Package ‘Certara.RsNLME’

August 22, 2025

Title Pharmacometric Modeling
Version 3.1.0

Description Facilitate Pharmacokinetic (PK) and Pharmacodynamic (PD) modeling
and simulation with powerful tools for Nonlinear Mixed-Effects (NLME)
modeling. The package provides access to the same advanced Maximum Likelihood
algorithms used by the NLME-Engine in the Phoenix platform. These tools support
arange of analyses, from parametric methods to individual and pooled data, and
support integrated use within the Pirana pharmacometric workbench
<doi:10.1002/psp4.70067>. Execution is supported both locally or on
remote machines.

Depends R (>=4.0)
License LGPL-3

URL https://certara.github.io/R-RsNLME/
Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests rlang, knitr, rmarkdown, testthat, magrittr

Imports xml2, assertthat, Certara. NLMES, data.table, jsonlite,
methods, utils, ssh

Collate 'BootstrapParams.R' 'NlmeParallelMethod.R'
'NlmeUserAuthentication.R' 'NlmeParallelHost.R'
'SimpleNImeJob.R' 'BootNImeJob.R' 'CovariateEffectModel.R'
'GenerateControlfile.R' 'GenerateParamsfile.R'
‘NlmeColumnMapping.r' NlmeCovariateParameter.r'
'NlmeDataset.r' 'NlmeDoseMapping.R' 'NImeEmaxParameters.R'
'NlmelndirectParameters.R' 'NlmeModelAbsorption.R'
'NlmeModelParameterization.R' 'NlmeModelType.R'
'NlmeParamsMapping.R' 'NlmePkParameters.R' 'NlmePmIModellnfo.R'
'NlmeRandParamsMapping.R' 'NlmeRandomEffectBlock.r'
'NlmeRemoteExecutor.R' 'NlmeScenario.R' 'NImeTableDef R’
'SortColumns.R' 'ProfileParameters.R' 'ProfileNImeJob.R'
'ProfileVar.R' 'error_model.r' ‘pml_model.r'

https://doi.org/10.1002/psp4.70067
https://certara.github.io/R-RsNLME/

2 Contents

'RandomEffectsMethods.R' 'ShotgunNImeJob.R' 'SortByNImeJob.R'
'StepwiseParams.R' 'StepwiseNImeJob.R' 'acceptAllEffects.R'
‘addInfusion.R' 'addLabel.R' 'addTablesToColumnMapping.R'
'add_input_dosingCycles.R' 'bootstrap.r' 'built_in_models.r'
'checkHostParams.R' 'colMapping.R' '‘copyModel.R'
'covariateModel.R' 'covariateNames.R' 'createInitialMapping.R'
'create_model_from_metamodel.R' ‘create_model_info.R' 'data.r'
'dosing.r' 'editModel.R' 'emaxmodel.R' 'engine_params.r'
‘extract_mmdl.R' 'fitmodel.R' 'fitmodelHelperFunctions.R'
'fixedEffect.R' 'generateCovarSearchArgsFile.R' 'getThetas.R'
'get_omega_omegaSE.R' 'globals.R' 'hostParams.R' 'job.r'
'linearmodel.R' 'log_Execution.R' 'map_covariates.R'
'map_dosepoints.R' 'model VariableNames.R' 'observation.r'
‘'obtain_ NLMELicense.R' 'parameterNames.R' 'parseControlFile.R’
'‘parsePMLColMap.R' '‘parse_mmdl.R' ‘pkemaxmodel.R’
'pkindirectmodel.R' 'pklinearmodel.R' 'pkmodel.R’
'profile_estimation.r' TandomEffect.R’
'readInitialEstimatesParams.R' 'rTun_metamodel.R' 'saveModel.R'
'saveUpdatedMetamodel.R' 'secondary_variable.r'
'shotgunSearch.R' 'simParams.R' 'sortfit.R' 'stepwiseSearch.R'
'structural_param.r' 'tableParams.R' 'update_PMLwithThetas.R'
'vpe.r' 'writeColumnMapping.R' 'writeDefaultFiles.R'

NeedsCompilation no

Author James Craig [aut, cre],
Michael Tomashevskiy [aut],
Vitalii Nazarov [aut],
Shuhua Hu [ctb],
Soltanshahi Fred [aut],
Certara USA, Inc. [cph, fnd]

Maintainer James Craig <james.craig@certara.com>
Repository CRAN
Date/Publication 2025-08-22 06:40:13 UTC

Contents
addADDL e e e e e 4
addCovariate e e e e e e e e 5
addDoseCycle 7
addExtraDef e 9
addInfusion 9
addLabel e 10
addMDV . . e e e e 11
addReset e e e 12
addSecondary 13
addSteadyState L e 14

DOOLSIrap e e e 15

Contents

Index

3

cancellob e e e e 16
colMapping e e e e 17
copyModel e 18
covariateNames e e e e 19
createModellnfo 20
dataMapping e e 21
doseNames e e e e e e e e e 21
editModel e e e e 22
emaxmodel e 23
engineParams L 24
extraDoselines e e 30
extraDoseNames e e e e e 31
fitmodel e e e e e e 32
fixedEffect e e e e 35
getRandomEffectNames o L oo 37
getThetas e 37
hostParams 38
initFixedEffects 39
linearmodel e e e e 41
listCovariateEffectNames e 42
modelVariableNames 43
obtain. NLMELicense e 43
OneCpt_IVInfusionData 45
parsePMLCoIMap e e e 45
pkcovbglData e 46
pkData e e e 47
pkemaxmodel e 47
pkindirectmodel 52
pklinearmodel 57
pkmodel e e e 62
pkpdData e e 65
print NImePmlIModel 66
randomEffect L 66
removeCovariate e e e e e 67
remove_ NLMELicense e 68
residualEffectNames L 69
residualError L 70
secondaryParameterNames L Lo 71
shotgunSearch L 72
simmodel L e e e 74
SOItfit L e e e 75
stepwiseSearch 79
structuralParameter L L e e 81
structuralParameterNames e 83
tableParams 83
textualmodel L e e e 85
vpemodel e e 86
89

4 addADDL

addADDL Adds ADDL extra column definition to model object

Description

Specify ADDL column definition in model object instead of specifying ADDL through addDoseCycle

Usage

addADDL (.Object, ADDL, II)

Arguments
.Object Model object
ADDL Column mapping argument specifying corresponding "ADDL" column in input
data set
II Column mapping argument specifying corresponding "II" column in input data
set
Value

Modified NImePm1lModel object

Examples

pkDatal <- pkData
pkDatal$ii <- @
pkDatal$addl <- @
model <- pkmodel(numComp = 2,
absorption = "FirstOrder”,
ID = "Subject”,
Time = "Act_Time",
CObs = "Conc",
Aa = "Amount”,
data = pkDatal,
modelName = "PkModel”,
workingDir = tempdir())
model <- addADDL(model, ADDL = "addl”, II = "ii")

addCovariate 5

addCovariate Add covariate to model object

Description

Add a continuous, categorical, or occasion covariate to model object and set covariate effect on
structural parameters.

Usage

addCovariate(
.Object,
covariate,
effect = NULL,
type = c("Continuous”, "Categorical”, "Occasion"),
direction = c("Forward”, "Interpolate"”, "Backward"),
option = c("Yes", "PlusOne”, "No"),
center = NULL,
centerValue = NULL,
levels = NULL,
labels = NULL,
isDiagonal = TRUE,
values = NULL,
isPositive = TRUE

Arguments

.Object Model object

covariate Name of covariate. If the involved model has columns mapped (i.e. model with
columnMap = TRUE) use named character if the name of the covariate is different
from the corresponding column in the input dataset, for example, covariate
= c(BW = "BodyWeight"), where BW denotes the name of the covariate, and
"BodyWeight" is the name of the corresponding column in the input dataset.

effect Name of structural parameter(s) on which the covariate has an effect. Specify
effect as character or character vector if the covariate has an effect on multiple
structural parameters. Important for Occasion Covariates: When modify-
ing an existing occasion covariate (e.g., changing option or values), you must
list all structural parameters currently affected by this occasion covariate in the
effect argument, even those whose effect relationship is not being changed in
this specific call.

type Type of covariate. Options are "Continuous”, "Categorical”, "Occasion”.

direction Direction of missing values propagation (if no covariate value is given). Options
are "Forward”, "Interpolate”, "Backward”, where "Interpolate” is only
applicable to type = "Continuous”.

6 addCovariate

option Options are "Yes", "PlusOne”, or "No".

* "Yes": Apply the covariate effect using the standard method (multiplicative
for LogNormal style, additive for Normal style).

e "PlusOne"”: Apply the covariate effect using the "1 + effect”" formulation.
This is only applicable to continuous and categorical covariates where the
affected structural parameter has style = "LogNormal”.

* "No": Remove the specified covariate effect from the specified structural
parameter(s). The covariate itself (and its definition, e.g., fcovariate(Occ1))
remains part of the model, but the link between this covariate and the spec-
ified parameter(s) in the stparm() statement is removed. See the note for
the effect argument regarding occasion covariates. Multiple options are
not supported within a single call (i.e., all covariate effects listed in the
effect argument for a single call must use the same option). If different
options are required, use sequential calls to addCovariate.

center Centering method. Options are "Mean”, "Median”, "Value"” or "None". Only
applicable to covariate type = "Continuous”. Mustinclude argument centerValue
if center = "Value".

centerValue Value used to center covariate. Only applicable if argument center = "Value”
and type = "Continuous”.

levels Unique values of categorical or occasion covariate. Only applicable to covariate
type = "Categorical” or type = "Occasion”.

labels Label names (in the same order as levels) for unique levels of categorical or
occasion covariate in data. Only applicable to covariate type = "Categorical”
or type = "Occasion” where its corresponding column in the input dataset has
character type.

isDiagonal Set to FALSE if inter-occasion covariance matrix is not diagonal matrix. Only
applicable to covariate type = "Occasion”.

values Initial values for the diagonal elements of the inter-occasion covariance matrix
(if isDiagonal = TRUE) or initial values for the lower triangular elements (in-
cluding diagonal elements) of inter-occasion covariance matrix (if isDiagonal
= FALSE) in a row-wise order. Only applicable for covariate type = "Occasion”.

isPositive Set to FALSE if covariate contains negative values. Only applicable to covariate
type = "Continuous”.

Details
The following relationships are applicable for covariates:

* direction = "Forward" is equivalent to PML code ’fcovariate(CovName)’;

* direction = "Backward” is equivalent to PML code ’covariate(CovName)’;

e direction ="Interpolate” is equivalent to PML code ’interpolate(CovName)’.
If the structural parameter has style = "LogNormal”, the options are reflected in PML code
as follows:

e option="Yes" is equivalent to stparm(V = tvV * wt*dVdwt * exp(dVdsex1x(sex==1)) *
exp(nV));

* option = "PlusOneis equivalent to stparm(V = tvV * (1+wtxdVdwt) * (1+dVdsex1*(sex==1))
*exp(nV)).

addDoseCycle

Value

Modified NImePm1lModel object

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject”,
Time = "Act_Time",
A1 = "Amount”,
CObs = "Conc",
workingDir = tempdir()

)

Add Gender covariate of type categorical
model <- addCovariate(model,

covariate = "Gender",

type = "Categorical”,

effect = c("v2", "Cl2"),

levels = c(0, 1),

labels = c("Female", "Male")

)

Add BodyWeight covariate of type continuous
model <- addCovariate(model,
covariate = "BodyWeight”,

type = "Continuous”,
direction = "Backward”,
center = "Mean”,
effect = c("V", "Cl")
)
addDoseCycle Adds a dosing cycle to model
Description

Add Steady State or ADDL dosing cycle to model object.

Usage
addDoseCycle(
.Object,
type = "SteadyState”,
name,
administration = "Bolus"”,

amount = NULL,
IT = NULL,

8 addDoseCycle
rate = NULL,
duration = NULL,
isSecondDose = FALSE,
colName = NULL
)
Arguments
.Object Model object
type Specification of dose type. Options are "SteadyState”and "ADDL"
name Dose point name. See doseNames
administration Mechanism for administering dose. Options are "Bolus” or "Infusion”
amount Optional. Column mapping argument specifying corresponding "ADDL" col-
umn in input data, or numeric value specifiying dose amount.
II Optional. Column mapping argument specifying corresponding "II" column in
input data, or numeric value specifying delta time.
rate Optional. Column mapping argument specifying corresponding "Rate" column
in input data, or numeric specifying dose rate.
duration Optional. Column mapping argument specifying corresponding "Duration" col-
umn in data, or numeric specifying duration value.
isSecondDose Use second dose point on compartment
colName Column name in input data corresponding to column mapping for "SteadyState"
or "ADDL" as supplied in type argument.
Value
Modified NIlmePm1lModel object
See Also
doseNames
Examples

model <- addDoseCycle(pkmodel(columnMap = FALSE,

isPopulation = FALSE,
workingDir = tempdir()),
type = "SteadyState”,
name = "A1",
amount = "Amount”,
II = "II")

addExtraDef

addExtraDef Adds user defined extra column/table definitions to column definition

file

Description

Adds user defined extra column/table definitions to column definition file

Usage

addExtraDef (.Object, value)

Arguments

.Object PK/PD model

value Character vector of extra column/table definitions
Value

Modified NlmePm1lModel object

Examples

model <- pkmodel(columnMap = FALSE,
workingDir = tempdir())
model <- addExtraDef(model, c("addlcol(ADDL)",
"table(file=\"res.csv\",time(0),Ka,V,C1,Tlg)"))

addInfusion Change existing dosing compartment to infusion

Description

Allows user to switch any dosing compartment to infusion

Usage

addInfusion(
.Object,
doseCptName,
isDuration = FALSE,
isSecondDose = FALSE,
colName = NULL

10 addLabel

Arguments
.Object Model object
doseCptName Name of the compartment to which the dose is administered
isDuration Set TRUE if duration is used to specify infusion information

isSecondDose Set TRUE if doseCptName is specified in the model through dosepoint2 statement

colName Name of the input data column that represents the corresponding infusion rate.
If not provided, colName must be mapped through colMapping().

