
Package ‘innsight’
December 21, 2023

Type Package

Title Get the Insights of Your Neural Network

Version 0.3.0

Description Interpretation methods for analyzing the behavior and individual
predictions of modern neural networks in a three-step procedure: Converting
the model, running the interpretation method, and visualizing the results.
Implemented methods are, e.g., 'Connection Weights' described by Olden et al. (2004)
<doi:10.1016/j.ecolmodel.2004.03.013>, layer-wise relevance
propagation ('LRP') described by Bach et al. (2015)
<doi:10.1371/journal.pone.0130140>, deep learning important features
('DeepLIFT') described by Shrikumar et al. (2017) <arXiv:1704.02685>
and gradient-based methods like 'SmoothGrad' described by Smilkov et
al. (2017) <arXiv:1706.03825>, 'Gradient x Input' described by
Baehrens et al. (2009) <arXiv:0912.1128> or 'Vanilla Gradient'.

License MIT + file LICENSE

URL https://bips-hb.github.io/innsight/,

https://github.com/bips-hb/innsight/

BugReports https://github.com/bips-hb/innsight/issues/

Depends R (>= 3.5.0)

Imports checkmate, cli, ggplot2, methods, R6, torch

Suggests covr, fastshap, GGally, grid, gridExtra, gtable, keras,
knitr, lime, luz, neuralnet, palmerpenguins, plotly, rmarkdown,
ranger, spelling, tensorflow, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-US

RoxygenNote 7.2.3

Collate 'AgnosticMethods.R' 'AgnosticWrapper.R' 'ConnectionWeights.R'
'Convert_keras.R' 'Convert_neuralnet.R' 'Convert_torch.R'

1

https://doi.org/10.1016/j.ecolmodel.2004.03.013
https://doi.org/10.1371/journal.pone.0130140
https://arxiv.org/abs/1704.02685
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/0912.1128
https://bips-hb.github.io/innsight/
https://github.com/bips-hb/innsight/
https://github.com/bips-hb/innsight/issues/

2 R topics documented:

'ConvertedModel.R' 'Converter.R' 'DeepLift.R' 'GradienBased.R'
'InterpretingLayer.R' 'InterpretingMethod.R' 'LRP.R'
'Layer_conv1d.R' 'Layer_conv2d.R' 'Layer_dense.R'
'Layer_normalization.R' 'Layer_other.R' 'Layer_pooling.R'
'innsight.R' 'utils.R' 'utils_ggplot.R' 'utils_plotly.R'
'innsight_sugar.R' 'innsight_ggplot2.R' 'innsight_plotly.R'

NeedsCompilation no

Author Niklas Koenen [aut, cre] (<https://orcid.org/0000-0002-4623-8271>),
Raphael Baudeu [ctb]

Maintainer Niklas Koenen <niklas.koenen@gmail.com>

Repository CRAN

Date/Publication 2023-12-21 16:00:02 UTC

R topics documented:

innsight-package . 3
+,innsight_ggplot2,ANY-method . 4
AgnosticWrapper . 5
ConnectionWeights . 8
ConvertedModel . 13
Converter . 16
DeepLift . 22
DeepSHAP . 27
ExpectedGradient . 33
get_result . 39
Gradient . 39
GradientBased . 44
innsight_ggplot2 . 47
innsight_plotly . 49
innsight_sugar . 50
IntegratedGradient . 52
InterpretingMethod . 58
LIME . 67
LRP . 72
plot_global . 78
print,innsight_ggplot2-method . 79
print,innsight_plotly-method . 80
SHAP . 81
SmoothGrad . 85
[,innsight_ggplot2,ANY,ANY,ANY-method . 91
[,innsight_plotly,ANY,ANY,ANY-method . 92

Index 94

https://orcid.org/0000-0002-4623-8271

innsight-package 3

innsight-package Get the insight of your neural network

Description

innsight is an R package that interprets the behavior and explains individual predictions of modern
neural networks. Many methods for explaining individual predictions already exist, but hardly any
of them are implemented or available in R. Most of these so-called feature attribution methods are
only implemented in Python and, thus, difficult to access or use for the R community. In this sense,
the package innsight provides a common interface for various methods for the interpretability of
neural networks and can therefore be considered as an R analogue to ’iNNvestigate’ or ’Captum’
for Python.

Details

This package implements several model-specific interpretability (feature attribution) methods based
on neural networks in R, e.g.,

• Layer-wise relevance propagation (LRP)
– Including propagation rules: ε-rule and α-β-rule

• Deep learning important features (DeepLift)
– Including propagation rules for non-linearities: Rescale rule and RevealCancel rule

• DeepSHAP
• Gradient-based methods:

– Vanilla Gradient, including Gradient×Input
– Smoothed gradients (SmoothGrad), including SmoothGrad×Input
– Integrated gradients (IntegratedGradient)
– Expected gradients (ExpectedGradient)

• ConnectionWeights
• Model-agnostic methods:

– Local interpretable model-agnostic explanation (LIME)
– Shapley values (SHAP)

The package innsight aims to be as flexible as possible and independent of a specific deep learn-
ing package in which the passed network has been learned. Basically, a neural network of the li-
braries torch::nn_sequential, keras::keras_model_sequential, keras::keras_model and
neuralnet::neuralnet can be passed to the main building block Converter, which converts and
stores the passed model as a torch model (ConvertedModel) with special insights needed for in-
terpretation. It is also possible to pass an arbitrary net in form of a named list (see details in
Converter).

Author(s)

Maintainer: Niklas Koenen <niklas.koenen@gmail.com> (ORCID)

Other contributors:

• Raphael Baudeu <raphael.baudeu@gmail.com> [contributor]

https://orcid.org/0000-0002-4623-8271

4 +,innsight_ggplot2,ANY-method

See Also

Useful links:

• https://bips-hb.github.io/innsight/

• https://github.com/bips-hb/innsight/

• Report bugs at https://github.com/bips-hb/innsight/issues/

+,innsight_ggplot2,ANY-method

Generic add function for innsight_ggplot2

Description

This generic add function allows to treat an instance of innsight_ggplot2 as an ordinary plot ob-
ject of ggplot2. For example geoms, themes and scales can be added as usual (see ggplot2::+.gg
for more information).

Note: If e1 represents a multiplot (i.e., e1@mulitplot = TRUE), e2 is added to each individual
plot. If only specific plots need to be changed, the generic assignment function should be used (see
innsight_ggplot2 for details).

Usage

S4 method for signature 'innsight_ggplot2,ANY'
e1 + e2

Arguments

e1 An instance of the S4 class innsight_ggplot2.

e2 An object of class ggplot2::ggplot or a ggplot2::theme.

See Also

innsight_ggplot2, print.innsight_ggplot2, [.innsight_ggplot2, [[.innsight_ggplot2,
[<-.innsight_ggplot2, [[<-.innsight_ggplot2

https://bips-hb.github.io/innsight/
https://github.com/bips-hb/innsight/
https://github.com/bips-hb/innsight/issues/

AgnosticWrapper 5

AgnosticWrapper Super class for model-agnostic interpretability methods

Description

This is a super class for all implemented model-agnostic interpretability methods and inherits from
the InterpretingMethod class. Instead of just an object of the Converter class, any model can
now be passed. In contrast to the other model-specific methods in this package, only the prediction
function of the model is required, and not the internal details of the model. The following model-
agnostic methods are available (all are wrapped by other packages):

• Shapley values (SHAP) based on fastshap::explain

• Local interpretable model-agnostic explanations (LIME) based on lime::lime

Super class

innsight::InterpretingMethod -> AgnosticWrapper

Public fields

data_orig The individual instances to be explained by the method (unprocessed!).

Methods

Public methods:

• AgnosticWrapper$new()

• AgnosticWrapper$clone()

Method new(): Create a new instance of the AgnosticWrapper R6 class.

