
Package ‘Rbeast’
December 8, 2023

Type Package

Version 1.0.0

Date 2023-12-08

Title Bayesian Change-Point Detection and Time Series Decomposition

Author Tongxi Hu [aut],
Yang Li [aut],
Xuesong Zhang [aut],
Kaiguang Zhao [aut, cre],
Jack Dongarra [ctb],
Cleve Moler [ctb]

Maintainer Kaiguang Zhao <zhao.1423@osu.edu>

Depends R (>= 2.10.0),methods, utils

Description Interpretation of time series data is affected by model choices. Different mod-
els can give different or even contradicting estimates of patterns, trends, and mecha-
nisms for the same data--a limitation alleviated by the Bayesian estima-
tor of abrupt change,seasonality, and trend (BEAST) of this package. BEAST seeks to im-
prove time series decomposition by forgoing the ``single-best-model'' concept and embrac-
ing all competing models into the inference via a Bayesian model averaging scheme. It is a flexi-
ble tool to uncover abrupt changes (i.e., change-points), cyclic variations (e.g., seasonal-
ity), and nonlinear trends in time-series observations. BEAST not just tells when changes oc-
cur but also quantifies how likely the detected changes are true. It detects not just piecewise lin-
ear trends but also arbitrary nonlinear trends. BEAST is applicable to real-valued time se-
ries data of all kinds, be it for remote sensing, economics, climate sciences, ecology, and hydrol-
ogy. Example applications include its use to identify regime shifts in ecological data, map for-
est disturbance and land degradation from satellite imagery, detect market trends in eco-
nomic data, pinpoint anomaly and extreme events in climate data, and unravel system dynam-
ics in biological data. Details on BEAST are re-
ported in Zhao et al. (2019) <doi:10.1016/j.rse.2019.04.034>.

LazyData true

Imports grid

License GPL (>= 2)

URL https://github.com/zhaokg/Rbeast

1

https://doi.org/10.1016/j.rse.2019.04.034
https://github.com/zhaokg/Rbeast

2 beast

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-12-08 10:30:05 UTC

R topics documented:

beast . 2
beast.irreg . 20
beast123 . 33
CNAchrom11 . 52
covid19 . 53
geeLandsat . 55
googletrend_beach . 56
imagestack . 57
minesweeper . 58
ohio . 60
plot.beast . 61
print.beast . 64
simdata . 65
tetris . 66
tsextract . 68
Yellowstone . 70

Index 72

beast Bayesian changepoint detection detection and time series decomposi-
tion for trend, periodicity or seasonality, and abrupt changes

Description

A Bayesian model averaging algorithm called BEAST to decompose time series or 1D sequential
data into individual components, such as abrupt changes, trends, and periodic/seasonal variations.
BEAST is useful for changepoint detection (e.g., breakpoints or structural breaks), nonlinear trend
analysis, time series decomposition, and time series segmentation.

beast 3

Usage

beast(
y,
start = 1,
deltat = 1,
season = c("harmonic", "svd", "dummy", "none"),
period = NULL,
scp.minmax = c(0,10), sorder.minmax = c(0,5),
tcp.minmax = c(0,10), torder.minmax = c(0,1),

sseg.min = NULL, sseg.leftmargin = NULL, sseg.rightmargin = NULL,
tseg.min = NULL, tseg.leftmargin = NULL, tseg.rightmargin = NULL,

method = c('bayes','bic', 'aic','aicc','hic'),
detrend = FALSE,
deseasonalize = FALSE,
mcmc.seed = 0,
mcmc.burnin = 200,
mcmc.chains = 3,
mcmc.thin = 5,
mcmc.samples = 8000,
ci = FALSE,
precValue = 1.5,
precPriorType = c('componentwise','uniform','constant','orderwise'),
print.options = TRUE,
print.progress = TRUE,
quiet = FALSE,
gui = FALSE,

4 beast

...
)

Arguments

y a vector for an evenly-spaced regular time series. Missing values such as NA
and NaN are allowed.

• If y is irregular or unordered in time (e.g., multiple years of daily data span-
ning across leap years: 365 points in some years, and 366 in others), use
the beast.irreg function instead.

• If y is a matrix or 3D array consisting of multiple regular or irregular time
series (e.g., stacked images), use beast123 instead.

• If y is an object of class ’ts’,’xts’, or ’zoo’, its time attributes (i.e.,start, end,
frequency) will be used to specify the next several args such as start,detlta,period,
and season: No need to provide them explicitly; even if provided, the val-
ues are ignored to honor the time attributes of y. For example, if y has a
frequency = 1, season = 'none' is always assumed; if y has a frequency >
1 (i.e., with a periodic component) but season='none' is specified by the
user, ’none’ will be replaced by ’harmonic’.

If a list of multiple time series is provided for y, the multivariate version of the
BEAST algorithm will be invoked to decompose the multiple time series and
detect common changepoints altogether. This feature is experimental only
and under further development. Check ohio for a working example.

start numeric (default to 1.0) or Date; the time of the 1st datapoint of y. It can
be specified as a scalar (e.g., 2021.0644), a vector of three values in the order
of Year, Month, and Day (e.g., c(2021,1,24)), or a R’s Date object (e.g.,
as.Date('2021-1-24')).

deltat numeric (default to 1.0) or string; the time interval between consecutive data
points. Its unit should be consistent with start. If start takes a numeric
scalar, the unit is arbitrary and irrelevant to beast (e.g., 2021.3 can be of any
unit: Year 2021.3, 2021.3 meters, 2021.3 degrees ...). If start is a vector of
Year, Month, and Day or an R’s Date, deltat has the unit of YEAR. For exam-
ple, if start=c(2021,1,24) for a monthly time series, start is converted to a
fractional year 2021+(24-0.5)/365=2021.0644 and deltat=1/12 needs to be set
in order to specify the monthly interval. Alternatively, deltat can be provided
as a string to specify whether its unit is day, month, or year. Examples include
’7 days’, ’7d’, ’1/2 months’, ’1 mn’, ’1.0 year’, and ’1y’.

season characters (default to ’harmonic’); specify if y has a periodic component or not.
Four strings are possible.

• 'none': y is trend-only; no periodic components are present in the time se-
ries. The args for the seasonal component (i.e.,sorder.minmax, scp.minmax
and sseg.max) will be irrelevant and ignored.

• 'harmonic': y has a periodic/seasonal component. The term season is
a misnomer, being used here to broadly refer to any periodic variations
present in y. The periodicity is NOT a model parameter estimated by
BEAST but a known constant given by the user through freq. By default,

beast 5

the periodic component is modeled as a harmonic curve–a combination of
sins and cosines.

• 'dummy': the same as 'harmonic' except that the periodic/seasonal com-
ponent is modeled as a non-parametric curve. The harmonic order arg
sorder.minmax is irrelevant and is ignored.

• 'svd': (experimental feature) the same as 'harmonic' except that the pe-
riodic/seasonal component is modeled as a linear combination of function
bases derived from a Single-value decomposition. The SVD-based basis
functions are more parsimonious than the harmonic sin/cos bases in param-
eterizing the seasonal variations; therefore, more subtle changepoints are
likely to be detected.

period numeric or string. Specify the period for the periodic/seasonal component in y.
Needed only for data with a periodic/cyclic component (i.e., season='harmonic'
or 'dummy') and not used for trend-only data (i.e., season='none'). The period
of the cyclic component should have a unit consisent with the unit of deltat. It
holds that period=deltat*freq where freq is the number of data samples per
period. (Note that the freq argument in earlier versions becomes obsolete and
now is replaced by period. freq is still supported butperiod takes precedence
if both are provided.) period or the number of data points per period is not a
BEAST model parameter and it has to be specified by the user. But if period
is missing, BEAST first attempts to guess its value via auto-correlation before
fitting the model. If period <= 0, season='none' is assumed, and the trend-
only model is fitted without a seasonal/cyclic component. If needed, use a string
to specify whether the unit of period is day, month, or year. Examples are ’1.0
year’, ’12 months’, ’365d’, ’366 days’.

scp.minmax a vector of 2 integers (>=0); the min and max number of seasonal change-
points (scp) allowed in segmenting the seasonal component. scp.minmax is
used only if y has a seasonal component (i.e., season='harmonic' or 'dummy'
) and ignored for trend-only data. If the min and max changepoint numbers are
equal, BEAST assumes a constant number of scp and won’t infer the posterior
probability of the number of changepoints, but it still estimates the occurrence
probability of the changepoints over time (i.e., the most likely times at which
these changepoints occur). If both the min and max numbers are set to 0, no
changepoints are allowed; then a global harmonic model is used to fit the sea-
sonal component, but still, the most likely harmonic order will be inferred if
sorder.minmax[1] is not equal to sorder.minmax[2].

sorder.minmax a vector of 2 integers (>=1); the min and max harmonic orders considered to
fit the seasonal component. sorder.minmax is used only used if the time series
has a seasonal component (i.e., season='harmonic') and ignored for trend-
only data or when season='dummy'. If the min and max orders are equal
(sorder.minmax[1]=sorder.minmax[2]), BEAST assumes a constant harmonic
order used and won’t infer the posterior probability of harmonic orders.

tcp.minmax a vector of 2 integers (>=0); the min and max number of trend changepoints
(tcp) allowed in segmenting the trend component. If the min and max change-
point numbers are equal, BEAST assumes a constant number of changepoints
and won’t infer the posterior probability of the number of changepoints for the
trend, but it still estimates the occurrence probability of the changepoints over

6 beast

time (i.e., the most likely times at which these changepoints occur in the trend).
If both the min and max numbers are set to 0, no changepoints are allowed;
then a global polynomial trend is used to fit the trend component, but still, the
most likely polynomial order will be inferred if torder.minmax[1] is not equal to
torder.minmax[2].

torder.minmax a vector of 2 integers (>=0); the min and max orders of the polynomials consid-
ered to fit the trend component. The 0-th order corresponds to a constant term/a
flat line and the 1st order is a line. If torder.minmax[1]=torder.minmax[2],
BEAST assumes a constant polynomial order used and won’t infer the posterior
probability of polynomial orders.

sseg.min an integer (>0); the min segment length allowed between two neighboring sea-
son changepoints. That is, when fitting a piecewise harmonic seasonal model,
two changepoints are not allowed to occur within a time window of length
sseg.min. sseg.min must be an unitless integer–the number of time inter-
vals/data points so that the time window in the original unit is sseg.min*deltat.
sseg.min defaults to NULL and its value will be given a default value in refer-
ence to freq.

sseg.leftmargin

an integer (>=0); the number of leftmost data points excluded for seasonal
changepoint detection. That is, when fitting a piecewise harmonic seasonal
model, no changepoints are allowed in the starting window/segment of length
sseg.leftmargin. sseg.leftmargin must be an unitless integer–the num-
ber of time intervals/data points so that the time window in the original unit is
sseg.leftmargin*deltat. If missing, sseg.leftmargin defaults to sseg.min.

sseg.rightmargin

an integer (>=0); the number of rightmost data points excluded for seasonal
changepoint detection. That is, when fitting a piecewise harmonic seasonal
model, no changepoints are allowed in the ending window/segment of length
sseg.rightmargin. sseg.rightmargin must be an unitless integer–the num-
ber of time intervals/data points so that the time window in the original unit is
sseg.rightmargin*deltat. If missing, sseg.rightmargin defaults to sseg.min.

tseg.min an integer (>0); the min segment length allowed between two neighboring trend
changepoints. That is, when fitting a piecewise polynomial trend model, two
changepoints are not allowed to occur within a time window of length tseg.min.
tseg.min must be an unitless integer–the number of time intervals/data points
so that the time window in the original unit is tseg.min*deltat. tseg.min
defaults to NULL and its value will be given a default value in reference to freq
if the time series has a cyclic component.

tseg.leftmargin

an integer (>=0); the number of leftmost data points excluded for trend change-
point detection. That is, when fitting a piecewise polynomial trend model, no
changepoints are allowed in the starting window/segment of length tseg.leftmargin.
tseg.leftmargin must be an unitless integer–the number of time intervals/data
points so that the time window in the original unit is tseg.leftmargin*deltat.
If missing, tseg.leftmargin defaults to tseg.min.

tseg.rightmargin

an integer (>=0); the number of rightmost data points excluded for trend change-
point detection. That is, when fitting a piecewise polynomial trend model, no

beast 7

changepoints are allowed in the ending window/segment of length tseg.rightmargin.
tseg.rightmargin must be an unitless integer–the number of time intervals/data
points so that the time window in the original unit is tseg.rightmargin*deltat.
If missing, tseg.rightmargin defaults to tseg.min.

method an string (default to ’bayes’); specify which method is used to formulate model
posterior probability.

• 'bayes': the full Bayesian formulation as described in Zhao et al. (2019).
• 'bic': approximation of posterior probability using the Bayesian informa-

tion criterion (bic).
• 'aic': approximation of posterior probability using the Akaike informa-

tion criterion (aic).
• 'aicc': approximation of posterior probability using the corrected Akaike

information criterion (aicc).
• 'hic': approximation of posterior probability using the Hannan-Quinn in-

formation criterion (hic)

detrend logical; If TRUE, a global trend is first fitted and removed from the time series
before running BEAST; after BEAST finishes, the global trend is added back to
the BEAST result.

deseasonalize logical; If TRUE, a global seasonal model is first fitted and removed from the time
series before running BEAST; after BEAST finishes, the global seasonal curve is
added back to the BEAST result. deseasonalize is ignored if season='none'
(i.e., trend-only data).

mcmc.seed integer (>=0); the seed for the random number generator used for Monte Carlo
Markov Chain (mcmc). If mcmc.seed=0, an arbitrary seed is picked and the
fitting results vary across runs. If fixed to the same non-zero integer, the result
can be re-produced for different runs. But the results from the same seed may
still vary if run on different computers because the random generator library
depends on CPU’s instruction sets.

mcmc.chains integer (>0); the number of MCMC chains.

mcmc.thin integer (>0); a factor to thin chains (e.g., if thinningFactor=5, samples will be
taken every 3 iterations)

mcmc.burnin integer (>0); the number of burn-in samples discarded at the start of each chain

mcmc.samples integer (>=0); the number of samples collected per MCMC chain. The total
number of iterations is (burnin+samples*thin)*chains.

ci boolean; If TRUE, credible intervals (i.e., out$season$CI or out$trend$CI) will
be computed for the estimated seasonal and trend components. Computing CI
is time-consuming, due to sorting, so set ci to FALSE if a symmetric credible
interval (i.e., out$trend$SD and out$season$SD) suffices.

precValue numeric (>0); the hyperparameter of the precision prior; the default value is
1.5. precValue is useful only when precPriorType=’constant’, as further ex-
plained below

precPriorType characters. It takes one of ’constant’, ’uniform’, ’componentwise’ (the default),
and ’orderwise’. Below are the differences between them.

8 beast

1. 'constant': the precision parameter used to parameterize the model co-
efficients is fixed to a constant specified by precValue. In other words,
precValue is a user-defined hyperparameter and the fitting result may be
sensitive to the chosen values of precValue.

2. 'uniform': the precision parameter used to parameterize the model coef-
ficients is a random variable; its initial value is specified by precValue. In
other words, precValue will be inferred by the MCMC, so the fitting result
will be insensitive to the choice in precValue.

3. 'componentwise': multiple precision parameters are used to parameterize
the model coefficients for individual components (e.g., one for season and
another for trend); their initial values is specified by precValue. In other
words, precValue will be inferred by the MCMC, so the fitting result will
be insensitive to the choice in precValue.

4. 'orderwise': multiple precision parameters are used to parameterize the
model coefficients not just for individual components but also for individual
orders of each component; their initial values is specified by precValue. In
other words, precValue will be inferred by the MCMC, so the fitting result
will be insensitive to the choice in precValue.

print.options boolean. If TRUE,the full list of input parameters to BEAST will be printed out
prior to the MCMC inference; the naming for this list (e.g., metadata, prior,
and mcmc) differs slightly from the input to beast, but there is a one-to-one
correspondence (e.g., prior$trendMinSepDist=tseg.min). Internally, beast con-
verts the input parameters to the forms of metadata, prior,and mcmc. Type
’View(beast)’ to see the details or check the beast123 function.

print.progress boolean;If TRUE, a progressbar will be displayed.

quiet boolean. If TRUE, warning messages are suppressed and not printed.

gui boolean. If TRUE, BEAST will be run with a GUI window to show an animation
of the MCMC sampling in the model space step by step; as an experimental
feature, "gui=TRUE" works only for Windows x64 systems not Windows 32 or
Linux/Mac.

... additional parameters. There are many more settings for the implementation but
not made available in the beast() interface; please use the function beast123()
instead

Value

The output is an object of class "beast". It is a list, consisting of the following variables. Its structure
is the same as the outputs from the other two alternative functions beast.irreg and beast123. In
the explanations below, we assume the input y is a single time series of length N:

time a vector of size 1xN: the times at the N sampled locations. By default, it is simply
set to 1:N

data a vector, matrix, or 3D array; this is a copy of the input y if extra$dumpInputData
= TRUE. If extra$dumpInputData=FALSE, it is set to NULL. If the original in-
put y is irregular (as in beast.irreg), the copy here is the regular version aggre-
gated from the original at the time interval specified by deltat (in beast.irreg
or metadata$deltaTime (in beast123).

beast 9

marg_lik numeric; the average of the model marginal likelihood; the larger marg_lik, the
better the fitting for a given time series.

R2 numeric; the R-square of the model fitting.

