Package 'OPTS'

October 12, 2022
Type Package
Title Optimization via Subsampling (OPTS)
Version 0.1
Date 2022-05-20
Maintainer Mihai Giurcanu giurcanu@uchicago.edu
Author Mihai Giurcanu [aut, cre],
Marinela Capanu [aut, ctb],
Colin Begg [aut],
Mithat Gonen [aut]
Imports MASS, cvTools, changepoint
Description Subsampling based variable selection for low dimensional generalized linear models. The methods repeatedly subsample the data minimizing an information criterion (AIC/BIC) over a sequence of nested models for each subsample. Marinela Capanu, Mihai Giurcanu, Colin B Begg, Mithat Gonen, Subsampling based variable selection for generalized linear models.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-25 07:50:08 UTC

R topics documented:

```
opts2
```

opts_th 3
Index 5

```
opts
Optimization via Subsampling (OPTS)
```


Description

opts computes the OPTS MLE in low dimensional case.

Usage

opts(X, Y, m, crit = "aic", prop_split $=0.5$, cutoff $=0.75, \ldots$)

Arguments

X
$\mathrm{Y} \quad \mathrm{n} \times 1$ binary response vector
$\mathrm{m} \quad$ number of subsamples
crit information criterion to select the variables: (a) aic = minimum AIC and (b) bic $=$ minimum BIC
prop_split proportion of subsample size and sample size, default value $=0.5$
cutoff cutoff used to select the variables using the stability selection criterion, default value $=0.75$
$\ldots \quad$ other arguments passed to the glm function, e.g., family $=$ "binomial"

Value

opts returns a list:
betahat OPTS MLE of regression parameter vector
Jhat estimated set of active predictors (TRUE/FALSE) corresponding to the OPTS MLE
SE standard error of OPTS MLE
freqs relative frequency of selection for all variables

Examples

```
require(MASS)
P = 15
\(\mathrm{N}=100\)
\(M=20\)
BETA_vector \(=c(0.5, \operatorname{rep}(0.5,2), \operatorname{rep}(0.5,2), \operatorname{rep}(0, P-5))\)
MU_vector \(=\) numeric(P)
SIGMA_mat = diag(P)
X <- mvrnorm(N, MU_vector, Sigma = SIGMA_mat)
linearPred <- cbind(rep(1, N), X)
Y <- rbinom(N, 1, plogis(linearPred))
```

\# OPTS-AIC MLE
opts(X, Y, 10, family = "binomial")

```
opts_th Threshold OPTimization via Subsampling (OPTS_TH)
```


Description

opts_th computes the threshold OPTS MLE in low dimensional case.

Usage

opts_th(X, Y, m, crit = "aic", type = "binseg", prop_split = 0.5, prop_trim $\left.=0.2, ~ q _t a i l=0.5, \ldots\right)$

Arguments

X
$Y \quad \mathrm{n} \times 1$ binary response vector
$m \quad$ number of subsamples
crit information criterion to select the variables: (a) aic = minimum AIC and (b) bic $=$ minimum BIC
type method used to minimize the trimmed and averaged information criterion: (a) $\min =$ observed minimum subsampling trimmed average information, (b) sd = observed minimum using the 0.25 sd rule (corresponding to OPTS-min in the paper), (c) pelt $=$ PELT changepoint algorithm (corresponding to OPTS-PELT in the paper), (d) binseg = binary segmentation changepoint algorithm (corresponding to OPTS-BinSeg in the paper), (e) amoc $=$ AMOC method.
prop_split proportion of subsample size of the sample size; default value is 0.5
prop_trim proportion that defines the trimmed mean; default value $=0.2$
q_tail quantiles for the minimum and maximum p-values across the subsample cutpoints used to define the range of cutpoints
... other arguments passed to the glm function, e.g., family = "binomial"

Value

opts_th returns a list:
betahat STOPES MLE of regression parameters
SE SE of STOPES MLE
Jhat set of active predictors (TRUE/FALSE) corresponding to STOPES MLE
cuthat estimated cutpoint for variable selection

pval	marginal p-values from univariate fit
cutpoits	subsample cutpoints
aic_mean	mean subsample AIC
bic_mean	mean subsample BIC

Examples

```
require(MASS)
P = 15
N = 100
M = 20
BETA_vector = c(0.5, rep(0.5, 2), rep(0.5, 2), rep(0, P - 5))
MU_vector = numeric(P)
SIGMA_mat = diag(P)
X <- mvrnorm(N, MU_vector, Sigma = SIGMA_mat)
linearPred <- cbind(rep(1, N), X)
Y <- rbinom(N, 1, plogis(linearPred))
# Threshold OPTS-BinSeg MLE
opts_th(X, Y, M, family = "binomial")
```


Index

opts, 2
opts_th, 3