Value

Modified NlmePm1lModel object

Examples

pkDatal <- pkData
pkDatal$A1_1 <- @

model <- pkmodel(numComp = 2,
absorption = "Intravenous”,
ID = "Subject”,

Time = "Act_Time",

CObs = "Conc",

A1 = "Amount”,

data = pkDatal,

modelName = "PkModel”,
workingDir = tempdir())
newModel <- addInfusion(model, "A1", FALSE, FALSE, "A1_1")

addLabel Add levels and labels to categorical or occasion covariate

Description

Allows users to specify the name and the associated value for each category/occasion of a categori-
cal/occasion covariate in a textual model object. Only applicable to the case where the correspond-
ing input data column of a categorical/occasion covariate is of class character.

Usage

addLabel (.0Object, covariate, levels, labels)

addMDV

Arguments

.Object
covariate

levels

labels

Value

11

Model object
Existing covariate name

Unique values of categorical or occasion covariate column specified as numeric
vector

Unique values specifying corresponding label names for levels of categorical or
occasion covariate column in data specified as character vector.

Modified NImePm1lModel object

Examples

model <- pkmodel(columnMap = FALSE,

isPopulation = FALSE,

workingDir = tempdir())

model <- suppressWarnings(addCovariate(model,

covariate = "Gender”,
type = "Categorical”,
effect = c("V"),
levels = c(0, 1)))

model@isTextual <- TRUE
model <- addLabel(model, "Gender”, c(1, 2), c("male”, "female"))

addMDV

Adds MDYV extra column definition to model object

Description

Use to add MDYV statement to model@userDefinedExtraDefs

Usage

addMDV(.0Object, MDV)

Arguments

.Object
MDV

Value

Model object

Column mapping argument specifying corresponding "MDV" column in input
data set

Modified NImePm1lModel object

12 addReset

Examples

pkDatal <- pkData

pkDatal$MDV <- @

model <- pkmodel(data = pkData1l,
ID = "Subject”,
Time = "Act_Time",
A1l = "Amount”,
CObs = "Conc”,
workingDir = tempdir()
)

model <- addMDV(model, MDV = "MDV")

addReset Adds reset instructions to the model

Description

Adds reset instructions to the model

Usage
addReset(.0Object, low, hi, Reset = NULL)

S4 method for signature 'NlmePmlModel’
addReset(.0Object, low, hi, Reset = NULL)

Arguments
.Object An *NlmePmIModel’ object to which you want to add reset instructions.
low Lower value of reset range.
hi Upper value of reset range.
Reset Name of reset column in input data set for column mapping. The default is
NULL.
Value

Depends on the specific methods

Returns the ’"NlmePmIModel’ object with updated reset information and definitions.

Functions

* addReset(NlmePmlModel): Method for the "NlmePmIModel’ class
This method adds reset instructions to the NlmePmIModel object. It updates the reset in-
formation, checks column mappings if input data is not null, and adds a reset definition to
user-defined extra definitions.

addSecondary 13

addSecondary Adds a secondary parameter to model definition

Description

Adds a secondary parameter to model definition

Usage

addSecondary(.0Object, name, definition, unit = "")

S4 method for signature 'NlmePmlModel'’

addSecondary(.0Object, name, definition, unit = "")
Arguments
.Object An *NlmePmIModel’ object to which you want to add a secondary parameter.
name Name of the secondary parameter.
definition Definition of secondary parameter.
unit Optional units of the secondary parameter. The default is "".
Value

Depends on the specific methods

Returns the "NImePmIModel’ object with the added secondary parameter.

Functions

¢ addSecondary(N1mePmlModel): Method for the 'NlmePmlModel’ class

This method adds a secondary parameter to the NlImePmIModel object. It checks for duplicate
parameter names, and if there is no duplicate, it adds the new secondary parameter to the object
and updates the PML model.

Examples

model <- pkmodel(columnMap = FALSE,
absorption = "FirstOrder”,
workingDir = tempdir())
model <- addSecondary(model, "Ke", "tvCl/tvV")
model <- addSecondary(
model, "Tmax",
"CalcTMax(tvA,tvCl/tvV)"
)

14 addSteadyState

addSteadyState Adds Steady State extra column definition to model object

Description

Use to add Steady State column definition statement to model@userDefinedExtraDefs

Usage

addSteadyState(.0Object, SS, II, SSOffset = NULL)

Arguments
.Object Model object
SS Column mapping argument specifying corresponding "SS" column in input data
set
II Column mapping argument specifying corresponding "II" column in input data
set
SSOffset Optional. Column mapping argument specifying corresponding "SSOffset" col-
umn in input data set
Value

Modified NImePm1lModel object

Examples

pkDatal <- pkData

pkDatal$SS <- @

pkDatal$II <- @

model <- pkmodel(data = pkData1l,
ID = "Subject”,
Time = "Act_Time",
A1l = "Amount”,
CObs = "Conc”,
workingDir = tempdir()
)

model <- addSteadyState(model, SS = "SS”, II = "II")

bootstrap

15

bootstrap

Executes an NLME Bootstrap

Description

Method to execute an NLME Bootstrap

Usage

bootstrap(
model,

hostPlatform

params,

bootParams,

= NULL,

runInBackground = FALSE,

Arguments

model

hostPlatform

params

bootParams

runInBackground

Value

PK/PD model class object.

Host definition for model execution. See hostParams. If missing, multicore
local host with 4 threads is used.

Engine parameters. See engineParams. If missing, default parameters gener-
ated by engineParams(model) are used.

Bootstrap parameters. See BootstrapParams. If missing, default parameters
generated by BootstrapParams() are used.

Set to TRUE to run in background and return prompt.

Additional class initializer arguments for BootstrapParams or hostParams, or
arguments available inside engineParams functions. If engineParams argu-
ments are supplied through both params argument and additional argument (i.e.,
ellipsis), then the arguments in params will be ignored and only the additional
arguments will be used with warning. If hostParams arguments are supplied
through both hostPlatform argument and additional argument, then its values
will be overridden by additional arguments. In addition, if BootstrapParams
arguments are supplied through both bootParams argument and additional ar-
gument, then its slots will be overridden by additional arguments.

if runInBackground = FALSE, a list is returned with bootstrap results, i.e. "BootOverall", "Boot-
Theta", "BootOmega", "BootOmegaStderr”, "BootVarCoVar" comma separated files. Otherwise
the BootN1lmeJob class object is returned.

16 cancelJob

See Also

hostParams, engineParams, BootstrapParams

Examples

input_data <- pkData

model <-
pkmodel (
numCompartments = 2,
data = input_data,

ID = "Subject”,
Time = "Act_Time",
A1 = "Amount”,
CObs = "Conc",

workingDir = tempdir()
)

multicore

multicoreHost <- hostParams(
sharedDirectory = tempdir(),
parallelMethod = "Multicore”,
hostName = "local_multicore”,
numCores = 4

)

bootstrapdf <- bootstrap(model,
hostPlatform = multicoreHost,
params = engineParams(model),
numReplicates = 5,
randomNumSeed = 1234,
runInBackground = FALSE

cancelJob Generic function for cancelling a job

Description

Generic function for cancelling a job

Usage

cancelJob(.Object)

S4 method for signature 'SimpleNlmeJob'
cancelJob(.0Object)

colMapping

Arguments

.Object

Value

17

A ’SimpleNImeJob’ object that you want to cancel

Depends on the specific methods

Prints the *SimpleNImeJob’ object after attempting to cancel the job. No return value.

Functions

* cancelJob(SimpleNlmeJob): Method for cancelling a job of the *SimpleNImeJob’ class
This method attempts to cancel a job of the *SimpleNImelJob’ class. If the job is running on a
local host or is not running in the background, it throws an error and does nothing. Otherwise,
it uploads a ’'STOP’ command to the host’s remote executor.

colMapping

Add column mappings

Description

Piping compatible function for modelColumnMapping used to add column mappings from input
data to model object

Usage
colMapping(.Object, mappings = NULL, ...)
Arguments
.Object Model (N1ImePm1lModel) object
mappings Named character vector specifying valid column names in the input data. Char-
acter vector names must be valid model variable names contained in modelVariableNames(model).
optional pairs ModelTerm = ColumnName or ModelTerm = "ColumnName".
Has higher precedence than mappings if some ModelTerm is mapped twice in
mappings and in For multiple mapping, i.e. id mapping, a vector should
be provided with the names of columns. See example below.
Value

modified NlmePmlModel object

See Also

dataMapping modelVariableNames

18 copyModel

Examples

pkData$id2 <- pkData$Subject

model <- pkmodel(columnMap = FALSE,
data = pkData,
workingDir = tempdir())

modelvar <- unlist(modelVariableNames(model))

colnames <- c(”Subject”, "Act_Time", "Amount”, "Conc")
names(colnames) <- modelvar
will map subject directly
colnames <- colnames[-c(1)]

model <- colMapping(model, colnames, id = c(Subject, id2))

also possible:

model <- colMapping(model, colnames, id = c("Subject”, "id2"))
not recommended since only not quoted names are identified
if both types are provided:

model <- colMapping(model, colnames, id = c("Subject”, id2))

copyModel Copy model object to iterate over base model

Description

Copies previously executed model into a new object and optionally accept all estimates returned
from model execution. A new working directory is created and all files from base model are copied

into it.
Usage
copyModel (model, acceptAllEffects = FALSE, modelName = "", workingDir = "")
Arguments
model Model object to be copied
acceptAllEffects
Set to TRUE to accept all effects, update PML statements, and test.mdl file from
original model run
modelName New model name for subdirectory created for model output. Subdirectory is
created in current working directory.
workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.
Value

Modified NImePm1lModel object

covariateNames

Examples

model <- pkmodel(
parameterization = "Clearance”,
numCompartments = 2,
data = pkData,
ID = "Subject”,
Time = "Act_Time",

A1 = "Amount”,

CObs = "Conc",
workingDir = tempdir()
)

host <- hostParams(sharedDirectory = tempdir(),
parallelMethod = "None”,
hostName = "local”,
numCores = 1)
job <- fitmodel(model,
numlterations = 3,
hostPlatform = host)

finalModelVPC <- copyModel(model,
acceptAllEffects = TRUE,
modelName = "model_VPC",
workingDir = tempdir())

19

covariateNames Return covariate names

Description

Use to return character vector of covariate names available in model object.

Usage

covariateNames(model)

Arguments

model Model object

Value

Character vector of covariate names defined in model

20 createModellnfo

Examples

model <- pkmodel(columnMap = FALSE,

workingDir = tempdir())
model <- addCovariate(model, covariate = "BW", effect = "V")
model <- addCovariate(model, covariate = "Age", effect = "Cl")

covariateNames(model)

createModelInfo Parse the model and get the list of terms

Description

Calls TDLS to parse the model and get the list of terms

Usage

createModelInfo(model, ForceRun = FALSE)

Arguments
model Model object
ForceRun Set to TRUE to force run
Value

List of model information

Examples

model <- pkmodel(columnMap = FALSE,
workingDir = tempdir())
createModelInfo(model)

dataMapping

21

dataMapping Initialize input data for PK/PD model

Description

Used to initialize input data for PK/PD model

Usage

dataMapping(.0Object, data)

Arguments

.Object Model object

data Input data of class data. frame.
Value

Modified NImePmlModel object

See Also

colMapping

Examples

model <- pkmodel(columnMap = FALSE,
workingDir = tempdir())

model <- dataMapping(model, pkData)

doseNames Return dose names

Description

Use to return character vector of dose point names in model object.

Usage

doseNames (model)

Arguments

model Model object

22 editModel

Value

Character vector of dose names defined in model

Examples

model <- pkmodel(columnMap = FALSE,
workingDir = tempdir())

doses <- doseNames(model)

editModel Directly edit PML text in model object

Description

Allows user to edit PML text in model object using internal text editor and return a new textual
model containing the edited PML statements.

Usage

editModel (.Object)

Arguments

.Object Model object

Value

Modified NImePm1lModel object

Examples

model <- pkmodel(columnMap = FALSE,
workingDir = tempdir())

if (FALSE) {
will open an additional window with the model text:
newModel <- editModel(model)

3

emaxmodel 23

emaxmodel Create an Emax or Imax model

Description

Use to create an Emax or Imax model

Usage

emaxmodel (
isPopulation = TRUE,
checkBaseline = FALSE,
checkFractional = FALSE,
checkInhibitory = FALSE,
checkSigmoid = FALSE,
data = NULL,
columnMap = TRUE,
modelName = ""
workingDir = "",

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?

checkBaseline Set to TRUE if the model contains a baseline response.

checkFractional
Set to TRUE to modify the default form for the model. Only applicable to models
with checkBaseline = TRUE.

checkInhibitory
Set to TRUE to change the model from an Emax to an Imax model.

checkSigmoid Set to TRUE to change the model to its corresponding signmoid form.

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if

workingDir not specified.
Arguments passed on to emaxmodel _MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

24 engineParams

C Column mapping argument that represents the input dataset column for the in-
dependent variable that is treated as a covariate during the estimation/simulation
process.

EObs Column mapping argument that represents the input dataset column for
the observed drug effect (i.e., the dependent variable).

Value

N1mePmlModel object

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- emaxmodel(data = pkpdData, ID = "ID”, C = "CObs", EObs = "EObs")

model <- emaxmodel(
checkBaseline = TRUE,
checkFractional = TRUE,
checkInhibitory = TRUE,
data = pkpdData,
D = "ID",
C = "CObs",
EObs = "EObs"

)

View PML Code
print(model)

engineParams Main function to specify engine parameters

Description

Use to define engine parameters for model execution.