RMSE numeric; the RMSE of the model fitting.

sig2 numeric; the estimated variance of the model error.

trend a list object consisting of various outputs related to the estimated trend compo-
nent:

• ncp: [Number of ChangePoints]. a numeric scalar; the mean number of
trend changepoints. Individual models sampled by BEAST has a varying
dimension (e.g., number of changepoints or knots), so several alternative
statistics (e.g., ncp_mode, ncp_median, and ncp_pct90) are also given to
summarize the number of changepoints. For example, if mcmc$samples=10,
the numbers of changepoints for the 10 sampled models are assumed to be
c(0, 2, 4, 1, 1, 2, 7, 6, 6, 1). The mean ncp is 3.1 (rounded to 3), the median
is 2.5 (2), the mode is 1, and the 90th percentile (ncp_pct90) is 6.5.

• ncp_mode: [Number of ChangePoints]. a numeric scalar; the mode for
number of changepoints. See the above for explanations.

• ncp_median: [Number of ChangePoints]. a numeric scalar; the median for
number of changepoints. See the above for explanations.

• ncp_pct90: [Number of ChangePoints]. a numeric scalar; the 90th per-
centile for number of changepoints. See the above for explanations.

• ncpPr: [Probability of the Number of ChangePoints]. A vector of length
(tcp.minmax[2]+1)=tcp.max+1. It gives a probability distribution of hav-
ing a certain number of trend changepoints over the range of [0,tcp.max];
for example, ncpPr[1] is the probability of having no trend changepoint;
ncpPr[i] is the probability of having (i-1) changepoints: Note that it is
ncpPr[i] not ncpPr[i-1] because ncpPr[1] is used for having zero change-
point.

• cpOccPr: [ChangePoint OCCurence PRobability]. a vector of length N;
it gives a probability distribution of having a changepoint in the trend at
each point of time. Plotting cpOccPr will depict a continious curve of
probability-of-being-changepoint. Of particular note, in the curve, a
higher peak indicates a higher chance of being a changepoint only at
that particular SINGLE point in time and does not necessarily mean a
higher chance of observing a changepoint AROUND that time. For ex-
ample, a window of cpOccPr values c(0,0,0.5,0,0) (i.e., the peak prob
is 0.5 and the summed prob is 0.5) is less likely to be a changepoint com-
pared to another window c(0.1,0.2,0.21,0.2,0.1) (i.e., the peak prob
is 0.21 but the summed prob is 0.71).

• order: a vector of length N; the average polynomial order needed to ap-
proximate the fitted trend. As an average over many sampled individual
piece-wise polynomial trends, order is not necessarily an integer.

• cp: [Changepoints] a vector of length tcp.max=tcp.minmax[2]; the most
possible changepoint locations in the trend component. The locations are
obtained by first applying a sum-filtering to the cpOccPr curve with a filter
window size of tseg.min and then picking up to a total prior$MaxKnotNum/tcp.max

10 beast

of the highest peaks in the filtered curve. NaNs are possible if no enough
changepoints are identified. cp records all the possible changepoints iden-
tified and many of them are bound to be false positives. Do not blindly treat
all of them as actual changepoints.

• cpPr: [Changepoints PRobability] a vector of length tcp.max=tcp.minmax[2];
the probabilities associated with the changepoints cp. Filled with NaNs for
the remaining elements if ncp<tcp.max.

• cpCI: [Changepoints Credible Interval] a matrix of dimension tcp.max x
2; the credibable intervals for the detected changepoints cp.

• cpAbruptChange: [Abrupt change at Changepoints] a vector of length tcp.max;
the jumps in the fitted trend curves at the detected changepoints cp.

• Y: a vector of length N; the estimated trend component. It is the Bayesian
model averaging of all the individual sampled trend.

• SD: [Standard Deviation] a vector of length N; the estimated standard devi-
ation of the estimated trend component.

• CI: [Standard Deviation] a matrix of dimension N x 2; the estimated credi-
ble interval of the estimated trend. One vector of the matrix is for the upper
envelope and another for the lower envelope.

• slp: [Slope] a vector of length N; the time-varying slope of the fitted trend
component .

• slpSD: [Standar Deviation of Slope] a vector of length N; the SD of the
slope for the trend component.

• slpSgnPosPr: [PRobability of slope having a positive sign] a vector of
length N; the probability of the slope being positive (i.e., increasing trend)
for the trend component. For example, if slpSgnPosPr=0.80 at a given
point in time, it means that 80% of the individual trend models sampled in
the MCMC chain has a positive slope at that point.

• slpSgnZeroPr: [PRobability of slope being zero] a vector of length N; the
probability of the slope being zero (i.e., a flat constant line) for the trend
component. For example, if slpSgnZeroPr=0.10 at a given point in time,
it means that 10% of the individual trend models sampled in the MCMC
chain has a zero slope at that point. The probability of slope being negative
can be obtained from 1-slpSgnZeroPr-slpSgnPosPr.

• pos_ncp:
• neg_ncp:
• pos_ncpPr:
• neg_ncpPr:
• pos_cpOccPr:
• neg_cpOccPr:
• pos_cp:
• neg_cp:
• pos_cpPr:
• neg_cpPr:
• pos_cpAbruptChange:
• neg_cpAbruptChange:

beast 11

• pos_cpCI:
• neg_cpCI: The above variables have the same outputs as those variables

without the prefix ’pos’ and ’neg’, except that we differentiate the change-
points with a POStive jump in the trend from those changepoints with a
NEGative jump. For example, pos_ncp refers to the average number of
trend changepoints that jump up (i.e., positively) in the trend.

• inc_ncp:
• dec_ncp:
• inc_ncpPr:
• dec_ncpPr:
• inc_cpOccPr:
• dec_cpOccPr:
• inc_cp:
• dec_cp:
• inc_cpPr:
• dec_cpPr:
• inc_cpAbruptChange:
• dec_cpAbruptChange:
• inc_cpCI:
• dec_cpCI: The above variables have the same outputs as those variables

without the prefix ’inc’ and ’dec’, except that we differentiate the change-
points at which the trend slope increases from those changepoints at which
the trend slope decreases. For example, if the trend slopes before and after
a chngpt is 0.4 and 2.5, then the changepoint is counted toward inc_ncp.

season a list object consisting of various outputs related to the estimated seasonal/periodic
component:

• ncp: [Number of ChangePoints]. a numeric scalar; the mean number of
seasonal changepoints.

• ncpPr: [Probability of the Number of ChangePoints]. A vector of length
(scp.minmax[2]+1)=scp.max+1. It gives a probability distribution of hav-
ing a certain number of seasonal changepoints over the range of [0,scp.max];
for example, ncpPr[1] is the probability of having no seasonal change-
point; ncpPr[i] is the probability of having (i-1) changepoints: Note that
the index is i rather than (i-1) because ncpPr[1] is used for having zero
changepoint.

• cpOccPr: [ChangePoint OCCurence PRobability]. a vector of length N;
it gives a probability distribution of having a changepoint in the seasonal
component at each point of time. Plotting cpOccPr will depict a continious
curve of probability-of-being-changepoint over the time. Of particular note,
in the curve, a higher value at a peak indicates a higher chance of being a
changepoint only at that particular SINGLE point in time, and does not nec-
essarily mean a higher chance of observing a changepoint AROUND that
time. For example, a window of cpOccPr values c(0,0,0.5,0,0) (i.e., the
peak prob is 0.5 and the summed prob is 0.5) is less likely to be a change-
point compared to another window values c(0.1,0.2,0.3,0.2,0.1) (i.e.,
the peak prob is 0.3 but the summed prob is 0.8).

12 beast

• order: a vector of length N; the average harmonic order needed to approxi-
mate the seasonal component. As an average over many sampled individual
piece-wise harmonic curves, order is not necessarily an integer.

• cp: [Changepoints] a vector of length scp.max=scp.minmax[2]; the most
possible changepoint locations in the seasonal component. The locations
are obtained by first applying a sum-filtering to the cpOccPr curve with a
filter window size of sseg.min and then picking up to a total ncp of the
highest peaks in the filtered curve. If ncp<scp.max, the remaining of the
vector is filled with NaNs.

• cpPr: [Changepoints PRobability] a vector of length scp.max; the prob-
abilities associated with the changepoints cp. Filled with NaNs for the
remaining elements if ncp<scp.max.

• cpCI: [Changepoints Credible Interval] a matrix of dimension scp.max x
2; the credibable intervals for the detected changepoints cp.

• cpAbruptChange: [Abrupt change at Changepoints] a vector of length scp.max;
the jumps in the fitted seasonal curves at the detected changepoints cp.

• Y: a vector of length N; the estimated seasonal component. It is the Bayesian
model averaging of all the individual sampled signal.

• SD: [Standard Deviation] a vector of length N; the estimated standard devi-
ation of the estimated seasonal component.

• CI: [Standard Deviation] a matrix of dimension N x 2; the estimated credi-
ble interval of the estimated seasonal signal. One vector of the matrix is for
the upper envelope and another for the lower envelope.

• amp: [AMPlitude] a vector of length N; the time-varying amplitude of the
estimated seasonality.

• ampSD: [Standar Deviation of AMPlitude] a vector of length N; , the SD of
the amplitude of the seasonality.

• pos_ncp:
• neg_ncp:
• pos_ncpPr:
• neg_ncpPr:
• pos_cpOccPr:
• neg_cpOccPr:
• pos_cp:
• neg_cp:
• pos_cpPr:
• neg_cpPr:
• pos_cpAbruptChange:
• neg_cpAbruptChange:
• pos_cpCI:
• neg_cpCI: The above variables have the same outputs as those variables

without the prefix ’pos’ and ’neg’, except that we differentiate the change-
points with a POStive jump in the trend from those changepoints with a
NEGative jump. For example, pos_ncp refers to the average number of
trend changepoints that jump up (i.e., positively) in the trend.

beast 13

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

See Also

beast, beast.irreg, beast123, minesweeper, tetris, geeLandsat

Examples

library(Rbeast)

#------------------------------------Example 1--#
'googletrend_beach' is the monthly Google Trend popularity of searching for 'beach'
in the US from 2004 to 2022. Sudden changes in the time series coincide with known
extreme weather events (e.g., 2006 North American Blizzard, 2011 US hottest summer
on record, Record warm January in 2016) or the covid19 outbreak.

out <- beast(googletrend_beach)

plot(out)
plot(out, vars=c('t','slpsgn')) # plot the trend and probability of slope sign only.

In the slpsgn panel, the upper red portion refers to
probability of trend slope being positive, the middle
green to the prob of slope being zero, and the lower
blue to the probability of slope being negative.
Run "?plot.beast" for details on the plot function.

#------------------------------------Example 2--#
Yellowstone is a half-monthly satellite time series of 774 NDVI(vegetation greeness)
observations starting from July 1-15,1981(i.e., start=c(1981,7,7)) at a Yellowstone
forest site. It has 24 data points per year (i.e., freq=24). Note that the beast
function hanldes only evenly-spaced regular time series. Irregular data need to be
first aggegrated at a regular time interval of your choice--the aggregation
functionality is implemented in beast.irreg() and beast123().

data(Yellowstone)
plot(1981.5+(0:773)/24, Yellowstone, type='l') # A sudden drop in greenness in 1988

14 beast

due to the 1988 Yellowstone Fire

Yellowstone is not a object of class 'ts' but a pure vector without time attributes.
Below, no extra argument is supplied, so default values (i.e.,start=1, deltat=1) are
used and the time is 1:774. 'period' is missing and so is guessed via auto-correlation.
Use of auto-correlation to compute the period of a cyclic time series is not always
reliable, so it is suggested to always supply 'period' directly, as in Example 2 and
Example 3.

o = beast(Yellowstone) # By defualt, the times assumed to be 1:length(Yellowstone)
and a periodic component is assumed (season='harmonic')

plot(o)

#o = beast(Yellowstone, quiet=TRUE) # print no warning messages
#o = beast(Yellowstone, quiet=TRUE, print.progress=FALSE) # print nothing

#------------------------------------Example 3--#
The time info such as start,delta,and period is explicitly provided. 'start' can be
given as (1) a fractional number, (2) a vector comprising year, month,& day, or (3)
a R's Date. In (1), the unit of start and deltat does not necessarily refer to time and can
be arbitrary (e.g., a sequence of data observed at evenly-spaced distaces along a
transect or a elevation gradient)

(1) Unknown unit such that 1981.5137 can be interpreted arbitrarily
o=beast(Yellowstone, start=1981.5137, deltat=1/24, period=1.0)

Use a string to explictly specify a time unit so that times are intepreted as dates
o=beast(Yellowstone, start=1981.5137, deltat='1/24 year', period=1.0) # 1.0 = 1 yr
o=beast(Yellowstone, start=1981.5137, deltat='0.5 mon', period=1.0) # 1.0 = 1 yr
o=beast(Yellowstone, start=1981.5137, deltat=1/24, period='1 yr') # 1/24 = 1/24 yr
o=beast(Yellowstone, start=1981.5137, deltat=1/24, period='365 days')# 1/24 = 1/24 yr

(2) start is provided as YMD, the unit is year: deltat=1/24 year=0.5 month
o=beast(Yellowstone, start=c(1981,7,7), deltat=1/24, period=1.0)

(3) start is provided as Date, the unit is year: deltat=1/24 year=0.5 month
#o=beast(Yellowstone, start=as.Date('1981-7-7'), deltat=1/24, period=1.0)

print(o) # o is a R LIST object with many fields
str(o) # See a list of fields in o

plot(o) # plot many variables
plot(o, vars=c('y','s','t')) # plot the Y, seasonal, and trend components only
plot(o, vars=c('s','scp','samp','t','tcp','tslp'))# Plot some selected variables in

'o'. Type "?plot.beast" to see
more about vars

plot(o, vars=c('s','t'),col=c('red','blue')) # Specify colors of selected subplots

plot(o$time, o$season$Y,type='l') # directly plot output: the fitted season
plot(o$time, o$season$cpOccPr) # directly plot output: season chgpt prob
plot(o$time, o$trend$Y,type='l') # directly plot output: the fitted trend
plot(o$time, o$trend$cpOccPr) # directly plot output: trend chgpt occurrence prob
plot(o$time, o$season$order) # directly plot output: avg harmonic order

beast 15

plot(o, interactive=TRUE) # manually choose which variables to plot

#------------------------------------Example 4--#
Specify other arguments explicitly. Default values are used for missing parameters.
Note that beast(), beast.irreg(), and beast123() call the same internal C/C++ library,
so in beast(), the input parameters will be converted to metadata, prior, mcmc, and
extra parameters as explained for the beast123() function. Or type 'View(beast)' to
check the parameter assignment in the code.

In R's terminology, the number of datapoints per period is also called 'freq'. In this
version, the 'freq' argument is obsolete and replaced by 'period'.

period=deltat*number_of_datapoints_per_period = 1.0*24=24 because deltat is set to 1.0 by
default and this signal has 24 samples per period.
out = beast(Yellowstone, period=24.0, mcmc.samples=5000, tseg.min=20)

period=deltat*number_of_datapoints_per_period = 1/24*24=1.0.
out = beast(Yellowstone, deltat=1/24 period=1.0, mcmc.samples=5000, tseg.min=20)

out = beast(
Yellowstone, # Yellowstone: a pure numeric vector wo time info
start = 1981.51,
deltat = 1/24,
period = 1.0, # period=delta*number_of_datapoints_per_period
season = 'harmonic', # periodic compnt exisits,fitted as a harmonic curve
scp.minmax = c(0,3), # min and max numbers of seasonal changpts allowed
sorder.minmax = c(1,5), # min and max harmonic orders allowed
sseg.min = 24, # the min length of segments btw neighboring chnpts

'24' means 24 datapoints; the unit is datapoint.
sseg.leftmargin= 40, # no seasonal chgpts allowed in the starting 40 datapoints
tcp.minmax = c(0,10),# min and max numbers of changpts allowed in the trend
torder.minmax = c(0,1), # min and maxx polynomial orders to fit trend
tseg.min = 24, # the min length of segments btw neighboring trend chnpts
tseg.leftmargin= 10, # no trend chgpts allowed in the starting 10 datapoints
deseasonalize = TRUE, # remove the global seasonality before fitting the beast model
detrend = TRUE, # remove the global trend before fitting the beast model
mcmc.seed = 0, # a seed for mcmc's random nummber generator; use a

non-zero integer to reproduce results across runs
mcmc.burnin = 500, # number of initial iterations discarded
mcmc.chains = 2, # number of chains
mcmc.thin = 3, # include samples every 3 iterations
mcmc.samples = 6000 # number of samples taken per chain

total iteration: (500+3*6000)*2
)

plot(out)
plot(out, interactive=TRUE)

16 beast

#------------------------------------Example 5--#
Run an interactive GUI to visualize how BEAST is samplinig from the possible model
spaces in terms of the numbers and timings of seasonal and trend changepoints.
The GUI inferface allows changing the option parameters interactively. This GUI is
only available on Win x64 machines, not Mac or Linux.

