Fast Bayesian estimation and forecasting of age-specific rates.
::install_github("bayesiandemography/bage") devtools
Fit Poisson model to data on injuries.
library(bage)
<- mod_pois(injuries ~ age:sex + ethnicity + year,
mod data = injuries,
exposure = popn) |>
fit()
mod#> -- Fitted Poisson model --
#>
#> injuries ~ age:sex + ethnicity + year
#>
#> (Intercept) ~ NFix()
#> ethnicity ~ NFix()
#> year ~ RW()
#> age:sex ~ RW()
#>
#> dispersion: mean=1
#> exposure: popn
#> var_age: age
#> var_sexgender: sex
#> var_time: year
#> n_draw: 1000
Extract model-based and direct estimates.
augment(mod)
#> # A tibble: 912 × 9
#> age sex ethnicity year injuries popn .observed
#> <fct> <chr> <chr> <int> <int> <int> <dbl>
#> 1 0-4 Female Maori 2000 12 35830 0.000335
#> 2 5-9 Female Maori 2000 6 35120 0.000171
#> 3 10-14 Female Maori 2000 3 32830 0.0000914
#> 4 15-19 Female Maori 2000 6 27130 0.000221
#> 5 20-24 Female Maori 2000 6 24380 0.000246
#> 6 25-29 Female Maori 2000 6 24160 0.000248
#> 7 30-34 Female Maori 2000 12 22560 0.000532
#> 8 35-39 Female Maori 2000 3 22230 0.000135
#> 9 40-44 Female Maori 2000 6 18130 0.000331
#> 10 45-49 Female Maori 2000 6 13770 0.000436
#> # ℹ 902 more rows
#> # ℹ 2 more variables: .fitted <rdbl<1000>>, .expected <rdbl<1000>>