Usage
engineParams(
model,
sort = NULL,

ODE = "MatrixExponent”,
rtolODE = 1e-06,
atolODE = 1e-06,
maxStepsODE = 50000,
numIterations = 1000,

engineParams 25

method = NULL,

stdErr = NULL,
isCentralDiffStdErr = TRUE,
stepSizeStdErr = NULL,
logTransform = NULL,
numIntegratePtsAGQ = 1,
numIterNonParametric = 0,
allowSyntheticGradient = FALSE,
fastOptimization = FALSE,
numIlterMAPNP = 0@,
numRepPCWRES = @,
stepSizelinearize = 0.002,
numDigitlLaplacian = 7,
numDigitBlup = 13,
gradTolOuter = 2e-04,
stepTolOuter = 1e-04,
gradTolInner = 1.71e-05,
stepTolInner = 7.07e-08,
refDeltalLagl = 0.001,
mapAssist = 0,

iSample = 300,

iAcceptRatio = 0.1,

impDist = "Normal”,

tDOF = 4,

numSampleSIR = 10,
numBurnIn = 0,

freezeOmega = FALSE,

MCPEM = FALSE,
runAllIterations = FALSE,
scramble = "Owen”,
emTolType = 0,

emConvLen = 10,
emConvCritval = 5,
stepSizePartialDeriv = 1e-05,
numTimeStepPartialDeriv = 20

)
Arguments

model Model object. The type of model (population or individual) is determined by the
model @isPopulation slot. If model@isPopulation is TRUE, the model is treated
as a population model; otherwise, it’s treated as an individual model.

sort Logical; Specifies whether to sort the input data by subject and time. If TRUE,
data are sorted. If FALSE, data are not sorted. Defaults to FALSE if the model
contains reset information (model@hasResetInfo = TRUE); otherwise, defaults
to TRUE.

ODE Character; Specifies the ODE solver to be used. Options are: "MatrixExponent”,

"DVERK", "DOPRI5", "AutoDetect”, "Stiff"”, "LSODE". See Details section for

26

rtolODE Numeric; Specifying relative tolerance for the numerical ODE solver.
atolODE Numeric; Specifying absolute tolerance for the numerical ODE solver.
maxStepsODE Numeric; Specifies the maximum number of steps allowed for the ODE solver.
numIterations Integer; Specifies the maximum number of iterations for the estimation algo-
rithm. Must be a non-negative integer, with a maximum value of 10000.
method Character; Specifies the estimation method. For population models, options
are: "QRPEM", "IT2S-EM", "FOCE-LB", "FO", "FOCE-ELS", "Laplacian”, and
"Naive-Pooled"”. For individual models, only "Naive-Pooled” is available.
The default for population models depends on model characteristics:
* If the model includes discontinuous observed variables (e.g., count data),
Below Quantifiable Limit (BQL) data, or has no unfrozen sigmas, the de-
fault is "Laplacian”.
¢ Otherwise, the default is "FOCE-ELS".
stdErr Character; Specifies the method for standard error computations. Options vary
depending on the model type and estimation method:
¢ Individual models: "Hessian"” (default) or "None".
 Population models with method = "QRPEM": "Fisher-Score"” (default) or
"None".
* Population models with method = "IT2S-EM": "None" only.
* Population models with method in c("FOCE-LB"”, "FO", "FOCE-ELS", "Laplacian”,
"Naive-Pooled"): "Sandwich"” (default), "Hessian", "Fisher-Score”,
"Auto-Detect”, or "None".
"None" means that standard error calculations are not performed.
isCentralDiffStdErr
Logical; If TRUE (default), uses central difference for standard error calculations
when applicable. If FALSE, uses forward difference.
stepSizeStdErr Numeric; Specifies the relative step size used for the numerical computation of
the Hessian matrix during standard error calculations. If not specified, a default
value is used (0.001 for "Naive-Pooled"” method, and 0.01 otherwise).
logTransform Logical or NULL; Controls log-transformation behavior, particularly for mod-

engineParams

a description of each solver.

els with a LogAdditive residual error (e.g., C*exp(epsilon)). The internal engine
parameter ’logtran’ is set based on this argument and specific model character-
istics as detailed below.

* NULL (default) or TRUE: When the model has exactly one residual error
model and it is LogAdditive, this setting enables Log-Transform Both Sides
(LTBS). In LTBS, predictions and observations are log-transformed, and the
model is fit in the log-domain. This results in the internal ‘logtran‘ engine
parameter being set to 1.

* FALSE: When the model has exactly one residual error model and it is Lo-
gAdditive, this setting results in the LogAdditive error being treated as
a proportional/multiplicative error during fitting (by neglecting third and
higher-order terms in the Taylor expansion of exp(epsilon)). This sets the
internal ‘logtran‘ engine parameter to 0. For simulation, the error is treated
as exp(epsilon).

engineParams 27

For other model configurations, the ‘logtran‘ parameter is determined as follows:

* If there are multiple residual error models or no residual error models, ‘log-
tran® is set to 0, irrespective of the ‘logTransform‘ value. (In the case of
multiple errors, any LogAdditive errors present are treated as proportional).

* If there is a single residual error model that is not LogAdditive:

— For built-in models: ‘logtran® is set to 0.

— For textual models: ‘logtran‘ reflects the ‘logTransform® setting (it be-
comes 1 if ‘logTransform* is ‘NULL* or ‘TRUE®, and O if ‘logTrans-
form* is ‘FALSE‘). A warning is issued if ‘logTransform* is ‘NULL'
or ‘TRUE" in this scenario, highlighting that LTBS is typically for Lo-
gAdditive errors and that error type identification can be challenging in
textual models.

numIntegratePtsAGQ
Integer; Specifies the number of quadrature points per dimension to use for
Adaptive Gaussian Quadrature (AGQ). Only applicable to population models
when method is "FOCE-ELS" or "Laplacian”.

¢ 1: Standard FOCE-ELS/LAPLACIAN computation (no AGQ).
* >1: AGQ is performed. The total number of quadrature points used is
(number of ETAs) “numIntegratePtsAGQ.
numIterNonParametric
Integer; Controls non-parametric (NP) optimization.

* 0: Disables NP optimization.
* 1: Enables NONMEM-style NP optimization using posthoc estimates as
support points.

* >1: Enables an evolutionary NP algorithm, using numIterNonParametric
as the number of generations.

Only applicable to population models when method is not "Naive-Pooled".

allowSyntheticGradient
Deprecated.

fastOptimization
Logical; Controls the differentiation method used during the optimization of
random effects (etas). If TRUE, automatic differentiation is used where possible.
If FALSE, a finite difference approach is used. Only applicable to population
models when method is "FOCE-ELS" or "Laplacian”.

numIterMAPNP Integer; Specifies the number of iterations for a preliminary Naive-Pooled (NP)
optimization run before the main estimation. Applicable when the method is not
"NAIVE-POOLED".

numRepPCWRES Integer; Specifies the number of replicates to generate for Population Con-
ditional Weighted Residuals (PCWRES) calculations. Setting this value to 0
disables PCWRES computation. Only applicable to population models when
method is not set to "Naive-Pooled".

stepSizelinearize
Numeric; Specifies the relative step size for numerical differentiation during
model linearization.

28

engineParams

numDigitlLaplacian

numDigitBlup

gradTolOuter

stepTolOuter

gradTolInner

stepTolInner

refDeltalagl

mapAssist

iSample

iAcceptRatio

impDist

tDOF

Numeric; Specifies the optimization accuracy (NDIGIT) for the outer loop (thetas
and sigmas) when using "FOCE-ELS" or "Laplacian” methods. Only applica-
ble to population models.

Numeric; Specifies the optimization accuracy (NDIGIT) for the inner loop (opti-

mization of etas). Also applies to the single optimization loop in the "NAIVE-POOLED"

method.

Numeric; maximum gradient tolerance for the outer loop (Theta/Omega/Sigma
optimization) of "FOCE-ELS" or "Laplacian” method. This tolerance controls
how close the gradient must be to zero before the outer optimization is consid-
ered converged.

Numeric; maximum step tolerance for the outer loop (Theta/Omega/Sigma op-
timization) of "FOCE-ELS" or "Laplacian”" method. This measures the relative
change in the solution vector between iterations.

Numeric; maximum gradient tolerance for the inner loop (Eta optimization) of
"FOCE-ELS" or "Laplacian" method. A smaller value forces the algorithm to
iterate until a very small gradient is achieved.

Numeric; maximum step tolerance for the inner loop (Eta optimization) of "FOCE-
ELS" or "Laplacian" method. This determines when the algorithm will termi-
nate based on minimal changes in the solution vector.

Numeric; tolerance for the change in the log-likelihood (LL) value during outer
loop optimization of "FOCE-ELS" or "Laplacian" method. This parameter is
used to check convergence by comparing the absolute change in LL between
major iterations. If the change in LL is less than refDeltalagl and the opti-
mization driver returns a specific termination code, the algorithm considers the
solution sufficiently converged. This tolerance helps to avoid unnecessary itera-
tions when improvements in LL become marginal.

Numeric; Controls the use of MAP assistance in the QRPEM algorithm.

¢ (0: No MAP assistance.

* >0: The inner ETAs optimization loop is used in the QRPEM outer opti-
mization loop with a periodicity equal to the value of mapAssist.

Only applicable to population models with method = "QRPEM".

Numeric; Specifies the number of sample points used in the QRPEM algorithm.
Only applicable to population models with method = "QRPEM".

Numeric; Specifies the acceptance ratio used in the QRPEM algorithm for scal-
ing the covariance matrix. Only applicable to population models with method =
"QRPEM".

Character; Specifies the importance sampling distribution used in the QRPEM
algorithm. Options are: "Normal”, "DoubleExponential”, "Direct”, "T",
"Mixture-2", "Mixture-3". Only applicable to population models with method
= "QRPEM". See Details for further information.

Numeric; Specifies the degrees of freedom for the multivariate T distribution
used in importance sampling. Only applicable when method = "QRPEM"” and
impDist = "T". Must be between 3 and 30.

engineParams 29
numSampleSIR Numeric; Specifies the number of samples per eta per subject used in the Sam-
pling Importance Resampling (SIR) algorithm within QRPEM. Only applicable
to population models with method = "QRPEM".
numBurnIn Numeric; Specifies the number of burn-in iterations in the QRPEM algorithm.
During burn-in, omegas can be frozen (see freezeOmega parameter). Only ap-
plicable to population models with method = "QRPEM".
freezeOmega Logical; Set to TRUE to freeze Omega but not Theta for the number of iterations
specified in the numBurnIn. Only applicable to population models with method
= "QRPEM".
MCPEM Logical; Controls the sampling method used in the QRPEM algorithm.
* FALSE: Quasi-Random sampling.
* TRUE: Monte-Carlo sampling.
Only applicable to population models with method = "QRPEM".
runAllIterations
Logical; Set to TRUE to execute all requested iterations specified in numIterations.
Only applicable to population models with method = "QRPEM".
scramble Character; Specifies the scrambling method for quasi-random number genera-
tion in the QRPEM algorithm. Options are: "None", "Owen”, "Faure-Tezuka".
Only applicable to population models with method = "QRPEM".
emTolType Numeric; QRPEM convergence check type. Options:
¢ 0: Default (no rollout, LL. & Theta and Sigma).
e 1: LL & All Population Params (Theta, Omega, and Sigma) with rollout.
e 2: LL with rollout.
* 3: All Population Params with rollout.
Only applicable to population models with method = "QRPEM".
emConvlLen Numeric; number of iterations over which convergence is checked in the QR-
PEM method. Only applicable to population models with method = "QRPEM"
and emTolType being nonzero.
emConvCritVal Numeric; critical value used in the QRPEM convergence check. It specifies
the threshold improvement required to continue iterating. Only applicable to
population models with method = "QRPEM" and emTolType being nonzero.
stepSizePartialDeriv

Numeric; Specifying the step size used to numerically calculate the partial deriva-
tives of observed variables with respect to parameters. Only applicable to indi-
vidual models.

numTimeStepPartialDeriv

Details

Numeric; Specifying the number of time steps used to output the partial deriva-
tives of observed variables with respect to parameters. Only applicable to indi-
vidual models.

Both "DVERK" and "DOPRI5" are non-stiff solvers. "AutoDetect” represents LSODA solver imple-
menation, which solves the initial value problem for stiff or nonstiff systems of first order ordinary

30

extraDoselLines

differential equations. "Stiff" is a LSODE (Livermore solver). It is best suited for stiff problems.
"MatrixExponent” is a matrix exponential solver.

For the QRPEM method, the impDist parameter controls the importance sampling distribution.
The ximpsampdof slot in the internal NlmeEngineExtraParams object is set based on impDist as
follows:

Value

"Normal”: ximpsampdof =0
"DoubleExponential”: ximpsampdof =1
"Direct”: ximpsampdof =2

"T": ximpsampdof is set to the value of tDOF.
"Mixture-2": ximpsampdof = -2

"Mixture-3": ximpsampdof =-3

List of engine parameters to be used during fitting or simulation

extraDoselLines Return extra dose lines

Description

Use to return extra dose lines for model object

Usage

extraDoselLines(model)

Arguments

model Model object

Value

List of extra dose information

Examples

data <- pkData
data$ll <- 24
data$ADDL <- 1

model <-

pkmodel (
parameterization = "Clearance”,
numCompartments = 2,
data = data,

extraDoseNames

ID = "Subject”,
Time = "Act_Time",
A1 = "Amount”,
CObs = "Conc",
workingDir = tempdir())

addDoseCycle(
model,
name = "A1",
amount = 30000,
II = 24,
type = "ADDL",

colName = "ADDL")

extraDoselLines(model)

31

extraDoseNames

Return extra dose names

Description

Use to return extra dose names for model object

Usage

extraDoseNames (model)

Arguments

model Model object

Value

Character vector of extra dose names

Examples

data <- pkData
data$ll <- 24
data$ADDL <- 1

model <-

pkmodel (
parameterization =
numCompartments =
data = data,
ID = "Subject”,
Time = "Act_Time",

A1 = "Amount”,
CObs = "Conc”,

2

"Clearance”,

’

32

workingDir = tempdir())

addDoseCycle(
model,
name = "A1",
amount = 30000,
II = 24,
type = "ADDL",

colName = "ADDL")

extraDoseNames (model)

fitmodel

fitmodel Executes an NLME simple estimation

Description

Executes an NLME simple estimation

Usage

fitmodel(
model,
hostPlatform = NULL,
params,
simpleTables,
runInBackground = FALSE,
filesToReturn = "*",

Arguments

model PK/PD model class object.

hostPlatform Host definition for model execution. See hostParams. If missing, PhoenixM-
PIDir64 is given and MPI is installed, MPI local host with 4 threads is used. If

MPI is not found, local host without parallelization is used.

params Engine parameters. See engineParams. If missing, default parameters gener-

ated by engineParams(model) are used.

simpleTables Optional list of simple tables. See tableParams. By default a table named
"posthoc.csv’ is returned with structural parameters values for all source data

TOWS.
runInBackground

Set to TRUE to run in background and return prompt.

fitmodel

33

filesToReturn Used to specify which files to be outputted to the model directory and loaded

Value

as returned value. By default, all the applicable files listed in the Value section
will be outputted to the model directory and loaded as returned value. Only
those files listed in the Value section can be specified. Simple regex patterns are
supported for the specification.

