
Package ‘FDOTT’
October 1, 2025

Type Package

Title Optimal Transport Based Testing in Factorial Design

Version 0.1.0

Date 2025-09-24

Description Perform optimal transport based tests in factorial designs as intro-
duced in Groppe et al. (2025) <doi:10.48550/arXiv.2509.13970> via the FDOTT() func-
tion. These tests are inspired by ANOVA and its nonparametric counterparts. They allow for test-
ing linear relationships in factorial designs between finitely supported probability mea-
sures on a metric space. Such relationships include equality of all measures (no treatment ef-
fect), interaction effects between a number of factors, as well as main and simple factor effects.

License GPL (>= 3)

Imports Rcpp (>= 1.0.12), ROI, future.apply, progressr, transport,
slam, rrapply, stats, methods

Depends R (>= 4.1)

Suggests ROI.plugin.glpk, future

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.3.3

Encoding UTF-8

NeedsCompilation yes

Author Michel Groppe [aut, cre],
Linus Niemöller [aut]

Maintainer Michel Groppe <michel.groppe@uni-goettingen.de>

Repository CRAN

Date/Publication 2025-10-01 07:00:20 UTC

Contents
cost_matrix_lp . 2
FDOTT . 3
FDOTT_HSD . 7

1

https://doi.org/10.48550/arXiv.2509.13970

2 cost_matrix_lp

is_metric_cost_mat . 9
ot_barycenter . 10
ot_barycenter_test . 11
ot_cost_sgn . 14
ot_test_lp_solver . 15
simulate_finite_FDOTT . 16
simulate_finite_ot_barycenter_test . 18
tab_sample . 21

Index 23

cost_matrix_lp Cost Matrix of ℓˆp-Form.

Description

Compute cost matrices of ℓp-form.

Usage

cost_matrix_lp(x, y = NULL, p = 2, q = 1)

Arguments

x matrix of size n× d containing vectors x1, . . . , xn ∈ Rd (row-wise).

y matrix of size m× d containing vectors y1, . . . , ym ∈ Rd (row-wise); y = NULL
means that yi = xi.

p number p ∈ (0,∞].

q number q ∈ (0,∞).

Value

A n×m matrix with entry at i, j being equal to

∥xi − yj∥qp =

[
d∑

k=1

|xi,k − yj,k|p
]q/p

For p = Inf, this is to be understood as the maximum norm to the power of q.

Examples

n <- 3
m <- 4
d <- 5
x <- runif(n * d) |> matrix(n, d)
y <- runif(m * d) |> matrix(m, d)
costm <- cost_matrix_lp(x, y)
print(costm)

FDOTT 3

FDOTT Test linear relationships between probability vectors in factorial de-
signs

Description

Perform FDOTT, an optimal transport (OT) based test in factorial designs, to test linear relationships
between probability vectors, based on samples from them.

Usage

FDOTT(
samples,
costm,
H0 = "*",
fac.names = NULL,
method = c("plug-in", "bootstrap-deriv", "bootstrap-m", "permutation"),
num.sim = 1000,
null.mu = NULL,
m.p = 0.5,
is.metric = is_metric_cost_mat(costm, tol.ti = Inf),
verbose = FALSE

)

Arguments

samples nested list of depth D (representing a D-way layout) containing count vectors.
A count vector is a vector of length N that contains the number of times a sample
was observed at the respective points. Can also be given as a matrix (row-wise),
which is viewed as a one-way layout.

costm semi-metric cost matrix c ∈ RN×N .

H0 null hypothesis, see details.

fac.names names of the D factors. Used for printing. Default NULL corresponds to "F1"
for factor 1, and so on.

method the method to use to simulate from the null distribution, see details.

num.sim number of samples to draw from the limiting null distribution.

null.mu probability vectors µ underlying the null distribution used only for method =
"plug-in". Must be of the same structure as samples.

m.p exponent p ∈ (0, 1) used only for method = "bootstrap-m".

is.metric value indicating whether c is a metric cost matrix, see is_metric_cost_mat.

verbose logical value indicating whether additional information should be printed.

