Package 'ChaosGame'

December 9, 2022

Type Package
Title Chaos Game
Version 1.4
Author Thimo Kasper thimo.kasper@plus.ac.at,
Florian Griessenberger florian.griessenberger@plus.ac.at,
Manuela Schreyer manuelalarissa.schreyer@sbg.ac.at,
Johannes Bartel <>,
Wolfgang Trutschnig Wolfgang.Trutschnig@sbg.ac.at

Description

The main objective of the package is to enter a word of at least two letters based on which an Iterated Function System with Probabilities is constructed, and a two-dimensional fractal containing the chosen word infinitely often is generated via the Chaos Game. Additionally, the package allows to project the two-dimensional fractal on several three-dimensional surfaces and to transform the fractal into another fractal with uniform marginals.
Depends R (>=2.10), rgl, colorRamps
Imports ggplot2, gridExtra, plot3D, RColorBrewer,
License GPL-2
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Maintainer Marco Tschimpke marco.tschimpke@plus.ac.at
Repository CRAN
Date/Publication 2022-12-09 16:50:02 UTC

R topics documented:

```
plot_word2
```

plot_word3D 3

Description

The function allows to enter a word of at least two letters based on which an Iterated Function System with Probabilities (IFSP) is constructed. This IFSP is then used to generate a two-dimensional fractal containing the chosen word infinitely often, which is then plotted (and optionally probability-integral-transformed).

Usage

```
plot_word(
        word = "copula",
        R = 20,
        phi = 0,
        copula = FALSE,
        portion = 0.2,
        shift = 1.2,
        orbit = 3000,
        letter_type = 1
)
```


Arguments

word Word which the fractal should contain infinitely often.
R Number of runs of the chaos game.
phi Angle of the rotation.
copula logical. If TRUE the sample is (approximately) probability-integral-transformed.
portion Portion based on which the empirical distribution functions are calculated, if copula = TRUE.
shift Distance between letters.
orbit Number of steps in each run of the chaos game.
letter_type integer, which indicates the type of the letters. Options are 1 (default) or 2 (round letters).

Examples

```
#Function with word as input, constructs the IFSP and runs the chaos game:
    # for nice results use, for example, R = 20 and orbit = 3000
    A <- plot_word(word = "copula", R = 50, orbit = 100)
    #plot without histograms of the marginal distributions
    plot(A, pch =19, col = 4, cex = 0.1)
    # further examples:
```

\# with round letters
\# A <- plot_word(word = "copula", R = 100, orbit = 300, letter_type = 2)
\# with rotation
\# A <- plot_word(word = "copula", R = 100, orbit = 300, phi = pi/8)
\# A <- plot_word(word = "fractal", R = 100, orbit = 300, phi = pi/6)
\# (approximately) probability-integral-transformed
\# A <- plot_word(word = "copula", R = 100, orbit $=300$, phi $=$ pi/8, copula $=$ TRUE)
\# A <- plot_word(word = "fractal", R = 100, orbit = 300, phi = pi/6, copula = TRUE)
plot_word3D Plot the 3D fractal containing the chosen word

Description

The function allows to enter a word of at least two letters based on which an Iterated Function System with Probabilities (IFSP) is constructed. This IFSP is then used to generate a two-dimensional fractal containing the chosen word infinitely often, which is then projected onto several threedimensional surfaces. Optionally, the projection is transformed into another fractal with uniform marginals.

Usage

```
plot_word3D(
    word = "copula",
    R = 20,
    plot.rgl = TRUE,
    copula = TRUE,
    portion = 0.2,
    color.rgl.plot = "green2magenta",
    plot.surface = "Sphere",
    histogram = TRUE,
    shift = 1.2,
    orbit = 3000,
    cex.label = 0.7,
    size.lines = 0.1,
    Theta = 40,
    Phi = 30,
    Box = TRUE,
    projection = TRUE,
    letter_type = 1
)
```


Arguments

word
R

Word which the fractal should contain infinitely often.
Number of runs of the chaos game.

