Package 'gscounts'

October 13, 2022

Type Package Title Group Sequential Designs with Negative Binomial Outcomes Version 0.1-4 Maintainer Tobias Mütze <tobias.muetze@outlook.com> **Description** Design and analysis of group sequential designs for negative binomial outcomes, as described by T Mütze, E Glimm, H Schmidli, T Friede (2018) <doi:10.1177/0962280218773115>. **Depends** R (>= 3.0.0) **Imports** stats, Rcpp(>= 0.12.9) Suggests testthat, MASS, knitr, rmarkdown, dplyr, gsDesign, mvtnorm **License** GPL (≥ 2) **NeedsCompilation** yes URL https://github.com/tobiasmuetze/gscounts BugReports https://github.com/tobiasmuetze/gscounts/issues VignetteBuilder knitr LazyData true LinkingTo Rcpp **Encoding** UTF-8 RoxygenNote 7.1.2 Author Tobias Mütze [aut, cre] (<https://orcid.org/0000-0002-4111-1941>) **Repository** CRAN Date/Publication 2021-11-02 08:10:04 UTC

R topics documented:

design_gsnb													 						•							2
design_nb													 						•							5
get_calendartime_gsnb		•				•		•		•	•		 			•	•	•	•		•		•	•		7
get_info_gsnb	•		•	•	 •	•	•	•	•		•	•	 	•	•	•	•	•	•		•	•	•	•	•	8

gscounts	. 9
hospitalizations	. 9
obrien	. 10
pocock	. 10
print.gsnb	. 11
print.nb	. 11
	12

Index

design_gsnb

Group sequential design with negative binomial outcomes

Description

Design a group sequential trial with negative binomial outcomes

Usage

```
design_gsnb(
 rate1,
 rate2,
 dispersion,
  ratio_H0 = 1,
  random_ratio = 1,
  power,
  sig_level,
  timing,
  esf = obrien,
  esf_futility = NULL,
  futility = NULL,
  t_recruit1 = NULL,
  t_recruit2 = NULL,
  study_period = NULL,
  accrual_period = NULL,
  followup_max = NULL,
  accrual_speed = 1,
  . . .
)
```

Arguments

rate1	numeric; assumed rate of treatment group 1 in the alternative
rate2	numeric; assumed rate of treatment group 2 in the alternative
dispersion	numeric; dispersion (shape) parameter of negative binomial distribution
ratio_H0	numeric; positive number denoting the rate ratio μ_1/μ_2 under the null hypothesis, i.e. the non-inferiority or superiority margin
random_ratio	numeric; randomization ratio n1/n2

power	numeric; target power of group sequential design
sig_level	numeric; Type I error / significance level
timing	numeric vector; $0 < timing[1] < < timing[K] = 1$ with K the number of analyses, i.e. (K-1) interim analyses and final analysis. When the timing of efficacy and futility analyses differ, timing should not be defined. Instead, the arguments timing_eff and timing_fut have to be used to specify the timing of the efficacy and futility analyses, respectively.
esf	function; error spending function
esf_futility	function; futility error spending function
futility	character; either "binding", "nonbinding", or NULL for binding, nonbinding, or no futility boundaries
t_recruit1	numeric vector; recruit (i.e. study entry) times in group 1
t_recruit2	numeric vector; recruit (i.e. study entry) times in group 2
study_period	numeric; study duration; to be set when follow-up times are not identical be- tween subjects, NULL otherwise
accrual_period	numeric; accrual period
followup_max	numeric; maximum exposure time of a subject; to be set when follow-up times are to be equal for each subject, NULL otherwise
accrual_speed	numeric; determines accrual speed; values larger than 1 result in accrual slower than linear; values between 0 and 1 result in accrual faster than linear.
	further arguments. Will be passed to the error spending function.

Details

Denote μ_1 and μ_2 the event rates in treatment groups 1 and 2. This function considers smaller event rates to be better. The statistical hypothesis testing problem of interest is

$$H_0: \frac{\mu_1}{\mu_2} \ge \delta vs.H_1: \frac{\mu_1}{\mu_2} < \delta,$$

with $\delta = \texttt{ratio_H0}$. Non-inferiority of treatment group 1 compared to treatment group 2 is tested for $\delta \in (1, \infty)$. Superiority of treatment group 1 over treatment group 2 is tested for $\delta \in (0, 1]$. The calculation of the efficacy and (non-)binding futility boundaries are performed under the hypothesis $H_0: \frac{\mu_1}{\mu_2} = \delta$ and under the alternative $H_1: \frac{\mu_1}{\mu_2} = \texttt{rate1} / \texttt{rate2}$.

