Package 'FDOTT'

October 1, 2025

Type Package
Title Optimal Transport Based Testing in Factorial Design
Version 0.1.0
Date 2025-09-24
Description Perform optimal transport based tests in factorial designs as introduced in Groppe et al. (2025) <doi:10.48550 arxiv.2509.13970=""> via the FDOTT() function. These tests are inspired by ANOVA and its nonparametric counterparts. They allow for test ing linear relationships in factorial designs between finitely supported probability measures on a metric space. Such relationships include equality of all measures (no treatment effect), interaction effects between a number of factors, as well as main and simple factor effects.</doi:10.48550>
License GPL (>= 3)
Imports Rcpp (>= 1.0.12), ROI, future.apply, progressr, transport, slam, rrapply, stats, methods
Depends R (>= 4.1)
Suggests ROI.plugin.glpk, future
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.3.3
Encoding UTF-8
NeedsCompilation yes
Author Michel Groppe [aut, cre], Linus Niemöller [aut]
Maintainer Michel Groppe <michel.groppe@uni-goettingen.de></michel.groppe@uni-goettingen.de>
Repository CRAN
Date/Publication 2025-10-01 07:00:20 UTC
Contents
cost_matrix_lp FDOTT FDOTT_HSD

2 cost_matrix_lp

at																										9
																										10
t																										11
																										14
																										15
DOTT																										16
_barycen	ter_t	est																								18
																										21
	t	t	t	t	t	t	t	t	t	t	DOTT	t	t	DOTT	t	t	DOTT	at								

Index 23

cost_matrix_lp

Cost Matrix of ℓ^p -Form.

Description

Compute cost matrices of ℓ^p -form.

Usage

```
cost_matrix_lp(x, y = NULL, p = 2, q = 1)
```

Arguments

X	matrix of size $n \times d$ containing vectors $x_1, \ldots, x_n \in \mathbb{R}^d$ (row-wise).
у	matrix of size $m imes d$ containing vectors $y_1, \dots, y_m \in \mathbb{R}^d$ (row-wise); y = NULL
	means that $y_i = x_i$.
p	number $p \in (0, \infty]$.
q	number $q \in (0, \infty)$.

Value

A $n \times m$ matrix with entry at i, j being equal to

$$||x_i - y_j||_p^q = \left[\sum_{k=1}^d |x_{i,k} - y_{j,k}|^p\right]^{q/p}$$

For p = Inf, this is to be understood as the maximum norm to the power of q.

```
n <- 3
m <- 4
d <- 5
x <- runif(n * d) |> matrix(n, d)
y <- runif(m * d) |> matrix(m, d)
costm <- cost_matrix_lp(x, y)
print(costm)</pre>
```

FDOTT 3

FDOTT Test linear relationships between probability vector signs	ers in factorial de-
--	----------------------

Description

Perform FDOTT, an optimal transport (OT) based test in factorial designs, to test linear relationships between probability vectors, based on samples from them.

Usage

```
FDOTT(
    samples,
    costm,
    H0 = "*",
    fac.names = NULL,
    method = c("plug-in", "bootstrap-deriv", "bootstrap-m", "permutation"),
    num.sim = 1000,
    null.mu = NULL,
    m.p = 0.5,
    is.metric = is_metric_cost_mat(costm, tol.ti = Inf),
    verbose = FALSE
)
```

Arguments

samples	nested list of depth D (representing a D -way layout) containing count vectors. A count vector is a vector of length N that contains the number of times a sample was observed at the respective points. Can also be given as a matrix (row-wise), which is viewed as a one-way layout.
costm	semi-metric cost matrix $c \in \mathbb{R}^{N \times N}$.
H0	null hypothesis, see details.
fac.names	names of the D factors. Used for printing. Default NULL corresponds to "F1" for factor 1, and so on.
method	the method to use to simulate from the null distribution, see details.
num.sim	number of samples to draw from the limiting null distribution.
null.mu	probability vectors μ underlying the null distribution used only for method = "plug-in". Must be of the same structure as samples.
m.p	exponent $p \in (0,1)$ used only for method = "bootstrap-m".
is.metric	value indicating whether c is a metric cost matrix, see <code>is_metric_cost_mat</code> .
verbose	logical value indicating whether additional information should be printed.

