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SVEMnet-package SVEMnet: Self-Validated Ensemble Models with Elastic Net Regres-
sion

Description

The SVEMnet package implements Self-Validated Ensemble Models (SVEM) using Elastic Net (in-
cluding lasso and ridge) regression via glmnet. SVEM averages predictions from multiple models
fitted to fractionally weighted bootstraps of the data, tuned with anti-correlated validation weights.

Functions

SVEMnet Fit an SVEMnet model using Elastic Net regression.
svem_significance_test Perform a whole-model significance test for SVEM models.
svem_significance_test_parallel Perform a whole-model significance test for SVEM mod-
els. Parallelized version.
predict.svem_model Predict method for SVEM models.
plot.svem_model Plot method for SVEM models.
coef.svem_model Plot method for SVEM models.
glmnet_with_cv Wrapper for cv.glmnet
Acknowledgments
Development of this package was assisted by GPT ol-preview, which helped in constructing the
structure of some of the code and the roxygen documentation. The code for the significance test is
taken from the supplementary material of Karl (2024) (it was handwritten by that author).
Author(s)

Maintainer: Andrew T. Karl <akarl@asu.edu> (ORCID)
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coef.svem_model Plot Coefficient Nonzero Percentages from a SVEMnet Model

Description

This function calculates the percentage of bootstrap iterations in which each coefficient is nonzero.

Usage

## S3 method for class 'svem_model'
coef(object, ...)
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4 glmnet_with_cv

Arguments
object An object of class svem_model returned by the SVEMnet function.
other arguments to pass.
Value

Invisibly returns a data frame containing the percentage of bootstraps where each coefficient is
nonzero.

Acknowledgments

Development of this package was assisted by GPT ol-preview, which helped in constructing the
structure of some of the code and the roxygen documentation. The code for the significance test is
taken from the supplementary material of Karl (2024) (it was handwritten by that author).

glmnet_with_cv Fit a glmnet Model with Cross-Validation

Description

A wrapper function for cv.glmnet that takes input arguments in a manner similar to SVEMnet. This
function searches over multiple alpha values by running cv.glmnet() for each provided alpha,
and then selects the combination of alpha and lambda with the best cross-validation performance.

Usage

glmnet_with_cv(
formula,
data,
glmnet_alpha = c(0, 0.5, 1),
standardize = TRUE,

nfolds = 10,
)
Arguments
formula A formula specifying the model to be fitted.
data A data frame containing the variables in the model.

glmnet_alpha Elastic Net mixing parameter(s) (default is c(1)). If multiple values are pro-
vided, cv.glmnet is run for each alpha, and the model with the lowest cross-
validation error is selected.

standardize Logical flag passed to glmnet. If TRUE (default), each variable is standardized
before model fitting.

nfolds Number of cross-validation folds (default is 10).

Additional arguments passed to cv.glmnet.
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Details

This function uses cv.glmnet to fit a generalized linear model with elastic net regularization, per-
forming k-fold cross-validation to select the regularization parameter lambda. If multiple alpha
values are provided, it selects the best-performing alpha-lambda pair based on the minimal cross-
validation error.

After fitting, the function calculates a debiasing linear model (if possible). This is done by regress-
ing the actual responses on the fitted values obtained from the selected model. The resulting linear
model is stored in debias_fit.

Value

A list containing:

parms: Coefficients from the selected cv.glmnet model at lambda.min.

debias_fit: A linear model of the form y ~ y_pred used for debiasing (if applicable).
glmnet_alpha: The vector of alpha values considered.

best_alpha: The selected alpha value that gave the best cross-validation result.
best_lambda: The lambda value chosen by cross-validation at the selected alpha.
actual_y: The response vector used in the model.

training_X: The predictor matrix used in the model.

y_pred: The fitted values from the final model (no debiasing).

y_pred_debiased: Debiased fitted values if debias_fit is available.

formula: The formula used for model fitting.

terms: The terms object extracted from the model frame.

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear Mod-
els via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

See Also

glmnet, cv.glmnet, SVEMnet

Examples

set.seed(0)

n <-

50

X1 <= runif(n)

X2 <- runif(n)

y <= 1 + 2%X1 + 3%xX2 + rnorm(n)
data <- data.frame(y, X1, X2)

model_cv <- glmnet_with_cv(y ~ X1 + X2, data = data, glmnet_alpha = c(1))
predictions <- predict_cv(model_cv, data)


https://doi.org/10.18637/jss.v033.i01
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plot.svem_model Plot Method for SVEM Models

Description

Plots actual versus predicted values for an svem_model using ggplot2.