Additional arguments for hostParams or arguments available inside engineParams
functions. If engineParams arguments are supplied through both params argu-
ment and additional argument (i.e., ellipsis), then the arguments in params will
be ignored and only the additional arguments will be used with warning. If
hostParams arguments are supplied through both the hostPlatform argument
and the ellipses, values supplied to hostPlatform will be overridden by addi-
tional arguments supplied via the ellipses e.g.,

if runInBackground is FALSE, a list with main resulted dataframes is returned:

Overall

ConvergenceData

residuals

Secondary

StrCovariate - if continuous covariates presented
StrCovariateCat - if categorical covariates presented
theta

posthoc table

posthocStacked table

Requested tables

nlme7engine. log textual output is returned and loaded with the main information related to fitting.
dmp. txt structure with the results of fitting (including LL by subject information) is returned and
loaded. These 2 files are returned and loaded irrespective of filesToReturn argument value.

For individual models, additional dataframe with partial derivatives is returned:

ParDer

For population models and the method specified is NOT Naive-Pooled, additional dataframes are
returned:

omega
Eta

EtaStacked

EtaEta

EtaCov

EtaCovariate - if continuous covariates presented

EtaCovariateCat - if categorical covariates presented

34

fitmodel

* bluptable.dat

If standard error computation was requested and it was successful, additional dataframes are re-
turned:

¢ thetaCorrelation

* thetaCovariance

» Covariance

* omega_stderr
If nonparametric method was requested (numIterNonParametric > 0) and the method specified in
engineParams is NOT Naive-Pooled, additional dataframes are returned:

* nonParSupportResult

» nonParStackedResult

* nonParEtaResult

¢ nonParOverallResult

if runInBackground is TRUE, only current status of job is returned.

filesToReturn with Certara.Xpose.NLME

If filesToReturn is used and "ConvergenceData.csv" and "residuals.csv" are not in the patterns,

these files won’t be returned and loaded. These files are essential for Certara.Xpose.NLME: : xposeN1meModel

and Certara.Xpose.NLME: : xposeNlme functions. This makes impossible to use the resulted ob-
jectin Certara.Xpose.NLME functions.

Non-loaded but returned files

The non-loaded but returned files in the model working directory are:

* errl.txt - concatenated for all runs detailed logs for all steps of optimization,
* out.txt - general pivoted information about results,
* doses.csv - information about doses given for all subjects,

e iniest.csv - information about initial estimates

See Also

tableParams, hostParams,engineParams

Examples

Define the host

host <- hostParams(sharedDirectory = tempdir(),
parallelMethod = "None”,
hostName = "local”,
numCores = 1)

Define the model

fixedEffect 35

model <- pkmodel(numComp = 2,

absorption = "FirstOrder”,
ID = "Subject”,

Time = "Act_Time",

CObs = "Conc",

Aa = "Amount”,

data = pkData,
modelName = "PkModel”,
workingDir = tempdir())

Table@1 <- tableParams(name = "SimTableObs.csv"”,
timesList = "0,1,2,4,4.9,55.1,56,57,59,60",
variableslList = "C, CObs",
timeAfterDose = FALSE,
forSimulation = FALSE)

Update fixed effects

model <- fixedEffect(model,
effect = c("tvVv", "tvCl", "twv2", "tvCl2"),
value = c(16, 41, 7, 14))

Define the engine parameters

params <- engineParams(model)

Fit model

res <- fitmodel(model = model,
hostPlatform = host,
params = params,
simpleTables = Table@1)

fixedEffect Specifies the initial values, lower bounds, upper bounds, and units for
fixed effects in a model

Description

Specifies the initial values, lower bounds, upper bounds, and units for fixed effects in a model

Usage

fixedEffect(
.Object,
effect,
value = NULL,
lowerBound = NULL,
upperBound = NULL,
isFrozen = NULL,
unit = NULL

36 fixedEffect
Arguments
.Object Model object in which to define fixed effects values
effect Character or character vector specifying names of fixed effects
value Numeric or numeric vector specifying the initial values of fixed effects. If sup-
plying vector, must be in the same order/length as corresponding effect.
lowerBound Numeric or numeric vector specifying the lower limit values of fixed effects. If
supplying vector, must be in the same order as effect.
upperBound Numeric or numeric vector specifying the upper limit values of fixed effects. If
supplying vector, must be in the same order as effect.
isFrozen Logical or logical vector. Set to TRUE to freeze the fixed effect to the specified
initial value. If supplying vector, must be in the same order as effect.
unit Character or character vector specifying units of measurement for the fixed ef-
fects. If supplying a vector, must be in the same order as effect.
Value

Modified NImePm1lModel object

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject”,

Time = "Act_Time",
A1 = "Amount”,
CObs = "Conc",

modelName = "TwCpt_IVBolus_FOCE_ELS",
workingDir = tempdir()
)

View initial/current fixed effect values
initFixedEffects(model)

model <-
fixedEffect(
model,
effect = c("twW", "tvCl", "tvv2", "tvCl2"),
value = c(15, 5, 40, 15)
)

getRandomEffectNames

37

getRandomEffectNames Return random effect names in model

Description

Use to return character vector of random effect names (if available) in model object

Usage

getRandomEffectNames(model)

Arguments

model Model object

Value

Characters vector of random effect names

Examples

model <- pkmodel(columnMap = FALSE,
workingDir = tempdir())
getRandomEffectNames(model)

getThetas Return theta names and values

Description

Returns named character vector of theta values by parsing PML fixed effect statements

Usage

getThetas(model)
Arguments

model PK/PD model
Value

Character vector of theta names defined in model

38 hostParams

Examples

model <- emaxmodel(
checkBaseline = TRUE,
checkFractional = TRUE,
checkInhibitory = TRUE,
data = pkpdData,
ID = "ID",
C = "CObs",
EObs = "EObs"

)
getThetas(model)

hostParams Create an NLME Parallel Host Configuration

Description

This helper function simplifies the creation and configuration of an NlmeParallelHost object,
which defines the environment for running NLME jobs.

Usage

hostParams(
sharedDirectory,
installationDirectory = Sys.getenv("INSTALLDIR"),
hostName = Sys.info()[["nodename”]1],
machineName = "127.0.0.1",
hostType = Sys.info()[["sysname”"]1],
numCores = 4,
parallelMethod
userName = ""
privateKeyFile = NULL,

nn

userPassword = ,

nn

scriptPath = R

nn

rLocation = R
isLocal = TRUE

"LOCAL_MPI",

Arguments

sharedDirectory
character. The directory where temporary run folders are created. Defaults to
the current working directory.

installationDirectory
character. The directory containing NLME libraries/scripts. Defaults to the
INSTALLDIR environment variable.

initFixedEffects 39

hostName character. A display name for the host. Defaults to the system’s network name
(from Sys.info()[["nodename”]]).
machineName character. The IP address or network name of the host. Defaultsto "127.0.0.1".
hostType character. The host operating system. Defaults to the current OS (Sys. info()[["sysname"]]).

While "windows” or "linux” are valid, for remote Linux hosts the following
are officially supported: "RHEL" (for RHEL 8 and 9) and "UBUNTU" (for Ubuntu
22.04 and 24.04). Specifying one of these values correctly sets the PML_BIN_DIR
variable.

numCores numeric. The number of CPU cores to utilize. Defaults to 4.

parallelMethod character. The parallel execution method. Options include: "None”, "Multicore”,
"LOCAL_MPI", "SGE", "SGE_MPI", "TORQUE", "TORQUE_MPI", "LSF", "LSF_MPI",
"SLURM", "SLURM_MPI". Defaults to "LOCAL_MPI".

userName character. The username for remote host authentication.

privateKeyFile character. The path to an SSH private key file for remote authentication. See
ssh::ssh_connect () for more details.

userPassword character or function. The password or a callback function for remote au-
thentication. See ssh: :ssh_connect () for details.

scriptPath character. The path to a script to run on a remote host before the main job
starts. Ignored for local runs.
rLocation character. The path to the Rscript executable on a remote host. Ignored for
local runs.
isLocal logical. Set to TRUE for a local host or FALSE for a remote host. Defaults to
TRUE.
Value

An NlmeParallelHost object configured with the specified parameters.

Examples

host <- hostParams(sharedDirectory = tempdir(),
parallelMethod = "LOCAL_MPI",
hostName = "Local”,
numCores = 4)

initFixedEffects Display/Set initial estimates for fixed effects

Description

Display/Set initial estimates for fixed effects

40
Usage
initFixedEffects(.0Object)

S4 method for signature 'NlmePmlModel'
initFixedEffects(.0Object)

initFixedEffects(.0Object) <- value

S4 replacement method for signature 'NlmePmlModel'’

initFixedEffects(.0Object) <- value

Arguments

.Object PK/PD model

value Named numeric vector
Value

Named numeric vector of fixed effects estimates

See Also

fixedEffect

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject”,

Time = "Act_Time",
A1 = "Amount”,
CObs = "Conc",

modelName = "TwCpt_IVBolus_FOCE_ELS",
workingDir = tempdir()
)

View initial/current fixed effect values
initFixedEffects(model)

May also use as a 'replacement function' to set the

initFixedEffects(model) <- c(tvV = 15, tvCl =5, tvV2 = 40, tvCl2 = 15)

values

initFixedEffects

linearmodel 41

linearmodel Create linear model

Description

Use to create a constant, linear, or quadratic PD model

Usage

linearmodel (
isPopulation = TRUE,
type = "Constant”,
data = NULL,
columnMap = TRUE,
modelName = ""
workingDir = "",

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?

type Model type. Options are "Constant”, "Linear”, "Quadratic”.

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if

workingDir not specified.
Arguments passed on to 1inearmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

C Column mapping argument that represents the input dataset column for the in-
dependent variable that is treated as a covariate during the estimation/simulation
process.

EObs Column mapping argument that represents the input dataset column for
the observed drug effect (i.e., the dependent variable).

Value

N1mePmlModel object

42 listCovariateEffectNames

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.
Examples
model <- linearmodel(type = "Linear"”, data = pkpdData, ID = "ID", C = "CObs", EObs = "EObs")

View PML Code
print(model)

listCovariateEffectNames
Lists covariate effect names in the model

Description

This function lists the names of covariate effects in a provided pharmacokinetic/pharmacodynamic
(PK/PD) model.

Usage

listCovariateEffectNames(.Object)

S4 method for signature 'NlmePmlModel’
listCovariateEffectNames(.0Object)

Arguments

.Object PK/PD model

Value

A vector of character strings containing the names of the covariate effects in the model.

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject”,
Time = "Act_Time",
A1 = "Amount”,
CObs = "Conc”,
workingDir = tempdir()
)
model <- addCovariate(model,
covariate = "Gender",
type = "Categorical”,

model VariableNames 43

effect = c("v2", "Cl12"),
levels = c(0, 1),
labels = c("Female”, "Male")

)

listCovariateEffectNames(model)

modelVariableNames Return model variable names

Description

Return a vector of model variable names from model object

Usage

modelVariableNames(model)

Arguments

model Model object

Value

Character vector of required model variable names

Examples

model <- pkmodel(columnMap = FALSE,
workingDir = tempdir())
modelVariableNames(model)

obtain_NLMELicense Obtain NLME License

Description

This function attempts to authenticate and obtain an NLME license using the specified installation
directory and licensing tool.

44 obtain NLMELicense

Usage

obtain_NLMELicense(
InstallDir = Sys.getenv("INSTALLDIR"),
ForceAuth = FALSE,
ForceLicenseGet = FALSE,
verbose = getOption("verbose”)

)
Arguments
InstallDir A character string specifying the directory where the NLME Engine is installed
e.g., INSTALLDIR environment variable. The cadlicensingtool executable is
expected to be located within this directory, or within a subdirectory specified
by the PML_BIN_DIR environment variable.
ForceAuth A logical value indicating whether to force re-authentication even if already
authenticated. Default is FALSE.
ForcelLicenseGet
A logical value indicating whether to force obtaining the license even if already
licensed. Default is FALSE.
verbose A logical value indicating whether to print verbose output. Default is getOption("verbose").
Details

This function checks for the presence of the necessary appsettings. json file as indicated by
the CAD_CONFIG_FILE environment variable, runs the licensing tool to authenticate the user, and
attempts to obtain an NLME license. It prints detailed messages if the verbose parameter is set to
TRUE.

Value

A logical value indicating whether the license was successfully obtained.

Examples

INSTALLDIR <- Sys.getenv("INSTALLDIR")
if (INSTALLDIR == "") INSTALLDIR <- "C:/Program Files/Certara/NLME_Engine"
result <- obtain_NLMELicense(INSTALLDIR, verbose = TRUE)
if (result) {
message("License obtained successfully!”)
} else {
message("Failed to obtain license.")

}

OneCpt_IVInfusionData 45

OneCpt_IVInfusionData Pharmacokinetic dataset containing 100 subjects with single dose
given by infusion

Description

Pharmacokinetic dataset containing 16 subjects with single dose given by infusion.

Usage

OneCpt_IVInfusionData

Format
A data frame with 800 rows and 6 variables:
Subject Subject ID
Time Time point
Dose Amount of dose
CObs Observations of drug concentration in blood
Rate Rate of infusion

Duration Duration of infusion

Source

The data is simulated using a PK model described by a one-compartment model with IV infusion

parsePMLColMap Embed column definition info into the model

Description

Add/update column definition information for the model object

Usage

parsePMLColMap(.0Object, ForceRun = TRUE)

Arguments

.Object Model (N1mePmlModel) object

ForceRun Set to TRUE to force run

46 pkcovbglData

Details

Intended to be used by other packages

Value

modified NLMEPm1Model object with column mapping definitions

pkcovbglData Pharmacokinetic pediatric dataset containing 80 subjects with single
bolus dose.