Details

Denote with μ the matrix (row-wise) of the probability vectors (in lexicographical order of the factor combinations) that underlie samples. FDOTT deals with null hypotheses of the form

$$H_0^L: L\mu = 0$$
,

where L is a suitable matrix with row sums all equal to 0. The FDOTT statistic is defined as

$$T^{L}(\hat{\mu}_{n}) := \frac{\sqrt{\rho_{n}}}{s} \sum_{m=1}^{M} \mathrm{OT}_{c}^{\pm}([L\hat{\mu}_{n}]_{m}, 0),$$

where ρ_n and s are scaling factors, $[L\mu]_m$ is the m-th row-vector of $L\mu$ and OT_c^{\pm} the extended OT functional, see ot_cost_sgn. The test is based on the asymptotic distribution of $T^L(\hat{\mu}_n)$ under under the null, for more details see Groppe et al. (2025).

The form of H_0^L allows for testing hypotheses like interaction effects in classical ANOVA, obtained by formally substituting means by measures. The following values are allowed for H0:

- H0 = "*" (the default). Test all interaction (including main effects) of the factors. A specific interaction or main effect can be tested by including the corresponding indices of the factors in a list, e.g., H0 = list("*", c(1, 3)) corresponds to the interaction effect between factor 1 and 3. Note that in a one-way layout, H0 = "*" reduces to H0 = "=".
- H0 = "|". Test all simple factor effects. A specific simple factor effect can be tested by by including the corresponding indices of the factors in a list, e.g., H0 = list("|", c(1, 3)) corresponds to the simple factor effect of factor 1 and 3 within the other remaining factors.
- H0 = "=". Test for treatment effect, i.e., whether all underlying probability vectors are the same. Note that each pairwise comparison can be tested simultaneously via FDOTT_HSD.
- H0 = L. Test H_0^L for the directly supplied L matrix. The name of the tested effect (useful for printing) and the scaling s (by default nrow(L)) can be supplied by setting the "effect" and "scaling" attribute of L, respectively.
- H0 = list(...). Test a combined null hypothesis. Each element of the list represents a null hypothesis and can be given by one of the options above. This is useful in combination with FDOTT_HSD, which allows to test all the given null hypotheses simultaneously.

To simulate from the limiting null distribution, there are four different methods:

- "plug-in": uses the limiting distribution where μ is substituted by its empirical version (or null.mu, when specified).
- "bootstrap-deriv": uses the so-called derivative bootstrap.
- "bootstrap-m": uses m-out-of-n bootstrap with $m = \lfloor n^p \rfloor$.
- "permutation": uses a permutation approach, only works for H0 = "=".

These simulations can be done in parallel via future::plan and the progress can be shown with progressr::with_progress.

FDOTT 5

Value

A FDOTT object containing:

```
\begin{array}{lll} \text{fac.lvls} & \text{vector of levels of the factors} \\ \text{mu} & \text{matrix, empirical version } \hat{\mu}_n \text{ of } \mu \text{ that is based on samples} \\ \text{n} & \text{vector of sample sizes } n \\ \text{L} & \text{matrix } L \text{ for the null hypothesis } H_0^L \\ \text{p.value} & \text{the } p\text{-value} \\ \text{statistic} & \text{the value of the test statistic } T^L(\hat{\mu}_n) \\ \text{null.samples} & \text{samples drawn from the null distribution} \end{array}
```

References

M. Groppe, L. Niemöller, S. Hundrieser, D. Ventzke, A. Blob, S. Köster and A. Munk (2025). Optimal Transport Based Testing in Factorial Design. arXiv preprint. doi:10.48550/arXiv.2509.13970.

See Also

```
FDOTT_HSD
```

```
# enable txt progressbar
progressr::handlers("txtprogressbar")
# enable parallel computation
if (requireNamespace("future")) {
    future::plan(future::multisession)
# use higher number to better approximate null distribution and get more accurate p-value
num.sim <- 10
### one-way layout
N <- 2
costm <- cost_matrix_lp(1:N)</pre>
K <- 3
n < -c(300, 360, 200)
# underlying probability vectors, all measures are equal
mu <- matrix(1 / N, K, N, TRUE)</pre>
set.seed(123)
samples <- tab_sample(n, mu)</pre>
# show progress
progressr::with_progress({
    # default in one-way layout is H0 = "="
    res <- FDOTT(samples, costm, num.sim = num.sim)</pre>
})
```