Usage
## S3 method for class 'svem_model'
plot(x, plot_debiased = FALSE, ...)
Arguments
X An object of class svem_model.

plot_debiased Logical; if TRUE, includes debiased predictions if available (default is FALSE).

Additional arguments passed to ggplot2 functions.

Details

This function creates an actual vs. predicted plot for the SVEM model. If plot_debiased is TRUE
and debiased predictions are available, it includes them in the plot.

**Plot Features: **
» **Actual vs. Predicted Points:** Plots the actual response values against the predicted values
from the SVEM model.

» **Debiased Predictions:** If available and plot_debiased is TRUE, debiased predictions are
included.

o **[deal Fit Line:** A dashed line representing perfect prediction (slope = 1, intercept = 0) is
included for reference.

Value

A ggplot object showing actual versus predicted values.

Acknowledgments

Development of this package was assisted by GPT ol-preview, which helped in constructing the
structure of some of the code and the roxygen documentation. The code for the significance test is
taken from the supplementary material of Karl (2024) (it was handwritten by that author).
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plot.svem_significance_test
Plot SVEM Significance Test Results for Multiple Responses

Description

Plots the Mahalanobis distances for the original and permuted data from multiple SVEM signifi-
cance test results.

Usage
## S3 method for class 'svem_significance_test'
plot(..., labels = NULL)

Arguments

One or more objects of class svem_significance_test, which are the outputs
from svem_significance_test.

labels Optional character vector of labels for the responses. If not provided, the func-
tion uses the response variable names.
Details

This function creates a combined plot of the Mahalanobis distances (d_Y and d_pi_Y) for the origi-
nal and permuted data from multiple SVEM significance test results. It groups the data by response
and source type, displaying original and permutation distances side by side for each response.

**Usage Notes: **

* Use this function to compare the significance test results across multiple responses.

* The plot shows original and permutation distances next to each other for each response.

Value

A ggplot object showing the distributions of Mahalanobis distances for all responses.

Acknowledgments

Development of this package was assisted by GPT ol-preview, which helped in constructing the
structure of some of the code and the roxygen documentation. The code for the significance test is
taken from the supplementary material of Karl (2024) (it was handwritten by that author).
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predict.svem_model Predict Method for SVEM Models

Description

Generates predictions from a fitted svem_model.

Usage

## S3 method for class 'svem_model'’
predict(

object,

newdata,

debias = FALSE,

se.fit = FALSE,

agg = c("parms”, "mean"),
)
Arguments
object An object of class svem_model.
newdata A data frame of new predictor values.
debias Logical; default is FALSE.
se.fit Logical; if TRUE, returns standard errors (default is FALSE).
agg Aggregation method for ensemble predictions. One of "parms” (default) or
"mean”. "parms” uses the aggregated coefficients stored in object$parms (or
parms_debiased if debias=TRUE). "mean" averages predictions from individ-
ual bootstrap members equally.
Additional arguments (currently unused).
Details

A debiased fit is available (along with the standard fit). This is provided to allow the user to match
the output of JMP. The debiasing coefficients are always calculated by SVEMnet (), and the predict()
function determines whether the raw or debiased predictions are returned via the debias argument
(default FALSE). When se.fit=TRUE and debias=TRUE, the reported SE is the bootstrap spread
scaled by |b| from the calibration y ~ ¥preq.

Value

Predictions or a list containing predictions and standard errors.
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Acknowledgments

Development of this package was assisted by GPT ol-preview, which helped in constructing the
structure of some of the code and the roxygen documentation. The code for the significance test is
taken from the supplementary material of Karl (2024) (it was handwritten by that author).

predict_cv Predict Method for glmnet_with_cv Objects

Description

Generates predictions from a fitted object returned by glmnet_with_cv().

Usage
predict_cv(object, newdata, debias = FALSE, strict = FALSE, ...)
Arguments
object A list returned by glmnet_with_cv().
newdata A data frame of new predictor values.
debias Logical; if TRUE and a debiasing fit is available, apply it (default FALSE).
strict Logical; if TRUE, require exact column-name match with training design (default
FALSE).
Additional arguments (currently unused).
Details

Columns are aligned by name. With strict=TRUE, a mismatch errors.

Value

A numeric vector of predictions.
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print.svem_significance_test
Print Method for SVEM Significance Test

Description

Prints the p-value from an object of class svem_significance_test.

