
Package ‘ems’
October 13, 2022

Title Epimed Solutions Collection for Data Editing, Analysis, and
Benchmark of Health Units

Version 1.3.11

Date 2021-12-09

Description Collection of functions related to benchmark with prediction models
for data analysis and editing of clinical and epidemiological data.

Depends R (>= 3.2.2)

Imports boot, survival, rms

License GPL (>= 2)

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Author Lunna Borges [aut, cre]

Maintainer Lunna Borges <lunna.borges@epimedsolutions.com>

Repository CRAN

Date/Publication 2021-12-09 20:40:02 UTC

R topics documented:
breastCancer . 2
calcurve . 3
dataquality . 5
funnel . 10
icu . 19
miscellaneous . 20
mortality_rate . 25
reclass . 27
SMR . 30
SRU . 35
survPerformance . 40
tableStack . 43

Index 50

1

2 breastCancer

breastCancer German Breast Cancer Dataset

Description

A dataset containing variables related with breast cancer from german population.

Usage

breastCancer

Format

A data frame with 686 rows and 14 variables

Details

• age Patient age (years).

• meno Menopausal status (0 = premeno, 1 = postmeno).

• size Tumour size (mm).

• gradd1 1 = tumour grade 2 or 3; 0 = grade 1.

• gradd2 1 = tumour grade 3; 0 = grade 1 or 2.

• nodes Number of positive lymph nodes.

• enodes emp(-0.12 x nodes).

• pgr Progesterone receptor status (fmol 1^-1).

• er Oestrogen reeceotor status (fmol 1^-1).

• hormon Tamoxifen treatment (0 = no; 1 = yes).

• rectime Time (days) to death or cancer recurrence.

• censrec Censoring (0 = censored; 1 = event).

Source

https://biostat.app.vumc.org/wiki/Main/DataSets

calcurve 3

calcurve Calibration Curve

Description

calcurve function returns a data.frame containing the number of patients, the observed mortality
rate and the predicted mortality rate for each category of the predicted mortality rate. If any other
acute physiology score is given, the function will also return the mortality rate predicted by this
score for each category.

Usage

calcurve(
deaths,
pred,
score = NULL,
name_score = "Saps3",
other_score = NULL,
name_other_score = NULL,
categories_option = c("predicted", "score", "patients"),
table = FALSE,
plot = TRUE,
title_label = "Calibration Curve",
y1axis_label = "Patients (n)",
y2axis_label = "Mortality Rate (%)",
score_color = c("#cac7cc", "#ffc341", "#33cca3"),
bar_color = "#1f77b4",
points = c(19, 18, 17),
cultureCode = "en-US",
legend_inset = -0.7

)

S3 method for class 'calcurve'
print(x, ...)

S3 method for class 'calcurve'
plot(
x,
...,
xlab = NULL,
ylab2 = NULL,
main = x$title_label,
text = x$y2axis_label,
ylab = x$y1axis_label,
col = c(xbar_color, xscore_color),
pch = x$points,
cultureCode = x$cultureCode,

4 calcurve

legend_inset = x$legend_inset
)

Arguments

deaths a numerical vector that only contains 0 and 1, indicating whether the patient was
alive or dead, respectively.

pred a numerical vector that contains the mortality rate predicted by the main score,
in percentage, for each patient.

score a numerical vector that contains the main score punctuation for each patient, or
NULL.

name_score a character string which determines the name of the main score.
other_score a list of numerical vectors, where each vector contains the mortality rate pre-

dicted by other score, in percentage, for each patient, or NULL (the default).
name_other_score

if other_score variable is different from NULL, this argument must be a vector
with the name(s) of the score(s) given.

categories_option

a character string which determines if the categories will refer to the main score
or to the predicted mortality rate. Accepted values are ’predicted’ (the default),
’score’ or ’patients’.

table logical; if TRUE prints the data.frame.
plot logical; if TRUE (the default) plots the categories chosen versus the mortality

rates in the secondary vertical axis. The main vertical axis refers to the number
of patients in each category, represented by the bars.

title_label main title for calcurve.
y1axis_label, y2axis_label

labels of the main vertical axis and the secondary axis, respectively, for calcurve.
score_color a vector with the colors to be used in the score traces for calcurve.
bar_color color of the bars for calcurve.
points a vector with markers types of the scores for calcurve.
cultureCode a character specifying which language should be used for plot x axis title and

legends. Possible values are ’pt-BR’ and ’en-US’. The default is ’en-US’.
legend_inset inset distance(s) from the margins as a fraction of the plot region when legend

is placed by keyword. See legend.
x an object of class ’calcurve’.
... further arguments passed to plot.
xlab label of the horizontal axis for plot.calcurve, defaults to NULL.
ylab2 label of the secondary vertical axis for plot.calcurve, defaults to NULL.
main main title for plot.calcurve.
text label of the secondary vertical axis for plot.calcurve.
ylab label of the main vertical axis for plot.calcurve.
col character vector with the colors of the bars and score traces, in this order, for

plot.calcurve.
pch a vector with markers types of the scores for plot.curve.

dataquality 5

Details

• If categories_option = 'score', the categories will refer to the deciles of the main score
punctuation. If categories_option = 'predicted', the categories will refer to fixed inter-
vals of the predicted mortality rate. If categories_option = 'patients' the categories will
refer to the deciles of patients.

Author(s)

Camila Cardoso

Examples

Loading the dataset
data(icu)

Calibration Curve Plot
a <- calcurve(deaths = icu$UnitDischargeName,
pred = icu$Saps3DeathProbabilityStandardEquation,
score = icu$Saps3Points, name_score = 'Saps3',
categories_option = 'predicted', table = FALSE, plot = TRUE)

dataquality Collection of functions to check data quality in a dataset and remove
not valid or extreme values.

Description

These functions return the counts and fractions of expected values, unexpected values, missing
values and not valid values. They are able to do it with factor variables, numeric variables and
date variables. t_factor, t_num, and t_date do the job for a single variable and have simpler
arguments, while factor.table, num.table, and date.table do the job for several variables at
once. rm.unwanted cheks the factor and numeric variables and remove the not valid or extreme
values. This approach is attractive before data imputation. They all return a data.frame.

t_factor and factor.table will try to get factor or character variables and check how much of
its content match with the expectd. They will try to treat the levels or cells containing " " as NAs.

t_num will try to get a numeric variable (even if it is currently formated as character or factor) and
check how much of its content is expected (match a desired range), unexpected, non-numeric values
and missing vlaues. num.table does the same, but for two or more variables at once.

t_date will try to get a date variable (even if it is currently formated as character or factor) and
check how much of its content is expected (match a desired range), unexpected, non-date values
and missing vlaues. date.table does the same, but for two or more variables at once.

rm.unwanted will chek in data the variables specified in the limits object according to the limits
specified for each variable. If there are levels considered not valid in a factor variable, these levels

6 dataquality

are deleted. For example, if Sex is expected to be "M" and "F", and there is also an "I" level in
data, every "I" is replaced by NA. Similarly, misspelled levels will be understood as non-valid levels
and coercerd to NA, with the exception of leading or trailing empty spaces and lower and upper
cases diferences if try.keep = TRUE. If there is a continuous numeric variable and it is expected
to have values ranging from 30 to 700, the values outside this range, i.e. higher then 700 or lower
then 30, are replaced by NA. Non-numeric elements, i.e. non-valid elements that should be numeric,
will also be coerced to NA. If a varible is specified in num.limits, then it will be returned as a
numeric variable, even if it was formated as factor or character. If a variable is specified in limits,
the returnig format will depend on the stringAsFactors argument, unless it is formated as logical.
In this case it is skipped. The arguments limits and num.limits may be NULL, meaning that the
factor-character variables or the numeric variables , respectively, will not be edited.

Usage

t_factor(
data,
variable,
legal,
var.labels = attr(data, "var.labels")[match(variable, names(data))],
digits = 3

)

factor.table(
data,
limits,
var.labels = attr(data, "var.labels")[match(unlist(sapply(seq_along(limits),
function(i) limits[[i]][1])), names(data))],

digits = 3
)

t_num(
data,
num.var,
num.max = 100,
num.min = 0,
var.labels = attr(data, "var.labels")[match(num.var, names(data))],
digits = 3

)

num.table(
data,
num.limits,
var.labels = attr(data, "var.labels")[match(num.limits$num.var, names(data))],
digits = 3

)

t_date(
data,
date.var,

dataquality 7

date.max = as.Date("2010-11-30"),
date.min = as.Date("2010-01-31"),
format.date = "auto",
digits = 3,
var.labels = attr(data, "var.labels")[match(date.var, names(data))]

)

date.table(
data,
date.limits,
format.date = "auto",
digits = 3,
var.labels = attr(data, "var.labels")[match(date.limits$date.var, names(data))]

)

rm.unwanted(
data,
limits = NULL,
num.limits = TRUE,
try.keep = TRUE,
stringAsFactors = TRUE

)

Arguments

data A data.frame where variables will be tested.
variable A character vector of length one, indicating the name of the variable in the

dataset to be tested.
legal A character vector representeing the expected levels of the tested variable.
var.labels Variables labels for a nice output. Must be informed in the same order as variable

argument. By default, it captures the labels stored in attr(data, "var.labels"), if
any. If not informed, the function returns the variables names.

digits Number of decimal places for rounding.
limits a list of two or more lists, each containing the arguments variable name and

legal levels (in this order), to check on the factor variables. In the case of
rm.unwanted, if left NULL, it means no numeric variable will be checked. See
examples.

num.var A character vector indicating the name of a variable that should be numeric
(although it can yet be formated as character or factor).

num.max, num.min

The maximal and minimal limits of acceptable range of a numeric variable.
num.limits A data.frame with the following variables: num.var, num.max and num.min,

representing the numeric variables names, maximal and minimal expected valid
values. In the case of rm.unwanted, if left NULL, it means no numeric variable
will be checked. See example.

date.var A character vector indicating the name of a variable in data that should be a date
(althoug it can yet be formated as character or factor).

8 dataquality

date.max, date.min

The maximal and minimal limits of acceptable range of a date variable.

format.date Default is "auto". If so, t_date will use f.date to detect the date format and
format it as date. If not set to "auto", it should be a date format to be passed
to as.Date format argument. If format.date is misspecified, then t_date and
date.table will identify all dates as non-dates. For date.table, if it is set to
’auto’ , it will use f.date to detect the date format and format it as date. If dif-
ferent from ’auto’, one should specify the desired date formats in the date.limits
data.frame. See example.

date.limits A data.frame with the following variables: date.var, date.max, date.min, and
(optionaly) format.date. These represent values of the arguments above. See
example.

try.keep Default is TRUE. If TRUE, remove.unwanted will first trim all empty spaces and
transform all levels to lower case characters before comparing the found levels
and expected levels of a character/factor variable. Therefore, found levels such
as "yes " will be considered identical to the expected level "Yes", and will not
be coerced to NA.

stringAsFactors

In rm.unwanted, if set to TRUE, the default value, variables in the limits argu-
ment that are character and numeric variables in data will be returned as fac-
tors. Logical variables are skipped. However, a variable will be returned as
logical if it is originally a factor but its final levels are TRUE and FALSE and
stringAsFactors = FALSE.