Not run:
beast(Yellowstone, period=24, gui=TRUE)

End(Not run)

#------------------------------------Example 6--#
Apply beast to trend-only data. 'Nile' is the ANNUAL river flow of the river
Nile at Aswan since 1871. It is a 'ts' object; its time attributes (start=1871,
end=1970,frequency=1) are used to replace the user-supplied start,deltat, and freq,
if any.

data(Nile)
plot(Nile)
attributes(Nile) # a ts object with time attributes (i.e., tsp=(start,end,freq)

o = beast(Nile) # start=1871, delta=1, and freq=1 taken from Nile itself
plot(o)

o = beast(Nile, # the same as above. The user-supplied values (i.e., 2023,
start=2023, # 9999) are ignored bcz Nile carries its own time attributes.
period=9999, # Its frequency tag is 1 (i.e., trend-only), so season='none'
season='harmonic' # is used instead of the supplied 'harmonic'

)

#------------------------------------Example 7--#
NileVec is a pure data vector. The first run below is WRONG bcz NileVec was assumed
to have a perodic component by default and beast gets a best estimate of freq=6 while
the true value is freq=1. To fit a trend-only model, season='none' has to be explicitly
specified, as in the 2nd & 3rd funs.

NileVec = as.vector(Nile) # NileVec is not a ts obj but a pure numeric data vector
o = beast(NileVec) # WRONG WAY to call: No time attributes available to interpret

NileVec. By default, beast assumes season='harmonic', start=1,
& deltat=1. 'freq' is missing and guessed to be 6 (WRONG).

plot(o) # WRONG Results: The result has a suprious seasonal component

o=beast(NileVec,season='none') # The correct way to call: Use season='none' for trend-only
analysis; the default time is the integer indices
"1:length(NileVec)'.

print(o$time)

o=beast(NileVec, # Recommended way to call: The true time attributes are
start = 1871, # given explicitly through start and deltat (or freq if

beast 17

deltat = 1, # there is a cyclic/seasonal cmponent).
season = 'none')

print(o$time)
plot(o)

#------------------------------------Example 8--#
beast can handle missing data. co2 is a monthly time series (i.e.,freq=12) starting
from Jan 1959. We generate some missing values at random indices

Not run:

data(co2)
attributes(co2) # A ts object with time attributes (i.e., tsp)
badIdx = sample(1:length(co2), 50) # Get a set of random indices
co2[badIdx] = NA # Insert some data gaps

out=beast(co2) # co2 is a ts object and its 'tsp' time attributes are used to get the
true time info. No need to specify 'start','deltat', & freq explicity.

out=beast(co2, # The supplied time/period values will be ignored bcz
start = c(1959,1,15),# co2 is a ts object; the correct period = 1 will be
deltat = 1/12, # used.
period = 365)

print(out)
plot(out)

End(Not run)

#------------------------------------Example 9--#
Apply beast to time seris-like sequence data: the unit of sequences is not
necessarily time.

data(CNAchrom11) # DNA copy number alterations in Chromesome 11 for cell line GM05296
The data is orderd by genomic position (not time), and the values

are the log2-based intensity ratio of copy numbers between the sample
the reference. A value of zero means no gain or loss in copy number.

o = beast(CNAchrom11,season='none') # season is a misnomer here bcz the data has nothing
to do with time. Regardless, we fit only a trend.

plot(o)

#------------------------------------Example 10---------------------------------------#
Apply beast to time seris-like data: the unit of sequences is not necessarily time.

Age of Death of Successive Kings of England

18 beast

If the data link is deprecated, install the time series data library instead,
which is available at https://pkg.yangzhuoranyang.com/tsdl/
install.packages("devtools")
devtools::install_github("FinYang/tsdl")
kings = tsdl::tsdl[[293]]

kings = scan("http://robjhyndman.com/tsdldata/misc/kings.dat",skip=3)
out = beast(kings,season='none')
plot(out)

#------------------------------------Example 11---------------------------------------#
Another example from the tsdl data library

Number of monthly births in New York from Jan 1946 to Dec 1959
If the data link becomes invalid, install the time series data package instead
install.packages("devtools")
devtools::install_github("FinYang/tsdl")
kings = tsdl::tsdl[[534]]

births = scan("http://robjhyndman.com/tsdldata/data/nybirths.dat")
out = beast(births,start=c(1946,1,15), deltat=1/12)
plot(out) # the result is wrong bcz the guessed freq via auto-correlation by beast

is 2 rather than 12, so we recommend always specifying 'freq' explicitly
for those time series with a periodic component, as shown below.

out = beast(births,start=c(1946,1,15), deltat=1/12, freq =12)
out = beast(births,start=c(1946,1,15), deltat=1/12, period=1.0)
plot(out)

#------------------------------------Example 12---------------------------------------#
Daily confirmed COVID-19 new cases and deaths across the globe

Not run:
data(covid19)
plot(covid19$date, covid19$newcases, type='l')

newcases = sqrt(covid19$newcases) # Apply a square root-transformation

This ts varies periodically every 7 days. 7 days can't be precisely represented
in the unit of year bcz some years has 365 days and others has 366. BEAST can hanlde
this in two ways.

#(1) Use the date number as the time unit--the num of days lapsed since 1970-01-01.

datenum = as.numeric(covid19$date)
o = beast(newcases, start=min(datenum), deltat=1, period=7)

beast 19

o$time = as.Date(o$time, origin='1970-01-01') # Convert from integers to Date.
plot(o)

#(2) Use strings to explicitly specify deltat and period with a unit.

startdate = covid19$date[1]
o = beast(newcases, start=startdate, deltat='1day', period='7days')
plot(o)

End(Not run)

#------------------------------------Example 13---------------------------------------#
The old API interface of beast is still made available but NOT recommended. It is
kept mainly to ensure the working of the sample code on Page 475 in the text
Ecological Metods by Drs. Southwood and Henderson.

Not run:

The interface as shown here will be deprecated and NOT recommended.
beast(Yellowstone, 24) #24 is the freq: number of datapoints per period

Specify the model or MCMC parameters through opt as in Rbeast v0.2
opt=list() #Create an empty list to append individual model parameters
opt$period=24 #Period of the cyclic component (i.e.,freq in the new version)
opt$minSeasonOrder=2 #Min harmonic order allowed in fitting season component
opt$maxSeasonOrder=8 #Max harmonic order allowed in fititing season component
opt$minTrendOrder=0 #Min polynomial order allowed to fit trend (0 for constant)
opt$maxTrendOrder=1 #Max polynomial order allowed to fit trend (1 for linear term)
opt$minSepDist_Season=20#Min separation time btw neighboring season changepoints
opt$minSepDist_Trend=20 #Min separation time btw neighboring trend changepoints
opt$maxKnotNum_Season=4 #Max number of season changepoints allowed
opt$maxKnotNum_Trend=10 #Max number of trend changepoints allowed
opt$omittedValue=NA #A customized value to indicate bad/missing values in the time

#series, in additon to those NA or NaN values.

The following parameters used to configure the reverisible-jump MCMC (RJMCC) sampler
opt$chainNumber=2 #Number of parallel MCMC chains
opt$sample=1000 #Number of samples to be collected per chain
opt$thinningFactor=3 #A factor to thin chains
opt$burnin=500 #Number of burn-in samples discarded at the start
opt$maxMoveStepSize=30 #For the move proposal, the max window allowed in jumping from

#the current changepoint
opt$resamplingSeasonOrderProb=0.2 #The probability of selecting a re-sampling proposal

#(e.g., resample seasonal harmonic order)
opt$resamplingTrendOrderProb=0.2 #The probability of selecting a re-sampling proposal

#(e.g., resample trend polynomial order)

opt$seed=65654 #A seed for the random generator: If seed=0,random numbers differ
#for different BEAST runs. Setting seed to a chosen non-zero integer
#will allow reproducing the same result for different BEAST runs.

20 beast.irreg

beast(Yellowstone, opt)

End(Not run)

beast.irreg Bayesian time series decomposition for changepoint, trend, and peri-
odicity or seasonality

Description

A Bayesian model averaging algorithm called BEAST to decompose time series or 1D sequential
data into individual components, such as abrupt changes, trends, and periodic/seasonal variations.
BEAST is useful for changepoint detection (e.g., breakpoints or structural breaks), nonlinear trend
analysis, time series decomposition, and time series segmentation.

Usage

beast.irreg(
y,
time,
deltat = NULL,
period = NULL,
season = c("harmonic", "svd", "dummy", "none"),
scp.minmax = c(0,10), sorder.minmax = c(0,5),
tcp.minmax = c(0,10), torder.minmax = c(0,1),
sseg.min = NULL, sseg.leftmargin = NULL, sseg.rightmargin = NULL,
tseg.min = NULL, tseg.leftmargin = NULL, tseg.rightmargin = NULL,
method = c('bayes', 'bic', 'aic', 'aicc','hic'),
detrend = FALSE,
deseasonalize = FALSE,
mcmc.seed = 0,
mcmc.burnin = 200,
mcmc.chains = 3,
mcmc.thin = 5,
mcmc.samples = 8000,
ci = FALSE,
precValue = 1.5,
precPriorType = c('componentwise','uniform','constant','orderwise'),
print.options = TRUE,
print.progress = TRUE,
quiet = FALSE,
gui = FALSE,
...

)

beast.irreg 21

Arguments

y a vector for an irregular or unordered time series. Missing values such as NA
and NaN are allowed.

• If y is regular and evenly-spaced in time, use the beastfunction instead.
• If y is a matrix or 3D array (e.g., stacked images) consisting of multiple

regular or irregular time series, use beast123 instead.
If y is a list of multiple time series, the multivariate version of the BEAST al-
gorithm is invoked to decompose the multiple time series and detect common
changepoints altogether. This feature is experimental and under further devel-
opment. Check ohio for a working example.

time a vector of the same length as y’s time dimension to provide the times for data-
points. It can be a vector of numbers, Dates, or date strings; it can also be a list
of vectors of year, months, and days. Possible formats include:

1. a vector of numerical values [e.g., c(1984.23, 1984.27, 1984.36, ...)]. The
unit of the times is irrelevant to BEAST as long as it is consistent with the
unit used for specifying startTime, deltaTime, and period.

2. a vector of R Dates [e.g., as.Date(c("1984-03-27", "1984-04-10", "1984-
05-12",...)].

3. a vector of char strings. Examples are:
• c("1984-03-27", "1984-04-10", "1984-05-12")
• c("1984/03/27", "1984,04,10", "1984 05 12") (i.e., the delimiters differ

as long as the YMD order is consistent)
• c("LT4-1984-03-27", "LT4-1984-04-10", "LT4-1984+05,12")
• c("LT4-1984087ndvi", "LT4-1984101ndvi", "LT4-1984133ndvi")
• c("1984„abc 3/ 27", "1984„ddxfdd 4/ 10" "ggd1984„ 5/ ttt 12")

BEAST uses several heuristics to automatically parse the date strings with-
out a format specifier but may fail due to ambiguity (e.g., in "LC8-2020-09-
20-1984", no way to tell if 2020 or 1984 is the year). To ensure correctness,
use a list object as explained below to provide a date format specifier.

4. a list object time=list(datestr=..., strfmat='...') consisting of a
vector of date strings (time$datestr) and a format specifier (time$strFmt).
The string time$strFmt specifies how to parse dateStr. Three formats are
currently supported:

• (a). All the date strings have a fixed pattern in terms of the relative po-
sitions of Year, Month, and Day. For example, to extract 2001/12/02 etc
from time$dateStr = c(’P23R34-2001.1202333xd’, ’O93X94-2002.1108133fd’,
’TP3R34-2009.0122333td’) use time$strFmt='P23R34-yyyy.mmdd333xd'
where yyyy, mm, and dd are the specifiers and other positions are wild-
cards and can be filled with any other letters different from yyyy, mm
and dd.

• (b). All the date strings have a fixed pattern in terms of the relative po-
sitions of year and doy. For example, to extract 2001/045(day of year)
from ’P23R342001888045’, use strFmt=’123123yyyy888doy’ where
yyyy and doy are the specifiers and other positions are wildcards and
can be filled with any other letters different from yyyy, and doy. ’doy’
must be three digit in length.

22 beast.irreg

• (c). All the date strings have a fixed pattern in terms of the separa-
tion characters between year, month, and day. For example, to ex-
tract 2002/12/02 from ’2002,12/02’, ’ 2002 , 12/2’, ’2002,12 /02 ’, use
strFmt=’Y,M/D’ where the whitespaces are ignored. To get 2002/12/02
from ’2–12, 2012 ’, use strmFmt=’D–M,Y’.

5. a list object of vectors to specify individual dates of the time series. Use
time$year,time$month,and time$day to give the dates; or alternatively
use time$year and time$doy where each value of the doy vector is a num-
ber within 1 and 365/366. Each vector must have the same length as the
time dimension of Y.

deltat a number or a string to specify a time interval for aggregating the irregular y
into a regular time series. The BEAST model is currently formulated for regular
data only for fast computational, so internally, the beast.irreg function will
aggregate/re-bin irregular data into regular ones. For the aggregation, deltat is
needed to specify the desired bin size or time interval; if missing, a best guess
will be used. The unit of deltat needs to be consistent with time. If time
takes a numeric vector, the unit of deltat is arbitrary and irrelevant to beast. If
time takes a vector of Dates or date strings, the unit for deltat is assumed to
Fractional YEAR. If needed, use a string instead of a number to specify whether
the unit of deltat is day, month, or year. Examples include ’7 days’, ’7d’, ’1/2
months’, ’1mn’, ’1.0 year’, and ’1y’.

period numeric or string. Specify the period for the periodic/seasonal component in y.
Needed only for data with a periodic/cyclic component (i.e., season='harmonic'
or 'dummy') and not used for trend-only data (i.e., season='none'). The period
of the cyclic component should have a unit consisent with the unit of deltat. It
holds that period=deltat*freq where freq is the number of data samples per
period. (Note that the freq argument in earlier versions becomes obsolete and
now is replaced by period. freq is still supported butperiod takes precedence
if both are provided.) period or the number of data points per period is not a
BEAST model parameter and it has to be specified by the user. But if period
is missing, BEAST first attempts to guess its value via auto-correlation before
fitting the model. If period <= 0, season='none' is assumed, and the trend-
only model is fitted without a seasonal/cyclic component. If needed, use a string
to specify whether the unit of period is day, month, or year. Examples are ’1.0
year’, ’12 months’, ’365d’, ’366 days’.

season characters (default to ’harmonic’); specify if y has a periodic component or not.
Three strings are possible.

• 'none': y is trend-only; no periodic components are present in the time se-
ries. The args for the seasonal component (i.e.,sorder.minmax, scp.minmax
and sseg.max) will be ignored.

• 'harmonic': y has a periodic/seasonal component. The term ’season’ is
a misnomer, being used here to broadly refer to any periodic variations
present in y. The periodicity is NOT a model parameter estimated by beast
but a known constant given by the user through freq. By default, the peri-
odic component is modeled as a harmonic curve–a combination of sins and
cosines.

beast.irreg 23

• 'dummy': the same as 'harmonic' except that the periodic/seasonal com-
ponent is modeled as a non-parametric curve. The arg sorder.minmax is
irrelevant and is ignored.

• 'svd': (experimental feature) the same as 'harmonic' except that the pe-
riodic/seasonal component is modeled as a linear combination of function
bases derived from a Single-value decomposition. The SVD-based basis
functions are more parsimonious than the harmonic sin/cos bases in param-
eterizing the seasonal variations; therefore, more subtle changepoints are
likely to be detected.

scp.minmax a vector of 2 integers (>=0); the min and max number of seasonal change-
points (scp) allowed in segmenting the seasonal component. scp.minmax is
used only if y has a seasonal component (i.e., season='harmonic' or 'dummy'
) and ignored for trend-only data. If the min and max changepoint numbers are
equal, BEAST assumes a constant number of scp and won’t infer the posterior
probability of the number of changepoints, but it still estimates the occurrence
probability of the changepoints over time (i.e., the most likely times at which
these changepoints occur). If both the min and max numbers are set to 0, no
changepoints are allowed; then a global harmonic model is used to fit the sea-
sonal component, but still, the most likely harmonic order will be inferred if
sorder.minmax[1] is not equal to sorder.minmax[2].

sorder.minmax a vector of 2 integers (>=1); the min and max harmonic orders considered to
fit the seasonal component. sorder.minmax is used only used if the time series
has a seasonal component (i.e., season='harmonic') and ignored for trend-
only data or when season='dummy'. If the min and max orders are equal
(sorder.minmax[1]=sorder.minmax[2]), BEAST assumes a constant harmonic
order used and won’t infer the posterior probability of harmonic orders.

torder.minmax a vector of 2 integers (>=0); the min and max orders of the polynomials consid-
ered to fit the trend component. The 0-th order corresponds to a constant term/a
flat line and the 1st order is a line. If torder.minmax[1]=torder.minmax[2],
BEAST assumes a constant polynomial order used and won’t infer the posterior
probability of polynomial orders.

tcp.minmax a vector of 2 integers; the min and max number of trend changepoints (tcp) al-
lowed in segmenting the trend component. If the min and max changepoint num-
bers are equal, BEAST assumes a constant number of changepoints and won’t
infer the posterior probability of the number of changepoints for the trend, but it
still estimates the occurrence probability of the changepoints over time (i.e., the
most likely times at which these changepoints occur in the trend). If both the min
and max numbers are set to 0, no changepoints are allowed; then a global poly-
nomial trend is used to fit the trend component, but still, the most likely polyno-
mial order will be inferred if torder.minmax[1] is not equal to torder.minmax[2].

sseg.min an integer (>0); the min segment length allowed between two neighboring sea-
son changepoints. That is, when fitting a piecewise harmonic seasonal model,
two changepoints are not allowed to occur within a time window of length
sseg.min. sseg.min must be an unitless integer–the number of time inter-
vals/data points so that the time window in the original unit is sseg.min*deltat.
sseg.min defaults to NULL and its value will be given a default value in refer-
ence to freq.

