Package 'binsreg'

July 23, 2024

Type Package

Title Binscatter Estimation and Inference

Date 2024-07-23

Version 1.1

Author Matias D. Cattaneo, Richard K. Crump, Max H. Farrell, Yingjie Feng

Maintainer Yingjie Feng <fengyingjiepku@gmail.com>

Description Provides tools for statistical analysis using the binscatter methods developed by Cattaneo, Crump, Farrell and Feng (2024a) <doi:10.48550/arXiv.1902.09608>, Cattaneo, Crump, Farrell and Feng (2024b) https://nppackages.github.io/references/ Cattaneo-Crump-Farrell-Feng_2024_NonlinearBinscatter.pdf> and Cattaneo, Crump, Farrell and Feng (2024c) <doi:10.48550/arXiv.1902.09615>. Binscatter provides a flexible way of describing the relationship between two variables based on partitioning/binning of the independent variable of interest. binsreg(), binsqreg() and binsglm() implement binscatter least squares regression, quantile regression and generalized linear regression respectively, with particular focus on constructing binned scatter plots. They also implement robust (pointwise and uniform) inference of regression functions and derivatives thereof. binstest() implements hypothesis testing procedures for parametric functional forms of and nonparametric shape restrictions on the regression function. binspwc() implements hypothesis testing procedures for pairwise group comparison of binscatter estimators. binsregselect() implements data-driven procedures for selecting the number of bins for binscatter estimation. All the commands allow for covariate adjustment, smoothness restrictions and clustering.

Depends R (>= 3.1)

License GPL-2

Encoding UTF-8

Imports ggplot2, sandwich, quantreg, splines, matrixStats

RoxygenNote 7.3.2

NeedsCompilation no

Repository CRAN

Date/Publication 2024-07-23 14:30:01 UTC

2 binsreg-package

Contents

bins	reg-packa	ge			Bi	nsi	re	g I	Pac	cke	ag	e i	Do	сі	ım	en	t											
Index					35																							
	binstest		•	•	 	•	•	•	•			•	•		•		•	•		•		•		 •	•	•		 30
	binsregsel																											
	binsreg.				 																							 20
	binsqreg				 																							 14
	binspwc				 																							 9
	binsglm				 																							 3
	binsreg-pa	acka	ge		 																							 2

Description

Binscatter provides a flexible, yet parsimonious way of visualizing and summarizing large data sets and has been a popular methodology in applied microeconomics and other social sciences. The binsreg package provides tools for statistical analysis using the binscatter methods developed in Cattaneo, Crump, Farrell and Feng (2024a) and Cattaneo, Crump, Farrell and Feng (2024b). binsreg implements binscatter least squares regression with robust inference and plots, including curve estimation, pointwise confidence intervals and uniform confidence band, binsqreg implements binscatter quantile regression with robust inference and plots, including curve estimation, pointwise confidence intervals and uniform confidence band. binsglm implements binscatter generalized linear regression with robust inference and plots, including curve estimation, pointwise confidence intervals and uniform confidence band, binstest implements binscatter-based hypothesis testing procedures for parametric specifications of and shape restrictions on the unknown function of interest. binspwc implements hypothesis testing procedures for pairwise group comparison of binscatter estimators and plots confidence bands for the difference in binscatter parameters between each pair of groups. binsregselect implements data-driven number of bins selectors for binscatter implementation using either quantile-spaced or evenly-spaced binning/partitioning. All the commands allow for covariate adjustment, smoothness restrictions, and clustering, among other features.

The companion software article, Cattaneo, Crump, Farrell and Feng (2024c), provides further implementation details and empirical illustration. For related Stata, R and Python packages useful for nonparametric data analysis and statistical inference, visit https://nppackages.github.io/.

Author(s)

Matias D. Cattaneo, Princeton University, Princeton, NJ. <cattaneo@princeton.edu>.

Richard K. Crump, Federal Reserve Bank of New York, New York, NY. <richard.crump@ny.frb.org>.

Max H. Farrell, UC Santa Barbara, Santa Barbara, CA. <mhfarrell@gmail.com>.

Yingjie Feng (maintainer), Tsinghua University, Beijing, China. <fengyingjiepku@gmail.com>.

References

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024a: On Binscatter. American Economic Review 114(5): 1488-1514.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024b: Nonlinear Binscatter Methods. Working Paper.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024c: Binscatter Regressions. Working Paper.

binsglm

Data-Driven Binscatter Generalized Linear Regression with Robust Inference Procedures and Plots

Description

binsglm implements binscatter generalized linear regression with robust inference procedures and plots, following the results in Cattaneo, Crump, Farrell and Feng (2024a) and Cattaneo, Crump, Farrell and Feng (2024b). Binscatter provides a flexible way to describe the relationship between two variables, after possibly adjusting for other covariates, based on partitioning/binning of the independent variable of interest. The main purpose of this function is to generate binned scatter plots with curve estimation with robust pointwise confidence intervals and uniform confidence band. If the binning scheme is not set by the user, the companion function binsregselect is used to implement binscatter in a data-driven way. Hypothesis testing about the function of interest can be conducted via the companion function binstest.

Usage

```
binsglm(y, x, w = NULL, data = NULL, at = NULL, family = gaussian(),
  deriv = 0, nolink = F, dots = NULL, dotsgrid = 0, dotsgridmean = T,
  line = NULL, linegrid = 20, ci = NULL, cigrid = 0, cigridmean = T,
  cb = NULL, cbgrid = 20, polyreg = NULL, polyreggrid = 20,
  polyregcigrid = 0, by = NULL, bycolors = NULL, bysymbols = NULL,
  bylpatterns = NULL, legendTitle = NULL, legendoff = F, nbins = NULL,
  binspos = "qs", binsmethod = "dpi", nbinsrot = NULL, pselect = NULL,
  sselect = NULL, samebinsby = F, randcut = NULL, nsims = 500,
  simsgrid = 20, simsseed = NULL, vce = "HC1", cluster = NULL,
  asyvar = F, level = 95, noplot = F, dfcheck = c(20, 30),
  masspoints = "on", weights = NULL, subset = NULL, plotxrange = NULL,
  plotyrange = NULL, ...)
```

Arguments

```
y outcome variable. A vector.

x independent variable of interest. A vector.

w control variables. A matrix, a vector or a formula.

data an optional data frame containing variables in the model.
```

at value of w at which the estimated function is evaluated. The default is at="mean", which corresponds to the mean of w. Other options are: at="median" for the

median of w, at="zero" for a vector of zeros. at can also be a vector of the same length as the number of columns of w (if w is a matrix) or a data frame containing the same variables as specified in w (when data is specified). Note that when at="mean" or at="median", all factor variables (if specified) are excluded from

the evaluation (set as zero).

family a description of the error distribution and link function to be used in the gener-

alized linear model. (See family for details of family functions.)

deriv derivative order of the regression function for estimation, testing and plotting.

The default is deriv=0, which corresponds to the function itself. If nolink=FALSE,

deriv cannot be greater than 1.

nolink if true, the function within the inverse link function is reported instead of the

conditional mean function for the outcome.

a vector or a logical value. If dots=c(p,s), a piecewise polynomial of degree p with s smoothness constraints is used for point estimation and plotting as "dots". The default is dots=c(0,0), which corresponds to piecewise constant (canonical bigger than 15 and 5 an

cal binscatter). If dots=T, the default dots=c(0,0) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If dots=F is specified,

the dots are not included in the plot.

number of dots within each bin to be plotted. Given the choice, these dots are point estimates evaluated over an evenly-spaced grid within each bin. The de-

fault is dotsgrid=0, and only the point estimates at the mean of x within each

bin are presented.

dots

dotsgridmean If true, the dots corresponding to the point estimates evaluated at the mean of x

within each bin are presented. By default, they are presented, i.e., dotsgridmean=T.

line a vector or a logical value. If line=c(p,s), a piecewise polynomial of degree

p with s smoothness constraints is used for plotting as a "line". If line=T is specified, line=c(0,0) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If line=F or line=NULL is specified, the line is

not included in the plot. The default is line=NULL.

linegrid number of evaluation points of an evenly-spaced grid within each bin used for

evaluation of the point estimate set by the line=c(p,s) option. The default is linegrid=20, which corresponds to 20 evenly-spaced evaluation points within

each bin for fitting/plotting the line.

ci a vector or a logical value. If ci=c(p,s) a piecewise polynomial of degree

p with s smoothness constraints is used for constructing confidence intervals. If ci=T is specified, ci=c(1,1) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If ci=F or ci=NULL is specified, the

confidence intervals are not included in the plot. The default is ci=NULL.

cigrid number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the point estimate set by the ci=c(p,s) option. The default is

cigrid=1, which corresponds to 1 evenly-spaced evaluation point within each bin for confidence interval construction.

cigridmean If true, the confidence intervals corresponding to the point estimates evaluated

at the mean of x within each bin are presented. The default is cigridmean=T.

cb a vector or a logical value. If cb=c(p,s), a the piecewise polynomial of degree

p with s smoothness constraints is used for constructing the confidence band. If the option cb=T is specified, cb=c(1,1) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If cb=F or cb=NULL is specified, the confidence band is not included in the plot. The default is cb=NULL.

cbgrid number of evaluation points of an evenly-spaced grid within each bin used for

evaluation of the point estimate set by the cb=c(p,s) option. The default is cbgrid=20, which corresponds to 20 evenly-spaced evaluation points within

each bin for confidence interval construction.