6 FDOTT

```
print(res)
# measures are not equal
mu[2, ] \leftarrow c(0.1, 0.9)
set.seed(123)
samples <- tab_sample(n, mu)</pre>
res2 <- FDOTT(samples, costm, num.sim = num.sim)</pre>
print(res2)
# find out which measures are not equal via HSD
res3 <- FDOTT_HSD(res2)</pre>
print(res3)
### two-way layout
K1 <- K2 <- 2
N <- 3
costm <- cost_matrix_lp(1:N)</pre>
n <- list(list(300, 360), list(280, 200))
# underlying probability vectors (two-way layout)
# no interaction effect, only factor 2 has main effect
mu <- list(
    list(c(0, 0.5, 0.5), c(0.25, 0.25, 0.5)),
    list(c(0, 0.5, 0.5), c(0.25, 0.25, 0.5))
# test interaction effect and main effects, equivalent to H0 <- "*"
H0 <- list(list("*", 1:2), list("*", 1), list("*", 2))
set.seed(123)
samples <- tab_sample(n, mu)</pre>
res <- FDOTT(samples, costm, H0 = H0, num.sim = num.sim)
print(res)
# find out exactly which effect gets rejected via HSD
res1 <- FDOTT_HSD(res)</pre>
print(res1)
# now with interaction effect
mu[[1]][[1]] \leftarrow c(0.3, 0.3, 0.4)
# only test for interaction effect
H0 <- list("*", 1:2)
set.seed(123)
samples <- tab_sample(n, mu)</pre>
res2 <- FDOTT(samples, costm, H0 = H0, num.sim = num.sim, method = "bootstrap-deriv")
print(res2)
### custom effect
```

FDOTT_HSD 7

```
K <- 2
N <- 2
costm <- cost_matrix_lp(1:N)</pre>
num.sim <- 100
# null hypothesis H0: mu^1 - 0.5 * mu^2 - 0.5 * mu^3 = 0
L \leftarrow matrix(c(1, -0.5, -0.5), 1, 3)
# give custom name
attr(L, "effect") <- "mu^1 = 0.5 * (mu^2 + mu^3)"
# underlying probability vectors
mu <- matrix(c(0.4, 0.6, 0.6, 0.4, 0.2, 0.8), 3, 2, TRUE)
print(L %*% mu)
n <- c(250, 280, 230)
# test L, as well as mu^1 = mu^2 = mu^3
H0 <- list(L, "=")
set.seed(123)
samples <- tab_sample(n, mu)</pre>
res <- FDOTT(samples, costm, H0 = H0, num.sim = num.sim)</pre>
print(res)
# find out which effect is responsible for rejection
res2 <- FDOTT_HSD(res)</pre>
print(res2)
# L %*% mu = 0 not satisfied anymore
mu[2, ] \leftarrow c(1, 0)
print(L %*% mu)
# only test for L %*% mu = 0
H0 <- L
set.seed(123)
samples <- tab_sample(n, mu)</pre>
res3 <- FDOTT(samples, costm, H0 = H0, num.sim = num.sim)
print(res3)
```

FDOTT_HSD

Test multiple linear relationships between probability vectors in factorial designs

Description

Perform an optimal transport based HSD test to deal with multiple comparisons simultaneously.

Usage

```
FDOTT_HSD(test, weights = NULL, group.sizes = TRUE)
```

8 FDOTT_HSD

Arguments

test a FDOTT object, i.e., output of FDOTT.

weights weight vector of length K. weights = NULL means that no weights are used. For

weights = TRUE the standard weighting is used.

group.sizes integer vector summing to the number of comparisons M. Used to split the null

hypothesis into sub-hypotheses of the specified sizes. The default group.sizes = TRUE extracts these sizes from test. For group.sizes = NULL, each equation

is its own group.

Details

Let $H_0^L: L\mu=0$ be the null hypothesis of test. In the case of rejection, it is of interest to find out exactly which row-equations are not satisfied with statistical significance. To this end, $L\mu=0$ can be split into a number of sub-hypotheses which are tested simultaneously via an approach inspired by Tukey's HSD test, see Groppe et al. (2025) for more details.