24 beast.irreg

sseg.leftmargin

an integer (>=0); the number of leftmost data points excluded for seasonal
changepoint detection. That is, when fitting a piecewise harmonic seasonal
model, no changepoints are allowed in the starting window/segment of length
tseg.leftmargin. sseg.leftmargin must be an unitless integer–the num-
ber of time intervals/data points so that the time window in the original unit is
sseg.leftmargin*deltat. If missing, sseg.leftmargin defaults to sseg.min.

sseg.rightmargin

an integer (>=0); the number of rightmost data points excluded for seasonal
changepoint detection. That is, when fitting a piecewise harmonic seasonal
model, no changepoints are allowed in the ending window/segment of length
sseg.rightmargin. sseg.rightmargin must be an unitless integer–the num-
ber of time intervals/data points so that the time window in the original unit is
sseg.rightmargin*deltat. If missing, sseg.rightmargin defaults to sseg.min.

tseg.min an integer (>0); the min segment length allowed between two neighboring trend
changepoints. That is, when fitting a piecewise polynomial trend model, two
changepoints are not allowed to occur within a time window of length tseg.min.
tseg.min must be an unitless integer–the number of time intervals/data points
so that the time window in the original unit is tseg.min*deltat. tseg.min
defaults to NULL and its value will be given a default value in reference to freq
if the time series has a cyclic component.

tseg.leftmargin

an integer (>=0); the number of leftmost data points excluded for trend change-
point detection. That is, when fitting a piecewise polynomial trend model, no
changepoints are allowed in the starting window/segment of length tseg.leftmargin.
tseg.leftmargin must be an unitless integer–the number of time intervals/data
points so that the time window in the original unit is tseg.leftmargin*deltat.
If missing, tseg.leftmargin defaults to tseg.min.

tseg.rightmargin

an integer (>=0); the number of rightmost data points excluded for trend change-
point detection. That is, when fitting a piecewise polynomial trend model, no
changepoints are allowed in the ending window/segment of length tseg.rightmargin.
tseg.rightmargin must be an unitless integer–the number of time intervals/data
points so that the time window in the original unit is tseg.rightmargin*deltat.
If missing, tseg.rightmargin defaults to tseg.min.

method an string (default to ’bayes’); specify which method is used to formulate model
posterior probability.

• 'bayes': the full Bayesian formulation as described in Zhao et al. (2019).
• 'bic': approximation of posterior probability using the Bayesian informa-

tion criterion (bic).
• 'aic': approximation of posterior probability using the Akaike informa-

tion criterion (aic).
• 'aicc': approximation of posterior probability using the corrected Akaike

information criterion (aicc).
• 'hic': approximation of posterior probability using the Hannan-Quinn in-

formation criterion (hic)

beast.irreg 25

detrend logical; If TRUE, a global trend is first fitted and removed from the time series
before running BEAST; after BEAST finishes, the global trend is added back to
the BEAST result.

deseasonalize logical; If TRUE, a global seasonal model is first fitted and removed from the time
series before running BEAST; after BEAST finishes, the global seasonal curve is
added back to the BEAST result. deseasonalize is ignored if season='none'
(i.e., trend-only data).

mcmc.seed integer (>=0); the seed for the random number generator used for Monte Carlo
Markov Chain (mcmc). If mcmc.seed=0, an arbitrary seed is picked and the
fitting results vary across runs. If fixed to the same non-zero integer, the result
can be re-produced for different runs. But the results from the same seed may
still vary if run on different computers because the random generator library
depends on CPU’s instruction sets.

mcmc.chains integer (>0); the number of MCMC chains.
mcmc.thin integer (>0); a factor to thin chains (e.g., if thinningFactor=5, samples will be

taken every 3 iterations)
mcmc.burnin integer (>0); the number of burn-in samples discarded at the start of each chain
mcmc.samples integer (>=0); the number of samples collected per MCMC chain. The total

number of iterations is (burnin+samples*thin)*chains.
ci boolean; If TRUE, credible intervals (i.e., out$season$CI or out$trend$CI) will

be computed for the estimated seasonal and trend components. Computing CI
is time-consuming, due to sorting, so set ci to FALSE if a symmetric credible
interval (i.e., out$trend$SD and out$season$SD) suffices.

precValue numeric (>0); the hyperparameter of the precision prior; the default value is
1.5. precValue is useful only when precPriorType=’constant’, as further ex-
plained below

precPriorType characters. It takes one of ’constant’, ’uniform’, ’componentwise’ (the default),
and ’orderwise’. Below are the differences between them.

1. 'constant': the precision parameter used to parameterize the model co-
efficients is fixed to a constant specified by precValue. In other words,
precValue is a user-defined hyperparameter and the fitting result may be
sensitive to the chosen values of precValue.

2. 'uniform': the precision parameter used to parameterize the model coef-
ficients is a random variable; its initial value is specified by precValue. In
other words, precValue will be inferred by the MCMC, so the fitting result
will be insensitive to the choice in precValue.

3. 'componentwise': multiple precision parameters are used to parameterize
the model coefficients for individual components (e.g., one for season and
another for trend); their initial values is specified by precValue. In other
words, precValue will be inferred by the MCMC, so the fitting result will
be insensitive to the choice in precValue.

4. 'orderwise': multiple precision parameters are used to parameterize the
model coefficients not just for individual components but also for individual
orders of each component; their initial values is specified by precValue. In
other words, precValue will be inferred by the MCMC, so the fitting result
will be insensitive to the choice in precValue.

26 beast.irreg

print.options boolean. If TRUE,the full list of input parameters to BEAST will be printed out
prior to the MCMC inference; the naming for this list (e.g., metadata, prior,
and mcmc) differs slightly from the input to beast, but there is a one-to-one
correspondence (e.g., prior$trendMinSepDist=tseg.min). Internally, beast con-
verts the input parameters to the forms of metadata, prior,and mcmc. Type
’View(beast)’ to see the details or check the beast123 function.

print.progress boolean;If TRUE, a progressbar will be displayed.

quiet boolean. If TRUE, warning messages are suppressed and not printed.

gui boolean. If TRUE, BEAST will be run in a GUI demonstration mode, with a
GUI window to show an animation of the MCMC sampling in the model space
step by step. Note that "gui=TRUE" works only for Windows x64 systems not
Windows 32 or Linux/Mac systems.

... additional parameters. There are many more settings for the implementation but
not made available in the beast() interface; please use the function beast123()
instead

Value

The output is an object of class "beast". It is a list, consisting of the following variables. In the
explanations below, we assume the input y is a single time series of length N:

time a vector of size 1xN: the times at the N sampled locations. By default, it is simply
set to 1:N

if the input arguments delta, ’start’, or time are missing.

data a vector, matrix, or 3D array; this is a copy of the input data if extra$dumpInputData
= TRUE. If extra$dumpInputData=FALSE, it is set to NULL. If the original in-
put data is irregular, the copy here is the regular version aggregated from the
original at the time interval specified by metadata$deltaTime.

marg_lik numeric; the average of the model marginal likelihood; the larger marg_lik, the
better the fitting for a given time series.

R2 numeric; the R-square of the model fitting.

RMSE numeric; the RMSE of the model fitting.

sig2 numeric; the estimated variance of the model error.

trend a list object consisting of various outputs related to the estimated trend compo-
nent:

• ncp: [Number of ChangePoints]. a numeric scalar; the mean number of
trend changepoints. Individual models sampled by BEAST has a varying
dimension (e.g., number of changepoints or knots), so several alternative
statistics (e.g., ncp_mode, ncp_median, and ncp_pct90) are also given to
summarize the number of changepoints. For example, if mcmc$samples=10,
the numbers of changepoints for the 10 sampled models are assumed to be
c(0, 2, 4, 1, 1, 2, 7, 6, 6, 1). The mean ncp is 3.1 (rounded to 3), the median
is 2.5 (2), the mode is 1, and the 90th percentile (ncp_pct90) is 6.5.

• ncp_mode: [Number of ChangePoints]. a numeric scalar; the mode for
number of changepoints. See the above for explanations.

beast.irreg 27

• ncp_median: [Number of ChangePoints]. a numeric scalar; the median for
number of changepoints. See the above for explanations.

• ncp_pct90: [Number of ChangePoints]. a numeric scalar; the 90th per-
centile for number of changepoints. See the above for explanations.

• ncpPr: [Probability of the Number of ChangePoints]. A vector of length
(tcp.minmax[2]+1)=tcp.max+1. It gives a probability distribution of hav-
ing a certain number of trend changepoints over the range of [0,tcp.max];
for example, ncpPr[1] is the probability of having no trend changepoint;
ncpPr[i] is the probability of having (i-1) changepoints: Note that it is
ncpPr[i] not ncpPr[i-1] because ncpPr[1] is used for having zero change-
point.

• cpOccPr: [ChangePoint OCCurence PRobability]. a vector of length N;
it gives a probability distribution of having a changepoint in the trend at
each point of time. Plotting cpOccPr will depict a continious curve of
probability-of-being-changepoint. Of particular note, in the curve, a higher
peak indicates a higher chance of being a changepoint only at that partic-
ular SINGLE point in time and does not necessarily mean a higher chance
of observing a changepoint AROUND that time. For example, a window of
cpOccPr values c(0,0,0.5,0,0) (i.e., the peak prob is 0.5 and the summed
prob is 0.5) is less likely to be a changepoint compared to another window
c(0.1,0.2,0.21,0.2,0.1) (i.e., the peak prob is 0.21 but the summed
prob is 0.71).

• order: a vector of length N; the average polynomial order needed to ap-
proximate the fitted trend. As an average over many sampled individual
piece-wise polynomial trends, order is not necessarily an integer.

• cp: [Changepoints] a vector of length tcp.max=tcp.minmax[2]; the most
possible changepoint locations in the trend component. The locations are
obtained by first applying a sum-filtering to the cpOccPr curve with a filter
window size of tseg.min and then picking up to a total prior$MaxKnotNum/tcp.max
of the highest peaks in the filtered curve. NaNs are possible if no enough
changepoints are identified. cp records all the possible changepoints iden-
tified and many of them are bound to be false positives. Do not blindly treat
all of them as actual changepoints.

• cpPr: [Changepoints PRobability] a vector of length tcp.max=tcp.minmax[2];
the probabilities associated with the changepoints cp. Filled with NaNs for
the remaining elements if ncp<tcp.max.

• cpCI: [Changepoints Credible Interval] a matrix of dimension tcp.max x
2; the credibable intervals for the detected changepoints cp.

• cpAbruptChange: [Abrupt change at Changepoints] a vector of length tcp.max;
the jumps in the fitted trend curves at the detected changepoints cp.

• Y: a vector of length N; the estimated trend component. It is the Bayesian
model averaging of all the individual sampled trend.

• SD: [Standard Deviation] a vector of length N; the estimated standard devi-
ation of the estimated trend component.

• CI: [Standard Deviation] a matrix of dimension N x 2; the estimated credi-
ble interval of the estimated trend. One vector of the matrix is for the upper
envelope and another for the lower envelope.

28 beast.irreg

• slp: [Slope] a vector of length N; the time-varying slope of the fitted trend
component .

• slpSD: [Standar Deviation of Slope] a vector of length N; the SD of the
slope for the trend component.

• slpSgnPosPr: [PRobability of slope having a positive sign] a vector of
length N; the probability of the slope being positive (i.e., increasing trend)
for the trend component. For example, if slpSgnPosPr=0.80 at a given
point in time, it means that 80% of the individual trend models sampled in
the MCMC chain has a positive slope at that point.

• slpSgnZeroPr: [PRobability of slope being zero] a vector of length N; the
probability of the slope being zero (i.e., a flat constant line) for the trend
component. For example, if slpSgnZeroPr=0.10 at a given point in time,
it means that 10% of the individual trend models sampled in the MCMC
chain has a zero slope at that point. The probability of slope being negative
can be obtained from 1-slpSgnZeroPr-slpSgnPosPr.

• pos_ncp:
• neg_ncp:
• pos_ncpPr:
• neg_ncpPr:
• pos_cpOccPr:
• neg_cpOccPr:
• pos_cp:
• neg_cp:
• pos_cpPr:
• neg_cpPr:
• pos_cpAbruptChange:
• neg_cpAbruptChange:
• pos_cpCI:
• neg_cpCI: The above variables have the same outputs as those variables

without the prefix ’pos’ and ’neg’, except that we differentiate the change-
points with a POStive jump in the trend from those changepoints with a
NEGative jump. For example, pos_ncp refers to the average number of
trend changepoints that jump up (i.e., positively) in the trend.

• inc_ncp:
• dec_ncp:
• inc_ncpPr:
• dec_ncpPr:
• inc_cpOccPr:
• dec_cpOccPr:
• inc_cp:
• dec_cp:
• inc_cpPr:
• dec_cpPr:
• inc_cpAbruptChange:

beast.irreg 29

• dec_cpAbruptChange:
• inc_cpCI:
• dec_cpCI: The above variables have the same outputs as those variables

without the prefix ’inc’ and ’dec’, except that we differentiate the change-
points at which the trend slope increases from those changepoints at which
the trend slope decreases. For example, if the trend slopes before and after
a chngpt is 0.4 and 2.5, then the changepoint is counted toward inc_ncp.

season a list object consisting of various outputs related to the estimated seasonal/periodic
component:

• ncp: [Number of ChangePoints]. a numeric scalar; the mean number of
seasonal changepoints.

• ncpPr: [Probability of the Number of ChangePoints]. A vector of length
(scp.minmax[2]+1)=scp.max+1. It gives a probability distribution of hav-
ing a certain number of seasonal changepoints over the range of [0,scp.max];
for example, ncpPr[1] is the probability of having no seasonal change-
point; ncpPr[i] is the probability of having (i-1) changepoints: Note that
the index is i rather than (i-1) because ncpPr[1] is used for having zero
changepoint.

• cpOccPr: [ChangePoint OCCurence PRobability]. a vector of length N;
it gives a probability distribution of having a changepoint in the seasonal
component at each point of time. Plotting cpOccPr will depict a continious
curve of probability-of-being-changepoint over the time. Of particular note,
in the curve, a higher value at a peak indicates a higher chance of being a
changepoint only at that particular SINGLE point in time, and does not nec-
essarily mean a higher chance of observing a changepoint AROUND that
time. For example, a window of cpOccPr values c(0,0,0.5,0,0) (i.e., the
peak prob is 0.5 and the summed prob is 0.5) is less likely to be a change-
point compared to another window values c(0.1,0.2,0.3,0.2,0.1) (i.e.,
the peak prob is 0.3 but the summed prob is 0.8).

• order: a vector of length N; the average harmonic order needed to approxi-
mate the seasonal component. As an average over many sampled individual
piece-wise harmonic curves, order is not necessarily an integer.

• cp: [Changepoints] a vector of length scp.max=scp.minmax[2]; the most
possible changepoint locations in the seasonal component. The locations
are obtained by first applying a sum-filtering to the cpOccPr curve with a
filter window size of sseg.min and then picking up to a total ncp of the
highest peaks in the filtered curve. If ncp<scp.max, the remaining of the
vector is filled with NaNs.

• cpPr: [Changepoints PRobability] a vector of length scp.max; the prob-
abilities associated with the changepoints cp. Filled with NaNs for the
remaining elements if ncp<scp.max.

• cpCI: [Changepoints Credible Interval] a matrix of dimension scp.max x
2; the credibable intervals for the detected changepoints cp.

• cpAbruptChange: [Abrupt change at Changepoints] a vector of length scp.max;
the jumps in the fitted seasonal curves at the detected changepoints cp.

• Y: a vector of length N; the estimated seasonal component. It is the Bayesian
model averaging of all the individual sampled seasonal curve.

30 beast.irreg

• SD: [Standard Deviation] a vector of length N; the estimated standard devi-
ation of the estimated seasonal component.

• CI: [Standard Deviation] a matrix of dimension N x 2; the estimated credi-
ble interval of the estimated seasonal curve. One vector of the matrix is for
the upper envelope and another for the lower envelope.

• amp: [AMPlitude] a vector of length N; the time-varying amplitude of the
estimated seasonality.

• ampSD: [Standar Deviation of AMPlitude] a vector of length N; , the SD of
the amplitude of the seasonality.

• pos_ncp:
• neg_ncp:
• pos_ncpPr:
• neg_ncpPr:
• pos_cpOccPr:
• neg_cpOccPr:
• pos_cp:
• neg_cp:
• pos_cpPr:
• neg_cpPr:
• pos_cpAbruptChange:
• neg_cpAbruptChange:
• pos_cpCI:
• neg_cpCI: The above variables have the same outputs as those variables

without the prefix ’pos’ and ’neg’, except that we differentiate the change-
points with a POStive jump in the trend from those changepoints with a
NEGative jump. For example, pos_ncp refers to the average number of
trend changepoints that jump up (i.e., positively) in the trend.