4 FDOTT

Details

Denote with µ the matrix (row-wise) of the probability vectors (in lexicographical order of the factor
combinations) that underlie samples. FDOTT deals with null hypotheses of the form

HL
0 : Lµ = 0 ,

where L is a suitable matrix with row sums all equal to 0. The FDOTT statistic is defined as

TL(µ̂n) :=

√
ρn

s

M∑
m=1

OT±
c ([Lµ̂n]m, 0) ,

where ρn and s are scaling factors, [Lµ]m is the m-th row-vector of Lµ and OT±
c the extended

OT functional, see ot_cost_sgn. The test is based on the asymptotic distribution of TL(µ̂n) under
under the null, for more details see Groppe et al. (2025).

The form of HL
0 allows for testing hypotheses like interaction effects in classical ANOVA, obtained

by formally substituting means by measures. The following values are allowed for H0:

• H0 = "*" (the default). Test all interaction (including main effects) of the factors. A specific
interaction or main effect can be tested by including the corresponding indices of the factors
in a list, e.g., H0 = list("*", c(1, 3)) corresponds to the interaction effect between factor 1
and 3. Note that in a one-way layout, H0 = "*" reduces to H0 = "=".

• H0 = "|". Test all simple factor effects. A specific simple factor effect can be tested by by
including the corresponding indices of the factors in a list, e.g., H0 = list("|", c(1, 3))
corresponds to the simple factor effect of factor 1 and 3 within the other remaining factors.

• H0 = "=". Test for treatment effect, i.e., whether all underlying probability vectors are the
same. Note that each pairwise comparison can be tested simultaneously via FDOTT_HSD.

• H0 = L. Test HL
0 for the directly supplied L matrix. The name of the tested effect (useful for

printing) and the scaling s (by default nrow(L)) can be supplied by setting the "effect" and
"scaling" attribute of L, respectively.

• H0 = list(...). Test a combined null hypothesis. Each element of the list represents a null
hypothesis and can be given by one of the options above. This is useful in combination with
FDOTT_HSD, which allows to test all the given null hypotheses simultaneously.

To simulate from the limiting null distribution, there are four different methods:

• "plug-in": uses the limiting distribution where µ is substituted by its empirical version (or
null.mu, when specified).

• "bootstrap-deriv": uses the so-called derivative bootstrap.

• "bootstrap-m": uses m-out-of-n bootstrap with m = ⌊np⌋.

• "permutation": uses a permutation approach, only works for H0 = "=".

These simulations can be done in parallel via future::plan and the progress can be shown with
progressr::with_progress.

FDOTT 5

Value

A FDOTT object containing:

fac.lvls vector of levels of the factors
mu matrix, empirical version µ̂n of µ that is based on samples
n vector of sample sizes n
L matrix L for the null hypothesis HL

0

p.value the p-value
statistic the value of the test statistic TL(µ̂n)
null.samples samples drawn from the null distribution

References

M. Groppe, L. Niemöller, S. Hundrieser, D. Ventzke, A. Blob, S. Köster and A. Munk (2025). Opti-
mal Transport Based Testing in Factorial Design. arXiv preprint. doi:10.48550/arXiv.2509.13970.

See Also

FDOTT_HSD

Examples

enable txt progressbar
progressr::handlers("txtprogressbar")
enable parallel computation
if (requireNamespace("future")) {

future::plan(future::multisession)
}

use higher number to better approximate null distribution and get more accurate p-value
num.sim <- 10

one-way layout

N <- 2
costm <- cost_matrix_lp(1:N)

K <- 3
n <- c(300, 360, 200)

underlying probability vectors, all measures are equal
mu <- matrix(1 / N, K, N, TRUE)

set.seed(123)
samples <- tab_sample(n, mu)
show progress
progressr::with_progress({

default in one-way layout is H0 = "="
res <- FDOTT(samples, costm, num.sim = num.sim)