Description

Pharmacokinetic pediatric dataset containing 80 subjects with single bolus dose. Dataset includes
covariates and observations Below Quantification Limit (BQL).

Usage

pkcovbglData

Format

A data frame with 880 rows and 8 variables:

ID Subject ID

Time Nominal Time

Dose Amount of dose

CObs Observations of drug concentration in blood
LLOQ Lower Limit of Quantification

CObsBQL Variable that indicates whether the observed drug concentration is below the limit of
quantification

BW Body weight
PMA Postmenstrual age

Source

The data is simulated using a one-compartment model with IV bolus, where the central volume
is allometric weight scaled, and the clearance is scaled by a combination of allometric weight
scaling and a sigmoidal maturation function driven by PMA. Germovsek E., et al, Pharmacoki-
netic—Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Stan-
dardized Scaling of Clearance, Clin Pharmacokinet (2019) 58:39-52.

pkData 47

pkData Pharmacokinetic dataset containing 16 subjects with single bolus dose

Description

Pharmacokinetic dataset containing 16 subjects with single bolus dose.

Usage

pkData

Format

A data frame with 112 rows and 8 variables:

Subject Subject ID

Nom_Time Nominal Time

Act_Time Actual Time

Amount Amount of dose

Conc Observations of drug concentration in blood
Age Age

BodyWeight Body weight

Gender Gender ("male", "female")

Source

Certara University

pkemaxmodel Create a PK/Emax or PK/Imax model

Description

Use to create a PK/Emax or PK/Imax model

https://www.certara.com/training/

48 pkemaxmodel

Usage
pkemaxmodel (
isPopulation = TRUE,
parameterization = "Clearance”,
absorption = "Intravenous”,

numCompartments = 1,
isClosedForm = TRUE,

isTlag = FALSE,
hasEliminationComp = FALSE,
isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isSequential = FALSE,
isPkFrozen = FALSE,
hasEffectsCompartment = FALSE,
checkBaseline = FALSE,
checkFractional = FALSE,
checkInhibitory = FALSE,
checkSigmoid = FALSE,
isEmaxFrozen = FALSE,

data = NULL,

columnMap = TRUE,

modelName = "",

workingDir = "",

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?

parameterization
Type of parameterization. Options are "Clearance”, "Micro”, "Macro”, or
"Macrol”.

absorption Type of absorption. Options are "Intravenous”, "FirstOrder”, "Gamma”,

"InverseGaussian”, "Weibull" .
numCompartments
Value of either 1, 2, or 3.

isClosedForm Set to TRUE to convert model from a differential equation to close form.

isTlag Set to TRUE to add a lag time parameter to the model.
hasEliminationComp
Set to TRUE to add an elimination compartment to the model.
isFractionExcreted
Set to TRUE if elimination compartment (hasEliminationComp = TRUE) con-
tains a fraction excreted parameter.
isSaturating Set to TRUE to use Michaelis-Menten Kinetics for elimination. Only applicable
to models with paramteterization = "Clearance”

pkemaxmodel 49

infusionAllowed
Set to TRUE if infusions allowed.

isDuration Set to TRUE if infusions use duration instead of rate (must also set infusionAllowed
= TRUE).
isSequential Set to TRUE to freeze PK fixed effects and convert the corresponding random

effects into covariates as well as remove the PK observed variable from the
model.

isPkFrozen Set to TRUE to freeze PK fixed effects and remove the corresponding random
effects as well as the PK observed variable from the model.
hasEffectsCompartment
Set to TRUE to include an effect compartment into the model.

checkBaseline Does Emax/Imax model have a baseline response?

checkFractional
Set to TRUE to modify the default form for the Emax/Imax model. Only applica-
ble to models with checkBaseline = TRUE.

checkInhibitory
Set to TRUE to change the default Emax to Imax model.

checkSigmoid Set to TRUE to change the Emax/Imax to its corresponding sigmoid form.

isEmaxFrozen Set to TRUE to freeze PD fixed effects and remove the corresponding random
effects as well as the PD observed variable from the model.

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if

workingDir not specified.
Arguments passed on to pkindirectmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

Time Column mapping argument that represents the input dataset column for
the relative time used in a study and only applicable to time-based models.

A1 Column mapping argument that represents the input dataset column for the
amount of drug administered. Only applicable to the following types of
models:

e Models with absorption = "Intravenous” and parameterization set
to either "Clearance”,”Micro”, or "Macro”

¢ Models with absorption set to either "Gamma"”, "InverseGaussian”,
or "Weibull”

Aa Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "FirstOrder”.

50 pkemaxmodel

A Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
="Intravenous” and parameterization = "Macrol1”.

A1_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered. Only applicable to the following types of
models:

¢ Models with absorption = "Intravenous”, infusionAllowed = TRUE
and parameterization set to either "Clearance”,”Micro” or "Macro”

¢ Models with absorption set to either "Gamma”, "InverseGaussian”,
or "Weibull” and infusionAllowed = TRUE

A1_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered. Only applicable to the following
types of models:

¢ Models with absorption = "Intravenous”, infusionAllowed = TRUE
with isDuration = TRUE and parameterization set to either "Clearance”,"Micro”
or "Macro”

¢ Models with absorption set to either "Gamma"”, "InverseGaussian”,
or "Weibull” and infusionAllowed = TRUE with isDuration = TRUE

Aa_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered and only applicable to models with absorption
="FirstOrder”, infusionAllowed = TRUE.

Aa_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "FirstOrder"”, infusionAllowed = TRUE, and isDuration
= TRUE.

A_Rate Column mapping argument that represents the input dataset column for
the rate of drug administered and only applicable to models with absorption
="Intravenous”, infusionAllowed = TRUE, and parameterization = "Macrol1”.

A_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "Intravenous”, infusionAllowed = TRUE, isDuration
= TRUE, and parameterization = "Macro1”.

A1Strip Column mapping argument that represents the input dataset column
for the stripping dose and only applicable to models with parameterization
= "Macro”.

CObs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Clearance” or "Micro”.

C10bs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Macro” or "Macro1”.

A@0Obs Column mapping argument that represents the input dataset column for

the observed amount of drug in the elimination compartment. (hasEliminationComp
= TRUE).

pkemaxmodel

51

EObs Column mapping argument that represents the input dataset column for
the observed drug effect.

nV If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV.

nV2 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV2.

nV3 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV3.

nCl If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nC1.

nCl2 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nC12.

nCl3 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nC13.

nKa If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKa.

nA If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nA.

nAlpha If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nAlpha.

nB If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nB.

nBeta If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nBeta.

nC If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nC.

nGamma If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nGamma.

nKe If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKe.

nK12 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK12.

nK21 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK21.

nK13 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK13.

nK31 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK31.

nTlag If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nTlag.

nKm If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKm.

nVmax If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nVmax.

nFe If isSequential = TRUE and isFractionExcreted = TRUE, mapped to the
input dataset column that lists the values for random effect nFe.

52 pkindirectmodel

nMeanDelayTime If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nMeanDelayTime.

nShapeParam If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nShapeParam.

nShapeParamMinusOne If isSequential = TRUE, mapped to the input dataset
column that lists the values for random effect nShapeParamMinusOne.

Value

N1lmePmlModel object

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- pkemaxmodel (
parameterization = "Macro”,
data = pkpdData,
Time = "Time",
D = "ID",
A1 = "Dose"”,
C10bs = "CObs",
EObs = "EObs”
)

View the model as well as its associated column mappings
print(model)

pkindirectmodel Create a PK/Indirect response model

Description

Use to create a PK/Indirect response model.

Usage

pkindirectmodel(
isPopulation = TRUE,
parameterization = "Clearance”,
absorption = "Intravenous”,
numCompartments = 1,
isClosedForm = TRUE,
isTlag = FALSE,
hasEliminationComp = FALSE,

pkindirectmodel 53

isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isSequential = FALSE,
isPkFrozen = FALSE,
hasEffectsCompartment = FALSE,
indirectType = "LimitedStimulation”,
isBuildup = TRUE,

isExponent = FALSE,
indirectFrozen = FALSE,

data = NULL,

columnMap = TRUE,

nn

modelName = s

nn

workingDir = ,

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?

parameterization
Type of parameterization. Options are "Clearance”, "Micro”, "Macro”, or
"Macrol”.

absorption Type of absorption. Options are "Intravenous”, "FirstOrder”, "Gamma",

"InverseGaussian”, "Weibull" .
numCompartments
Value of either 1, 2, or 3.

isClosedForm Setto TRUE to convert model from a differential equation to close form.

isTlag Set to TRUE to add a lag time parameter to the model.
hasEliminationComp
Set to TRUE to add an elimination compartment to the model.
isFractionExcreted
Set to TRUE if elimination compartment (hasEliminationComp = TRUE) con-
tains a fraction excreted parameter.

isSaturating Set to TRUE to use Michaelis-Menten kinetics for elimination. Only applicable
to models with paramteterization = "Clearance”

infusionAllowed
Set to TRUE if infusions allowed.

isDuration Set to TRUE if infusions use duration instead of rate (must also set infusionAllowed
= TRUE).

isSequential Set to TRUE to freeze PK fixed effects and convert the corresponding random
effects into covariates as well as remove the PK observed variable from the
model.

isPkFrozen Set to TRUE to freeze PK fixed effects and remove the corresponding random
effects as well as the PK observed variable from the model.

pkindirectmodel

hasEffectsCompartment
Set to TRUE to include an effect compartment into the model.

indirectType Type of drug actions for the indirect response model. Options are "LimitedStimulation”,
"InfiniteStimulation”, "LimitedInhibition”, "InverselInhibition”, "LinearStimulation”,
or "LoglLinearStimulation”.

isBuildup Set to FALSE to have the drug actions affect the loss/degradation instead of the
production.
isExponent Set to TRUE to add an exponent parameter to the drug action term.

indirectFrozen Set to TRUE to freeze PD fixed effects and remove the corresponding random
effects as well as the PD observed variable from the model.

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if

workingDir not specified.
Arguments passed on to pkindirectmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

Time Column mapping argument that represents the input dataset column for
the relative time used in a study and only applicable to time-based models.

A1 Column mapping argument that represents the input dataset column for the
amount of drug administered. Only applicable to the following types of
models:

* Models with absorption = "Intravenous” and parameterization set
to either "Clearance”,”Micro”, or "Macro”

¢ Models with absorption set to either "Gamma", "InverseGaussian”,
or "Weibull”

Aa Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
="FirstOrder”.

A Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
="Intravenous" and parameterization = "Macrol1”.

A1_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered. Only applicable to the following types of
models:

¢ Models with absorption = "Intravenous”, infusionAllowed = TRUE
and parameterization set to either "Clearance”,"Micro” or "Macro”

¢ Models with absorption set to either "Gamma"”, "InverseGaussian”,
or "Weibull"” and infusionAllowed = TRUE

pkindirectmodel 55

A1_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered. Only applicable to the following
types of models:

¢ Models with absorption = "Intravenous”, infusionAllowed = TRUE
with isDuration = TRUE and parameterization set to either "Clearance”,"Micro”
or "Macro”

¢ Models with absorption set to either "Gamma"”, "InverseGaussian”,
or "Weibull” and infusionAllowed = TRUE with isDuration = TRUE

Aa_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered and only applicable to models with absorption
="FirstOrder"”, infusionAllowed = TRUE.

Aa_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "FirstOrder”, infusionAllowed = TRUE, and isDuration
= TRUE.

A_Rate Column mapping argument that represents the input dataset column for
the rate of drug administered and only applicable to models with absorption
="Intravenous”, infusionAllowed = TRUE, and parameterization = "Macrol1”.

A_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "Intravenous”, infusionAllowed = TRUE, isDuration
=TRUE, and parameterization = "Macro1”.

A1Strip Column mapping argument that represents the input dataset column
for the stripping dose and only applicable to models with parameterization
= "Macro”.

CObs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Clearance” or "Micro”.

C10bs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Macro” or "Macro1”.

A@Obs Column mapping argument that represents the input dataset column for
the observed amount of drug in the elimination compartment. (hasEliminationComp
= TRUE).

EObs Column mapping argument that represents the input dataset column for
the observed drug effect.

nV If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV.

nV2 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV2.

nV3 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV3.

nCl If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nC1.

56 pkindirectmodel

nCl2 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nC12.

nCl3 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nC13.

nKa If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKa.

nA If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nA.

nAlpha If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nAlpha.

nB If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nB.

nBeta If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nBeta.

nC If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nC.

nGamma If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nGamma.

nKe If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKe.

nK12 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK12.

nK21 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK21.

nK13 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK13.

nK31 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK31.

nTlag If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nTlag.

nKm If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKm.

nVmax If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nVmax.

nFe If isSequential = TRUE and isFractionExcreted = TRUE, mapped to the
input dataset column that lists the values for random effect nFe.

nMeanDelayTime If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nMeanDelayTime.

nShapeParam If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nShapeParam.

nShapeParamMinusOne If isSequential = TRUE, mapped to the input dataset
column that lists the values for random effect nShapeParamMinusOne.