plot.rgl	If plot.rgl = TRUE a rgl-plot is generated. Otherwise a scatter-plot with plot3D is produced.
copula	logical. If TRUE the sample is (approximately) probability-integral-transformed.
portion	Portion based on which the empirical distribution functions are calculated, if copula = TRUE .
color.rgl.plot	Plotting color/color-range for the rgl-plot. One can choose between "gray", "blue2green", "green2red", "blue2yellow", "ygobb", "magenta2green" and "green2magenta".
plot.surface	Three-dimensional surface on which the two-dimensional fractal is projected. Options are "Sphere", "Helix", "Torus", "EnneperMinimalSurface" and "CatalanSurface".
histogram	It is an option available only under the rgl-plot option (i.e if plot.rgl = TRUE). If histogram = TRUE, two-dimensional and one-dimensional marginal histograms are plotted in the rgl-plot.
shift	Distance between letters.
orbit	Number of steps in each run of the chaos game.
cex.label	Font size, for exporting as a pdf or png file (see examples).
size.lines	Line width, for exporting as a pdf or png file (see examples).
Theta	Angles defining the viewing direction. Theta gives the azimuthal direction and Phi the colatitude in the scatter-plot (see Package plot3D). Can be chosen only under the scatter-plot option (i.e if plot.rgl = FALSE).
Phi	Angles defining the viewing direction. Theta gives the azimuthal direction and Phi the colatitude in the scatter-plot (see Package plot3D). Can be chosen only under the scatter-plot option (i.e if plot.rgl = FALSE).
Box	If TRUE, axis, two-dimensional projections (if projection = TRUE) and marginal histograms are plotted.
projection	An option available only if Box $=$ TRUE. If projection $=$ TRUE, the two-dimensional projections are plotted together with axis and marginal histograms.
letter_type	integer, which indicates the type of the letters. Options are 1 (default) or 2 (round letters).

Examples

```
# function with a word as input, runs the chaos game,
# calculates the copula transformation and projects the result on a sphere:
# for nice results use, for example, R = 20 and orbit = 3000
# A <- plot_word3D(word = "copula", copula = FALSE, R = 50, orbit = 100)
# further examples:
# projection of the fractal on the Enneper Minimal Surface:
# A <- plot_word3D(word = "copula", R = 75, orbit = 300, copula = FALSE,
    plot.surface = "EnneperMinimalSurface", histogram = FALSE)
# same example as before, now with histogram = TRUE
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
#
    plot.surface = "EnneperMinimalSurface")
```

```
# same example as before (approximately) probability-integral-transformed (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
#
    plot.surface = "EnneperMinimalSurface")
# projection of the fractal on a Catalan Surface
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
# color.rgl.plot = "blue2green", plot.surface = "CatalanSurface")
# projection of the fractal on a Helix
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
#
    color.rgl.plot = "green2red", plot.surface = "Helix")
# projection of the fractal on a Torus
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
#
    color.rgl.plot = "blue2yellow", plot.surface = "Torus")
# projection of the fractal on a Sphere
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE,
# color.rgl.plot = "ygobb", plot.surface = "Sphere")
# Sphere (approximately) probability-integral-transformed (i.e. copula = TRUE)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = TRUE,
# color.rgl.plot = "ygobb", plot.surface = "Sphere")
# scatter-plot with plot3D (i.e. plot.rgl = FALSE) for exporting as a pdf file
# pdf(file = "Sphere.pdf", width = 30, height = 25)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE, plot.rgl = FALSE,
# plot.surface = "Sphere", cex.label = 1.8, size.lines = 0.001)
# dev.off()
#' # scatter-plot with plot3D (i.e. plot.rgl = FALSE) for exporting as a png file
# png(file = "Sphere.png", width = 5000, height = 4000)
# A <- plot_word3D(word = "copula", R = 100, orbit = 300, copula = FALSE, plot.rgl = FALSE,
#
plot.surface = "Sphere", cex.label = 5, size.lines = 2)
# dev.off()
```


Index

plot_word, 2
plot_word3D, 3