polyreg degree of a global polynomial regression model for plotting. By default, this fit

is not included in the plot unless explicitly specified. Recommended specification is polyreg=3, which adds a cubic (global) polynomial fit of the regression

function of interest to the binned scatter plot.

polyreggrid number of evaluation points of an evenly-spaced grid within each bin used

for evaluation of the point estimate set by the polyreg=p option. The default is polyreggrid=20, which corresponds to 20 evenly-spaced evaluation points

within each bin for confidence interval construction.

polyregcigrid number of evaluation points of an evenly-spaced grid within each bin used for

constructing confidence intervals based on polynomial regression set by the polyreg=p option. The default is polyregcigrid=0, which corresponds to not plotting confidence intervals for the global polynomial regression approxima-

tion.

by a vector containing the group indicator for subgroup analysis; both numeric and

string variables are supported. When by is specified, binsreg implements estimation and inference for each subgroup separately, but produces a common binned scatter plot. By default, the binning structure is selected for each subgroup separately, but see the option samebinsby below for imposing a common

binning structure across subgroups.

bycolors an ordered list of colors for plotting each subgroup series defined by the option

by.

by symbols an ordered list of symbols for plotting each subgroup series defined by the option

by.

bylpatterns an ordered list of line patterns for plotting each subgroup series defined by the

option by.

legendTitle String, title of legend.

legendoff If true, no legend is added.

nbins number of bins for partitioning/binning of x. If nbins=T or nbins=NULL (default) is specified, the number of bins is selected via the companion command

binsregselect in a data-driven, optimal way whenever possible. If a vector with more than one number is specified, the number of bins is selected within

this vector via the companion command binsregselect.

binspos position of binning knots. The default is binspos="qs", which corresponds to

quantile-spaced binning (canonical binscatter). The other options are "es" for evenly-spaced binning, or a vector for manual specification of the positions of

inner knots (which must be within the range of x).

binsmethod method for data-driven selection of the number of bins. The default is binsmethod="dpi",

which corresponds to the IMSE-optimal direct plug-in rule. The other option is:

"rot" for rule of thumb implementation.

nbinsrot initial number of bins value used to construct the DPI number of bins selector.

If not specified, the data-driven ROT selector is used instead.

pselect vector of numbers within which the degree of polynomial p for point estimation

is selected. Piecewise polynomials of the selected optimal degree p are used to construct dots or line if dots=T or line=T is specified, whereas piecewise polynomials of degree p+1 are used to construct confidence intervals or confidence band if ci=T or cb=T is specified. *Note:* To implement the degree or smoothness

selection, in addition to pselect or sselect, nbins=# must be specified.

sselect vector of numbers within which the number of smoothness constraints s for

point estimation is selected. Piecewise polynomials with the selected optimal s smoothness constraints are used to construct dots or line if dots=T or line=T is specified, whereas piecewise polynomials with s+1 constraints are used to construct confidence intervals or confidence band if ci=T or cb=T is specified. If not specified, for each value p supplied in the option pselect, only the piecewise

polynomial with the maximum smoothness is considered, i.e., s=p.

samebinsby if true, a common partitioning/binning structure across all subgroups specified

by the option by is forced. The knots positions are selected according to the option binspos and using the full sample. If nbins is not specified, then the number of bins is selected via the companion command binsregselect and

using the full sample.

randcut upper bound on a uniformly distributed variable used to draw a subsample for

bins/degree/smoothness selection. Observations for which runif()<=# are used. # must be between 0 and 1. By default, max(5000, 0.01n) observations are

used if the samples size n>5000.

nsims number of random draws for constructing confidence bands. The default is nsims=500, which corresponds to 500 draws from a standard Gaussian random

vector of size [(p+1)*J - (J-1)*s]. Setting at least nsims=2000 is recom-

mended to obtain the final results.

simsgrid number of evaluation points of an evenly-spaced grid within each bin used for

evaluation of the supremum operation needed to construct confidence bands. The default is simsgrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for approximating the supremum operator. Setting at least

simsgrid=50 is recommended to obtain the final results.

simsseed seed for simulation.

vce Procedure to compute the variance-covariance matrix estimator. Options are

• "const" homoskedastic variance estimator.

 "HC0" heteroskedasticity-robust plug-in residuals variance estimator without weights.

• "HC1" heteroskedasticity-robust plug-in residuals variance estimator with hc1 weights. Default.

- "HC2" heteroskedasticity-robust plug-in residuals variance estimator with hc2 weights.
- "HC3" heteroskedasticity-robust plug-in residuals variance estimator with hc3 weights.

if true, the standard error of the nonparametric component is computed and the uncertainty related to control variables is omitted. Default is asyvar=FALSE, that is, the uncertainty related to control variables is taken into account.

level nominal confidence level for confidence interval and confidence band estimation. Default is level=95.

noplot if true, no plot produced.

asyvar

dfcheck

adjustments for minimum effective sample size checks, which take into account number of unique values of x (i.e., number of mass points), number of clusters, and degrees of freedom of the different stat models considered. The default is dfcheck=c(20, 30). See Cattaneo, Crump, Farrell and Feng (2024c) for more details.

masspoints how mass points in x are handled. Available options:

- "on" all mass point and degrees of freedom checks are implemented. Default
- "noadjust" mass point checks and the corresponding effective sample size adjustments are omitted.
- "nolocalcheck" within-bin mass point and degrees of freedom checks are omitted.
- "off" "noadjust" and "nolocalcheck" are set simultaneously.
- "veryfew" forces the function to proceed as if x has only a few number of mass points (i.e., distinct values). In other words, forces the function to proceed as if the mass point and degrees of freedom checks were failed.

weights an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. For more details, see lm.

subset optional rule specifying a subset of observations to be used.

plotxrange a vector. plotxrange=c(min, max) specifies a range of the x-axis for binscatter plot. Observations outside the range are dropped in the plot.

a vector. plotyrange=c(min, max) specifies a range of the y-axis for binscatter plot. Observations outside the range are dropped in the plot.

... optional arguments used by glm.

Value

plotyrange

bins_plot A ggplot object for binscatter plot.

data.plot A list containing data for plotting. Each item is a sublist of data frames for each group. Each sublist may contain the following data frames:

data.dots Data for dots. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; and fit, fitted values.

- data.line Data for line. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; and fit. fitted values.
- data.ci Data for CI. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; ci.l and ci.r, left and right boundaries of each confidence intervals.
- data.cb Data for CB. It contains: x, evaluation points; bin, the indicator
 of bins; isknot, indicator of inner knots; mid, midpoint of each bin; cb.1
 and cb.r, left and right boundaries of the confidence band.
- data.poly Data for polynomial regression. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; and fit, fitted values.
- data.polyci Data for confidence intervals based on polynomial regression. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; polyci.l and polyci.r, left and right boundaries of each confidence intervals.
- data.bin Data for the binning structure. It contains: bin.id, ID for each bin; left.endpoint and right.endpoint, left and right endpoints of each bin.

imse.var.rot Variance constant in IMSE, ROT selection.

imse.bsg.rot Bias constant in IMSE, ROT selection.

imse.var.dpi Variance constant in IMSE, DPI selection.

imse.bsq.dpi Bias constant in IMSE, DPI selection.

cval.by A vector of critical values for constructing confidence band for each group.

A list containing options passed to the function, as well as N.by (total sample size for each group), Ndist.by (number of distinct values in x for each group), Nclust.by (number of clusters for each group), and nbins.by (number of bins for each group), and byvals (number of distinct values in by). The degree and smoothness of polynomials for dots, line, confidence intervals and confidence

band for each group are saved in dots, line, ci, and cb.

Author(s)

opt

Matias D. Cattaneo, Princeton University, Princeton, NJ. <cattaneo@princeton.edu>.

Max H. Farrell, UC Santa Barbara, Santa Barbara, CA. <mhfarrell@gmail.com>.

Yingjie Feng (maintainer), Tsinghua University, Beijing, China. <fengyingjiepku@gmail.com>.

References

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024a: On Binscatter. American Economic Review 114(5): 1488-1514.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024b: Nonlinear Binscatter Methods. Working Paper.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024c: Binscatter Regressions. Working Paper.

See Also

binsregselect, binstest.

Examples

```
x <- runif(500); d <- 1*(runif(500)<=x)
## Binned scatterplot
binsglm(d, x, family=binomial())</pre>
```

binspwc

Data-Driven Pairwise Group Comparison using Binscatter Methods

Description

binspwc implements hypothesis testing procedures for pairwise group comparison of binscatter estimators and plots confidence bands for the difference in binscatter parameters between each pair of groups, following the results in Cattaneo, Crump, Farrell and Feng (2024a) and Cattaneo, Crump, Farrell and Feng (2024b). If the binning scheme is not set by the user, the companion function binsregselect is used to implement binscatter in a data-driven way. Binned scatter plots based on different methods can be constructed using the companion functions binsreg, binsqreg or binsglm. Hypothesis testing for parametric functional forms of and shape restrictions on the regression function of interest can be conducted via the companion function binstest.