Value

N1mePmlModel object

pklinearmodel

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- pkindirectmodel(
parameterization = "Micro”,
data = pkpdData,
D = "ID",
Time = "Time",
A1 = "Dose”,
CObs = "CObs",
EObs = "EObs"
)

View PML Code
print(model)

57

pklinearmodel Create PK linear model

Description

Use to create a PK/PD model with PD described by either constant, linear, or quadratic model

Usage
pklinearmodel(
isPopulation = TRUE,
parameterization = "Clearance”,
absorption = "Intravenous”,

numCompartments = 1,
isClosedForm = TRUE,

isTlag = FALSE,
hasEliminationComp = FALSE,
isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isSequential = FALSE,
isPkFrozen = FALSE,
hasEffectsCompartment = FALSE,

linearType = "Constant”,
isLinearFrozen = FALSE,
data = NULL,

columnMap = TRUE,

nn

modelName = R

58 pklinearmodel
workingDir = "",
)
Arguments
isPopulation Is this a population model TRUE or individual model FALSE?
parameterization
Type of parameterization. Options are "Clearance”, "Micro”, "Macro”, or
"Macro1”.
absorption Type of absorption. Options are "Intravenous”, "FirstOrder”, "Gamma",
"InverseGaussian”, "Weibull"” .
numCompartments
Value of either 1, 2, or 3.
isClosedForm Set to TRUE to convert model from a differential equation to close form.
isTlag Set to TRUE to add a lag time parameter to the model.
hasEliminationComp
Set to TRUE to add an elimination compartment to the model.
isFractionExcreted
Set to TRUE if elimination compartment (hasEliminationComp = TRUE) con-
tains a fraction excreted parameter.
isSaturating Set to TRUE to use Michaelis-Menten kinetics for elimination. Only applicable
to models with paramteterization = "Clearance”
infusionAllowed
Set to TRUE if infusions allowed.
isDuration Set to TRUE if infusions use duration instead of rate (must also set infusionAllowed
= TRUE).
isSequential Set to TRUE to freeze PK fixed effects and convert the corresponding random
effects into covariates as well as remove the PK observed variable from the
model.
isPkFrozen Set to TRUE to freeze PK fixed effects and remove the corresponding random

effects as well as the PK observed variable from the model.

hasEffectsCompartment

linearType

isLinearFrozen

data

columnMap

modelName

workingDir

Set to TRUE to include an effect compartment into the model.

n on

Type of PD model; Options are "Constant”, "Linear”, "Quadratic”.

Set to TRUE to freeze PD fixed effects and remove the corresponding random
effects as well as the PD observed variable from the model.

Input dataset

If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

Model name for subdirectory created for model output in current working direc-
tory.

Working directory to run the model. Current working directory will be used if
workingDir not specified.

pklinearmodel

59

Arguments passed on to pkindirectmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

Time Column mapping argument that represents the input dataset column for
the relative time used in a study and only applicable to time-based models.

A1 Column mapping argument that represents the input dataset column for the
amount of drug administered. Only applicable to the following types of
models:

* Models with absorption = "Intravenous” and parameterization set
to either "Clearance”,”Micro”, or "Macro”

¢ Models with absorption set to either "Gamma", "InverseGaussian”,
or "Weibull”

Aa Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "FirstOrder”.

A Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
="Intravenous” and parameterization = "Macrol1”.

A1_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered. Only applicable to the following types of
models:

* Models with absorption = "Intravenous”, infusionAllowed = TRUE
and parameterization set to either "Clearance”,"Micro” or "Macro”

¢ Models with absorption set to either "Gamma”, "InverseGaussian”,
or "Weibull"” and infusionAllowed = TRUE

A1_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered. Only applicable to the following
types of models:

¢ Models with absorption = "Intravenous”, infusionAllowed = TRUE
with isDuration = TRUE and parameterization set to either "Clearance”,"Micro”
or "Macro”

¢ Models with absorption set to either "Gamma", "InverseGaussian”,
or "Weibull"” and infusionAllowed = TRUE with isDuration = TRUE

Aa_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered and only applicable to models with absorption
="FirstOrder”, infusionAllowed = TRUE.

Aa_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "FirstOrder"”, infusionAllowed = TRUE, and isDuration
= TRUE.

A_Rate Column mapping argument that represents the input dataset column for
the rate of drug administered and only applicable to models with absorption
="Intravenous", infusionAllowed = TRUE, and parameterization = "Macro1”.

A_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models

60

pklinearmodel

with absorption = "Intravenous”, infusionAllowed = TRUE, isDuration
=TRUE, and parameterization = "Macro1”.

A1Strip Column mapping argument that represents the input dataset column
for the stripping dose and only applicable to models with parameterization
= "Macro”.

CObs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Clearance” or "Micro”.

C10bs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Macro” or "Macro1”.

A@Obs Column mapping argument that represents the input dataset column for

the observed amount of drug in the elimination compartment. (hasEliminationComp

= TRUE).

EObs Column mapping argument that represents the input dataset column for
the observed drug effect.

nV If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV.

nV2 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV2.

nV3 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV3.

nCl If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nC1.

nCl2 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nC12.

nCl3 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nC13.

nKa If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKa.

nA If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nA.

nAlpha If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nAlpha.

nB If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nB.

nBeta If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nBeta.

nC If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nC.

nGamma If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nGamma.

nKe If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKe.

pklinearmodel

Value

61

nK12 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK12.

nK21 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK21.

nK13 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK13.

nK31 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK31.

nTlag If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nTlag.

nKm If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKm.

nVmax If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nVmax.

nFe If isSequential = TRUE and isFractionExcreted = TRUE, mapped to the
input dataset column that lists the values for random effect nFe.

nMeanDelayTime If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nMeanDelayTime.

nShapeParam If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nShapeParam.

nShapeParamMinusOne If isSequential = TRUE, mapped to the input dataset
column that lists the values for random effect nShapeParamMinusOne.

N1mePmlModel object

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples
model <- pklinearmodel(
parameterization = "Clearance”,
linearType = "Constant”,
data = pkpdData,
D = "ID",
Time = "Time",
A1 = "Dose",
CObs = "CObs"”,
EObs = "EObs"

)

View the model as well as its associated column mappings

print(model)

62 pkmodel

pkmodel Creates a PK model

Description

Use to create a PK model

Usage
pkmodel (
isPopulation = TRUE,
parameterization = "Clearance”,
absorption = "Intravenous”,

numCompartments = 1,
isClosedForm = TRUE,

isTlag = FALSE,
hasEliminationComp = FALSE,
isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isStdevFrozen = FALSE,

data = NULL,

columnMap = TRUE,

modelName = "",

workingDir = "",

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?

parameterization
Type of parameterization. Options are "Clearance”, "Micro”, "Macro”, or
"Macro1”.

absorption Type of absorption. Options are "Intravenous”, "FirstOrder”, "Gamma",

"InverseGaussian”, "Weibull" .
numCompartments
Value of either 1, 2, or 3.

isClosedForm Setto TRUE to convert model from a differential equation to close form.

isTlag Set to TRUE to add a lag time parameter to the model.
hasEliminationComp
Set to TRUE to add an elimination compartment to the model.
isFractionExcreted
Set to TRUE if elimination compartment (hasEliminationComp = TRUE) con-
tains a fraction excreted parameter.

pkmodel

isSaturating

infusionAllowed

isDuration

isStdevFrozen
data

columnMap

modelName

workingDir

63

Set to TRUE to use Michaelis-Menten kinetics for elimination. Only applicable
to models with paramteterization = "Clearance”

Set to TRUE if infusions allowed.

Set to TRUE if infusions use duration instead of rate (must also set infusionAllowed
= TRUE).

Set to TRUE to freeze value of standard deviation of residual error variable.
Input dataset

If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

Model name for subdirectory created for model output in current working direc-
tory.

Working directory to run the model. Current working directory will be used if
workingDir not specified.

Arguments passed on to pkmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

Time Column mapping argument that represents the input dataset column for
the relative time used in a study and only applicable to time-based models.

A1 Column mapping argument that represents the input dataset column for the
amount of drug administered. Only applicable to the following types of
models:

* Models with absorption = "Intravenous” and parameterization set
to either "Clearance”,”Micro”, or "Macro”

¢ Models with absorption set to either "Gamma"”, "InverseGaussian”,
or "Weibull”

Aa Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
="FirstOrder".

A Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
="Intravenous” and parameterization = "Macrol1”.

A1_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered. Only applicable to the following types of
models:

¢ Models with absorption = "Intravenous”, infusionAllowed = TRUE
and parameterization set to either "Clearance”,"Micro” or "Macro”

¢ Models with absorption set to either "Gamma”, "InverseGaussian”,
or "Weibull"” and infusionAllowed = TRUE

A1_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered. Only applicable to the following
types of models:

64 pkmodel

¢ Models with absorption = "Intravenous”,infusionAllowed = TRUE
with isDuration = TRUE and parameterization set to either "Clearance”,
"Micro” or "Macro”

¢ Models with absorption set to either "Gamma", "InverseGaussian”,
or "Weibull” and infusionAllowed = TRUE with isDuration = TRUE

Aa_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered and only applicable to models with absorption
="FirstOrder"”, infusionAllowed = TRUE.

Aa_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "FirstOrder”, infusionAllowed = TRUE, and isDuration
= TRUE.

A_Rate Column mapping argument that represents the input dataset column for
the rate of drug administered and only applicable to models with absorption
= "Intravenous", infusionAllowed = TRUE, and parameterization = "Macro1”.

A_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "Intravenous”, infusionAllowed = TRUE, isDuration
=TRUE, and parameterization = "Macro1”.

A1Strip Column mapping argument that represents the input dataset column
for the stripping dose and only applicable to models with parameterization
= "Macro”.

CObs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Clearance” or "Micro”.

C10bs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Macro” or "Macrol”.

AQ0bs Column mapping argument that represents the input dataset column for
the observed amount of drug in the elimination compartment. (hasEliminationComp
= TRUE).

Value

N1lmePmlModel object

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- pkmodel(
parameterization = "Clearance”,
numCompartments = 2,
data = pkData,

pkpdData 65

ID = "Subject”,
Time = "Act_Time",
A1 = "Amount”,
CObs = "Conc",
workingDir = tempdir()

)

View the model as well as its associated column mappings

print(model)

pkpdData Pharmacokinetic/Pharmacodynamic dataset containing 200 subjects
with single bolus dose
Description

Pharmacokinetic/Pharmacodynamic dataset containing 200 subjects with single bolus dose.

Usage

pkpdData

Format

A data frame with 2600 rows and 5 variables:

ID Subject ID

Time Nominal Time

Dose Amount of dose

CObs Observations of drug concentration in blood

EObs Observations of drug effect

Source

The data is simulated using a PKPD model with PK described by a one-compartment model with
IV bolus and PD described by an indirect response model with the loss inhibited.

66 randomEffect

print.NlmePmlModel Print generic for class NImePmIModel

Description

Prints model information, including PML and column mappings.

Usage

S3 method for class 'NlmePmlModel'
print(x, ...)

Arguments

X NImePmlModel class instance

Arguments passed to methods.

Value

NULL

Examples

model <- pkmodel(columnMap = FALSE,
data = pkData,
workingDir = tempdir())
print(model)

randomeffect Sets or updates the covariance matrix of random effects

Description

Use to set or update the covariance matrix of random effects in a model object.

Usage

randomeffect (
.Object,
effect,
value = NULL,
isDiagonal = TRUE,
isFrozen = FALSE,

removeCovariate

Arguments

.Object
effect

value

isDiagonal

isFrozen

Value

67

Model object
One or more names of available random effects.

Initial values for the diagonal elements of the covariance matrix of random ef-
fects (if isDiagonal = TRUE, or initial values for the lower triangular elements
(including diagonal elements) of the covariance matrix (if isDiagonal = FALSE)
in a row-wise order.

Set to TRUE to if the covariance matrix of the specified random effects is a diag-
onal matrix. or FALSE if not.

Set to TRUE to freeze the covariance matrix of random effects.

Additional arguments

Modified NImePm1lModel object

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject”,
Time = "Act_Time",

A1 = "Amount”
CObs = "Conc”
modelName = "
workingDir =

)

model <-
randomeffect (

’

’

TwCpt_IVBolus_FOCE_ELS",
tempdir()

model,
effect = c("nV", "nCl", "nCl2"), value = rep(@.1, 3))

removeCovariate

Remove covariate from structural parameters in a model object.

Description

Remove one or more covariates from structural parameters in a model object.

Usage

removeCovariate(.0Object, covariate = NULL, paramName = NULL)

68 remove_ NLMELicense

Arguments
.Object Model object
covariate Covariates to remove from model. If NULL all covariates will be removed from
model.
paramName Structural parameters for which to remove covariate effect(s) from. If NULL
covariate effect will be removed from all structural parameters.
Value

Modified NIlmePm1Model object

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,

ID = "Subject”,

Time = "Act_Time",

A1 = "Amount”,

CObs = "Conc”,
workingDir = tempdir()

)

Add Gender covariate of type categorical
model <- addCovariate(model,

covariate = "Gender",

type = "Categorical”,

effect = c("v2", "Cl2"),

levels = c(0, 1),

labels = c("Female”, "Male")

)

Add BodyWeight covariate of type continuous
model <- addCovariate(model,
covariate = "BodyWeight",

type = "Continuous”,
direction = "Backward”,
center = "Mean”,

effect = c("V", "C1")

)

Remove all covariates from model
model <- removeCovariate(model)

remove_NLMELicense Remove NLME License

residualEffectNames 69

Description
This function attempts to remove an NLME license using the specified installation directory and
licensing tool.

Usage

remove_NLMELicense(InstallDir = Sys.getenv("INSTALLDIR"))

Arguments
InstallDir A character string specifying the directory where the NLME Engine is installed
e.g., INSTALLDIR environment variable. The cadlicensingtool executable is
expected to be located within this directory, or within a subdirectory specified
by the PML_BIN_DIR environment variable.
Details

The function checks for the presence of the necessary ‘appsettings.json‘ file in the specified direc-
tory or the CAD config file specified by the ‘CAD_CONFIG_FILE‘ environment variable, runs the
licensing tool to log out the user, and attempts to remove the NLME license.

Value

A logical value indicating whether the license information was successfully removed.