Author(s)

Lunna Borges & Pedro Brasil

See Also

miscellaneous

Examples

Simulating a dataset with 5 factor variables and assigning labels
y <- data.frame(Var1 = sample(c("Yes","No", "Ignored", "", "yes ", NA), 200, replace = TRUE),

Var2 = sample(c("Death","Discharge", "", NA), 200, replace = TRUE),
Var3 = sample(c(16:35, NA), 200, replace = TRUE),
Var4 = sample(c(12:300, "Female", "", NA), 200, replace = TRUE),
Var5 = sample(c(60:800), 200, replace = TRUE))

attr(y, "var.labels") <- c("Intervention use","Unit destination","BMI","Age","Cholesterol")
summary(y)

Cheking the quality only the first variable
t_factor(y, "Var1", c("Yes","No","Ignored"))

Checking two or more variables at once
factor.limits = list(list("Var1",c("Yes","No")),

list("Var2",c("Death","Discharge")))
factor.table(y, limits = factor.limits)

dataquality 9

Checking only one variable that shohuld be numeric
t_num(y,"Var3", num.min = 17, num.max = 32)

Making the limits data.frame
num.limits <- data.frame(num.var = c("Var3","Var4","Var5"),

num.min = c(17,18,70), num.max = c(32,110,300))
num.limits

Checking two or more numeric variables (or the ones that
should be as numeric) at once
num.table(y, num.limits)

Removing the unwanted values (extremes or not valid).
y <- rm.unwanted(data = y, limits = factor.limits,

num.limits = num.limits)
summary(y)

rm(y, num.limits, factor.limits)
#'
Loading a dataset and assigning labels
data(icu)
attr(icu, "var.labels")[match(c("UnitAdmissionDateTime","UnitDischargeDateTime",

"HospitalAdmissionDate", "HospitalDischargeDate"), names(icu))] <-
c("Unit admission","Unit discharge","Hospital admission","Hospital discharge")

Checking only one variable that should be a date.
t_date(icu, "HospitalDischargeDate", date.max = as.Date("2013-10-30"),

date.min = as.Date("2013-02-20"))

Checking a date variable misspecifying the date format
will cause the variable dates to be identified as non-date values.
t_date(data = icu, date.var = "HospitalDischargeDate",

date.max = as.Date("2013-10-30"),
date.min = as.Date("2013-02-20"),
format.date = "%d/%m/%Y")

Making a limit data.frame assuming an 'auto' format.date
d.lim <- data.frame(date.var = c("UnitAdmissionDateTime","UnitDischargeDateTime",

"HospitalAdmissionDate","HospitalDischargeDate"),
date.min = rep(as.Date("2013-02-28"), 4),
date.max = rep(as.Date("2013-11-30"), 4))

d.lim

Checking two or more date variables (or the ones that should be as date) at once
date.table(data = icu, date.limits = d.lim)

Making a limit data.frame specifying format.date argument
Here the the last 'format.date' is missspecified on purpose
So, the last date will be identified as non-date values.
d.lim <- data.frame(date.var = c("UnitAdmissionDateTime","UnitDischargeDateTime",

"HospitalAdmissionDate","HospitalDischargeDate"),
date.min = rep(as.Date("2013-02-28"), 4),

10 funnel

date.max = rep(as.Date("2013-11-30"), 4),
format.date = c(rep("%Y/%m/%d",3), "%Y-%m-%d"))

d.lim

Checking the quality of date variable with new limits.
The 'format.date = ""' is required to force the function to look the format
into the date.limits data.frame
date.table(data = icu, date.limits = d.lim, format.date = "")

rm(icu, d.lim)

funnel Funnel plot for benchmarking health units

Description

Produces a variety of funnel plots comparing health units or ICUs (intensive care units) making
easy to identify those units which deviate from the group. There is a function that calculates all the
values required and returns the values for all units and the funnel, and there is a function that calls
graphical parameters from the former values. The options of funnels available are the funnel for
rate, for ratio of rates, for proportions, for difference of proportions and for ratio of proportions.

The funnel for rates are usually plots of either SMR or SRU at vertical axis. If the direct method is
chosen, the horizontal axis will display the number of admissions. If the indirect method is chosen
instead, the expected number of deaths will be displayed for SMR or the expected length of stay
for SRU. As consequence of this differentiation, the interpretation regarding the clssification of the
points displayed will be the same in every case.

The funnel for ratio of rates are usually plots of ratios of SMRs (or SRUs) within the same units.
These two SMRs are, for example, from the same units in different time periods. Therefore, it
expresses how the SMR changed over time. If the number of expected deaths is different in both
periods, the plot will return at the horizontal axis a parametrization of the geometric mean of the
expected number of deaths in both periods for each unit. If the number of expected deaths is iden-
tical in both periods, the plot will return at the horizontal axis the arithmetic mean of the observed
number of deaths in both periods for each unit.

The funnel for proportions plots on the vertical axis the percentage of observed deaths of the units
and on the horizontal axis the number (volume) of admissions. The funnel for ratio of proportions
and for difference of proportions are usually used to express the fraction of deaths of the same
units in different time period. Therefore, they express how the fraction of deaths changed over
time in each unit. If one picks the difference of proportions, the horizontal axis will display a
parametrization of the arithmetic mean of the number of admissions in both periods. If one picks
the ratio of proportions, the horizontal axis will display a parametrization of the geometric mean of
the number of admissions in both periods.

Usage

funnel(
unit,

funnel 11

y,
n,
n1,
n2,
o,
o1,
o2,
e,
e1,
e2,
lambda1 = sum(o1)/sum(n1),
lambda2 = sum(o2)/sum(n2),
pi1 = sum(o1)/sum(n1),
pi2 = sum(o2)/sum(n2),
y.type = c("SMR", "SRU"),
p = c(0.95, 0.998),
theta,
method = c("normal", "exact"),
direct = FALSE,
myunits = rep(0, length(unit)),
option = c("rate", "ratioRates", "prop", "diffProp", "ratioProp"),
printUnits = TRUE,
plot = TRUE,
digits = 5,
overdispersion = FALSE,
...

)

S3 method for class 'funnel'
print(x, ...)

S3 method for class 'funnel'
plot(
x,
...,
col = c("darkblue", "paleturquoise3", "gray26"),
lwd = 2,
lty = c(2, 6, 1),
bty = "n",
pch = 21,
pt.col = "white",
bg = "orange",
pt.cex = 1.5,
auto.legend = TRUE,
text.cex = 0.7,
text.pos = NULL,
mypts.col = "darkblue",
printUnits = x$printUnits,

12 funnel

xlab = x$xlab,
ylab = x$ylab,
xlim = x$xlim,
ylim = x$ylim

)

rateFunnel(
unit,
y,
n,
o,
e,
y.type,
p,
theta = 1,
method = c("exact", "normal"),
direct,
...,
printUnits,
auto.xlab = TRUE,
xlab = c("Volume of cases", "Expected values"),
ylab = y.type[1],
xlim = c(0, max(rho)),
ylim = c(min(lowerCI[[which(p == max(p))]]), max(upperCI[[which(p == max(p))]])),
myunits,
digits,
overdispersion

)

changeRateFunnel(
unit,
n1,
n2,
o1,
e1,
o2,
e2,
lambda1,
lambda2,
y.type,
p,
...,
printUnits,
auto.xlab = TRUE,
xlab = c("Average observed count", "Expectation per period"),
auto.ylab = TRUE,
ylab = c(paste0(y.type[1], "'s Ratio"), paste0("Log(", y.type[1], "'s Ratio)")),
ylim = c(max(lowerCI[[which(p == max(p))]]) - 1.5 * theta, min(upperCI[[which(p ==

funnel 13

max(p))]]) + 1.5 * theta),
xlim = c(0, max(rho)),
myunits,
digits,
overdispersion

)

propFunnel(
unit,
o,
n,
theta,
p,
method = c("exact", "normal"),
...,
printUnits,
ylab = "%",
xlab = "Volume",
ylim = c(0, min(upperCI[[which(p == max(p))]]) + 2.5 * theta),
xlim = c(0, max(n)),
myunits,
digits,
overdispersion

)

changePropFunnel(
unit,
o1,
o2,
n1,
n2,
p,
pi1,
pi2,
method = c("diff", "ratio"),
...,
printUnits,
xlab = "Sample size per period",
auto.ylab = TRUE,
ylab = c("Proportions difference", "Proportions ratio log"),
ylim = c(max(lowerCI[[which(p == max(p))]]) - 6 * theta, min(upperCI[[which(p ==

max(p))]]) + 6 * theta),
xlim = c(0, max(rho)),
myunits,
digits,
overdispersion

)

14 funnel

Arguments

unit A factor vector representing the unit names.
y A numeric vector representing the "Standardized rate" for each unit, usually

the SMR (Standardized Mortality Ratio), or possibly the SRU (Standardized
Resource Use), accordind to y.type . It’s also called "indicator".

n A numeric vector representing the case volume, or number of admissions, for
each unit.

n1, n2 If one picks option = "ratioRates" or option = "diffProp" or option = "ratioProp",
then n1 and n2 are numeric vectors representing the total of admissions at 1st
and 2nd periods, respectively.

o A numeric vector representing the observed death. Acceptable values are 0 (ab-
sence) or 1 (presence).

o1, o2 If one picks option = "ratioRates" or option = "diffProp" or option = "ratioProp",
then o1 and o2 are numeric vectors representing the observed deaths at 1st and
2nd periods, respectively.

e Used only when option = "rate" and direct = FALSE. This is a numeric vector
representing the expected number of deaths.

e1, e2 If one picks option = "ratioRates", e1 and e2 are numeric vectors represent-
ing the expected number of deaths at 1st and 2nd periods, respectively.

lambda1, lambda2

Values correponding to the rate at which a death occurs in the institutions at the
1st and 2nd periods, respectively. It is assumed that the parameters o1 and o2
are distributed as oi ~ Poisson(lambdai) when option = "ratioRates". The
default value for lambdai is lambdai = sum(oi)/sum(ni), where ni is the value
of the parameter n1 or n2 when i equals 1 or 2. lambdai is the estimate for the
mean of the poisson distribution.

pi1, pi2 Values correponding to the probability for the occurrence of a death in the insti-
tutions at the 1st and 2nd periods, respectively. Its assumed that the paramenters
o1 and o2 are distributed as oi ~ Bin(pii,ni) when option = "diffProp" or
option = "ratioProp". ni is the value of the parameter n1 or n2 when i equals
1 or 2. The default value for pii is sum(oi)/sum(ni), the estimate for the mean
of the poisson distribution.

y.type A character vector representing the indicator type. It is used to name the vertical
axis if option = "rate" or option = "ratioRate" and ignored otherwise. It
usually is ’SMR’ or ’SRU’.

p A confidence level numeric vector. The function will return a confidence interval
for each value in p. The default is 2 and 3 standard deviations (p = c(.95,
998)).

theta The target value which specifies the desired expectation for institutions consid-
ered "in control". Used when option = "prop" or option = "rate". Usually,
this function internally estimates a theta to represent a central tendency of the
group. However, one may want to set a pre-specified value for theta to indicate
a "baseline" parameter for comparison (e.g 1 for option = "rate" or .20 for
option = "prop"). If this is the case, the horizontal line representing theta may
not be centralized in the funnel or may be even outside the funnel, making the
plot look unusual.

funnel 15

method There are two kinds of approximations for the CI, as mentioned in direct pa-
rameter. The one from the exact distribuition (binomial or poisson) and the one
from the normal distribution. So, method is a character vector representing the
kind of approximation desired, being "exact" (default) or "normal" the two op-
tions. It is used when option = "rate" or option = "prop". The original report
makes no formal comparison of which method is best, however it is mentioned
that the funnels from different methods should look identical or very similar if
all units have 100 or more observations. If any unit has less, the funnel from the
normal approximation may mislead the interpretation. See details.

direct Logical (default = FALSE); Used when option = "rate". If TRUE, we assume the
vector of rates "y" is being reported as a rate per (say) 1000 individuals, and that
it has been transformed to a proportion between 0 and 1. The associated error
(horizontal axis) will be measured accordingly to the size of the populations n.
The CI - confidence interval - is calculated by a binomial distribution. If FALSE,
the associated error will be measured accordingly to the expected number of
deaths e. The CI is calculated by a poisson distribution instead. See details.

myunits A numeric vector coded with 0 and 1 indicating which units one would like to
benchmark among all units. These will be highlighted with dots of different
collors in the plot.

option A character specifying the type of funnel plot one wants to produce. It can as-
sume "rate", "ratioRates", "prop", "diffProp" or "ratioProp". If option
= "rate", funnel plots a standardized rate y versus the expected number of
deaths or case volume (number of unit admissions) for all units. If option =
"ratioRate", funnel can be used to compare units at two diferent periods. It
plots a ratio of rates y versus a precision parameter rho. If option = "prop",
funnel plots a proportion y versus its case volume (number of admissions). If
option = "ratioProp" or option = "diffProp", funnel can be used to com-
pare units at two diferent periods. It plots a ratio (or difference) of proportions
y versus a precision parameter rho. See details.

printUnits Logical (default = TRUE); If TRUE, the units are identified in the plot and printed
in de console. The numbers plotted correspond to the row numbers printed in
the console.

plot Logical; If TRUE (default), the correspondent graphic is plotted with the standard
options.

digits Integer indicating the number of decimals to be used in the output.

overdispersion Logical (default = FALSE); If TRUE, introduces an multiplicative over-dispersion
factor phi that will inflate the CI null variance. See details.