Usage:
AgnosticWrapper$new(
model,
data,
data_ref,
output_type = NULL,
pred_fun = NULL,
output_idx = NULL,
output_label = NULL,
channels_first = TRUE,
input_dim = NULL,
input_names = NULL,
output_names = NULL

)

Arguments:

6 AgnosticWrapper

model (any prediction model)
A fitted model for a classification or regression task that is intended to be interpreted. A
Converter object can also be passed. In order for the package to know how to make pre-
dictions with the given model, a prediction function must also be passed with the argument
pred_fun. However, for models created by nn_sequential, keras_model, neuralnet or
Converter, these have already been pre-implemented and do not need to be specified.

data (array, data.frame or torch_tensor)
The individual instances to be explained by the method. These must have the same format
as the input data of the passed model and has to be either matrix, an array, a data.frame
or a torch_tensor. If no value is specified, all instances in the dataset data will be ex-
plained.
Note: For the model-agnostic methods, only models with a single input and output layer is
allowed!

data_ref (array, data.frame or torch_tensor)
The dataset to which the method is to be applied. These must have the same format as the
input data of the passed model and has to be either matrix, an array, a data.frame or a
torch_tensor.
Note: For the model-agnostic methods, only models with a single input and output layer is
allowed!

output_type (character(1))
Type of the model output, i.e., either "classification" or "regression".

pred_fun (function)
Prediction function for the model. This argument is only needed if model is not a model
created by nn_sequential, keras_model, neuralnet or Converter. The first argument
of pred_fun has to be newdata, e.g.,

function(newdata, ...) model(newdata)

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

AgnosticWrapper 7

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

input_dim (integer)
The model input dimension excluding the batch dimension. It can be specified as vector of
integers, but has to be in the format "channels first".

input_names (character, factor or list)
The input names of the model excluding the batch dimension. For a model with a single in-
put layer and input axis (e.g., for tabular data), the input names can be specified as a charac-
ter vector or factor, e.g., for a dense layer with 3 input features use c("X1", "X2", "X3"). If
the model input consists of multiple axes (e.g., for signal and image data), use a list of char-
acter vectors or factors for each axis in the format "channels first", e.g., use list(c("C1",
"C2"), c("L1","L2","L3","L4","L5")) for a 1D convolutional input layer with signal
length 4 and 2 channels.
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found input names in the passed model will be disregarded.

output_names (character, factor)
A character vector with the names for the output dimensions excluding the batch dimension,
e.g., for a model with 3 output nodes use c("Y1", "Y2", "Y3"). Instead of a character vec-
tor you can also use a factor to set an order for the plots.
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found output names in the passed model will be disregarded.

8 ConnectionWeights

Method clone(): The objects of this class are cloneable with this method.

Usage:
AgnosticWrapper$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

ConnectionWeights Connection weights method

Description

This class implements the Connection weights method investigated by Olden et al. (2004), which
results in a relevance score for each input variable. The basic idea is to multiply all path weights
for each possible connection between an input feature and the output node and then calculate the
sum over them. Besides, it is originally a global interpretation method and independent of the input
data. For a neural network with 3 hidden layers with weight matrices W1, W2 and W3, this method
results in a simple matrix multiplication independent of the activation functions in between:

W1 ∗W2 ∗W3.

In this package, we extended this method to a local method inspired by the method Gradient×Input
(see Gradient). Hence, the local variant is simply the point-wise product of the global Connection
weights method and the input data. You can use this variant by setting the times_input argument
to TRUE and providing input data.

The R6 class can also be initialized using the run_cw function as a helper function so that no prior
knowledge of R6 classes is required.

Super class

innsight::InterpretingMethod -> ConnectionWeights

Public fields

times_input (logical(1))
This logical value indicates whether the results from the Connection weights method were
multiplied by the provided input data or not. Thus, this value specifies whether the original
global variant of the method or the local one was applied. If the value is TRUE, then data is
provided in the field data.

Methods

Public methods:

• ConnectionWeights$new()

• ConnectionWeights$clone()

ConnectionWeights 9

Method new(): Create a new instance of the class ConnectionWeights. When initialized, the
method is applied and the results are stored in the field result.

Usage:

ConnectionWeights$new(
converter,
data = NULL,
output_idx = NULL,
output_label = NULL,
channels_first = TRUE,
times_input = FALSE,
verbose = interactive(),
dtype = "float"

)

Arguments:

converter (Converter)
An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either

• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),
if e.g.the model has only one input layer, or

• a list with the corresponding input data (according to the upper point) for each of the
input layers.

This argument is only relevant if times_input is TRUE, otherwise it will be ignored because
it is a locale (i.e. explanation for each data point individually) method only in this case.

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:

• An integer vector of indices: If the model has only one output layer, the values cor-
respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

10 ConnectionWeights

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:

• A character vector or factor of labels: If the model has only one output layer, the
values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

times_input (logical(1))
Multiplies the results with the input features. This variant turns the global Connection
weights method into a local one. Default: FALSE.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

dtype (character(1))
The data type for the calculations. Use either 'float' for torch_float or 'double' for
torch_double.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ConnectionWeights$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

ConnectionWeights 11

References

• J. D. Olden et al. (2004) An accurate comparison of methods for quantifying variable im-
portance in artificial neural networks using simulated data. Ecological Modelling 178, p.
389–397

See Also

Other methods: DeepLift, DeepSHAP, ExpectedGradient, Gradient, IntegratedGradient, LIME,
LRP, SHAP, SmoothGrad

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 1),
nn_sigmoid()

)

Create Converter with input names
converter <- Converter$new(model,

input_dim = c(5),
input_names = list(c("Car", "Cat", "Dog", "Plane", "Horse"))

)

You can also use the helper function for the initialization part
converter <- convert(model,

input_dim = c(5),
input_names = list(c("Car", "Cat", "Dog", "Plane", "Horse"))

)

Apply method Connection Weights
cw <- ConnectionWeights$new(converter)

Again, you can use a helper function `run_cw()` for initializing
cw <- run_cw(converter)

Print the head of the result as a data.frame
head(get_result(cw, "data.frame"), 5)

Plot the result
plot(cw)

#----------------------- Example 2: Neuralnet ------------------------------
if (require("neuralnet")) {

library(neuralnet)
data(iris)

12 ConnectionWeights

Train a Neural Network
nn <- neuralnet((Species == "setosa") ~ Petal.Length + Petal.Width,

iris,
linear.output = FALSE,
hidden = c(3, 2), act.fct = "tanh", rep = 1

)

Convert the trained model
converter <- convert(nn)

Apply the Connection Weights method
cw <- run_cw(converter)

Get the result as a torch tensor
get_result(cw, type = "torch.tensor")

Plot the result
plot(cw)

}

------------------------- Example 3: Keras -------------------------------
if (require("keras") & keras::is_keras_available()) {

library(keras)

Make sure keras is installed properly
is_keras_available()

data <- array(rnorm(10 * 32 * 32 * 3), dim = c(10, 32, 32, 3))

model <- keras_model_sequential()
model %>%

layer_conv_2d(
input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid") %>%

layer_conv_2d(
kernel_size = 8, filters = 4, activation = "tanh",
padding = "same") %>%

layer_conv_2d(
kernel_size = 4, filters = 2, activation = "relu",
padding = "valid") %>%

layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 2, activation = "softmax")

Convert the model
converter <- convert(model)

Apply the Connection Weights method
cw <- run_cw(converter)

ConvertedModel 13

Get the head of the result as a data.frame
head(get_result(cw, type = "data.frame"), 5)

Plot the result for all classes
plot(cw, output_idx = 1:2)

}

#------------------------- Plotly plots ------------------------------------
if (require("plotly")) {

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)
plot(cw, as_plotly = TRUE)

}

ConvertedModel Converted torch-based model

Description

This class stores all layers converted to torch in a module which can be used like the original model
(but torch-based). In addition, it provides other functions that are useful for interpreting individual
predictions or explaining the entire model. This model is part of the class Converter and is the
core for all the necessary calculations in the methods provided in this package.

Usage

ConvertedModel(modules_list, graph, input_nodes, output_nodes, dtype = "float")

Arguments

modules_list (list)
A list of all accepted layers created by the Converter class during initialization.

graph (list)
The graph argument gives a way to pass an input through the model, which is
especially relevant for non-sequential architectures. It can be seen as a list of
steps in which order the layers from modules_list must be applied. The list
contains the following elements:

• $current_nodes
This list describes the current position and the number of the respective in-
termediate values when passing through the model. For example, list(1,3,3)
means that in this step one output from the first layer and two from the third
layer (the numbers correspond to the list indices from the modules_list
argument) are available for the calculation of the current layer with index
used_node.

14 ConvertedModel

• $used_node
The index of the layer from the modules_list argument which will be
applied in this step.

• $used_idx
The indices of the outputs from current_nodes, which are used as inputs
of the current layer (used_node).

• $times
The frequency of the output value, i.e., is the output used more than once
as an input for subsequent layers?

input_nodes (numeric)
A vector of layer indices describing the input layers, i.e., they are used as the
starting point for the calculations.

output_nodes (numeric)
A vector of layer indices describing the indices of the output layers.

dtype (character(1))
The data type for all the calculations and defined tensors. Use either 'float'
for torch::torch_float or 'double' for torch::torch_double.

Method forward()

The forward method of the whole model, i.e., it calculates the output y = f(x) of a given input x.
In doing so, all intermediate values are stored in the individual torch modules from modules_list.

