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add_woe Add WoE in a data frame

Description

A tidyverse friendly way to plug WoE versions of a set of predictor variables against a given binary
outcome.

Usage

add_woe(.data, outcome, ..., dictionary = NULL, prefix = "woe")

Arguments

.data A tbl. The data.frame to plug the new woe version columns.

outcome The bare name of the outcome variable.

... Bare names of predictor variables, passed as you would pass variables to dplyr::select().
This means that you can use all the helpers like starts_with() and matches().

dictionary A tbl. If NULL the function will build a dictionary with those variables passed
to .... You can pass a custom dictionary too, see dictionary() for details.

prefix A character string that will be the prefix to the resulting new variables.
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Details

You can pass a custom dictionary to add_woe(). It must have the exactly the same structure of the
output of dictionary(). One easy way to do this is to tweak a output returned from it.

Value

A tibble with the original columns of .data plus the woe columns wanted.

Examples

mtcars %>% add_woe("am", cyl, gear:carb)

dictionary Weight of evidence dictionary

Description

Builds the woe dictionary of a set of predictor variables upon a given binary outcome. Convenient
to make a woe version of the given set of predictor variables and also to allow one to tweak some
woe values by hand.

Usage

dictionary(.data, outcome, ..., Laplace = 1e-06)

Arguments

.data A tbl. The data.frame where the variables come from.

outcome The bare name of the outcome variable with exactly 2 distinct values.

... bare names of predictor variables or selectors accepted by dplyr::select().

Laplace Default to 1e-6. The pseudocount parameter of the Laplace Smoothing estima-
tor. Value to avoid -Inf/Inf from predictor category with only one outcome class.
Set to 0 to allow Inf/-Inf.

Details

You can pass a custom dictionary to step_woe(). It must have the exactly the same structure of the
output of dictionary(). One easy way to do this is by tweaking an output returned from it.

Value

a tibble with summaries and woe for every given predictor variable stacked up.
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References

Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

Hastie, T., Tibshirani, R. and Friedman, J. (1986). Elements of Statistical Learning, Second Edition,
Springer, 2009.

Good, I. J. (1985), "Weight of evidence: A brief survey", Bayesian Statistics, 2, pp.249-270.

Examples

mtcars %>% dictionary("am", cyl, gear:carb)

solubility Compound solubility data

Description

Compound solubility data

Details

Tetko et al. (2001) and Huuskonen (2000) investigated a set of compounds with corresponding
experimental solubility values using complex sets of descriptors. They used linear regression and
neural network models to estimate the relationship between chemical structure and solubility. For
our analyses, we will use 1267 compounds and a set of more understandable descriptors that fall into
one of three groups: 208 binary "fingerprints" that indicate the presence or absence of a particular
chemical sub-structure, 16 count descriptors (such as the number of bonds or the number of Bromine
atoms) and 4 continuous descriptors (such as molecular weight or surface area).

Value

solubility a data frame

Source

Tetko, I., Tanchuk, V., Kasheva, T., and Villa, A. (2001). Estimation of aqueous solubility of chem-
ical compounds using E-state indices. Journal of Chemical Information and Computer Sciences,
41(6), 1488-1493.

Huuskonen, J. (2000). Estimation of aqueous solubility for a diverse set of organic compounds
based on molecular topology. Journal of Chemical Information and Computer Sciences, 40(3),
773-777.

Examples

data(solubility)
str(solubility)
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step_collapse_cart Supervised Collapsing of Factor Levels

Description

step_collapse_cart() creates a specification of a recipe step that can collapse factor levels into
a smaller set using a supervised tree.

Usage

step_collapse_cart(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
cost_complexity = 1e-04,
min_n = 5,
results = NULL,
skip = FALSE,
id = rand_id("step_collapse_cart")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
outcome A call to vars to specify which variable is used as the outcome to train CART

models in order to pool factor levels.
cost_complexity

A non-negative value that regulates the complexity of the tree when pruning
occurs. Values near 0.1 usually correspond to a tree with a single splits. Values
of zero correspond to unpruned tree.

min_n An integer for how many data points are required to make further splits during
the tree growing process. Larger values correspond to less complex trees.

results A list of results to convert to new factor levels.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations
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id A character string that is unique to this step to identify it.

Details

This step uses a CART tree (classification or regression) to group the existing factor levels into a
potentially smaller set. It changes the levels in the factor predictor (and the tidy() method can be
used to understand the translation).

There are a few different ways that the step will not be able to collapse levels. If the model fails
or, if the results have each level being in its own split, the original factor levels are retained. There
are also cases where there is "no admissible split" which means that the model could not find any
signal in the data.

Value

An updated recipe step.

Tidying

When you tidy() this step, a tibble is retruned with columns terms, old, new, and id:

terms character, the selectors or variables selected

old character, the old levels

new character, the new levels

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

Examples

data(ames, package = "modeldata")
ames$Sale_Price <- log10(ames$Sale_Price)

rec <-
recipe(Sale_Price ~ ., data = ames) %>%
step_collapse_cart(

Sale_Type, Garage_Type, Neighborhood,
outcome = vars(Sale_Price)

) %>%
prep()

tidy(rec, number = 1)
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step_collapse_stringdist

collapse factor levels using stringdist

Description

step_collapse_stringdist() creates a specification of a recipe step that will collapse factor
levels that have a low stringdist between them.