Usage

```
binspwc(y, x, w = NULL, data = NULL, estmethod = "reg",
  family = gaussian(), quantile = NULL, deriv = 0, at = NULL,
  nolink = F, by = NULL, pwc = NULL, testtype = "two-sided",
  lp = Inf, bins = NULL, bynbins = NULL, binspos = "qs",
  pselect = NULL, sselect = NULL, binsmethod = "dpi", nbinsrot = NULL,
  samebinsby = FALSE, randcut = NULL, nsims = 500, simsgrid = 20,
  simsseed = NULL, vce = NULL, cluster = NULL, asyvar = F,
  dfcheck = c(20, 30), masspoints = "on", weights = NULL,
  subset = NULL, numdist = NULL, numclust = NULL, estmethodopt = NULL,
  plot = FALSE, dotsngrid = 0, plotxrange = NULL, plotyrange = NULL,
  colors = NULL, symbols = NULL, level = 95, ...)
```

Arguments

1p

y outcome variable. A vector.

x independent variable of interest. A vector.

w control variables. A matrix, a vector or a formula.

data an optional data frame containing variables used in the model.

estmethod estimation method. The default is estmethod="reg" for tests based on binscatter least squares regression. Other options are "greg" for quantile regression

and "glm" for generalized linear regression. If estmethod="glm", the option

family must be specified.

family a description of the error distribution and link function to be used in the gener-

alized linear model when estmethod="glm". (See family for details of family

functions.)

quantile the quantile to be estimated. A number strictly between 0 and 1.

deriv derivative order of the regression function for estimation, testing and plotting.

The default is deriv=0, which corresponds to the function itself.

at value of wat which the estimated function is evaluated. The default is at="mean",

which corresponds to the mean of w. Other options are: at="median" for the median of w, at="zero" for a vector of zeros. at can also be a vector of the same length as the number of columns of w (if w is a matrix) or a data frame containing the same variables as specified in w (when data is specified). Note that when at="mean" or at="median", all factor variables (if specified) are excluded from

the evaluation (set as zero).

nolink if true, the function within the inverse link function is reported instead of the

conditional mean function for the outcome.

by a vector containing the group indicator for subgroup analysis; both numeric and string variables are supported. When by is specified, binsreg implements es-

timation and inference for each subgroup separately, but produces a common binned scatter plot. By default, the binning structure is selected for each subgroup separately, but see the option samebinsby below for imposing a common

binning structure across subgroups.

pwc a vector or a logical value. If pwc=c(p,s), a piecewise polynomial of degree p

with s smoothness constraints is used for testing the difference between groups. If pwc=T or pwc=NULL (default) is specified, pwc=c(1,1) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect

(see more details in the explanation of pselect and sselect).

testtype type of pairwise comparison test. The default is testtype="two-sided", which

corresponds to a two-sided test of the form H0: mu_1(x)=mu_2(x). Other options are: testtype="left" for the one-sided test form H0: mu_1(x)<=mu_2(x)

and testtype="right" for the one-sided test of the form $H0: mu_1(x) >= mu_2(x)$.

an Lp metric used for pairwise comparison tests. The default is lp=Inf, which corresponds to the sup-norm of the t-statistic. Other options are lp=q for a positive number q>=1. Note that lp=Inf ("sup-norm") has to be used for one-

sided tests (testtype="left" or testtype="right").

bins A vector. If bins=c(p,s), it sets the piecewise polynomial of degree p with

s smoothness constraints for data-driven (IMSE-optimal) selection of the partitioning/binning scheme. The default is bins=c(0,0), which corresponds to the

piecewise constant.

bynbins a vector of the number of bins for partitioning/binning of x, which is applied to

the binscatter estimation for each group. If a single number is specified, it is applied to the estimation for all groups. If bynbins=T or bynbins=NULL (default), the number of bins is selected via the companion function binsregselect in a data-driven way whenever possible. *Note:* If a vector with more than one number is supplied, it is understood as the number of bins applied to binscatter estimation for each subgroup rather than the range for selecting the number of

bins.

binspos position of binning knots. The default is binspos="qs", which corresponds to

quantile-spaced binning (canonical binscatter). The other options are "es" for evenly-spaced binning, or a vector for manual specification of the positions of

inner knots (which must be within the range of x).

pselect vector of numbers within which the degree of polynomial p for point estimation is selected. If the selected optimal degree is p, then piecewise polynomials of

degree p+1 are used to conduct pairwise group comparison. *Note:* To implement the degree or smoothness selection, in addition to pselect or sselect,

bynbins=# must be specified.

sselect vector of numbers within which the number of smoothness constraints s for

point estimation is selected. If the selected optimal smoothness is s, then piecewise polynomials with s+1 smoothness constraints are used to conduct pairwise group comparison. If not specified, for each value p supplied in the option pselect, only the piecewise polynomial with the maximum smoothness is con-

sidered, i.e., s=p.

binsmethod method for data-driven selection of the number of bins. The default is binsmethod="dpi",

which corresponds to the IMSE-optimal direct plug-in rule. The other option is:

"rot" for rule of thumb implementation.

nbinsrot initial number of bins value used to construct the DPI number of bins selector.

If not specified, the data-driven ROT selector is used instead.

samebinsby if true, a common partitioning/binning structure across all subgroups specified

by the option by is forced. The knots positions are selected according to the option binspos and using the full sample. If nbins is not specified, then the number of bins is selected via the companion command binsregselect and

using the full sample.

randcut upper bound on a uniformly distributed variable used to draw a subsample for

bins/degree/smoothness selection. Observations for which runif()<=# are used. # must be between 0 and 1. By default, max(5000, 0.01n) observations are

used if the samples size n>5000.

nsims number of random draws for hypothesis testing. The default is nsims=500,

which corresponds to 500 draws from a standard Gaussian random vector of size [(p+1)*J - (J-1)*s]. Setting at least nsims=2000 is recommended to ob-

tain the final results.

simsgrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the supremum (infimum or Lp metric) operation needed to construct hypothesis testing procedures. The default is simsgrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for approximating the supremum (infimum or Lp metric) operator. Setting at least simsgrid=50 is recommended to obtain the final results.

simsseed

seed for simulation.

vce

procedure to compute the variance-covariance matrix estimator. For least squares regression and generalized linear regression, the allowed options are the same as that for binsquares. For quantile regression, the allowed options are the same as that for binsquares.

cluster

cluster ID. Used for compute cluster-robust standard errors.

asyvar

if true, the standard error of the nonparametric component is computed and the uncertainty related to control variables is omitted. Default is asyvar=FALSE, that is, the uncertainty related to control variables is taken into account.

dfcheck

adjustments for minimum effective sample size checks, which take into account number of unique values of x (i.e., number of mass points), number of clusters, and degrees of freedom of the different stat models considered. The default is dfcheck=c(20, 30). See Cattaneo, Crump, Farrell and Feng (2024c) for more details.

masspoints

how mass points in x are handled. Available options:

- "on" all mass point and degrees of freedom checks are implemented. Default.
- "noadjust" mass point checks and the corresponding effective sample size adjustments are omitted.
- "nolocalcheck" within-bin mass point and degrees of freedom checks are omitted.
- "off" "noadjust" and "nolocalcheck" are set simultaneously.
- "veryfew" forces the function to proceed as if x has only a few number of mass points (i.e., distinct values). In other words, forces the function to proceed as if the mass point and degrees of freedom checks were failed.

weights

an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. For more details, see lm.

subset

optional rule specifying a subset of observations to be used.

numdist

number of distinct values for selection. Used to speed up computation.

numclust

number of clusters for selection. Used to speed up computation.

estmethodopt

a list of optional arguments used by rq (for quantile regression) or glm (for fitting generalized linear models).

plot

if true, the confidence bands for all pairwise group comparisons (the difference between each pair of groups) are plotted. The degree and smoothness of polynomials used to construct the bands are the same as those specified for testing. The default is plot=F, i.e., no plot is generated.

dotsngrid number of dots to be added to the plot for confidence bands. Given the choice,

> these dots are point estimates of the difference between groups evaluated over an evenly-spaced grid within the common support of all groups. The default is dotsngrid=0, i.e., no point estimates are added. Whenever possible, the degree and smoothness of the polynomial for these point estimates are the same as those for selecting the number of bins; otherwise, the degree and smoothness specified

for testing are used.

a vector. plotxrange=c(min, max) specifies a range of the x-axis for plotting. plotxrange

Observations outside the range are dropped in the plot.

plotyrange a vector. plotyrange=c(min, max) specifies a range of the y-axis for plotting.

Observations outside the range are dropped in the plot.

colors an ordered list of colors for plotting the difference between each pair of groups. symbols an ordered list of symbols for plotting the difference between each pair of groups. level

nominal confidence level for confidence band estimation. Default is level=95.

optional arguments to control bootstrapping if estmethod="qreg" and vce="boot".

See boot.rq.

Value

. . .

A matrix. Each row corresponds to the comparison between two groups. The stat

first column is the test statistic. The second and third columns give the corresponding group numbers. The null hypothesis is $mu_i(x) \le mu_j(x)$, $mu_i(x) = mu_j(x)$, or $mu_i(x) \ge mu_j(x)$ for group i (given in the second column) and group i (given in the third column). The group number corresponds to the list of group

names given by opt\$byvals.

pval A vector of p-values for all pairwise group comparisons.