Usage:

self(x,
channels_first = TRUE,
save_input = FALSE,
save_preactivation = FALSE,
save_output = FAlSE,
save_last_layer = FALSE)

Arguments:

x The input torch tensor for this model.
channels_first If the input tensor x is given in the format ’channels first’, use TRUE. Otherwise,

if the channels are last, use FALSE and the input will be transformed into the format ’channels
first’. Default: TRUE.

save_input Logical value whether the inputs from each layer are to be saved or not. Default:
FALSE.

save_preactivation Logical value whether the preactivations from each layer are to be saved
or not. Default: FALSE.

save_output Logical value whether the outputs from each layer are to be saved or not. Default:
FALSE.

ConvertedModel 15

save_last_layer Logical value whether the inputs, preactivations and outputs from the last
layer are to be saved or not. Default: FALSE.

Return:
Returns a list of the output values of the model with respect to the given inputs.

Method update_ref()

This method updates the intermediate values in each module from the list modules_list for the
reference input x_ref and returns the output from it in the same way as in the forward method.

Usage:

self$update_ref(x_ref,
channels_first = TRUE,
save_input = FALSE,
save_preactivation = FALSE,
save_output = FAlSE,
save_last_layer = FALSE)

Arguments:

x_ref Reference input of the model.
channels_first If the tensor x_ref is given in the format ’channels first’ use TRUE. Otherwise,

if the channels are last, use FALSE and the input will be transformed into the format ’channels
first’. Default: TRUE.

save_input Logical value whether the inputs from each layer are to be saved or not. Default:
FALSE.

save_preactivation Logical value whether the preactivations from each layer are to be saved
or not. Default: FALSE.

save_output Logical value whether the outputs from each layer are to be saved or not. Default:
FALSE.

save_last_layer Logical value whether the inputs, preactivations and outputs from the last
layer are to be saved or not. Default: FALSE.

Return:
Returns a list of the output values of the model with respect to the given reference input.

Method set_dtype()

This method changes the data type for all the layers in modules_list. Use either 'float' for
torch::torch_float or 'double' for torch::torch_double.

Usage:
self$set_dtype(dtype)

Arguments:

dtype The data type for all the calculations and defined tensors.

16 Converter

Converter Converter of an artificial neural network

Description

This class analyzes a passed neural network and stores its internal structure and the individual layers
by converting the entire network into an nn_module. With the help of this converter, many methods
for interpreting the behavior of neural networks are provided, which give a better understanding of
the whole model or individual predictions. You can use models from the following libraries:

• torch (nn_sequential)

• keras (keras_model, keras_model_sequential),

• neuralnet

Furthermore, a model can be passed as a list (see vignette("detailed_overview", package =
"innsight") or the website).

The R6 class can also be initialized using the convert function as a helper function so that no prior
knowledge of R6 classes is required.

Details

In order to better understand and analyze the prediction of a neural network, the preactivation or
other information of the individual layers, which are not stored in an ordinary forward pass, are often
required. For this reason, a given neural network is converted into a torch-based neural network,
which provides all the necessary information for an interpretation. The converted torch model is
stored in the field model and is an instance of ConvertedModel. However, before the torch model
is created, all relevant details of the passed model are extracted into a named list. This list can be
saved in complete form in the model_as_list field with the argument save_model_as_list, but
this may consume a lot of memory for large networks and is not done by default. Also, this named
list can again be used as a passed model for the class Converter, which will be described in more
detail in the section ’Implemented Libraries’.

Implemented methods:
An object of the Converter class can be applied to the following methods:

• Layerwise Relevance Propagation (LRP), Bach et al. (2015)
• Deep Learning Important Features (DeepLift), Shrikumar et al. (2017)
• DeepSHAP, Lundberg et al. (2017)
• SmoothGrad including SmoothGrad×Input, Smilkov et al. (2017)
• Vanilla Gradient including Gradient×Input
• Integrated gradients (IntegratedGradient), Sundararajan et al. (2017)
• Expected gradients (ExpectedGradient), Erion et al. (2021)
• ConnectionWeights, Olden et al. (2004)
• Local interpretable model-agnostic explanation (LIME), Ribeiro et al. (2016)
• Shapley values (SHAP), Lundberg et al. (2017)

https://bips-hb.github.io/innsight/articles/detailed_overview.html#model-as-named-list

Converter 17

Implemented libraries:
The converter is implemented for models from the libraries nn_sequential, neuralnet and
keras. But you can also write a wrapper for other libraries because a model can be passed as
a named list which is described in detail in the vignette "In-depth explanation"
(see vignette("detailed_overview", package = "innsight") or the website).

Public fields

model (ConvertedModel)
The converted neural network based on the torch module ConvertedModel.

input_dim (list)
A list of the input dimensions of each input layer. Since internally the "channels first" format
is used for all calculations, the input shapes are already in this format. In addition, the batch
dimension isn’t included, e.g., for an input layer of shape c(*,32,32,3) with channels in the
last axis you get list(c(3,32,32)).

input_names (list)
A list with the names as factors for each input dimension of the shape as stored in the field
input_dim.

output_dim (list)
A list of the output dimensions of each output layer.

output_names (list)
A list with the names as factors for each output dimension of shape as stored in the field
output_dim.

model_as_list (list)
The model stored in a named list (see details for more information). By default, the entry
model_as_list$layers is deleted because it may require a lot of memory for large networks.
However, with the argument save_model_as_list this can be saved anyway.

Methods

Public methods:

• Converter$new()

• Converter$print()

• Converter$clone()

Method new(): Create a new Converter object for a given neural network. When initialized, the
model is inspected, converted as a list and then the a torch-converted model (ConvertedModel) is
created and stored in the field model.

Usage:

https://bips-hb.github.io/innsight/articles/detailed_overview.html#model-as-named-list

18 Converter

Converter$new(
model,
input_dim = NULL,
input_names = NULL,
output_names = NULL,
dtype = "float",
save_model_as_list = FALSE

)

Arguments:

model (nn_sequential, keras_model, neuralnet or list)
A trained neural network for classification or regression tasks to be interpreted. Only
models from the following types or packages are allowed: nn_sequential, keras_model,
keras_model_sequential, neuralnet or a named list (see details).

input_dim (integer or list)
The model input dimension excluding the batch dimension. If there is only one input layer it
can be specified as a vector, otherwise use a list of the shapes of the individual input layers.
Note: This argument is only necessary for torch::nn_sequential, for all others it is au-
tomatically extracted from the passed model and used for internal checks. In addition, the
input dimension input_dim has to be in the format "channels first".

input_names (character, factor or list)
The input names of the model excluding the batch dimension. For a model with a single in-
put layer and input axis (e.g., for tabular data), the input names can be specified as a charac-
ter vector or factor, e.g., for a dense layer with 3 input features use c("X1", "X2", "X3"). If
the model input consists of multiple axes (e.g., for signal and image data), use a list of char-
acter vectors or factors for each axis in the format "channels first", e.g., use list(c("C1",
"C2"), c("L1","L2","L3","L4","L5")) for a 1D convolutional input layer with signal
length 4 and 2 channels. For models with multiple input layers, use a list of the upper ones
for each layer.
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found input names in the passed model will be disregarded.

output_names (character, factor or list)
A character vector with the names for the output dimensions excluding the batch dimension,
e.g., for a model with 3 output nodes use c("Y1", "Y2", "Y3"). Instead of a character vec-
tor you can also use a factor to set an order for the plots. If the model has multiple output
layers, use a list of the upper ones.
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found output names in the passed model will be disregarded.

dtype (character(1))
The data type for the calculations. Use either 'float' for torch::torch_float or 'double'
for torch::torch_double.

save_model_as_list (logical(1))
This logical value specifies whether the passed model should be stored as a list. This list
can take a lot of memory for large networks, so by default the model is not stored as a list

Converter 19

(FALSE).

Returns: A new instance of the R6 class Converter.

Method print(): Print a summary of the Converter object. This summary contains the indi-
vidual fields and in particular the torch-converted model (ConvertedModel) with the layers.

