
Package ‘disordR’
January 13, 2024

Type Package

Title Non-Ordered Vectors

Version 0.9-8.2

Depends methods,Matrix (>= 1.3-3)

Imports digest

Suggests mvp,knitr,rmarkdown,testthat

VignetteBuilder knitr

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description Functionality for manipulating values of associative
maps. The package is designed to be used with the 'mvp' class of
packages that use the STL map class: its purpose is to trap
plausible idiom that is ill-defined (implementation-specific) and
return an informative error, rather than returning a possibly
incorrect result. To cite the package in publications please use
Hankin (2022) <doi:10.48550/ARXIV.2210.03856>.

License GPL (>= 2)

URL https://github.com/RobinHankin/disordR

BugReports https://github.com/RobinHankin/disordR/issues

NeedsCompilation no

Author Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Repository CRAN

Date/Publication 2024-01-13 19:10:05 UTC

R topics documented:
Arith . 2
c . 3
Compare-methods . 4
consistent . 4
disindex-class . 5

1

https://doi.org/10.48550/ARXIV.2210.03856
https://github.com/RobinHankin/disordR
https://github.com/RobinHankin/disordR/issues
https://orcid.org/0000-0001-5982-0415

2 Arith

disord . 6
disord-class . 8
drop . 8
extract . 10
Logic . 12
misc . 13
rdis . 15
show . 15
summary.disordR . 16

Index 18

Arith Arithmetic operations

Description

Arithmetic operations including low-level helper functions

Usage

disord_inverse(a)
disord_mod_disord(a,b)
disord_mod_numeric(a,b)
disord_negative(a)
disord_plus_disord(a,b)
disord_plus_numeric(a,b)
disord_power_disord(a,b)
disord_power_numeric(a,b)
numeric_power_disord(a,b)
disord_prod_disord(a,b)
disord_prod_numeric(a,b)
disord_arith_unary(e1,e2)
disord_arith_disord(e1,e2)
disord_arith_numeric(e1,e2)
numeric_arith_disord(e1,e2)

Arguments

a,b at least one is a disord object

e1,e2 Formal arguments for S4 dispatch

Details

Basic low-level arithmetic operations, intended to be called from S4 dispatch.

These functions return a disord object or a regular vector as appropriate. Consistency is required.
The hash is set to be that of the disord object if appropriate.

c 3

Value

Return a disord object or logical

Methods

Arith signature(e1="disord", e2="disord"): Dispatched to disord_arith_disord()

Arith signature(e1="disord", e2="numeric"): Dispatched to disord_arith_numeric()

Arith signature(e1="numeric", e2="disord"): Dispatched to numeric_arith_disord()

Arith signature(e1="disord", e2="missing"): Dispatched to disord_arith_unary()

Author(s)

Robin K. S. Hankin

Examples

a <- rdis()
a
a + 2*a
a > 5
a[a > 5] <- a[a > 5] + 100
a

c Concatenation

Description

Concatenation simply does not make sense for disord objects.

Value

Returns an error.

Note

I could not figure out how to stop idiom like “c(1,rdis())” from returning a result. Just don’t use
it, OK?

Author(s)

Robin K. S. Hankin

4 consistent

Compare-methods Methods for comparison of disord objects

Description

Arithmetic comparison methods (greater than, etc) for disord objects.

Methods

Compare signature(e1="disord", e2="disord"): Dispatched to disord_compare_disord()

Compare signature(e1="disord", e2="ANY"): Dispatched to disord_compare_any()

Compare signature(e1="ANY", e2="disord"): Dispatched to any_compare_disord()

Note

All the comparison methods use drop=TRUE to avoid inconsistent results when all the values are
the same [that is, all TRUE or all FALSE]. Comparing two disord objects requires their hash code to
agree as per disordR discipline. Comparing a disord with a numeric returns a disord object. In
each case, the hash code of the original object is preserved in the returned value.

Examples

rdis() > 4
rdis() > 1000

consistent Check for consistency

Description

The disordR package is designed to make permitted operations transparent and to prevent forbidden
operations from being executed.

Function consistent() checks for matching hash codes of its arguments and returns a Boolean. It
is called by function check_matching_hash() which either returns TRUE or reports an informative
error message if not.

