
Package ‘ebirdst’
March 5, 2024

Type Package

Title Access and Analyze eBird Status and Trends Data Products

Version 3.2022.3

Description Tools for accessing and analyzing eBird Status and
Trends Data Products
(<https://science.ebird.org/en/status-and-trends>). eBird
(<https://ebird.org/home>) is a global database of bird observations
collected by member of the public. eBird Status and Trends uses these
data to model global bird distributions, abundances, and population trends
at a high spatial and temporal resolution.

License GPL-3

URL https://ebird.github.io/ebirdst/, https://github.com/ebird/ebirdst

BugReports https://github.com/ebird/ebirdst/issues

Depends R (>= 4.0.0)

Imports arrow, dplyr (>= 1.0.0), grDevices, jsonlite, magrittr,
RColorBrewer, rlang, sf (>= 1.0-0), stats, stringr, terra (>=
1.6-3), tools, utils, viridisLite

Suggests fields, ggplot2, knitr, PresenceAbsence, rmarkdown,
rnaturalearth, testthat, withr

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

NeedsCompilation no

Author Matthew Strimas-Mackey [aut, cre]
(<https://orcid.org/0000-0001-8929-7776>),

Shawn Ligocki [aut],
Tom Auer [aut] (<https://orcid.org/0000-0001-8619-7147>),
Daniel Fink [aut] (<https://orcid.org/0000-0002-8368-1248>),
Cornell Lab of Ornithology [cph]

1

https://science.ebird.org/en/status-and-trends
https://ebird.org/home
https://ebird.github.io/ebirdst/
https://github.com/ebird/ebirdst
https://github.com/ebird/ebirdst/issues
https://orcid.org/0000-0001-8929-7776
https://orcid.org/0000-0001-8619-7147
https://orcid.org/0000-0002-8368-1248

2 assign_to_grid

Maintainer Matthew Strimas-Mackey <mes335@cornell.edu>

Repository CRAN

Date/Publication 2024-03-05 17:20:02 UTC

R topics documented:

assign_to_grid . 2
calculate_mcc_f1 . 4
date_to_st_week . 5
ebirdst_data_dir . 5
ebirdst_download_status . 6
ebirdst_download_trends . 8
ebirdst_palettes . 9
ebirdst_predictors . 10
ebirdst_predictor_descriptions . 10
ebirdst_runs . 11
ebirdst_version . 13
get_species . 13
get_species_path . 14
grid_sample . 15
load_config . 18
load_fac_map_parameters . 19
load_pi . 20
load_ppm . 21
load_ranges . 23
load_raster . 24
load_regional_stats . 26
load_trends . 27
rasterize_trends . 29
set_ebirdst_access_key . 30

Index 32

assign_to_grid Assign points to a spacetime grid

Description

Given a set of points in space and (optionally) time, define a regular grid with given dimensions,
and return the grid cell index for each point.

assign_to_grid 3

Usage

assign_to_grid(
points,
coords = NULL,
is_lonlat = FALSE,
res,
jitter_grid = TRUE,
grid_definition = NULL

)

Arguments

points data frame; points with spatial coordinates x and y, and an optional time coordi-
nate t.

coords character; names of the spatial and temporal coordinates in the input dataframe.
Only provide these names if you want to overwrite the default coordinate names:
c("x", "y", "t") or c("longitude", "latitude", "t") if is_lonlat = TRUE.

is_lonlat logical; if the points are in unprojected, lon-lat coordinates. In this case, the
input data frame should have columns "longitude" and "latitude" and the
points will be projected to an equal area Eckert IV CRS prior to grid assignment.

res numeric; resolution of the grid in the x, y, and t dimensions, respectively. If
only 2 dimensions are provided, a space only grid will be generated. The units
of res are the same as the coordinates in the input data unless is_lonlat is true
in which case the x and y resolution should be provided in meters.

jitter_grid logical; whether to jitter the location of the origin of the grid to introduce some
randomness.

grid_definition

list; object defining the grid via the origin and resolution components. To as-
sign multiple sets of points to exactly the same grid, assign_to_grid() returns
a data frame with a grid_definition attribute that can be passed to subsequent
calls to assign_to_grid(). res and jitter are ignored if grid_definition
is provided.

Value

Data frame with the indices of the space-only and spacetime grid cells. This data frame will have a
grid_definition attribute that can be used to reconstruct the grid.

Examples

set.seed(1)

generate some example points
points_xyt <- data.frame(x = runif(100), y = runif(100), t = rnorm(100))
assign to grid
cells <- assign_to_grid(points_xyt, res = c(0.1, 0.1, 0.5))

assign a second set of points to the same grid

4 calculate_mcc_f1

assign_to_grid(points_xyt, grid_definition = attr(cells, "grid_definition"))

assign lon-lat points to a 10km space-only grid
points_ll <- data.frame(longitude = runif(100, min = -180, max = 180),

latitude = runif(100, min = -90, max = 90))
assign_to_grid(points_ll, res = c(10000, 10000), is_lonlat = TRUE)

overwrite default coordinate names, 5km by 1 week grid
points_names <- data.frame(lon = runif(100, min = -180, max = 180),

lat = runif(100, min = -90, max = 90),
day = sample.int(365, size = 100))

assign_to_grid(points_names,
res = c(5000, 5000, 7),
coords = c("lon", "lat", "day"),
is_lonlat = TRUE)

calculate_mcc_f1 Calculate MCC and F1 score

Description

Given binary observed and predicted response, estimate Matthews correlation coefficient (MCC)
and the F1 score.

Usage

calculate_mcc_f1(observed, predicted)

Arguments

observed logical or 0/1; the observed binary response.

predicted logical or 0/1; the predicted binary response. This will typically need to be
generated by applying a threshold to the continuous predicted response.

Value

A list with two elements: mcc and f1.

