Package 'birk'

October 12, 2022
Type Package
Title MA Birk's Functions
Version 2.1.2
Date 2016-07-27
Author Matthew A. Birk
Maintainer Matthew A. Birk matthewabirk@gmail.com
Description Collection of tools to make R more convenient. Includes tools tosummarize data using statistics not available with base R and manipulateobjects for analyses.
Imports grDevices, stats
License GPL-3
Encoding UTF-8
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-07-27 07:56:39
R topics documented:
birk 2
conv_dim 2
conv_unit 3
conv_unit_options 5
geom_mean 6
range_seq 7
se 8
summ_stat 8
which.closest 9
Index 11

MA Birk's Functions

Description

Collection of tools to make R more convenient. Includes tools to summarize data using statistics not available with base R and manipulate objects for analyses.

Author(s)

Matthew A. Birk, matthewabirk@gmail.com

```
conv_dim Convert Dimensions of Measurement
```


Description

DEPRECATED. Converts between dimensions of measurement given a transition dimension (the dimension that "bridges" x and y, e.g. liters per second, lbs per acre). Note that 2 of the 3 measurements (x, y, or trans) must be defined to calculate the 3rd. See conv_unit_options for all options.

Usage

conv_dim(x, x_unit, trans, trans_unit, y, y_unit)

Arguments

x
x_unit
trans
trans_unit
y
y_unit
a numeric vector giving the measurement value in the first dimension.
the unit in which x was measured.
a numeric vector giving the measurement value in the transition dimension.
the unit in which trans was measured.
a numeric vector giving the measurement value in the second dimension.
the unit in which y was measured.

Details

This function supports all dimensions in conv_unit_options except for coordinates. The conversion values have been defined based primarily from international weight and measurement authorities (e.g. General Conference on Weights and Measures, International Committee for Weights and Measures, etc.). While much effort was made to make conversions as accurate as possible, you should check the accuracy of conversions to ensure that conversions are precise enough for your applications.

Note

Duration Years are defined as 365.25 days and months are defined as $1 / 12$ a year.
Energy cal is a thermochemical calorie (4.184 J) and Cal is 1000 cal (kcal or 4184 J).
Flow All gallon-based units are US gallons.
Mass All non-metric units are based on the avoirdupois system.
Power hp is mechanical horsepower, or 745.69 W .
Speed mach is calculated at sea level at $15^{\circ} \mathrm{C}$.

Author(s)

Matthew A. Birk, matthewabirk@gmail.com

See Also

conv_unit_options, conv_unit

Examples

```
# How many minutes does it take to travel }100\mathrm{ meters at 3 feet per second?
conv_dim(x = 100, x_unit = "m", trans = 3, trans_unit = "ft_per_sec", y_unit = "min")
# How many degrees does the temperature increase with an increase in 4 kPa given 0.8 Celcius
# increase per psi?
conv_dim(x_unit = "C", trans = 0.8, trans_unit = "C_per_psi", y = 4, y_unit = "kPa")
# Find the densities given volume and mass measurements.
conv_dim(x = c(60, 80), x_unit = "ft3", trans_unit = "kg_per_l", y = c(6e6, 4e6), y_unit = "g")
```

```
conv_unit
```


Convert Units of Measurement

Description

DEPRECATED. Converts common units of measurement for a variety of dimensions. See conv_unit_options for all options.

Usage

conv_unit(x, from, to)

Arguments

x	a numeric vector giving the measurement value in its original units.
from	the unit in which the measurement was made.
to	the unit to which the measurement is to be converted.