Usage

step_collapse_stringdist(
recipe,
...,
role = NA,
trained = FALSE,
distance = NULL,
method = "osa",
options = list(),
results = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("collapse_stringdist")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

distance Integer, value to determine which strings should be collapsed with which. The
value is being used inclusive, so 2 will collapse levels that have a string distance
between them of 2 or lower.

method Character, method for distance calculation. The default is "osa", see stringdist::stringdist-
metrics.

options List, other arguments passed to stringdist::stringdistmatrix() such as
weight, q, p, and bt, that are used for different values of method.

results A list denoting the way the labels should be collapses is stored here once this
preprocessing step has be trained by prep().

columns A character string of variable names that will be populated (eventually) by the
terms argument.
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skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

Tidying

When you tidy() this step, a tibble is retruned with columns terms, from, to, and id:

terms character, the selectors or variables selected

from character, the old levels

too character, the new levels

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

Examples

library(recipes)
library(tibble)
data0 <- tibble(

x1 = c("a", "b", "d", "e", "sfgsfgsd", "hjhgfgjgr"),
x2 = c("ak", "b", "djj", "e", "hjhgfgjgr", "hjhgfgjgr")

)

rec <- recipe(~., data = data0) %>%
step_collapse_stringdist(all_predictors(), distance = 1) %>%
prep()

rec %>%
bake(new_data = NULL)

tidy(rec, 1)

rec <- recipe(~., data = data0) %>%
step_collapse_stringdist(all_predictors(), distance = 2) %>%
prep()

rec %>%
bake(new_data = NULL)
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tidy(rec, 1)

step_discretize_cart Discretize numeric variables with CART

Description

step_discretize_cart() creates a specification of a recipe step that will discretize numeric data
(e.g. integers or doubles) into bins in a supervised way using a CART model.

Usage

step_discretize_cart(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
cost_complexity = 0.01,
tree_depth = 10,
min_n = 20,
rules = NULL,
skip = FALSE,
id = rand_id("discretize_cart")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details.

role Defaults to "predictor".

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome to train CART
models in order to discretize explanatory variables.

cost_complexity

The regularization parameter. Any split that does not decrease the overall lack
of fit by a factor of cost_complexity is not attempted. Corresponds to cp in
rpart::rpart(). Defaults to 0.01.

tree_depth The maximum depth in the final tree. Corresponds to maxdepth in rpart::rpart().
Defaults to 10.

min_n The number of data points in a node required to continue splitting. Corresponds
to minsplit in rpart::rpart(). Defaults to 20.
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rules The splitting rules of the best CART tree to retain for each variable. If length
zero, splitting could not be used on that column.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?
While all operations are baked when recipes::prep() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Details

step_discretize_cart() creates non-uniform bins from numerical variables by utilizing the in-
formation about the outcome variable and applying a CART model.

The best selection of buckets for each variable is selected using the standard cost-complexity prun-
ing of CART, which makes this discretization method resistant to overfitting.

This step requires the rpart package. If not installed, the step will stop with a note about installing
the package.

Note that the original data will be replaced with the new bins.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is retruned with columns terms, value, and id:

terms character, the selectors or variables selected

value numeric, location of the splits

id character, id of this step

Tuning Parameters

This step has 3 tuning parameters:

• cost_complexity: Cost-Complexity Parameter (type: double, default: 0.01)

• tree_depth: Tree Depth (type: integer, default: 10)

• min_n: Minimal Node Size (type: integer, default: 20)

Case weights

This step performs an supervised operation that can utilize case weights. To use them, see the
documentation in recipes::case_weights and the examples on tidymodels.org.

See Also

step_discretize_xgb(), recipes::recipe(), recipes::prep(), recipes::bake()
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Examples

library(modeldata)
data(ad_data)
library(rsample)

split <- initial_split(ad_data, strata = "Class")

ad_data_tr <- training(split)
ad_data_te <- testing(split)

cart_rec <-
recipe(Class ~ ., data = ad_data_tr) %>%
step_discretize_cart(
tau, age, p_tau, Ab_42,
outcome = "Class", id = "cart splits"

)

cart_rec <- prep(cart_rec, training = ad_data_tr)

# The splits:
tidy(cart_rec, id = "cart splits")

bake(cart_rec, ad_data_te, tau)

step_discretize_xgb Discretize numeric variables with XgBoost

Description

step_discretize_xgb() creates a specification of a recipe step that will discretize numeric data
(e.g. integers or doubles) into bins in a supervised way using an XgBoost model.

Usage

step_discretize_xgb(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
sample_val = 0.2,
learn_rate = 0.3,
num_breaks = 10,
tree_depth = 1,
min_n = 5,
rules = NULL,
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skip = FALSE,
id = rand_id("discretize_xgb")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details.

role Defaults to "predictor".

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome to train XgBoost
models in order to discretize explanatory variables.

sample_val Share of data used for validation (with early stopping) of the learned splits (the
rest is used for training). Defaults to 0.20.

learn_rate The rate at which the boosting algorithm adapts from iteration-to-iteration. Cor-
responds to eta in the xgboost package. Defaults to 0.3.

num_breaks The maximum number of discrete bins to bucket continuous features. Corre-
sponds to max_bin in the xgboost package. Defaults to 10.

tree_depth The maximum depth of the tree (i.e. number of splits). Corresponds to max_depth
in the xgboost package. Defaults to 1.

min_n The minimum number of instances needed to be in each node. Corresponds to
min_child_weight in the xgboost package. Defaults to 5.

rules The splitting rules of the best XgBoost tree to retain for each variable.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?
While all operations are baked when recipes::prep() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Details

step_discretize_xgb() creates non-uniform bins from numerical variables by utilizing the infor-
mation about the outcome variable and applying the xgboost model. It is advised to impute missing
values before this step. This step is intended to be used particularly with linear models because
thanks to creating non-uniform bins it becomes easier to learn non-linear patterns from the data.