A ggplot object for confidence bands plot. bins_plot

data.plot A list containing data for plotting. Each item is a sublist of data frames for

comparison between each pair of groups. Each sublist may contain the following

data frames:

• data.dots Data for dots. It contains: pair, the name for the pair of groups; x, evaluation points; diff. fit, point estimates of the group difference;

• data.cb Data for confidence bands. It contains: pair, the name for the pair of groups; x, evaluation points; cb.fit, point estimates of the group difference; cb. se, standard errors; cb. 1 and cb. r, left and right boundaries

of the confidence band.

A vector of critical values for all pairwise group comparisons. cval.cb

imse.var.rot Variance constant in IMSE expansion, ROT selection.

imse.bsg.rot Bias constant in IMSE expansion, ROT selection.

imse.var.dpi Variance constant in IMSE expansion, DPI selection.

imse.bsq.dpi Bias constant in IMSE expansion, DPI selection.

opt A list containing options passed to the function, as well as N.by (total sample

> size for each group), Ndist.by (number of distinct values in x for each group), Nclust.by (number of clusters for each group), and nbins.by (number of bins

for each group), and byvals (number of distinct values in by).

Author(s)

Matias D. Cattaneo, Princeton University, Princeton, NJ. <cattaneo@princeton.edu>.

Richard K. Crump, Federal Reserve Bank of New York, New York, NY. <richard.crump@ny.frb.org>.

Max H. Farrell, UC Santa Barbara, Santa Barbara, CA. <mhfarrell@gmail.com>.

Yingjie Feng (maintainer), Tsinghua University, Beijing, China. <fengyingjiepku@gmail.com>.

References

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024a: On Binscatter. American Economic Review 114(5): 1488-1514.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024b: Nonlinear Binscatter Methods. Working Paper.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024c: Binscatter Regressions. Working Paper.

See Also

binsreg, binsqreg, binsglm, binsregselect, binstest.

Examples

```
x \leftarrow runif(500); y \leftarrow sin(x)+rnorm(500); t \leftarrow 1*(runif(500)>0.5) ## Binned scatterplot binspwc(y,x, by=t)
```

binsqreg

Data-Driven Binscatter Quantile Regression with Robust Inference Procedures and Plots

Description

binsqreg implements binscatter quantile regression with robust inference procedures and plots, following the results in Cattaneo, Crump, Farrell and Feng (2024a) and Cattaneo, Crump, Farrell and Feng (2024b). Binscatter provides a flexible way to describe the quantile relationship between two variables, after possibly adjusting for other covariates, based on partitioning/binning of the independent variable of interest. The main purpose of this function is to generate binned scatter plots with curve estimation with robust pointwise confidence intervals and uniform confidence band. If the binning scheme is not set by the user, the companion function binsregselect is used to implement binscatter in a data-driven way. Hypothesis testing about the function of interest can be conducted via the companion function binstest.

Usage

```
binsqreg(y, x, w = NULL, data = NULL, at = NULL, quantile = 0.5,
  deriv = 0, dots = NULL, dotsgrid = 0, dotsgridmean = T,
  line = NULL, linegrid = 20, ci = NULL, cigrid = 0, cigridmean = T,
  cb = NULL, cbgrid = 20, polyreg = NULL, polyreggrid = 20,
  polyregcigrid = 0, by = NULL, bycolors = NULL, bysymbols = NULL,
  bylpatterns = NULL, legendTitle = NULL, legendoff = F, nbins = NULL,
  binspos = "qs", binsmethod = "dpi", nbinsrot = NULL, pselect = NULL,
  sselect = NULL, samebinsby = F, randcut = NULL, nsims = 500,
  simsgrid = 20, simsseed = NULL, vce = "nid", cluster = NULL,
  asyvar = F, level = 95, noplot = F, dfcheck = c(20, 30),
  masspoints = "on", weights = NULL, subset = NULL, plotxrange = NULL,
  plotyrange = NULL, gregopt = NULL, ...)
```

Arguments

at

y outcome variable. A vector.

x independent variable of interest. A vector.

w control variables. A matrix, a vector or a formula.

data an optional data frame containing variables in the model.

value of w at which the estimated function is evaluated. The default is at="mean", which corresponds to the mean of w. Other options are: at="median" for the median of w, at="zero" for a vector of zeros. at can also be a vector of the same length as the number of columns of w (if w is a matrix) or a data frame containing the same variables as specified in w (when data is specified). Note that when

the evaluation (set as zero).

quantile the quantile to be estimated. A number strictly between 0 and 1.

deriv derivative order of the regression function for estimation, testing and plotting.

The default is deriv=0, which corresponds to the function itself.

dots a vector or a logical value. If dots=c(p,s), a piecewise polynomial of degree p

with s smoothness constraints is used for point estimation and plotting as "dots". The default is $dots=c(\emptyset,\emptyset)$, which corresponds to piecewise constant (canonical binscatter). If dots=T, the default $dots=c(\emptyset,\emptyset)$ is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If dots=F is specified,

at="mean" or at="median", all factor variables (if specified) are excluded from

the dots are not included in the plot.

dotsgrid number of dots within each bin to be plotted. Given the choice, these dots are

point estimates evaluated over an evenly-spaced grid within each bin. The default is dotsgrid=0, and only the point estimates at the mean of x within each

bin are presented.

dotsgridmean If true, the dots corresponding to the point estimates evaluated at the mean of x

within each bin are presented. By default, they are presented, i.e., dotsgridmean=T.

line a vector or a logical value. If line=c(p,s), a piecewise polynomial of degree

p with s smoothness constraints is used for plotting as a "line". If line=T is

specified, line=c(0,0) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If line=F or line=NULL is specified, the line is not included in the plot. The default is line=NULL.

linegrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the point estimate set by the line=c(p,s) option. The default is linegrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for fitting/plotting the line.

ci

a vector or a logical value. If ci=c(p,s) a piecewise polynomial of degree p with s smoothness constraints is used for constructing confidence intervals. If ci=T is specified, ci=c(1,1) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If ci=F or ci=NULL is specified, the confidence intervals are not included in the plot. The default is ci=NULL.

cigrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the point estimate set by the ci=c(p,s) option. The default is cigrid=1, which corresponds to 1 evenly-spaced evaluation point within each bin for confidence interval construction.

cigridmean

If true, the confidence intervals corresponding to the point estimates evaluated at the mean of x within each bin are presented. The default is cigridmean=T.

cb

a vector or a logical value. If cb=c(p,s), a the piecewise polynomial of degree p with s smoothness constraints is used for constructing the confidence band. If the option cb=T is specified, cb=c(1,1) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If cb=F or cb=NULL is specified, the confidence band is not included in the plot. The default is cb=NULL.

cbgrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the point estimate set by the cb=c(p,s) option. The default is cbgrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for confidence interval construction.

polyreg

degree of a global polynomial regression model for plotting. By default, this fit is not included in the plot unless explicitly specified. Recommended specification is polyreg=3, which adds a cubic (global) polynomial fit of the regression function of interest to the binned scatter plot.

polyreggrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the point estimate set by the polyreg=p option. The default is polyreggrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for confidence interval construction.

polyregcigrid

number of evaluation points of an evenly-spaced grid within each bin used for constructing confidence intervals based on polynomial regression set by the polyreg=p option. The default is polyregcigrid=0, which corresponds to not plotting confidence intervals for the global polynomial regression approximation.

by

a vector containing the group indicator for subgroup analysis; both numeric and string variables are supported. When by is specified, binsreg implements estimation and inference for each subgroup separately, but produces a common

binned scatter plot. By default, the binning structure is selected for each subgroup separately, but see the option samebinsby below for imposing a common

binning structure across subgroups.

bycolors an ordered list of colors for plotting each subgroup series defined by the option

by.

by symbols an ordered list of symbols for plotting each subgroup series defined by the option

by.

bylpatterns an ordered list of line patterns for plotting each subgroup series defined by the

option by.

legendTitle String, title of legend.
legendoff If true, no legend is added.

nbins number of bins for partitioning/binning of x. If nbins=T or nbins=NULL (de-

fault) is specified, the number of bins is selected via the companion command binsregselect in a data-driven, optimal way whenever possible. If a vector with more than one number is specified, the number of bins is selected within

this vector via the companion command binsregselect.

binspos position of binning knots. The default is binspos="qs", which corresponds to

quantile-spaced binning (canonical binscatter). The other options are "es" for evenly-spaced binning, or a vector for manual specification of the positions of

inner knots (which must be within the range of x).

binsmethod method for data-driven selection of the number of bins. The default is binsmethod="dpi",

which corresponds to the IMSE-optimal direct plug-in rule. The other option is:

"rot" for rule of thumb implementation.

nbinsrot initial number of bins value used to construct the DPI number of bins selector.

If not specified, the data-driven ROT selector is used instead.

pselect vector of numbers within which the degree of polynomial p for point estimation

is selected. Piecewise polynomials of the selected optimal degree p are used to construct dots or line if dots=T or line=T is specified, whereas piecewise polynomials of degree p+1 are used to construct confidence intervals or confidence band if ci=T or cb=T is specified. *Note:* To implement the degree or smoothness

selection, in addition to pselect or sselect, nbins=# must be specified.

sselect vector of numbers within which the number of smoothness constraints s for

point estimation is selected. Piecewise polynomials with the selected optimal s smoothness constraints are used to construct dots or line if dots=T or line=T is specified, whereas piecewise polynomials with s+1 constraints are used to construct confidence intervals or confidence band if ci=T or cb=T is specified. If not specified, for each value p supplied in the option pselect, only the piecewise

polynomial with the maximum smoothness is considered, i.e., s=p.

samebinsby if true, a common partitioning/binning structure across all subgroups specified

by the option by is forced. The knots positions are selected according to the option binspos and using the full sample. If nbins is not specified, then the number of bins is selected via the companion command binsregselect and

using the full sample.

randcut upper bound on a uniformly distributed variable used to draw a subsample for

bins/degree/smoothness selection. Observations for which runif()<=# are used.