Value

A FDOTT_HSD object containing:

p. value the p-values

statistic the values of the test statistics

null.samples samples drawn from the null distribution

References

M. Groppe, L. Niemöller, S. Hundrieser, D. Ventzke, A. Blob, S. Köster and A. Munk (2025). Optimal Transport Based Testing in Factorial Design. arXiv preprint. doi:10.48550/arXiv.2509.13970.

See Also

FDOTT

Examples

```
# see FDOTT for more examples
# enable parallel computation
if (requireNamespace("future")) {
    future::plan(future::multisession)
}

K <- 3
N <- 2
costm <- cost_matrix_lp(1:N)</pre>
```

use higher number to better approximate null distribution and get more accurate p-value num.sim <- 10

is_metric_cost_mat 9

```
# underlying probability vectors (one-way layout)
# only mu^1 and mu^3 are equal
mu <- matrix(0.5, K, N, TRUE)
mu[2, ] <- c(0.2, 0.8)

n <- c(300, 360, 200)

set.seed(123)
samples <- tab_sample(n, mu)
res <- FDOTT(samples, costm, num.sim = num.sim) |> FDOTT_HSD()
# significant differences for mu^1 = mu^2 and mu^2 = mu^3
print(res)
```

is_metric_cost_mat

Check metric properties of cost matrices

Description

Check if a cost matrix satisfies symmetry, positive definiteness and the triangle inequality.

Usage

```
is_metric_cost_mat(x, tol.sym = 1e-08, tol.pd = 0, tol.ti = 1e-08)
```

Arguments

X	numeric square matrix.
tol.sym	tolerance used to check symmetry.
tol.pd	tolerance used to check positive definiteness.
tol.ti	tolerance used to check the triangle inequality.

Details

The following three properties of a square matrix $x \in \mathbb{R}^{N \times N}$ are checked:

```
• symmetry; if x_{ij} = x_{ji},
```

- positive definiteness; if $x_{ii} = 0$ and $x_{ij} > 0$ for all $i \neq j$,
- triangle inequality; if $x_{ij} \leq x_{ik} + x_{kj}$.

If symmetry and positive definiteness are satisfied, then x is called a semi-metric cost matrix. If additionally also the triangle inequality holds, then x is a metric cost matrix.

Value

A list containing logical entries metric, semi.metric, sym, pos.def and tri.ineq that indicate whether the corresponding property is satisfied.

ot_barycenter

See Also

```
cost_matrix_lp
```

Examples

```
x <- cost_matrix_lp(1:5)
res <- is_metric_cost_mat(x)
res2 <- is_metric_cost_mat(x^2)
# x is a metric cost matrix
print(res$metric)
# x^2 is only a semi-metric cost matrix,
# because the triangle inequality is not satisfied
print(res2$semi.metric)
print(res2$tri.ineq)</pre>
```

ot_barycenter

Compute optimal transport barycenters

Description

Compute the optimal transport (OT) barycenter of multiple probability vectors via linear programming.

Usage

```
ot_barycenter(
   mu,
   costm,
   w = NULL,
   solver = ot_test_lp_solver(),
   constr_mat = NULL
)
```

Arguments

```
mu matrix (row-wise) or list containing K probability vectors of length N. costm cost matrix c \in \mathbb{R}^{N \times N}.

w weight vector w \in \mathbb{R}^K_+. The default is w = (1/K, \dots, 1/K). solver the LP solver to use, see ot_test_lp_solver.

constr_mat the constraint matrix for the underlying LP.
```

ot_barycenter_test 11

Details

The OT barycenter is defined as the minimizer of the cost functional,

$$B_c^w(\mu^1, \dots, \mu^K) := \min_{\nu} \sum_{k=1}^k w_k \operatorname{OT}_c(\mu^k, \nu),$$

where the minimum is taken over all probability vectors ν . The OT barycenter is solved via linear programming (LP) and the underlying solver can be controlled via the parameter solver.

Value

A list containing the entries cost and barycenter.

Examples

```
K <- 3
N <- 2
costm <- cost_matrix_lp(1:N)</pre>
w \leftarrow rep(1 / K, K)
# all measures are equal
mu <- matrix(1 / N, K, N, TRUE)</pre>
# to run this, a LP solver must be available for ROI (ROI.plugin.glpk by default)
if (requireNamespace("ROI.plugin.glpk")) {
    solver <- ot_test_lp_solver("glpk")</pre>
    print(ot_barycenter(mu, costm, w = w, solver = solver))
}
# not all measures are equal
mu[2, ] <- 1:N / sum(1:N)
if (requireNamespace("ROI.plugin.glpk")) {
    solver <- ot_test_lp_solver("glpk")</pre>
    print(ot_barycenter(mu, costm, w = w, solver = solver))
}
```

ot_barycenter_test

Test equality of probability vectors

Description

Perform optimal transport (OT) barycenter based tests for equality of probability vectors in a one-way layout.