})

https://doi.org/10.48550/arXiv.2509.13970

6 FDOTT

print(res)

measures are not equal
mu[2,] <- c(0.1, 0.9)

set.seed(123)
samples <- tab_sample(n, mu)
res2 <- FDOTT(samples, costm, num.sim = num.sim)
print(res2)
find out which measures are not equal via HSD
res3 <- FDOTT_HSD(res2)
print(res3)

two-way layout

K1 <- K2 <- 2
N <- 3
costm <- cost_matrix_lp(1:N)

n <- list(list(300, 360), list(280, 200))

underlying probability vectors (two-way layout)
no interaction effect, only factor 2 has main effect
mu <- list(

list(c(0, 0.5, 0.5), c(0.25, 0.25, 0.5)),
list(c(0, 0.5, 0.5), c(0.25, 0.25, 0.5))

)

test interaction effect and main effects, equivalent to H0 <- "*"
H0 <- list(list("*", 1:2), list("*", 1), list("*", 2))

set.seed(123)
samples <- tab_sample(n, mu)
res <- FDOTT(samples, costm, H0 = H0, num.sim = num.sim)
print(res)

find out exactly which effect gets rejected via HSD
res1 <- FDOTT_HSD(res)
print(res1)

now with interaction effect
mu[[1]][[1]] <- c(0.3, 0.3, 0.4)

only test for interaction effect
H0 <- list("*", 1:2)

set.seed(123)
samples <- tab_sample(n, mu)
res2 <- FDOTT(samples, costm, H0 = H0, num.sim = num.sim, method = "bootstrap-deriv")
print(res2)

custom effect

FDOTT_HSD 7

K <- 2
N <- 2
costm <- cost_matrix_lp(1:N)
num.sim <- 100

null hypothesis H0: mu^1 - 0.5 * mu^2 - 0.5 * mu^3 = 0
L <- matrix(c(1, -0.5, -0.5), 1, 3)
give custom name
attr(L, "effect") <- "mu^1 = 0.5 * (mu^2 + mu^3)"

underlying probability vectors
mu <- matrix(c(0.4, 0.6, 0.6, 0.4, 0.2, 0.8), 3, 2, TRUE)
print(L %*% mu)

n <- c(250, 280, 230)

test L, as well as mu^1 = mu^2 = mu^3
H0 <- list(L, "=")

set.seed(123)
samples <- tab_sample(n, mu)
res <- FDOTT(samples, costm, H0 = H0, num.sim = num.sim)
print(res)
find out which effect is responsible for rejection
res2 <- FDOTT_HSD(res)
print(res2)

L %*% mu = 0 not satisfied anymore
mu[2,] <- c(1, 0)
print(L %*% mu)

only test for L %*% mu = 0
H0 <- L

set.seed(123)
samples <- tab_sample(n, mu)
res3 <- FDOTT(samples, costm, H0 = H0, num.sim = num.sim)
print(res3)

FDOTT_HSD Test multiple linear relationships between probability vectors in facto-
rial designs

Description

Perform an optimal transport based HSD test to deal with multiple comparisons simultaneously.

Usage

FDOTT_HSD(test, weights = NULL, group.sizes = TRUE)

8 FDOTT_HSD

Arguments

test a FDOTT object, i.e., output of FDOTT.

weights weight vector of length K. weights = NULL means that no weights are used. For
weights = TRUE the standard weighting is used.

group.sizes integer vector summing to the number of comparisons M . Used to split the null
hypothesis into sub-hypotheses of the specified sizes. The default group.sizes
= TRUE extracts these sizes from test. For group.sizes = NULL, each equation
is its own group.

Details

Let HL
0 : Lµ = 0 be the null hypothesis of test. In the case of rejection, it is of interest to find out

exactly which row-equations are not satisfied with statistical significance. To this end, Lµ = 0 can
be split into a number of sub-hypotheses which are tested simultaneously via an approach inspired
by Tukey’s HSD test, see Groppe et al. (2025) for more details.

Value

A FDOTT_HSD object containing:

p.value the p-values
statistic the values of the test statistics
null.samples samples drawn from the null distribution

References

M. Groppe, L. Niemöller, S. Hundrieser, D. Ventzke, A. Blob, S. Köster and A. Munk (2025). Opti-
mal Transport Based Testing in Factorial Design. arXiv preprint. doi:10.48550/arXiv.2509.13970.