Note

x

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

beast.irreg 31

See Also

beast, beast123, minesweeper, tetris, geeLandsat

Examples

library(Rbeast)

##
Note that the BEAST algorithm is currently implemented to handle only regular time
series. 'beast.irreg' accepts irregular time series but internally it aggregates them
into regular ones prior to applying the BEAST model. For the aggregation, both the
"time" and "deltat" args are needed to specify indvidial times of data points and the
regular time interval desired. If there is a cyclic componet, 'period' should also be given;
if not, a possible value is guessed via auto-correlation

##
'ohio' is a data.frame on an irregular Landsat time series of reflectances & ndvi
(e.g., surface greenness) at an Ohio site. It has multiple columns of alternative date
formats, such as year, month, day, doy (date of year), rdate (R's date class), and
time (fractional year)

data(ohio)
str(ohio)
plot(ohio$rdate, ohio$ndvi,type='o') # ndvi is irregularly spaced and unordered in time

##
Below, 'time' is given as numeric values, which can be of any arbitray unit. Although
here 1/12 can be interepreted as 1/12 year or 1 month, BEAST itself doesn't care about
the time unit. So, the unit of 1/12 is irrelevant for BEAST. 'freq' or 'period' is missing
and a guess of it is used.

o=beast.irreg(ohio$ndvi, time=ohio$time,deltat=1/12)
plot(o)
print(o)

##
Aggregrate the time series at a monthly interval (deltat=1/12) and explictly provide
the 'freq' or 'period' arg

o=beast.irreg(ohio$ndvi, time=ohio$time,deltat=1/12, period=1.0)
#o=beast.irreg(ohio$ndvi, time=ohio$time,deltat=1/12, freq =12)

Not run:
##
Aggregate the time series at a half-monthly time interval, and the 'freq' becomes 24
while the period is still 1. That is, PERIOD (1.0)=deltat(1/24) X freq (24)

32 beast.irreg

o=beast.irreg(ohio$ndvi, time=ohio$time,deltat=1/24, freq = 24)
#o=beast.irreg(ohio$ndvi, time=ohio$time,deltat=1/24, period = 1)

##
'time' is given as R's dates. The unit is YEAR. 1/12 refers to 1/12 year or 1 month

o=beast.irreg(ohio$ndvi, time=ohio$rdate,deltat=1/12)

##
'time' is given as data strings. The unit is YEAR. 1/12 refers to 1/12 year or 1 month

o=beast.irreg(ohio$ndvi, time=ohio$datestr1,deltat=1/12) #"LT4-1984-03-27" (YYYY-MM-DD)
o=beast.irreg(ohio$ndvi, time=ohio$datestr2,deltat=1/12) #"LT4-1984087ndvi" (YYYYDOY)
o=beast.irreg(ohio$ndvi, time=ohio$datestr3,deltat=1/12) #"1984,, 3/ 27" (YYYY M D)

##
'time' is given as data strings, with a format specifier

TIME =list()
TIME$datestr = ohio$datestr1
TIME$strfmt = "LT4-YYYY-MM-DD" # "LT4-1984-03-27"
o=beast.irreg(ohio$ndvi, time=TIME,deltat=1/12)

TIME =list()
TIME$datestr = ohio$datestr2
TIME$strfmt = "LT4-YYYYDOYndvi" # LT4-1984087ndvi
o=beast.irreg(ohio$ndvi, time=TIME,deltat=1/12)

##
'time' is given as a list object

TIME = list()

TIME$year = ohio$Y
TIME$month = ohio$M
TIME$day = ohio$D
o=beast.irreg(ohio$ndvi, time=TIME,deltat=1/12)

TIME = list()
TIME$year = ohio$Y
TIME$doy = ohio$doy
o=beast.irreg(ohio$ndvi, time=TIME, deltat=1/12)

beast123 33

End(Not run)

beast123 Bayesian time series decomposition for changepoint, trend, and peri-
odicity or seasonality

Description

A Bayesian model averaging algorithm called BEAST to decompose time series or 1D sequential
data into individual components, such as abrupt changes, trends, and periodic/seasonal variations.
BEAST is useful for changepoint detection (e.g., breakpoints or structural breaks), nonlinear trend
analysis, time series decomposition, and time series segmentation.

Usage

beast123(Y,
metadata=list(),
prior =list(),
mcmc =list(),
extra =list(),
season = c('harmonic','svd','dummy','none'),
method = c('bayes', 'bic', 'aic', 'aicc','hic'),
...)

Arguments

Y a 1D vector, 2D matrix, or 3D array of numeric data. Missing values are allowed
and can be indicated by NA, NaN, or a value customized in the 2nd argument
metadata (e.g., metadata$missingValue=-9999).

• If Y is a vector of size Nx1 or 1xN, it is treated as a single time series of
length N.

• If Y is a 2D matrix or 3D array of dimension N1xN2 or N1xN2xN3 (e.g.,
stacked images of geospatial data), it includes multiple time series of equal
length: Which dimension is time has to be specified in the 2nd argument us-
ing metadata$whichDimIsTime. For example, metadata$whichDimIsTime
= 1 for a 190x35 2D input indicates 35 time series of length 190 each;
metadata$whichDimIsTime = 2 for a 100x200x300 3D input indicates
30000=100*300 time series of length 200 each.

Y can be either regular (i.e., evenly-spaced in time) or irregular/unordered in
time.

• If regular, individual times are determined from the time of the 1st data
point startTime and the time span between consecutive points deltaTime,
which are specified in the 2nd arg through metadata$startTime and metadata$deltaTime;
if not given, startTime and deltaTime take a default 1.0.

34 beast123

• If irregular or regular but unordered, the times have to be explicitly given
through metadata$time. The BEAST model is currently formulated for
regular data only, so internally, the beast123 function will aggregate/re-bin
irregular data into regular ones; for the aggregation, the metadata$deltaTime
parameter should also be also provided to specify the desired bin size or
time interval.

Y can have a periodic component or have a trend component only. Use the
argument season to specify the cases.

• season='none': Y is treated as trend-only; no periodic components are
present in the time series.

• season='harmonic': Y has a periodic/seasonal component. The term ’sea-
son’ is a misnomer being used here to broad refer to any periodic varia-
tions present in Y. The periodicity is not a statistical parameter estimated by
BEAST but a known constant given by the user through metadata$freq.
The periodic component is modeled as a harmonic curve–a combination of
sins and cosines.

• season='dummy': the same as ’harmonic’ except that the periodic/seasonal
component is modeled as a non-parametric curve.

• season='svd': (experimental feature) the same as 'harmonic' except that
the periodic/seasonal component is modeled as a linear combination of
function bases derived from a Single-value decomposition. The SVD-based
basis functions are more parsimonious than the harmonic sin/cos bases in
parameterizing the seasonal variations; therefore, more subtle changepoints
are likely to be detected.

metadata (optional). If present, metadata may (1) a scalar value to specify the period of
the input Y, (2) a vector of numbers, strings, or R Dates to specify the times of
Y, or (3) more often, a LIST object specifying various parameters to describe the
1st argument Y. If missing, default values will be used. But metadata should
be explicitly provided if the input Y is a 2D matrix or 3D array to avoid mis-
interpreting the input Y. metadata is not part of BEAST’s Bayesian formulation
but just some additional info to interpret Y. If metadata is provided as a LIST,
below are possible fields; not all of them are always needed, depending on the
types of inputs (e.g., 1D, 2D or 3D; regular or irregular).

• metadata$whichDimIsTime: integer (<=3). Needed to specify which di-
mension of Y is time for a matrix or 3D array input. Ignored if the input Y
is a vector.

• metadata$isRegularOrdered: logical. Obsolete and no longer used in
this version. Now, metadata$time is analyzed to determine whether the
input is irregular or not; if metadata$time is missing, Y is assumed to be
regular.

• metadata$time: a vector of the same length as Y’s time dimension to pro-
vide the times for datapoints. It can be a vector of numbers, Dates, or date
strings; it can also be a list of vectors of year, months, and days. Possible
formats include:
1. a vector of numerical values [e.g., c(1984.23, 1984.27, 1984.36, ...)].

The unit of the times is irrelevant to BEAST as long as it is consistent
with the unit used for specifying startTime, deltaTime, and period.

beast123 35

2. a vector of R Dates [e.g., as.Date(c("1984-03-27", "1984-04-10",
"1984-05-12",...)].

3. a vector of char strings. Examples are:
– c("1984-03-27", "1984-04-10", "1984-05-12")
– c("1984/03/27", "1984,04,10", "1984 05 12") (i.e., the delimiters dif-

fer as long as the YMD order is consistent)
– c("LT4-1984-03-27", "LT4-1984-04-10", "LT4-1984+05,12")
– c("LT4-1984087ndvi", "LT4-1984101ndvi", "LT4-1984133ndvi")
– c("1984„abc 3/ 27", "1984„ddxfdd 4/ 10" "ggd1984„ 5/ ttt 12")
BEAST uses several heuristics to automatically parse the date strings
without a format specifier but may fail due to ambiguity (e.g., in "LC8-
2020-09-20-1984", no way to tell if 2020 or 1984 is the year). To
ensure correctness, use a list object as explained below to provide a
date format specifier.

4. a list object time=list(datestr=..., strfmat='...') consisting of
a vector of date strings (time$datestr) and a format specifier (time$strFmt).
The string time$strFmt specifies how to parse dateStr. Three for-
mats are currently supported:
– (a). All the date strings have a fixed pattern in terms of the rel-

ative positions of Year, Month, and Day. For example, to extract
2001/12/02 etc from time$dateStr = c(’P23R34-2001.1202333xd’,
’O93X94-2002.1108133fd’, ’TP3R34-2009.0122333td’) use time$strFmt='P23R34-yyyy.mmdd333xd'
where yyyy, mm, and dd are the specifiers and other positions are
wildcards and can be filled with any other letters different from yyyy,
mm and dd.

– (b). All the date strings have a fixed pattern in terms of the relative
positions of year and doy. For example, to extract 2001/045(day of
year) from ’P23R342001888045’, use strFmt=’123123yyyy888doy’
where yyyy and doy are the specifiers and other positions are wild-
cards and can be filled with any other letters different from yyyy, and
doy. ’doy’ must be three digit in length.

– (c). All the date strings have a fixed pattern in terms of the sep-
aration characters between year, month, and day. For example, to
extract 2002/12/02 from ’2002,12/02’, ’ 2002 , 12/2’, ’2002,12 /02
’, use strFmt=’Y,M/D’ where the whitespaces are ignored. To get
2002/12/02 from ’2–12, 2012 ’, use strmFmt=’D–M,Y’.

5. a list object of vectors to specify individual dates of the time series.
Use time$year,time$month,and time$day to give the dates; or alter-
natively use time$year and time$doy where each value of the doy
vector is a number within 1 and 365/366. Each vector must have the
same length as the time dimension of Y.

• metadata$startTime: numeric (default to 1.0 if missing). It gives the
time of the 1st data point. It can be specified as a scalar (e.g., 2021.23)
or a vector of three values in the order of year, month, and day (e.g.,
metadata$startTime = c(2021,1,24)). metadata$startTime is needed
for regular input data but optional for irregular data: If missing, startTime
will be computed from metadata$time for irregular Y.

36 beast123

• metadata$deltaTime: numeric or string. It specifies the time interval be-
tween consecutive data points. It is optional for regular data (default to 1.0
if not supplied), but should be specified for irregular data because deltaTime
is needed to aggregate/resample the irregular time series into regular ones.
The unit of deltaTime needs to be consistent with metadata$time. If
metadata$time takes a numeric vector, the unit of deltaTime is arbitrary
and irrelevant to BEAST. If time takes a vector of Dates or date strings, the
unit for deltaTime is assumed to Fractional YEAR. If needed, use a string
instead of a number to specify whether the unit of deltaTime is day, month,
or year. Examples include ’7 days’, ’7d’, ’1/2 months’, ’1mn’, ’1.0 year’,
and ’1y’.

• metadata$period: numeric or string. Specify the period for the peri-
odic/seasonal component in Y. Needed only for data with a periodic/cyclic
component (i.e., season='harmonic' or 'dummy') and not used for trend-
only data (i.e., season='none'). The period of the cyclic component should
have a unit consisent with the unit of deltaTime. It holds that period=deltaTime*freq
where freq is the number of data samples per period. (Note that the freq
argument in earlier versions becomes obsolete and now is replaced by period.)
period or the number of data points per period is not a BEAST model pa-
rameter and it has to be specified by the user. But if period is missing,
BEAST first attempts to guess its value via auto-correlation before fitting
the model. If period <= 0, no seasonal/cyclic component is assumed (i.e,
season='none') and the trend-only model is used. If needed, use a string
to specify whether the unit of period is day, month, or year. Examples are
’1.0 year’, ’12 months’, ’365d’, ’366 days’.

• metadata$missingValue: numeric; a customized value to indicate bad/missing
values in the time series, in addition to those NA or NaN values.

• metadata$maxMissingRate a fractional number within [0, 1] as the max-
imum percentage of missing values, above which the time series will be
skipped and won’t be fitted by BEAST.

prior (optional). a list object consisting of the hyperprior parameters in the Bayesian
formulation of the BEAST model. Because they are part of the model, the fit-
ting result may be sensitive to the choices of these hyperparameters. If prior
is missing, a set of default values will be used and the exact values used will
be printed to the console at the start of the BEAST run. Below are possible
parameters:

• prior$seasonMinOrder: integer (>=1)
• prior$seasonMaxOrder: integer (>=1); the min and max harmonic orders

considered to fit the seasonal component. seasonMinOrder and seasonMaxOrder
are only used if the time series has a seasonal component (i.e., season='harmonic')
and ignored for trend-only data or when season='dummy'. If seasonMinOrder=seasonMaxOrder,
BEAST assumes a constant harmonic order used and won’t infer the poste-
rior probability of harmonic orders.

• prior$seasonMinKnotNum: integer (>=0)
• prior$seasonMaxKnotNum: integer (>=0); the min and max number of sea-

sonal changepoints allowed in segmenting and fitting the seasonal compo-
nent. seasonMinKnotNum and seasonMaxKnotNum are only used if the time

beast123 37

series has a seasonal component (i.e., season='harmonic' or season='dummy')
and ignored for trend-only data. If seasonMinOrder=seasonMaxOrder,
BEAST assumes a constant number of changepoints and won’t infer the
posterior probability of the number of changepoints, but it will still esti-
mate the occurrence probability of the changepoints over time (i.e., the most
likely times at which these changepoints occur). If seasonMinOrder=seasonMaxOrder=0,
no changepoints are allowed in the seasonal component; then a global har-
monic model is used to fit the seasonal component.

• prior$seasonMinSepDist: integer (>0). the min separation time between
two neighboring season changepoints. That is, when fitting a piecewise
harmonic seasonal model, no two changepoints are allowed to occur within
a time window of seasonMinSepDist. seasonMinSepDist must be an unit-
less integer–the number of time intervals/data points so that the time win-
dow in the original unit is seasonMinSepDist*metadata$deltaTime.

• prior$seasonLeftMargin: integer (>=0); the number of leftmost data
points excluded for seasonal changepoint detection. That is, when fitting
a piecewise harmonic seasonal model, no changepoints are allowed in the
starting window/segment of length seasonLeftMargin. seasonLeftMargin
must be an unitless integer–the number of time intervals/data points so that
the time window in the original unit is seasonLeftMargin*deltat. If
missing, seasonLeftMargin defaults to seasonMinSepDist.

• prior$seasonRightMargin: integer (>=0); the number of rightmost data
points excluded for seasonal changepoint detection. That is, when fitting
a piecewise harmonic seasonal model, no changepoints are allowed in the
ending window/segment of length seasonRightMargin. seasonRightMargin
must be an unitless integer–the number of time intervals/data points so that
the time window in the original unit is seasonRightMargin*deltat. If
missing, seasonRightMargin defaults to seasonMinSepDist.

• prior$trendMinOrder: integer (>=0)
• prior$trendMaxOrder: integer (>=0); the min and max orders of the poly-

nomials considered to fit the trend component. The zero-th order cor-
responds to a constant term/ a flat line and the 1st order is a line. If
trendMinOrder=trendMaxOrder, BEAST assumes a constant polynomial
order used and won’t infer the posterior probability of polynomial orders.

• prior$trendMinKnotNum:
• prior$trendMaxKnotNum: integer (>=0); the min and max number of trend

changepoints allowed in segmenting and fitting the trend component. If
trendMinOrder=trendMaxOrder, BEAST assumes a constant number of
changepoints in the fitted trend and won’t infer the posterior probability
of the number of trend changepoints, but it will still estimate the occur-
rence probability of the changepoints over time (i.e., the most likely times at
which these changepoints occur). If trendMinOrder=trendMaxOrder=0,
no changepoints are allowed in the trend component; then a global polyno-
mial model is used to fit the trend.

• prior$trendMinSepDist: integer (>0). the min separation time between
two neighboring trend changepoints.

• prior$trendLeftMargin: integer (>=0); the number of leftmost data points

38 beast123

excluded for trend changepoint detection. That is, when fitting a piece-
wise polynomial trend model, no changepoints are allowed in the start-
ing window/segment of length trendLeftMargin. trendLeftMargin must
be an unitless integer–the number of time intervals/data points so that the
time window in the original unit is trendLeftMargin*deltat. If missing,
trendLeftMargin defaults to trendMinSepDist.

• prior$trendRightMargin: integer (>=0); the number of rightmost data
points excluded for trend changepoint detection. That is, when fitting a
piecewise polynomial trend model, no changepoints are allowed in the end-
ing window/segment of length trendRightMargin. trendRightMargin
must be an unitless integer–the number of time intervals/data points so
that the time window in the original unit is trendRightMargin*deltat.
If missing, trendRightMargin defaults to trendMinSepDist.