> # must be between 0 and 1. By default, max(5000, 0.01n) observations are used if the samples size n>5000.

nsims

number of random draws for constructing confidence bands. The default is nsims=500, which corresponds to 500 draws from a standard Gaussian random vector of size [(p+1)*J - (J-1)*s]. Setting at least nsims=2000 is recommended to obtain the final results.

simsgrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the supremum operation needed to construct confidence bands. The default is simsgrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for approximating the supremum operator. Setting at least simsgrid=50 is recommended to obtain the final results.

simsseed

seed for simulation.

vce

Procedure to compute the variance-covariance matrix estimator (see summary.rq for more details). Options are

- "iid" which presumes that the errors are iid and computes an estimate of the asymptotic covariance matrix as in KB(1978).
- "nid" which presumes local (in quantile) linearity of the the conditional quantile functions and computes a Huber sandwich estimate using a local estimate of the sparsity.
- "ker" which uses a kernel estimate of the sandwich as proposed by Powell (1991).
- "boot" which implements one of several possible bootstrapping alternatives for estimating standard errors including a variate of the wild bootstrap for clustered response. See boot.rq for further details.

cluster

cluster ID. Used for compute cluster-robust standard errors.

asyvar

if true, the standard error of the nonparametric component is computed and the uncertainty related to control variables is omitted. Default is asyvar=FALSE, that is, the uncertainty related to control variables is taken into account.

level

nominal confidence level for confidence interval and confidence band estimation. Default is level=95.

noplot

if true, no plot produced.

dfcheck

adjustments for minimum effective sample size checks, which take into account number of unique values of x (i.e., number of mass points), number of clusters, and degrees of freedom of the different statistical models considered. The default is dfcheck=c(20, 30). See Cattaneo, Crump, Farrell and Feng (2024c) for more details.

masspoints

how mass points in x are handled. Available options:

- "on" all mass point and degrees of freedom checks are implemented. Default.
- "noadjust" mass point checks and the corresponding effective sample size adjustments are omitted.
- "nolocalcheck" within-bin mass point and degrees of freedom checks are omitted.
- "off" "noadjust" and "nolocalcheck" are set simultaneously.

• "veryfew" forces the function to proceed as if x has only a few number of mass points (i.e., distinct values). In other words, forces the function to proceed as if the mass point and degrees of freedom checks were failed.

weights

an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. For more details, see 1m.

subset

optional rule specifying a subset of observations to be used.

plotxrange

a vector. plotxrange=c(min, max) specifies a range of the x-axis for plotting. Observations outside the range are dropped in the plot.

plotyrange

a vector. plotyrange=c(min, max) specifies a range of the y-axis for plotting. Observations outside the range are dropped in the plot.

qregopt

a list of optional arguments used by rq.

. . .

optional arguments to control bootstrapping. See boot.rq.

Value

bins_plot

A ggplot object for binscatter plot.

data.plot

A list containing data for plotting. Each item is a sublist of data frames for each group. Each sublist may contain the following data frames:

- data.dots Data for dots. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; and fit, fitted values.
- data.line Data for line. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; and fit, fitted values.
- data.ci Data for CI. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; ci.l and ci.r, left and right boundaries of each confidence intervals.
- data.cb Data for CB. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; cb.1 and cb.r, left and right boundaries of the confidence band.
- data.poly Data for polynomial regression. It contains: x, evaluation points;
 bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; and fit, fitted values.
- data.polyci Data for confidence intervals based on polynomial regression. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; polyci.l and polyci.r, left and right boundaries of each confidence intervals.
- data.bin Data for the binning structure. It contains: bin.id, ID for each bin; left.endpoint and right.endpoint, left and right endpoints of each bin.

imse.var.rot Variance

Variance constant in IMSE, ROT selection.

imse.bsg.rot

Bias constant in IMSE, ROT selection.

imse.var.dpi

Variance constant in IMSE, DPI selection.

imse.bsq.dpi

Bias constant in IMSE, DPI selection.

cval.by

A vector of critical values for constructing confidence band for each group.

opt

A list containing options passed to the function, as well as N.by (total sample size for each group), Ndist.by (number of distinct values in x for each group), Nclust.by (number of clusters for each group), and nbins.by (number of bins for each group), and byvals (number of distinct values in by). The degree and smoothness of polynomials for dots, line, confidence intervals and confidence band for each group are saved in dots, line, ci, and cb.

Author(s)

Matias D. Cattaneo, Princeton University, Princeton, NJ. <cattaneo@princeton.edu>.

Richard K. Crump, Federal Reserve Bank of New York, New York, NY. <richard.crump@ny.frb.org>.

Max H. Farrell, UC Santa Barbara, Santa Barbara, CA. <mhfarrell@gmail.com>.

Yingjie Feng (maintainer), Tsinghua University, Beijing, China. <fengyingjiepku@gmail.com>.

References

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024a: On Binscatter. American Economic Review 114(5): 1488-1514.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024b: Nonlinear Binscatter Methods. Working Paper.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024c: Binscatter Regressions. Working Paper.

See Also

binsregselect, binstest.

Examples

```
x <- runif(500); y <- sin(x)+rnorm(500)
## Binned scatterplot
binsqreg(y,x)</pre>
```

binsreg

Data-Driven Binscatter Least Squares Regression with Robust Inference Procedures and Plots

Description

binsreg implements binscatter least squares regression with robust inference procedures and plots, following the results in Cattaneo, Crump, Farrell and Feng (2024a) and Cattaneo, Crump, Farrell and Feng (2024b). Binscatter provides a flexible way to describe the mean relationship between two variables, after possibly adjusting for other covariates, based on partitioning/binning of the independent variable of interest. The main purpose of this function is to generate binned scatter plots with curve estimation with robust pointwise confidence intervals and uniform confidence band. If

the binning scheme is not set by the user, the companion function binsregselect is used to implement binscatter in a data-driven (optimal) way. Hypothesis testing about the regression function can be conducted via the companion function binstest.

Usage

```
binsreg(y, x, w = NULL, data = NULL, at = NULL, deriv = 0,
  dots = NULL, dotsgrid = 0, dotsgridmean = T, line = NULL,
  linegrid = 20, ci = NULL, cigrid = 0, cigridmean = T, cb = NULL,
  cbgrid = 20, polyreg = NULL, polyreggrid = 20, polyregcigrid = 0,
  by = NULL, bycolors = NULL, bysymbols = NULL, bylpatterns = NULL,
  legendTitle = NULL, legendoff = F, nbins = NULL, binspos = "qs",
  binsmethod = "dpi", nbinsrot = NULL, pselect = NULL, sselect = NULL,
  samebinsby = F, randcut = NULL, nsims = 500, simsgrid = 20,
  simsseed = NULL, vce = "HC1", cluster = NULL, asyvar = F,
  level = 95, noplot = F, dfcheck = c(20, 30), masspoints = "on",
  weights = NULL, subset = NULL, plotyrange = NULL)
```

Arguments

at

deriv

dots

dotsgrid

dotsgridmean

У	outcome variable. A vector.
Х	independent variable of interest. A vector.
W	control variables. A matrix, a vector or a formula.
data	an optional data frame containing variables used in the model.

outcome variable A vector

value of w at which the estimated function is evaluated. The default is at="mean", which corresponds to the mean of w. Other options are: at="median" for the median of w, at="zero" for a vector of zeros. at can also be a vector of the same length as the number of columns of w (if w is a matrix) or a data frame containing the same variables as specified in w (when data is specified). Note that when at="mean" or at="median", all factor variables (if specified) are excluded from the evaluation (set as zero).

derivative order of the regression function for estimation, testing and plotting. The default is deriv=0, which corresponds to the function itself.

a vector or a logical value. If dots=c(p,s), a piecewise polynomial of degree p with s smoothness constraints is used for point estimation and plotting as "dots". The default is dots=c(0,0), which corresponds to piecewise constant (canonical binscatter). If dots=T, the default dots=c(0,0) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If dots=F is specified, the dots are not included in the plot

the dots are not included in the plot.

number of dots within each bin to be plotted. Given the choice, these dots are point estimates evaluated over an evenly-spaced grid within each bin. The default is dotsgrid=0, and only the point estimates at the mean of x within each bin are presented.