Usage
## S3 method for class 'svem_significance_test'
print(x, ...)
Arguments
X An object of class svem_significance_test.
Additional arguments (not used).
SVEMnet Fit an SVEMnet Model
Description

Wrapper for *glmnet’ (Friedman et al. 2010) to fit an ensemble of Elastic Net models using the Self-
Validated Ensemble Model method (SVEM, Lemkus et al. 2021). Allows searching over multiple
alpha values in the Elastic Net penalty.

Usage

SVEMnet (
formula,
data,
nBoot = 300,
glmnet_alpha = c(1),
weight_scheme = c("SVEM", "FWR", "Identity"),
objective = c("wAIC", "wBIC", "wGIC", "wSSE"),
gamma = 2,
standardize = TRUE,
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Arguments
formula A formula specifying the model to be fitted.
data A data frame containing the variables in the model.
nBoot Number of bootstrap iterations (default is 300).

glmnet_alpha Elastic Net mixing parameter(s) (default is c(1)). Can be a vector of alpha
values, where alpha = 1 is Lasso and alpha = 0 is Ridge.

weight_scheme Weighting scheme for SVEM (default "SVEM"). One of "SVEM", "FWR", or
"Identity".

objective Objective used to pick lambda on each bootstrap path (default "wAIC"). One of
"wAIC", "wBIC", "wGIC", or "wSSE".

gamma Penalty weight used only when objective="wGIC" (numeric, default 2). Set-
ting gamma = 2 reproduces wAIC.

standardize Logical; passed to glmnet (default TRUE).
Additional args to glmnet ().

Details

The Self-Validated Ensemble Model (SVEM, Lemkus et al., 2021) framework provides a boot-
strap approach to improve predictions from base learners, including Elastic Net regression as im-
plemented in glmnet. In each of the nBoot iterations, SVEMnet applies random exponentially dis-
tributed weights to the observations; anti-correlated weights are used for validation when weight_scheme="SVEM".

SVEMnet allows glmnet_alpha to be a vector, enabling a search over multiple Elastic Net mixing
parameters within each bootstrap. The objective controls how the validation criterion balances fit
and complexity:

"wSSE" Weighted Sum of Squared Errors: uses the weighted validation SSE directly.

"wAIC" Weighted AIC (Gaussian): AIC=n * log(SSE_w / n) + 2 * k, where n = sum(w_valid)
(after normalization) and k counts parameters including the intercept. Candidates require k <
n.

"wBIC" Weighted BIC-like criterion: n * log(SSE_w / n) + log(n_eff) * k, with n_eff = (sum(w_valid)*2)
/ sum(w_valid*2) (Kish). For stability, n_eff is clipped to [5, n]. Candidates require k < n
and k <n_eff - 1.

"wGIC" Weighted Generalized Information Criterion: n * 1og(SSE_w / n) + gamma * k. Here gamma
is a fixed nonnegative number. For robustness near the boundary, candidates require k < n and
k<n_eff -1.

Note on BIC: In reweighted validation, information content varies with weight heterogeneity; using
log(n_eff) adapts the penalty to that effective size. With uniform weights (Identity), n_eff =n
and you recover standard BIC.

A debiased fit is output (along with the standard fit). This is provided to allow the user to match
the output of JMP, which returns a debiased fit whenever nBoot >= 10. The debiasing coefficients
are always calculated by SVEMnet (), and the predict() method determines whether the raw or
debiased predictions are returned via its debias argument. The default is debias = FALSE, based
on performance on unpublished simulations.
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The returned object includes averaged coefficients (parms), debiased coefficients (parms_debiased),
the calibration fit (debias_fit), per-bootstrap coefficients, chosen alphas and lambdas, the chosen
objective (and gamma if applicable), and a compact diagnostics list (median/IQR of selected
model size and alpha frequencies).

Value

An object of class svem_model.