• prior$precValue: numeric (>0); the default value is 10. Useful only if
prior$precPriorType=’constant’

• prior$precPriorType: characters. It takes one of ’constant’, ’uniform’
(the default), ’componentwise’, and ’orderwise’. Below are the differences
between them.
1. precPriorType='constant': the precision parameter used to param-

eterize the model coefficients is fixed to a constant specified by prior$precValue.
In other words, prior$precValue is a user-defined hyperparameter
and the fitting result may be sensitive to the chosen values of prior$precValue.

2. precPriorType='uniform': the precision parameter used to param-
eterize the model coefficients is a random variable; its initial value is
specified by prior$precValue. In other words, precValue will be in-
ferred by the MCMC, so the fitting result is insensitive to the choice in
prior$precValue.

3. precPriorType='componentwise': multiple precision parameters are
used to parameterize the model coefficients for individual components
(e.g., one for season and another for trend); their initial values is spec-
ified by prior$precValue. In other words, precValue will be in-
ferred by the MCMC, so the fitting result is insensitive to the choice
in prior$precValue.

4. precPriorType='orderwise': multiple precision parameters are used
to parameterize the model coefficients not just for individual compo-
nents but also for individual orders of each component; their initial
values is specified by prior$precValue. In other words, precValue
will be inferred by the MCMC, so the fitting result is insensitive to the
choice in prior$precValue.

mcmc (optional). a list object consisting of parameters to configure the MCMC infer-
ence. These parameter are not part of the Bayesian formulation of the BEAST
model but are the settings for the reversible-jump MCMC to generate MCMC
chains. Due to the MCMC nature, the longer the simulation chain is, the better
the fitting result. Below are possible parameters:

• mcmc$seed: integer (>=0); the seed for the random number generator. If
mcmc$seed=0, an arbitrary seed will be picked up and the fitting result will
var across runs. If fixed to the same on-zero integer, the results can be

beast123 39

re-produced for different runs. Note that the results may still vary if run
on different computers with the same seed because the random generator
library depends on CPU’s instruction sets.

• mcmc$samples: integer (>0); the number of samples collected per MCMC
chain.

• mcmc$chainNumber: integer (>0); the number of parallel MCMC chains.
• mcmc$thinningFactor: integer (>0); a factor to thin chains (e.g., if thin-

ningFactor=5, samples will be taken every 3 iterations).
• mcmc$burnin: integer (>0); the number of burn-in samples discarded at the

start of each chain.
• mcmc$maxMoveStepSize: integer (>0). The RJMCMC sampler employs

a move proposal when traversing the model space or proposing new posi-
tions of changepoints. ’maxMoveStepSize’ is used in the move proposal to
specify the max window allowed in jumping from the current changepoint.

• mcmc$seasonResamplingOrderProb: a fractional number less than 1.0;
the probability of selecting a re-sampling proposal (e.g., resample seasonal
harmonic order).

• mcmc$trendResamplingOrderProb: a fractional number less than 1.0; the
probability of selecting a re-sampling proposal (e.g., resample trend poly-
nomial order)

• mcmc$credIntervalAlphaLevel: a fractional number less than 1.0 (de-
fault to 0.95); the level of confidence used to compute credible intervals.

extra (optional). a list object consisting of flags to control the outputs from the BEAST
runs or configure other program setting. Below are possible parameters:

• extra$quiet: logical (default to FALSE). If TRUE, no warning messages
will be printed out.

• extra$dumpInputData: logical (default to FALSE). If TRUE, the input
time series will be copied into the output. When the input Y is irregular (i.e.,
metadata$isRegularOrdered=FALSE), the dumped copies will be the ag-
gregated regular time series.

• extra$whichOutputDimIsTime: integer (<=3). If the input Y is a 2D or 3D
array (i.e., multiple time series such as stacked images), the whichOutputDimIsTime
specifies which dimension is the time in the output variables. whichOutputDimIsTime
defaults to 3 for 3D inputs and is ignored if the input is a vector (i.e., a single
time series).

• extra$ncpStatMethod: character (deprecated). A string to specify which
statistic is used to determine the Number of ChangePoint (ncp) when com-
puting the most likely changepoint locations (e.g., out$trend$cp, and out$season$cp).
Three values are possible: ’mode’, ’mean’, and ’median’; the default is
’mode’. Individual models sampled by BEAST has a varying dimension
(e.g., number of changepoints or knots). For example, if mcmc$samples=10,
the numbers of changepoints for the 10 sampled models are assumed to be
c(0, 2, 4, 1, 1, 2, 7, 6, 6, 1). The mean ncp is 3.1 (rounded to 3), the me-
dian is 2.5 (2), and the mode is 1. This argument is deprecated; now all the
possible changepoints are outputted, together with several versions of ncp,

40 beast123

including ncp, ncp_median, ncp_mode, and ncp_pct90. A similar param-
eter ncpStat is added to the plot.beast function to specify which ncp is
used when plotting.

• extra$computeCredible: logical (default to TRUE). Credible intervals
will be computed and outputted only if set to TRUE.

• extra$fastCIComputation: logical (default to TRUE). If TRUE, a fast
method is used to compute credible intervals (CI). Computation of CI is
one of the most computational parts and fastCIComputation should be set
to TRUE unless more accurate CI estimation is desired.

• extra$computeSeasonOrder: logical (default to TRUE). If TRUE, a pos-
terior estimate of the seasonal harmonic order will be outputted; this flag is
only valid if the time series has a seasonal component (i.e., season=’harmonic’
and prior$seasonMinOrder is not equal to prior$seasonMaxOrder).

• extra$computeTrendOrder: logical (default to TRUE). If TRUE, a poste-
rior estimate of the tend polynomial order will be outputted; this flag is only
valid when prior$trendMinOrder is not equal to prior$trendMaxOrder).

• extra$computeTrendOrder: logical (default to TRUE). If TRUE, a poste-
rior estimate of the tend polynomial order will be outputted; this flag is only
valid when prior$trendMinOrder is not equal to prior$trendMaxOrder).

• extra$computeSeasonChngpt: logical (default to TRUE). If TRUE, com-
pute the most likely times/positions where changepoints occur in the sea-
sonal component. This flag is not valid if there is a seasonal component in
the time series (i.e., season=’harmonic’ or season=’dummy’ and prior$seasonMaxKnotNum
is non-zero).

• extra$computeTrendChngpt: logical (default to TRUE). If TRUE, com-
pute the most likely times/positions where changepoints occur in the trend
component.

• extra$computeSeasonAmp: logical (default to FALSE). If TRUE, compute
and output the time-varying amplitude of the seasonality.

• extra$computeTrendSlope: logical (default to FALSE). If TRUE, com-
pute and output the time-varying slope of the estimated trend.

• extra$tallyPosNegSeasonJump: logical (default to FALSE). If TRUE,
compute and differentiate seasonal changepoints in terms of the direction
of the jumps in the estimated seasonal signal. Those changepoints with
a positive jump will be outputted separately from those with a negative
jump. A series of output variables (some for positive-jump changepoints,
and others for negative-jump changepoints will be dumped).

• extra$tallyPosNegTrendJump: logical (default to FALSE). If TRUE, com-
pute and differentiate trend changepoints in terms of the direction of the
jumps in the estimated trend. Those changepoints with a positive jump will
be outputted separately from those with a negative jump. A series of output
variables (some for positive-jump changepoints, and others for negative-
jump changepoints will be dumped).

• extra$tallyIncDecTrendJump: logical (default to FALSE). If TRUE, com-
pute and differentiate trend changepoints in terms of the direction of the
jumps in the estimated slope of the trend signal. Those changepoints with

beast123 41

a increase in the slope will be outputted separately from those with a de-
crease in the slope. A series of output variables (some for increase-jump
changepoints, and others for decrease-jump changepoints will be dumped).

• extra$printProgressBar: logical (default to FALSE). If TRUE, a progress
bar will be displayed to show the status of the running. When running on
multiple time series (e.g. stacked image time series), the progress bar will
also report an estimate of the remaining time for completion.

• extra$consoleWidth: integer (default to 0); the length of chars in each
status line when setting printProgressBar=TRUE. If 0, the current width of
the console will be used.

• extra$printOptions: logical (default to FALSE). If TRUE, the values
used in the arguments metadata, prior, mcmc, and extra will be printed
to the console at the start of the run.

• extra$numThreadsPerCPU: integer (default to 2); the number of threads to
be scheduled for each CPU core.

• extra$numParThreads: integer (default to 0). When handling many time
series, BEAST can use multiple concurrent threads. extra$numParThreads
specifies how many concurrent threads will be used in total. If numParThreads=0,
the actual number of threads will be numThreadsPerCPU * cpuCoreNumber;
that is, each CPU core will generate a number ’numThreadsPerCPU’ of
threads. On Windows 64, ,BEAST is group-aware and will affine or dis-
tribute the threads to all the NUMA node. But currently, up to 256 CPU
cores are supported.

season characters (default to ’harmonic’); specify if y has a periodic component or not.
Three strings are possible.

• 'none': y is trend-only; no periodic components are present in the time se-
ries. The args for the seasonal component (i.e.,sorder.minmax, scp.minmax
and sseg.max) will be irrelevant and ignored.

• 'harmonic': y has a periodic/seasonal component. The term season is
a misnomer, being used here to broadly refer to any periodic variations
present in y. The periodicity is NOT a model parameter estimated by
BEAST but a known constant given by the user through freq. By default,
the periodic component is modeled as a harmonic curve–a combination of
sins and cosines.

• 'dummy': the same as 'harmonic' except that the periodic/seasonal com-
ponent is modeled as a non-parametric curve. The harmonic order arg
sorder.minmax is irrelevant and is ignored.

• 'svd': (experimental feature) the same as 'harmonic' except that the pe-
riodic/seasonal component is modeled as a linear combination of function
bases derived from a Single-value decomposition. The SVD-based basis
functions are more parsimonious than the harmonic sin/cos bases in param-
eterizing the seasonal variations; therefore, more subtle changepoints are
likely to be detected.

method an string (default to ’bayes’); specify which method is used to formulate model
posterior probability.

• 'bayes': the full Bayesian formulation as described in Zhao et al. (2019).

42 beast123

• 'bic': approximation of posterior probability using the Bayesian informa-
tion criterion (bic).

• 'aic': approximation of posterior probability using the Akaike informa-
tion criterion (aic).

• 'aicc': approximation of posterior probability using the corrected Akaike
information criterion (aicc).

• 'hic': approximation of posterior probability using the Hannan-Quinn in-
formation criterion (hic)

... additional parameters, not used currently but reserved for future extension

Value

The output is an object of class "beast". It is a list, consisting of the following variables. Exact sizes
of the variables depend on the types of the input Y as well as the specified output time dimension
extra$whichOutputDimIsTime. In the explanations below, we assume the input Y is a single time
series of length N; the dimensions for 2D or 2D inputs may be interpreted accordingly:

time a vector of size 1xN: the times at the N sampled locations. By default, it is simply
set to 1:N

data a vector, matrix, or 3D array; this is a copy of the input Y if extra$dumpInputData
= TRUE. If extra$dumpInputData=FALSE, it is set to NULL. If the original input
Y is irregular, the copy here is the regular version aggregated from the original
at the time interval specified by metadata$deltaTime.

marg_lik numeric; the average of the model marginal likelihood; the larger marg_lik, the
better the fitting for a given time series.

R2 numeric; the R-square of the model fitting.

RMSE numeric; the RMSE of the model fitting.

sig2 numeric; the estimated variance of the model error.

trend a list object numeric consisting of various outputs related to the estimated trend
component:

• ncp: [Number of ChangePoints]. a numeric scalar; the mean number of
trend changepoints. Individual models sampled by BEAST has a varying
dimension (e.g., number of changepoints or knots), so several alternative
statistics (e.g., ncp_mode, ncp_median, and ncp_pct90) are also given to
summarize the number of changepoints. For example, if mcmc$samples=10,
the numbers of changepoints for the 10 sampled models are assumed to be
c(0, 2, 4, 1, 1, 2, 7, 6, 6, 1). The mean ncp is 3.1 (rounded to 3), the median
is 2.5 (2), the mode is 1, and the 90th percentile (ncp_pct90) is 6.5.

• ncp_mode: [Number of ChangePoints]. a numeric scalar; the mode for
number of changepoints. See the above for explanations.

• ncp_median: [Number of ChangePoints]. a numeric scalar; the median for
number of changepoints. See the above for explanations.

• ncp_pct90: [Number of ChangePoints]. a numeric scalar; the 90th per-
centile for number of changepoints. See the above for explanations.

beast123 43

• ncpPr: [Probability of the Number of ChangePoints]. A vector of length
(prior$trendMaxKnotNum+1). It gives a probability distribution of having
a certain number of trend changepoints over the range of [0,prior$trendMaxKnotNum];
for example, ncpPr[1] is the probability of having no trend changepoint;
ncpPr[i] is the probability of having (i-1) changepoints: Note that it is
ncpPr[i] not ncpPr[i-1] because ncpPr[1] is used for having zero change-
point.

• cpOccPr: [ChangePoint OCCurence PRobability]. a vector of length N;
it gives a probability distribution of having a changepoint in the trend at
each point of time. Plotting cpOccPr will depict a continious curve of
probability-of-being-changepoint. Of particular note, in the curve, a higher
peak indicates a higher chance of being a changepoint only at that partic-
ular SINGLE point in time and does not necessarily mean a higher chance
of observing a changepoint AROUND that time. For example, a window of
cpOccPr values c(0,0,0.5,0,0) (i.e., the peak prob is 0.5 and the summed
prob is 0.5) is less likely to be a changepoint compared to another window
c(0.1,0.2,0.21,0.2,0.1) (i.e., the peak prob is 0.21 but the summed
prob is 0.71).

• order: a vector of length N; the average polynomial order needed to ap-
proximate the fitted trend. As an average over many sampled individual
piece-wise polynomial trends, order is not necessarily an integer.

• cp: [Changepoints] a vector of length tcp.max=tcp.minmax[2]; the most
possible changepoint locations in the trend component. The locations are
obtained by first applying a sum-filtering to the cpOccPr curve with a filter
window size of tseg.min and then picking up to a total prior$MaxKnotNum/tcp.max
of the highest peaks in the filtered curve. NaNs are possible if no enough
changepoints are identified. cp records all the possible changepoints iden-
tified and many of them are bound to be false positives. Do not blindly treat
all of them as actual changepoints.

• cpPr: [Changepoints PRobability] a vector of length metadata$trendMaxKnotNum;
the probabilities associated with the changepoints cp. Filled with NaNs for
the remaining elements if ncp<trendMaxKnotNum.

• cpCI: [Changepoints Credible Interval] a matrix of dimension metadata$trendMaxKnotNum
x 2; the credibable intervals for the detected changepoints cp.

• cpAbruptChange: [Abrupt change at Changepoints] a vector of length metadata$trendMaxKnotNum;
the jumps in the fitted trend curves at the detected changepoints cp.

• Y: a vector of length N; the estimated trend component. It is the Bayesian
model averaging of all the individual sampled trend.

• SD: [Standard Deviation] a vector of length N; the estimated standard devi-
ation of the estimated trend component.

• CI: [Standard Deviation] a matrix of dimension N x 2; the estimated credi-
ble interval of the estimated trend. One vector of the matrix is for the upper
envelope and another for the lower envelope.

• slp: [Slope] a vector of length N; the time-varying slope of the fitted trend
component .

• slpSD: [Standar Deviation of Slope] a vector of length N; the SD of the
slope for the trend component.

44 beast123

• slpSgnPosPr: [PRobability of slope having a positive sign] a vector of
length N; the probability of the slope being positive (i.e., increasing trend)
for the trend component. For example, if slpSgnPosPr=0.80 at a given
point in time, it means that 80% of the individual trend models sampled in
the MCMC chain has a positive slope at that point.

• slpSgnZeroPr: [PRobability of slope being zero] a vector of length N; the
probability of the slope being zero (i.e., a flat constant line) for the trend
component. For example, if slpSgnZeroPr=0.10 at a given point in time,
it means that 10% of the individual trend models sampled in the MCMC
chain has a zero slope at that point. The probability of slope being negative
can be obtained from 1-slpSgnZeroPr-slpSgnPosPr.

• pos_ncp:
• neg_ncp:
• pos_ncpPr:
• neg_ncpPr:
• pos_cpOccPr:
• neg_cpOccPr:
• pos_cp:
• neg_cp:
• pos_cpPr:
• neg_cpPr:
• pos_cpAbruptChange:
• neg_cpAbruptChange:
• pos_cpCI:
• neg_cpCI: The above variables have the same outputs as those variables

without the prefix ’pos’ and ’neg’, except that we differentiate the change-
points with a POStive jump in the trend from those changepoints with a
NEGative jump. For example, pos_ncp refers to the average number of
trend changepoints that jump up (i.e., positively) in the trend.

• inc_ncp:
• dec_ncp:
• inc_ncpPr:
• dec_ncpPr:
• inc_cpOccPr:
• dec_cpOccPr:
• inc_cp:
• dec_cp:
• inc_cpPr:
• dec_cpPr:
• inc_cpAbruptChange:
• dec_cpAbruptChange:
• inc_cpCI:
• dec_cpCI: The above variables have the same outputs as those variables

without the prefix ’inc’ and ’dec’, except that we differentiate the change-
points at which the trend slope increases from those changepoints at which

beast123 45

the trend slope decreases. For example, if the trend slopes before and after
a chngpt is 0.4 and 2.5, then the changepoint is counted toward inc_ncp.

season a list object numeric consisting of various outputs related to the estimated sea-
sonal/periodic component:

• ncp: [Number of ChangePoints]. a numeric scalar; the mean number of
seasonal changepoints.