See Also

FDOTT

Examples

see FDOTT for more examples

enable parallel computation
if (requireNamespace("future")) {

future::plan(future::multisession)
}

K <- 3
N <- 2
costm <- cost_matrix_lp(1:N)

use higher number to better approximate null distribution and get more accurate p-value
num.sim <- 10

https://doi.org/10.48550/arXiv.2509.13970

is_metric_cost_mat 9

underlying probability vectors (one-way layout)
only mu^1 and mu^3 are equal
mu <- matrix(0.5, K, N, TRUE)
mu[2,] <- c(0.2, 0.8)

n <- c(300, 360, 200)

set.seed(123)
samples <- tab_sample(n, mu)
res <- FDOTT(samples, costm, num.sim = num.sim) |> FDOTT_HSD()
significant differences for mu^1 = mu^2 and mu^2 = mu^3
print(res)

is_metric_cost_mat Check metric properties of cost matrices

Description

Check if a cost matrix satisfies symmetry, positive definiteness and the triangle inequality.

Usage

is_metric_cost_mat(x, tol.sym = 1e-08, tol.pd = 0, tol.ti = 1e-08)

Arguments

x numeric square matrix.

tol.sym tolerance used to check symmetry.

tol.pd tolerance used to check positive definiteness.

tol.ti tolerance used to check the triangle inequality.

Details

The following three properties of a square matrix x ∈ RN×N are checked:

• symmetry; if xij = xji,

• positive definiteness; if xii = 0 and xij > 0 for all i ̸= j,

• triangle inequality; if xij ≤ xik + xkj .

If symmetry and positive definiteness are satisfied, then x is called a semi-metric cost matrix. If
additionally also the triangle inequality holds, then x is a metric cost matrix.

Value

A list containing logical entries metric, semi.metric, sym, pos.def and tri.ineq that indicate
whether the corresponding property is satisfied.

10 ot_barycenter

See Also

cost_matrix_lp

Examples

x <- cost_matrix_lp(1:5)
res <- is_metric_cost_mat(x)
res2 <- is_metric_cost_mat(x^2)
x is a metric cost matrix
print(res$metric)
x^2 is only a semi-metric cost matrix,
because the triangle inequality is not satisfied
print(res2$semi.metric)
print(res2$tri.ineq)

ot_barycenter Compute optimal transport barycenters

Description

Compute the optimal transport (OT) barycenter of multiple probability vectors via linear program-
ming.

Usage

ot_barycenter(
mu,
costm,
w = NULL,
solver = ot_test_lp_solver(),
constr_mat = NULL

)

Arguments

mu matrix (row-wise) or list containing K probability vectors of length N .

costm cost matrix c ∈ RN×N .

w weight vector w ∈ RK
+ . The default is w = (1/K, . . . , 1/K).

solver the LP solver to use, see ot_test_lp_solver.

constr_mat the constraint matrix for the underlying LP.

ot_barycenter_test 11

Details

The OT barycenter is defined as the minimizer of the cost functional,

Bw
c (µ

1, . . . , µK) := min
ν

k∑
k=1

wk OTc(µ
k, ν) ,

where the minimum is taken over all probability vectors ν. The OT barycenter is solved via linear
programming (LP) and the underlying solver can be controlled via the parameter solver.

Value

A list containing the entries cost and barycenter.

Examples

K <- 3
N <- 2
costm <- cost_matrix_lp(1:N)
w <- rep(1 / K, K)

all measures are equal
mu <- matrix(1 / N, K, N, TRUE)

to run this, a LP solver must be available for ROI (ROI.plugin.glpk by default)
if (requireNamespace("ROI.plugin.glpk")) {

solver <- ot_test_lp_solver("glpk")
print(ot_barycenter(mu, costm, w = w, solver = solver))

}

not all measures are equal
mu[2,] <- 1:N / sum(1:N)
if (requireNamespace("ROI.plugin.glpk")) {

solver <- ot_test_lp_solver("glpk")
print(ot_barycenter(mu, costm, w = w, solver = solver))

}

ot_barycenter_test Test equality of probability vectors

Description

Perform optimal transport (OT) barycenter based tests for equality of probability vectors in a one-
way layout.