Usage

consistent(x,y)
x %~% y
check_matching_hash(e1,e2,use=NULL)

disindex-class 5

Arguments

x,y,e1,e2 Objects of class disord

use optional object designed to give a more intelligible error message; typically
match.call()

Details

Function consistent() checks that its arguments have the same hash code, and thus their elements
can be paired up (e.g. added). Idiom a %~% b is equivalent to consistent(a,b).

The package generally checks for consistency with function check_matching_hash() which pro-
vides some helpful diagnostics if consistent() finds a hash mismatch.

Value

Boolean or an error as appropriate

Author(s)

Robin K. S. Hankin

See Also

disord

Examples

rdis() + rdis() # this would make check_matching_hash() report an error, if executed

disindex-class Experimental class "disindex"

Description

Experimental disindex class provides a disordR-compliant method for indexing disord objects.
The idea is that which(x), where x is Boolean of class disord, should have meaning under disordR
discipline. Thus which() gives a disindex object. This object can be used as an index for other
disord objects. One application would be the dismat class of matrices, currently under develop-
ment.

Function values() coerces its argument to an integer vector.

Objects from the Class

Objects can be created by calls of the form new("disindex", ...), although which() is more
natural.

6 disord

Slots

value: Numeric vector

hash: Object of class character that specifies the hash code

Author(s)

Robin K. S. Hankin

Examples

(x <- disord(c(1,2,1,2,2,7)))

x==2
w <- which(x==2)
w

x[w] <- 100
x

disord Functionality for disord objects

Description

Allows arithmetic operators to be used for disord objects; the canonical application is coefficients
of multivariate polynomials (as in the mvp package). The issue is that the storage order of disord
objects is implementation-specific but the order (whatever it is) must be consistent between the list
of keys and values in an associative array.

Usage

is.disord(x)
hash(x)
hashcal(x,ultra_strict=FALSE)
disord(v,h,drop=TRUE)
elements(x)

https://CRAN.R-project.org/package=mvp

disord 7

Arguments

x Object of class disord

v Vector of coefficients

h Hash code

drop Boolean, with default FALSE meaning to return a disord object and TRUE mean-
ing to call drop() before returning

ultra_strict Boolean, with default FALSE meaning to use just x to generate the hash, and
TRUE meaning to use the date and a random number as well [this ensures that
the hash is generated only once]

Details

A detailed vignette is provided that motivates the package. In applications such as the mvp or clif-
ford packages, the user will not need to even think about the disordR package: it works in the back-
ground. The purpose of the package is to trap plausible idiom that is ill-defined (implementation-
specific) and return an informative error, rather than returning a possibly incorrect result.

The package provides a single S4 class, disord, which has two slots, .Data and hash.

Function disord() takes an R object such as a vector or list and returns a disord object, which is
useful in the context of the STL map class.

Function hash() returns the hash of an object (compare hashcal() which is used to actually cal-
culate the hash code).

The package detects acceptable and forbidden operations using hash codes: function consistent()
checks for its arguments having the same hash code, and thus their elements can be paired up (e.g.
added). Idiomatically, a %~% b is equivalent to consistent(a,b).

Function elements() takes a disord and returns a regular R object, typically a vector or a list.

Value

Boolean, hash code, or object of class disord as appropriate.

Author(s)

Robin K. S. Hankin

Examples

(a <- rdis())
(b <- rdis())

a + 2*a + 2^a # fine
a + b # this would give an error if executed

a[a<0.5] <- 0 # round down; replacement works as expected

elements(a)

https://CRAN.R-project.org/package=mvp
https://CRAN.R-project.org/package=clifford
https://CRAN.R-project.org/package=clifford
https://CRAN.R-project.org/package=disordR

8 drop

disord-class Class "disord"

Description

The disord class provides basic arithmetic and extract/replace methods for disord objects.

Objects from the Class

Objects can be created by calls of the form new("disord", ...), although functions disord() and
(eventually) as.disord() are more user-friendly.

Slots

.Data: Object of class vector that specifies the elements

hash: Object of class character that specifies the hash code

Author(s)

Robin K. S. Hankin

Examples

showClass("disord")

drop Drop redundant information

Description

Coerce disord objects to vector when this makes sense

Usage

drop(x)
allsame(x)

Arguments

x disord object

drop 9

Details

If one has a disord object all of whose elements are identical, one usually wants to drop the disord
attribute and coerce to a vector. This can be done without breaking disordR discipline. Function
disord() takes a drop argument, defaulting to TRUE, which drops the disord class from its return
value if all the elements are the same.