Examples

obs <- c(rep(1L, 1000L), rep(0L, 10000L))
pred <- c(rbeta(300L, 12, 2), rbeta(700L, 3, 4), rbeta(10000L, 2, 3))
calculate_mcc_f1(obs > 0, pred > 0.5)

date_to_st_week 5

date_to_st_week Get the Status and Trends week that a date falls into

Description

Get the Status and Trends week that a date falls into

Usage

date_to_st_week(dates, version = 2022)

Arguments

dates a vector of dates.
version One of 2021 for the date scheme used for the 2021 and prior data releases or

2022 for the date scheme used in the 2022 and subsequent releases. Default is
2022.

Value

An integer vector of weeks numbers from 1-52.

Examples

d <- as.Date(c("2016-04-08", "2018-12-31", "2014-01-01", "2018-09-04"))
date_to_st_week(d)

ebirdst_data_dir Path to eBird Status and Trends data download directory

Description

Identify and return the path to the default download directory for eBird Status and Trends data
products. This directory can be defined by setting the environment variable EBIRDST_DATA_DIR,
otherwise the directory returned by tools::R_user_dir("ebirdst", which = "data") will be
used.

Usage

ebirdst_data_dir()

Value

The path to the data download directory.

Examples

ebirdst_data_dir()

6 ebirdst_download_status

ebirdst_download_status

Download eBird Status Data Products

Description

Download eBird Status Data Products for a single species, or for an example species. Downloading
Status and Trends data requires an access key, consult set_ebirdst_access_key() for instructions
on how to obtain and store this key. The example data consist of the results for Yellow-bellied
Sapsucker subset to Michigan and are much smaller than the full dataset, making these data quicker
to download and process. Only the low resolution (27 km) data are available for the example data.
In addition, the example data are accessible without an access key.

Usage

ebirdst_download_status(
species,
path = ebirdst_data_dir(),
download_abundance = TRUE,
download_occurrence = FALSE,
download_count = FALSE,
download_ranges = FALSE,
download_regional = FALSE,
download_pis = FALSE,
download_ppms = FALSE,
download_all = FALSE,
pattern = NULL,
dry_run = FALSE,
force = FALSE,
show_progress = TRUE

)

Arguments

species character; a single species given as a scientific name, common name or six-letter
species code (e.g. "woothr"). The full list of valid species is in the ebirdst_runs
data frame included in this package. To download the example dataset, use
"yebsap-example".

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

download_abundance

whether to download estimates of abundance and proportion of population.
download_occurrence

logical; whether to download estimates of occurrence.

ebirdst_download_status 7

download_count logical; whether to download estimates of count.
download_ranges

logical; whether to download the range polygons.
download_regional

logical; whether to download the regional summary stats, e.g. percent of popu-
lation in regions.

download_pis logical; whether to download spatial estimates of predictor importance.

download_ppms logical; whether to download spatial predictive performance metrics.

download_all logical; download all files in the data package. Equivalent to setting all the
download_ arguments to TRUE.

pattern character; regular expression pattern to supply to str_detect() to filter files to
download. This filter will be applied in addition to any of the download_ argu-
ments. Note that some files are mandatory and will always be downloaded.

dry_run logical; whether to do a dry run, just listing files that will be downloaded. This
can be useful when testing the use of pattern to filter the files to download.

force logical; if the data have already been downloaded, should a fresh copy be down-
loaded anyway.

show_progress logical; whether to print download progress information.

Details

The complete data package for each species contains a large number of files, all of which are cat-
aloged in the vignettes. Most users will only require a small subset of these files, so by default
this function only downloads the most commonly used files: GeoTIFFs providing estimate of rel-
ative abundance and proportion of population. For those interested in additional data products, the
arguments starting with download_ control the download of these other products. The pattern
argument provides even finer grained control over what gets downloaded.

Value

Path to the folder containing the downloaded data package for the given species. If dry_run = TRUE
a list of files to download will be returned.

Examples

Not run:
download the example data
ebirdst_download_status("yebsap-example")

download the data package for wood thrush
ebirdst_download_status("woothr")

use pattern to only download low resolution (27 km) geotiff data
dry_run can be used to see what files will be downloaded
ebirdst_download_status("lobcur", pattern = "_27km_", dry_run = TRUE)
use pattern to only download high resolution (3 km) weekly abundance data
ebirdst_download_status("lobcur", pattern = "abundance_median_3km",

dry_run = TRUE)

8 ebirdst_download_trends

End(Not run)

ebirdst_download_trends

Download eBird Trends Data Products

Description

Download eBird Trends Data Products for set of species, or for an example species. Downloading
Status and Trends data requires an access key, consult set_ebirdst_access_key() for instructions
on how to obtain and store this key. The example data consist of the results for Yellow-bellied
Sapsucker subset to Michigan and are much smaller than the full dataset, making these data quicker
to download and process. The example data are accessible without an access key.

Usage

ebirdst_download_trends(
species,
path = ebirdst_data_dir(),
force = FALSE,
show_progress = TRUE

)

Arguments

species character; one or more species given as scientific names, common names or six-
letter species codes (e.g. "woothr"). The full list of valid species can be viewed
in the ebirdst_runs data frame included in this package; species with trends esti-
mates are indicated by the has_trends column. To access the example dataset,
use "yebsap-example".

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

force logical; if the data have already been downloaded, should a fresh copy be down-
loaded anyway.

show_progress logical; whether to print download progress information.

Value

Character vector of paths to the folders containing the downloaded data packages for the given
species. The trends data will be in the trends/ subdirectory.

ebirdst_palettes 9

Examples

Not run:
download the example data
ebirdst_download_trends("yebsap-example")

download the data package for wood thrush
ebirdst_download_trends("woothr")

multiple species can be downloaded at once
ebirdst_download_trends(c("Sage Thrasher", "Abert's Towhee"))

End(Not run)

ebirdst_palettes eBird Status and Trends color palettes for mapping

Description

Generate the color palettes used for the eBird Status and Trends relative abundance and trends maps.