12 ot_barycenter_test

Usage

ot_barycenter_test(
samples,
costm,
null.mu = NULL,
w = NULL,
num.sim = 1000,
solver = ot_test_lp_solver(),
is.metric = is_metric_cost_mat(costm, tol.ti = Inf),
verbose = FALSE

)

Arguments

samples matrix (row-wise) or nested list containing K count vectors. A count vector is a
vector of length N that contains the number of times a sample was observed at
the respective points.

costm semi-metric cost matrix c ∈ RN×N .

null.mu probability measures µ underlying the null distribution. Must be of the same
structure as samples.

w weight vector w ∈ RK
+ .

num.sim number of samples to draw from the limiting null distribution.

solver the LP solver to use, see ot_test_lp_solver.

is.metric value indicating whether c is a metric cost matrix, see is_metric_cost_mat.

verbose logical value indicating whether additional information should be printed.

Details

Denote with µ1, . . . , µK the probability measures that underlie the samples contained in samples.
To test for the one-way null hypothesis H0 : µ1 = . . . = µK , this test employs the OT barycenter
statistic which is defined as TB(µ) :=

√
ρnB

w
c (µ

1, . . . , µK) , where ρn is a scaling factor and Bw
c

is the OT barycenter functional, see ot_barycenter.

The test is based on the asymptotic distribution of TB under under the null, for more details see the
reference.

These simulations can be done in parallel via future::plan and the progress can be shown with
progressr::with_progress.

Especially for large N and K, simulating a sufficient number of samples from the limiting null
distribution might take a while. Consider using FDOTT instead.

Value

An object of class "ot_barycenter_test" containing:

mu empirical version of µ that is based on samples
n the sample sizes

ot_barycenter_test 13

p.value the p-value
statistic the value of the test statistic
null.samples samples drawn from the null distribution

References

TODO

See Also

FDOTT with H0 = "=".

Examples

enable txt progressbar
progressr::handlers("txtprogressbar")
enable parallel computation
if (requireNamespace("future")) {

future::plan(future::multisession)
}

K <- 3
N <- 2
costm <- cost_matrix_lp(1:N)

use higher number to better approximate null distribution and get more accurate p-value
num.sim <- 10

n <- c(300, 360, 200)

underlying probability vectors
mu <- matrix(1 / N, K, N, TRUE)

to run this, a LP solver must be available for ROI (ROI.plugin.glpk by default)
if (requireNamespace("ROI.plugin.glpk")) {

solver <- ot_test_lp_solver("glpk")
set.seed(123)
samples <- tab_sample(n, mu)
progressr::with_progress({

res <- ot_barycenter_test(samples, costm, num.sim = num.sim, solver = solver)
})
print(res)

}

measures are not equal anymore
mu[2,] <- 1:N / sum(1:N)

if (requireNamespace("ROI.plugin.glpk")) {
solver <- ot_test_lp_solver("glpk")
set.seed(123)
samples <- tab_sample(n, mu)

14 ot_cost_sgn

progressr::with_progress({
res2 <- ot_barycenter_test(samples, costm, num.sim = num.sim, solver = solver)

})
print(res2)

}

ot_cost_sgn Compute optimal transport costs for signed measures

Description

Compute the optimal transport (OT) cost between signed measures that have the same total mass.

Usage

ot_cost_sgn(mu, nu, costm, mode = c("all", "diag"))

Arguments

mu matrix (row-wise) or list containing K1 vectors of length N .

nu matrix (row-wise) or list containing K2 vectors of length N or NULL.

costm cost matrix c ∈ RN×N .

mode controls which of the pairwise OT costs are computed.

Details

The extended OT functional for vectors µ, ν ∈ RN with
∑N

i=1 µi =
∑N

i=1 νi is defined as

OT±
c (µ, ν) := OTc(µ

+ + ν−, ν+ + µ−) ,

where µ+ = max(0, µ) and µ− = −min(0, µ) denote the positive and negative part of µ, and OTc

is the standard OT functional. To compute the standard OT, the function transport::transport
is used. The values may be computed in parallel via future::plan.

Value

The OT cost between the vectors in mu and nu.

For mode = "all" the whole matrix of size K1 × K2 is returned. If mu or nu is a vector, then this
matrix is also returned as a vector. nu = NULL means that nu = mu and only the lower triangular part
is actually computed and then reflected.