• ncpPr: [Probability of the Number of ChangePoints]. A vector of length
(prior$seasonMaxKnotNum+1). It gives a probability distribution of hav-
ing a certain number of seasonal changepoints over the range of [0,prior$seasonMaxKnotNum];
for example, ncpPr[1] is the probability of having no seasonal change-
point; ncpPr[i] is the probability of having (i-1) changepoints: Note that
the index is i rather than (i-1) because ncpPr[1] is used for having zero
changepoint.

• cpOccPr: [ChangePoint OCCurence PRobability]. a vector of length N;
it gives a probability distribution of having a changepoint in the seasonal
component at each point of time. Plotting cpOccPr will depict a continious
curve of probability-of-being-changepoint over the time. Of particular note,
in the curve, a higher value at a peak indicates a higher chance of being a
changepoint only at that particular SINGLE point in time, and does not nec-
essarily mean a higher chance of observing a changepoint AROUND that
time. For example, a window of cpOccPr values c(0,0,0.5,0,0) (i.e., the
peak prob is 0.5 and the summed prob is 0.5) is less likely to be a change-
point compared to another window values c(0.1,0.2,0.3,0.2,0.1) (i.e.,
the peak prob is 0.3 but the summed prob is 0.8).

• order: a vector of length N; the average harmonic order needed to approxi-
mate the seasonal component. As an average over many sampled individual
piece-wise harmonic curves, order is not necessarily an integer.

• cp: [Changepoints] a vector of length metadata$seasonMaxKnotNum; the
most possible changepoint locations in the seasonal component. The lo-
cations are obtained by first applying a sum-filtering to the cpOccPr curve
with a filter window size of prior$trendMinSeptDist and then picking up
to a total ncp of the highest peaks in the filtered curve. If ncp<seasonMaxKnotNum,
the remaining of the vector is filled with NaNs.

• cpPr: [Changepoints PRobability] a vector of length metadata$seasonMaxKnotNum;
the probabilities associated with the changepoints cp. Filled with NaNs for
the remaining elements if ncp<seasonMaxKnotNum.

• cpCI: [Changepoints Credible Interval] a matrix of dimension metadata$seasonMaxKnotNum
x 2; the credibable intervals for the detected changepoints cp.

• cpAbruptChange: [Abrupt change at Changepoints] a vector of length metadata$seasonMaxKnotNum;
the jumps in the fitted seasonal curves at the detected changepoints cp.

• Y: a vector of length N; the estimated seasonal component. It is the Bayesian
model averaging of all the individual sampled seasonal curves.

• SD: [Standard Deviation] a vector of length N; the estimated standard devi-
ation of the estimated seasonal component.

• CI: [Standard Deviation] a matrix of dimension N x 2; the estimated credi-
ble interval of the estimated seasonal component. One vector of the matrix
is for the upper envelope and another for the lower envelope.

46 beast123

• amp: [AMPlitude] a vector of length N; the time-varying amplitude of the
estimated seasonality.

• ampSD: [Standar Deviation of AMPlitude] a vector of length N; , the SD of
the amplitude of the seasonality.

• pos_ncp:
• neg_ncp:
• pos_ncpPr:
• neg_ncpPr:
• pos_cpOccPr:
• neg_cpOccPr:
• pos_cp:
• neg_cp:
• pos_cpPr:
• neg_cpPr:
• pos_cpAbruptChange:
• neg_cpAbruptChange:
• pos_cpCI:
• neg_cpCI: The above variables have the same outputs as those variables

without the prefix ’pos’ and ’neg’, except that we differentiate the change-
points with a POStive jump in the trend from those changepoints with a
NEGative jump. For example, pos_ncp refers to the average number of
trend changepoints that jump up (i.e., positively) in the trend.

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

See Also

beast, beast.irreg, minesweeper, tetris, geeLandsat

Examples

#--------------------------------NOTE---#

beast123 47

beast123() is an all-inclusive function that duplicates the functionalities of beast
and beast.irreg. It can handle a single, multiple, or 3D of stacked time series, being
either regular or irregular. It allows for customization through four LIST arguments:
metadata -- additional info about the input Y
prior -- prior parameters for the beast model
mcmc -- MCMC simulation setting
extra -- misc parameters turning on/off outputs and setting up parallel computations
#
Despite being essentially the same as beast and beast.irreg, beast123 is provided mainly
to support concurrent handling of multiple time series (e.g., stacked satellite images)
via parallel computing: When processing stacked raster layers, DO NOT iterate pixel by pixel
using beast() or beast.irreg() via an external parallel caller (e.g., doParallel or foreach).
Instread, please use beast123(), which supports mulithreading internally.

#------------------------------Example 1: one time series with seasonalty-------------#
Yellowstone is a half-monthly time series of 774 NDVI measurmments at a Yellowstone
site starting from July 1-15,1981(i.e., start=c(1981,7,7). It has 24 data points per
year (freq=24).

library(Rbeast)
data(Yellowstone)
plot(Yellowstone)

Below, the four option args are missing, so defalut values will be used, with some
warning messages given to altert this. By default, the input Y is assumed to be regular
with a seasonal component. The default arg values used will be printed out and they can
serve as a template to customize the parameters.

o = beast123(Yellowstone)
plot(o)

#------------------------------Example 2: a trend-only time series-------------------#
Nile is an annual river flow time series (i.e., no periodic variation). So, season
is set to 'none' to indicate trend-only analysis. Default values are used for other
missing options. Unlike the beast() function, beast123 does NOT use the time attributes
of a 'ts' object. For example, Nile is treated as a pure data number; its (start=1871,
end=1970, freq=1) attributes are ignored. The default times 1:length(Nile) are used
instead. The true time info need to be specified by the 'metadata' parameter, as shown
in the next example.

o = beast123(Nile,season='none')
plot(o)

#------------------------------Example 3: call via the full API interface-----------#
Specify metadata, prior, mcmc, and extra explicitly. Only 'prior' is the true statistical
model parameters of BEAST; the other three are just options to configure the input/ouput
or the computation process.

Not run:

48 beast123

metadata is NOT part of BEAST itself, but some extra info to describe the input
time series Y. Below, the input Y is the 'Yellowstone' ts.

metadata = list()
#metadata$isRegularOrdered = TRUE # This arg not used any longer in this version
metadata$whichDimIsTime = 1 # Which dim of the input refer to time for

2D/3D inputs? Ignored for a single time
series input.

metadata$startTime = c(1981,7,7) # Or startTime=1981.5137
startTime=as.Date('1981-7-7')

metadata$deltaTime = 1/24 # Half-monthly regular ts: 0.5/12=1/24
metadata$period = 1.0 # The period is 1 year:

freq x deltaTime = period
24 x 1/24 = 1.0

metadata$omissionValue = NaN # By default, NaNs are ignored
metadata$maxMissingRateAllowed = 0.7500 # If missingness is higher than .75, the ts

is skipped and not fitted
metadata$deseasonalize = FALSE # Do not remove the global seasonal pattern

before fitting the beast model
metadata$detrend = FALSE # Do not remove the global trend before

the fitting

prior is the ONLY true parameters of the beast model,used to specify the priors
in the Bayesian formulation
prior = list()
prior$seasonMinOrder = 1 #min harmonic order allowed to fit seasonal cmpnt
prior$seasonMaxOrder = 5 #max harmonic order allowed to fit seasonal cmpnt
prior$seasonMinKnotNum = 0 #min number of changepnts in seasonal cmpnt
prior$seasonMaxKnotNum = 3 #max number of changepnts in seasonal cmpnt
prior$seasonMinSepDist = 10 #min inter-chngpts separation for seasonal cmpnt
prior$trendMinOrder = 0 #min polynomial order allowed to fit trend cmpnt
prior$trendMaxOrder = 1 #max polynomial order allowed to fit trend cmpnt
prior$trendMinKnotNum = 0 #min number of changepnts in trend cmpnt
prior$trendMaxKnotNum = 15 #max number of changepnts in trend cmpnt
prior$trendMinSepDist = 5 #min inter-chngpts separation for trend cmpnt
prior$precValue = 10.0 #Initial value of the precision parameter (no

need to change it unless for precPrioType='const')
prior$precPriorType = 'uniform' # Possible values: const, uniform, and componentwise

mcmc is NOT part of the beast model itself, but some parameters to configure the
MCMC inference.
mcmc = list()
mcmc$seed = 9543434# an arbitray seed for random number generator
mcmc$samples = 3000 # samples collected per chain
mcmc$thinningFactor = 3 # take every 3rd sample and discard others
mcmc$burnin = 150 # discard the initial 150 samples per chain
mcmc$chainNumber = 3 # number of chains
mcmc$maxMoveStepSize = 4 # max random jump step when proposing new chngpts
mcmc$trendResamplingOrderProb = 0.100 # prob of choosing to resample polynomial order
mcmc$seasonResamplingOrderProb = 0.100 # prob of choosing to resample harmonic order
mcmc$credIntervalAlphaLevel = 0.950 # the significance level for credible interval

beast123 49

extra is NOT part of the beast model itself, but some parameters to configure the
output and computation process
extra = list()
extra$dumpInputData = FALSE #If true, a copy of input time series is outputted
extra$whichOutputDimIsTime = 1 #For 2D or 3D inputs, which dim of the output refers to

time? Ignored if the input is a single time series
extra$computeCredible = FALSE #If true, compute CI: computing CI is time-intensive.
extra$fastCIComputation = TRUE #If true, a faster way is used to get CI, but it is

still time-intensive. That is why the function beast()
is slow because it always compute CI.

extra$computeSeasonOrder = FALSE #If true, dump the estimated harmonic order over time
extra$computeTrendOrder = FALSE #If true, dump the estimated polynomial order over time
extra$computeSeasonChngpt = TRUE #If true, get the most likely locations of s chgnpts
extra$computeTrendChngpt = TRUE #If true, get the most likely locations of t chgnpts
extra$computeSeasonAmp = FALSE #If true, get time-varying amplitude of seasonality
extra$computeTrendSlope = FALSE #If true, get time-varying slope of trend
extra$tallyPosNegSeasonJump= FALSE #If true, get those changpts with +/- jumps in season
extra$tallyPosNegTrendJump = FALSE #If true, get those changpts with +/- jumps in trend
extra$tallyIncDecTrendJump = FALSE #If true, get those changpts with increasing/

decreasing trend slopes
extra$printProgressBar = TRUE
extra$printOptions = TRUE
extra$quiet = FALSE # print warning messages, if any
extra$consoleWidth = 0 # If 0, the console width is from the current console
extra$numThreadsPerCPU = 2 # 'numThreadsPerCPU' and 'numParThreads' are used to
extra$numParThreads = 0 # configure multithreading runs; they're used only if

Y has multiple time series (e.g.,stacked images)

o = beast123(Yellowstone,metadata,prior,mcmc,extra, season='harmonic')
plot(o)

End(Not run)

#------------------------------Example 4: Handle irregular time series-----------------#
Handle irregular time series: ohio is a data frame of a Landsat NDVI series observed
at unevely-spaced times

Not run:

data(ohio)
str(ohio)

metadata = list()
metadata$time = ohio$time # Must supply individual times for irregular inputs
metadata$deltaTime = 1/12 # Must supply the desired time interval for aggregation
metadata$period = 1.0

o=beast123(ohio$ndvi, metadata) # Default values used for those missing parameters

###
class(ohio$rdate) # Another accepted time format for beast123

50 beast123

metadata = list()
metadata$deltaTime = 1/12 # Must supply the desired time interval for aggregation
metadata$time = ohio$rdate # Must supply individual times for irregular inputs

o=beast123(ohio$ndvi, metadata) # Default values used for those missing parameters

###
ohio$Y # Another accepted time format for beast123
ohio$M
ohio$M

metadata = list()
metadata$deltaTime = 1/12 # Must supply the desired time interval for aggregation
metadata$time$year = ohio$Y
metadata$time$month = ohio$M
metadata$time$day = ohio$D
o=beast123(ohio$ndvi, metadata) # Default values used for those missing parameters

###
ohio$Y # Another accepted time format for beast123
ohio$doy

metadata = list()
metadata$deltaTime = 1/12 # Must supply the desired time interval for aggregation
metadata$time$year = ohio$Y
metadata$time$doy = ohio$doy
o=beast123(ohio$ndvi, metadata) # Default values used for those missing parameters

###
ohio$time # Another accepted time format for beast123

metadata = list()
metadata$deltaTime = 1/12 # Must supply the desired time interval for aggregation
metadata$time = ohio$time # Fractional year

o=beast123(ohio$ndvi, metadata) # Default values used for those missing parameters

###
ohio$datestr1 # Another accepted time format for beast123

metadata = list()
metadata$deltaTime = 1/12 # Must supply the time interval for aggregation
metadata$time$datestr = ohio$datestr1
metadata$time$strfmt = '????yyyy?mm?dd'

o=beast123(ohio$ndvi, metadata) # Default values used for those missing parameters

###
ohio$datestr2 # Another accepted time format for beast123
metadata = list()
metadata$deltaTime = 1/12 # Must supply a desired time interval for aggregation

beast123 51

metadata$time$datestr = ohio$datestr2
metadata$time$strfmt = '????yyyydoy????'

o=beast123(ohio$ndvi, metadata) # Default values used for those missing parameters

###
ohio$datestr3 # Another accepted time format for beast123
metadata = list()
metadata$deltaTime = 1/12 # Must supply the desired time interval for aggregation
metadata$time$datestr = ohio$datestr3
metadata$time$strfmt = 'Y,,M/D'

o=beast123(ohio$ndvi, metadata) # Default values used for those missing parameters

End(Not run)

#------------------Example 4: Handle multiple time series (i.e., matrix input)-----------#
Handle multiple time series: 'simdata' is a 2D matrix of dim 300x3; it consits of 3
time series of length 300 each. For this toy example, I decide to be lazy and use the same
time series for the three columns.
Not run:
data(simdata) # dim of simdata: 300 x 3 (time x num_of_time_series)
dim(simdata) # the first dimenion refer to time (i.e, 300)

metadata = list()
metadata$whichDimIsTime = 1 # Which dim of the input refer to time for 2D inputs?

300 is the ts length, so dim is set to '1' here.
metadata$period = 24 # By default, we assume startTime=1 and deltaTime=1

extra=list()
extra$whichOutputDimIsTime = 2 # Which dim of the output arrays refers to time?
o=beast123(simdata, metadata,extra=extra) # Default values used for those missing parameters

The lists of arg parameters can also be directly provided inline within the command
o=beast123(simdata, metadata=list(whichDimIsTime=1,period=24), extra=list(whichOutput=2))

The field names of the lists can be shortened as long as no ambiguitity is caused.
o=beast123(simdata, metadata=list(whichDim=1,per=24), extra=list(whichOut=2))

#------------------Example 4: Another run by transposing simdata--------------------------#

simdata1=t(simdata) # dim of simdata1: 3 x 300 (num of ts x time)

metadata = list()
metadata$whichDimIsTime = 2 # Which dim of the input refer to time for 2D inputs?

300 is the ts length, so dim is set to '2' here.
metadata$period = 24 # By default, we assume startTime=1 and deltaTime=1
o=beast123(simdata1, metadata) # Default values used for those missing parameters

o=beast123(simdata1, metadata=list(whichDim=2, per=24))

52 CNAchrom11

End(Not run)

#------------------Example 5: Handle stacked time series images (e.g., 3d input)--------#
Handle 3D stacked images of irregular and unordered time-series: imagestack is a 3D
array of size 12x9x1066, each pixel being a time series of length 1066
Not run:
data(imagestack)
dim(imagestack$ndvi) # Dim: 12 x 9 X 1066 (row x col x time)
imagestack$datestr # A character vector of 1066 date strings

metadata = list()
metadata$whichDimIsTime = 3 # Which dim of the input refer to time for 3D inputs?

1066 is the ts length, so dim is set to '3' here.
In this example, this arg is not needed because
the time$datestr can also help to match and pick up
the right time dimesion of imagestack$ndvi.

metadata$time$datestr = imagestack$datestr
metadata$time$strfmt = 'LT05_018032_20080311.yyyy-mm-dd'
metadata$deltaTime = 1/12 # Aggregate the irregular ts at a monthly interval:1/12 Yr
metadata$period = 1.0 # The period is 1 year: deltaTime*freq=1/12*12=1.0

extra = list()
extra$dumpInputData = TRUE # Get a copy of aggregated input ts
extra$numThreadsPerCPU = 2 # Each cpu core will be assigned 2 threads
extra$numParThreads = 0 # If 0, total_num_threads=numThreadsPerCPU*num_of_cpu_core

if >0, used to specify the total number of threads

Default values for missing parameters
o=beast123(imagestack$ndvi, metadata=metadata,extra=extra)

print(o,c(5,3)) # print the result for the pixel at Row 5 and Col 3
plot(o,c(5,3)) # plot the result for the pixel at Row 5 and Col 3
image(o$trend$ncp) # number of trend changepoints over space

End(Not run)

#---------Example 6: Handle stacked GeoTiff image files imported with the raster package------#
Handle 3D stacked images of irregular time-series : 'ndvi.zip' is a zip file of
437 NDIV tiff image files, each having a dim of 12 x 9.
Code availlable at https://github.com/zhaokg/Rbeast/blob/master/R/beast123_raster_example.txt

CNAchrom11 DNA copy number alteration data in array-based CGH data for
Chromesome 11

Description

CNAchrom11 is a vector of the log2 intensity ratios for cell line GM03576 for Chromosome 11,
obtained from Snijders et al. (2001).

covid19 53

Usage

data(CNAchrom11)

Source

Snijders et al. (2001), Assembly of microarrays for genome-wide measurement of DNA copy
number, Nature Genetics, 29, 263-264 (http://www.nature.com/ng/journal/v29/n3/full/ng754.html).