Acknowledgments

Development of this package was assisted by GPT ol-preview, which helped in constructing the
structure of some of the code and the roxygen documentation. The code for the significance test is
taken from the supplementary material of Karl (2024) (it was handwritten by that author).
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Examples

# Simulate data

set.seed(0)

n <- 21

X1 <= runif(n)

X2 <= runif(n)

X3 <= runif(n)

y <= 1 + 2%xX1 + 3%xX2 + X1*X2 + X1*2 + rnorm(n)
data <- data.frame(y, X1, X2, X3)

# Fit the SVEMnet model with a formula

model <- SVEMnet(
y ~ (X1 + X2 + X3)*2 + I(X1"2) + I(X2*2) + I(X3*2),
glmnet_alpha = c(1),
data = data

)

coef (model)

plot(model)

predict(model, data)

# Example: BIC-like penalty

# model_bic <- SVEMnet(y ~ X1 + X2 + X3, data = data, objective = "wBIC")

# Example: GIC with custom gamma

# model_gic <- SVEMnet(y ~ X1 + X2 + X3, data = data, objective = "wGIC", gamma = 4)

svem_random_table Generate a Random Prediction Table for a Fitted SVEMnet Model

Description

This utility function generates a random sample of points from the predictor space and computes
the corresponding predicted responses from a fitted SVEMnet model. It can be used to explore the
fitted response surface in a way analogous to JMP’s "Output Random Table" feature. The function
recognizes mixture factor groups and draws Dirichlet-distributed compositions within the specified
bounds so that mixture variables sum to a user-supplied total. Continuous non-mixture variables
are sampled uniformly across their observed ranges using a maximin Latin hypercube design, and
categorical variables are sampled from their observed levels. No random noise is added to the
predicted responses.

Usage

svem_random_table(
formula,
data,
n = 1000,
mixture_groups = NULL,
nBoot = 200,



svem_random_table

=c(),

weight_scheme = c("SVEM"),
objective = c("wAIC", "wSSE"),

A formula specifying the fitted model. This should be the same formula used
when fitting the SVEMnet model.

A data frame containing the variables in the model.

14
glmnet_alpha
debias = FALSE,
)
Arguments
formula
data
n

mixture_groups

nBoot

glmnet_alpha
weight_scheme
objective

debias

Details

Number of random points to generate (default: 1000).

Optional list describing mixture factor groups. Each element should be a list
with components ‘vars‘ (character vector of mixture variable names), ‘lower*
(numeric vector of lower bounds), “‘upper (numeric vector of upper bounds) and
‘total‘ (scalar sum). See ‘svem_significance_test_with_mixture()‘ for details.
Defaults to ‘NULL* (no mixtures).

Number of bootstrap iterations to use when fitting the SVEMnet model (default:
200).

Elastic net mixing parameter(s) passed to ‘SVEMnet* (default: ‘c(1)°).
Weighting scheme for SVEM (default: "SVEM").
Objective function for SVEM ("wAIC" or "wSSE"; default: "wAIC").

Logical; if “TRUE‘, the debiasing coefficients of the fitted model are applied
when predicting (default: ‘FALSE®).

Additional arguments passed to ‘SVEMnet()‘ and then to ‘glmnet()‘.

This function first fits an SVEMnet model using the supplied parameters. It then generates a random
grid of points in the predictor space, honouring mixture constraints if ‘mixture_groups‘ is provided.
Predictions are computed from the fitted model on these points. No random noise is added; the
predictions come directly from the model. If you wish to explore the uncertainty of predictions,
consider adding noise separately or using the standard error output from ‘predict.svem_model()*.

Value

A data frame containing the sampled predictor values and the corresponding predicted responses.
The response column is named according to the left-hand side of ‘formula‘.

See Also

‘SVEMnet*, ‘predict.svem_model‘, ‘svem_significance_test_with_mixture‘.
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Examples

set.seed(42)
n <- 40

# Helper to generate training data mixtures with bounds
sample_trunc_dirichlet <- function(n, lower, upper, total) {
k <- length(lower)
min_sum <- sum(lower); max_sum <- sum(upper)
stopifnot(total >= min_sum, total <= max_sum)
avail <- total - min_sum
out <- matrix(NA_real_, n, k)
i<-1
while (i <= n) {
g <- rgamma(k, 1, 1)
w <- g / sum(g)
x <- lower + avail * w
if (all(x <= upper + 1e-12)) {
out[i, ] <- x; 1 <-1+1
}
}
out

}

# Three mixture factors (A, B, C) with distinct bounds; sum to total = 1
lower <- c(0.10, 0.20, 0.05)

upper <- c(0.60, 0.70, 0.50)

total <- 1.0

ABC  <- sample_trunc_dirichlet(n, lower, upper, total)

A <- ABC[, 1]; B <- ABC[, 2]; C <- ABC[, 3]