Examples

INSTALLDIR <- Sys.getenv("INSTALLDIR")
if (INSTALLDIR == "") INSTALLDIR <- "C:/Program Files/Certara/NLME_Engine”
if (FALSE) { # to prevent unintended logout
result <- remove_NLMELicense(INSTALLDIR)
3

residualEffectNames Return residual effect terms available in model

Description

Use to return character vector of residual effect names in model object

Usage

residualEffectNames(model)

Arguments

model Object of class N1lmePmlModel

70

Value

residual Error

Character vector of residual effect names

Examples

model <- pkemaxmodel(columnMap = FALSE)
residualEffectNames(model)

residualError

Assign residual error model to model object

Description

Use to change or update residual error model for model object

Usage

residualError(

.Object,

predName = "C",

errorType

SD = NULL,

isFrozen

NULL,

FALSE,

isBQL = FALSE,

staticLLOQ = NULL,
EObsBQL = NULL,
CObsBQL = NULL,

C10bsBQL = NULL,
AQObsBQL = NULL,
exponent = NULL
)
Arguments
.Object Model object
predName Name of the predicted variable as returned in residualEffectNames.
errorType Options are "Additive”, "LogAdditive”, "Multiplicative”, "AdditiveMultiplicative”,
"MixRatio"”, "Power".
SD Value for the standard deviation of the residual error variable.
isFrozen Set to TRUE to freeze the standard deviation to the value specified for SD.
isBQL Set to TRUE if BQL values present in the observation data.
staticLLOQ Optional LLOQ value if isBQL = TRUE
EObsBQL Column mapping argument that represents the input dataset column that con-

tains the BQL flag for observation values corresponding to EObs. Only applica-
ble to isBQL = TRUE.

secondaryParameterNames 71

CObsBQL

C10bsBQL

AQObsBQL

exponent

Value

Column mapping argument that represents the input dataset column that con-
tains the BQL flag for observation values corresponding to CObs. Only applica-
ble to isBQL = TRUE.

Column mapping argument that represents the input dataset column that con-
tains the BQL flag for observation values corresponding to C10bs. Only appli-
cable to isBQL = TRUE.

Column mapping argument that represents the input dataset column that con-
tains the BQL flag for observation values corresponding to AObs. Only applica-
ble to isBQL = TRUE.

Value of exponent. Only applicable to errorType = "Power".

Modified NImePm1lModel object

Examples

model <- pkindirectmodel(indirectType = "LimitedInhibition”, isBuildup = FALSE,
data = pkpdData, ID = "ID", Time = "Time”, Al = "Dose”, CObs = "CObs”, EObs = "EObs")

residualEffectNames(model)

Change error type to "Multiplicative” and value of SD to ©.1 for "E"
model <- residualError(model, predName = "E", errorType = "Multiplicative”, SD = 0.1)

Change error type to "Power”, value of SD to ©0.15, and set exponent = 2 for "C"
model <- residualError(model, predName = "C", errorType = "Power”, SD = 0.15, exponent = 2)

secondaryParameterNames

Get secondary parameter names

Description

Returns character vector of secondary parameter names for model object.

Usage

secondaryParameterNames(model)

Arguments

model

Value

Object of class N1lmePm1Model

Character vector of secondary parameter names defined in model

72 shotgunSearch

Examples

model <- pkemaxmodel(columnMap = FALSE)
secondaryparms <- secondaryParameterNames(model)

shotgunSearch Executes an NLME shotgun covariate search

Description

Executes an NLME shotgun covariate search

Usage

shotgunSearch(
model,
hostPlatform = NULL,
params,
covariateModel,
runInBackground = FALSE,

Arguments

model PK/PD model class object.

hostPlatform Host definition for model execution. See hostParams. If missing, multicore
local host with 4 threads is used.

params Engine parameters. See engineParams. If missing, default parameters gener-
ated by engineParams(model) are used.

covariateModel Covariate Effects Model providing the relationship between covariates and struc-
tural parameters to test (covariateModel (model)).

runInBackground
Set to TRUE to run in background and return prompt.

Additional arguments for hostParams or arguments available inside engineParams
functions. If engineParams arguments are supplied through both params argu-
ment and additional argument (i.e., ellipsis), then the arguments in params will
be ignored and only the additional arguments will be used with warning. If
hostParams arguments are supplied through both the hostPlatform argument
and the ellipses, values supplied to hostPlatform will be overridden by addi-
tional arguments supplied via the ellipses e.g.,

Value

if runInBackground = FALSE, a data frame is returned with shotgun (all combinations given the co-
variate model) search results, i.e. "Overall" comma separated file. Otherwise the ShotgunNlmeJob
class object is returned.

shotgunSearch

See Also

hostParams, engineParams

Examples

Define the model
model <- pkmodel (numCompartments = 2,

Add Gender

data = pkData,
ID = "Subject”,

Time = "Act_Time",
A1l = "Amount”,
CObs = "Conc",

workingDir = tempdir())

covariate of type categorical

model <- addCovariate(model,

covariate = "Gender",

type = "Categorical”,

effect = c("v2", "Cl2"),
levels = c(0, 1),

labels = c("Female”, "Male"))

Add Bodyweight covariate of type continuous
model <- addCovariate(model,

Define the

covariate = "BodyWeight”,

type = "Continuous”,
direction = "Backward”,
center = "Mean”,

effect = c("V", "C1l"))

host

host <- hostParams(parallelMethod = "MULTICORE",

Define the

hostName = "local”,
numCores = 8,
sharedDirectory = tempdir())

engine parameters

params <- engineParams(model, fastOptimization = TRUE, numIterations

Define covariate model
cp <- covariateModel (model)

Perform shotgun search

OverallDF <-

shotgunSearch(model = model,
hostPlatform = host,
params = params,
covariateModel = cp,
runInBackground = FALSE)

7

73

74 simmodel

simmodel Executes an NLME simulation

Description

Executes an NLME simulation

Usage

simmodel (
model,
simParams,
params,
hostPlatform = NULL,
runInBackground = FALSE,

)
Arguments
model PK/PD model class object.
simParams Simulation parameters. See NImeSimulationParams. If missing, default pa-
rameters generated by NlmeSimulationParams() are used.
params Engine parameters. See engineParams. The common parameters include: sort,

ODE, rtolODE, atolODE, maxStepsODE. If missing, default parameters gen-
erated by engineParams(model) are used.

hostPlatform Host definition for model execution. See hostParams. If missing, simple local
host is used.

runInBackground
Set to TRUE to run in background and return prompt.

Additional class initializer arguments for NlmeSimulationParams, or arguments
available inside hostParams or engineParams functions. If engineParams ar-
guments are supplied through both params argument and additional argument

(i.e., ellipsis), then the arguments in params will be ignored and only the addi-

tional arguments will be used with warning. If hostParams arguments are sup-

plied through both hostPlatform argument and additional argument, then its

slots will be overridden by additional arguments. In addition, if NlmeSimulationParams
arguments are supplied through both simParams argument and additional argu-

ment, then its slots will be overridden by additional arguments.

Value

returns job properties if runInBackground is TRUE; if runIlnBackground is FALSE and the function
is called in interactive mode, the resulted simulated tables wil be loaded and presented as a list; if
runlnBackground is FALSE and the function is called in non-interactive mode, the list returned will
have just the full paths of the tables generated.

sortfit

Examples

SimTableObs <- tableParams(
name = "SimTableObs.csv",
timesList = "0,1,2,4,4.9,55.1,56,57,59,60",
variableslList = "C, CObs",
timeAfterDose = FALSE,
forSimulation = TRUE
)

simParams <- NlmeSimulationParams(
numReplicates = 2,
simulationTables = SimTableObs

)

Define the model

model <- pkmodel(
numComp = 2,

absorption = "Extravascular”,
ID = "Subject”,

Time = "Act_Time",

CObs = "Conc",

Aa = "Amount”,

data = pkData,
modelName = "PkModel”,
workingDir = tempdir()

host <- hostParams(
sharedDirectory = tempdir(),
parallelMethod = "NONE",
hostName = "local”,
numCores = 1

)

results <- simmodel(model, simParams, hostPlatform = host)
with seed given additionally:

results <- simmodel(model, simParams, hostPlatform

host, seed = 3527)

75

sortfit Executes an NLME simple estimation with sort keys and given scenar-
ios

Description

Executes an NLME simple estimation with sort keys and given scenarios

Usage

sortfit(
model,

76 sortfit
hostPlatform = NULL,
params,
sortColumns,
scenarios = list(),
simpleTables,
runInBackground = FALSE,
filesToReturn = "x",
)
Arguments
model PK/PD model class object.
hostPlatform Host definition for model execution. See hostParams. If missing, PhoenixM-
PIDir64 is given and MPI is installed, MPI local host with 4 threads is used. If
MPI is not found, local host without parallelization is used.
params Engine parameters. See engineParams. If missing, default parameters gener-
ated by engineParams(model) are used.
sortColumns List of sort columns. See SortColumns. If missing, empty sort columns argu-
ment is used and NLME dataset is used as is.
scenarios List of scenarios with different sets of covariates. See NlmeScenario If missing,
all covariates effects are considered as enabled.
simpleTables Optional list of simple tables. See tableParams. By default a table named
"posthoc.csv’ is returned with structural parameters values for all source data
TOWS.
runInBackground
Set to TRUE to run in background and return prompt.
filesToReturn Used to specify which files to be outputted to the model directory and loaded
as returned value. By default, all the applicable files listed in the Value section
will be outputted to the model directory and loaded as returned value. Only
those files listed in the Value section can be specified. Simple regex patterns are
supported for the specification.
Additional arguments for hostParams or arguments available inside engineParams
functions. If engineParams arguments are supplied through both params argu-
ment and additional argument (i.e., ellipsis), then the arguments in params will
be ignored and only the additional arguments will be used with warning. If
hostParams arguments are supplied through both the hostPlatform argument
and the ellipses, values supplied to hostPlatform will be overridden by addi-
tional arguments supplied via the ellipses e.g.,
Details

All the results in tabular format have scenario column and sorts columns appended. The resulted
logs (nlme7engine.log, errl.txt, dmp.txt, out.txt) are appended with a row delimiter where the name
of the Scenario and sort values are specified.

sortfit 77

Value

if runInBackground is FALSE, a list with main resulted dataframes is returned:

* Overall
* ConvergenceData
* residuals
* Secondary
* StrCovariate - if continuous covariates presented
» StrCovariateCat - if categorical covariates presented
* theta
* posthoc table
* posthocStacked table
* Requested tables
nlme7engine. log textual output is returned and loaded with the main information related to fitting.

dmp. txt structure with the results of fitting (including LL by subject information) is returned and
loaded. These 2 files are returned and loaded irrespective of filesToReturn argument value.

For individual models, additional dataframe with partial derivatives is returned:
* ParDer

For population models and the method specified is NOT Naive-Pooled, additional dataframes are
returned:

* omega

* Eta

* EtaStacked

» EtaEta

* EtaCov

» EtaCovariate - if continuous covariates presented

» EtaCovariateCat - if categorical covariates presented

* bluptable.dat
If standard error computation was requested and it was successful, additional dataframes are re-
turned:

* thetaCorrelation

* thetaCovariance

* Covariance

* omega_stderr

If nonparametric method was requested (numIterNonParametric > 0) and the method specified in
engineParams is NOT Naive-Pooled, additional dataframes are returned:

* nonParSupportResult

78 sortfit

¢ nonParStackedResult
¢ nonParEtaResult

¢ nonParOverallResult

if runInBackground is TRUE, only current status of job is returned.

Non-loaded but returned files
The non-loaded but returned files in the model working directory are:

* errl.txt - concatenated for all runs detailed logs for all steps of optimization,
* out.txt - general pivoted information about results,
* doses.csv - information about doses given for all subjects,

* iniest.csv - information about initial estimates

See Also

hostParams, engineParams, SortColumns,NlmeScenario, tableParams

Examples

input_data <- pkData

model <-
pkmodel (numCompartments = 2,

data = input_data,
ID = "Subject”,
Time = "Act_Time",
A1 = "Amount”,
CObs = "Conc",
workingDir = tempdir())

model <-
addCovariate(model,
covariate = "BodyWeight”,
direction = "Backward”,
center = "Mean”,

effect = c("V", "C1"))

multicore
multicoreHost <-
hostParams(parallelMethod = "Multicore”,
hostName = "multicore”,
numCores = 4,
sharedDirectory = tempdir())

specify scenarios
CovariateEffectNames <- listCovariateEffectNames(model)
combinations <-
combn(c("", CovariateEffectNames),
length(CovariateEffectNames),

stepwiseSearch 79

simplify = FALSE)
scenarioNames <-
lapply(combinations,

function(x) {paste(x, collapse =" ")})

scenarios <-

lapply(scenarioNames,
function(x, CovariateEffectNames) {
CovariateCombinations <- unlist(strsplit(x, " ", fixed = TRUE))

scenariolndex <-
paste(which(CovariateEffectNames %in% CovariateCombinations,
arr.ind = TRUE),

collapse = ", ")
NlmeScenario(trimws(x), scenariolndex)
} ’
CovariateEffectNames)
res <-
sortfit(model,
hostPlatform = multicoreHost,
params = engineParams(model, numIterations = 5, fastOptimization = TRUE),
sortColumns = SortColumns("Gender"),
scenarios = scenarios)
stepwiseSearch Executes an NLME stepwise covariate search
Description

Executes an NLME stepwise covariate search

Usage

stepwiseSearch(
model,
hostPlatform = NULL,
params,
covariateModel,
stepwiseParams,
runInBackground = FALSE,

Arguments

model PK/PD model class object.

80 stepwiseSearch

hostPlatform Host definition for model execution. See hostParams. If missing, multicore
local host with 4 threads is used.

params Engine parameters. See engineParams. If missing, default parameters gener-
ated by engineParams(model) are used.

covariateModel Covariate Effects Model providing the relationship between covariates and struc-
tural parameters to test (covariateModel (model)).

stepwiseParams Stepwise parameters defining decision tree. See StepwiseParams

runInBackground
Set to TRUE to run in background and return prompt.
Additional arguments for hostParams or arguments available inside engineParams
functions. If engineParams arguments are supplied through both params argu-
ment and additional argument (i.e., ellipsis), then the arguments in params will
be ignored and only the additional arguments will be used with warning. If
hostParams arguments are supplied through both the hostPlatform argument
and the ellipses, values supplied to hostPlatform will be overridden by addi-
tional arguments supplied via the ellipses e.g.,

Value

if runInBackground = FALSE, a data frame is returned with stepwise search results, i.e. "Overall"
comma separated file. Otherwise the StepwiseNlmeJob class object is returned.