Usage:
Converter$print()

Returns: Returns the Converter object invisibly via base::invisible.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Converter$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

• J. D. Olden et al. (2004) An accurate comparison of methods for quantifying variable im-
portance in artificial neural networks using simulated data. Ecological Modelling 178, p.
389–397

• S. Bach et al. (2015) On pixel-wise explanations for non-linear classifier decisions by layer-
wise relevance propagation. PLoS ONE 10, p. 1-46

• M. T. Ribeiro et al. (2016) "Why should I trust you?": Explaining the predictions of any
classifier. KDD 2016, p. 1135-1144

• A. Shrikumar et al. (2017) Learning important features through propagating activation dif-
ferences. ICML 2017, p. 4844-4866

• D. Smilkov et al. (2017) SmoothGrad: removing noise by adding noise. CoRR, abs/1706.03825
M. Sundararajan et al. (2017) Axiomatic attribution for deep networks. ICML 2017, p.3319-
3328

• S. Lundberg et al. (2017) A unified approach to interpreting model predictions. NIPS 2017,
p. 4768-4777

• G. Erion et al. (2021) Improving performance of deep learning models with axiomatic attri-
bution priors and expected gradients. Nature Machine Intelligence 3, p. 620-631

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

model <- nn_sequential(
nn_linear(5, 10),
nn_relu(),
nn_linear(10, 2, bias = FALSE),
nn_softmax(dim = 2)

20 Converter

)
data <- torch_randn(25, 5)

Convert the model (for torch models is 'input_dim' required!)
converter <- Converter$new(model, input_dim = c(5))

You can also use the helper function `convert()` for initializing a
Converter object
converter <- convert(model, input_dim = c(5))

Get the converted model stored in the field 'model'
converted_model <- converter$model

Test it with the original model
mean(abs(converted_model(data)[[1]] - model(data)))

#----------------------- Example 2: Neuralnet ------------------------------
if (require("neuralnet")) {

library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet((Species == "setosa") ~ Petal.Length + Petal.Width,
iris,
linear.output = FALSE,
hidden = c(3, 2), act.fct = "tanh", rep = 1

)

Convert the model
converter <- convert(nn)

Print all the layers
converter$model$modules_list

}

#----------------------- Example 3: Keras ----------------------------------
if (require("keras") & keras::is_keras_available()) {

library(keras)

Make sure keras is installed properly
is_keras_available()

Define a keras model
model <- keras_model_sequential() %>%

layer_conv_2d(
input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "relu", padding = "same") %>%

layer_conv_2d(
kernel_size = 8, filters = 4,
activation = "tanh", padding = "same") %>%

layer_conv_2d(

Converter 21

kernel_size = 4, filters = 2,
activation = "relu", padding = "same") %>%

layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

Convert this model and save model as list
converter <- convert(model, save_model_as_list = TRUE)

Print the converted model as a named list
str(converter$model_as_list, max.level = 1)

}

#----------------------- Example 4: List ----------------------------------

Define a model

model <- list()
model$input_dim <- 5
model$input_names <- list(c("Feat1", "Feat2", "Feat3", "Feat4", "Feat5"))
model$input_nodes <- c(1)
model$output_dim <- 2
model$output_names <- list(c("Cat", "no-Cat"))
model$output_nodes <- c(2)
model$layers$Layer_1 <-

list(
type = "Dense",
weight = matrix(rnorm(5 * 20), 20, 5),
bias = rnorm(20),
activation_name = "tanh",
dim_in = 5,
dim_out = 20,
input_layers = 0, # '0' means model input layer
output_layers = 2

)
model$layers$Layer_2 <-

list(
type = "Dense",
weight = matrix(rnorm(20 * 2), 2, 20),
bias = rnorm(2),
activation_name = "softmax",
input_layers = 1,
output_layers = -1 # '-1' means model output layer
#dim_in = 20, # These values are optional, but
#dim_out = 2 # useful for internal checks

)

Convert the model
converter <- convert(model)

Get the model as a torch::nn_module
torch_model <- converter$model

22 DeepLift

You can use it as a normal torch model
x <- torch::torch_randn(3, 5)
torch_model(x)

DeepLift Deep learning important features (DeepLift)

Description

This is an implementation of the deep learning important features (DeepLift) algorithm introduced
by Shrikumar et al. (2017). It’s a local method for interpreting a single element x of the dataset
concerning a reference value x′ and returns the contribution of each input feature from the difference
of the output (y = f(x)) and reference output (y′ = f(x′)) prediction. The basic idea of this method
is to decompose the difference-from-reference prediction with respect to the input features, i.e.,

∆y = y − y′ =
∑
i

C(xi).

Compared to Layer-wise relevance propagation (see LRP), the DeepLift method is an exact de-
composition and not an approximation, so we get real contributions of the input features to the
difference-from-reference prediction. There are two ways to handle activation functions: the Rescale
rule ('rescale') and RevealCancel rule ('reveal_cancel').

The R6 class can also be initialized using the run_deeplift function as a helper function so that
no prior knowledge of R6 classes is required.

Super class

innsight::InterpretingMethod -> DeepLift

Public fields

x_ref (list)
The reference input for the DeepLift method. This value is stored as a list of torch_tensors
of shape (1, dim_in) for each input layer.

rule_name (character(1))
Name of the applied rule to calculate the contributions. Either 'rescale' or 'reveal_cancel'.

Methods

Public methods:

• DeepLift$new()

• DeepLift$clone()

DeepLift 23

Method new(): Create a new instance of the DeepLift R6 class. When initialized, the method
DeepLift is applied to the given data and the results are stored in the field result.

Usage:
DeepLift$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
output_label = NULL,
ignore_last_act = TRUE,
rule_name = "rescale",
x_ref = NULL,
winner_takes_all = TRUE,
verbose = interactive(),
dtype = "float"

)

Arguments:
converter (Converter)

An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),

if e.g., the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector

24 DeepLift

of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

ignore_last_act (logical(1))
Set this logical value to include the last activation functions for each output layer, or not
(default: TRUE). In practice, the last activation (especially for softmax activation) is often
omitted.

rule_name (character(1))
Name of the applied rule to calculate the contributions. Use either 'rescale' or 'reveal_cancel'.

x_ref (array, data.frame, torch_tensor or list)
The reference input for the DeepLift method. This value must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (1, dim_in), if e.g.,

the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.
• It is also possible to use the default value NULL to take only zeros as reference input.

winner_takes_all (logical(1))
This logical argument is only relevant for MaxPooling layers and is otherwise ignored. With
this layer type, it is possible that the position of the maximum values in the pooling kernel
of the normal input x and the reference input x′ may not match, which leads to a violation

DeepLift 25

of the summation-to-delta property. To overcome this problem, another variant is imple-
mented, which treats a MaxPooling layer as an AveragePooling layer in the backward pass
only, leading to an uniform distribution of the upper-layer contribution to the lower layer.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

dtype (character(1))
The data type for the calculations. Use either 'float' for torch_float or 'double' for
torch_double.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DeepLift$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

A. Shrikumar et al. (2017) Learning important features through propagating activation differences.
ICML 2017, p. 4844-4866

See Also

Other methods: ConnectionWeights, DeepSHAP, ExpectedGradient, Gradient, IntegratedGradient,
LIME, LRP, SHAP, SmoothGrad

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)
ref <- torch_randn(1, 5)

Create Converter using the helper function `convert`
converter <- convert(model, input_dim = c(5))

Apply method DeepLift
deeplift <- DeepLift$new(converter, data, x_ref = ref)

26 DeepLift

You can also use the helper function `run_deeplift` for initializing
an R6 DeepLift object
deeplift <- run_deeplift(converter, data, x_ref = ref)

Print the result as a torch tensor for first two data points
get_result(deeplift, "torch.tensor")[1:2]

Plot the result for both classes
plot(deeplift, output_idx = 1:2)

Plot the boxplot of all datapoints and for both classes
boxplot(deeplift, output_idx = 1:2)

------------------------- Example 2: Neuralnet ---------------------------
if (require("neuralnet")) {

library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet((Species == "setosa") ~ Petal.Length + Petal.Width,
iris,
linear.output = FALSE,
hidden = c(3, 2), act.fct = "tanh", rep = 1

)

Convert the model
converter <- convert(nn)

Apply DeepLift with rescale-rule and a reference input of the feature
means
x_ref <- matrix(colMeans(iris[, c(3, 4)]), nrow = 1)
deeplift_rescale <- run_deeplift(converter, iris[, c(3, 4)], x_ref = x_ref)

Get the result as a dataframe and show first 5 rows
get_result(deeplift_rescale, type = "data.frame")[1:5,]

Plot the result for the first datapoint in the data
plot(deeplift_rescale, data_idx = 1)

Plot the result as boxplots
boxplot(deeplift_rescale)

}

------------------------- Example 3: Keras -------------------------------
if (require("keras") & keras::is_keras_available()) {

library(keras)

Make sure keras is installed properly
is_keras_available()

data <- array(rnorm(10 * 32 * 32 * 3), dim = c(10, 32, 32, 3))

DeepSHAP 27

model <- keras_model_sequential()
model %>%

layer_conv_2d(
input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid") %>%

layer_conv_2d(
kernel_size = 8, filters = 4, activation = "tanh",
padding = "same") %>%

layer_conv_2d(
kernel_size = 4, filters = 2, activation = "relu",
padding = "valid") %>%

layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 2, activation = "softmax")

Convert the model
converter <- convert(model)

Apply the DeepLift method with reveal-cancel rule
deeplift_revcancel <- run_deeplift(converter, data,

channels_first = FALSE,
rule_name = "reveal_cancel"

)

Plot the result for the first image and both classes
plot(deeplift_revcancel, output_idx = 1:2)

Plot the pixel-wise median reelvance image
plot_global(deeplift_revcancel, output_idx = 1)

}

#------------------------- Plotly plots ------------------------------------
if (require("plotly")) {

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)
boxplot(deeplift, as_plotly = TRUE)

}

DeepSHAP Deep Shapley additive explanations (DeepSHAP)

Description

The DeepSHAP method extends the DeepLift technique by not only considering a single refer-
ence value but by calculating the average from several, ideally representative reference values at

28 DeepSHAP

each layer. The obtained feature-wise results are approximate Shapley values for the chosen out-
put, where the conditional expectation is computed using these different reference values, i.e.,
the DeepSHAP method decompose the difference from the prediction and the mean prediction
f(x) − E[f(x̃)] in feature-wise effects. The reference values can be passed by the argument
data_ref.