Similarly, function drop() takes a disord object and if all elements are identical it returns the
elements in the form of a vector. Some extraction methods take a drop argument, which does the
same thing if TRUE. This is only useful for disord objects created with disord(...,drop=FALSE)

The drop functionality is conceptually similar to the drop argument of base R’s array extraction, as
in

a <- matrix(1:30,5,6)
a[1,,drop=TRUE]
a[1,,drop=FALSE]

Function allsame() takes a vector and returns TRUE if all elements are identical.

Value

Function drop() returns either a vector or object of class disord as appropriate; allsame() returns
a Boolean.

Author(s)

Robin K. S. Hankin

Examples

disord(c(3,3,3,3,3)) # default is drop=TRUE
disord(c(3,3,3,3,3),drop=FALSE) # retains disord class

drop(disord(c(3,3,3,3),drop=FALSE))

In extraction, argument drop discards disorderliness when possible:
a <- rdis()
a
a[] <- 6 # a becomes a vector
a

10 extract

extract Extraction and replacement methods for class "disord"

Description

The disord class provides basic arithmetic and extract/replace methods for disord objects.

Class index is taken from the excellent Matrix package and is a setClassUnion() of classes
numeric, logical, and character.

Methods

[signature(x = "disord", i = "ANY", j = "ANY"): ...

[signature(x = "disord", i = "index", j = "index"): ...

[signature(x = "disord", i = "index", j = "missing"): ...

[signature(x = "disord", i = "missing", j = "index"): ...

[signature(x = "disord", i = "missing", j = "missing"): ...

[signature(x = "disord", i = "matrix", j = "missing"): ...

[<- signature(x = "disord", i = "index", j = "index"): ...

[<- signature(x = "disord", i = "index", j = "missing"): ...

[<- signature(x = "disord", i = "missing", j = "index"): ...

[<- signature(x = "disord", i = "matrix", j = "missing"): ...

[<- signature(x = "disord", i = "missing", j = "missing"): ...

[[signature(x = "disord", i = "index"): ...

[[<- signature(x = "disord", i = "index",value="ANY"): ...

[signature(x="disord",i="disindex",j="missing",drop="ANY"): ...

[signature(x="disord",i="disindex",j="ANY",drop="ANY"): ...

[signature(x="ANY",i="disindex",j="ANY",drop="ANY"): ...

[signature(x="disord",i="disindex",j="missing",value="ANY"): ...

[signature(x="disord",i="disindex",j="ANY",value="ANY"): ...

[<- signature(x="disord",i="disindex",j="missing",drop="ANY"): ...

[[signature("disord",i="disindex"): ...

[[signature("ANY",i="disindex"): ...

[[<- signature(x="disord",i="disindex",j="missing",value="ANY") ...

[[<- signature(x="ANY",i="disindex",j="ANY",value="ANY") ...

The extraction method takes a drop argument which if TRUE, returns the drop() of its value. Ex-
traction, as in x[i], is rarely useful. It is only defined if one extracts either all, or none, of the
elements: anything else is undefined. Note that the hash code is unchanged if all elements are ex-
tracted (because the order might have changed) but unchanged if none are (because there is only
one way to extract no elements).

https://CRAN.R-project.org/package=Matrix

extract 11

Missing arguments for extraction and replacement are slightly idiosyncratic. Extraction idiom such
as x[] returns an object identical to x except for the hash code, which is changed. I can’t quite see
a sensible use-case for this, but the method allows one to define an object y <- x[] for which x and
y are incompatible. Replacement idiom x[] <- v always coerces to a vector.

Double square extraction, as in x[[i]] and x[[i]] <- value, is via (experimental) disindex func-
tionality.

Note

Package versions prior to disordR_0.0-9-6 allowed idiom such as

a <- disord(1:9)
a[a<3] + a[a>7]

but this is now disallowed. The issue is discussed in inst/note_on_extraction.Rmd.