... Further arguments passed to plot.

x An object of class ’funnel’.

col A character vector representing the colors for the CI funnel lines. Must have
same length of p + 1 with the target line color in the last position.

lwd A positive number specifying the lines width. It’s the same for all lines in the
plot. See par.

lty A numeric vector representing the CI lines types. See par.

16 funnel

bty A character string which represents the type of box which is drawn around plots.
See par.

pch Either an integer or a single character specifying a symbol to be used as the
default in plotting points. See points for possible values and their interpreta-
tion. Note that only integers and single-character strings can be set as a graphics
parameter (and not NA nor NULL).

pt.col A character specifying the points colors.

bg A character specifying the color to be used for the points background when pch
= 21 (default). See par.

pt.cex A numerical value giving the amount by which plotting points should be mag-
nified relative to the default. See par.

auto.legend Logical; If TRUE (default), prints a legend with default arguments.

text.cex A numerical value giving the amount by which plotting text should be magnified
relative to the default. See par.

text.pos A position specifier for numbers that correspond to the units in the plot. Values
of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above and
to the right of the points.

mypts.col A character representing the color used to benchmark the units specified in
myunits.

xlab, ylab A title for the x and y axis. See title

xlim, ylim Limits of horizontal and vertical axis. These limits are defined in the funnel plot
and passed to plot.funnel. The user may redefine the limits in plot.funnel.
Ultimately, these arguments are passed to plot.default.

auto.xlab, auto.ylab

Logical. If TRUE, one is not able to change x and y axis labels, respectively.

Details

• For every possible value of option, if overdispersion = TRUE, the CI can be inflated by a
overdispersion parameter phi. There is a test for overdispersion which inflates the funnel if
it’s necessary. An "Winsorized" over-dispersion parameter is estimated and is used to inflate
the funnel limits if it is significantly greater than 1. The parameter phi is returned as an funnel
object.

• If option = "rate", funnel plots a standardized rate y versus the expected number of deaths
or volume value for several units.
To choose the direct argument, one should pay attention if one wants to use a Direct or
Indirect Standardized Rate. If direct, we assume the rate is reported as a rate per (say) 1000
individuals, then it is treated as a proportion. If indirect, we assume it is a cross-sectional data
that leads to a standardized event ratio.
In many circumstances we can assume an exact or approximate normal distribution for the
data. Using the method argument, one could choose between "exact" or "normal". For
direct standardized rates, the exact distribuition is binomial and for indirect standardized rates,
the exact distribuition is poisson. Assume rho is the precision parameter (volume, for direct
rates; expected value, for indirect rates). The original report claims that, for rho > 100, the

funnel 17

normal and exact curves almost coincide. So, one could perfectly use normal approximation
if ones data parameter precision is greater than 100, in general.
The console warns if there are units with volume/expected value less than 100.
phi = (1/total) * sum((y - theta) ^ 2 * rho)/g(theta)
var(y|theta,rho) = (phi * g(theta))/rho

• If option = "ratioRate", funnel can be used to compare units at two diferent periods. It
plots a ratio of rates y versus a precision parameter rho.
Suppose we have two measures for each institution: O1; E1 in a baseline period and O2;
E2 in a subsequent period, and we wish to assess the change in the underlying rate (SMR or
SRU). We shall only consider the ratio of rates option. The exact method will automatically
be applied if E1 = E2, and the indirect method, of normal approximations, otherwise. On this
second method, for low (especially zero) counts the funnel function adds 0.5 to all parameters
O and E in order to stabilize the estimates.
Y = (O1/E1)/(O2/E2) and the target theta = lambda2/lambda1.
When E1 = E2, y is plotted versus the average observed count (rho).
When E1 is different of E2, i.e., it is used normal approximation. It is convenient to work on
a logarithmic scale so that log(theta) is a target for log(Y). Y is plotted versus a different rho
depending on the chosen rate.

• If option = "prop", funnel plots a proportion y versus its volume. It is used for cross-
sectional data. Suppose in each institution that O events are observed out of a sample size of
N:
The indicator is the observed proportion y = O/N
Assume N is the precision parameter (volume). Similarly to when option = "rate", for N
> 100 the normal and exact curves almost coincide. So, one could perfectly use normal ap-
proximation on the parameter method if ones data parameter precision is greater than 100, in
general.
phi = (1/total) * sum((y - theta) ^ 2 * N)/g(theta)
var(y|theta,N) = (phi * g(theta))/N

• If option = "ratioProp" or option = "diffProp", funnel can be used to compare units
at two diferent periods. It plots a ratio (or difference) of proportions y versus a precision
parameter rho to assess the change in the underlying proportion from pi1 to pi2. Normal
approximations are used throughout, and for low (especially zero) counts, the function adds
0.5 to all arguments r and 1 to all arguments n in order to stabilize the estimates.
In the case option = "diffProp", the indicator is Y = (O2/N2 - O1/N1) and theta = pi2 - pi1.
If option = "ratioProp", the indicator is Y = (O2/N2)/(O1/N1) and theta = pi2/pi1. It is
convenient to work on a logarithmic scale, so that log(theta) is a target for log(Y) in this case
as well.
For these two parameter options, the precision parameter (plotted at horizontal axis) can be
interpreted as approximately the sample size per period.

Value

A table with unit names, y, observed (Obs), expected (Exp) and admissions (N) for each unit, a
binary column showing which units one would like to highlight in the plot (myunits) and final
columns show which units are out of control.

18 funnel

References

Spiegelhalter, David J. "Funnel plots for comparing institutional performance." Statistics in medicine
24.8 (2005): 1185-1202.

See Also

SMR, SRU, reclass

Examples

Loading data
data(icu)

Some edition
icu$Saps3DeathProbabilityStandardEquation <- icu$Saps3DeathProbabilityStandardEquation / 100
icu <- icu[-which(icu$Unit == "F"),]
icu$myunits <- ifelse(icu$Unit == "A",1,0) #my units
icu <- droplevels(icu)

Getting the cross-sectional arguments to use in funnel
x <- SMR.table(data = icu, group.var = "Unit",

obs.var = "UnitDischargeName", pred.var = "Saps3DeathProbabilityStandardEquation")
myunit_names <- unique(icu$Unit[which(icu$myunits == 1)])
x$myunits <- ifelse(x$Levels %in% myunit_names, 1,0)

Analysis of proportions
f1 <- funnel(unit = x$Levels[-1], o = x[-1,]$Observed, theta = x$Observed[1] / x$N[1],

n = x[-1,]$N, method = "exact", myunits = x$myunits[-1], option = "prop", plot = FALSE)
f1
plot(f1, main = "Cross-sectional proportions")

To analyze rates (SMR)
f2 <- funnel(unit = x$Levels[-1], y = x[-1,]$SMR, method = "exact", direct = TRUE,

theta = x$SMR[1], e = x[-1,]$Expected, n = x[-1,]$N, o = x[-1,]$Observed,
option = "rate", plot = FALSE)

f2
plot(f2, main = "Cross-sectional rate (SMR)")

Creating a variable containing month information about each admission
icu$month <- as.numeric(format(as.Date(icu$UnitAdmissionDateTime),"%m"))

First quarter
dt1 <- icu[which(icu$month %in% c(1,2,3)),]

Second quarter
dt2 <- icu[which(icu$month %in% c(4,5,6)),]

Getting the two period arguments to use in funnel
z <- SMR.table(data = dt1, group.var = "Unit", obs.var = "UnitDischargeName",

pred.var = "Saps3DeathProbabilityStandardEquation")
w <- SMR.table(data = dt2, group.var = "Unit", obs.var = "UnitDischargeName",

pred.var = "Saps3DeathProbabilityStandardEquation")

icu 19

z$myunits <- ifelse(z$Levels %in% myunit_names, 1,0)
w$myunits <- ifelse(w$Levels %in% myunit_names, 1,0)
To analyze periods using ratio rates with e1 = e1
f3 <- funnel(unit = z$Levels[-1], n1 = z$N[-1], o1 = z$Observed[-1],

e1 = z$Expected[-1],
n2 = w$N[-1], o2 = w$Observed[-1], e2 = z$Expected[-1],
myunits = z$myunits[-1], option = "ratioRates", plot = FALSE)

f3
plot(f3, main = "Ratio of SMRs of periods with same expectation of death")

To analyze periods using ratio rates with e1 =! e1
f4 <- funnel(unit <- z$Levels[-1], n1 = z$N[-1], o1 = z$Observed[-1],

e1 = z$Expected[-1], n2 = w$N[-1], o2 = w$Observed[-1], e2 = w$Expected[-1],
option = "ratioRates", plot = FALSE)

f4
plot(f4, main = "Ratio of SMRs of periods with different expectation of death",

ylim = c(-1.5,1.5), xlim = c(0,200))

To analyze periods by difference in proportions
f5 <- funnel(unit <- z$Levels[-1], n1 = z$N[-1], o1 = z$Observed[-1],

n2 = w$N[-1], o2 = w$Observed[-1], option = "diffProp", plot = FALSE)
f5
plot(f5, main = "Difference in proportions of death for two periods")

To analyze periods by ratio of proportions
f6 <- funnel(unit <- z$Levels[-1], n1 = z$N[-1], o1 = z$Observed[-1],

n2 = w$N[-1], o2 = w$Observed[-1], option = "ratioProp", plot = FALSE)
f6
plot(f6, main = "Ratio of proportions of death for two periods")

rm(icu, x, z, w, dt1, dt2, unit, f1, f2, f3, f4, f5, f6)

icu Data from ICU admissions.

Description

A dataset containing selected data from some ICU (intensive care units) admissions and its out-
comes at the year 2013 used in the ORCHESTRA study.

Usage

icu

Format

A data frame with 13709 rows and 24 variables

20 miscellaneous

Details

• Unit The name of the ICU unit.

• Age Patient age.

• UnitAdmissionDateTime ICU unit admission date and time.

• UnitDischargeDateTime ICU unit discharge date and time.

• UnitDischargeName Unit admission outcome. Death = 1, or Discharge = 0.

• UnitDestinationName ICU unit destination after discharge.

• HospitalAdmissionDate Hospital admission date.

• HospitalDischargeDate Hospital discharge date.