The R6 class can also be initialized using the run_deepshap function as a helper function so that
no prior knowledge of R6 classes is required.

Super class

innsight::InterpretingMethod -> DeepSHAP

Public fields

rule_name (character(1))
Name of the applied rule to calculate the contributions. Either 'rescale' or 'reveal_cancel'.

data_ref (list)
The passed reference dataset for estimating the conditional expectation as a list of torch_tensors
in the selected data format (field dtype) matching the corresponding shapes of the individual
input layers. Besides, the channel axis is moved to the second position after the batch size
because internally only the format channels first is used.

Methods

Public methods:
• DeepSHAP$new()

• DeepSHAP$clone()

Method new(): Create a new instance of the DeepSHAP R6 class. When initialized, the method
DeepSHAP is applied to the given data and the results are stored in the field result.

Usage:
DeepSHAP$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
output_label = NULL,
ignore_last_act = TRUE,
rule_name = "rescale",
data_ref = NULL,
limit_ref = 100,
winner_takes_all = TRUE,
verbose = interactive(),
dtype = "float"

)

Arguments:

DeepSHAP 29

converter (Converter)
An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),

if e.g., the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output

30 DeepSHAP

nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

ignore_last_act (logical(1))
Set this logical value to include the last activation functions for each output layer, or not
(default: TRUE). In practice, the last activation (especially for softmax activation) is often
omitted.

rule_name (character(1))
Name of the applied rule to calculate the contributions. Use either 'rescale' or 'reveal_cancel'.

data_ref (array, data.frame, torch_tensor or list)
The reference data which is used to estimate the conditional expectation. These must have
the same format as the input data of the passed model to the converter object. This means
either

• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),
if e.g., the model has only one input layer, or

• a list with the corresponding input data (according to the upper point) for each of the
input layers.

• or NULL (default) to use only a zero baseline for the estimation.

limit_ref (integer(1))
This argument limits the number of instances taken from the reference dataset data_ref
so that only random limit_ref elements and not the entire dataset are used to estimate
the conditional expectation. A too-large number can significantly increase the computation
time.

winner_takes_all (logical(1))
This logical argument is only relevant for MaxPooling layers and is otherwise ignored. With
this layer type, it is possible that the position of the maximum values in the pooling kernel
of the normal input x and the reference input x′ may not match, which leads to a violation
of the summation-to-delta property. To overcome this problem, another variant is imple-
mented, which treats a MaxPooling layer as an AveragePooling layer in the backward pass
only, leading to an uniform distribution of the upper-layer contribution to the lower layer.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

dtype (character(1))
The data type for the calculations. Use either 'float' for torch_float or 'double' for

DeepSHAP 31

torch_double.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DeepSHAP$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

S. Lundberg & S. Lee (2017) A unified approach to interpreting model predictions. NIPS 2017, p.
4768–4777

See Also

Other methods: ConnectionWeights, DeepLift, ExpectedGradient, Gradient, IntegratedGradient,
LIME, LRP, SHAP, SmoothGrad

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)

Create a reference dataset for the estimation of the conditional
expectation
ref <- torch_randn(5, 5)

Create Converter
converter <- convert(model, input_dim = c(5))

Apply method DeepSHAP
deepshap <- DeepSHAP$new(converter, data, data_ref = ref)

You can also use the helper function `run_deepshap` for initializing
an R6 DeepSHAP object
deepshap <- run_deepshap(converter, data, data_ref = ref)

Print the result as a torch tensor for first two data points
get_result(deepshap, "torch.tensor")[1:2]

32 DeepSHAP

Plot the result for both classes
plot(deepshap, output_idx = 1:2)

Plot the boxplot of all datapoints and for both classes
boxplot(deepshap, output_idx = 1:2)

------------------------- Example 2: Neuralnet ---------------------------
if (require("neuralnet")) {

library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet((Species == "setosa") ~ Petal.Length + Petal.Width,
iris,
linear.output = FALSE,
hidden = c(3, 2), act.fct = "tanh", rep = 1

)

Convert the model
converter <- convert(nn)

Apply DeepSHAP with rescale-rule and a 100 (default of `limit_ref`)
instances as the reference dataset
deepshap <- run_deepshap(converter, iris[, c(3, 4)],

data_ref = iris[, c(3, 4)])

Get the result as a dataframe and show first 5 rows
get_result(deepshap, type = "data.frame")[1:5,]

Plot the result for the first datapoint in the data
plot(deepshap, data_idx = 1)

Plot the result as boxplots
boxplot(deepshap)

}

------------------------- Example 3: Keras -------------------------------
if (require("keras") & keras::is_keras_available()) {

library(keras)

Make sure keras is installed properly
is_keras_available()

data <- array(rnorm(10 * 32 * 32 * 3), dim = c(10, 32, 32, 3))

model <- keras_model_sequential()
model %>%

layer_conv_2d(
input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid") %>%

layer_conv_2d(
kernel_size = 8, filters = 4, activation = "tanh",

ExpectedGradient 33

padding = "same") %>%
layer_conv_2d(

kernel_size = 4, filters = 2, activation = "relu",
padding = "valid") %>%

layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 2, activation = "softmax")

Convert the model
converter <- convert(model)

Apply the DeepSHAP method with zero baseline (wich is equivalent to
DeepLift with zero baseline)
deepshap <- run_deepshap(converter, data, channels_first = FALSE)

Plot the result for the first image and both classes
plot(deepshap, output_idx = 1:2)

Plot the pixel-wise median of the results
plot_global(deepshap, output_idx = 1)

}

#------------------------- Plotly plots ------------------------------------
if (require("plotly")) {

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)
boxplot(deepshap, as_plotly = TRUE)

}

ExpectedGradient Expected Gradients

Description

The Expected Gradients method (Erion et al., 2021), also known as GradSHAP, is a local feature
attribution technique which extends the IntegratedGradient method and provides approximate
Shapley values. In contrast to IntegratedGradient, it considers not only a single reference value x′

but the whole distribution of reference values X ′ ∼ x′ and averages the IntegratedGradient values
over this distribution. Mathematically, the method can be described as follows:

Ex′∼X′,α∼U(0,1)[(x− x′) × ∂f(x′ + α(x− x′))

∂x
]

The distribution of the reference values is specified with the argument data_ref, of which n sam-
ples are taken at random for each instance during the estimation.

The R6 class can also be initialized using the run_expgrad function as a helper function so that no
prior knowledge of R6 classes is required.

34 ExpectedGradient

Super classes

innsight::InterpretingMethod -> innsight::GradientBased -> ExpectedGradient

Public fields

n (integer(1))
Number of samples from the distribution of reference values and number of samples for the
approximation of the integration path along α (default: 50).

data_ref (list)
The reference input for the ExpectedGradient method. This value is stored as a list of torch_tensors
of shape (, dim_in) for each input layer.

Methods

Public methods:

• ExpectedGradient$new()

• ExpectedGradient$clone()

Method new(): Create a new instance of the ExpectedGradient R6 class. When initialized,
the method Expected Gradient is applied to the given data and baseline values and the results are
stored in the field result.

Usage:
ExpectedGradient$new(
converter,
data,
data_ref = NULL,
n = 50,
channels_first = TRUE,
output_idx = NULL,
output_label = NULL,
ignore_last_act = TRUE,
verbose = interactive(),
dtype = "float"

)

Arguments:

converter (Converter)
An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),

if e.g., the model has only one input layer, or

ExpectedGradient 35

• a list with the corresponding input data (according to the upper point) for each of the
input layers.

data_ref (array, data.frame, torch_tensor or list)
The reference inputs for the ExpectedGradient method. This value must have the same
format as the input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (, dim_in), if e.g., the

model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.
• It is also possible to use the default value NULL to take only zeros as reference input.

n (integer(1))
Number of samples from the distribution of reference values and number of samples for the
approximation of the integration path along α (default: 50).