Author(s)

Robin K. S. Hankin

See Also

drop,misc

Examples

a <- disord(sample(9))
a
a + 6*a^2
a[a>5] # "give me all elements of a that exceed 5"

a[] # a disord object, same elements as 'a', but with a different hash

a[a<5] <- a[a<5] + 100 # "replace all elements of 'a' less than 5 with their value plus 100"
a

Following expressions would return an error if executed:
if(FALSE){

a[1]
a[1] <- 44
a[1:2] <- a[3:4]

}

b <- disord(sample(9))
Following expressions would also return an error if executed:
if(FALSE){

a+b # (not really an example of extraction)
a[b>5]
a[b>5] <- 100
a[b>5] <- a[b>5] + 44

12 Logic

}

Logic Logical operations

Description

Logical operations including low-level helper functions

Usage

disord_logical_negate(x)
disord_logic_disord(e1,e2)
disord_logic_any(e1,e2)
any_logic_disord(e1,e2)

Arguments

e1,e2,x Formal arguments for S4 dispatch: logical disord object

Details

Basic low-level logical operations, intended to be called from S4 dispatch.
These functions return a logical disord object. appropriate. Consistency is required. The hash is
set to be that of the disord object if appropriate.

Value

Return a disord object or logical

Methods

Logic signature(e1="disord", e2="disord"): Dispatched to disord_logic_disord()

Logic signature(e1="disord", e2="ANY"): Dispatched to disord_logic_any()

Logic signature(e1="ANY", e2="disord"): Dispatched to any_logic_disord()

Author(s)

Robin K. S. Hankin

Examples

a <- disord(1:7)
l <- a>3
sum(l)
any(l)
all(l | !l)

misc 13

misc Miscellaneous functions

Description

This page documents various functions that work for disords, and I will add to these from time to
time as I add new functions that make sense for disord objects. Functions like sin() and abs()
work as expected: they take and return disord objects with the same hash as x (which means
that idiom like x + sin(x) is accepted). However, there are a few functions that are a little more
involved:

• rev() reverses its argument and returns a disord object with a reversed hash, which ensures
that rev(rev(x))==x (and the two are consistent).

• sort() returns a vector of sorted elements (not a disord)

• length() returns the length of the data component of the object

• sapply(X,f) returns a disord object which is the result of applying f() to each element of X.

• match(x,table) should behave as expected but note that if table is a disord, the result is
not defined (because it is not known where the elements of x occur in table). Nevertheless x
%in% table is defined and returns a disord object.

• lapply(x,f) returns disord(lapply(elements(x),f,...),h=hash(x)). Note that double
square bracket extraction, as in x[[i]], is disallowed (see extract.Rd).

• which() returns a disind object when given a Boolean disord

• unlist() takes a disord list, flattens it and returns a disord vector. It requires the recursive
flag of base::unlist() to be TRUE, which it is by default, interpreting this to mean “kill all
the structure in any sublists”. If the list comprises only length-one vectors, the returned value
retains the same hash as the argument; if not, a new hash is generated.

• diff() is undefined for disord objects.

Arguments

x Object of class disord

Value

Returns a disord

Note

Some functionality is not yet implemented. Factors, lists, and named vectors do not behave entirely
consistently in the package; paste() gives inconsistent results when called with disords.

Also, for() loops are incompatible with disord discipline, as they impose an ordering (for()
accesses the .Data slot of its argument, which is a regular R vector). Thus:

14 misc

> (a <- disord(1:3))
A disord object with hash 555f6bea49e58a2c2541060a21c2d4f9078c3086 and elements
[1] 1 2 3
(in some order)
> for(i in a){print(i)}
[1] 1
[1] 2
[1] 3
>

Above, we see that for() uses the ordering of the .Data slot of S4 object a, even though elements()
has not been explicitly called.

Author(s)

Robin K. S. Hankin

See Also

extract

Examples

a <- disord(c(a=1,b=2,c=7))
a
names(a)
length(a)
sqrt(a)

powers() and vars() in the mvp package return lists; see the vignette
for more discussion.

l <- disord(list(3,6:9,1:10))
sapply(l,length)

unlist(l)

Quick illustration of rev():

revstring <- function(s){paste(rev(unlist(strsplit(s, NULL))),collapse="")}
x <- rdis()
revstring(hash(x)) == hash(rev(x))

rdis 15

rdis Random disord objects

Description

Returns a random disord object

Usage

rdis(n=9)

Arguments

n Set to sample from, as interpreted by sample()

Details

A simple disord object, intended as a quick “get you going” example

Value

A disord object.