# Additional predictors
X <= runif(n)
F <- factor(sample(letters[1:3], n, replace = TRUE))

# Response

y <=1+ 2%A + 3*B + 1.5%C + 0.5%X +
ifelse(F == "a", 0, ifelse(F == "b", 1, -1)) +
rnorm(n, sd = 0.3)

dat <- data.frame(y =y, A=A, B=B, C=C, X=X, F=F)

# Mixture specification for the random table generator
mix_spec <- list(
list(
vars = c("A", "B", "C"),

lower = c(0.10, 0.20, 0.05),
upper = c(0.60, 0.70, 0.50),
total = 1.0
)
)

# Fit SVEMnet and generate 50 random points

15
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rand_tab <- svem_random_table(
y~A+B+C+X+F,

data = dat,

n = 50,
mixture_groups = mix_spec,
nBoot = 50,
glmnet_alpha = c(1),
weight_scheme = "SVEM",
objective = "wAIC",
debias = FALSE

)

# Check mixture validity in the generated table
stopifnot(all(abs((rand_tab$A + rand_tab$B + rand_tab$C) - 1) < 1e-8))
summary (rand_tab[c("A","B","C")1)

head(rand_tab)

svem_significance_test
SVEM Significance Test with Mixture Support

Description

Performs a whole-model significance test using the SVEM framework and allows the user to spec-
ify mixture factor groups. Mixture factors are sets of continuous variables that are constrained to
sum to a constant (the mixture total) and have optional lower and upper bounds. When mixture
groups are supplied, the grid of evaluation points is generated by sampling Dirichlet variates over
the mixture simplex rather than by independently sampling each continuous predictor. Non-mixture
continuous predictors are sampled via a maximin Latin hypercube over their observed ranges, and
categorical predictors are sampled from their observed levels. The remainder of the algorithm fol-
lows ‘svem_significance_test()‘, computing standardized predictions on the grid, refitting SVEM
on permutations of the response, and calculating a Mahalanobis distance for the original and per-
mutation fits.

Usage

svem_significance_test(
formula,
data,
mixture_groups = NULL,
nPoint = 2000,

nSVEM = 5,

nPerm = 125,
percent = 85,
nBoot = 200,

glmnet_alpha = c(1),
weight_scheme = c("SVEM"),
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objective =
verbose = TR

Arguments

formula
data

mixture_groups

nPoint
nSVEM

nPerm

percent

nBoot
glmnet_alpha
weight_scheme
objective

verbose

Details

c("wAIC", "wSSE"),
UE,

A formula specifying the model to be tested.
A data frame containing the variables in the model.

Optional list describing one or more mixture factor groups. Each element of the
list should be a list with components ‘vars‘ (character vector of column names),
‘lower‘ (numeric vector of lower bounds of the same length as ‘vars‘), ‘upper*
(numeric vector of upper bounds of the same length), and ‘total‘ (scalar speci-
fying the sum of the mixture variables). All mixture variables must be included
in ‘vars‘, and no variable can appear in more than one mixture group. Defaults
to ‘NULL* (no mixtures).

Number of random points in the factor space (default: 2000).
Number of SVEM fits on the original data (default: 5).

Number of SVEM fits on permuted responses for the reference distribution (de-
fault: 125).

Percentage of variance to capture in the SVD (default: 85).

Number of bootstrap iterations within each SVEM fit (default: 200).
The alpha parameter(s) for glmnet (default: ‘c(1)°).

Weighting scheme for SVEM (default: "SVEM").

Objective function for SVEM ("wAIC" or "wSSE", default: "wAIC").
Logical; if “TRUE®, displays progress messages (default: ‘TRUE).
Additional arguments passed to ‘SVEMnet()‘ and then to ‘glmnet()‘.

This function extends ‘svem_significance_test()* by allowing the user to specify mixture factor
groups. In a mixture group, the specified variables are jointly sampled from a Dirichlet distribution
so that their values sum to the specified ‘total‘. Lower and upper bounds can be supplied to shift
and scale the mixture simplex. Feasibility is checked (‘sum(lower) <= total <= sum(upper)‘), and
samples are generated as ‘lower + (total - sum(lower)) * w* for Dirichlet weights ‘w*, with rejection
of any draws violating the upper bounds. This guarantees the correct total while respecting all

bounds.

If no mixture groups are supplied, this function behaves identically to ‘svem_significance_test()*.

Value

A list of class ‘svi

See Also

em_significance_test* containing the test results.