12 ot_barycenter_test

Usage

```
ot_barycenter_test(
   samples,
   costm,
   null.mu = NULL,
   w = NULL,
   num.sim = 1000,
   solver = ot_test_lp_solver(),
   is.metric = is_metric_cost_mat(costm, tol.ti = Inf),
   verbose = FALSE
)
```

Arguments

samples	matrix (row-wise) or nested list containing K count vectors. A count vector is a vector of length N that contains the number of times a sample was observed at the respective points.
costm	semi-metric cost matrix $c \in \mathbb{R}^{N \times N}$.
null.mu	probability measures $\boldsymbol{\mu}$ underlying the null distribution. Must be of the same structure as samples.
W	weight vector $w \in \mathbb{R}_+^K$.
num.sim	number of samples to draw from the limiting null distribution.
solver	the LP solver to use, see ot_test_lp_solver.
is.metric	value indicating whether c is a metric cost matrix, see <code>is_metric_cost_mat</code> .
verbose	logical value indicating whether additional information should be printed.

Details

Denote with μ^1,\dots,μ^K the probability measures that underlie the samples contained in samples. To test for the one-way null hypothesis $H_0:\mu^1=\dots=\mu^K$, this test employs the OT barycenter statistic which is defined as $T^B(\mu):=\sqrt{\rho_n}B_c^w(\mu^1,\dots,\mu^K)$, where ρ_n is a scaling factor and B_c^w is the OT barycenter functional, see ot_barycenter.

The test is based on the asymptotic distribution of T^B under under the null, for more details see the reference.

These simulations can be done in parallel via future::plan and the progress can be shown with progressr::with_progress.

Especially for large N and K, simulating a sufficient number of samples from the limiting null distribution might take a while. Consider using FDOTT instead.

Value

An object of class "ot_barycenter_test" containing:

```
mu empirical version of \mu that is based on samples n the sample sizes
```

ot_barycenter_test 13

```
 \begin{array}{lll} {\rm p.value} & {\rm the}\; p{\rm -value} \\ {\rm statistic} & {\rm the}\; {\rm value}\; {\rm of}\; {\rm the}\; {\rm test}\; {\rm statistic} \\ {\rm null.samples} & {\rm samples}\; {\rm drawn}\; {\rm from}\; {\rm the}\; {\rm null}\; {\rm distribution} \\ \end{array}
```

References

TODO

See Also

```
FDOTT with H0 = "=".
```

```
# enable txt progressbar
progressr::handlers("txtprogressbar")
# enable parallel computation
if (requireNamespace("future")) {
    future::plan(future::multisession)
}
K <- 3
N <- 2
costm <- cost_matrix_lp(1:N)</pre>
# use higher number to better approximate null distribution and get more accurate p-value
num.sim <- 10
n < -c(300, 360, 200)
# underlying probability vectors
mu <- matrix(1 / N, K, N, TRUE)</pre>
# to run this, a LP solver must be available for ROI (ROI.plugin.glpk by default)
if (requireNamespace("ROI.plugin.glpk")) {
    solver <- ot_test_lp_solver("glpk")</pre>
    set.seed(123)
    samples <- tab_sample(n, mu)</pre>
    progressr::with_progress({
        res <- ot_barycenter_test(samples, costm, num.sim = num.sim, solver = solver)</pre>
    })
    print(res)
}
# measures are not equal anymore
mu[2, ] <- 1:N / sum(1:N)
if (requireNamespace("ROI.plugin.glpk")) {
    solver <- ot_test_lp_solver("glpk")</pre>
    set.seed(123)
    samples <- tab_sample(n, mu)</pre>
```

14 ot_cost_sgn

```
progressr::with_progress({
    res2 <- ot_barycenter_test(samples, costm, num.sim = num.sim, solver = solver)
})
print(res2)
}</pre>
```

ot_cost_sgn

Compute optimal transport costs for signed measures

Description

Compute the optimal transport (OT) cost between signed measures that have the same total mass.