The best selection of buckets for each variable is selected using an internal early stopping scheme
implemented in the xgboost package, which makes this discretization method prone to overfitting.

The pre-defined values of the underlying xgboost learns good and reasonably complex results. How-
ever, if one wishes to tune them the recommended path would be to first start with changing the
value of num_breaks to e.g.: 20 or 30. If that doesn’t give satisfactory results one could experiment
with modifying the tree_depth or min_n parameters. Note that it is not recommended to tune
learn_rate simultaneously with other parameters.
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This step requires the xgboost package. If not installed, the step will stop with a note about installing
the package.

Note that the original data will be replaced with the new bins.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is retruned with columns terms, value, and id:

terms character, the selectors or variables selected

value numeric, location of the splits

id character, id of this step

Tuning Parameters

This step has 5 tuning parameters:

• sample_val: Proportion of data for validation (type: double, default: 0.2)

• learn_rate: Learning Rate (type: double, default: 0.3)

• num_breaks: Number of Cut Points (type: integer, default: 10)

• tree_depth: Tree Depth (type: integer, default: 1)

• min_n: Minimal Node Size (type: integer, default: 5)

Case weights

This step performs an supervised operation that can utilize case weights. To use them, see the
documentation in recipes::case_weights and the examples on tidymodels.org.

See Also

step_discretize_cart(), recipes::recipe(), recipes::prep(), recipes::bake()

Examples

library(rsample)
library(recipes)
data(credit_data, package = "modeldata")

set.seed(1234)
split <- initial_split(credit_data[1:1000, ], strata = "Status")

credit_data_tr <- training(split)
credit_data_te <- testing(split)

xgb_rec <-
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recipe(Status ~ Income + Assets, data = credit_data_tr) %>%
step_impute_median(Income, Assets) %>%
step_discretize_xgb(Income, Assets, outcome = "Status")

xgb_rec <- prep(xgb_rec, training = credit_data_tr)

bake(xgb_rec, credit_data_te, Assets)

step_embed Encoding Factors into Multiple Columns

Description

step_embed() creates a specification of a recipe step that will convert a nominal (i.e. factor) predic-
tor into a set of scores derived from a tensorflow model via a word-embedding model. embed_control
is a simple wrapper for setting default options.

Usage

step_embed(
recipe,
...,
role = "predictor",
trained = FALSE,
outcome = NULL,
predictors = NULL,
num_terms = 2,
hidden_units = 0,
options = embed_control(),
mapping = NULL,
history = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("embed")

)

embed_control(
loss = "mse",
metrics = NULL,
optimizer = "sgd",
epochs = 20,
validation_split = 0,
batch_size = 32,
verbose = 0,
callbacks = NULL

)
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Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_embed, this indi-
cates the variables to be encoded into a numeric format. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the embedding variables created
will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the neural
network.

predictors An optional call to vars to specify any variables to be added as additional pre-
dictors in the neural network. These variables should be numeric and perhaps
centered and scaled.

num_terms An integer for the number of resulting variables.

hidden_units An integer for the number of hidden units in a dense ReLu layer between the
embedding and output later. Use a value of zero for no intermediate layer (see
Details below).

options A list of options for the model fitting process.

mapping A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep().

history A tibble with the convergence statistics for each term. This is NULL until the step
is trained by recipes::prep().

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?
While all operations are baked when recipes::prep() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.
optimizer, loss, metrics

Arguments to pass to keras::compile()
epochs, validation_split, batch_size, verbose, callbacks

Arguments to pass to keras::fit()

Details

Factor levels are initially assigned at random to the new variables and these variables are used in
a neural network to optimize both the allocation of levels to new columns as well as estimating a
model to predict the outcome. See Section 6.1.2 of Francois and Allaire (2018) for more details.

The new variables are mapped to the specific levels seen at the time of model training and an extra
instance of the variables are used for new levels of the factor.
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One model is created for each call to step_embed. All terms given to the step are estimated and
encoded in the same model which would also contain predictors give in predictors (if any).

When the outcome is numeric, a linear activation function is used in the last layer while softmax is
used for factor outcomes (with any number of levels).

For example, the keras code for a numeric outcome, one categorical predictor, and no hidden units
used here would be

keras_model_sequential() %>%
layer_embedding(
input_dim = num_factor_levels_x + 1,
output_dim = num_terms,
input_length = 1

) %>%
layer_flatten() %>%
layer_dense(units = 1, activation = 'linear')

If a factor outcome is used and hidden units were requested, the code would be

keras_model_sequential() %>%
layer_embedding(
input_dim = num_factor_levels_x + 1,
output_dim = num_terms,
input_length = 1

) %>%
layer_flatten() %>%
layer_dense(units = hidden_units, activation = "relu") %>%
layer_dense(units = num_factor_levels_y, activation = 'softmax')

Other variables specified by predictors are added as an additional dense layer after layer_flatten
and before the hidden layer.

Also note that it may be difficult to obtain reproducible results using this step due to the nature of
Tensorflow (see link in References).

tensorflow models cannot be run in parallel within the same session (via foreach or futures) or
the parallel package. If using a recipes with this step with caret, avoid parallel processing.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level
(the factor levels), and several columns containing embed in the name.

Tidying

When you tidy() this step, a tibble is retruned with a number of columns with embedding infor-
mation, and columns terms, levels, and id:

terms character, the selectors or variables selected
levels character, levels in variable
id character, id of this step
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Tuning Parameters

This step has 2 tuning parameters:

• num_terms: # Model Terms (type: integer, default: 2)

• hidden_units: # Hidden Units (type: integer, default: 0)

Case weights

The underlying operation does not allow for case weights.