• HospitalDischargeName Hospital admission outcome. Death = 1, Discharge = 0.

• LengthHospitalStayPriorUnitAdmission Hospital length of stay before unit admission.

• AdmissionSourceName The origin of the patient before ICU admission.

• AdmissionTypeName_pri Admission as Clinical treatment (1) Elective surgery (2), or Urgent
surgery (3).

• AdmissionReasonName_pri Main diagnosis groups.

• Vasopressors_D1 Vasopressors use at ICU first day admission? No = No, Yes = 1

• IsMechanicalVentilation1h Required mechanichal ventilation at 1st hour of admission.
No = 0, Yes = 1.

• CharlsonComorbidityIndex Charlson comorbidity index.

• Saps3Points SAPS 3 score

• Saps3DeathProbabilityStandardEquation SAPS 3 estimated probability

• SofaScore SOFA score.

• los Unit length of stay, that is, the time difference between UnitAdmissionDateTime and
UnitDischargeDateTime, in days.

Source

Organizational characteristics, outcomes, and resource use in 78 Brazilian intensive care units: the
ORCHESTRA study. Intensive Care Med. 2015 Dec;41(12):2149-60.

miscellaneous Miscellaneous functions for data editing

miscellaneous 21

Description

Collection of functions for data editing, usually used as lower levels for other functions.

f.num is a wrapper to format numeric variables that are stored as character or factor, simultaneously
it will try to detect comma spearated and replace it by dots before formating the variable as numeric.
Any non-numeric encoding will be coerced to NA.

f.date is a wrapper either to as.Date or strptime to format character or factor variables into
dates. In Epimed Solutions database there are a few pre-specified formats that f.date will try to
detect and return a formated date. f.date will try to dected if more than half of the elements in a
vector have a pre-specified format. If so, the remaining will be coerced to NA if they have different
format from the detected. See example.

remove.na identifies all the empty spaces, i.e. the " " cells, of character or factor variables in a
data.frame and returns the same data.frame with these empty cells replaced, by default, by NAs.
It does not matter the length of the empty spaces. Also, remove.na trims the leading and trailing
empty spaces from all character and factor variables. It does not format the numeric variables. It
may also return at the console a few information about the " " fields.

tab2tex removes the empty rows, and also tunrs the rownames of a table epiDisplay::tableStack
into the first column, to make it easier to paste the table into a rtf or latex document without empty
rows or rownames conflicts.

trunc_num truncates a numeric vector by replacing the values below the min value or above the
max values by the min and max values respectively or optionall to NA. See example.

dummy.columns takes a data.frame with one column with concatatenated levels of a factor (or
character) variable and return a data.frame with additional columns with zeros and ones (dummy
values), which names are the factor levels of the original column. See example below. rm.dummy.columns
is an internal function of dummy.columns that deletes the new dummy columns which have less then
a specified minimum events.

funnelEstimate estimates funnel confidence intervals (CI) for binomial, poisson or normal distri-
bution. Used inside funnel.

winsorising is an internal function that estimates a phi parameter after shirinking extreme z-
scores. This parameter is used to inflate funnel CIs due overdispersion presence.

Usage

f.num(num.var)

f.date(date)

remove.na(data, replace = NA, console.output = TRUE)

tab2tex(x, nc = ncol(x))

trunc_num(x, min, max, toNA = FALSE)

dummy.columns(
data,
original.column,
factors,

22 miscellaneous

scan.oc = FALSE,
sep = ",",
colnames.add = "Dummy.",
min.events = NULL,
rm.oc = FALSE,
warn = FALSE,
return.factor = TRUE

)

rm.dummy.columns(data, colnames, event = "1", min.events = 50, warn = FALSE)

funnelEstimate(
y,
range,
u,
totalAdmissions,
totalObserved,
p = 0.95,
theta = 1,
overdispersion = TRUE,
dist = c("binomial", "normal", "poisson"),
rho,
gdetheta

)

winsorising(z_score, u)

Arguments

num.var A character, or factor variable to be formated as numeric.

date A character or factor variable to be formated as date.

data A data.frame.

replace By default, NA. But could be any vector of length 1.

console.output Logical. Print at the console a few informations about the " " fields?

x, nc For tab2tex x is a object from epiDisplay::tableStack. nc is the number of the
last column to keep in the table. If the table has 5 columns and nc = 3, then
columns 4 and 5 are removed. For trunc_num, x is a numeric vector.

min, max For trunc_num, min and max are the minimal and maximal numeric values
where the numeric vector will be truncated.

toNA For trunc_num, if FALSE any min and max are the minimal and maximal nu-
meric values where the numeric vector will be truncated.

original.column

A character vector representing the name of the column the be transformed in
dummy variables.

factors A character vector to make new dummy columns and to match values in original.column.
This is interesting if the user desires to make dummy only from a few factors in
the originlal column. Ignored if scan.oc = TRUE

miscellaneous 23

scan.oc Default = FALSE, if TRUE, dummy.columns scans the specified original.column
and uses all factors to generate dummy variables. It overrides the factor argu-
ment.

sep A character of legth one that systematically split the factors in the original
columns. It wil be passed to the sep argument in the scan function.

colnames.add The default is ’= "Dummy_"’. This is a character vector of length one to stick
in the colnames of the dummy variables. For example, if the orginal col-
umn has A;B;C factor levels, the new dummy variables colnames would be
"Dummy_A", "Dummy_B", and "Dummy_C"

min.events Either NULL (default), or a numeric scalar. If any of the new variables have less
events then specified in min.events, they will be deleted before returning the
output data.

rm.oc Default is FALSE. If TRUE, dummy.columns will delete the original column before
returnig the final data.frame.

warn Default is FALSE. If TRUE, dummy.columns will print at the console the deleted
columns names.

return.factor Default is TRUE. If TRUE, dummy.columns return factor columns with "0" and
"1" levels, or numeric otherwise.

colnames For rm.dummy.columns this is the names of the columns to be tested and deleted
inside dummy.columns.

event A character string to be detected as a event. In rm.dummy.columns, if the
columns are coded as ’0’ and ’1’, the event is ’1’, if it is coded as logical, the
events is ’TRUE’.

y A numeric vector representing the "Standardized rate" for each unit, usually the
SMR or possibly the SRU , accordind to y.type.

range A numeric range representing for which values the funnel will be estimated.
Usually the same variable in x axis (the precision parameter).

u A number indicating the total amount of ICUs in the data.
totalAdmissions

The quantity of admissions in all units.
totalObserved The quantity of observed death in all units.
p A number between 0 and 1 indicating the confidence interval level for the funnel.
theta Target value which specifies the desired expectation for institutions considered

"in control".
overdispersion Logical (default = FALSE); If TRUE, introduces an multiplicative over-dispersion

factor phi that will inflate the CI null variance. See funnel details.
dist A character specifying the distribution about the funnel control limits will be

estimated. It can be "binomial" (default), "normal" or "poisson".
rho A numeric vector representing the funnel precision parameter. It is calculated

inside funnel and used to calculer z_score.
gdetheta A numeric auxiliary numeric vector used to calculate z_score to be used to

calculate estimate funnel control limits.
z_score A numeric vector indicating the standardized Pearson residual or the "naive"

Z-Score for each unit.

24 miscellaneous

Author(s)

Lunna Borges & Pedro Brasil

See Also

dataquality

Examples

Formating character or factor variable that should be numeric variables
f.num(c("2,4000","10,0000","5.0400"))

Simulating a dataset
y <- data.frame(v1 = sample(c(" F","M "," "), 10, replace = TRUE),

v2 = sample(c(1:3," "), 10, replace = TRUE),
v3 = sample(c("Alive","Dead",""), 10, replace = TRUE))

y

Replacing the "" cells by NA
y <- remove.na(y)
y

rm(y)

Formating dates
x <- f.date(c("28/02/2013","16/07/1998","31/03/2010"))
x
class(x)

The first element (i.e., the different one) is coerced to NA
x <- f.date(c("2013-02-28 12:40","16/07/1998","31/03/2010"))
x
class(x)

The last element (i.e. the different one) is coerced to NA
x <- f.date(c("2013-02-28 12:40","1998-07-16 18:50","31/03/2010"))
x
class(x)

Truncating numeric vectors
trunc_num(1:12, min = 3, max = 10)

Truncating numeric vectors but returning NAs instead
trunc_num(1:12, min = 3, max = 10, toNA = TRUE)

Simulating a dataset for dummy.columns example

y <- data.frame(v1 = 1:20,
v2 = sapply(1:20, function(i) toString(sample(c("Code1","Code2","Code3","Code4"),

size = sample(2:4, 1), replace = FALSE))))
y

mortality_rate 25

For a few of the codes in the original column
y <- dummy.columns(y, original.column = "v2", factor = c("Code2","Code3"))
y

For all codes in the original column
y <- dummy.columns(y[, 1:2], original.column = "v2", scan.oc = TRUE)
y

Funnel Estimate
data(icu)
icu

funnelEstimate(y = icu$Saps3DeathProbabilityStandardEquation,
range = 1, u = length(unique(icu$Unit)),
totalAdmissions = nrow(icu),
totalObserved = sum(icu$UnitDischargeName),
theta = mean(icu$Saps3DeathProbabilityStandardEquation),
dist = 'normal', rho = 1, gdetheta = 1)

rm(y, icu)

mortality_rate Mortality Rate

Description

mortality_rate function returns a list with the mortality rate and the number of patients for each
month or quarter of the year.

Usage

mortality_rate(
deaths,
period = NULL,
isQuarter = FALSE,
isYear = FALSE,
option = c("both", "monthly", "quarterly", "annual"),
periodName = NULL,
default_tapply = NA

)

Arguments

deaths a numerical vector that only contains 0 and 1, indicating whether the patient was
alive or dead, respectively.

26 mortality_rate

period a numerical vector that contains the order of months when the patients were ad-
mitted to the hospital unit. If period variable is NULL (the default), the function
will return a single mortality rate.

isQuarter logical indicating whether the period refers to quarter or not. The default is
FALSE.

isYear logical indicating whether the period refers to years or not. The default is
FALSE.

option a character string which determines what the function mortality_rate returns.
If the option is chosen to be ’both’ (the default), the function will return a list
containing monthly mortality rate, quarterly mortality rate, annual mortality rate
and the number of patients in each month, quarter and year. If the option is
’monthly’, only the monthly mortality rate and the number of patients in each
month are returned. If the option is ’quarterly’, only the quarterly mortality
rate and the number of patients in each quarter are returned. If the option is
’annual’, only the annual mortality rate and the number of patients in each year
are returned.

periodName a character vector that contains the name of months when the patients were
admitted to de hospital unit. Used only if period is not NULL.

default_tapply argument to set the default in tapply function when evaluating the mortality
rate for each period. Can be equal to 0 or NA (the default).

Author(s)

Camila Cardoso <camila.cardoso@epimedsolutions.com> Lunna Borges <lunna.borges@epimedsolutions.com>

Examples

Loading the dataset
data(icu)

Creating a vector of months
date <- as.Date(icu$UnitDischargeDateTime, tryFormats = '%d/%m/%Y')
months <- as.numeric(format(date, '%m'))

Vector of deaths
deaths <- icu$UnitDischargeName

Calculating monthly and quarterly mortality rate
mortality_rate(deaths = deaths, period = months, option = 'both')

reclass 27

reclass Comparisson of the Standardized Resource Use (SRU)

Description

Compares ICU’s (intensive care units) SRU with diferent severity classes or compares ICU’s SRU
at two diferents times. This comparison checks if the ICUs remains in the same quadrant after a
time period, and highlights their rank changes over time.

plot.reclass Plots a SMR vs. SRU scatter plot with the ICUs which had their quadrant/rank
classification changed.

print.reclass Prints a table with information about which ICUs changed from a classification to
another.