Usage

```
ot_cost_sgn(mu, nu, costm, mode = c("all", "diag"))
```

Arguments

mu matrix (row-wise) or list containing K_1 vectors of length N.

nu matrix (row-wise) or list containing K_2 vectors of length N or NULL.

costm cost matrix $c \in \mathbb{R}^{N \times N}$.

Details

mode

The extended OT functional for vectors μ , $\nu \in \mathbb{R}^N$ with $\sum_{i=1}^N \mu_i = \sum_{i=1}^N \nu_i$ is defined as

controls which of the pairwise OT costs are computed.

$$\mathrm{OT}_c^{\pm}(\mu,\nu) := \mathrm{OT}_c(\mu^+ + \nu^-, \nu^+ + \mu^-),$$

where $\mu^+ = \max(0, \mu)$ and $\mu^- = -\min(0, \mu)$ denote the positive and negative part of μ , and OT_c is the standard OT functional. To compute the standard OT, the function transport::transport is used. The values may be computed in parallel via future::plan.

Value

The OT cost between the vectors in mu and nu.

For mode = "all" the whole matrix of size $K_1 \times K_2$ is returned. If mu or nu is a vector, then this matrix is also returned as a vector. nu = NULL means that nu = mu and only the lower triangular part is actually computed and then reflected.

If mode = "diag", then only the diagonal is returned (requiring $K_1 = K_2$).

See Also

transport::transport

ot_test_lp_solver 15

Examples

```
# enable parallel computation
if (requireNamespace("future")) {
    future::plan(future::multisession)
}
# generate random signed measures with total mass 0 (row-wise)
rsum0 <- \setminus (K, N) {
    x \leftarrow runif(K * N) \mid > matrix(K, N)
    x \leftarrow sweep(x, 1, rowSums(x) / N, "-")
    x[, 1] <- x[, 1] - rowSums(x)
}
K1 <- 3
K2 <- 2
N < -4
costm <- cost_matrix_lp(1:N)</pre>
set.seed(123)
mu <- rsum0(K1, N)
nu <- rsum0(K2, N)
print(ot_cost_sgn(mu[2, ], nu[2, ], costm))
# mode = "diag" requires K1 = K2
print(ot_cost_sgn(mu[1:2, ], nu, costm, mode = "diag"))
print(ot_cost_sgn(mu, nu, costm))
# only works properly if costm is semi-metric
print(ot_cost_sgn(mu, NULL, costm))
# but it requires less computations than
print(ot_cost_sgn(mu, mu, costm))
```

ot_test_lp_solver

Control FDOTT linear programming solver

Description

Create an object that controls the linear programming (LP) solver to use.

Usage

```
ot_test_lp_solver(name = NULL, ...)
```

Arguments

```
name of the LP solver.
```

... optional control arguments passed to the corresponding LP solver.

Details

name can be any LP solver that is compatible with the ROI package infrastructure. In particular, the corresponding plugin package ROI.plugin.name must be installed. The default value corresponding to name = NULL can be set via options(FDOTT.lp_solver = name) (the default is "glpk").

Value

```
A ot_test_lp_solver_control object containing:

name the name of the LP solver
control list of control arguments passed to the LP solver
```

See Also

```
ROI::ROI_available_solvers
```

Examples

```
simulate\_finite\_FDOTT Simulations for FDOTT
```

Description

Perform simulations for the test statistic used in FDOTT.

Usage

```
simulate_finite_FDOTT(mu, costm, n, H0 = "*", num.sim = 1000)
simulate_limit_FDOTT_null(
    mu,
    costm,
    n = NULL,
    delta = NULL,
```

```
H0 = "*",
num.sim = 1000,
method = c("plug-in", "bootstrap-deriv", "bootstrap-m"),
m.p = 0.5,
mean = NULL
)
simulate_limit_FDOTT_alt(mu, costm, delta, H0 = "*", num.sim = 1000)
```

Arguments

mu	matrix (row-wise) or nested list containing K probability vectors.
costm	semi-metric cost matrix $c \in \mathbb{R}^{N \times N}$.
n	samples sizes. Must be of the same structure as mu.
Н0	null hypothesis, see FDOTT for more information.
num.sim	number of samples to draw from the limiting null distribution.
delta	asymptotic sample size ratios. Must be of the same structure as mu.
method	the method to use to simulate from the null distribution.
m.p	exponent $p \in (0,1)$ used for method = "bootstrap-m".
mean	mean of the Gaussians appearing in the limiting distribution. Must be of the same structure as mu.