References

Francois C and Allaire JJ (2018) Deep Learning with R, Manning

"Concatenate Embeddings for Categorical Variables with Keras" https://flovv.github.io/Embeddings_
with_keras_part2/

Examples

data(grants, package = "modeldata")

set.seed(1)
grants_other <- sample_n(grants_other, 500)

rec <- recipe(class ~ num_ci + sponsor_code, data = grants_other) %>%
step_embed(sponsor_code,
outcome = vars(class),
options = embed_control(epochs = 10)

)

step_feature_hash Dummy Variables Creation via Feature Hashing

Description

[Soft-deprecated]

step_feature_hash() is being deprecated in favor of textrecipes::step_dummy_hash(). This
function creates a specification of a recipe step that will convert nominal data (e.g. character or
factors) into one or more numeric binary columns using the levels of the original data.

https://flovv.github.io/Embeddings_with_keras_part2/
https://flovv.github.io/Embeddings_with_keras_part2/
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Usage

step_feature_hash(
recipe,
...,
role = "predictor",
trained = FALSE,
num_hash = 2^6,
preserve = deprecated(),
columns = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("feature_hash")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_hash The number of resulting dummy variable columns.

preserve Use keep_original_cols instead to specify whether the selected column(s)
should be retained in addition to the new dummy variables.

columns A character vector for the selected columns. This is NULL until the step is trained
by recipes::prep().

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

step_feature_hash() will create a set of binary dummy variables from a factor or character vari-
able. The values themselves are used to determine which row that the dummy variable should be
assigned (as opposed to having a specific column that the value will map to).

Since this method does not rely on a pre-determined assignment of levels to columns, new factor
levels can be added to the selected columns without issue. Missing values result in missing values
for all of the hashed columns.
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Note that the assignment of the levels to the hashing columns does not try to maximize the alloca-
tion. It is likely that multiple levels of the column will map to the same hashed columns (even with
small data sets). Similarly, it is likely that some columns will have all zeros. A zero-variance filter
(via recipes::step_zv()) is recommended for any recipe that uses hashed columns.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is retruned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

References

Weinberger, K, A Dasgupta, J Langford, A Smola, and J Attenberg. 2009. "Feature Hashing for
Large Scale Multitask Learning." In Proceedings of the 26th Annual International Conference on
Machine Learning, 1113–20. ACM.

Kuhn and Johnson (2020) Feature Engineering and Selection: A Practical Approach for Predictive
Models. CRC/Chapman Hall https://bookdown.org/max/FES/encoding-predictors-with-many-categories.
html

See Also

recipes::step_dummy(), recipes::step_zv()

Examples

data(grants, package = "modeldata")
rec <-

recipe(class ~ sponsor_code, data = grants_other) %>%
step_feature_hash(

sponsor_code,
num_hash = 2^6, keep_original_cols = TRUE

) %>%
prep()

# How many of the 298 locations ended up in each hash column?
results <-

bake(rec, new_data = NULL, starts_with("sponsor_code")) %>%
distinct()

apply(results %>% select(-sponsor_code), 2, sum) %>% table()

https://bookdown.org/max/FES/encoding-predictors-with-many-categories.html
https://bookdown.org/max/FES/encoding-predictors-with-many-categories.html
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step_lencode_bayes Supervised Factor Conversions into Linear Functions using Bayesian
Likelihood Encodings

Description

step_lencode_bayes() creates a specification of a recipe step that will convert a nominal (i.e.
factor) predictor into a single set of scores derived from a generalized linear model estimated using
Bayesian analysis.

Usage

step_lencode_bayes(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
options = list(seed = sample.int(10^5, 1)),
verbose = FALSE,
mapping = NULL,
skip = FALSE,
id = rand_id("lencode_bayes")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_lencode_bayes,
this indicates the variables to be encoded into a numeric format. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the generalized
linear model. Only numeric and two-level factors are currently supported.

options A list of options to pass to rstanarm::stan_glmer().

verbose A logical to control the default printing by rstanarm::stan_glmer().

mapping A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep().
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skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?
While all operations are baked when recipes::prep() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Details

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are
returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes,
they are in log-odds units. The coefficients are created using a no intercept model and, when two
factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor.

For novel levels, a slightly timmed average of the coefficients is returned.

A hierarchical generalized linear model is fit using rstanarm::stan_glmer() and no intercept via

stan_glmer(outcome ~ (1 | predictor), data = data, ...)

where the ... include the family argument (automatically set by the step, unless passed in by
options) as well as any arguments given to the options argument to the step. Relevant options
include chains, iter, cores, and arguments for the priors (see the links in the References below).
prior_intercept is the argument that has the most effect on the amount of shrinkage.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level
(the factor levels), and value (the encodings).

Tidying

When you tidy() this step, a tibble is retruned with columns level, value, terms, and id:

level character, the factor levels

value numeric, the encoding

terms character, the selectors or variables selected

id character, id of this step

Case weights

This step performs an supervised operation that can utilize case weights. To use them, see the
documentation in recipes::case_weights and the examples on tidymodels.org.
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References

Micci-Barreca D (2001) "A preprocessing scheme for high-cardinality categorical attributes in clas-
sification and prediction problems," ACM SIGKDD Explorations Newsletter, 3(1), 27-32.