Usage

ebirdst_palettes(
n,
type = c("weekly", "breeding", "nonbreeding", "migration", "prebreeding_migration",

"postbreeding_migration", "year_round", "trends")
)

Arguments

n integer; the number of colors to be in the palette.

type character; the type of color palette: "weekly" for the weekly relative abundance,
"trends" for trends color palett, and a season name for the seasonal relative abun-
dance. Note that for trends a diverging palette is returned, while all other palettes
are sequential.

Value

A character vector of hex color codes.

Examples

breeding season color palette
ebirdst_palettes(10, type = "breeding")

10 ebirdst_predictor_descriptions

ebirdst_predictors eBird Status and Trends predictor variables

Description

A data frame of the predictors used in the eBird Status and Trends models. These include effort
variables (e.g. distance traveled, number of observers, etc.) in addition to variables describing the
environment (e.g. elevation, land cover, water cover, etc.). The environmental variables are derived
by summarizing remotely sensed datasets (described in ebirdst_predictor_descriptions) over a 3 km
diameter neighborhood around each checklist. For categorical datasets, two variables are generated
for each class describing the percent cover (pland) and edge density (ed).

Usage

ebirdst_predictors

Format

A data frame with 150 rows and 4 columns:

• predictor: predictor name.

• dataset: dataset name, which can be cross referenced in ebirdst_predictor_descriptions for
further details.

• class: class number or name for categorical variables.

• label: descriptive labels for each predictor variable.

ebirdst_predictor_descriptions

eBird Status and Trends predictors descriptions

Description

Details on the eBird Status and Trends predictor variables or, for variables all derived from the same
dataset, details on the dataset.

Usage

ebirdst_predictor_descriptions

ebirdst_runs 11

Format

A data frame with 37 rows and 4 columns

• dataset: dataset name.

• predictor: predictor name or, if multiple variables are derived from this dataset, the pattern
used to generate the names.

• description: detailed description of the dataset or variable.

• reference: a reference to consult for further information on the dataset.

ebirdst_runs Data frame of species with eBird Status and Trends Data Products

Description

A dataset listing the species for which eBird Status and Trends Data Products are available, with
additional information relevant to both the Status and Trends results for each species.

Usage

ebirdst_runs

Format

A data frame with 27 variables:

• species_code: alphanumeric eBird species code uniquely identifying the species

• scientific_name: scientific name.

• common_name: English common name.

• is_resident: classifies this species a resident or a migrant.

• breeding_quality: breeding season quality.

• breeding_start: breeding season start date.

• breeding_end: breeding season start date.

• nonbreeding_quality: non-breeding season quality.

• nonbreeding_start: non-breeding season start date.

• nonbreeding_end: non-breeding season start date.

• postbreeding_migration_quality: post-breeding season quality.

• postbreeding_migration_start: post-breeding season start date.

• postbreeding_migration_end: post-breeding season start date.

• prebreeding_migration_quality: pre-breeding season quality.

• prebreeding_migration_start: pre-breeding season start date.

• prebreeding_migration_end: pre-breeding season start date.

12 ebirdst_runs

• resident_quality: resident quality.

• resident_start: for resident species, the year-round start date.

• resident_end: for resident species, the year-round end date.

• has_trends: whether or not this species has trends estimates.

• trends_season: season that the trend was estimated for: breeding, nonbreeding, or resident.

• trends_region: the geographic region that the trend model was run for. Note that broadly
distributed species (e.g. Barn Swallow) will only have trend estimates for a regional subset of
their full range.

• trends_start_year: start year of the trend time period.

• trends_end_year: end year of the trend time period.

• trends_start_date: start date (MM-DD format) of the season for which the trend was esti-
mated.

• trends_end_date: end date (MM-DD format) of the season for which the trend was estimated.

• rsquared: R-squared value comparing the actual and estimated trends from the simulations.

• beta0: the intercept of a linear model fitting actual vs. estimated trends. (actual ~ estimated)
for the simulations. Positive values of beta0 indicate that the models are systematically un-
derestimating the simulated trend for this species.

Details

For the Status Data Products, the dates defining the boundaries of the seasons are provided in
additional to a quality rating from 0-3 for each season. These dates and quality ratings are assigned
through a process of expert review. expert review. Note that missing dates imply that a season failed
expert review for that species within that season.

Trends Data Products are only available for a subset of species, indicated by the has_trends vari-
able, and for each species the trends is estimated for a single season. The two predictive perfor-
mance metrics (rsquared and beta0) are based on a comparison of actual and estimated percent
per year trends for a suite of simulations (see Fink et al. 2023 for further details). The trends regions
are defined as follows:

• aus_nz: Australia and New Zealand

• iberia: Spain and Portugal

• india_se_asia: India, Nepal, Bhutan, Sri Lanka, Thailand, Cambodia, Malaysia, Brunei,
Singapore, and Philippines

• japan: Japan

• north_america: North America including Mexico, Central America, and the Caribbean, but
excluding Nunavut, North West Territories, and Hawaii

• south_africa: South Africa, Lesotho, and Eswatini

• south_america: Colombia, Ecuador, Peru, Chile, Argentina, and Uruguay

• taiwan: Taiwan

• turkey_plus: Turkey, Cyprus, Israel, Palestine, Greece, Armenia, and Georgia

https://science.ebird.org/status-and-trends/faq#seasons

ebirdst_version 13

ebirdst_version eBird Status and Trends Data Products version

Description

Identify the version of the eBird Status and Trends Data Products that this version of the R package
works with. Versions are defined by the year that all model estimates are made for. In addition,
the release data and end date for access of this version of the data are provided. Note that after the
given access end data you will no longer be able to download this version of the data and will be
required to update the R package and transition to using a newer data version.

Usage

ebirdst_version()

Value

A list with three components: version_year is the year the model estimates are made for in
this version of the data, release_year is the year this version of the data were released, and
access_end_date is the last date that users will be able to download this version of the data.