Usage

reclass(
x,
y,
same = TRUE,
plot = FALSE,
digits = 2,
compare = c("SRU", "SMR", "BOTH"),
decreasing = FALSE,
complete.rank = TRUE

)

S3 method for class 'reclass'
print(x, ...)

S3 method for class 'reclass'
plot(
x,
...,
xlim_x = range(x$smr_x),
ylim_x = range(x$sru_x),
xlim_y = range(x$smr_y),
ylim_y = range(x$sru_y),
xlab = "SMR",
ylab = "SRU",
points.arg_x = list(pch = 21, col = "white", bg = "yellow", cex = 2),
points.arg_y = list(pch = 21, col = "white", bg = "yellow", cex = 2),
med.arg_x = list(col = "dodgerblue4", lwd = 2, lty = 1),
med.arg_y = list(col = "dodgerblue4", lwd = 2, lty = 1),
tert.arg_x = list(col = "darkorange2", lty = 2, lwd = 1),
tert.arg_y = list(col = "darkorange2", lty = 2, lwd = 1),
text.arg_x = list(labels = seq(1, nrow(x$tab)), cex = 0.6),

28 reclass

text.arg_y = list(labels = seq(1, nrow(x$tab)), cex = 0.6),
worse.arg_x = list(x = x$worse_x, pch = 21, col = "white", bg = "tomato", cex = 2),
worse.arg_y = list(x = x$worse_y, pch = 21, col = "white", bg = "tomato", cex = 2),
better.arg_x = list(x = x$better_x, pch = 21, col = "white", bg = "mediumseagreen",

cex = 2),
better.arg_y = list(x = x$better_y, pch = 21, col = "white", bg = "mediumseagreen",

cex = 2),
auto.legend = TRUE,
leg.arg = list(x = "topleft", bty = "n", xpd = NA, inset = c(-1.8, -0.2), ncol = 1,

horiz = F, pch = 19, cex = 0.8, pt.cex = 1.5),
main.arg_x = list(main = "1st Stage"),
main.arg_y = list(main = "2nd Stage")

)

Arguments

x, y Objects of class ’SRU’. x is the SRU analsys from the 1st period (e.g. first
trimester) and y from the 2nd period (e.g. second trimester). For print.reclass
or plot.reclass, x is an object of class ’reclass’.

same Logical; If TRUE, compare the same units, with the same severity classes at two
consecutive time periods (default). If same = TRUE and the ICUs do not match
exactly in ’x’ and ’y’, there is a warning and non matching units are discarded
from the analysis. If FALSE, it compares the same units, with different severity
classes within the same period. In this case, if the ICUs do not match exactly in
’x’ and’y’, the function will return an error.

plot Logical. If TRUE (default), plots a SMR vs. SRU scatter plot highlighting the
ICUs which had their classification changed.

digits Integer indicating the number of decimal places to be used in the output.

compare The way one prefers to benchmark the ICUs: by "SRU" (default), "SMR" or
"BOTH". If "BOTH", the ICUs will be ranked by their SRU.

decreasing Logical. Should the sort order of ICU’s rank be increasing or decreasing?

complete.rank Logical. If TRUE (default), returns all ICUs ranked. If FALSE, returns only ICUs
whose efficiency classification ranked changed.

... Arguments to be passed to methods (see par).

xlim_x, ylim_x Limits for x and y axis for 1st stage plot for plot.reclass.

xlim_y, ylim_y Limits for x and y axis for 2nd stage plot for plot.reclass.

xlab, ylab Labels of x and y axis for plot.reclass.
points.arg_x, points.arg_y

List of arguments passed to points for plotting points correponding to units’
SMR and SRU in 1st and 2nd stage plots for plot.reclass.

med.arg_x, med.arg_y

List of arguments passed to abline for plotting lines corresponding to SRU and
SMR medians in 1st and 2nd stage plots for plot.reclass.

tert.arg_x, tert.arg_y

List of arguments passed to abline for plotting lines corresponding to SRU and
SMR tertiles in 1st and 2nd stage plots for plot.reclass.

reclass 29

text.arg_x, text.arg_y

List of arguments passed to text for plotting units labels in 1st and 2nd stage
plots for plot.reclass.

worse.arg_x, worse.arg_y

List of arguments passed to points for plotting points correponding to units
which got their rank worse in 1st and 2nd stage plots for plot.reclass.

better.arg_x, better.arg_y

List of arguments passed to points for plotting points correponding to units
which got their rank better in 1st and 2nd stage plots for plot.reclass.

auto.legend Logical. If TRUE, it prints a legend with leg.arg arguments for plot.reclass.

leg.arg List of arguments passed to legend for plotting legends corresponding to SRU
and SMR medians and tertiles in 1st and 2nd stage plots for plot.reclass.

main.arg_x, main.arg_y

List of arguments passed to plot for the titles for the 1st and 2nd stage plots for
plot.reclass.

Value

reclass retunrs a data.frame with the following columns:

• Unit Names of the ICU.

• Admission Number of admissions in each ICU.

• From ICU’s initial efficiency quadrant.

• To ICU’s final efficiency quadrant.

• SRU.1st ICU’s initial SRU estimate.

• SRU.2nd ICU’s final SRU estimate.

• SMR.1st ICU’s initial SMR estimate.

• SMR.2nd ICU’s final SMR estimate.

• Rank1 ICU’s initial SRU (or SMR) rank.

• Rank2 ICU’s final SRU (or SMR) rank.

plot.reclass returns a scatter plot with grpahical comparison of the two periods/stages with their
respective medians and tertiles.

Author(s)

Lunna Borges and Pedro Brasil

See Also

SRU, SMR, funnel

30 SMR

Examples

data(icu)
A little editing
icu$Saps3DeathProbabilityStandardEquation <- icu$Saps3DeathProbabilityStandardEquation / 100
icu <- icu[-which(icu$los < 0),]

Subseting the data for the 1st quarter
x <- droplevels(icu[which(format(as.Date(icu$UnitAdmissionDate),"%m") %in% c("01","02","03")),])

Subseting the data for the 2nd quarter
y <- droplevels(icu[which(format(as.Date(icu$UnitAdmissionDate),"%m") %in% c("04","05","06")),])

Running the SRU analysis for both quarters
FirstQ <- SRU(prob = x$Saps3DeathProbabilityStandardEquation, death = x$UnitDischargeName,
unit = x$Unit, los = x$los, score = x$Saps3Points, originals = TRUE, type = 1, plot = FALSE)
FirstQ

SecondQ <- SRU(prob = y$Saps3DeathProbabilityStandardEquation, death = y$UnitDischargeName,
unit = y$Unit, los = y$los, score = y$Saps3Points, originals = TRUE, type = 1, plot = FALSE)
SecondQ

z <- reclass(x = FirstQ, y = SecondQ, same = TRUE)
z
plot(z)

rm(icu, x, y, FirstQ, SecondQ, z)

SMR Standardized Mortality Ratio (SMR)

Description

Calculates the standardized mortality ratio and its confidence interval. SMR, for a group, is defined
as the ratio of the observed deaths in this group and the sum of the predicted individual probabilities
of death by any model (expected deaths).

SMR.table estimates at once the overall SMR and the SMR across several groups, e.g. ICU units
or clinical characteristics. The SMR.table can be ordered by the SMR estimate or its confidence
intervals, facilitating the comparison of the units ranks.

forest.SMR shows the SMR.table output as a forest plot. The plot opens two windows and plot
at the left side the values from the SMR.table and at the right side the points and lines graphically
representing each SMR and its confidence interval.

Usage

SMR(
obs.var,

SMR 31

pred.var,
digits = 5,
ci.method = c("Hosmer", "Byar"),
ci.level = 0.95

)

SMR.table(
data,
group.var,
obs.var,
pred.var,
digits = 5,
use.label = FALSE,
var.labels = attr(data, "var.labels")[match(group.var, names(data))],
ci.method = c("Hosmer", "Byar"),
ci.level = 0.95,
reorder = c("no", "SMR", "lower.Cl", "upper.Cl"),
decreasing = FALSE

)

forest.SMR(
x,
mar1 = c(5.1, 1, 4.1, 1),
mar.SMR = c(5.1, 7, 4.1, 1),
overall.arg = list(x = 0.01, font = 2, las = 1, labels = var.labels[1], xpd = NA, adj

= 0),
NOE.overall.args = list(x = c(N.values.arg$x, O.values.arg$x, E.values.arg$x), font =

2, las = 1, xpd = NA),
var.labels.arg = list(x = 0.01, font = 2, las = 1, cex = 1, xpd = NA, adj = 0),
cat.labels.arg = list(x = 0.1, font = 3, las = 1, cex = 0.95, col = gray(0.4), xpd =

NA, adj = 0),
N.values.arg = list(x = 0.5, col = gray(0.4), xpd = NA),
O.values.arg = list(x = 0.675, col = gray(0.4), xpd = NA),
E.values.arg = list(x = 0.85, col = gray(0.4), xpd = NA),
NOE.head.arg = list(font = 2, labels = c("N", "O", "E"), xpd = NA),
Overall.seg.arg = list(col = "navyblue", xpd = NA, lwd = 2),
Overall.p.arg = list(pch = 23, cex = 2, col = "black", bg = gray(0.4), xpd = NA),
Overall.est.arg = list(x = smr.xlim[1] - 0.06, las = 1, font = 2, xpd = NA, adj = 1),
cat.seg.arg = list(col = "navyblue", xpd = NA, lwd = 2),
cat.p.arg = list(pch = 22, cex = 1, col = "black", bg = gray(0.4), xpd = NA),
cat.est.arg = list(x = smr.xlim[1] - 0.06, las = 1, col = gray(0.4), xpd = NA, adj =

1),
SMR.head.arg = list(smr.xlim[1] - 0.06, font = 2, labels = "SMR [95% CIs]", xpd =

NA, adj = 1),
smr.xlab = "Standardized Mortality Ratio",
smr.xlim = "auto",
grid = TRUE,
digits = 3

32 SMR

)

Arguments

obs.var Observed death. Accepted values are 0 (absence) or 1 (presence) in a vector.
For SMR.table it must be a character indicating the name of the variable in the
data.

pred.var Death individual predictions (ranging from 0 to 1) in a vector. For SMR.table it
must be a character indicating the name of the variable in the data.

digits Number of digits for rounding the output.

ci.method Method to estimate the confidence interval. "Hosmer" (default) or "Byar" are
acceptable values.

ci.level Level of the confidence interval. Default is 0.95.

data For SMR.table, a dataset where pred.var, obs.var and group.var are in.

group.var For SMR.table, this is a character vector indicating the name(s) of the vari-
able(s) in the data that will form the groups where SMR will be calculated. The
variables must be factors.

use.label Logical. Default is FALSE. For SMR.table this option will replace the variables
names by its labels in var.labels argument.

var.labels A character vector with variables labels. The default is to replace the variable
name by the label stored at attr(data, "var.labels"). But one may specify labels
directly.

reorder Default is "no". Possible values are: "no", "SMR","lower.Cl", and "upper.Cl".
It will make the SMR.table to be ordered within each varibale by its original
order, or by SMR order, or by lower.Cl order, or by upper.Cl.

decreasing Logical. When ’reorderd’ is TRUE, should the order be decreasing or incresing?
See order

x For the forest.SMR this is the output of SMR.table.

mar1, mar.SMR Values to set the margins (mar parameter) of left and right windows. See par

overall.arg A list of arguments passed to text for plotting the overall label. Internally, ’y’
coordinate is replaced.