If true, the dots corresponding to the point estimates evaluated at the mean of x within each bin are presented. By default, they are presented, i.e., dotsgridmean=T.

line

a vector or a logical value. If line=c(p,s), a piecewise polynomial of degree p with s smoothness constraints is used for plotting as a "line". If line=T is specified, line=c(\emptyset , \emptyset) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If line=F or line=NULL is specified, the line is not included in the plot. The default is line=NULL.

linegrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the point estimate set by the line=c(p,s) option. The default is linegrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for fitting/plotting the line.

ci

a vector or a logical value. If ci=c(p,s) a piecewise polynomial of degree p with s smoothness constraints is used for constructing confidence intervals. If ci=T is specified, ci=c(1,1) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If ci=F or ci=NULL is specified, the confidence intervals are not included in the plot. The default is ci=NULL.

cigrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the point estimate set by the ci=c(p,s) option. The default is cigrid=1, which corresponds to 1 evenly-spaced evaluation point within each bin for confidence interval construction.

cigridmean

If true, the confidence intervals corresponding to the point estimates evaluated at the mean of x within each bin are presented. The default is cigridmean=T.

cb

a vector or a logical value. If cb=c(p,s), a the piecewise polynomial of degree p with s smoothness constraints is used for constructing the confidence band. If the option cb=T is specified, cb=c(1,1) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in the explanation of pselect and sselect). If cb=F or cb=NULL is specified, the confidence band is not included in the plot. The default is cb=NULL.

cbgrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the point estimate set by the cb=c(p,s) option. The default is cbgrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for confidence interval construction.

polyreg

degree of a global polynomial regression model for plotting. By default, this fit is not included in the plot unless explicitly specified. Recommended specification is polyreg=3, which adds a cubic (global) polynomial fit of the regression function of interest to the binned scatter plot.

polyreggrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the point estimate set by the polyreg=p option. The default is polyreggrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for confidence interval construction.

polyregcigrid

number of evaluation points of an evenly-spaced grid within each bin used for constructing confidence intervals based on polynomial regression set by the polyreg=p option. The default is polyregcigrid=0, which corresponds to not plotting confidence intervals for the global polynomial regression approximation.

by a vector containing the group indicator for subgroup analysis; both numeric and

string variables are supported. When by is specified, binsreg implements estimation and inference for each subgroup separately, but produces a common binned scatter plot. By default, the binning structure is selected for each subgroup separately, but see the option samebinsby below for imposing a common

binning structure across subgroups.

by colors an ordered list of colors for plotting each subgroup series defined by the option

by.

by symbols an ordered list of symbols for plotting each subgroup series defined by the option

by.

bylpatterns an ordered list of line patterns for plotting each subgroup series defined by the

option by.

legendTitle String, title of legend.legendoff If true, no legend is added.

nbins number of bins for partitioning/binning of x. If nbins=T or nbins=NULL (de-

fault) is specified, the number of bins is selected via the companion command binsregselect in a data-driven, optimal way whenever possible. If a vector with more than one number is specified, the number of bins is selected within

this vector via the companion command binsregselect.

binspos position of binning knots. The default is binspos="qs", which corresponds to

quantile-spaced binning (canonical binscatter). The other options are "es" for evenly-spaced binning, or a vector for manual specification of the positions of

inner knots (which must be within the range of x).

binsmethod method for data-driven selection of the number of bins. The default is binsmethod="dpi",

which corresponds to the IMSE-optimal direct plug-in rule. The other option is:

"rot" for rule of thumb implementation.

nbinsrot initial number of bins value used to construct the DPI number of bins selector.

If not specified, the data-driven ROT selector is used instead.

pselect vector of numbers within which the degree of polynomial p for point estimation

is selected. Piecewise polynomials of the selected optimal degree p are used to construct dots or line if dots=T or line=T is specified, whereas piecewise polynomials of degree p+1 are used to construct confidence intervals or confidence band if ci=T or cb=T is specified. *Note:* To implement the degree or smoothness

selection, in addition to pselect or sselect, nbins=# must be specified.

sselect vector of numbers within which the number of smoothness constraints s for

point estimation is selected. Piecewise polynomials with the selected optimal s smoothness constraints are used to construct dots or line if dots=T or line=T is specified, whereas piecewise polynomials with s+1 constraints are used to construct confidence intervals or confidence band if ci=T or cb=T is specified. If not specified, for each value p supplied in the option pselect, only the piecewise

polynomial with the maximum smoothness is considered, i.e., s=p.

samebinsby if true, a common partitioning/binning structure across all subgroups specified

by the option by is forced. The knots positions are selected according to the option binspos and using the full sample. If nbins is not specified, then the number of bins is selected via the companion command binsregselect and

using the full sample.

randcut

upper bound on a uniformly distributed variable used to draw a subsample for bins/degree/smoothness selection. Observations for which runif()<=# are used. # must be between 0 and 1. By default, max(5000, 0.01n) observations are used if the samples size n>5000.

nsims

number of random draws for constructing confidence bands. The default is nsims=500, which corresponds to 500 draws from a standard Gaussian random vector of size [(p+1)*J - (J-1)*s]. Setting at least nsims=2000 is recommended to obtain the final results.

simsgrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the supremum operation needed to construct confidence bands. The default is simsgrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for approximating the supremum operator. Setting at least simsgrid=50 is recommended to obtain the final results.

simsseed

seed for simulation.

vce

Procedure to compute the variance-covariance matrix estimator. Options are

- "const" homoskedastic variance estimator.
- "HC0" heteroskedasticity-robust plug-in residuals variance estimator without weights.
- "HC1" heteroskedasticity-robust plug-in residuals variance estimator with hc1 weights. Default.
- "HC2" heteroskedasticity-robust plug-in residuals variance estimator with hc2 weights.
- "HC3" heteroskedasticity-robust plug-in residuals variance estimator with hc3 weights.

cluster

cluster ID. Used for compute cluster-robust standard errors.

asyvar

If true, the standard error of the nonparametric component is computed and the uncertainty related to control variables is omitted. Default is asyvar=FALSE, that is, the uncertainty related to control variables is taken into account.

level

nominal confidence level for confidence interval and confidence band estimation. Default is level=95.

noplot

if true, no plot produced.

dfcheck

adjustments for minimum effective sample size checks, which take into account number of unique values of x (i.e., number of mass points), number of clusters, and degrees of freedom of the different statistical models considered. The default is dfcheck=c(20, 30). See Cattaneo, Crump, Farrell and Feng (2024c) for more details.

masspoints

how mass points in x are handled. Available options:

- "on" all mass point and degrees of freedom checks are implemented. Default.
- "noadjust" mass point checks and the corresponding effective sample size adjustments are omitted.
- "nolocalcheck" within-bin mass point and degrees of freedom checks are omitted.
- "off" "noadjust" and "nolocalcheck" are set simultaneously.

• "veryfew" forces the function to proceed as if x has only a few number of mass points (i.e., distinct values). In other words, forces the function to proceed as if the mass point and degrees of freedom checks were failed.

weights

an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. For more details, see 1m.

subset

Optional rule specifying a subset of observations to be used.

plotxrange

a vector. plotxrange=c(min, max) specifies a range of the x-axis for plotting. Observations outside the range are dropped in the plot.

plotyrange

a vector. plotyrange=c(min, max) specifies a range of the y-axis for plotting. Observations outside the range are dropped in the plot.

Value

bins_plot

A ggplot object for binscatter plot.

data.plot

A list containing data for plotting. Each item is a sublist of data frames for each group. Each sublist may contain the following data frames:

- data.dots Data for dots. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; and fit, fitted values.
- data.line Data for line. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; and fit, fitted values.
- data.ci Data for CI. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; ci.l and ci.r, left and right boundaries of each confidence intervals.
- data.cb Data for CB. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; cb.1 and cb.r, left and right boundaries of the confidence band.
- data.poly Data for polynomial regression. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; and fit, fitted values.
- data.polyci Data for confidence intervals based on polynomial regression. It contains: x, evaluation points; bin, the indicator of bins; isknot, indicator of inner knots; mid, midpoint of each bin; polyci.l and polyci.r, left and right boundaries of each confidence intervals.
- data.bin Data for the binning structure. It contains: bin.id, ID for each bin; left.endpoint and right.endpoint, left and right endpoints of each bin.

imse.var.rot Variance constant in IMSE, ROT selection.

imse.bsg.rot Bias constant in IMSE, ROT selection.

imse.var.dpi Variance constant in IMSE, DPI selection.

imse.bsq.dpi Bias constant in IMSE, DPI selection.

cval.by A vector of critical values for constructing confidence band for each group.

opt

A list containing options passed to the function, as well as N.by (total sample size for each group), Ndist.by (number of distinct values in x for each group), Nclust.by (number of clusters for each group), and nbins.by (number of bins for each group), and byvals (number of distinct values in by). The degree and smoothness of polynomials for dots, line, confidence intervals and confidence band for each group are saved in dots, line, ci, and cb.

Author(s)

Matias D. Cattaneo, Princeton University, Princeton, NJ. <cattaneo@princeton.edu>.

Max H. Farrell, UC Santa Barbara, Santa Barbara, CA. <mhfarrell@gmail.com>.

Yingjie Feng (maintainer), Tsinghua University, Beijing, China. <fengyingjiepku@gmail.com>.

References

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024a: On Binscatter. American Economic Review 114(5): 1488-1514.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024b: Nonlinear Binscatter Methods. Working Paper.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024c: Binscatter Regressions. Working Paper.

See Also

binsregselect, binstest.

Examples

```
x <- runif(500); y <- sin(x)+rnorm(500)
## Binned scatterplot
binsreg(y,x)</pre>
```

binsregselect

Data-Driven IMSE-Optimal Partitioning/Binning Selection for Binscatter

Description

binsregselect implements data-driven procedures for selecting the number of bins for binscatter estimation. The selected number is optimal in minimizing integrated mean squared error (IMSE).

