salahub

uniMaxScoreSplit 29

uniMaxScoreSplit Univariate score maximizing splitting

Description

A function which splits a bin based on the location maximizing a score function.

Usage

uniMaxScoreSplit(bin, scorer, minExp = 5, on = "y")

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

scorer function which accepts a numeric vector of potential split coordinates and the
bounds of ‘bin‘ and returns a numeric vector of scores for each

minExp numeric giving the minimum expected count allowed in a bin

on one of "x" or "y": the margin to split

Details

This function is the univariate version of ‘maxScoreSplit‘ and so is considerably simpler. It assumes
the variable to be split is named ‘x‘ in the bin, and the other variable is to remain unsplit.

Value

A list of two bins resulting from the split of ‘bin‘ at the maximum split location along y

Author(s)

Chris Salahub

uniRIntSplit Univariate random integer splitting

Description

A function which splits a bin along x at a random integer conforming to limits on minimum bin
size.

Usage

uniRIntSplit(bin, minExp = 5, on = "y")

30 uniRIntSplit

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

minExp numeric giving the minimum expected count allowed in a bin

on one of "x" or "y": the margin to split

Details

This function serves as a wrapper which manages the interaction of a score function, marginal
splitting functions, tie breaking function, and a maximum selection function to split a bin along a
single margin at the observation coordinate which maximizes the score function.

Value

A list of two bins resulting from the split of ‘bin‘ along the corresponding margin at the maximum
location

Author(s)

Chris Salahub

Examples

bin <- makeBin(x = 1:10, y = sample(1:10))
rIntSplit(bin, minExp = 2)

Index

∗ datasets
heart, 14
sp500pseudo, 24

binAbsDif (binChi), 2
binChi, 2
binMI (binChi), 2
binner, 3

catBinner, 5
chiScores, 5

depDisplay, 7
DepSearch, 8
depthFill, 10

facNumFittedDf (numNumFittedDf), 18
facNumGammaScale (numNumFittedDf), 18
facNumGammaShape (numNumFittedDf), 18
facNumSimpleDf (numNumFittedDf), 18

halfCutTie, 12
halfSplit, 13
heart, 14

importanceFill (depthFill), 10

makeBin, 15
makeCriteria, 16
maxScoreSplit, 17
miScores (chiScores), 5

numNumFittedDf, 18
numNumGammaScale (numNumFittedDf), 18
numNumGammaShape (numNumFittedDf), 18
numNumSimpleDf (numNumFittedDf), 18

plot.DepSearch (summary.DepSearch), 26
plotBinning, 19
print.DepSearch (summary.DepSearch), 26

randScores (chiScores), 5

residualFill (depthFill), 10
rIntSplit, 20
rUnifSplit, 21

sandboxMaxSplit, 22
singleBinner, 23
sp500pseudo, 24
splitX, 24
splitY (splitX), 24
stopper, 25
summary.DepSearch, 26

uniBinner, 28
uniMaxScoreSplit, 29
uniRIntSplit, 29

31

	binChi
	binner
	catBinner
	chiScores
	depDisplay
	DepSearch
	depthFill
	halfCutTie
	halfSplit
	heart
	makeBin
	makeCriteria
	maxScoreSplit
	numNumFittedDf
	plotBinning
	rIntSplit
	rUnifSplit
	sandboxMaxSplit
	singleBinner
	sp500pseudo
	splitX
	stopper
	summary.DepSearch
	uniBinner
	uniMaxScoreSplit
	uniRIntSplit
	Index