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

Examples

library(Rbeast)
data(CNAchrom11)

o = beast(CNAchrom11, season='none') # no periodic component
plot(o)

covid19 Daily confirmed COVID19 cases and deaths in the world

Description

covid19 is a data frame consisting of daily confirmed COVID19 cases and deaths in the world from
Jan 22, 2020 to Dec 16, 2021.

Usage

data(covid19)

54 covid19

Source

https://ourworldindata.org/grapher/daily-covid-cases-deaths?country=~OWID_WRL (last accessed
on Dec 16, 2021)

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

Examples

library(Rbeast)
data(covid19)
plot(covid19$date, covid19$newcases, type='l')

Not run:

Apply a square root-transformation
newcases = sqrt(covid19$newcases)

This time series varies periodically every 7 days. 7 days can't be precisely
represented in the unit of year bcz some years has 365 days and others has 366.
BEAST can hanlde this in two ways.

#(1) Use the date number as the time unit--the num of days lapsed since 1970-01-01.

datenum = as.numeric(covid19$date)
o = beast(newcases, start=min(datenum), deltat=1, period=7)
o$time = as.Date(o$time, origin='1970-01-01') # Convert from integers to Date.
plot(o)

#(2) Use strings to explicitly specify deltat and period with a unit.

startdate = covid19$date[1]
o = beast(newcases, start=startdate, deltat='1day', period='7days')
plot(o)

geeLandsat 55

End(Not run)

geeLandsat Landsat reflectance and NDVI time series from Google Earth Engine

Description

Get Landsat reflectance and NDVI time series from Google Earth Engine given longitude and lati-
tude

Usage

geeLandsat(lon=NA, lat=NA, radius=100, stat='mean',timeout=700)

Arguments

lon numeric within [-180,180]

lat numeric within [-90, 90]

radius a positive number (<=500 meters); the radius of a buffer around the given
latitude and longitude for aggregation. If radius=0, the single pixel at the lat
and lon will be retrieved

stat character; if radius>0, used to specify the spatial aggregation method for pixels
in the buffer. Possible values are ’mean’,’min’,’max’, or ’median’.

timeout integer; the seconds elapsed to wait for connection timeout. See the note for an
explanation.

Value

a data.frame object consisting of dates, sensor type, reflectances, and NDVI for the requested lo-
cation. It contains only valid and clear-sky values as obtained by referring to the standard clouds
flags.

Note

As a poor man’s scheme to interact with Google Earth Engine, geeLandsat should be used only for
occasional retrieval of Landsat time series at a few sites, NOT for batch downloading for thousands
of sites in a R loop. This procedure is provided to get example time series for testing BEAST.
Behind the scene, this function calls to a free Python-based server using my own GEE credential.
Normally it takes several seconds to retrieve one time series, but as a free cloud service, the Python
server only offers 100 seconds of free CPU time per day, with throttling applied. So it may take up
to a few mins to get a time series on your end. It may fail due to connection timeout; if so, give it a
few tries. If you need to retrieve data for thousands or millions of sites, please contact the author.

56 googletrend_beach

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

See Also

beast, beast.irreg, beast123, minesweeper, tetris

Examples

library(Rbeast)
Not run:
df = geeLandsat(lon=-80.983877,lat= 40.476882) #if it fails, try a few more times before giving up
print(df)

End(Not run)

googletrend_beach A monthly Google Trend time series of the US search interest in the
word "beach"

Description

googletrend_beach is a ts object comprising monthly search interest in "beach" from the United
States, as reported from Google Trends. Sudden changes in the search trend are attributed to extreme
weather events or the covid19 outbreak

Usage

data(googletrend_beach)

Source

https://trends.google.com/trends/explore?date=all&geo=US&q=beach

imagestack 57

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

Examples

library(Rbeast)
data(googletrend_beach) # A monthly ts starting from Jan 2004

o = beast(googletrend_beach)
plot(o)

imagestack Decades of Landsat NDVI time series over a small area in Ohio

Description

imagestack is a LIST containing Landsat-derived NDVI image chips at an Ohio site

Usage

data(imagestack)

Source

Landsat images courtesy of the U.S. Geological Survey

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

58 minesweeper

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

Examples

data(imagestack)
imagestack$datestr # A string vector containg the observation dates of individual ndvi images
Not run:
imagestack$ndvi # NDVI images collected over the past several deccades

End(Not run)
plot(imagestack$ndvi[3,4,],type='l') # Plot the raw data at a pixel

minesweeper The Minesweeper game in R

Description

A poor man’s implementation of the minesweeper game in R. Yes, you are right: it has nothing to
do with time series decomposition, changepoint detection, and time series segmentation. Its only
remote connection to Rbeast is that this is a practice script I wrote to learn R graphics for imple-
menting Rbeast.

minesweeper 59

Usage

minesweeper(height=15, width=12, prob=0.1)

Arguments

height integer; number of rows of the mine grid along the vertical direction.

width integer; number of columns of the mine grid along the horizontal direction.

prob numeric; a fraction between 0 and 1 to specify the probability of mine occur-
rence in the mine grid.

Value

Instructions:

• LEFT-click to clear a spot.

• RIGHT-click to flag a spot.

• MIDDLE-click(wheel) a cleared and numbered spot to open neighbor spots, if flagged cor-
rectly.

• Click Restart for a new game

Note

An interactive graphics window is needed to run this function correctly. So it won’t run in RStudio’s
plot pane. The function will use the x11() or x11(type=’Xlib’) graphic device to open a pop-up
window.

60 ohio

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

See Also

beast, beast.irreg, beast123, tetris, geeLandsat

Examples

library(Rbeast)

Not run:
minesweeper()

A mine field of size 20x25 with rougly a 15
minesweeper(20,25,0.15)

End(Not run)

ohio An irregular Landsat NDVI time series at an Ohio site

Description

ohio is a data.frame object comprising decades of Landsat-observed surface reflectances and NDVI
at an Ohio site

Usage

data(ohio)

plot.beast 61

Source

Landsat images courtesy of the U.S. Geological Survey

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

Examples

library(Rbeast)
data(ohio) # Landsat surface references and NDVI at a single pixel observed over time
str(ohio)

Not run:
ohio$ndvi is a single irregular time series
y = ohio$ndvi
o = beast.irreg(y, time=ohio$time,deltat=1/12)
plot(o)
print(o)

ohio also contains irregular time series of individual spectral bands
Below, run the multivariate version of the BEAST algorithm to decompose
the 5 time series and detect common changepoints altogether

y = list(ohio$blue, ohio$green, ohio$red, ohio$nir, ohio$swir1);
o = beast.irreg(y, time=ohio$time,deltat=1/12, freq=12)
plot(o)
print(o)

End(Not run)

plot.beast Bayesian changepoint detection and time series decomposition

Description

Plot the result obtained from the beast function.

62 plot.beast

Usage

S3 method for class 'beast'
plot(

x,
index = 1,

vars = c('y','s','scp','sorder','t','tcp','torder','slpsgn','o','ocp','error'),
col = NULL,
main = "BEAST decomposition and changepoint detection",
xlab = 'Time',
ylab = NULL,
cex.main = 1,
cex.lab = 1,
relative.heights = NULL,
interactive = FALSE,
ncpStat = c('median','mode','mean','pct90','max'),
...

)

Arguments

x a "beast" object returned by beast,beast.irreg, or beast123. It may contain
one or many time series.

index an integer (default to 1) or a vector of two integers to specify the index of the
time series to plot if x contains results for multiple time series. index is always 1
if x has 1 time series. If x is returned by beast123 with a 2D input,index should
be a single integer. If x is from beast123 applied to 3D arrays of time series
(e.g., stacked satellite images), index can be a linear index or two subscripts to
specify the row and column of the pixel/grid.

vars a vector of strings indicating the elements or variables of x to plot. Possible
vars strings include ’y’ (season plus trend), ’s’ (season component), ’t’ (trend
component), ’o’ (outliers), ’scp’, ’tcp’, ’ocp’ (occurrence probability of sea-
sonal/trend/outlier changepoint), ’sorder’ (seasonal harmonic order), ’torder’
(trend polynomial order), ’samp’ (amplitude of seasonality), ’tslp’ (slope of
trend), ’slpsgn’ (probabilities of the slope being positive, zero, and negative)
and ’error’ (remainder).

relative.heights

a numeric vector of the same length as that of vars to specify the relative heights
of subplots of individual variables in vars.

col a string vector of the same length as that of vars to specify the colors of indi-
vidual subplots associated with vars.

main a string; the main title.

xlab a string: the x axis title.

ylab a string vector of the same length as that of vars to specify the y axis names of
individual subplots associated with vars

cex.main cex for the main title

plot.beast 63

cex.lab cex for the axis title
interactive a bool scalar. If TRUE, an interactive GUI is used for examining individual

elements of x.
ncpStat character. A string to specify which statistic is used for the Number of Change-

Point (ncp). Five values are possible: ’mean’, ’mode’, ’median’,’pct90’, and
’max’; the default is ’median’. Individual models sampled by BEAST has a
varying dimension (e.g., number of changepoints or knots). For example, if
mcmc$samples=10, the numbers of changepoints for the 10 sampled models are
assumed to be c(0, 2, 4, 1, 1, 2, 7, 6, 6, 1). The mean ncp will be 3.1 (rounded to
3), the median is 2.5 (2), the mode is 1, and the maximum is 7. The ’max’ op-
tion plots all the changepoints recorded in out$trend$cp, out$season$cp, or
out$outlier$cp; many of these changepoints are bound to be false positives,
so do not treat all of them as actual changepoints.

... additional parameters to be implemented.

Value

This function creates various plots to demonstrate the results of a beast decomposition. .

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

See Also

beast, beast.irreg, beast123, plot.beast,minesweeper, tetris, geeLandsat

Examples

library(Rbeast)
data(simdata)

Not run:
result=beast123(simdata, metadata=list(whichDimIsTime=1))
plot(result,1)
plot(result,2)

End(Not run)

64 print.beast

print.beast Bayesian changepoint detection and time series decomposition

Description

Summarize and print the results obtained from the BEAST time series decomposition and segmen-
tation.

Usage

S3 method for class 'beast'
print(

x,
index = 1,
...

)

Arguments

x a "beast" object returned by beast, beast.irreg, or beast123. It may contain
one or many time series.

index an integer (default to 1) or a vector of two integers to specify the index of the
time series to print if x contains results for multiple time series. If x has 1 time
series, index should be always 1. If x is returned by beast123 applied to a
2D input,index should be a single index. If x is from beast123 applied to 3D
arrays of time series (e.g., stacked satellite images), index can be a linear index
or two subscripts to specify the row and column of the desired pixel/grid.

... additional parameters to be implemented.

Value

Print a summary of changepoints detected for the seasonal or trend component.

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

simdata 65

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

See Also

beast, beast.irreg, beast123, minesweeper, tetris, geeLandsat

Examples

library(Rbeast)
data(simdata)

Not run:
#out=beast123(simdata) #Error: whichDimIsTime has to be specified to

tell which dim of simdata refers to time.
See below.

out=beast123(simdata, metadata=list(whichDimIsTime=1))
print(out, 1)
print(out, 2)

End(Not run)

simdata Simulated time series to test BEAST

Description

simdata is a 300 x 3 matrix, consisting three time series of length 300. Currently, the three time
series are the same. It is used to illustrate BEAST can handle multiple time series at a single function
call. of BEAST.

Usage

data(simdata)

Source

Rbeast v0.9.2

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

66 tetris

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

Examples

library(Rbeast)
data(simdata)
plot(simdata[,1],type='l')

Not run:
#out=beast123(simdata) # Error: whichDimIsTime has to be specified. See below
out=beast123(simdata, metadata=list(whichDimIsTime=1))

plot(out,1)
plot(out,2)
plot(out,3)

End(Not run)

tetris The Tetris game in R

Description

A poor man’s implementation of the Tetris game in R. Yes, you are right again: it has nothing to
do with time series decomposition, changepoint detection, and time series segmentation. Its only
remote connection to Rbeast is that this is a practice script I wrote to learn R graphics for imple-
menting Rbeast.

tetris 67

Usage

tetris(height=25, width=14, speed=0.6)

Arguments

height integer; number of rows of the mine grid along the vertical direction.

width integer; number of columns of the mine grid along the horizontal direction.

speed numeric; a time interval between 0.05 and 2 seconds, specifying how fast the
tetriminos moves down. The smaller, the faster.

Value

Instructions:

• Left arrow to move left.

• Right arrow to move right.

• Up arrow to rotate.

• Down arrow to speed up.

• Space key to sink to the bottom.

68 tsextract

Note

This function works only under the Windows OS not Linux or Mac. An interactive graphics window
is needed to run this function correctly. So it won’t run in RStudio’s plot pane. The function will
use the x11() or x11(type=’Xlib’) graphic device to open a pop-up window.

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

See Also

beast, beast.irreg, beast123, minesweeper, geeLandsat

Examples

library(Rbeast)

Not run:
tetris()

A field of size 20x25 with blocks moving down every 0.1 sec.
tetris(20,25,0.1)

End(Not run)

tsextract Bayesian changepoint detection and time series decomposition

Description

Extract the result of a single time series from an object of class beast

tsextract 69

Usage

tsextract(x, index = 1)

Arguments

x a "beast" object returned by beast, beast.irreg, or beast123. It may contain
one or many time series.

index an integer (default to 1) or a vector of two integers to specify the index of the
time series to extract if x contains results for multiple time series. If x has 1
time series, index should be always 1. If x is returned by beast123 applied to
a 2D input,index should be a single index. If x is from beast123 applied to 3D
arrays of time series (e.g., stacked satellite images), index can be a linear index
or two subscripts to specify the row and column of the desired pixel/grid.

Value

A LIST object of the result for the chosen time series, which contains the same field as x.

Note

Use this function only to manually and interactively examine individual times series. If the purpose
is to loop through x, the use of direct indexing is much faster. For example, if x is a beast object for
a 300x200x1000 3D array (row x col x time), use x$trend$Y[20,40,] to get the fitted trend at the
pixel of row 20 and col 40.

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

See Also

beast, beast.irreg, beast123, minesweeper, tetris, geeLandsat

70 Yellowstone

Examples

library(Rbeast)
data(simdata)

handle only the 1st ts
out=beast(simdata[,1])

Not run:
handle all the ts
out=beast123(simdata, metadata=list(whichDimIsTime=1))

plot(out,1)
plot(out,2)

End(Not run)

Yellowstone 30 years’ AVHRR NDVI data at a Yellostone site

Description

Yellowstone is a vector comprising 30 years’ AVHRR NDVI data at a Yellostone site

Usage

data(Yellowstone)

Source

Rbeast v0.9.2

References

1. Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick,
B., Zhang, X. and Brown, M., 2019. Detecting change-point, trend, and seasonality in satel-
lite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble
algorithm. Remote Sensing of Environment, 232, p.111181 (the beast algorithm paper).

2. Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote
sensing of plant biochemistry using Bayesian model averaging with variable and band selec-
tion. Remote Sensing of Environment, 132, pp.102-119 (the Bayesian MCMC scheme used
in beast).

3. Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021.
Mapping fine-scale human disturbances in a working landscape with Landsat time series on
Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-
261(a beast application paper).

Yellowstone 71

Examples

library(Rbeast)
data(Yellowstone)
plot(Yellowstone,type='l')

result=beast(Yellowstone)
plot(result)

Index

∗ misc
beast, 2
beast.irreg, 20
beast123, 33
CNAchrom11, 52
covid19, 53
geeLandsat, 55
googletrend_beach, 56
imagestack, 57
minesweeper, 58
ohio, 60
plot.beast, 61
print.beast, 64
simdata, 65
tetris, 66
tsextract, 68
Yellowstone, 70

BEAST (beast), 2
Beast (beast), 2
beast, 2, 13, 21, 31, 46, 56, 60, 62–65, 68, 69
beast.123 (beast123), 33
BEAST.irreg (beast.irreg), 20
beast.irreg, 4, 8, 13, 20, 46, 56, 60, 62–65,

68, 69
BEAST123 (beast123), 33
beast123, 4, 8, 13, 21, 31, 33, 56, 60, 62–65,

68, 69

CNAchrom11, 52
Covid19 (covid19), 53
covid19, 53

geeLandsat, 13, 31, 46, 55, 60, 63, 65, 68, 69
googletrend_beach, 56

imagestack, 57

minesweeper, 13, 31, 46, 56, 58, 63, 65, 68, 69

Ohio (ohio), 60

ohio, 4, 21, 60

plot.beast, 40, 61, 63
print.beast, 64

RBEAST (beast), 2
Rbeast (beast), 2
rbeast (beast), 2

simdata, 65

Tetris (tetris), 66
tetris, 13, 31, 46, 56, 60, 63, 65, 66, 69
tsextract, 68

Yellowstone, 70

72

	beast
	beast.irreg
	beast123
	CNAchrom11
	covid19
	geeLandsat
	googletrend_beach
	imagestack
	minesweeper
	ohio
	plot.beast
	print.beast
	simdata
	tetris
	tsextract
	Yellowstone
	Index