Details

Acceleration mm_per_sec2, cm_per_sec2, m_per_sec2, km_per_sec2, grav, inch_per_sec2, ft_per_sec2, mi_per_sec 2 , kph_per_sec, mph_per_sec
Angle degree, radian, grad, arcmin, arcsec, turn
Area nm 2 , um2, $\mathrm{mm} 2, \mathrm{~cm} 2, \mathrm{~m} 2$, hectare, km 2 , inch2, ft 2 , yd 2 , acre, mi2, naut_mi2
Coordinate dec_deg, deg_dec_min, deg_min_sec (see note)
Count nmol, umol, mmol, mol
Duration nsec, usec, msec, sec, min, hr, day, wk, mon, yr, dec, cen, mil, Ma
Energy J, kJ, erg, cal, Cal, Wsec, kWh, MWh, BTU
Flow ml_per_sec, ml_per_min, ml_per_hr, 1_per_sec, 1_per_min, 1_per_hr, m3_per_sec, m3_per_min, m3_per_hr, gal_per_sec, gal_per_min, gal_per_hr, ft3_per_sec, ft3_per_min, ft3_per_hr, Sv
Length angstrom, nm, um, mm, cm, dm, m, km, inch, ft, yd, fathom, mi, naut_mi, au, light_yr, parsec, point
Mass ug, mg, g, kg, Pg, carat, metric_ton, oz, lbs, short_ton, long_ton, stone
Power uW, mW, W, kW, MW, GW, erg_per_sec, cal_per_sec, cal_per_hr, Cal_per_sec, Cal_per_hr, BTU_per_sec, BTU_per_hr, hp
Pressure uatm, atm, $\mathrm{Pa}, \mathrm{hPa}, \mathrm{kPa}$, torr, $\mathrm{mmHg}, \mathrm{inHg}$, mbar, bar, dbar, psi
Speed mm_per_sec, cm_per_sec, m_per_sec, km_per_sec, inch_per_sec, ft_per_sec, kph, mph, km_per_day, mi_per_day, knot, mach, light

Temperature C, F, K, R

Volume ul, ml, dl, l, cm3, dm3, m3, km3, us_tsp, us_tbsp, us_oz, us_cup, us_pint, us_quart, us_gal, inch3, ft3, mi3, imp_tsp, imp_tbsp, imp_oz, imp_cup, imp_pint, imp_quart, imp_gal
The conversion values have been defined based primarily from international weight and measurement authorities (e.g. General Conference on Weights and Measures, International Committee for Weights and Measures, etc.). While much effort was made to make conversions as accurate as possible, you should check the accuracy of conversions to ensure that conversions are precise enough for your applications.

Note

Duration Years are defined as 365.25 days and months are defined as $1 / 12$ a year.
Coordinate Values must be entered as a string with one space between subunits (e.g. $70^{\circ} 33^{\prime} 11^{\prime \prime}$ = "70 33 11").
Energy cal is a thermochemical calorie (4.184 J) and Cal is 1000 cal (kcal or 4184 J).
Flow All gallon-based units are US gallons.
Mass All non-metric units are based on the avoirdupois system.
Power hp is mechanical horsepower, or 745.69 W .
Speed mach is calculated at sea level at $15^{\circ} \mathrm{C}$.

Author(s)

Matthew A. Birk, matthewabirk@gmail.com

See Also

```
conv_unit_options, conv_dim
```


Examples

```
conv_unit(2.54, "cm", "inch") # Result = 1 inch
conv_unit(seq(1, 10), "kg", "short_ton") # A vector of measurement values can be converted
# Convert 1, 10, and 100 meters to all other length units
sapply(conv_unit_options$length, function(x) conv_unit(c(1, 10, 100), "m", x))
conv_unit("33 1 1", "deg_min_sec", "dec_deg")
conv_unit(c("101 44.32","3 19.453"), "deg_dec_min", "deg_min_sec")
```


Description

DEPRECATED. Shows what units of measurement can be converted with the function conv_unit.

Usage

conv_unit_options

Format

A list with all units available for conversion using conv_unit.

Details

Duration Years are defined as 365.25 days and months are defined as $1 / 12$ a year.
Coordinate Values must be entered as a string with one space between subunits (e.g. $70^{\circ} 33^{\prime} 11^{\prime \prime}$ = "70 33 11").

Energy cal is a thermochemical calorie (4.184 J) and Cal is 1000 cal (kcal or 4184 J).
Mass All non-metric units are based on the avoirdupois system.
Power hp is mechanical horsepower, or 745.69 W .
Speed mach is calculated at sea level at $15^{\circ} \mathrm{C}$.