‘svem_significance_test()
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Examples

# Construct a small data set with a three-component mixture (A, B, C)
# Each has distinct lower/upper bounds and they sum to 1
set.seed(123)

n <- 30

# Helper used only for generating training data in this example
sample_trunc_dirichlet <- function(n, lower, upper, total) {
k <- length(lower)
min_sum <- sum(lower); max_sum <- sum(upper)
stopifnot(total >= min_sum, total <= max_sum)
avail <- total - min_sum
out <- matrix(NA_real_, n, k)
i<-1L
while (i <= n) {
g <- rgamma(k, 1, 1)
w<- g / sum(g)
x <- lower + avail * w
if (all(x <= upper + 1e-12)) {
out[i, ] <- x
i<-1+ 1L

out

3

# Three mixture components with distinct bounds; sum to 1
lower <- c(0.10, 0.20, 0.05) # for A, B, C

upper <- c(0.60, 0.70, 0.50)

total <- 1.0

ABC  <- sample_trunc_dirichlet(n, lower, upper, total)
A <- ABC[, 11; B <- ABC[, 21; C <- ABC[, 31

# Additional predictors
X <= runif(n)
F <- factor(sample(c("red”, "blue"), n, replace = TRUE))

# Response
y <=2+ 3%A + 1.5%B + 1.2%C + 0.5xX + 1x(F == "red") + rnorm(n, sd = 0.3)
dat <- data.frame(y =y, A=A, B=B, C=C, X=X, F=F)

# Specify the mixture group for A, B, C
mix_spec <- list(
list(
vars = c("A", "B", "C"),
lower = c(0.10, 0.20, 0.05),
upper = c(0.60, .70, 0.50),
total = 1.0

# Run the whole-model significance test on this mixture model
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test_res <- svem_significance_test(
y~A+B+C+X+F,

data = dat,
mixture_groups = mix_spec,
nPoint = 200,
nSVEM =3,

nPerm = 50,

nBoot = 100,
glmnet_alpha = c(1),
weight_scheme = "SVEM",
objective = "wAIC",
verbose = FALSE

)

print(test_res)
plot(test_res)

svem_significance_test_parallel
SVEM Significance Test with Mixture Support (Parallel Version)

Description

Whole-model significance test using SVEM with support for mixture factor groups, parallelizing
the SVEM fits for originals and permutations.

Usage

svem_significance_test_parallel(
formula,
data,
mixture_groups = NULL,
nPoint = 2000,

nSVEM = 5,

nPerm = 125,
percent = 85,
nBoot = 200,

glmnet_alpha = c(1),
weight_scheme = c("SVEM"),
objective = c("wAIC", "wSSE"),
verbose = TRUE,

nCore = parallel: :detectCores(),
seed = NULL,
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Arguments

formula
data

mixture_groups

nPoint
nSVEM

nPerm

percent

nBoot
glmnet_alpha
weight_scheme
objective
verbose

nCore

seed

Details

svem_significance_test_parallel

A formula specifying the model to be tested.
A data frame containing the variables in the model.

Optional list describing one or more mixture factor groups. Each element of the
list should be a list with components ‘vars‘ (character vector of column names),
‘lower* (numeric vector of lower bounds of the same length as ‘vars®), “‘upper*
(numeric vector of upper bounds of the same length), and ‘total® (scalar speci-
fying the sum of the mixture variables). All mixture variables must be included
in ‘vars‘, and no variable can appear in more than one mixture group. Defaults
to ‘NULL* (no mixtures).

Number of random points in the factor space (default: 2000).
Number of SVEM fits on the original data (default: 5).

Number of SVEM fits on permuted responses for the reference distribution (de-
fault: 125).

Percentage of variance to capture in the SVD (default: 85).

Number of bootstrap iterations within each SVEM fit (default: 200).

The alpha parameter(s) for glmnet (default: ‘c(1)°).

Weighting scheme for SVEM (default: "SVEM").

Objective function for SVEM ("wAIC" or "wSSE", default: "wAIC").
Logical; if “TRUE®, displays progress messages (default: “TRUE).
Number of CPU cores for parallel processing (default: all available cores).
Optional integer seed for reproducible parallel RNG (default: NULL).
Additional arguments passed to ‘SVEMnet()‘ and then to ‘glmnet()*.

Identical to svem_significance_test() but runs the expensive SVEM refits in parallel using
foreach +doParallel. Random draws (including permutations) use RNGkind ("L 'Ecuyer-CMRG")
for parallel-suitable streams.

Value

A list of class ‘svem_significance_test containing the test results.

See Also

svem_significance_test svem_significance_test_parallel
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