Package 'assortnet'

February 24, 2023

Type Package						
Title Calculate the Assortativity Coefficient of Weighted and Binary Networks						
Version 0.20						
Date 2023-02-24						
Author Damien Farine <damien.farine@anu.edu.au></damien.farine@anu.edu.au>						
Maintainer Damien Farine <damien.farine@anu.edu.au></damien.farine@anu.edu.au>						
Description Functions to calculate the assortment of vertices in social networks. This can be measured on both weighted and binary networks, with discrete or continuous vertex values.						
License GPL-2						
NeedsCompilation no						
Repository CRAN						
Date/Publication 2023-02-24 12:30:06 UTC						
R topics documented:						
assortment.continuous	1 2 4					
Index	6					
assortnet-package Calculate the assortativity coefficient of weighted and binary networks ~~ assortnet ~~						

Description

Functions to calculate the assortment of vertices in social networks. This can be measured on both weighted and binary networks, with discrete or continuous vertex values.

Details

2 assortment.continuous

Package: assortnet
Type: Package
Version: 0.20
Date: 2023-02-24
License: GPL2

Author(s)

Maintainer: Damien Farine <damien.farine@anu.edu.au>

References

Newman (2003) Mixing patterns in networks. Physical Review E (67) Farine, D.R. (2014) Measuring phenotypic assortment in animal social networks: weighted associations are more robust than binary edges. Animal Behaviour 89: 141-153.

assortment.continuous Assortment on continuous vertex values

Description

Calculates the assortativity coefficient for weighted and unweighted graphs with numerical vertex values

Usage

```
assortment.continuous(graph, vertex_values, weighted = TRUE,
SE = FALSE, M = 1, na.rm = FALSE)
```

Arguments

graph	A Adjacency	matrix, as a	an N x N matrix	 Can be weighted 	or binary.

vertex_values Values on which to calculate assortment, vector of N numbers

weighted Flag: TRUE to use weighted edges, FALSE to turn edges into binary (even if

weights are given)

SE Calculate standard error using the Jackknife method.

M Binning value for Jackknife, where M edges are removed rather than single

edges. This helps speed up the estimate for large networks with many edges.

na.rm Remove all nodes which have NA as vertex_values from both the network and

the vertex_values object. If this is False and NAs are present, an error message

will be displayed.

assortment.continuous 3

Value

This function returns a named list, with two elements: \$r\$ the assortativity coefficient \$SE the standard error

Author(s)

Damien Farine dfarine@orn.mpg.de

References

Newman (2003) Mixing patterns in networks. Physical Review E (67) Farine, D.R. (2014) Measuring phenotypic assortment in animal social networks: weighted associations are more robust than binary edges. Animal Behaviour 89: 141-153.

Examples

```
# DIRECTED NETWORK EXAMPLE
# Create a random directed network
N <- 20
dyads <- expand.grid(ID1=1:20,ID2=1:20)</pre>
dyads <- dyads[which(dyads$ID1 != dyads$ID2),]</pre>
weights <- rbeta(nrow(dyads),1,15)</pre>
network <- matrix(0, nrow=N, ncol=N)</pre>
network[cbind(dyads$ID1,dyads$ID2)] <- weights</pre>
# Create random continues trait values
traits <- rnorm(N)</pre>
# Test for assortment as binary network
assortment.continuous(network, traits, weighted=FALSE)
# Test for assortment as weighted network
assortment.continuous(network,traits,weighted=TRUE)
# UNDIRECTED NETWORK EXAMPLE
# Create a random undirected network
dyads <- expand.grid(ID1=1:20,ID2=1:20)</pre>
dyads <- dyads[which(dyads$ID1 < dyads$ID2),]</pre>
weights <- rbeta(nrow(dyads),1,15)</pre>
network <- matrix(0, nrow=N, ncol=N)</pre>
network[cbind(dyads$ID1,dyads$ID2)] <- weights</pre>
network[cbind(dyads$ID2,dyads$ID1)] <- weights</pre>
# Create random continues trait values
traits <- rnorm(N)</pre>
# Test for assortment as binary network
assortment.continuous(network, traits, weighted=FALSE)
```

4 assortment.discrete

```
# Test for assortment as weighted network
assortment.continuous(network,traits,weighted=TRUE)
```

assortment.discrete

Assortment on discrete vertex values

Description

Calculates the assortativity coefficient for weighted and unweighted graphs with nominal/categorical vertex values

Usage

assortment.discrete(graph, types, weighted = TRUE, SE = FALSE, M = 1, na.rm = FALSE)

Arguments

graph	Adjacency matrix, as an N x N matrix. Can be weighted or binary.
types	Values on which to calculate assortment, vector of N labels
weighted	Flag: TRUE to use weighted edges, FALSE to turn edges into binary (even if weights are given)
SE	Calculate standard error using the Jackknife method.
М	Binning value for Jackknife, where M edges are removed rather than single edges. This helps speed up the estimate for large networks with many edges.
na.rm	Remove all nodes which have NA as type from both the network and the types object. If this is False and NAs are present, an error message will be displayed.

Value

This function returns a named list, with three elements:

\$r the assortativity coefficient \$SE the standard error \$mixing_matrix the mixing matrix with the distribution of edges or edge weights by category

Author(s)

Damien Farine dfarine@orn.mpg.de

References

Newman (2003) Mixing patterns in networks. Physical Review E (67) Farine, D.R. (2014) Measuring phenotypic assortment in animal social networks: weighted associations are more robust than binary edges. Animal Behaviour 89: 141-153.

assortment.discrete 5

Examples

```
# DIRECTED NETWORK EXAMPLE
# Create a random directed network
N <- 20
dyads <- expand.grid(ID1=1:20,ID2=1:20)</pre>
dyads <- dyads[which(dyads$ID1 != dyads$ID2),]</pre>
weights <- rbeta(nrow(dyads),1,15)</pre>
network <- matrix(0, nrow=N, ncol=N)</pre>
network[cbind(dyads$ID1,dyads$ID2)] <- weights</pre>
# Create random discrete trait values
traits <- rpois(N,2)</pre>
# Test for assortment as binary network
assortment.discrete(network,traits,weighted=FALSE)
# Test for assortment as weighted network
assortment.discrete(network, traits, weighted=TRUE)
# UNDIRECTED NETWORK EXAMPLE
# Create a random undirected network
N <- 20
dyads <- expand.grid(ID1=1:20,ID2=1:20)</pre>
dyads <- dyads[which(dyads$ID1 < dyads$ID2),]</pre>
weights <- rbeta(nrow(dyads),1,15)</pre>
network <- matrix(0, nrow=N, ncol=N)</pre>
network[cbind(dyads$ID1,dyads$ID2)] <- weights</pre>
network[cbind(dyads$ID2,dyads$ID1)] <- weights</pre>
# Create random discrete trait values
traits <- rpois(N,2)</pre>
# Test for assortment as binary network
assortment.discrete(network,traits,weighted=FALSE)
# Test for assortment as weighted network
assortment.discrete(network,traits,weighted=TRUE)
```

Index

```
* package
    assortnet-package, 1

assortment.continuous, 2
assortment.discrete, 4
assortnet (assortnet-package), 1
assortnet-package, 1
```