NOE.overall.args

A list of arguments passed to text for plotting the overall N (number of obser-
vations), O (observed deaths) and E (expected deaths). Internally, ’labels’ and
’y’ arguments are replaced.

var.labels.arg A list of arguments passed to text for plotting the variables labels. Internally,
’y’ coordinate is replaced.

cat.labels.arg A list of arguments passed to text for plotting the categories labels. Internally,
’y’ coordinate is replaced.

N.values.arg A list of arguments passed to text for plotting the values of N (number of obser-
vations) of each subgroup. Internally, the arguments ’label’ and ’y’ coordinate
are replaced.

O.values.arg A list of arguments passed to text for plotting the values of Observed deaths of
each subgroup. Internally, the arguments ’label’ and ’y’ coordinate are replaced.

SMR 33

E.values.arg A list of arguments passed to text for plotting the values of Expected deaths of
each subgroup. Internally, the arguments ’label’ and ’y’ coordinate are replaced.

NOE.head.arg A list of arguments passed to text for plotting the labels of the columns N, E and
O on the top of the graph. Internally, the ’x’ and ’y’ coordinates are replaced.
The x coordinates are taken from the x in N.values.arg, O.values.arg and
E.values.arg.

Overall.seg.arg

A list of arguments passed to segments for plotting the lines corresponding to
overall SMR confidence intervals. Internally, ’x’ and ’y’ coordinates are re-
placed.

Overall.p.arg A list of arguments passed to points for plotting the points corresponding to
overall SMR. Internally, ’x’ and ’y’ coordinates are replaced.

Overall.est.arg

A list of arguments passed to text for plotting the overall SMR beside the graph.
Internally, ’y’ coordinate and ’label’ argument are replaced.

cat.seg.arg A list of arguments passed to segments for plotting the lines corresponding to
SMR confidence intervals for all groups. Internally, ’x’ and ’y’ coordinates are
replaced.

cat.p.arg A list of arguments passed to points for plotting the points corresponding to all
categoreis SMR. Internally, ’x’ and ’y’ coordinates are replaced.

cat.est.arg A list of arguments passed to text for plotting the categories SMR beside the
graph. Internally, ’y’ coordinate and ’label’ arguments are replaced.

SMR.head.arg A list of arguments passed to text for plotting the label of the SMR column on
the top of the graph. Internally, the ’y’ coordinate is replaced.

smr.xlab Label of the x axis. Default is "Standardized Mortality Ratio".

smr.xlim Limits of x axis of the forest.SMR plot. Default is "auto", which internally will
pick the highest values of all upper.Cl and the lowest lower.Cl. Besides "auto",
only a vector of 2 numbers is valid, and will be passed to plot.default.

grid Logical. If TRUE (default), it will draw a grid with the grid default arguments.

Value

If SMR, then:

• N Number of subjects analyzed.

• O Observed number of deaths.

• E Expected number of deaths.

• SMR Standardized mortality ratio.

• lower.Cl lower confidence limit.

• upper.Cl upper confidence limit.

If SMR.table, then a data.frame with the same information as above, and the additional information
is returned: "Variables" (variables names), "Levels" (variables levels).

If forest.SMR, then a plot is returned.

34 SMR

Author(s)

Lunna Borges and Pedro Brasil

References

David W. Hosmer and Stanley Lemeshow. Confidence intervals estimates of an index of quality
performance basend on logistic regression models. Statistics in Medicine , vol. 14, 2161-2172
(1995)

See Also

SRU, reclass, funnel

Examples

Loading a example data
data(icu)

Setting variable labels to data
attr(icu, "var.labels")[match(c("Unit", "IsMechanicalVentilation1h",

"AdmissionTypeName_pri","Vasopressors_D1"), names(icu))] <-
c("ICU unit","Mechanichal ventilation","Admission type","Vasopressors at admission")

Some editing
icu$Saps3DeathProbabilityStandardEquation <- icu$Saps3DeathProbabilityStandardEquation /100
icu$IsMechanicalVentilation1h <- as.factor(ifelse(icu$IsMechanicalVentilation1h == 1, "Yes", "No"))
icu$AdmissionTypeName_pri <- as.factor(icu$AdmissionTypeName_pri)
levels(icu$AdmissionTypeName_pri) <- c("Clinical","Elective surgery", "Urgent surgery")
icu$Vasopressors_D1 <- as.factor(ifelse(icu$Vasopressors_D1 == 1, "Yes", "No"))

The overall SMR for the whole sample
SMR(icu$UnitDischargeName, icu$Saps3DeathProbabilityStandardEquation)

The overall SMR and for some subgroups
x <- SMR.table(data = icu, obs.var = "UnitDischargeName",

pred.var = "Saps3DeathProbabilityStandardEquation",
group.var = c("IsMechanicalVentilation1h",
"AdmissionTypeName_pri","Vasopressors_D1"),
reorder = "no",
decreasing = TRUE,
use.label = TRUE)

x

A forest plot for all groups SMR (resize the window may be required)
forest.SMR(x, digits = 2)

The same thing but reordering the categories
x <- SMR.table(data = icu, obs.var = "UnitDischargeName",

pred.var = "Saps3DeathProbabilityStandardEquation",
group.var = c("IsMechanicalVentilation1h",
"AdmissionTypeName_pri", "Vasopressors_D1"),
reorder = "SMR",

SRU 35

decreasing = TRUE,
use.label = TRUE)

forest.SMR(x, digits = 2)

The overall SMR and for all Units
x <- SMR.table(data = icu, obs.var = "UnitDischargeName",

pred.var = "Saps3DeathProbabilityStandardEquation",
group.var = "Unit",
reorder = "no",
decreasing = TRUE,
use.label = TRUE)

x

A forest plot for all Units
forest.SMR(x, digits = 2)

The same thing but reordering the categories
x <- SMR.table(data = icu, obs.var = "UnitDischargeName",

pred.var = "Saps3DeathProbabilityStandardEquation",
group.var = "Unit",
reorder = "SMR",
decreasing = TRUE,
use.label = TRUE)

forest.SMR(x, digits = 2)

rm(x, icu)

SRU Standardized Resource Use (SRU)

Description

SRU calculates the standardized resource use for ICUs (Intensive Care Units) from information
regarding admissions of individual patients. Resource use is represented by the patient’s length of
stay (LOS). Therefore the SRU for each unit is defined as the observed LOS divided by it’s expected
LOS. To estimate the expected LOS for each ICU one must define a severity score, here defined by
the SAPS 3 score. In theory, the ’score’ could be any score/probability that estimates death for each
ICU admission.

The plot.SRU function will return a SMR versus SRU scatter plot with its medians and tertiles. Thus,
it classifies each unit in the quadrants formed by these two medians as: most efficient (ME) which is
the lower left quadrant (both SRU and SMR below their medians); least efficient (LE) is the upper
right quadrant (both SRU and SMR above their medians); and least achieving (LA) - the lower right
quadrant (SRU below and SMR above their medians); and over achieving (OA) - the upper left
quadrant (SRU above and SMR below their medians).

print.SRU Prints a object of class ’SRU’.

cut_in is used to find limits to define severity classes which are used in SRU function. The severity
classes are necessary to calculate the average of days to produce one survivor and consequently to
estimate the expected LOS in each ICU. Its rationale is to find the limits for the severity classes

36 SRU

that yeld a desired average of days to produce one survivor. At some point in time, we made a
study to test if different arrangements of the severity classes would yeld different classifications in
the efficiency quadrants. Despite the fact that this study did not show any difference from each
approach, we left the function in the package. Therefore, any arbitrary severity classes should yeild
the same results.

SRUcalc is a simpler function to estimte SRU and returns, for each unit, the SRU value, the observed
and expected number of deaths, and the observed and expected LOS.

Usage

SRU(
prob,
death,
unit,
los,
los.exp,
class,
score,
plot = FALSE,
type = 1,
digits = 2,
digits2 = 5,
originals = FALSE,
myunits = NULL

)

S3 method for class 'SRU'
print(x, ...)

S3 method for class 'SRU'
plot(
x,
...,
xlim = range(x$rates[, 2]),
ylim = range(x$rates[, 1]),
xlab = "SMR",
ylab = "SRU",
points.arg = list(pch = 21, col = "white", bg = "cadetblue3", cex = 1.5),
med.arg = list(col = "dodgerblue4", lwd = 2, lty = 1),
tert.arg = list(col = "darkorange2", lty = 2, lwd = 1),
auto.legend = TRUE,
leg.arg = list(x = "top", bty = "n", xpd = NA, inset = -0.2, ncol = 2),
bty = "n",
myunits = x$myunits,
myunitspts.arg = list(pch = 21, col = "white", bg = "red", cex = 1.5),
myunitstext.arg = list(pos = 1, font = 2, cex = 0.8)

)

SRU 37

cut_in(
score,
los,
death,
unit,
days,
min = 200,
exc.ICU = TRUE,
complete = FALSE,
digits = 5

)

SRUcalc(prob, death, unit, los, score, digits = 2)

Arguments

prob Individual predicted probability of death (ranging from 0 to 1) in a vector.

death Observed death. Accepted values are 0 (absence) or 1 (presence) in a vector.

unit A character or factor variable indicating the ICU where the patient is admitted.

los A numeric variable indicating the observed length of stay for each patient.

los.exp Estimated length of stay (LOS). This argument is optional and will be required
only if type = 2. If the user has an alternative model to estimate the individual
LOS, the predicted individual LOS should be passed to this argument. If this
is the case, the predicted ICU LOS is estimated as the mean of the individual
predictions of the LOS of these groups.

class A factor variable indicating the class of severity score (e.g. SAPS 3). In the
case of SAPS 3, this is a cut in the SAPS 3 score, grouping patients into severity
classes. This will be required if the argument original = FALSE and NAs are
not allowed; if original = TRUE, class is ignored.

score A numeric vector with the Acute Physiology Score (SAPS) 3 score for each
admission. The function will use this argument to know to which severity class
each patient will be assigned to. It is used only when originals = TRUE and
ignored otherwise. NAs are not allowed.

plot Logical; If TRUE, plots a SMR versus SRU scatter plot.

type A Way to calculate SRU. If type = 1, it does as the original article to estimate
the ICU’s expected LOS (default). First, it multiplies the overall average of days
of each severity class by the number of survivors in the same severity class in
that ICU. Than, it sums the expected LOS for each severity class in that ICU.
If type = 2, the user must provide the los.exp (expected LOS) for each subject
(i.e. from a prediction model), and the function will estimate the ICU’s expected
LOS as the mean of all individual LOS for patients in that ICU.

digits, digits2

Integer indicating the number of decimals to be used in the output.

originals Logical; If TRUE, it uses the severity classes and average days as the original
article and will override the class argument, if any. It requires the score argu-
ment and it must be the SAPS 3 score. We recommend not to set it TRUE unless

38 SRU

you really know what you are doing. Even if one wishes to have severity classes
identical to the original paper, it is better to set the severity classes before run-
ning the analysis. This way, the function will estimate the average days from the
data instead of using the fixed average days from the original paper.

myunits A character vector with the unit names which one would like to benchmark
among all units. These units will be highlighted with dots of different collors in
the plot. Default is NULL.

x For print.SRU or plot.SRU, an object of class ’SRU’.