Examples

ebirdst_version()

get_species Get eBird species code for a set of species

Description

Give a vector of species codes, common names, and/or scientific names, return a vector of 6-letter
eBird species codes. This function will only look up codes for species for which eBird Status and
Trends results exist.

Usage

get_species(x)

Arguments

x character; vector of species codes, common names, and/or scientific names.

Value

A character vector of eBird species codes.

14 get_species_path

Examples

get_species(c("Black-capped Chickadee", "Poecile gambeli", "carchi"))

get_species_path Get the path to the data package for a given species

Description

This helper function can be used to get the path to a data package for a given species.

Usage

get_species_path(species, path = ebirdst_data_dir(), check_downloaded = TRUE)

Arguments

species character; a single species given as a scientific name, common name or six-letter
species code (e.g. "woothr"). The full list of valid species is in the ebirdst_runs
data frame included in this package. To download the example dataset, use
"yebsap-example".

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

check_downloaded

logical; raise an error if no data have been downloaded for this species.

Value

The path to the data package directory.

Examples

Not run:
get the path
path <- get_species_path("yebsap-example")

get the path to the full data package for yellow-bellied sapsucker
common name, scientific name, or species code can be used
path <- get_species_path("Yellow-bellied Sapsucker")
path <- get_species_path("Sphyrapicus varius")
path <- get_species_path("yebsap")

End(Not run)

grid_sample 15

grid_sample Spatiotemporal grid sampling of observation data

Description

Sample observation data on a spacetime grid to reduce spatiotemporal bias.

Usage

grid_sample(
x,
coords = c("longitude", "latitude", "day_of_year"),
is_lonlat = TRUE,
res = c(3000, 3000, 7),
jitter_grid = TRUE,
sample_size_per_cell = 1,
cell_sample_prop = 0.75,
keep_cell_id = FALSE,
grid_definition = NULL

)

grid_sample_stratified(
x,
coords = c("longitude", "latitude", "day_of_year"),
is_lonlat = TRUE,
unified_grid = FALSE,
keep_cell_id = FALSE,
by_year = TRUE,
case_control = TRUE,
obs_column = "obs",
sample_by = NULL,
min_detection_probability = 0,
maximum_ss = NULL,
jitter_columns = NULL,
jitter_sd = 0.1,
...

)

Arguments

x data frame; observations to sample, including at least the columns defining the
location in space and time. Additional columns can be included such as features
that will later be used in model training.

coords character; names of the spatial and temporal coordinates. By default the spatial
spatial coordinates should be longitude and latitude, and temporal coordi-
nate should be day_of_year.

16 grid_sample

is_lonlat logical; if the points are in unprojected, lon-lat coordinates. In this case, the
points will be projected to an equal area Eckert IV CRS prior to grid assignment.

res numeric; resolution of the spatiotemporal grid in the x, y, and time dimensions.
Unprojected locations are projected to an equal area coordinate system prior to
sampling, and resolution should therefore be provided in units of meters. The
temporal resolution should be in the native units of the time coordinate in the
input data frame, typically it will be a number of days.

jitter_grid logical; whether to jitter the location of the origin of the grid to introduce some
randomness.

sample_size_per_cell

integer; number of observations to sample from each grid cell.
cell_sample_prop

proportion (0-1]; if less than 1, only this proportion of cells will be randomly
selected for sampling.

keep_cell_id logical; whether to retain a unique cell identifier, stored in column named .cell_id.
grid_definition

list defining the spatiotemporal sampling grid as returned by assign_to_grid()
in the form of an attribute of the returned data frame.

unified_grid logical; whether a single, unified spatiotemporal sampling grid should be defined
and used for all observations in x or a different grid should be used for each
stratum.

by_year logical; whether the sampling should be done by year, i.e. sampling N observa-
tions per grid cell per year, rather than across years, i.e. N observations per grid
cell regardless of year. If using sampling by year, the input data frame x must
have a year column.

case_control logical; whether to apply case control sampling whereby presence and absence
are sampled independently.

obs_column character; if case_control = TRUE, this is the name of the column in x that
defines detection (obs_column > 0) and non-detection (obs_column == 0).

sample_by character; additional columns in x to stratify sampling by. For example, if a
landscape has many small islands (defined by an island variable) and we wish
to sample from each independently, use sample_by = "island".

min_detection_probability

proportion [0-1); the minimum detection probability in the final dataset. If
case_control = TRUE, and the proportion of detections in the grid sampled
dataset is below this level, then additional detections will be added via grid
sampling the detections from the input dataset until at least this proportion of
detections appears in the final dataset. This will typically result in duplica-
tion of some observations in the final dataset. To turn this off this feature use
min_detection_probability = 0.

maximum_ss integer; the maximum sample size in the final dataset. If the grid sampling yields
more than this number of observations, maximum_ss observations will be se-
lected randomly from the full set. Note that this subsampling will be performed
in such a way that all levels of each strata will have at least one observation
within the final dataset, and therefore it is not truly randomly sampling.

grid_sample 17

jitter_columns character; if detections are oversampled to achieve the minimum detection prob-
ability, some observations will be duplicated, and it can be desirable to slightly
"jitter" the values of model training features for these duplicated observations.
This argument defines the column names in x that will be jittered.

jitter_sd numeric; strength of the jittering in units of standard deviations, see jitter_columns.

... additional arguments defining the spatiotemporal grid; passed to grid_sample().

Details

grid_sample_stratified() performs stratified case control sampling, independently sampling
from strata defined by, for example, year and detection/non-detection. Within each stratum, grid_sample()
is used to sample the observations on a spatiotemporal grid. In addition, if case control sampling is
turned on, the detections are oversampled to increase the frequecy of detections in the dataset.