The argument 'accrual_speed' is used to adjust the accrual speed. Number of subjects in the study at study time t is given by $f(t) = a * t^b$ with $a = n/accrual_period$ and $b = accrual_speed$ For linear recruitment, b = 1. b > 1 results is slower than linear recruitment for $t < accrual_period$ and faster than linear recruitment for $t > accrual_period$. Vice verse for b < 1.

Value

A list with class "gsnb" containing the following components:

rate1	as input
rater	as 1

rate2 as input

dispersion	as input
power	as input
timing	as input
ratio_H0	as input
ratio_H1	ratio rate1/rate2
sig_level	as input
random_ratio	as input
power_fix	power of fixed design
expected_info	list; expected information under ratio_H0 and ratio_H1
efficacy	list; contains the elements esf (type I error spending function), spend (type I error spend at each look), and critical (critical value for efficacy testing)
futility	list; only part of the output if argument futility is defined in the input. Con- tains the elements futility (input argument futility), esf (type II error spending function), spend (type II error spend at each look), and critical (critical value for futility testing)
stop_prob	list; contains the element efficacy with the probabilities for stopping for effi- cacy and, if futility bounds are calculated, the element futility with the prob- abilities for stopping for futility
t_recruit1	as input
t_recruit2	as input
study_period	as input
followup_max	as input
max_info	maximum information
calendar	calendar times of data looks; only calculated when exposure times are not iden- tical

References

Mütze, T., Glimm, E., Schmidli, H., & Friede, T. (2018). Group sequential designs for negative binomial outcomes. Statistical Methods in Medical Research, <doi:10.1177/0962280218773115>.

Examples

```
out
```

4

design_nb

```
esf_futility = obrien)
```

out

```
# Calculate study period for given recruitment times
expose <- seq(0, 1.25, length.out = 1042)</pre>
out <- design_gsnb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5,</pre>
                   power = 0.8, timing = c(0.5, 1), esf = obrien,
                   ratio_H0 = 1, sig_level = 0.025, t_recruit1 = expose,
                   t_recruit2 = expose, random_ratio = 1)
out
# Calculate sample size for a fixed exposure time
out <- design_gsnb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5,</pre>
                   power = 0.8, timing = c(0.5, 1), esf = obrien,
                   ratio_H0 = 1, sig_level = 0.025,
                   followup_max = 0.5, random_ratio = 1)
# Different timing for efficacy and futility analyses
design_gsnb(rate1 = 1, rate2 = 2, dispersion = 5,
             power = 0.8, esf = obrien,
             ratio_H0 = 1, sig_level = 0.025, study_period = 3.5,
             accrual_period = 1.25, random_ratio = 1, futility = "binding",
             esf_futility = pocock,
             timing_{eff} = c(0.8, 1),
             timing_fut = c(0.2, 0.5, 1))
```

design_nb

Clinical trials with negative binomial outcomes

Description

Design a clinical trial with negative binomial outcomes

Usage

```
design_nb(
  rate1,
  rate2,
  dispersion,
  power,
  ratio_H0 = 1,
  sig_level,
  random_ratio = 1,
  t_recruit1 = NULL,
  t_recruit2 = NULL,
  study_period = NULL,
  accrual_period = NULL,
  followup_max = NULL,
```

```
accrual_speed = 1
)
```

Arguments

rate1	numeric; assumed rate of treatment group 1 in the alternative
rate2	numeric; assumed rate of treatment group 2 in the alternative
dispersion	numeric; dispersion (shape) parameter of negative binomial distribution
power	numeric; target power
ratio_H0	numeric; positive number denoting the rate ratio rate_1/rate_2 under the null hypothesis, i.e. the non-inferiority or superiority margin
sig_level	numeric; Type I error / significance level
random_ratio	numeric; randomization ratio n1/n2
t_recruit1	numeric vector; recruit (i.e. study entry) times in group 1
t_recruit2	numeric vector; recruit (i.e. study entry) times in group 2
study_period	numeric; study duration
accrual_period	numeric; accrual period
followup_max	numeric; maximum exposure time of a patient
accrual_speed	numeric; determines accrual speed; values larger than 1 result in accrual slower than linear; values between 0 and 1 result in accrual faster than linear.