If mode = "diag", then only the diagonal is returned (requiring K1 = K2).

See Also

transport::transport

ot_test_lp_solver 15

Examples

enable parallel computation
if (requireNamespace("future")) {

future::plan(future::multisession)
}

generate random signed measures with total mass 0 (row-wise)
rsum0 <- \(K, N) {

x <- runif(K * N) |> matrix(K, N)
x <- sweep(x, 1, rowSums(x) / N, "-")
x[, 1] <- x[, 1] - rowSums(x)
x

}

K1 <- 3
K2 <- 2
N <- 4
costm <- cost_matrix_lp(1:N)

set.seed(123)
mu <- rsum0(K1, N)
nu <- rsum0(K2, N)

print(ot_cost_sgn(mu[2,], nu[2,], costm))

mode = "diag" requires K1 = K2
print(ot_cost_sgn(mu[1:2,], nu, costm, mode = "diag"))

print(ot_cost_sgn(mu, nu, costm))

only works properly if costm is semi-metric
print(ot_cost_sgn(mu, NULL, costm))
but it requires less computations than
print(ot_cost_sgn(mu, mu, costm))

ot_test_lp_solver Control FDOTT linear programming solver

Description

Create an object that controls the linear programming (LP) solver to use.

Usage

ot_test_lp_solver(name = NULL, ...)

Arguments

name name of the LP solver.
... optional control arguments passed to the corresponding LP solver.

16 simulate_finite_FDOTT

Details

name can be any LP solver that is compatible with the ROI package infrastructure. In particular, the
corresponding plugin package ROI.plugin.name must be installed. The default value correspond-
ing to name = NULL can be set via options(FDOTT.lp_solver = name) (the default is "glpk").

Value

A ot_test_lp_solver_control object containing:

name the name of the LP solver
control list of control arguments passed to the LP solver

See Also

ROI::ROI_available_solvers

Examples

Not run:
glpk is already the default
options(FDOTT.lp_solver = "glpk")
End(Not run)
plugin needs to be installed, else we get error
if (requireNamespace("ROI.plugin.glpk")) {

add control parameter (specific to glpk)
sol <- ot_test_lp_solver("glpk", verbose = TRUE)
print(sol)

} else {
cat("'ROI.plugin.glpk' needs to be installed!\n")

}

simulate_finite_FDOTT Simulations for FDOTT

Description

Perform simulations for the test statistic used in FDOTT.

Usage

simulate_finite_FDOTT(mu, costm, n, H0 = "*", num.sim = 1000)

simulate_limit_FDOTT_null(
mu,
costm,
n = NULL,
delta = NULL,

simulate_finite_FDOTT 17

H0 = "*",
num.sim = 1000,
method = c("plug-in", "bootstrap-deriv", "bootstrap-m"),
m.p = 0.5,
mean = NULL

)

simulate_limit_FDOTT_alt(mu, costm, delta, H0 = "*", num.sim = 1000)

Arguments

mu matrix (row-wise) or nested list containing K probability vectors.

costm semi-metric cost matrix c ∈ RN×N .

n samples sizes. Must be of the same structure as mu.

H0 null hypothesis, see FDOTT for more information.

num.sim number of samples to draw from the limiting null distribution.

delta asymptotic sample size ratios. Must be of the same structure as mu.

method the method to use to simulate from the null distribution.

m.p exponent p ∈ (0, 1) used for method = "bootstrap-m".

mean mean of the Gaussians appearing in the limiting distribution. Must be of the
same structure as mu.

Details

See FDOTT for the definition of the test statistic and more details.

simulate_finite_FDOTT simulates from the finite sample distribution.

simulate_limit_FDOTT_null and simulate_limit_FDOTT_alt simulate from the limiting dis-
tribution under the null or alternative, respectively.

All these simulations can be done in parallel via future::plan and the progress can be shown with
progressr::with_progress.

Value

A vector containing the simulated samples.