The sampling grid is defined, and assignment of locations to cells occurs, in assign_to_grid().
Consult the help for that function for further details on how the grid is generated and locations are
assigned. Note that by providing 2-element vectors to both coords and res the time component of
the grid can be ignored and spatial-only subsampling is performed.

Value

A data frame of the spatiotemporally sampled data.

Examples

set.seed(1)

generate some example observations
n_obs <- 10000
checklists <- data.frame(longitude = rnorm(n_obs, sd = 0.1),

latitude = rnorm(n_obs, sd = 0.1),
day_of_year = sample.int(28, n_obs, replace = TRUE),
year = NA_integer_,
obs = rpois(n_obs, lambda = 0.1),
forest_cover = runif(n_obs),
island = as.integer(runif(n_obs) > 0.95))

add a year column, giving more data to recent years
checklists$year <- sample(seq(2016, 2020), size = n_obs, replace = TRUE,

prob = seq(0.3, 0.7, length.out = 5))
create several rare islands
checklists$island[sample.int(nrow(checklists), 9)] <- 2:10

basic spatiotemporal grid sampling
sampled <- grid_sample(checklists)

plot original data and grid sampled data
par(mar = c(0, 0, 0, 0))
plot(checklists[, c("longitude", "latitude")],

pch = 19, cex = 0.3, col = "#00000033",
axes = FALSE)

points(sampled[, c("longitude", "latitude")],

18 load_config

pch = 19, cex = 0.3, col = "red")

case control sampling stratified by year and island
return a maximum of 1000 checklists
sampled_cc <- grid_sample_stratified(checklists, sample_by = "island",

maximum_ss = 1000)

case control sampling increases the prevalence of detections
mean(checklists$obs > 0)
mean(sampled$obs > 0)
mean(sampled_cc$obs > 0)

stratifying by island ensures all levels are retained, even rare ones
table(checklists$island)
normal grid sampling loses rare island levels
table(sampled$island)
stratified grid sampling retain at least one observation from each level
table(sampled_cc$island)

load_config Load eBird Status Data Products configuration file

Description

Load the configuration file for an eBird Status run. This configuration file is mostly for internal use
and contains a variety of parameters used in the modeling process.

Usage

load_config(species, path = ebirdst_data_dir())

Arguments

species character; the species to load data for, given as a scientific name, common name
or six-letter species code (e.g. "woothr"). The full list of valid species is in
the ebirdst_runs data frame included in this package. To download the example
dataset, use "yebsap-example".

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

Value

A list with the run configuration parameters.

load_fac_map_parameters 19

Examples

Not run:
download example data if hasn't already been downloaded
ebirdst_download_status("yebsap-example")

load configuration parameters
p <- load_config("yebsap-example")

End(Not run)

load_fac_map_parameters

Load full annual cycle map parameters

Description

Get the map parameters used on the eBird Status and Trends website to optimally display the full
annual cycle data. This includes bins for the abundance data, a projection, and an extent to map.
The extent is the spatial extent of non-zero data across the full annual cycle and the projection is
optimized for this extent.

Usage

load_fac_map_parameters(species, path = ebirdst_data_dir())

Arguments

species character; the species to load data for, given as a scientific name, common name
or six-letter species code (e.g. "woothr"). The full list of valid species is in
the ebirdst_runs data frame included in this package. To download the example
dataset, use "yebsap-example".

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

Value

A list containing elements:

• custom_projection: a custom projection optimized for the given species’ full annual cycle

• fa_extent: a SpatExtent object storing the spatial extent of non-zero data for the given
species in the custom projection

• res: a numeric vector with 2 elements giving the target resolution of raster in the custom
projection

20 load_pi

• fa_extent_sinu: the extent in sinusoidal projection

• weekly_bins/weekly_labels: weekly abundance bins and labels for the full annual cycle

• seasonal_bins/‘seasonal_labels: seasonal abundance bins and labels for the full annual cycle

Examples

Not run:
download example data if hasn't already been downloaded
ebirdst_download_status("yebsap-example")

load configuration parameters
load_fac_map_parameters(path)

End(Not run)

load_pi Load predictor importance (PI) rasters

Description

The eBird Status models estimate the relative importance of each environmental predictor used in
the model. These predictor importance (PI) data are converted to ranks (with a rank of 1 being the
most important) relative to the full suite of environmental predictors. The ranks are summarized
to a 27 km resolution raster grid for each predictor, where the cell values are the average across
all models in the ensemble contributing to that cell. These data are available in raster format pro-
vided download_pis = TRUE was used when calling ebirdst_download_status(). PI estimates
are available separately for both the occurrence and count sub-model and only the 30 most important
predictors are distributed. Use list_available_pis() to see which predictors have PI data.

Usage

load_pi(
species,
predictor,
response = c("occurrence", "count"),
path = ebirdst_data_dir()

)

list_available_pis(species, path = ebirdst_data_dir())

Arguments

species character; the species to load data for, given as a scientific name, common name
or six-letter species code (e.g. "woothr"). The full list of valid species is in
the ebirdst_runs data frame included in this package. To download the example
dataset, use "yebsap-example".

load_ppm 21

predictor character; the predictor that the PI data should be loaded for. The list of predic-
tors that PI data are available for varies by species, use list_available_pis()
to get the list for a given species.

response character; the model (occurrence or count) that the PI data should be loaded for.

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

Value

A SpatRaster object with the PI ranks for the given predictor. For migrants, the estimates are
weekly and the raster will have 52 layers, where the layer names are the dates (MM-DD format) of the
midpoint of each week. For residents, a single year round layer is returned.

list_available_pis() returns a data frame listing the top 30 predictors for which PI rasters can
be loaded. In addition to the predictor names, the mean range-wide rank (rangewide_rank) is given
as well as the integer rank (rank) relative to the other 29 predictors.

Functions

• list_available_pis(): list the predictors that have PI information for this species.