Details

See FDOTT for the definition of the test statistic and more details.

simulate_finite_FDOTT simulates from the finite sample distribution.

simulate_limit_FDOTT_null and simulate_limit_FDOTT_alt simulate from the limiting distribution under the null or alternative, respectively.

All these simulations can be done in parallel via future::plan and the progress can be shown with progressr::with_progress.

Value

A vector containing the simulated samples.

```
# enable txt progressbar
progressr::handlers("txtprogressbar")
# enable parallel computation
if (requireNamespace("future")) {
    future::plan(future::multisession)
}

K <- 3
N <- 2</pre>
```

```
costm <- cost_matrix_lp(1:N)</pre>
# use higher values for better approximation
num.sim <- 10
n < - rep(300, K)
delta \leftarrow rep(1 / K, K)
# under one-way null
mu <- matrix(1 / N, K, N, TRUE)</pre>
set.seed(123)
lhs <- simulate_finite_FDOTT(mu, costm, n, num.sim = num.sim)</pre>
rhs <- simulate_limit_FDOTT_null(mu, costm, delta = delta, num.sim = num.sim)</pre>
h1 <- density(lhs)</pre>
h2 <- density(rhs)
plot(h1$x, h1$y, xlim = range(h1$x, h2$x), ylim = range(h1$y, h2$y), type = "1",
     col = "red", xlab = "x", ylab = "density", main = "KDEs")
lines(h2$x, h2$y, col = "blue")
legend("topright", c("Finite", "Limit"), col = c("red", "blue"), pch = 15)
# under one-way alternative
mu[2, ] <- 1:N / sum(1:N)
set.seed(123)
lhs <- simulate_finite_FDOTT(mu, costm, n, num.sim = num.sim)</pre>
rhs <- simulate_limit_FDOTT_alt(mu, costm, delta, num.sim = num.sim)</pre>
h1 <- density(lhs)
h2 <- density(rhs)
plot(h1$x, h1$y, xlim = range(h1$x, h2$x), ylim = range(h1$y, h2$y), type = "1",
     col = "red", xlab = "x", ylab = "density", main = "KDEs")
lines(h2$x, h2$y, col = "blue")
legend("topright", c("Finite", "Limit"), col = c("red", "blue"), pch = 15)
```

Description

Perform simulations for the test statistic used in ot_barycenter_test.

Usage

```
simulate_finite_ot_barycenter_test(
   mu,
   costm,
```

```
n,
 w = NULL,
 num.sim = 1000,
 solver = ot_test_lp_solver()
simulate_limit_ot_barycenter_test_null(
 mu,
 costm,
 n = NULL,
 delta = NULL,
 w = NULL,
 num.sim = 1000,
 solver = ot_test_lp_solver(),
 mean = NULL
)
simulate_limit_ot_barycenter_test_alt(
 mu,
 costm,
 delta,
 w = NULL,
 num.sim = 1000,
  solver = ot_test_lp_solver()
)
```

Arguments

mu	matrix (row-wise) or list containing K probability vectors.
costm	semi-metric cost matrix $c \in \mathbb{R}^{N \times N}$.
n	vector of samples sizes.
W	weight vector $w \in \mathbb{R}_+^K$.
num.sim	number of samples to draw from the limiting null distribution.
solver	the LP solver to use, see ot_test_lp_solver.
delta	vector of asymptotic sample size ratios.
mean	mean of the Gaussians appearing in the limiting distribution. Must be of the same structure as mu.

Details

See ot_barycenter_test for the definition of the test statistic and more details.

 $simulate_finite_ot_barycenter_test$ simulates from the finite sample distribution.

simulate_limit_ot_barycenter_test_null and simulate_limit_ot_barycenter_test_alt simulate from the limiting distribution under the null or alternative, respectively.

All these simulations can be done in parallel via future::plan and the progress can be shown with progressr::with_progress.