Zumel N and Mount J (2017) "vtreat: a data.frame Processor for Predictive Modeling," arXiv:1611.09477

"Hierarchical Partial Pooling for Repeated Binary Trials" https://CRAN.R-project.org/package=
rstanarm/vignettes/pooling.html

"Prior Distributions for rstanarm Models" http://mc-stan.org/rstanarm/reference/priors.
html

"Estimating Generalized (Non-)Linear Models with Group-Specific Terms with rstanarm" http:
//mc-stan.org/rstanarm/articles/glmer.html

Examples

library(recipes)
library(dplyr)
library(modeldata)

data(grants)

set.seed(1)
grants_other <- sample_n(grants_other, 500)

reencoded <- recipe(class ~ sponsor_code, data = grants_other) %>%
step_lencode_bayes(sponsor_code, outcome = vars(class))

step_lencode_glm Supervised Factor Conversions into Linear Functions using Likeli-
hood Encodings

Description

step_lencode_glm() creates a specification of a recipe step that will convert a nominal (i.e. factor)
predictor into a single set of scores derived from a generalized linear model.

Usage

step_lencode_glm(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
mapping = NULL,

https://CRAN.R-project.org/package=rstanarm/vignettes/pooling.html
https://CRAN.R-project.org/package=rstanarm/vignettes/pooling.html
http://mc-stan.org/rstanarm/reference/priors.html
http://mc-stan.org/rstanarm/reference/priors.html
http://mc-stan.org/rstanarm/articles/glmer.html
http://mc-stan.org/rstanarm/articles/glmer.html
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skip = FALSE,
id = rand_id("lencode_glm")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_lencode_glm,
this indicates the variables to be encoded into a numeric format. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the generalized
linear model. Only numeric and two-level factors are currently supported.

mapping A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?
While all operations are baked when recipes::prep() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Details

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are
returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes,
they are in log-odds units. The coefficients are created using a no intercept model and, when two
factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor.

For novel levels, a slightly timmed average of the coefficients is returned.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level
(the factor levels), and value (the encodings).

Tidying

When you tidy() this step, a tibble is retruned with columns level, value, terms, and id:

level character, the factor levels

value numeric, the encoding

terms character, the selectors or variables selected

id character, id of this step
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Case weights

This step performs an supervised operation that can utilize case weights. To use them, see the
documentation in recipes::case_weights and the examples on tidymodels.org.

References

Micci-Barreca D (2001) "A preprocessing scheme for high-cardinality categorical attributes in clas-
sification and prediction problems," ACM SIGKDD Explorations Newsletter, 3(1), 27-32.

Zumel N and Mount J (2017) "vtreat: a data.frame Processor for Predictive Modeling," arXiv:1611.09477

Examples

library(recipes)
library(dplyr)
library(modeldata)

data(grants)

set.seed(1)
grants_other <- sample_n(grants_other, 500)

reencoded <- recipe(class ~ sponsor_code, data = grants_other) %>%
step_lencode_glm(sponsor_code, outcome = vars(class))

step_lencode_mixed Supervised Factor Conversions into Linear Functions using Bayesian
Likelihood Encodings

Description

step_lencode_mixed() creates a specification of a recipe step that will convert a nominal (i.e.
factor) predictor into a single set of scores derived from a generalized linear mixed model.

Usage

step_lencode_mixed(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
options = list(verbose = 0),
mapping = NULL,
skip = FALSE,
id = rand_id("lencode_mixed")

)
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Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_lencode_mixed,
this indicates the variables to be encoded into a numeric format. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the generalized
linear model. Only numeric and two-level factors are currently supported.

options A list of options to pass to lme4::lmer() or lme4::glmer().

mapping A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?
While all operations are baked when recipes::prep() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Details

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are
returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes,
they are in log-odds units. The coefficients are created using a no intercept model and, when two
factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor.

For novel levels, a slightly timmed average of the coefficients is returned.

A hierarchical generalized linear model is fit using lme4::lmer() or lme4::glmer(), depending
on the nature of the outcome, and no intercept via

lmer(outcome ~ 1 + (1 | predictor), data = data, ...)

where the ... include the family argument (automatically set by the step) as well as any arguments
given to the options argument to the step. Relevant options include control and others.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level
(the factor levels), and value (the encodings).
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Tidying

When you tidy() this step, a tibble is retruned with columns level, value, terms, and id:

level character, the factor levels

value numeric, the encoding

terms character, the selectors or variables selected

id character, id of this step

Case weights

This step performs an supervised operation that can utilize case weights. To use them, see the
documentation in recipes::case_weights and the examples on tidymodels.org.

References

Micci-Barreca D (2001) "A preprocessing scheme for high-cardinality categorical attributes in clas-
sification and prediction problems," ACM SIGKDD Explorations Newsletter, 3(1), 27-32.

Zumel N and Mount J (2017) "vtreat: a data.frame Processor for Predictive Modeling," arXiv:1611.09477

Examples

library(recipes)
library(dplyr)
library(modeldata)

data(grants)

set.seed(1)
grants_other <- sample_n(grants_other, 500)

reencoded <- recipe(class ~ sponsor_code, data = grants_other) %>%
step_lencode_mixed(sponsor_code, outcome = vars(class))

step_pca_sparse Sparse PCA Signal Extraction

Description

step_pca_sparse() creates a specification of a recipe step that will convert numeric data into one
or more principal components that can have some zero coefficients.
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Usage

step_pca_sparse(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
predictor_prop = 1,
options = list(),
res = NULL,
prefix = "PC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("pca_sparse")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new principal component columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

predictor_prop The maximum number of original predictors that can have non-zero coefficients
for each PCA component (via regularization).

options A list of options to the default method for irlba::ssvd().

res The rotation matrix once this preprocessing step has be trained by prep().