Author(s)

Matthew A. Birk, matthewabirk@gmail.com

Source

The conversion values have been defined based primarily from international weight and measurement authorities (e.g. General Conference on Weights and Measures, International Committee for Weights and Measures, etc.). While much effort was made to make conversions as accurate as possible, you should check the accuracy of conversions to ensure that conversions are precise enough for your applications.

See Also

```
conv_unit
```


Examples

```
conv_unit_options
conv_unit_options$pressure
```

```
    geom_mean Geometric Mean
```


Description

Computes the geometric mean of a vector, x. It is a wrapper for $\exp (\operatorname{mean}(\log (x)))$.

Usage

geom_mean(x, add0.001 = FALSE, ignore_neg = FALSE, ...)

Arguments

x
add0. 001 logical. Should a small constant (0.001) be added to avoid issues with zeroes?
ignore_neg logical. Should negative values be ignored to avoid NaNs?
... further arguments passed to mean.

Author(s)

Matthew A. Birk, matthewabirk@gmail.com

See Also

mean

Examples

```
geom_mean(1:10)
geom_mean(0:10)
geom_mean(0:10, add0.001 = TRUE)
geom_mean(-10:10, add0.001 = TRUE, ignore_neg = TRUE)
```

```
range_seq
```

Sequence Generation Spanning A Numerical Range

Description

Generates a sequence of numbers spanning the range of x.

Usage

range_seq $(x$, extend $=0, \ldots)$

Arguments

x	a numeric vector.
extend	number specifying the fraction by which the range should be extended.
\ldots	further arguments to be passed to seq.

Author(s)

Matthew A. Birk, matthewabirk@gmail.com

See Also

seq, extendrange

Examples

```
range_seq(rnorm(10, sd = 20))
range_seq(c(3, 9), extend = 0.1)
range_seq(c(3, 9), length.out = 20)
```

se \quad Standard Error

Description

Computes the standard error of the values in x. If na.rm is TRUE then missing values are removed before computation proceeds.

Usage

se(x, na.rm = FALSE)

Arguments

x
a numeric vector or an R object which is coercible to one by as.vector(x , "numeric").
na.rm
logical. Should missing values be removed?

Author(s)

Matthew A. Birk, <mat thewabirk@gmail.com>

See Also

sd, var

Examples

se(1:10)

Description

Pools summary statistics when given mean and (optionally) a measurement of variability (choose one among var, sd, and se).

Usage

summ_stat(mean, $\mathrm{n}, \mathrm{var}, \mathrm{sd}, \mathrm{se})$

Arguments

mean numeric. A vector of mean values to be pooled.
$\mathrm{n} \quad$ numeric. A vector of n values to be pooled.
var numeric. A vector of variance values to be pooled.
sd numeric. A vector of standard deviation values to be pooled.
se numeric. A vector of standard error of the mean vlaues to be pooled.

Author(s)

Matthew A. Birk, matthewabirk@gmail.com

See Also

weighted.mean, se

Examples

```
summ_stat(mean =c(0.68, 0.67), n = c(4, 5), sd = c(0.11, 0.15))
summ_stat(mean = 0.68, n = 3, se = 5)
summ_stat(mean = rnorm(1e4), n = rep(1, 1e4)) # Find pooled mean when variability is unknown.
```

```
which.closest
Where is the closest?
```


Description

Returns index of the closest value to x .

Usage

which.closest(vec, x)

Arguments

vec a numeric vector.
x numeric. The value for which the closest match should be returned.

Author(s)

Matthew A. Birk, matthewabirk@gmail.com

See Also

which.min, which. max

Examples

which.closest(10:1, 3.3)

Index

* datasets
conv_unit_options, 5
birk, 2
birk-package (birk), 2
conv_dim, 2, 5
conv_unit, 3, 3, 5, 6
conv_unit_options, 2, 3, 5, 5
extendrange, 7
geom_mean, 6
mean, 6
range_seq, 7
sd, 8
se, 8,9
seq, 7
summ_stat, 8
var, 8
weighted.mean, 9
which.closest, 9
which.max, 9
which.min, 9