Usage

```
binsregselect(y, x, w = NULL, data = NULL, deriv = 0, bins = NULL,
    pselect = NULL, sselect = NULL, binspos = "qs", nbins = NULL,
    binsmethod = "dpi", nbinsrot = NULL, simsgrid = 20, savegrid = F,
    vce = "HC1", useeffn = NULL, randcut = NULL, cluster = NULL,
    dfcheck = c(20, 30), masspoints = "on", weights = NULL,
    subset = NULL, norotnorm = F, numdist = NULL, numclust = NULL)
```

Arguments

у	outcome variable. A vector.
x	independent variable of interest. A vector.
W	control variables. A matrix, a vector or a formula.
data	an optional data frame containing variables used in the model.
deriv	derivative order of the regression function for estimation, testing and plotting. The default is deriv=0, which corresponds to the function itself.
bins	a vector. bins=c(p,s) set a piecewise polynomial of degree p with s smoothness constraints for data-driven (IMSE-optimal) selection of the partitioning/binning scheme. By default, the function sets bins=c(0 , 0), which corresponds to piecewise constant (canonical binscatter).
pselect	vector of numbers within which the degree of polynomial p for point estimation is selected. <i>Note:</i> To implement the degree or smoothness selection, in addition to pselect or sselect, nbins=# must be specified.
sselect	vector of numbers within which the number of smoothness constraints s for point estimation is selected. If not specified, for each value p supplied in the option pselect, only the piecewise polynomial with the maximum smoothness is considered, i.e., s=p.
binspos	position of binning knots. The default is binspos="qs", which corresponds to quantile-spaced binning (canonical binscatter). The other option is binspos="es" for evenly-spaced binning.
nbins	number of bins for degree/smoothness selection. If nbins=T or nbins=NULL (default) is specified, the function selects the number of bins instead, given the specified degree and smoothness. If a vector with more than one number is specified, the command selects the number of bins within this vector.
binsmethod	method for data-driven selection of the number of bins. The default is binsmethod="dpi", which corresponds to the IMSE-optimal direct plug-in rule. The other option is: "rot" for rule of thumb implementation.
nbinsrot	initial number of bins value used to construct the DPI number of bins selector. If not specified, the data-driven ROT selector is used instead.
simsgrid	number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the supremum (infimum or Lp metric) operation needed to construct confidence bands and hypothesis testing procedures. The default is simsgrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for approximating the supremum (infimum or Lp metric) operator.

savegrid

if true, a data frame produced containing grid.

vce

procedure to compute the variance-covariance matrix estimator. Options are

- "const" homoskedastic variance estimator.
- "HC0" heteroskedasticity-robust plug-in residuals variance estimator without weights.
- "HC1" heteroskedasticity-robust plug-in residuals variance estimator with hc1 weights. Default.
- "HC2" heteroskedasticity-robust plug-in residuals variance estimator with hc2 weights.
- "HC3" heteroskedasticity-robust plug-in residuals variance estimator with hc3 weights.

useeffn

effective sample size to be used when computing the (IMSE-optimal) number of bins. This option is useful for extrapolating the optimal number of bins to larger (or smaller) datasets than the one used to compute it.

randcut

upper bound on a uniformly distributed variable used to draw a subsample for bins/degree/smoothness selection. Observations for which runif()<=# are used. # must be between 0 and 1.

cluster

cluster ID. Used for compute cluster-robust standard errors.

dfcheck

adjustments for minimum effective sample size checks, which take into account number of unique values of x (i.e., number of mass points), number of clusters, and degrees of freedom of the different statistical models considered. The default is dfcheck=c(20, 30). See Cattaneo, Crump, Farrell and Feng (2024c) for more details.

masspoints

how mass points in x are handled. Available options:

- "on" all mass point and degrees of freedom checks are implemented. Default.
- "noadjust" mass point checks and the corresponding effective sample size adjustments are omitted.
- "nolocalcheck" within-bin mass point and degrees of freedom checks are omitted.
- "off" "noadjust" and "nolocalcheck" are set simultaneously.
- "veryfew" forces the function to proceed as if x has only a few number of mass points (i.e., distinct values). In other words, forces the function to proceed as if the mass point and degrees of freedom checks were failed.

weights

an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. For more details, see 1m.

subset

optional rule specifying a subset of observations to be used.

norotnorm

if true, a uniform density rather than normal density used for ROT selection.

numdist

number of distinct values for selection. Used to speed up computation.

numclust

number of clusters for selection. Used to speed up computation.

Value

ROT number of bins, unregularized. nbinsrot.poly nbinsrot.regul ROT number of bins, regularized. nbinsrot.uknot ROT number of bins, unique knots. nbinsdpi DPI number of bins. nbinsdpi.uknot DPI number of bins, unique knots. ROT degree of polynomials, unregularized. prot.poly prot.regul ROT degree of polynomials, regularized. prot.uknot ROT degree of polynomials, unique knots. pdpi DPI degree of polynomials. pdpi.uknot DPI degree of polynomials, unique knots. srot.poly ROT number of smoothness constraints, unregularized. srot.regul ROT number of smoothness constraints, regularized. srot.uknot ROT number of smoothness constraints, unique knots. sdpi DPI number of smoothness constraints. DPI number of smoothness constraints, unique knots. sdpi.uknot imse.var.rot Variance constant in IMSE expansion, ROT selection. imse.bsq.rot Bias constant in IMSE expansion, ROT selection. imse.var.dpi Variance constant in IMSE expansion, DPI selection. imse.bsq.dpi Bias constant in IMSE expansion, DPI selection. int.result Intermediate results, including a matrix of degree and smoothness (deg_mat), the selected numbers of bins (vec.nbinsrot.poly,vec.nbinsrot.regul, vec.nbinsrot.uknot, vec.nbinsdpi, vec.nbinsdpi.uknot), and the bias and variance constants in IMSE(vec.imse.b.rot, vec.imse.v.rot, vec.imse.b.dpi, vec.imse.v.dpi) under each rule (ROT or DPI), corresponding to each pair of degree and smoothness (each row in deg_mat). A list containing options passed to the function, as well as total sample size n, opt number of distinct values Ndist in x, and number of clusters Nclust. data.grid A data frame containing grid.

Author(s)

Matias D. Cattaneo, Princeton University, Princeton, NJ. <cattaneo@princeton.edu>.

Richard K. Crump, Federal Reserve Bank of New York, New York, NY. <richard.crump@ny.frb.org>.

Max H. Farrell, UC Santa Barbara, Santa Barbara, CA. <mhfarrell@gmail.com>.

Yingjie Feng (maintainer), Tsinghua University, Beijing, China. <fengyingjiepku@gmail.com>.

References

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024a: On Binscatter. American Economic Review 114(5): 1488-1514.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024b: Nonlinear Binscatter Methods. Working Paper.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024c: Binscatter Regressions. Working Paper.

See Also

binsreg, binstest.

Examples

```
x <- runif(500); y <- sin(x)+rnorm(500)
est <- binsregselect(y,x)
summary(est)</pre>
```

binstest

Data-Driven Nonparametric Shape Restriction and Parametric Model Specification Testing using Binscatter

Description

binstest implements binscatter-based hypothesis testing procedures for parametric functional forms of and nonparametric shape restrictions on the regression function of interest, following the results in Cattaneo, Crump, Farrell and Feng (2024a) and Cattaneo, Crump, Farrell and Feng (2024b). If the binning scheme is not set by the user, the companion function binsregselect is used to implement binscatter in a data-driven way and inference procedures are based on robust bias correction. Binned scatter plots based on different methods can be constructed using the companion functions binsreg, binsqreg or binsglm.

Usage

```
binstest(y, x, w = NULL, data = NULL, estmethod = "reg",
  family = gaussian(), quantile = NULL, deriv = 0, at = NULL,
  nolink = F, testmodel = NULL, testmodelparfit = NULL,
  testmodelpoly = NULL, testshape = NULL, testshapel = NULL,
  testshaper = NULL, testshape2 = NULL, lp = Inf, bins = NULL,
  nbins = NULL, pselect = NULL, sselect = NULL, binspos = "qs",
  binsmethod = "dpi", nbinsrot = NULL, randcut = NULL, nsims = 500,
  simsgrid = 20, simsseed = NULL, vce = NULL, cluster = NULL,
  asyvar = F, dfcheck = c(20, 30), masspoints = "on", weights = NULL,
  subset = NULL, numdist = NULL, numclust = NULL, estmethodopt = NULL,
  ...)
```

Arguments

y outcome variable. A vector.

x independent variable of interest. A vector.

w control variables. A matrix, a vector or a formula.

data an optional data frame containing variables used in the model.

estmethod estimation method. The default is estmethod="reg" for tests based on binscat-

ter least squares regression. Other options are "qreg" for quantile regression and "glm" for generalized linear regression. If estmethod="glm", the option

family must be specified.

family a description of the error distribution and link function to be used in the gener-

alized linear model when estmethod="glm". (See family for details of family

functions.)

quantile the quantile to be estimated. A number strictly between 0 and 1.

deriv derivative order of the regression function for estimation, testing and plotting.