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?
While all operations are baked when recipes::prep() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
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Details

The irlba package is required for this step. If it is not installed, the user will be prompted to
do so when the step is defined. The irlba::ssvd() function is used to encourage sparsity; that
documentation has details about this method.

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be PC1 - PC9. If num_comp = 101, the
names would be PC1 - PC101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the
loading), and component.

Tidying

When you tidy() this step, a tibble is retruned with columns terms, value, component, and id:

terms character, the selectors or variables selected

value numeric, variable loading

component character, principle component

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• num_comp: # Components (type: integer, default: 5)

• predictor_prop: Proportion of Predictors (type: double, default: 1)

Case weights

The underlying operation does not allow for case weights.

See Also

step_pca_sparse_bayes()

Examples

library(recipes)
library(ggplot2)

data(ad_data, package = "modeldata")

ad_rec <-
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recipe(Class ~ ., data = ad_data) %>%
step_zv(all_predictors()) %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca_sparse(

all_numeric_predictors(),
predictor_prop = 0.75,
num_comp = 3,
id = "sparse pca"

) %>%
prep()

tidy(ad_rec, id = "sparse pca") %>%
mutate(value = ifelse(value == 0, NA, value)) %>%
ggplot(aes(x = component, y = terms, fill = value)) +
geom_tile() +
scale_fill_gradient2() +
theme(axis.text.y = element_blank())

step_pca_sparse_bayes Sparse Bayesian PCA Signal Extraction

Description

step_pca_sparse_bayes() creates a specification of a recipe step that will convert numeric data
into one or more principal components that can have some zero coefficients.

Usage

step_pca_sparse_bayes(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
prior_slab_dispersion = 1,
prior_mixture_threshold = 0.1,
options = list(),
res = NULL,
prefix = "PC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("pca_sparse_bayes")

)
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Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new principal component columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

prior_slab_dispersion

This value is proportional to the dispersion (or scale) parameter for the slab
portion of the prior. Smaller values result in an increase in zero coefficients.

prior_mixture_threshold

The parameter that defines the trade-off between the spike and slab components
of the prior. Increasing this parameter increases the number of zero coefficients.

options A list of options to the default method for VBsparsePCA::VBsparsePCA().

res The rotation matrix once this preprocessing step has been trained by prep().

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?
While all operations are baked when recipes::prep() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Details

The VBsparsePCA package is required for this step. If it is not installed, the user will be prompted
to do so when the step is defined.

A spike-and-slab prior is a mixture of two priors. One (the "spike") has all of its mass at zero and
represents a variable that has no contribution to the PCA coefficients. The other prior is a broader
distribution that reflects the coefficient distribution of variables that do affect the PCA analysis. This
is the "slab". The narrower the slab, the more likely that a coefficient will be zero (or are regularized
to be closer to zero). The mixture of these two priors is governed by a mixing parameter, which
itself has a prior distribution and a hyper-parameter prior.
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PCA coefficients and their resulting scores are unique only up to the sign. This step will attempt to
make the sign of the components more consistent from run-to-run. However, the sparsity constraint
may interfere with this goal.

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be PC1 - PC9. If num_comp = 101, the
names would be PC1 - PC101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the
loading), and component.

Tidying

When you tidy() this step, a tibble is retruned with columns terms, value, component, and id:

terms character, the selectors or variables selected

value numeric, variable loading

component character, principle component

id character, id of this step

Tuning Parameters

This step has 3 tuning parameters:

• num_comp: # Components (type: integer, default: 5)

• prior_slab_dispersion: Dispersion of Slab Prior (type: double, default: 1)

• prior_mixture_threshold: Threshold for Mixture Prior (type: double, default: 0.1)

Case weights

The underlying operation does not allow for case weights.

References

Ning, B. (2021). Spike and slab Bayesian sparse principal component analysis. arXiv:2102.00305.

See Also

step_pca_sparse()
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Examples

library(recipes)
library(ggplot2)

data(ad_data, package = "modeldata")

ad_rec <-
recipe(Class ~ ., data = ad_data) %>%
step_zv(all_predictors()) %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca_sparse_bayes(
all_numeric_predictors(),
prior_mixture_threshold = 0.95,
prior_slab_dispersion = 0.05,
num_comp = 3,
id = "sparse bayesian pca"

) %>%
prep()

tidy(ad_rec, id = "sparse bayesian pca") %>%
mutate(value = ifelse(value == 0, NA, value)) %>%
ggplot(aes(x = component, y = terms, fill = value)) +
geom_tile() +
scale_fill_gradient2() +
theme(axis.text.y = element_blank())

step_pca_truncated Truncated PCA Signal Extraction

Description

step_pca_truncated() creates a specification of a recipe step that will convert numeric data into
one or more principal components. It is truncated as it only calculates the number of components it
is asked instead of all of them as is done in recipes::step_pca().

Usage

step_pca_truncated(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
options = list(),
res = NULL,
columns = NULL,
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prefix = "PC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("pca_truncated")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

options A list of options to the default method for irlba::prcomp_irlba(). Argument
defaults are set to retx = FALSE, center = FALSE, scale. = FALSE, and tol =
NULL. Note that the argument x should not be passed here (or at all).

res The irlba::prcomp_irlba() object is stored here once this preprocessing step
has be trained by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Principal component analysis (PCA) is a transformation of a group of variables that produces a new
set of artificial features or components. These components are designed to capture the maximum
amount of information (i.e. variance) in the original variables. Also, the components are statistically
independent from one another. This means that they can be used to combat large inter-variables
correlations in a data set.
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It is advisable to standardize the variables prior to running PCA. Here, each variable will be centered
and scaled prior to the PCA calculation. This can be changed using the options argument or by
using step_center() and step_scale().