Author(s)

Robin K. S. Hankin

Examples

rdis()
rdis(99)
rdis(letters)

show Print method for disord objects

Description

Show methods for disords

Usage

S4 method for signature 'disord'
show(x)
disord_show(x)

16 summary.disordR

Arguments

x Object of class disord

Details

The print method simply prints the object’s hash and its elements, together with a reminder that
the elements are listed in an implementation-specific order. Function disord_show() is a helper
function, not really intended for the end-user.

Author(s)

Robin K. S. Hankin

Examples

print(rdis())

summary.disordR Summaries of disord objects

Description

A summary method for disord objects, and a print method for summaries.

Usage

S4 method for signature 'disord'
summary(object, ...)
S4 method for signature 'disindex'
summary(object, ...)
S3 method for class 'summary.disord'
print(x, ...)

Arguments

object,x Object of class disord

... Further arguments, currently ignored

Details

A summary.disord object is summary of a disord object x: a list with first element being the
hash(x) and the second being summary(elements(x)). The print method is just a wrapper for
this.

Author(s)

Robin K. S. Hankin

summary.disordR 17

Examples

summary(rdis(1000))

Index

!,disord-method (misc), 13
∗ classes

disindex-class, 5
disord-class, 8

∗ math
Compare-methods, 4

∗ methods
Compare-methods, 4

∗ symbolmath
consistent, 4
disord, 6

[(extract), 10
[,ANY,disindex,ANY,ANY-method

(extract), 10
[,ANY,disord,ANY-method (extract), 10
[,disord,ANY,ANY-method (extract), 10
[,disord,disindex,ANY,ANY-method

(extract), 10
[,disord,disindex,missing,ANY-method

(extract), 10
[,disord,disord,missing,ANY-method

(extract), 10
[,disord,disord,missing-method

(extract), 10
[,disord,index,ANY,ANY-method

(extract), 10
[,disord,index,ANY-method (extract), 10
[,disord,index,index-method (extract),

10
[,disord,index,missing,ANY-method

(extract), 10
[,disord,index,missing-method

(extract), 10
[,disord,missing,index-method

(extract), 10
[,disord,missing,missing,ANY-method

(extract), 10
[,disord,missing,missing-method

(extract), 10

[,disord-method (extract), 10
[.disord (extract), 10
[<- (extract), 10
[<-,disord,ANY,ANY-method (extract), 10
[<-,disord,disindex,ANY,ANY-method

(extract), 10
[<-,disord,disindex,missing,ANY-method

(extract), 10
[<-,disord,disord,missing,ANY-method

(extract), 10
[<-,disord,disord,missing,disord-method

(extract), 10
[<-,disord,disord,missing-method

(extract), 10
[<-,disord,index,ANY,ANY-method

(extract), 10
[<-,disord,index,index-method

(extract), 10
[<-,disord,index,missing,ANY-method

(extract), 10
[<-,disord,index,missing,disord-method

(extract), 10
[<-,disord,index,missing,numeric-method

(extract), 10
[<-,disord,index,missing-method

(extract), 10
[<-,disord,missing,index-method

(extract), 10
[<-,disord,missing,missing,ANY-method

(extract), 10
[<-,disord,missing,missing,disord-method

(extract), 10
[<-,disord,missing,missing,numeric-method

(extract), 10
[<-,disord,missing,missing-method

(extract), 10
[<-,disord-method (extract), 10
[<-.disord (extract), 10
[[(extract), 10

18

INDEX 19

[[,ANY,disindex-method (extract), 10
[[,disord,disindex-method (extract), 10
[[,disord,index-method (extract), 10
[[<-,ANY,disindex,ANY,ANY-method

(extract), 10
[[<-,ANY,disindex,ANY-method (extract),

10
[[<-,disord,disindex,ANY-method

(extract), 10
[[<-,disord,disindex,missing,ANY-method

(extract), 10
[[<-,disord,disindex,missing-method

(extract), 10
[[<-,disord,index,ANY-method (extract),

10
[[<-,disord,index-method (extract), 10
%~% (consistent), 4
%in% (misc), 13
%in%,ANY,disord-method (misc), 13
%in%,disord,ANY-method (misc), 13
%in%,disord,disord-method (misc), 13
%in%,disord-method (misc), 13

accessors (disord), 6
allsame (drop), 8
any_compare_disord (Compare-methods), 4
any_logic_disord (Logic), 12
Arith, 2
Arith,ANY,disord-method (extract), 10
Arith,disord,ANY-method (extract), 10
Arith,disord,disord-method (extract), 10
Arith,disord,missing-method (extract),