The default is deriv=0, which corresponds to the function itself.

at value of w at which the estimated function is evaluated. The default is at="mean",

which corresponds to the mean of w. Other options are: at="median" for the median of w, at="zero" for a vector of zeros. at can also be a vector of the same length as the number of columns of w (if w is a matrix) or a data frame containing the same variables as specified in w (when data is specified). Note that when at="mean" or at="median", all factor variables (if specified) are excluded from

the evaluation (set as zero).

nolink if true, the function within the inverse link function is reported instead of the

conditional mean function for the outcome.

testmodel a vector or a logical value. It sets the degree of polynomial and the num-

ber of smoothness constraints for parametric model specification testing. If testmodel=c(p,s) is specified, a piecewise polynomial of degree p with s smoothness constraints is used. If testmodel=T or testmodel=NULL (default) is specified, testmodel=c(1,1) is used unless the degree p or the smoothness s selection is requested via the option pselect or sselect (see more details in

the explanation of pselect and sselect).

testmodelparfit

a data frame or matrix which contains the evaluation grid and fitted values of the model(s) to be tested against. The column contains a series of evaluation points at which the binscatter model and the parametric model of interest are compared with each other. Each parametric model is represented by other columns, which

must contain the fitted values at the corresponding evaluation points.

testmodelpoly degree of a global polynomial model to be tested against.

testshape a vector or a logical value. It sets the degree of polynom

a vector or a logical value. It sets the degree of polynomial and the number of smoothness constraints for nonparametric shape restriction testing. If testshape=c(p,s) is specified, a piecewise polynomial of degree p with s smoothness constraints is used. If testshape=T or testshape=NULL (default) is specified, testshape=c(1,1) is used unless the degree p or smoothness s selection is requested via the option pselect or sselect (see more details in

the explanation of pselect and sselect).

testshapel a vector of null boundary values for hypothesis testing. Each number a in the vector corresponds to one boundary of a one-sided hypothesis test to the left of

the form $H0: \sup_x mu(x) \le a$.

a vector of null boundary values for hypothesis testing. Each number a in the testshaper

vector corresponds to one boundary of a one-sided hypothesis test to the right of

the form H0: $\inf_x mu(x) >= a$.

testshape2 a vector of null boundary values for hypothesis testing. Each number a in the

vector corresponds to one boundary of a two-sided hypothesis test of the form

H0: $\sup_x |mu(x)-a|=0$.

1p an Lp metric used for parametric model specification testing and/or shape re-

striction testing. The default is 1p=Inf, which corresponds to the sup-norm of the t-statistic. Other options are 1p=q for a positive number q>=1. Note that

lp=Inf ("sup-norm") has to be used for testing one-sided shape restrictions.

a vector. If bins=c(p,s), it sets the piecewise polynomial of degree p with s smoothness constraints for data-driven (IMSE-optimal) selection of the partitioning/binning scheme. The default is bins=c(0,0), which corresponds to the

piecewise constant.

bins

binspos

nbins number of bins for partitioning/binning of x. If nbins=T or nbins=NULL (de-

> fault) is specified, the number of bins is selected via the companion command binsregselect in a data-driven, optimal way whenever possible. If a vector with more than one number is specified, the number of bins is selected within

this vector via the companion command binsregselect.

pselect vector of numbers within which the degree of polynomial p for point estimation

is selected. If the selected optimal degree is p, then piecewise polynomials of degree p+1 are used to conduct testing for nonparametric shape restrictions or parametric model specifications. Note: To implement the degree or smoothness

selection, in addition to pselect or sselect, nbins=# must be specified.

sselect vector of numbers within which the number of smoothness constraints s for

> point estimation is selected. If the selected optimal smoothness is s, then piecewise polynomials of s+1 smoothness constraints are used to conduct testing for nonparametric shape restrictions or parametric model specifications. If not specified, for each value p supplied in the option pselect, only the piecewise poly-

nomial with the maximum smoothness is considered, i.e., s=p.

position of binning knots. The default is binspos="qs", which corresponds to quantile-spaced binning (canonical binscatter). The other options are "es" for evenly-spaced binning, or a vector for manual specification of the positions of

inner knots (which must be within the range of x).

binsmethod method for data-driven selection of the number of bins. The default is binsmethod="dpi",

which corresponds to the IMSE-optimal direct plug-in rule. The other option is:

"rot" for rule of thumb implementation.

nbinsrot initial number of bins value used to construct the DPI number of bins selector.

If not specified, the data-driven ROT selector is used instead.

randcut upper bound on a uniformly distributed variable used to draw a subsample for

> bins/degree/smoothness selection. Observations for which runif()<=# are used. # must be between 0 and 1. By default, max(5000, 0.01n) observations are

used if the samples size n>5000.

nsims

number of random draws for hypothesis testing. The default is nsims=500, which corresponds to 500 draws from a standard Gaussian random vector of size [(p+1)*J - (J-1)*s]. Setting at least nsims=2000 is recommended to obtain the final results.

simsgrid

number of evaluation points of an evenly-spaced grid within each bin used for evaluation of the supremum (infimum or Lp metric) operation needed to construct hypothesis testing procedures. The default is simsgrid=20, which corresponds to 20 evenly-spaced evaluation points within each bin for approximating the supremum (infimum or Lp metric) operator. Setting at least simsgrid=50 is recommended to obtain the final results.

simsseed

seed for simulation.

vce

procedure to compute the variance-covariance matrix estimator. For least squares regression and generalized linear regression, the allowed options are the same as that for binsreg or binsqreg. For quantile regression, the allowed options are the same as that for binsqreg.

cluster

cluster ID. Used for compute cluster-robust standard errors.

asyvar

if true, the standard error of the nonparametric component is computed and the uncertainty related to control variables is omitted. Default is asyvar=FALSE, that is, the uncertainty related to control variables is taken into account.

dfcheck

adjustments for minimum effective sample size checks, which take into account number of unique values of x (i.e., number of mass points), number of clusters, and degrees of freedom of the different stat models considered. The default is dfcheck=c(20, 30). See Cattaneo, Crump, Farrell and Feng (2024c) for more details.

masspoints

how mass points in x are handled. Available options:

- "on" all mass point and degrees of freedom checks are implemented. Default.
- "noadjust" mass point checks and the corresponding effective sample size adjustments are omitted.
- "nolocalcheck" within-bin mass point and degrees of freedom checks are omitted.
- "off" "noadjust" and "nolocalcheck" are set simultaneously.
- "veryfew" forces the function to proceed as if x has only a few number of mass points (i.e., distinct values). In other words, forces the function to proceed as if the mass point and degrees of freedom checks were failed.

weights

an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. For more details, see 1m.

subset

optional rule specifying a subset of observations to be used.

numdist

number of distinct values for selection. Used to speed up computation.

numclust

number of clusters for selection. Used to speed up computation.

estmethodopt

a list of optional arguments used by rq (for quantile regression) or glm (for fitting generalized linear models).

. . .

optional arguments to control bootstrapping if estmethod="qreg" and vce="boot". See boot.rq.

Value

testshapeL	Results for testshapel, including: testvalL, null boundary values; stat.shapeL, test statistics; and pval.shapeL, p-value.
testshapeR	Results for testshaper, including: testvalR, null boundary values; stat.shapeR, test statistics; and pval.shapeR, p-value.
testshape2	Results for testshape2, including: testval2, null boundary values; stat.shape2, test statistics; and pval.shape2, p-value.
testpoly	Results for testmodelpoly, including: testpoly, the degree of global polynomial; stat.poly, test statistic; pval.poly, p-value.
testmodel	Results for testmodelparfit, including: $\mathtt{stat.model}$, test statistics; $\mathtt{pval.model}$, $\mathtt{p-values}$.
imse.var.rot	Variance constant in IMSE, ROT selection.
imse.bsq.rot	Bias constant in IMSE, ROT selection.
imse.var.dpi	Variance constant in IMSE, DPI selection.
imse.bsq.dpi	Bias constant in IMSE, DPI selection.
opt	A list containing options passed to the function, as well as total sample size n, number of distinct values Ndist in x, number of clusters Nclust, and number of bins nbins.

Author(s)

Matias D. Cattaneo, Princeton University, Princeton, NJ. <cattaneo@princeton.edu>.

Richard K. Crump, Federal Reserve Bank of New York, New York, NY. <richard.crump@ny.frb.org>.

Max H. Farrell, UC Santa Barbara, Santa Barbara, CA. <mhfarrell@gmail.com>.

Yingjie Feng (maintainer), Tsinghua University, Beijing, China. <fengyingjiepku@gmail.com>.

References

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024a: On Binscatter. American Economic Review 114(5): 1488-1514.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024b: Nonlinear Binscatter Methods. Working Paper.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng. 2024c: Binscatter Regressions. Working Paper.

See Also

binsreg, binsqreg, binsglm, binsregselect.

Examples

```
x <- runif(500); y <- sin(x)+rnorm(500)
est <- binstest(y,x, testmodelpoly=1)
summary(est)</pre>
```

Index

```
binsglm, 2, 3, 9, 14, 30, 34
binspwc, 2, 9
binsqreg, 2, 9, 12, 14, 14, 30, 33, 34
binsreg, 2, 9, 12, 14, 20, 30, 33, 34
binsreg-package, 2
binsregselect, 2, 3, 5, 6, 9, 11, 14, 17, 20, 21, 23, 26, 26, 30, 32, 34
binstest, 2, 3, 9, 14, 20, 21, 26, 30, 30
boot.rq, 13, 18, 19, 33
family, 4, 10, 31
formula, 3, 10, 15, 21, 27, 31
glm, 7, 12, 33
lm, 7, 12, 19, 25, 28, 33
rq, 12, 19, 33
summary.rq, 18
```