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be PC1 - PC9. If num_comp = 101, the
names would be PC1 - PC101.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step two things can happen depending the type argument. If type = "coef"
a tibble returned with 4 columns terms, value, component , and id:

terms character, the selectors or variables selected

value numeric, variable loading

component character, principle component

id character, id of this step

If type = "variance" a tibble returned with 4 columns terms, value, component , and id:

terms character, type of variance

value numeric, value of the variance

component integer, principle component

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• num_comp: # Components (type: integer, default: 5)

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

References

Jolliffe, I. T. (2010). Principal Component Analysis. Springer.
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Examples

rec <- recipe(~., data = mtcars)
pca_trans <- rec %>%

step_normalize(all_numeric()) %>%
step_pca_truncated(all_numeric(), num_comp = 2)

pca_estimates <- prep(pca_trans, training = mtcars)
pca_data <- bake(pca_estimates, mtcars)

rng <- extendrange(c(pca_data$PC1, pca_data$PC2))
plot(pca_data$PC1, pca_data$PC2,

xlim = rng, ylim = rng
)

tidy(pca_trans, number = 2)
tidy(pca_estimates, number = 2)

step_umap Supervised and unsupervised uniform manifold approximation and
projection (UMAP)

Description

step_umap() creates a specification of a recipe step that will project a set of features into a smaller
space.

Usage

step_umap(
recipe,
...,
role = "predictor",
trained = FALSE,
outcome = NULL,
neighbors = 15,
num_comp = 2,
min_dist = 0.01,
metric = "euclidean",
learn_rate = 1,
epochs = NULL,
initial = "spectral",
target_weight = 0.5,
options = list(verbose = FALSE, n_threads = 1),
seed = sample(10^5, 2),
prefix = "UMAP",
keep_original_cols = FALSE,
retain = deprecated(),
object = NULL,
skip = FALSE,
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id = rand_id("umap")
)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the encoding
process (if any).

neighbors An integer for the number of nearest neighbors used to construct the target sim-
plicial set. If neighbors is greater than the number of data points, the smaller
value is used.

num_comp An integer for the number of UMAP components. If num_comp is greater than
the number of selected columns minus one, the smaller value is used.

min_dist The effective minimum distance between embedded points.

metric Character, type of distance metric to use to find nearest neighbors. See uwot::umap()
for more details. Default to "euclidean".

learn_rate Positive number of the learning rate for the optimization process.

epochs Number of iterations for the neighbor optimization. See uwot::umap() for more
details.

initial Character, Type of initialization for the coordinates. Can be one of "spectral",
"normlaplacian", "random", "lvrandom", "laplacian", "pca", "spca", "agspectral",
or a matrix of initial coordinates. See uwot::umap() for more details. Default
to "spectral".

target_weight Weighting factor between data topology and target topology. A value of 0.0
weights entirely on data, a value of 1.0 weights entirely on target. The default
of 0.5 balances the weighting equally between data and target.

options A list of options to pass to uwot::umap(). The arguments X, n_neighbors,
n_components, min_dist, n_epochs, ret_model, and learning_rate should
not be passed here. By default, verbose and n_threads are set.

seed Two integers to control the random numbers used by the numerical methods.
The default pulls from the main session’s stream of numbers and will give re-
producible results if the seed is set prior to calling prep() or bake().

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

retain Use keep_original_cols instead to specify whether the original predictors
should be retained along with the new embedding variables.
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object An object that defines the encoding. This is NULL until the step is trained by
recipes::prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

UMAP, short for Uniform Manifold Approximation and Projection, is a nonlinear dimension reduc-
tion technique that finds local, low-dimensional representations of the data. It can be run unsuper-
vised or supervised with different types of outcome data (e.g. numeric, factor, etc).

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be UMAP1 - UMAP9. If num_comp = 101,
the names would be UMAP1 - UMAP101.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is retruned with columns terms and id:

terms character, the selectors or variables selected
id character, id of this step

Tuning Parameters

This step has 5 tuning parameters:

• num_comp: # Components (type: integer, default: 2)
• neighbors: # Nearest Neighbors (type: integer, default: 15)
• min_dist: Min Distance between Points (type: double, default: 0.01)
• learn_rate: Learning Rate (type: double, default: 1)
• epochs: # Epochs (type: integer, default: NULL)

Case weights

The underlying operation does not allow for case weights.

Saving prepped recipe object

This recipe step may require native serialization when saving for use in another R session. To learn
more about serialization for prepped recipes, see the bundle package.

https://rstudio.github.io/bundle/
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References

McInnes, L., & Healy, J. (2018). UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction. https://arxiv.org/abs/1802.03426.

"How UMAP Works" https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

Examples

library(recipes)
library(ggplot2)

split <- seq.int(1, 150, by = 9)
tr <- iris[-split, ]
te <- iris[split, ]

set.seed(11)
supervised <-

recipe(Species ~ ., data = tr) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors()) %>%
step_umap(all_predictors(), outcome = vars(Species), num_comp = 2) %>%
prep(training = tr)

theme_set(theme_bw())

bake(supervised, new_data = te, Species, starts_with("umap")) %>%
ggplot(aes(x = UMAP1, y = UMAP2, col = Species)) +
geom_point(alpha = .5)

step_woe Weight of evidence transformation

Description

step_woe() creates a specification of a recipe step that will transform nominal data into its numer-
ical transformation based on weights of evidence against a binary outcome.