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-

36 ExpectedGradient

ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

ignore_last_act (logical(1))
Set this logical value to include the last activation functions for each output layer, or not
(default: TRUE). In practice, the last activation (especially for softmax activation) is often
omitted.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

dtype (character(1))
The data type for the calculations. Use either 'float' for torch_float or 'double' for
torch_double.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ExpectedGradient$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

G. Erion et al. (2021) *Improving performance of deep learning models with * axiomatic attribution
priors and expected gradients. Nature Machine Intelligence 3, pp. 620-631.

See Also

Other methods: ConnectionWeights, DeepLift, DeepSHAP, Gradient, IntegratedGradient,
LIME, LRP, SHAP, SmoothGrad

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

ExpectedGradient 37

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)
ref <- torch_randn(1, 5)

Create Converter
converter <- convert(model, input_dim = c(5))

Apply method IntegratedGradient
int_grad <- IntegratedGradient$new(converter, data, x_ref = ref)

You can also use the helper function `run_intgrad` for initializing
an R6 IntegratedGradient object
int_grad <- run_intgrad(converter, data, x_ref = ref)

Print the result as a torch tensor for first two data points
get_result(int_grad, "torch.tensor")[1:2]

Plot the result for both classes
plot(int_grad, output_idx = 1:2)

Plot the boxplot of all datapoints and for both classes
boxplot(int_grad, output_idx = 1:2)

------------------------- Example 2: Neuralnet ---------------------------
if (require("neuralnet")) {

library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet((Species == "setosa") ~ Petal.Length + Petal.Width,
iris,
linear.output = FALSE,
hidden = c(3, 2), act.fct = "tanh", rep = 1

)

Convert the model
converter <- convert(nn)

Apply IntegratedGradient with a reference input of the feature means
x_ref <- matrix(colMeans(iris[, c(3, 4)]), nrow = 1)
int_grad <- run_intgrad(converter, iris[, c(3, 4)], x_ref = x_ref)

Get the result as a dataframe and show first 5 rows
get_result(int_grad, type = "data.frame")[1:5,]

Plot the result for the first datapoint in the data
plot(int_grad, data_idx = 1)

38 ExpectedGradient

Plot the result as boxplots
boxplot(int_grad)

}

------------------------- Example 3: Keras -------------------------------
if (require("keras") & keras::is_keras_available()) {

library(keras)

Make sure keras is installed properly
is_keras_available()

data <- array(rnorm(10 * 32 * 32 * 3), dim = c(10, 32, 32, 3))

model <- keras_model_sequential()
model %>%

layer_conv_2d(
input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid") %>%

layer_conv_2d(
kernel_size = 8, filters = 4, activation = "tanh",
padding = "same") %>%

layer_conv_2d(
kernel_size = 4, filters = 2, activation = "relu",
padding = "valid") %>%

layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 2, activation = "softmax")

Convert the model
converter <- convert(model)

Apply the IntegratedGradient method with a zero baseline and n = 20
iteration steps
int_grad <- run_intgrad(converter, data,

channels_first = FALSE,
n = 20

)

Plot the result for the first image and both classes
plot(int_grad, output_idx = 1:2)

Plot the pixel-wise median of the results
plot_global(int_grad, output_idx = 1)

}

#------------------------- Plotly plots ------------------------------------
if (require("plotly")) {

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)

get_result 39

boxplot(int_grad, as_plotly = TRUE)
}

get_result Get the result of an interpretation method

Description

This is a generic S3 method for the R6 method InterpretingMethod$get_result(). See the
respective method described in InterpretingMethod for details.

Usage

get_result(x, ...)

Arguments

x An object of the class InterpretingMethod including the subclasses Gradient,
SmoothGrad, LRP, DeepLift, DeepSHAP, IntegratedGradient, ExpectedGradient
and ConnectionWeights.

... Other arguments specified in the R6 method InterpretingMethod$get_result().
See InterpretingMethod for details.

Gradient Vanilla Gradient and Gradient×Input

Description

This method computes the gradients (also known as Vanilla Gradients) of the outputs with respect
to the input variables, i.e., for all input variable i and output class j

df(x)j/dxi.

If the argument times_input is TRUE, the gradients are multiplied by the respective input value
(Gradient×Input), i.e.,

xi ∗ df(x)j/dxi.

While the vanilla gradients emphasize prediction-sensitive features, Gradient×Input is a decompo-
sition of the output into feature-wise effects based on the first-order Taylor decomposition.

The R6 class can also be initialized using the run_grad function as a helper function so that no
prior knowledge of R6 classes is required.

Super classes

innsight::InterpretingMethod -> innsight::GradientBased -> Gradient

40 Gradient

Methods

Public methods:
• Gradient$new()

• Gradient$clone()

Method new(): Create a new instance of the Gradient R6 class. When initialized, the method
Gradient or Gradient×Input is applied to the given data and the results are stored in the field
result.

Usage:
Gradient$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
output_label = NULL,
ignore_last_act = TRUE,
times_input = FALSE,
verbose = interactive(),
dtype = "float"

)

Arguments:
converter (Converter)

An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),

if e.g., the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth

Gradient 41

output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

ignore_last_act (logical(1))
Set this logical value to include the last activation functions for each output layer, or not
(default: TRUE). In practice, the last activation (especially for softmax activation) is often
omitted.

times_input (logical(1))
Multiplies the gradients with the input features. This method is called Gradient×Input.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

dtype (character(1))
The data type for the calculations. Use either 'float' for torch_float or 'double' for
torch_double.

Method clone(): The objects of this class are cloneable with this method.

42 Gradient

Usage:
Gradient$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other methods: ConnectionWeights, DeepLift, DeepSHAP, ExpectedGradient, IntegratedGradient,
LIME, LRP, SHAP, SmoothGrad

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)

Create Converter with input and output names
converter <- convert(model,

input_dim = c(5),
input_names = list(c("Car", "Cat", "Dog", "Plane", "Horse")),
output_names = list(c("Buy it!", "Don't buy it!"))

)

Calculate the Gradients
grad <- Gradient$new(converter, data)

You can also use the helper function `run_grad` for initializing
an R6 Gradient object
grad <- run_grad(converter, data)

Print the result as a data.frame for first 5 rows
get_result(grad, "data.frame")[1:5,]

Plot the result for both classes
plot(grad, output_idx = 1:2)

Plot the boxplot of all datapoints
boxplot(grad, output_idx = 1:2)

------------------------- Example 2: Neuralnet ---------------------------
if (require("neuralnet")) {

library(neuralnet)
data(iris)

Gradient 43

Train a neural network
nn <- neuralnet(Species ~ ., iris,

linear.output = FALSE,
hidden = c(10, 5),
act.fct = "logistic",
rep = 1

)

Convert the trained model
converter <- convert(nn)

Calculate the gradients
gradient <- run_grad(converter, iris[, -5])

Plot the result for the first and 60th data point and all classes
plot(gradient, data_idx = c(1, 60), output_idx = 1:3)

Calculate Gradients x Input and do not ignore the last activation
gradient <- run_grad(converter, iris[, -5],

ignore_last_act = FALSE,
times_input = TRUE)

Plot the result again
plot(gradient, data_idx = c(1, 60), output_idx = 1:3)

}

------------------------- Example 3: Keras -------------------------------
if (require("keras") & keras::is_keras_available()) {

library(keras)

Make sure keras is installed properly
is_keras_available()

data <- array(rnorm(64 * 60 * 3), dim = c(64, 60, 3))

model <- keras_model_sequential()
model %>%

layer_conv_1d(
input_shape = c(60, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid") %>%

layer_conv_1d(
kernel_size = 8, filters = 4, activation = "tanh",
padding = "same") %>%

layer_conv_1d(
kernel_size = 4, filters = 2, activation = "relu",
padding = "valid") %>%

layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 3, activation = "softmax")

44 GradientBased

Convert the model
converter <- convert(model)

Apply the Gradient method
gradient <- run_grad(converter, data, channels_first = FALSE)

Plot the result for the first datapoint and all classes
plot(gradient, output_idx = 1:3)

Plot the result as boxplots for first two classes
boxplot(gradient, output_idx = 1:2)

}

#------------------------- Plotly plots ------------------------------------
if (require("plotly")) {

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)

Result as boxplots
boxplot(gradient, as_plotly = TRUE)

Result of the second data point
plot(gradient, data_idx = 2, as_plotly = TRUE)

}

GradientBased Super class for gradient-based interpretation methods

Description

Super class for gradient-based interpretation methods. This class inherits from InterpretingMethod.
It summarizes all implemented gradient-based methods and provides a private function to calculate
the gradients w.r.t. to the input for given data. Implemented are:

• Vanilla Gradients and Gradient×Input (Gradient)

• Integrated Gradients (IntegratedGradient)

• SmoothGrad and SmoothGrad×Input (SmoothGrad)

• ExpectedGradients (ExpectedGradient)

Super class

innsight::InterpretingMethod -> GradientBased

GradientBased 45

Public fields

times_input (logical(1))
This logical value indicates whether the results were multiplied by the provided input data or
not.