Value

A vector containing the simulated samples.

```
# enable txt progressbar
progressr::handlers("txtprogressbar")
# enable parallel computation
if (requireNamespace("future")) {
    future::plan(future::multisession)
}
K <- 3
N < -2
costm <- cost_matrix_lp(1:N)</pre>
# use higher values for better approximation
num.sim <- 10
n < - rep(300, K)
delta \leftarrow rep(1 / K, K)
# under null
mu <- matrix(1 / N, K, N, TRUE)</pre>
# to run this, a LP solver must be available for ROI (ROI.plugin.glpk by default)
if (requireNamespace("ROI.plugin.glpk")) {
    solver <- ot_test_lp_solver("glpk")</pre>
    set.seed(123)
    # show progress bar
    progressr::with_progress({
     lhs <- simulate_finite_ot_barycenter_test(mu, costm, n, num.sim = num.sim, solver = solver)</pre>
     rhs <- simulate_limit_ot_barycenter_test_null(mu, costm, delta = delta, num.sim = num.sim,</pre>
                                                         solver = solver)
    })
    h1 <- density(lhs)</pre>
    h2 <- density(rhs)
    plot(h1$x, h1$y, xlim = range(h1$x, h2$x), ylim = range(h1$y, h2$y), type = "1",
         col = "red", xlab = "x", ylab = "density", main = "KDEs")
    lines(h2$x, h2$y, col = "blue")
    legend("topright", c("Finite", "Limit"), col = c("red", "blue"), pch = 15)
}
# under alternative
mu[2, ] <- 1:N / sum(1:N)
if (requireNamespace("ROI.plugin.glpk")) {
    solver <- ot_test_lp_solver("glpk")</pre>
    set.seed(123)
  lhs <- simulate_finite_ot_barycenter_test(mu, costm, n, num.sim = num.sim, solver = solver)</pre>
    rhs <- simulate_limit_ot_barycenter_test_alt(mu, costm, delta, num.sim = num.sim,</pre>
                                                    solver = solver)
```

tab_sample 21

tab_sample

Generate tabulated samples from probability vectors

Description

Generate count vectors instead of samples, i.e., vectors giving the number of times a sample was observed at the respective points.

Usage

```
tab_sample(n, mu, prob = FALSE)
```

Arguments

n vector or nested list of sample sizes.

mu matrix (row-wise) or nested list containing probability vectors to sample from.

The structure of n and mu must be the same.

prob logical value indicating whether probabilities (instead of counts) should be re-

turned.

Value

The count vectors corresponding to the generated samples. Has the same structure as mu.

```
## matrix example

mu <- matrix(c(0.01, 0.99, 0.5, 0.5), 2, 2, TRUE)
n <- c(80, 20)

set.seed(123)
cv <- tab_sample(n, mu)
print(cv)
# sample sizes are rowsums
print(rowSums(cv))
# empirical probability vectors
print(sweep(cv, 1, n, "/"))
set.seed(123)
# same result</pre>
```

22 tab_sample

```
print(tab_sample(n, mu, prob = TRUE))

## list example

mu <- list(
    list(c(0.3, 0.7), c(0.25, 0.75)),
    list(c(0, 1), c(0.5, 0.5))
)

n <- list(list(100, 120), list(80, 90))

set.seed(123)
cv <- tab_sample(n, mu)
print(cv)
# empirical probability vectors
print(rapply(cv, \(x\) x / sum(x), how = "replace"))
set.seed(123)
print(tab_sample(n, mu, prob = TRUE))</pre>
```

Index

```
cost_matrix_lp, 2, 10
FDOTT, 3, 8, 12, 13, 16, 17
FDOTT_HSD, 4, 5, 7
future::plan, 4, 12, 14, 17, 19
is_metric_cost_mat, 3, 9, 12
ot_barycenter, 10, 12
ot_barycenter_test, 11, 18, 19
ot_cost_sgn, 4, 14
ot_test_lp_solver, 10, 12, 15, 19
progressr::with_progress, 4, 12, 17, 19
ROI::ROI_available_solvers, 16
simulate_finite_FDOTT, 16
simulate_finite_ot_barycenter_test, 18
simulate_limit_FDOTT_alt
        (simulate_finite_FDOTT), 16
simulate_limit_FDOTT_null
        (simulate_finite_FDOTT), 16
simulate_limit_ot_barycenter_test_alt
        (simulate_finite_ot_barycenter_test),
simulate_limit_ot_barycenter_test_null
        (simulate_finite_ot_barycenter_test),
tab_sample, 21
transport::transport, 14
```