Examples

enable txt progressbar
progressr::handlers("txtprogressbar")
enable parallel computation
if (requireNamespace("future")) {

future::plan(future::multisession)
}

K <- 3
N <- 2

18 simulate_finite_ot_barycenter_test

costm <- cost_matrix_lp(1:N)

use higher values for better approximation
num.sim <- 10
n <- rep(300, K)

delta <- rep(1 / K, K)

under one-way null
mu <- matrix(1 / N, K, N, TRUE)

set.seed(123)
lhs <- simulate_finite_FDOTT(mu, costm, n, num.sim = num.sim)
rhs <- simulate_limit_FDOTT_null(mu, costm, delta = delta, num.sim = num.sim)

h1 <- density(lhs)
h2 <- density(rhs)
plot(h1$x, h1$y, xlim = range(h1$x, h2$x), ylim = range(h1$y, h2$y), type = "l",

col = "red", xlab = "x", ylab = "density", main = "KDEs")
lines(h2$x, h2$y, col = "blue")
legend("topright", c("Finite", "Limit"), col = c("red", "blue"), pch = 15)

under one-way alternative
mu[2,] <- 1:N / sum(1:N)

set.seed(123)
lhs <- simulate_finite_FDOTT(mu, costm, n, num.sim = num.sim)
rhs <- simulate_limit_FDOTT_alt(mu, costm, delta, num.sim = num.sim)

h1 <- density(lhs)
h2 <- density(rhs)
plot(h1$x, h1$y, xlim = range(h1$x, h2$x), ylim = range(h1$y, h2$y), type = "l",

col = "red", xlab = "x", ylab = "density", main = "KDEs")
lines(h2$x, h2$y, col = "blue")
legend("topright", c("Finite", "Limit"), col = c("red", "blue"), pch = 15)

simulate_finite_ot_barycenter_test

Simulations for ot_barycenter_test

Description

Perform simulations for the test statistic used in ot_barycenter_test.

Usage

simulate_finite_ot_barycenter_test(
mu,
costm,

simulate_finite_ot_barycenter_test 19

n,
w = NULL,
num.sim = 1000,
solver = ot_test_lp_solver()

)

simulate_limit_ot_barycenter_test_null(
mu,
costm,
n = NULL,
delta = NULL,
w = NULL,
num.sim = 1000,
solver = ot_test_lp_solver(),
mean = NULL

)

simulate_limit_ot_barycenter_test_alt(
mu,
costm,
delta,
w = NULL,
num.sim = 1000,
solver = ot_test_lp_solver()

)

Arguments

mu matrix (row-wise) or list containing K probability vectors.

costm semi-metric cost matrix c ∈ RN×N .

n vector of samples sizes.

w weight vector w ∈ RK
+ .

num.sim number of samples to draw from the limiting null distribution.

solver the LP solver to use, see ot_test_lp_solver.

delta vector of asymptotic sample size ratios.

mean mean of the Gaussians appearing in the limiting distribution. Must be of the
same structure as mu.

Details

See ot_barycenter_test for the definition of the test statistic and more details.

simulate_finite_ot_barycenter_test simulates from the finite sample distribution.

simulate_limit_ot_barycenter_test_null and simulate_limit_ot_barycenter_test_alt
simulate from the limiting distribution under the null or alternative, respectively.

All these simulations can be done in parallel via future::plan and the progress can be shown with
progressr::with_progress.

20 simulate_finite_ot_barycenter_test

Value

A vector containing the simulated samples.

Examples

enable txt progressbar
progressr::handlers("txtprogressbar")
enable parallel computation
if (requireNamespace("future")) {

future::plan(future::multisession)
}

K <- 3
N <- 2
costm <- cost_matrix_lp(1:N)

use higher values for better approximation
num.sim <- 10
n <- rep(300, K)

delta <- rep(1 / K, K)

under null
mu <- matrix(1 / N, K, N, TRUE)

to run this, a LP solver must be available for ROI (ROI.plugin.glpk by default)
if (requireNamespace("ROI.plugin.glpk")) {

solver <- ot_test_lp_solver("glpk")
set.seed(123)
show progress bar
progressr::with_progress({
lhs <- simulate_finite_ot_barycenter_test(mu, costm, n, num.sim = num.sim, solver = solver)
rhs <- simulate_limit_ot_barycenter_test_null(mu, costm, delta = delta, num.sim = num.sim,

solver = solver)
})
h1 <- density(lhs)
h2 <- density(rhs)
plot(h1$x, h1$y, xlim = range(h1$x, h2$x), ylim = range(h1$y, h2$y), type = "l",

col = "red", xlab = "x", ylab = "density", main = "KDEs")
lines(h2$x, h2$y, col = "blue")
legend("topright", c("Finite", "Limit"), col = c("red", "blue"), pch = 15)