Usage

step_woe(
recipe,
...,
role = "predictor",
outcome,
trained = FALSE,
dictionary = NULL,
Laplace = 1e-06,

https://arxiv.org/abs/1802.03426
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
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prefix = "woe",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("woe")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new woe components columns
created by the original variables will be used as predictors in a model.

outcome The bare name of the binary outcome encased in vars().

trained A logical to indicate if the quantities for preprocessing have been estimated.

dictionary A tbl. A map of levels and woe values. It must have the same layout than the
output returned from dictionary(). If NULL the function will build a dictionary
with those variables passed to .... See dictionary() for details.

Laplace The Laplace smoothing parameter. A value usually applied to avoid -Inf/Inf
from predictor category with only one outcome class. Set to 0 to allow Inf/-Inf.
The default is 1e-6. Also known as ’pseudocount’ parameter of the Laplace
smoothing technique.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?
While all operations are baked when recipes::prep() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Details

WoE is a transformation of a group of variables that produces a new set of features. The formula is

woec = log((P (X = c|Y = 1))/(P (X = c|Y = 0)))

where c goes from 1 to C levels of a given nominal predictor variable X .

These components are designed to transform nominal variables into numerical ones with the prop-
erty that the order and magnitude reflects the association with a binary outcome. To apply it on
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numerical predictors, it is advisable to discretize the variables prior to running WoE. Here, each vari-
able will be binarized to have woe associated later. This can achieved by using step_discretize().

The argument Laplace is an small quantity added to the proportions of 1’s and 0’s with the goal
to avoid log(p/0) or log(0/p) results. The numerical woe versions will have names that begin with
woe_ followed by the respective original name of the variables. See Good (1985).

One can pass a custom dictionary tibble to step_woe(). It must have the same structure of the
output from dictionary() (see examples). If not provided it will be created automatically. The
role of this tibble is to store the map between the levels of nominal predictor to its woe values.
You may want to tweak this object with the goal to fix the orders between the levels of one given
predictor. One easy way to do this is by tweaking an output returned from dictionary().

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with the woe dictionary used to map categories with woe values.

Tidying

When you tidy() this step, a tibble with columns terms (the selectors or variables selected), value,
n_tot, n_bad, n_good, p_bad, p_good, woe and outcome is returned.. See dictionary() for more
information.

When you tidy() this step, a tibble is retruned with columns terms value, n_tot, n_bad, n_good,
p_bad, p_good, woe and outcome and id:

terms character, the selectors or variables selected

value character, level of the outcome

n_tot integer, total number

n_bad integer, number of bad examples

n_good integer, number of good examples

p_bad numeric, p of bad examples

p_good numeric, p of good examples

woe numeric, weight of evidence

outcome character, name of outcome variable

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• Laplace: Laplace Correction (type: double, default: 1e-06)

Case weights

The underlying operation does not allow for case weights.
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References

Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

Hastie, T., Tibshirani, R. and Friedman, J. (1986). Elements of Statistical Learning, Second Edition,
Springer, 2009.

Good, I. J. (1985), "Weight of evidence: A brief survey", Bayesian Statistics, 2, pp.249-270.

Examples

library(modeldata)
data("credit_data")

set.seed(111)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training, ]
credit_te <- credit_data[-in_training, ]

rec <- recipe(Status ~ ., data = credit_tr) %>%
step_woe(Job, Home, outcome = vars(Status))

woe_models <- prep(rec, training = credit_tr)

# the encoding:
bake(woe_models, new_data = credit_te %>% slice(1:5), starts_with("woe"))
# the original data
credit_te %>%

slice(1:5) %>%
dplyr::select(Job, Home)

# the details:
tidy(woe_models, number = 1)

# Example of custom dictionary + tweaking
# custom dictionary
woe_dict_custom <- credit_tr %>% dictionary(Job, Home, outcome = "Status")
woe_dict_custom[4, "woe"] <- 1.23 # tweak

# passing custom dict to step_woe()
rec_custom <- recipe(Status ~ ., data = credit_tr) %>%

step_woe(
Job, Home,
outcome = vars(Status), dictionary = woe_dict_custom

) %>%
prep()

rec_custom_baked <- bake(rec_custom, new_data = credit_te)
rec_custom_baked %>%

dplyr::filter(woe_Job == 1.23) %>%
head()
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woe_table Crosstable with woe between a binary outcome and a predictor vari-
able.

Description

Calculates some summaries and the WoE (Weight of Evidence) between a binary outcome and a
given predictor variable. Used to biuld the dictionary.

Usage

woe_table(predictor, outcome, Laplace = 1e-06, call = rlang::caller_env(0))

Arguments

predictor A atomic vector, usualy with few distinct values.

outcome The dependent variable. A atomic vector with exactly 2 distinct values.

Laplace The pseudocount parameter of the Laplace Smoothing estimator. Default to
1e-6. Value to avoid -Inf/Inf from predictor category with only one outcome
class. Set to 0 to allow Inf/-Inf.

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of rlang::abort() for more information.

Value

a tibble with counts, proportions and woe. Warning: woe can possibly be -Inf. Use ’Laplace’ arg to
avoid that.

References

Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

Hastie, T., Tibshirani, R. and Friedman, J. (1986). Elements of Statistical Learning, Second Edition,
Springer, 2009.

Good, I. J. (1985), "Weight of evidence: A brief survey", Bayesian Statistics, 2, pp.249-270.
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