... Arguments to be passed to plot.default or to print.

xlim, ylim Limits of x and y axis for plot.SRU.

xlab, ylab Labels of x and y axis for plot.SRU.

points.arg List of arguments passed to points for plotting points correponding to ICU’s
SMR and SRU.

med.arg List of arguments passed to abline for plotting lines corresponding to SRU’s
and SMR’s medians.

tert.arg List of arguments passed to abline for plotting lines corresponding to SRU’s
and SMR’s tertiles.

auto.legend Logical; If TRUE, prints a legend with parameters in leg.arg arguments.

leg.arg List of arguments passed to legend for plotting legends in plot.SRU.

bty A character string which determines the type of box that is drawn about plots.
See par

myunitspts.arg List of arguments passed to points for plotting points correponding to myunits’s
SMR and SRU.

myunitstext.arg

List of arguments passed to text for labelling points correponding to myunits’s
position.

days For cut_in, this is a vector of days to get an avarage. See example.

min For cut_in, this is the minimum desired quantity of patients in each severity
class (default = 200) to estimate the average days.

exc.ICU Logical; For cut_in, if TRUE, ICUs without surviving patients are ignored.

complete Logical; For cut_in, if TRUE, shows additional information about severity classes.

Value

Two tables: one with information about severity classes and the respective quantities required to
estimate the expected LOS, and another with information about ICUs classified as Most Efficient
(ME) or Least Efficient (LE).

• Sev Severity class.

• Total Total of patients.

• Surv Total of survivors.

• Total.LOS Total length of stay (days).

• AvDays Average days to produce a survivor.

SRU 39

• N.Unit Quantity of ICUs.

• N.Pat Quantity of patients.

• SMR Standardized Mortality Ratio Mean (standard deviation).

• SRU Standardized Resource Use Mean (standard deviation).

Most Efficient ICUs have SRU, SMR < median. Least Efficient ICUs have SRU, SMR > median.

cut_in returns a vector with the limits to cut the severity score.

SRUcalc returns a table with:

• Unit ICUs names.

• SMR or SRU Standardized Rate.

• N Number of subjects analyzed.

• Observed Observed number of deaths.

• Expected Expected number of deaths.

• LOS_esp Expected length of stay.

Author(s)

Lunna Borges and Pedro Brasil

References

Rothen HU, Stricker K, Einfalt J, Bauer P, Metnitz PGH, Moreno RP, Takala J (2007) Variability in
outcome and resource use in intensive care units. Intensive Care Med 33:1329-1336

See Also

SMR, reclass, funnel

Examples

Loading the dataset
data(icu)

Removing data with inapropriate values and some editing
icu <- icu[-which(icu$los < 0),]
icu$Saps3DeathProbabilityStandardEquation <- icu$Saps3DeathProbabilityStandardEquation / 100

Setting classes acording to limits of SAPS 3 score
days <- seq(1,100)
cut_lims <- cut_in(icu$Saps3Points, icu$los, icu$UnitDischargeName,

icu$Unit, days, exc.ICU = TRUE)
icu$class <- cut(icu$Saps3Points, breaks = cut_lims, include.lowest = TRUE)

Estimating the SRU benchmarking myunit A and B
x <- SRU(prob = icu$Saps3DeathProbabilityStandardEquation,
death = icu$UnitDischargeName, unit = icu$Unit,

40 survPerformance

los = icu$los, score = icu$Saps3Points,
originals = TRUE, type = 1, plot = FALSE, myunits = c("A","B"))
x
plot(x)

To see the units rankings and individual SMR and SRU, ordering by its SRU
x$rates[order(x$rates$sru),]

SRU with diferent severity classes created by cut_in function
y <- SRU(prob = icu$Saps3DeathProbabilityStandardEquation,
death = icu$UnitDischargeName, unit = icu$Unit,
los = icu$los, score = icu$Saps3Points,
originals = FALSE, type = 1, plot = FALSE, class = icu$class)
y

Using SRUcalc
SRUcalc(prob = icu$Saps3DeathProbabilityStandardEquation,

death = icu$UnitDischargeName, unit = icu$Unit, los = icu$los,
score = icu$Saps3Points)

rm(x, y, days, icu, cut_lims)

survPerformance Survival models performance analysis

Description

Colection of functions for survival models performance analysis.

R2sh estimates a distance-based estimator of survival predictive accuracy proposed by Schemper
and Henderson. It was inspirated in survAUC::schemper function, but receives the predicted values
directly. Besides that, R2sh does bootstrap resampling and returns its confidence interval estimate.

R2pm calculates a estimator of survival predictive accuracy proposed by Kent & O’Quigley and its
bootstrap confidence interval.

cal.Slope returns the calibration slope of a survival model and its bootstrap confidence interval.

Usage

R2sh(time, status, lin.pred, data, R)

R2pm(lin.pred, R)

cal.Slope(time, status, lin.pred, R)

Arguments

time A vector of event times.

status A indicator vector of event occurrence.

survPerformance 41

lin.pred A vector of linear predictors of a survival model for each observation. (prognos-
tic index)

data A data.frame where to find column vectors.

R The number of bootstrap replicates. Usually this will be a single positive integer.
For importance resampling, some resamples may use one set of weights and
others use a different set of weights. In this case R would be a vector of integers
where each component gives the number of resamples from each of the rows of
weights. To be passed to boot.

Value

R2sh returns a list with the following components:

• D: The estimator of predictive accuracy obtained from the covariate-free null model.

• Dx: The estimator of predictive accuracy obtained from the Cox model.

• V: The estimator of relative gains in predictive accuracy.

• Mhat: The absolute distance estimator obtained from the Cox model (evaluated at the event
times of the test data).

• Mhat.0: The absolute distance estimator obtained from the covariate-free null model (evalu-
ated at the event times of the test data).

• timep: The event times of the test data.

• lower: V lower confidence limit.

• upper: V upper confidence limit.

• boot: An object of class "boot".

• bootCI: Boot confidence intervals resampling.

R2pm returns a list with the following components:

• r2: The estimator of predictive accuracy obtained from the Cox model.

• lower: r2 lower confidence limit.

• upper: r2 upper confidence limit.

• boot: An object of class "boot".

• bootCI: Boot confidence intervals resampling.

cal.Slope returns a list with the following components:

• slope: The calibration slope measure of a survival model.

• lower: slope lower confidence limit.

• upper: slope upper confidence limit.

• boot: An object of class "boot".

• bootCI: Boot confidence intervals resampling.

Author(s)

Lunna Borges <lunna.borges@epimedsolutions.com>

42 survPerformance

References

Schemper, M. and R. Henderson (2000). Predictive accuracy and explained variation in Cox regres-
sion. Biometrics 56, 249-255.

Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application, Chapter 5.
Cambridge University Press.

DiCiccio, T.J. and Efron B. (1996) Bootstrap confidence intervals (with Discussion). Statistical
Science, 11, 189-228.

Efron, B. (1987) Better bootstrap confidence intervals (with Discussion). Journal of the American
Statistical Association, 82, 171-200.

Kent, John T., and J. O. H. N. O’QUIGLEY. "Measures of dependence for censored survival data."
Biometrika 75.3 (1988): 525-534.

van Houwelingen, Hans C. "Validation, calibration, revision and combination of prognostic survival
models." Statistics in medicine 19.24 (2000): 3401-3415.

Rahman, M. Shafiqur, et al. "Review and evaluation of performance measures for survival pre-
diction models in external validation settings." BMC medical research methodology 17.1 (2017):
60.

Examples

Survival model

data(breastCancer)
class(breastCancer$gradd1) <- "character"
class(breastCancer$gradd2) <- "character"

traindata <- breastCancer[sample(nrow(breastCancer), nrow(breastCancer)*2/3),]
newdata <- breastCancer[-sample(nrow(breastCancer), nrow(breastCancer)*2/3),]
model <- rms::cph(survival::Surv(rectime, censrec) ~ rms::rcs(age,6) +
rms::rcs(nodes,3) + rms::rcs(pgr,3) + gradd1 + gradd2 +
hormon, data = traindata)

lp <- predict(model, newdata = newdata)

R2sh example

R2sh(newdata$rectime, newdata$censrec, lp, data = newdata, R = 50)

R2pm example

R2pm(lp, R = 50)

cal.slope example

cal.Slope(newdata$rectime, newdata$censrec, lp, R = 50)

tableStack 43

tableStack Tabulation of variables in a stack form

Description

There are two functionalities: Tabulation of variables with the same possible range of distribution
and stack into a new table with or without other descriptive statistics or to breakdown distribution
of more than one row variables against a column variable

Usage

tableStack(
vars,
dataFrame,
minlevel = "auto",
maxlevel = "auto",
count = TRUE,
na.rm = FALSE,
means = TRUE,
medians = FALSE,
sds = TRUE,
decimal = 2,
total = TRUE,
var.labels = TRUE,
var.labels.trunc = 150,
reverse = FALSE,
vars.to.reverse = NULL,
by = NULL,
vars.to.factor = NULL,
iqr = "auto",
prevalence = FALSE,
percent = c("column", "row", "none"),
frequency = TRUE,
test = TRUE,
name.test = TRUE,
total.column = FALSE,
simulate.p.value = FALSE,
sample.size = TRUE,
assumption.p.value = 0.01,
NAcol = FALSE,
NArow = FALSE,
drplvls = FALSE

)

Arguments

vars a vector of variables in the data frame. The imput may be given with or without
quotes.

44 tableStack

dataFrame source data frame of the variables

minlevel possible minimum value of items specified by user

maxlevel possible maximum value of items specified by user

count whether number of valid records for each item will be displayed

na.rm whether missing value would be removed during calculation mean score of each
person

means whether means of all selected items will be displayed

medians whether medians of all selected items will be displayed

sds whether standard deviations of all selected items will be displayed

decimal number of decimals displayed

total display of means and standard deviations of total and average scores

var.labels presence of descriptions of variables on the last column of output
var.labels.trunc

number of characters used for variable description

reverse whether item(s) negatively correlated with other majority will be reversed
vars.to.reverse

variable(s) to reverse

by a variable for column breakdown. If NONE is given, only the ’total column’
will be displayed. More on Details.

vars.to.factor variable(s) to be converted to factor for tabulaton

iqr variable(s) to display median and inter-quartile range

prevalence for logical or dichotomous variables, whether prevalence of the dichotomous
row variable in each column subgroup will be displayed

percent type of percentage displayed when the variable is categorical and for NArow
when activated. Default is column

frequency whether to display frequency in the cells when the variable is categorical and for
NArow when activated

test whether statistical test(s) will be computed

name.test display name of the test and relevant degrees of freedom

total.column whether to add ’total column’ to the output or not
simulate.p.value

simulate P value for Fisher’s exact test

sample.size whether to display non-missing sample size of each column
assumption.p.value

level of Bartlett’s test P value to judge whether the comparison and the test
should be parametric

NAcol whether to add ’NA column’ to the output or not

NArow whether to add ’NA rows’ for each variable to the output or not

drplvls whether to hide non used levels on factor and character variables or not

tableStack 45

Details

This function is a clone of tableStack from the epiDisplay package. Comparing to the original,
tt adds options to show the NA in the variables as categories, similar to the option useNA in the
table function, and it also fix few bugs, such as showing the total.column without the need to
test = TRUE, and to show or hide levels with zero counts without returning error.

This function simultaneously explores several variables with a fixed integer rating scale. For non-
factor variables, the default values for tabulation are the minimum and the maximum of all variables
but can be specified by the user.

When ’by’ is omitted, all variables must be of the same class, and must be ’integer’, ’factor’ or
’logical. Some parameters are only used if by is omitted, others are only used if by is available.
The by-omitted dependent variable are minlevel, maxlevel, count, na.rm, means, medians, sds,
total, reverse, vars.to.reverse. The by-available dependent variables are iqr, prevalence, percent,
frequency, test, name.test, total.column, simulate.p.value, sample.size, assumption.p.value, NArow,
NAcol, drplvls. Unlike function ’alpha’, the argument ’reverse’ has a default value of FALSE. This
argument is ignored if ’vars.to.reverse’ is specified.