Examples

Not run:
download example data if hasn't already been downloaded
ebirdst_download_status("yebsap-example", download_pis = TRUE)

identify the top predictor
top_preds <- list_available_pis("yebsap-example")
print(top_preds[1,])

load predictor importance raster of top predictor for occurrence
load_pi("yebsap-example", top_preds$predictor[1])

End(Not run)

load_ppm Load predictive performance metric (PPM) rasters

Description

eBird Status models are evaluated against a test set of eBird data not used during model training and
a suite of predictive performance metrics (PPMs) are calculated. The PPMs for each base model
are summarized to a 27 km resolution raster grid, where the cell values are the average across all
models in the ensemble contributing to that cell. These data are available in raster format provided
download_ppms = TRUE was used when calling ebirdst_download_status().

22 load_ppm

Usage

load_ppm(
species,
ppm = c("binary_f1", "binary_pr_auc", "occ_bernoulli_dev", "count_spearman",
"log_count_pearson", "abd_poisson_dev", "abd_spearman", "log_abd_pearson"),

path = ebirdst_data_dir()
)

Arguments

species character; the species to load data for, given as a scientific name, common name
or six-letter species code (e.g. "woothr"). The full list of valid species is in
the ebirdst_runs data frame included in this package. To download the example
dataset, use "yebsap-example".

ppm character; the name of a single metric to load data for. See Details for definitions
of each metric.

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

Details

Eight predictive performance metrics are provided:

• binary_f1: F1-score comparing the model predictions converted to binary with the observed
detection/non-detection for the test checklists.

• binary_pr_auc: the area on the precision-recall curve generated by comparing the model
predictions converted to binary with the observed detection/non-detection for the test check-
lists.

• occ_bernoulli_dev: Bernoulli deviance comparing the predicted occurrence with the ob-
served detection/non-detection for the test checklists.

• count_spearman: Spearman’s rank correlation coefficient comparing the predicted count with
the observed count for the subset of test checklists on which the species was detected.

• log_count_pearson: Pearson correlation coefficient comparing the logarithm of the pre-
dicted count with the logarithm of the observed count for the subset of test checklists on
which the species was detected.

• abd_poisson_dev: Poisson deviance comparing the predicted relative abundance with the
observed count for the full set of test checklists.

• abd_spearman: Spearman’s rank correlation coefficient comparing the predicted relative abun-
dance with the observed count for the full set of test checklists.

• log_abd_pearson: Pearson correlation coefficient comparing the logarithm of the predicted
relative abundance with the logarithm of the observed count for the full set of test checklists.

load_ranges 23

Value

A SpatRaster object with the PPM data. For migrants, rasters are weekly with 52 layers, where the
layer names are the dates (MM-DD format) of the midpoint of each week. For residents, a single year
round layer is returned.

Examples

Not run:
download example data if hasn't already been downloaded
ebirdst_download_status("yebsap-example", download_ppms = TRUE)

load area under the precision-recall curve PPM raster
load_ppm("yebsap-example", ppm = "binary_pr_auc")

End(Not run)

load_ranges Load seasonal eBird Status and Trends range polygons

Description

Range polygons are defined as the boundaries of non-zero seasonal relative abundance estimates,
which are then (optionally) smoothed to produce more aesthetically pleasing polygons using the
smoothr package.

Usage

load_ranges(
species,
resolution = c("9km", "27km"),
smoothed = TRUE,
path = ebirdst_data_dir()

)

Arguments

species character; the species to load data for, given as a scientific name, common name
or six-letter species code (e.g. "woothr"). The full list of valid species is in
the ebirdst_runs data frame included in this package. To download the example
dataset, use "yebsap-example".

resolution character; the raster resolution from which the range polygons were derived.

smoothed logical; whether smoothed or unsmoothed ranges should be loaded.

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

24 load_raster

Value

An sf update containing the seasonal range boundaries, with each season provided as a different
feature.

Examples

Not run:
download example data if hasn't already been downloaded
ebirdst_download_status("yebsap-example")

load smoothed ranges
note that only 27 km data are provided for the example data
ranges <- load_ranges("yebsap-example", resolution = "27km")

End(Not run)

load_raster Load eBird Status Data Products raster data

Description

Each of the eBird Status raster products is packaged as a GeoTIFF file representing predictions
on a regular grid. The core products are occurrence, count, relative abundance, and proportion of
population. This function loads one of the available data products into R as a SpatRaster object.
Note that data must be download using ebirdst_download_status() prior to loading it using this
function.

Usage

load_raster(
species,
product = c("abundance", "count", "occurrence", "proportion-population"),
period = c("weekly", "seasonal", "full-year"),
metric = NULL,
resolution = c("3km", "9km", "27km"),
path = ebirdst_data_dir()

)

Arguments

species character; the species to load data for, given as a scientific name, common name
or six-letter species code (e.g. "woothr"). The full list of valid species is in
the ebirdst_runs data frame included in this package. To download the example
dataset, use "yebsap-example".

product character; eBird Status raster product to load: occurrence, count, relative abun-
dance, or proportion of population. See Details for a detailed explanation of
each of these products.

load_raster 25

period character; temporal period of the estimation. The eBird Status models make
predictions for each week of the year; however, as a convenience, data are also
provided summarized at the seasonal or annual ("full-year") level.

metric character; by default, the weekly products provide estimates of the median
value (metric = "median") and the summarized products are the cell-wise mean
across the weeks within the season (metric = "mean"). However, additional
variants exist for some of the products. For the weekly relative abundance, confi-
dence intervals are provided: specify metric = "lower" to get the 10th quantile
or metric = "upper" to get the 90th quantile. For the seasonal and annual prod-
ucts, the cell-wise maximum values across weeks can be obtained with metric
= "max".

resolution character; the resolution of the raster data to load. The default is to load the
native 3 km resolution data; however, for some applications 9 km or 27 km data
may be suitable.