10
as.character,disord-method (misc), 13
as.complex,disord-method (misc), 13
as.double,disord-method (misc), 13
as.list,disord-method (misc), 13
as.logical,disord-method (misc), 13
as.numeric,disord-method (misc), 13
as_disord (disord), 6

c, 3
c,disord-method (c), 3
c.disord (c), 3
check_matching_hash (consistent), 4
Compare,ANY,disord-method

(Compare-methods), 4
Compare,disord,ANY-method

(Compare-methods), 4

Compare,disord,disord-method
(Compare-methods), 4

Compare-methods, 4
consistent, 4

diff (misc), 13
disindex (disindex-class), 5
disindex-class, 5
disindex_show (Arith), 2
disord, 5, 6
disord-class, 8
disord<- (disord), 6
disord_arith_disord (Arith), 2
disord_arith_numeric (Arith), 2
disord_arith_unary (Arith), 2
disord_compare_any (Compare-methods), 4
disord_compare_disord

(Compare-methods), 4
disord_inverse (Arith), 2
disord_logic (Logic), 12
disord_logic_any (Logic), 12
disord_logic_disord (Logic), 12
disord_logic_missing (Logic), 12
disord_logic_unary (Logic), 12
disord_logical_negate (Logic), 12
disord_mod_disord (Arith), 2
disord_mod_numeric (Arith), 2
disord_negative (Arith), 2
disord_plus_disord (Arith), 2
disord_plus_numeric (Arith), 2
disord_positive (Arith), 2
disord_power_disord (Arith), 2
disord_power_numeric (Arith), 2
disord_prod_disord (Arith), 2
disord_prod_numeric (Arith), 2
disord_show (show), 15
disord_unary (Arith), 2
drop, 8, 11
drop,disord-method (drop), 8

elements (disord), 6
extract, 10, 14

hash (disord), 6
hashcal (disord), 6

index-class (extract), 10
is.consistent (consistent), 4
is.disord (disord), 6

20 INDEX

is.na (misc), 13
is.na,disord-method (misc), 13
is.na.disord (misc), 13
is.na<- (misc), 13
is.na<-,disord-method (misc), 13
is.na<-.disord (misc), 13

lapply (misc), 13
lapply,disord-method (misc), 13
lapply.disord (misc), 13
length (misc), 13
length,disindex-method (misc), 13
length,disord-method (misc), 13
length.disindex (misc), 13
length.disord (misc), 13
length<- (misc), 13
length<-,disord-method (misc), 13
length<-.disord (misc), 13
Logic, 12

match (misc), 13
match,ANY,disord-method (misc), 13
match,disord,ANY-method (misc), 13
match,disord,disord-method (misc), 13
match,disord-method (misc), 13
misc, 11, 13

numeric_arith_disord (Arith), 2
numeric_mod_disord (Arith), 2
numeric_power_disord (Arith), 2

print (show), 15
print,disord-method (show), 15
print.disord (show), 15
print.summary.disord (summary.disordR),

16

rdis, 15
rdisord (rdis), 15
rdisordR (rdis), 15
rev (misc), 13
rev,disord-method (misc), 13
rev.disord (misc), 13

sapply (misc), 13
sapply,disord-method (misc), 13
sapply.disord (misc), 13
show, 15
show,disord-method (show), 15
sort (misc), 13

sort,disord-method (misc), 13
sort.disord (misc), 13
summary,disindex-method

(summary.disordR), 16
summary,disord-method

(summary.disordR), 16
summary.disord (summary.disordR), 16
summary.disordR, 16

unlist (misc), 13
unlist,disord-method (misc), 13

values (disindex-class), 5

which,disindex-method (misc), 13
which,disord-method (misc), 13

	Arith
	c
	Compare-methods
	consistent
	disindex-class
	disord
	disord-class
	drop
	extract
	Logic
	misc
	rdis
	show
	summary.disordR
	Index