Methods

Public methods:

• GradientBased$new()

• GradientBased$clone()

Method new(): Create a new instance of this class. When initialized, the method is applied to
the given data and the results are stored in the field result.

Usage:
GradientBased$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
output_label = NULL,
ignore_last_act = TRUE,
times_input = TRUE,
verbose = interactive(),
dtype = "float"

)

Arguments:

converter (Converter)
An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),

if e.g., the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

46 GradientBased

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

ignore_last_act (logical(1))
Set this logical value to include the last activation functions for each output layer, or not
(default: TRUE). In practice, the last activation (especially for softmax activation) is often
omitted.

times_input (logical(1)
Multiplies the gradients with the input features. This method is called Gradient×Input.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

innsight_ggplot2 47

dtype (character(1))
The data type for the calculations. Use either 'float' for torch_float or 'double' for
torch_double.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GradientBased$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

innsight_ggplot2 S4 class for ggplot2-based plots

Description

The S4 class innsight_ggplot2 visualizes the results of the methods provided from the package
innsight using ggplot2. In addition, it allows easier analysis of the results and modification of the
visualization by basic generic functions. The individual slots are for internal use only and should
not be modified.

Details

This S4 class is a simple extension of a ggplot2 object that enables a more detailed analysis of the
results and a way to visualize the results of models with multiple input layers (e.g., images and
tabular data). The distinction between one and multiple input layers decides the behavior of this
class, and this information is stored in the slot multiplot.

One input layer (multiplot = FALSE):
If the model passed to a method from the innsight package has only one input layer, the S4 class
innsight_ggplot2 is just a wrapper of a single ggplot2 object. This object is stored as a 1x1
matrix in the slot grobs and the slots output_strips and col_dims contain only empty lists
because no second line of stripes describing the input layer is needed. Although it is an object of
the class innsight_ggplot2, the generic function +.innsight_ggplot2 provides a ggplot2-typical
usage to modify the representation. The graphical objects are simply forwarded to the ggplot2
object in grobs and added using ggplot2::+.gg. In addition, some generic functions are imple-
mented to visualize or examine individual aspects of the overall plot in more detail. All available
generic functions are listed below:

• +

• plot, print and show (all behave the same)
• [

• [[

Note: In this case, the generic function [<- is not implemented because there is only one ggplot2
object and not multiple ones.

48 innsight_ggplot2

Multiple input layers (multiplot = TRUE):
If the passed model has multiple input layers, a ggplot2 object is created for each data point, input
layer and output node and then stored as a matrix in the slot grobs. During visualization, these are
combined using the function gridExtra::arrangeGrob and corresponding strips for the output
layer/node names are added at the top. The labels, column indices and theme for the extra row of
strips are stored in the slots output_strips and col_dims. The strips for the input layer and the
data points (if not boxplot) are created using ggplot2::facet_grid in the individual ggplot2 objects
of the grob matrix. An example structure is shown below:

| Output 1: Node 1 | Output 1: Node 3 |
| Input 1 | Input 2 | Input 1 | Input 2 |
|---|-------------
| | | | |
| grobs[1,1] | grobs[1,2] | grobs[1,3] | grobs[1,4] | data point 1
| | | | |
|---|-------------
| | | | |
| grobs[2,1] | grobs[2,2] | grobs[2,3] | grobs[2,4] | data point 2
| | | | |

Similar to the other case, generic functions are implemented to add graphical objects from ggplot2,
create the whole plot or select only specific rows/columns. The difference, however, is that each
entry in each row and column is a separate ggplot2 object and can be modified individually. For
example, adds + ggplot2::xlab("X") the x-axis label "X" to all objects and not only to those
in the last row. The generic function [<- allows you to replace a selection of objects in grobs
and thus, for example, to change the x-axis title only in the bottom row. All available generic
functions are listed below:

• +

• plot, print and show (all behave the same)
• [

• [[

• [<-

• [[<-

Note: Since this is not a standard visualization, the suggested packages 'grid', 'gridExtra'
and 'gtable' must be installed.

Slots

grobs The individual ggplot2 objects arranged as a matrix (see details for more information)
multiplot A logical value indicating whether there are multiple input layers and therefore corre-

spondingly individual ggplot2 objects instead of one single object.
output_strips A list containing the labels and themes of the strips for the output nodes. This slot

is only relevant if multiplot is TRUE.
col_dims A list of the length of output_strips assigning to each strip the column index of grobs

of the associated strip.
boxplot A logical value indicating whether the result of individual data points or a boxplot over

multiple instances is displayed.

innsight_plotly 49

innsight_plotly S4 class for plotly-based plots

Description

The S4 class innsight_plotly visualizes the results of the methods provided from the package
innsight using plotly. In addition, it allows easier analysis of the results and modification of the
visualization by basic generic functions. The individual slots are for internal use only and should
not be modified.

Details

This S4 class is a simple extension of a plotly object that enables a more detailed analysis of the
results and a way to visualize the results of models with multiple input layers (e.g., images and
tabular data).

The overall plot is created in the following order:

1. The corresponding shapes and annotations of the slots annotations and shapes are added to
each plot in plots. This also adds the strips at the top for the output node (or input layer) and,
if necessary, on the right side for the data point.

2. Subsequently, all individual plots are combined into one plot with the help of the function
plotly::subplot.

3. Lastly, the global elements from the layout slot are added and if there are multiple input
layers (multiplot = TRUE), another output strip is added for the columns.

An example structure of the plot with multiple input layers is shown below:

| Output 1: Node 1 | Output 1: Node 3 |
| Input 1 | Input 2 | Input 1 | Input 2 |
|---|-------------
| | | | |
| plots[1,1] | plots[1,2] | plots[1,3] | plots[1,4] | data point 1
| | | | |
|---|-------------
| | | | |
| plots[2,1] | plots[2,2] | plots[2,3] | plots[2,4] | data point 2
| | | | |

Additionally, some generic functions are implemented to visualize individual aspects of the overall
plot or to examine them in more detail. All available generic functions are listed below:

• plot, print and show (all behave the same)

• [

• [[

https://plotly.com/r/

50 innsight_sugar

Slots

plots The individual plotly objects arranged as a matrix (see details for more information).

shapes A list of two lists with the names shapes_strips and shapes_other. The list shapes_strips
contains the shapes for the strips and may not be manipulated. The other list shapes_other
contains a matrix of the same size as plots and each entry contains the shapes of the corre-
sponding plot.

annotations A list of two lists with the names annotations_strips and annotations_other.
The list annotations_strips contains the annotations for the strips and may not be manip-
ulated. The other list annotations_other contains a matrix of the same size as plots and
each entry contains the annotations of the corresponding plot.

multiplot A logical value indicating whether there are multiple input layers and therefore corre-
spondingly individual ggplot2 objects instead of one single object.

layout This list contains all global layout options, e.g. update buttons, sliders, margins etc. (see
plotly::layout for more details).

col_dims A list to assign a label to the columns for the output strips.

innsight_sugar Syntactic sugar for object construction

Description

Since all methods and the preceding conversion step in the innsight package were implemented
using R6 classes and these always require a call to classname$new() for initialization, the follow-
ing functions are defined to shorten the construction of the corresponding R6 objects:

• convert() for Converter

• run_grad() for Gradient

• run_smoothgrad() for SmoothGrad

• run_intgrad() for IntegratedGradient

• run_expgrad() for ExpectedGradient

• run_lrp() for LRP

• run_deeplift() for DeepLift

• run_deepshap for DeepSHAP

• run_cw for ConnectionWeights

• run_lime for LIME

• run_shap for SHAP

innsight_sugar 51

Usage

Create a new `Converter` object of the given `model`
convert(model, ...)

Apply the `Gradient` method to the passed `data` to be explained
run_grad(converter, data, ...)

Apply the `SmoothGrad` method to the passed `data` to be explained
run_smoothgrad(converter, data, ...)

Apply the `IntegratedGradient` method to the passed `data` to be explained
run_intgrad(converter, data, ...)

Apply the `ExpectedGradient` method to the passed `data` to be explained
run_expgrad(converter, data, ...)

Apply the `LRP` method to the passed `data` to be explained
run_lrp(converter, data, ...)

Apply the `DeepLift` method to the passed `data` to be explained
run_deeplift(converter, data, ...)