}

under alternative
mu[2,] <- 1:N / sum(1:N)

if (requireNamespace("ROI.plugin.glpk")) {
solver <- ot_test_lp_solver("glpk")
set.seed(123)

lhs <- simulate_finite_ot_barycenter_test(mu, costm, n, num.sim = num.sim, solver = solver)
rhs <- simulate_limit_ot_barycenter_test_alt(mu, costm, delta, num.sim = num.sim,

solver = solver)

tab_sample 21

h1 <- density(lhs)
h2 <- density(rhs)
plot(h1$x, h1$y, xlim = range(h1$x, h2$x), ylim = range(h1$y, h2$y), type = "l",

col = "red", xlab = "x", ylab = "density", main = "KDEs")
lines(h2$x, h2$y, col = "blue")
legend("topright", c("Finite", "Limit"), col = c("red", "blue"), pch = 15)

}

tab_sample Generate tabulated samples from probability vectors

Description

Generate count vectors instead of samples, i.e., vectors giving the number of times a sample was
observed at the respective points.

Usage

tab_sample(n, mu, prob = FALSE)

Arguments

n vector or nested list of sample sizes.

mu matrix (row-wise) or nested list containing probability vectors to sample from.
The structure of n and mu must be the same.

prob logical value indicating whether probabilities (instead of counts) should be re-
turned.

Value

The count vectors corresponding to the generated samples. Has the same structure as mu.

Examples

matrix example

mu <- matrix(c(0.01, 0.99, 0.5, 0.5), 2, 2, TRUE)
n <- c(80, 20)

set.seed(123)
cv <- tab_sample(n, mu)
print(cv)
sample sizes are rowsums
print(rowSums(cv))
empirical probability vectors
print(sweep(cv, 1, n, "/"))
set.seed(123)
same result

22 tab_sample

print(tab_sample(n, mu, prob = TRUE))

list example

mu <- list(
list(c(0.3, 0.7), c(0.25, 0.75)),
list(c(0, 1), c(0.5, 0.5))

)
n <- list(list(100, 120), list(80, 90))

set.seed(123)
cv <- tab_sample(n, mu)
print(cv)
empirical probability vectors
print(rapply(cv, \(x) x / sum(x), how = "replace"))
set.seed(123)
print(tab_sample(n, mu, prob = TRUE))

Index

cost_matrix_lp, 2, 10

FDOTT, 3, 8, 12, 13, 16, 17
FDOTT_HSD, 4, 5, 7
future::plan, 4, 12, 14, 17, 19

is_metric_cost_mat, 3, 9, 12

ot_barycenter, 10, 12
ot_barycenter_test, 11, 18, 19
ot_cost_sgn, 4, 14
ot_test_lp_solver, 10, 12, 15, 19

progressr::with_progress, 4, 12, 17, 19

ROI::ROI_available_solvers, 16

simulate_finite_FDOTT, 16
simulate_finite_ot_barycenter_test, 18
simulate_limit_FDOTT_alt

(simulate_finite_FDOTT), 16
simulate_limit_FDOTT_null

(simulate_finite_FDOTT), 16
simulate_limit_ot_barycenter_test_alt

(simulate_finite_ot_barycenter_test),
18

simulate_limit_ot_barycenter_test_null
(simulate_finite_ot_barycenter_test),
18

tab_sample, 21
transport::transport, 14

23

	cost_matrix_lp
	FDOTT
	FDOTT_HSD
	is_metric_cost_mat
	ot_barycenter
	ot_barycenter_test
	ot_cost_sgn
	ot_test_lp_solver
	simulate_finite_FDOTT
	simulate_finite_ot_barycenter_test
	tab_sample
	Index