See Also

hostParams, engineParams

Examples

Define the model
model <- pkmodel (numCompartments = 1,
data = pkData,

ID = "Subject”,
Time = "Act_Time",
A1 = "Amount”,
CObs = "Conc",

workingDir = tempdir())

Add Gender covariate of type categorical
model <- addCovariate(model,
covariate = "Gender”,
type = "Categorical”,
effect = c("V", "Cl"),
levels = c(0, 1),
labels = c("Female”, "Male"))

Add Bodyweight covariate of type continuous
model <- addCovariate(model,

covariate = "BodyWeight”,

type = "Continuous”,

direction = "Backward”,

structuralParameter 81

center = "Mean”,
effect = c("V", "C1"))

Define the host

defaultHost <- hostParams(parallelMethod = "MULTICORE",
hostName = "local”,
numCores = 8,
sharedDirectory = tempdir())

Define the engine parameters
params <- engineParams(model, numlterations = 6)

Define covariate model
cp <- covariateModel(model)

Define the stepwise parameters
sp <- StepwiseParams(0.01, 0.001, "-2LL")

Perform stepwise search

OverallDF <- stepwiseSearch(model = model,
hostPlatform = defaultHost,
params = params,
covariateModel = cp,
stepwiseParams = sp,
runInBackground = FALSE)

structuralParameter Set structural parameter in model object

Description

Use to specify the relationship of the structural parameter with corresponding fixed effect, random
effect, and covariate.

Usage

structuralParameter(
.Object,
paramName,
fixedEffName = NULL,
randomEffName = NULL,
style = "LogNormal”,
hasRandomEffect = NULL

82 structuralParameter
Arguments

.Object Model object

paramName Name of the structural parameter

fixedEffName Name of the corresponding fixed effect

randomEffName Name of the corresponding random effect; only applicable to population models.

style Use to specify the relationship of the structural parameter with its corresponding
fixed effect, random effect, and covariate, if exists.

"LogNormal” (Default): The structural parameter is defined as Product *
exp(Eta)

"LogNormall": The structural parameter is defined as Sum x exp(Eta)
"LogNormal2": The structural parameter is defined as exp(Sum + Eta)
"LogitNormal": The structural parameter is defined as ilogit(Sum + Eta)
"Normal": The structural parameter is defined as Sum + Eta)

Product denotes the product of the corresponding fixed effect and covariate
effect terms (if exists), Eta represents the corresponding random effect, and Sum
denotes the sum of its corresponding fixed effect and covariate effect terms (if
exists).

hasRandomEffect

Set to FALSE to remove the corresponding random effect from the model. Only
applicable to population models. If NULL the system will automatically set
hasRandomEffect = TRUE for population models, and hasRandomEffect = FALSE
for individual models.

Value

Modified NImePm1lModel object

Examples

model <- pkindirectmodel(
indirectType = "LimitedInhibition”,

isBuildup = FALSE,
data = pkpdData,
D = "ID",

Time = "Time",

A1 = "Dose",

CObs = "CObs",
EObs = "EObs"

)

Change style of structural parameter "Imax" to "LogitNormal”
and rename fixed effect to "tvlogitImax”
model <- structuralParameter(model,

)

paramName = "Imax",
style = "LogitNormal”, fixedEffName = "tvlogitImax"

structuralParameterNames 83

Remove random effect for structural parameter "IC50"
model <- structuralParameter(model,

paramName = "IC50",

hasRandomEffect = FALSE

structuralParameterNames
Get structural parameter names

Description

Returns character vector of structural parameter names for model object.

Usage

structuralParameterNames(model, omitEmpties = TRUE)

Arguments
model Object of class N1lmePmlModel
omitEmpties Set to TRUE to omit empty names
Value

Character vector of structural parameter names defined in model

Examples

model <- pkemaxmodel(columnMap = FALSE)
stparms <- structuralParameterNames(model)

tableParams Wrapper around NimeTableDef/NimeSimTableDef-classes initializers.

Description

Wrapper around NlmeTableDef/NImeSimTableDef-classes initializers.

84 tableParams

Usage

tableParams(
name = "",
timesList = numeric(9),

nn

covrSet = ,

nn

whenDose = ,
whenObs = "",
variableslList = "",
keepSource = FALSE,
timeAfterDose = FALSE,
IRES = FALSE,

Weight = FALSE,

IWRES = FALSE,

mode = "all”,
forSimulation = FALSE
)
Arguments

name Name of the generated simulation file.

timesList Numeric; Time values for simulation. Applicable for time-based models only.
Ignored when "keepSource=TRUE"

covrSet Character; Vector of covariate names. Simulation point is added when the co-
variate value is set. See covariateNames

whenDose Character; Vector of dosing compartment names. Simulation point is added
when the dose value is set.

whenObs Character; String of observed variables names. Simulation point is added when
the observation value is set.

variablesList Character; List of variables from the model for simulation.

keepSource Logical; Set to TRUE to keep the number of rows appearing in the table the same
as the number of rows in the input dataset.

timeAfterDose Set to TRUE to output time after dose.

IRES Logical; Set to TRUE to output individual residuals. Valid only if whenObs is
specified.

Weight Logical; Set to TRUE to output the weight of current observation. Valid only if
whenObs is specified.

IWRES Logical; Set to TRUE to output individual weighted residuals. Valid only if
whenObs is specified.

mode Character; The mode of output. Options are "all” (default), "unique”, "first".

Only applicable to non time-based models for the case where only covrSet is
defined or the case where only covrSet and variablesList are defined.
Option "all” (default): it outputs all the rows invoked by specified covariates.
Option "unique”: if the values in a row are the same as the ones in the previous
row for the current subject, then the row is omitted; otherwise, it is printed out.
Option "first": it outputs only the first row for each subject.

textualmodel 85

forSimulation logical. Defining whether the table is for simulation purposes or for postpro-
cessing after fit. Default is FALSE.

Value

NlmeTableDef object if forSimulation is FALSE, NlmeSimTableDef object otherwise.

Examples

Tablel <- tableParams(
name = "Tablel.csv"”,
timesList = seq(@, 24, 2),
whenObs = c("CObs"),
variablesList = "C",
IRES = TRUE,
IWRES = TRUE,
Weight = TRUE)

SimTablel <- tableParams(
name = "SimTablel.csv”,
variableslList = "CL, V",
keepSource = TRUE,
forSimulation = TRUE)

textualmodel Create a textual model object

Description

Use to create an empty model object and optionally supply location of .mdl file to initialize model
with PML statements.

Usage
textualmodel (modelName = "", workingDir = "", data, mdl = NULL)
Arguments
modelName Model name to create subdirectory for model output in current working direc-
tory.
workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.
data Input dataset
mdl File path specifying location of test.mdl file
Value

N1mePmlModel object

86

Examples

vpcmodel

model <- textualmodel(data = pkData)

vpcmodel

Perform visual predictive check for NLME models

Description

Perform visual predictive check for NLME models

Usage

vpcmodel (
model,
vpcParams,
params,
hostPlatform

= NULL,

runInBackground = FALSE,

Arguments

model

vpcParams

params

hostPlatform

runInBackground

PK/PD model class object.

VPC argument setup. See N1lmeVpcParams. If missing, default values generated
by NlmeVpcParams() are used.

Engine argument setup. See engineParams. The following arguments are the
subject of interest: sort, ODE, rtolODE, atolODE, maxStepsODE. If missing,
default values generated by engineParams(model) are used.

Host definition for model execution. See hostParams. If missing, simple local
host is used.

Set to TRUE to run in background and return prompt.

Additional class initializer arguments for NlmeVpcParams or hostParams, or ar-
guments available inside engineParams functions. If engineParams arguments
are supplied through both params argument and additional argument (i.e., el-
lipsis), then the arguments in params will be ignored and only the additional
arguments will be used with warning. If hostParams arguments are supplied
through both hostPlatform argument and additional argument, then its values
will be overridden by additional arguments. In addition, if NlmeVpcParams argu-
ments are supplied through both vpcParams argument and additional argument,
then its slots will be overridden by additional arguments.

vpcmodel 87

Value
if runInBackground is TRUE, it returns job properties. Otherwise,

* If the function is called in an interactive mode, the resulting simulated tables and summary
statistics tables will be loaded and presented as a list;

* If the function is called in a non-interactive mode, it returns the full paths of the tables gener-
ated

Examples

model <- pkmodel(
numComp = 1,
absorption = "Extravascular”,
ID = "Subject”,
Time = "Act_Time",
CObs = "Conc”,
Aa = "Amount”,
data = pkData,
modelName = "PkModel”,
workingDir = tempdir()

host <- hostParams(
sharedDirectory = tempdir(),
parallelMethod = "NONE",
hostName = "local”,

numCores = 1

)

job <- fitmodel(model = model,
hostPlatform = host)

finalModelVPC <- copyModel(model,
acceptAllEffects = TRUE,
modelName = "model_VPC",
workingDir = tempdir())

View the model

print(finalModelVPC)

Set up VPC arguments to have PRED outputted to simulation output dataset "predout.csv”
vpcSetup <- NlmeVpcParams(outputPRED = TRUE)

Run VPC using the default host, default values for the relevant NLME engine arguments
finalVPCJob <- vpcmodel(model = finalModelVPC, vpcParams = vpcSetup, hostPlatform = host)
the same as:

finalVPCJob <- vpcmodel (model = finalModelVPC, outputPRED = TRUE)

Observed dataset predcheck@.csv
dt_ObsData <- finalVPCJob$predcheck®

Simulation output dataset predout.csv

88

dt_SimData <- finalVPCJob$predout

vpcmodel

Add PRED from REPLICATE = @ of simulation output dataset to observed input dataset
dt_ObsData$PRED <- dt_SimData[REPLICATE == @]$PRED

** % B o H W o

E R

tidyvpc package VPC example:

library(tidyvpc)

library(magrittr)

Create a regular VPC plot with binning method set to be "jenks
binned_VPC <- observed(dt_ObsData, x = IVAR, yobs = DV) %>%
simulated(dt_SimData, ysim = DV) %>%

binning(bin = "jenks") %>%

vpcstats()

n

plot_binned_VPC <- plot(binned_VPC)

Create a pcVPC plot with binning method set to be "jenks”
binned_pcVPC <- observed(dt_ObsData, x = IVAR, yobs = DV) %>%
simulated(dt_SimData, ysim = DV) %>%
binning(bin = "jenks") %>%
predcorrect(pred = PRED) %>%
vpcstats()

plot_binned_pcVPC <- plot(binned_pcVPC)

Index

+* NLME
hostParams, 38

+ NlmeParallelHost
hostParams, 38

+ datasets
OneCpt_IVInfusionData, 45
pkcovbqglData, 46
pkData, 47
pkpdData, 65

addADDL, 4

addCovariate, 5

addDoseCycle, 4, 7

addExtraDef, 9

addInfusion, 9

addLabel, 10

addMDV, 11

addReset, 12

addReset ,N1lmePmlModel-method
(addReset), 12

addSecondary, 13

addSecondary,N1lmePmlModel-method
(addSecondary), 13

addSteadyState, 14

bootstrap, 15
BootstrapParams, 15, 16

cancelJob, 16

cancelJob,SimpleNlmeJob-method
(cancelJob), 16

colMapping, 17, 21, 23, 24,41, 42,49, 52, 54,
57,58, 61,63, 64

copyModel, 18

covariateNames, 19, 84

createModelInfo, 20

dataMapping, 17, 21
doseNames, 8, 21

editModel, 22

89

emaxmodel, 23

emaxmodel_MappingParameters, 23

engineParams, 15, 16,24, 32-34, 72-74, 76,
78, 80, 86

extraDoselines, 30

extraDoseNames, 31

fitmodel, 32
fixedEffect, 35, 40

getRandomEffectNames, 37
getThetas, 37

hostParams, 15, 16, 32-34, 38, 72—74, 76, 78,
80, 86

initFixedEffects, 39
initFixedEffects,N1lmePmlModel-method
(initFixedEffects), 39
initFixedEffects<- (initFixedEffects),
39
initFixedEffects<-,NlmePmlModel-method
(initFixedEffects), 39

linearmodel, 41
linearmodel_MappingParameters, 41/
listCovariateEffectNames, 42
listCovariateEffectNames,NlmePmlModel-method
(listCovariateEffectNames), 42

modelVariableNames, 17, 43

NlmeScenario, 76, 78
NlmeSimulationParams, 74
NlmeVpcParams, 86

obtain_NLMELicense, 43
OneCpt_IVInfusionData, 45

parsePMLColMap, 45
pkcovbglData, 46

90 INDEX

pkData, 47

pkemaxmodel, 47

pkindirectmodel, 52

pkindirectmodel_MappingParameters, 49,
54,59

pklinearmodel, 57

pkmodel, 62

pkmodel_MappingParameters, 63

pkpdData, 65

print.NlmePmlModel, 66

randomgffect, 66
remove_NLMELicense, 68
removeCovariate, 67
residualEffectNames, 69, 70
residualError, 70

secondaryParameterNames, 71
shotgunSearch, 72
simmodel, 74
SortColumns, 76, 78
sortfit, 75
StepwiseParams, 80
stepwiseSearch, 79
structuralParameter, 81
structuralParameterNames, 83

tableParams, 32, 34, 76, 78, 83
textualmodel, 85

vpcmodel, 86

	addADDL
	addCovariate
	addDoseCycle
	addExtraDef
	addInfusion
	addLabel
	addMDV
	addReset
	addSecondary
	addSteadyState
	bootstrap
	cancelJob
	colMapping
	copyModel
	covariateNames
	createModelInfo
	dataMapping
	doseNames
	editModel
	emaxmodel
	engineParams
	extraDoseLines
	extraDoseNames
	fitmodel
	fixedEffect
	getRandomEffectNames
	getThetas
	hostParams
	initFixedEffects
	linearmodel
	listCovariateEffectNames
	modelVariableNames
	obtain_NLMELicense
	OneCpt_IVInfusionData
	parsePMLColMap
	pkcovbqlData
	pkData
	pkemaxmodel
	pkindirectmodel
	pklinearmodel
	pkmodel
	pkpdData
	print.NlmePmlModel
	randomEffect
	removeCovariate
	remove_NLMELicense
	residualEffectNames
	residualError
	secondaryParameterNames
	shotgunSearch
	simmodel
	sortfit
	stepwiseSearch
	structuralParameter
	structuralParameterNames
	tableParams
	textualmodel
	vpcmodel
	Index