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

Details

The core eBird Status data products provide weekly estimates across a regular spatial grid. They are
packaged as rasters with 52 layers, each corresponding to estimates for a week of the year, and we
refer to them as "cubes" (e.g. the "relative abundance cube"). All estimates are the median expected
value for a standard 2 km, 1 hour eBird Traveling Count by an expert eBird observer at the optimal
time of day and for optimal weather conditions to observe the given species. These products are:

• occurrence: the expected probability (0-1) of occurrence of a species.

• count: the expected count of a species, conditional on its occurrence at the given location.

• abundance: the expected relative abundance of a species, computed as the product of the
probability of occurrence and the count conditional on occurrence.

• proportion-population: the proportion of the total relative abundance within each cell.
This is a derived product calculated by dividing each cell value in the relative abundance
raster by the total abundance summed across all cells.

In addition to these weekly data cubes, this function provides access to data summarized over dif-
ferent periods. Seasonal cubes are produced by taking the cell-wise mean or max across the weeks
within each season. The boundary dates for each season are species specific and are available in
ebirdst_runs, and if a season failed review no associated layer will be included in the cube. In
addition, full-year summaries provide the mean or max across all weeks of the year that fall within
a season that passed review. Note that this is not necessarily all 52 weeks of the year. For example,
if the estimates for the non-breeding season failed expert review for a given species, the full-year
summary for that species will not include the weeks that would fall within the non-breeding season.

26 load_regional_stats

Value

For the weekly cubes, a SpatRaster with 52 layers for the given product, where the layer names are
the dates (YYYY-MM-DD format) of the midpoint of each week. Seasonal cubes will have up to four
layers named with the corresponding season. The full-year products will have a single layer.

Examples

Not run:
download example data if hasn't already been downloaded
ebirdst_download("yebsap-example")

weekly relative abundance
note that only 27 km data are available for the example data
abd_weekly <- load_raster("yebsap-example", "abundance", resolution = "27km")

the weeks for each layer are stored in the layer names
names(abd_weekly)
they can be converted to date objects with as.Date
as.Date(names(abd_weekly))

max seasonal abundance
abd_seasonal <- load_raster("yebsap-example", "abundance",

period = "seasonal", metric = "max",
resolution = "27km")

available seasons in stack
names(abd_seasonal)
subset to just breeding season abundance
abd_seasonal[["breeding"]]

End(Not run)

load_regional_stats Load regional summary statistics

Description

Load seasonal summary statistics for regions consisting of countries and states/provinces.

Usage

load_regional_stats(species, path = ebirdst_data_dir())

Arguments

species character; the species to load data for, given as a scientific name, common name
or six-letter species code (e.g. "woothr"). The full list of valid species is in
the ebirdst_runs data frame included in this package. To download the example
dataset, use "yebsap-example".

load_trends 27

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

Value

A data frame containing regional summary statistics with columns:

• species_code: alphanumeric eBird species code.

• region_type: country for countries or state for states, provinces, or other sub-national
regions.

• region_code: alphanumeric code for the region.

• region_name: English name of the region.

• season: name of the season that the summary statistics were calculated for.

• abundance_mean: mean relative abundance in the region.

• total_pop_percent: proportion of the seasonal modeled population falling within the re-
gion.

• range_percent_occupied: the proportion of the region occupied by the species during the
given season.

• range_total_percent: the proportion of the species seasonal range falling within the region.

• range_days_occupation: number of days of the season that the region was occupied by this
species.

Examples

Not run:
download example data if hasn't already been downloaded
ebirdst_download_status("yebsap-example")

load configuration parameters
regional <- load_regional_stats("yebsap-example")

End(Not run)

load_trends Load eBird Trends estimates for a set of species

Description

Load the relative abundance trend estimates for a single species or a set of species. Trends are
estimated on a 27 km by 27 km grid for a single season per species (breeding, non-breeding, or
resident). Note that data must be download using ebirdst_download_trends() prior to loading it
using this function.

28 load_trends

Usage

load_trends(species, fold_estimates = FALSE, path = ebirdst_data_dir())

Arguments

species character; one or more species given as scientific names, common names or six-
letter species codes (e.g. "woothr"). The full list of valid species can be viewed
in the ebirdst_runs data frame included in this package; species with trends esti-
mates are indicated by the has_trends column. To access the example dataset,
use "yebsap-example".

fold_estimates logical; by default, the trends summarized across the 100-fold ensemble are
returned; however, by setting fold_estimates = TRUE the individual fold-level
estimates are returned.

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named for the data version year, e.g. "2020"
for the 2020 Status Data Products. Each species’ data package will then appear
in a directory named with the eBird species code. Defaults to a persistent data
directory, which can be found by calling ebirdst_data_dir().

Details

The trends in relative abundance are estimated using a double machine learning model. To quantify
uncertainty, an ensemble of 100 estimates is made at each location, each based on a random subsam-
ple of eBird data. The estimated trend is the median across the ensemble, and the 80% confidence
intervals are the lower 10th and upper 90th percentiles across the ensemble. To access estimates
from the individual folds making up the ensemble use fold_estimates = TRUE. These fold-level
estimates can be used to quantify uncertainty, for example, when calculating the trend for a given
region. For further details on the methodology used to estimate trends consult Fink et al. 2023.

Value

A data frame containing the trends estimates for a set of species. The following columns are in-
cluded:

• species_code: the alphanumeric eBird species code uniquely identifying the species.

• season: season that the trend was estimated for: breeding, nonbreeding, or resident.

• start_year/end_year: the start and end years of the trend time period.

• start_date/end_date: the start and end dates (MM-DD format) of the season for which the
trend was estimated.

• srd_id: unique integer identifier for the grid cell.

• longitude/latitude: longitude and latitude of the grid cell center.

• abd: relative abundance estimate for the middle of the trend time period (e.g. 2014 for a
2007-2021 trend).

• abd_ppy: the median estimated percent per year change in relative abundance.