Value

A list containing the following components:

rate1	as input
rate2	as input
dispersion	as input
power	as input
ratio_H0	as input
ratio_H1	ratio rate1/rate2
sig_level	as input
random_ratio	as input
t_recruit1	as input
t_recruit2	as input
study_period	as input
followup_max	as input
max_info	maximum information

Examples

```
# Calculate sample size for given accrual period and study duration assuming uniformal accrual
out <- design_nb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5, power = 0.8,
                 ratio_H0 = 1, sig_level = 0.025,
                 study_period = 4, accrual_period = 1, random_ratio = 2)
out
# Calculate sample size for a fixed exposure time of 0.5 years
out <- design_nb(rate1 = 4.2, rate2 = 8.4, dispersion = 3, power = 0.8,</pre>
                 ratio_H0 = 1, sig_level = 0.025,
                 followup_max = 0.5, random_ratio = 2)
out
# Calculate study period for given recruitment time
t_recruit1 <- seq(0, 1.25, length.out = 1200)
t_recruit2 <- seq(0, 1.25, length.out = 800)
out <- design_nb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5, power = 0.8,
                 ratio_H0 = 1, sig_level = 0.025,
                 t_recruit1 = t_recruit1, t_recruit2 = t_recruit2)
```

get_calendartime_gsnb Calendar time of data looks

Description

Calculate the calendar time of looks given the information time

Usage

```
get_calendartime_gsnb(
  rate1,
  rate2,
  dispersion,
  t_recruit1,
  t_recruit2,
  timing,
  followup1,
  followup2
)
```

Arguments

rate1	numeric; rate in treatment group 1
rate2	numeric; rate in treatment group 2
dispersion	numeric; dispersion (shape) parameter of negative binomial distribution
t_recruit1	numeric vector; recruit (i.e. study entry) times in group 1
t_recruit2	numeric vector; recruit (i.e. study entry) times in group 2

timing	numeric vector with entries in $(0,1]$; information times of data looks
followup1	numeric vector; final individual follow-up times in treatment group 1
followup2	numeric vector; final individual follow-up times in treatment group 2

Value

numeric; vector with calendar time of data looks

Examples

get_info_gsnb	Information	level for log	rate ratio
00			

Description

Calculates the information level for the log rate ratio of the negative binomial model

Usage

get_info_gsnb(rate1, rate2, dispersion, followup1, followup2)

Arguments

rate1	numeric; rate in treatment group 1
rate2	numeric; rate in treatment group 2
dispersion	numeric; dispersion (shape) parameter of negative binomial distribution
followup1	numeric vector; individual follow-up times in treatment group 1
followup2	numeric vector; individual follow-up times in treatment group 2

Value

numeric; information level

gscounts

Examples

gscounts

gscounts

Description

Design and monitoring of group sequential designs with negative binomial data.

Author(s)

Tobias Muetze <tobias.muetze@outlook.com>

hospitalizations Hospitalizations

Description

A dataset containing the hospitalization times of 1980 patients:

Usage

```
data(hospitalizations)
```

Format

A data frame with 2323 rows and 4 variables

Details

- treatment. Treatment identifier.
- pat. Patient identifier. Unique within treatment
- t_recruit. Recruitment time of patient into the clinical trial.
- eventtime. Event time of hospitalization. NA corresponds to no event.

obrien

Description

Error spending function mimicking O'Brien & Fleming critical values

Usage

obrien(t, sig_level, ...)

Arguments

t	numeric; Non-negative information ratio
sig_level	numeric; significance level
	optional arguments

Value

numeric

Examples

O'Brien-Fleming-type error spending function obrien(t = c(0.5, 1), sig_level = 0.025)

	pocock	pocock	
--	--------	--------	--

Description

Error spending function mimicking Pococks critical values

Usage

pocock(t, sig_level, ...)

Arguments

t	numeric; Non-negative information ratio
sig_level	numeric; significance level
	optional arguments

Value

numeric

print.gsnb

Examples

Pocock-type error spending function
pocock(t = c(0.5, 1), sig_level = 0.025)

print.gsnb

print.gsnb

Description

print method for instance of class gsnb

Usage

S3 method for class 'gsnb'
print(x, ...)

Arguments

x	an object of class gsnb
	optional arguments to print or plot methods

|--|

Description

print method for instance of class nb

Usage

S3 method for class 'nb'
print(x, ...)

Arguments

х	an object of class nb
	optional arguments to print or plot methods

Index

* datasets hospitalizations, 9

design_gsnb, 2
design_nb, 5

get_calendartime_gsnb,7
get_info_gsnb,8
gscounts,9

hospitalizations, 9

obrien, 10

pocock, 10
print.gsnb, 11
print.nb, 11