Options for ’reverse’, ’vars.to.reverse’ and statistics of ’means’, ’medians’, ’sds’ and ’total’ are
available only if the items are not factor. To obtain statistics of factor items, users need to use
’unclassDataframe’ to convert them into integer.

When the ’by’ argument is given, ’reverse’ and ’vars.to.reverse’ do not apply, as mentioned before.
Instead, columns of the ’by’ variable will be formed. A table will be created against each selected
variable. If the variable is a factor or coerced to factor with ’vars.to.factor’, cross-tabulation will
result with percents as specified, ie. "column", "row", or "none" (FALSE). For a dichotomous row
variable, if set to ’TRUE’, the prevalence of row variable in the form of a fraction is displayed
in each subgroup column. For objects of class ’numeric’ or ’integer’, means with standard devia-
tions will be displayed. For variables with residuals that are not normally distributed or where the
variance of subgroups are significantly not normally distributed (using a significance level of 0.01),
medians and inter-quartile ranges will be presented if the argument ’iqr’ is set to "auto" (by default).
Users may specify a subset of the selected variables (from the ’vars’ argument) to be presented in
such a form. Otherwise, the argument could be set as any other character string, except the variables
names, to insist to present means and standard deviations.

When ’test = TRUE’ (default), Pearson’s chi-squared test (or a two-sided Fisher’s exact test, if the
sample size is small) will be carried out for a categorical variable or a factor. Parametric or non-
parametric comparison and test will be carried out for a object of class ’numeric’ or ’integer’ (See
’iqr’ and ’assumption.p.value’ below). If the sample size of the numeric variable is too small in any
group, the test is omitted and the problem reported.

For Fisher’s exact test, the default method employs ’simulate.p.value = FALSE’. See further expla-
nation in ’fisher.test’ procedure. If the dataset is extraordinarily large, the option may be manually
set to TRUE.

When ’by’ is specified as a single character object (such as ’by="none"’) or when ’by = NONE’
there will be no column breakdown and all tests will be omitted. Only the total column is displayed.
Only the ’total’ column is shown.

If this ’total column’ is to accompany the ’by’ breakdown, the argument ’total.column=TRUE’
should be specified. The ’sample.size’ is TRUE by default. The total number of records for each
group is displayed in the first row of the output. However, the variable in each row may have some
missing records, the information on which is reported by NArow for each variable on ’vars’ and by
NAcol for the variable on ’by’.

46 tableStack

By default, Epicalc sets ’var.labels=TRUE’ in order to give nice output. However, ’var.labels=FALSE’
can sometimes be more useful during data exploration. Variable numbers as well as variable names
are displayed instead of variable labels. Names and numbers of abnormally distributed variables,
especially factors with too many levels, can be easily identified for further relevelling or recoding.

The argument ’iqr’ has a default value being "auto". Non-parametric comparison and test will be
automatically chosen if Bartlett’s test P value is below the ’assumption.p.value’.

The test can be forced to parametric by setting ’iqr=NULL’ and to non-parametric by if iqr is set to
the variable number of cont.var (See examples.).

Value

an object of class ’tableStack’ and ’list’ when by=NULL

results an object of class ’noquote’ which is used for print out
items.reversed name(s) of variable(s) reversed
total.score a vector from ’rowSums’ of the columns of variables specified in ’vars’
mean.score a vector from ’rowMeans’ of the columns of variables specified in ’vars’
mean.of.total.scores mean of total scores
sd.of.total.scores standard deviation of total scores
mean.of.average.scores mean of mean scores
sd.of.average.scores standard deviation of mean scores

When ’by’ is specified, an object of class ’tableStack’ and ’table is returned.

Author(s)

Virasakdi Chongsuvivatwong <cvirasak@medicine.psu.ac.th>

Caio Ferreira <caio.ferreira@epimedsolutions.com>

Lunna Borges <caio.ferreira@epimedsolutions.com>

Pedro Brasil <pedro.brasil@epimedsolutions.com>

References

’table’, ’tab1’, ’summ’, ’alpha’, ’unclassDataframe’

Examples

set.seed(1)
data <- data.frame(sex = sample(c("M","F"), 50, rep = TRUE),
age = sample(c(NA,20:70), 50, rep = TRUE),
admissionType = sample(c(NA,"urgency", "clinical", "scheduled"), 50, rep = TRUE),
hospitalizationTime = sample(c(0:10), 50, rep = TRUE),
numberOfChildren = sample(c(NA,0:3), 50, rep = TRUE),
cancerInFamily = sample(c(NA,TRUE,FALSE), 50, rep = TRUE),
diabetesInFamily = sample(c(TRUE,FALSE), 50, rep = TRUE),
thrombosisInFamily = sample(c(TRUE,FALSE), 50, rep = TRUE),
mentaldiseasesInFamily = sample(c(TRUE,FALSE), 50, rep = TRUE),
cardiadicdiseaseInFamily = sample(c(NA,TRUE,FALSE), 50, rep = TRUE),

tableStack 47

readmission = sample(c(NA,TRUE,FALSE), 50, rep = TRUE))

attach(data)
tableStack(cancerInFamily:cardiadicdiseaseInFamily, dataFrame = data)
detach(data)
tableStack(cancerInFamily:cardiadicdiseaseInFamily, data) # Default data frame is data
"by" compares variables
tableStack(cancerInFamily:cardiadicdiseaseInFamily, data, by= readmission)
"prevalence" returns the prevalence instead of the absolute values
tableStack(cancerInFamily:cardiadicdiseaseInFamily, data,
by= readmission, prevalence=TRUE)
"percent" as FALSE hides the percentage in parenthesis
tableStack(cancerInFamily:cardiadicdiseaseInFamily, data,
by= readmission, percent=FALSE)
"name.test" as FALSE hides the column that shows the tests names
tableStack(cancerInFamily:cardiadicdiseaseInFamily, data,
by= readmission, percent=FALSE, name.test=FALSE)
"NAcol" displays a column of NA values on the variable on "by"
tableStack(cancerInFamily:cardiadicdiseaseInFamily, data,
by= readmission, NAcol = TRUE)
"NArow" displays rows of NA values on the variables on "vars"
tableStack(cancerInFamily:cardiadicdiseaseInFamily, data,
by= readmission, NAcol = TRUE, NArow = TRUE)

the specification of the vars may be done as the range
tableStack(vars=2:7, data, by=sex)
"by" var may be specified as "none" and the selected vars will be crossed only against the total
tableStack(vars=2:7, data, by="none")
by = NONE works just as by = "none"
tableStack(vars=2:7, data, by = NONE)
total.column displays a column of totals in adition to the variable on by
tableStack(vars=2:7, data, by=sex, total.column=TRUE)

var.labels <- c("sex", "Type of admission for each patient",
"age", "Duration time in days of the patient's hospitalization",
"Number of children that the patient have",
"whether or not the patient has cancer in family",
"whether or not the patient has diabetes in family",
"whether or not the patient has thrombosis in family",
"whether or not the patient has mental diseases in family",
"whether or not the patient has cardiac diseases in family",
"whether or not the patient is on a relapse admission")
#setting the attribute var.labels
attr(data, "var.labels") <- var.labels
rm(var.labels)

May need full screen of Rconsole
tableStack(vars=c(numberOfChildren,hospitalizationTime), data)
Fits in with default R console screen
tableStack(vars=c(numberOfChildren,hospitalizationTime), data,
var.labels.trunc=35)
tableStack(vars=c(age,numberOfChildren,hospitalizationTime),
data, reverse=TRUE) -> a

48 tableStack

a
Components of 'a' have appropriate items reversed
a$mean.score -> mean.score
a$total.score -> total.score
data$mean.score <- mean.score
data$total.score <- total.score

hiding the test column
tableStack(c(age, numberOfChildren,hospitalizationTime,
mean.score,total.score), data, by=sex, test=FALSE)
variables specified on iqr will not display SD but IQR instead
tableStack(3:5, data, by=sex, iqr=hospitalizationTime)
'vars' can be mixture of variables of different classes
tableStack(3:5, data, by=admissionType,
iqr=c(hospitalizationTime, total.score))

data$highscore <- mean.score > 4
a variable with some comparison may be created easily
tableStack(mean.score:highscore, data,
by=sex, iqr=total.score)

the percentage information may be hidden
tableStack(vars=c(readmission,admissionType),
data, by=sex, percent="none")
it may be shown the prevalende of the
variable instead of the values themselves
tableStack(vars=c(readmission,admissionType), data,
by=sex, prevalence = TRUE)
the name of the tests may be hidden
while the test itself still shows
tableStack(vars=c(readmission,admissionType), data,
by=sex, name.test = FALSE)

Variable in numeric or factor
as continuous varaibles
tableStack(vars=3:5, data, by=sex)
as factors
tableStack(vars=3:5, data, by=sex, vars.to.factor = 3:5)

Using drplvls
a dataframe will be created containing a factor with an unused level
bloodbank <- data.frame(AgeInDays =

sample(0:15,200, replace = TRUE), Type =
factor(sample(c("A","B","0"), 200, replace = TRUE),

levels = c("A","B","AB","0")), Origin =
sample(c("US","CA"), 200, replace = TRUE))

by using drplvls the row of the unused fator is hidden
tableStack(vars = c(AgeInDays, Type),
bloodbank, by = Origin) #usual
tableStack(vars = c(AgeInDays, Type),
bloodbank, by = Origin,
drplvls = TRUE) # with drplvls

tableStack 49

rm(total.score, mean.score, a, data, bloodbank)

Index

∗ datasets
breastCancer, 2
icu, 19

abline, 28, 38
as.Date, 8, 21

boot, 41
box, 16
breastCancer, 2

cal.Slope (survPerformance), 40
calcurve, 3
changePropFunnel (funnel), 10
changeRateFunnel (funnel), 10
cut_in (SRU), 35

dataquality, 5, 24
date.table (dataquality), 5
dummy.columns (miscellaneous), 20

f.date, 8
f.date (miscellaneous), 20
f.num (miscellaneous), 20
factor.table (dataquality), 5
forest.SMR (SMR), 30
funnel, 10, 21, 29, 34, 39
funnelEstimate (miscellaneous), 20

grid, 33

icu, 19

legend, 4, 29, 38

miscellaneous, 8, 20
mortality_rate, 25

num.table (dataquality), 5

order, 32

par, 15, 16, 28, 32, 38
plot, 4, 15, 29
plot.calcurve (calcurve), 3
plot.default, 16, 33, 38
plot.funnel (funnel), 10
plot.reclass (reclass), 27
plot.SRU (SRU), 35
points, 16, 28, 29, 33, 38
print, 38
print.calcurve (calcurve), 3
print.funnel (funnel), 10
print.reclass (reclass), 27
print.SRU (SRU), 35
propFunnel (funnel), 10

R2pm (survPerformance), 40
R2sh (survPerformance), 40
rateFunnel (funnel), 10
reclass, 18, 27, 34, 39
remove.na (miscellaneous), 20
rm.dummy.columns (miscellaneous), 20
rm.unwanted (dataquality), 5

scan, 23
segments, 33
SMR, 18, 29, 30, 35, 39
SRU, 18, 29, 34, 35
SRUcalc (SRU), 35
strptime, 21
survPerformance, 40

t_date (dataquality), 5
t_factor (dataquality), 5
t_num (dataquality), 5
tab2tex (miscellaneous), 20
tableStack, 43
text, 29, 32, 33, 38
title, 16
trunc_num (miscellaneous), 20

winsorising (miscellaneous), 20

50

	breastCancer
	calcurve
	dataquality
	funnel
	icu
	miscellaneous
	mortality_rate
	reclass
	SMR
	SRU
	survPerformance
	tableStack
	Index