• abd_ppy_lower/abd_ppy_upper: the 80% confidence interval for the estimated percent per
year change in relative abundance.

rasterize_trends 29

• abd_ppy_nonzero: a logical (TRUE/FALSE) value indicating if the 80% confidence limits
overlap zero (FALSE) or don’t overlap zero (TRUE)

• abd_trend: the median estimated cumulative change in relative abundance over the trend time
period.

• abd_trend_lower/abd_trend_upper: the 80% confidence interval for the estimated cumu-
lative change in relative abundance over the trend time period.

If fold_estimates = TRUE, a data frame of fold-level trend estimates is returned with the following
columns:

• species_code: the alphanumeric eBird species code uniquely identifying the species.

• season: season that the trend was estimated for: breeding, nonbreeding, or resident.

• srd_id: unique integer identifier for the grid cell.

• abd: relative abundance estimate for the middle of the trend time period (e.g. 2014 for a
2007-2021 trend).

• abd_ppy: the estimated percent per year change in relative abundance.

References

Fink, D., Johnston, A., Strimas-Mackey, M., Auer, T., Hochachka, W. M., Ligocki, S., Oldham
Jaromczyk, L., Robinson, O., Wood, C., Kelling, S., & Rodewald, A. D. (2023). A Double ma-
chine learning trend model for citizen science data. Methods in Ecology and Evolution, 00, 1–14.
https://doi.org/10.1111/2041-210X.14186

Examples

Not run:
download example trends data if it hasn't already been downloaded
ebirdst_download_trends("yebsap-example")

load trends
trends <- load_trends("yebsap-example")

load fold-level estimates
trends_folds <- load_trends("yebsap-example", fold_estimates = TRUE)

End(Not run)

rasterize_trends Convert eBird Trends Data Products to raster format

Description

The eBird trends data are stored in a tabular format, where each row gives the trend estimate for a
single cell in a 27 km x 27 km equal area grid. For many applications, an explicitly spatial format
is more useful. This function uses the cell center coordinates to convert the tabular trend estimates
to raster format in terra SpatRaster format.

30 set_ebirdst_access_key

Usage

rasterize_trends(
trends,
layers = c("abd_ppy", "abd_ppy_lower", "abd_ppy_upper"),
trim = TRUE

)

Arguments

trends data frame; trends data for a single species as returned by load_trends().

layers character; column names in the trends data frame to rasterize. These columns
will become layers in the raster that is created.

trim logical; flag indicating if the returned raster should be trimmed to remove outer
rows and columns that are NA. If trim = FALSE the returned raster will have
a global extent, which can be useful if rasters will be combined across species
with different ranges.

Value

A SpatRaster object.

Examples

Not run:
download example trends data if it hasn't already been downloaded
ebirdst_download_trends("yebsap-example")

load trends
trends <- load_trends("yebsap-example")

rasterize percent per year trend
rasterize_trends(trends, "abd_ppy")

End(Not run)

set_ebirdst_access_key

Store the eBird Status and Trends access key

Description

Accessing eBird Status and Trends data requires an access key, which can be obtained by visiting
https://ebird.org/st/request. This key must be stored as the environment variable EBIRDST_KEY in
order for ebirdst_download_status() and ebirdst_download_trends() to use it. The easiest
approach is to store the key in your .Renviron file so it can always be accessed in your R sessions.
Use this function to set EBIRDST_KEY in your .Renviron file provided that it is located in the
standard location in your home directory. It is also possible to manually edit the .Renviron file.
The access key is specific to you and should never be shared or made publicly accessible.

set_ebirdst_access_key 31

Usage

set_ebirdst_access_key(key, overwrite = FALSE)

Arguments

key character; API key obtained by filling out the form at https://ebird.org/st/request.

overwrite logical; should the existing EBIRDST_KEY be overwritten if it has already been
set in .Renviron.

Value

Edits .Renviron, then returns the path to this file invisibly.

Examples

Not run:
save the api key, replace XXXXXX with your actual key
set_ebirdst_access_key("XXXXXX")

End(Not run)

Index

∗ datasets
ebirdst_predictor_descriptions, 10
ebirdst_predictors, 10
ebirdst_runs, 11

assign_to_grid, 2
assign_to_grid(), 3, 16, 17

calculate_mcc_f1, 4

date_to_st_week, 5

ebirdst_data_dir, 5
ebirdst_download_status, 6
ebirdst_download_status(), 20, 21, 24, 30
ebirdst_download_trends, 8
ebirdst_download_trends(), 27, 30
ebirdst_palettes, 9
ebirdst_predictor_descriptions, 10, 10
ebirdst_predictors, 10
ebirdst_runs, 6, 8, 11, 14, 18–20, 22–24, 26,

28
ebirdst_version, 13

get_species, 13
get_species_path, 14
grid_sample, 15
grid_sample(), 17
grid_sample_stratified (grid_sample), 15
grid_sample_stratified(), 17

list_available_pis (load_pi), 20
list_available_pis(), 20, 21
load_config, 18
load_fac_map_parameters, 19
load_pi, 20
load_ppm, 21
load_ranges, 23
load_raster, 24
load_regional_stats, 26
load_trends, 27

load_trends(), 30

rasterize_trends, 29

set_ebirdst_access_key, 30
set_ebirdst_access_key(), 6, 8
SpatExtent, 19
SpatRaster, 21, 23, 24, 26, 29, 30
str_detect(), 7

32

	assign_to_grid
	calculate_mcc_f1
	date_to_st_week
	ebirdst_data_dir
	ebirdst_download_status
	ebirdst_download_trends
	ebirdst_palettes
	ebirdst_predictors
	ebirdst_predictor_descriptions
	ebirdst_runs
	ebirdst_version
	get_species
	get_species_path
	grid_sample
	load_config
	load_fac_map_parameters
	load_pi
	load_ppm
	load_ranges
	load_raster
	load_regional_stats
	load_trends
	rasterize_trends
	set_ebirdst_access_key
	Index