Apply the `DeepSHAP` method to the passed `data` to be explained
run_deepshap(converter, data, ...)

Apply the `ConnectionWeights` method (argument `data` is not always required)
run_cw(converter, ...)

Apply the `LIME` method to explain `data` by using the dataset `data_ref`
run_lime(model, data, data_ref, ...)

Apply the `SHAP` method to explain `data` by using the dataset `data_ref`
run_shap(model, data, data_ref, ...)

Arguments

model (nn_sequential, keras_model, neuralnet or list)
A trained neural network for classification or regression tasks to be interpreted.
Only models from the following types or packages are allowed: nn_sequential,
keras_model, keras_model_sequential, neuralnet or a named list (see de-
tails).
Note: For the model-agnostic methods, an arbitrary fitted model for a clas-
sification or regression task can be passed. A Converter object can also be
passed. In order for the package to know how to make predictions with the given
model, a prediction function must also be passed with the argument pred_fun.
However, for models created by nn_sequential, keras_model, neuralnet or
Converter, these have already been pre-implemented and do not need to be
specified.

52 IntegratedGradient

... Other arguments passed to the individual constructor functions of the methods
R6 classes.

converter (Converter)
An instance of the Converter class that includes the torch-converted model and
some other model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format
as the input data of the passed model to the converter object. This means either

• an array, data.frame, torch_tensor or array-like format of size (batch_size,
dim_in), if e.g., the model has only one input layer, or

• a list with the corresponding input data (according to the upper point) for
each of the input layers.

Note: For the model-agnostic methods, only models with a single input and out-
put layer is allowed!

data_ref (array, data.frame or torch_tensor)
The dataset to which the method is to be applied. These must have the same
format as the input data of the passed model and has to be either matrix, an
array, a data.frame or a torch_tensor.
Note: For the model-agnostic methods, only models with a single input and out-
put layer is allowed!

Value

R6::R6Class object of the respective type.

IntegratedGradient Integrated Gradients

Description

The IntegratedGradient class implements the method Integrated Gradients (Sundararajan et al.,
2017), which incorporates a reference value x′ (also known as baseline value) analogous to the
DeepLift method. Integrated Gradients helps to uncover the relative importance of input features
in the predictions y = f(x) made by a model compared to the prediction of the reference value
y′ = f(x′). This is achieved through the following formula:

(x− x′) ×
∫ 1

α=0

∂f(x′ + α(x− x′))

∂x
dα

In simpler terms, it calculates how much each feature contributes to a model’s output by tracing a
path from a baseline input x′ to the actual input x and measuring the average gradients along that
path.

IntegratedGradient 53

Similar to the other gradient-based methods, by default the integrated gradient is multiplied by the
input to get an approximate decomposition of y − y′. However, with the parameter times_input
only the gradient describing the output sensitivity can be returned.

The R6 class can also be initialized using the run_intgrad function as a helper function so that no
prior knowledge of R6 classes is required.

Super classes

innsight::InterpretingMethod -> innsight::GradientBased -> IntegratedGradient

Public fields

n (integer(1))
Number of steps for the approximation of the integration path along α (default: 50).

x_ref (list)
The reference input for the IntegratedGradient method. This value is stored as a list of
torch_tensors of shape (1, dim_in) for each input layer.

Methods

Public methods:
• IntegratedGradient$new()

• IntegratedGradient$clone()

Method new(): Create a new instance of the IntegratedGradient R6 class. When initialized,
the method Integrated Gradient is applied to the given data and baseline value and the results are
stored in the field result.

Usage:
IntegratedGradient$new(
converter,
data,
x_ref = NULL,
n = 50,
times_input = TRUE,
channels_first = TRUE,
output_idx = NULL,
output_label = NULL,
ignore_last_act = TRUE,
verbose = interactive(),
dtype = "float"

)

Arguments:
converter (Converter)

An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

54 IntegratedGradient

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),

if e.g., the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.

x_ref (array, data.frame, torch_tensor or list)
The reference input for the IntegratedGradient method. This value must have the same
format as the input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (1, dim_in), if e.g.,

the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.
• It is also possible to use the default value NULL to take only zeros as reference input.

n (integer(1))
Number of steps for the approximation of the integration path along α (default: 50).

times_input (logical(1)
Multiplies the integrated gradients with the difference of the input features and the base-
line values. By default, the original definition of IntegratedGradient is applied. However,
by setting times_input = FALSE only an approximation of the integral is calculated, which
describes the sensitivity of the features to the output.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

IntegratedGradient 55

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

ignore_last_act (logical(1))
Set this logical value to include the last activation functions for each output layer, or not
(default: TRUE). In practice, the last activation (especially for softmax activation) is often
omitted.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

dtype (character(1))
The data type for the calculations. Use either 'float' for torch_float or 'double' for
torch_double.

Method clone(): The objects of this class are cloneable with this method.

Usage:
IntegratedGradient$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

M. Sundararajan et al. (2017) Axiomatic attribution for deep networks. ICML 2017, PMLR 70, pp.
3319-3328.

56 IntegratedGradient

See Also

Other methods: ConnectionWeights, DeepLift, DeepSHAP, ExpectedGradient, Gradient, LIME,
LRP, SHAP, SmoothGrad

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)
ref <- torch_randn(1, 5)

Create Converter
converter <- convert(model, input_dim = c(5))

Apply method IntegratedGradient
int_grad <- IntegratedGradient$new(converter, data, x_ref = ref)

You can also use the helper function `run_intgrad` for initializing
an R6 IntegratedGradient object
int_grad <- run_intgrad(converter, data, x_ref = ref)

Print the result as a torch tensor for first two data points
get_result(int_grad, "torch.tensor")[1:2]

Plot the result for both classes
plot(int_grad, output_idx = 1:2)

Plot the boxplot of all datapoints and for both classes
boxplot(int_grad, output_idx = 1:2)

------------------------- Example 2: Neuralnet ---------------------------
if (require("neuralnet")) {

library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet((Species == "setosa") ~ Petal.Length + Petal.Width,
iris,
linear.output = FALSE,
hidden = c(3, 2), act.fct = "tanh", rep = 1

)

Convert the model

IntegratedGradient 57

converter <- convert(nn)

Apply IntegratedGradient with a reference input of the feature means
x_ref <- matrix(colMeans(iris[, c(3, 4)]), nrow = 1)
int_grad <- run_intgrad(converter, iris[, c(3, 4)], x_ref = x_ref)

Get the result as a dataframe and show first 5 rows
get_result(int_grad, type = "data.frame")[1:5,]

Plot the result for the first datapoint in the data
plot(int_grad, data_idx = 1)

Plot the result as boxplots
boxplot(int_grad)

}

------------------------- Example 3: Keras -------------------------------
if (require("keras") & keras::is_keras_available()) {

library(keras)

Make sure keras is installed properly
is_keras_available()

data <- array(rnorm(10 * 32 * 32 * 3), dim = c(10, 32, 32, 3))

model <- keras_model_sequential()
model %>%

layer_conv_2d(
input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid") %>%

layer_conv_2d(
kernel_size = 8, filters = 4, activation = "tanh",
padding = "same") %>%

layer_conv_2d(
kernel_size = 4, filters = 2, activation = "relu",
padding = "valid") %>%

layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 2, activation = "softmax")

Convert the model
converter <- convert(model)

Apply the IntegratedGradient method with a zero baseline and n = 20
iteration steps
int_grad <- run_intgrad(converter, data,

channels_first = FALSE,
n = 20

)

Plot the result for the first image and both classes
plot(int_grad, output_idx = 1:2)

58 InterpretingMethod

Plot the pixel-wise median of the results
plot_global(int_grad, output_idx = 1)

}

#------------------------- Plotly plots ------------------------------------
if (require("plotly")) {

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)
boxplot(int_grad, as_plotly = TRUE)

}

InterpretingMethod Super class for interpreting methods

Description

This is a super class for all interpreting methods in the innsight package. Implemented are the
following methods:

• Deep Learning Important Features (DeepLift)

• Deep Shapley additive explanations (DeepSHAP)

• Layer-wise Relevance Propagation (LRP)

• Gradient-based methods:

– Vanilla gradients including Gradient×Input (Gradient)
– Smoothed gradients including SmoothGrad×Input (SmoothGrad)
– Integrated gradients (IntegratedGradient)
– Expected gradients (ExpectedGradient)

• Connection Weights (global and local) (ConnectionWeights)

• Also some model-agnostic approaches:

– Local interpretable model-agnostic explanations (LIME)
– Shapley values (SHAP)

Public fields

data (list)
The passed data as a list of torch_tensors in the selected data format (field dtype) match-
ing the corresponding shapes of the individual input layers. Besides, the channel axis is moved
to the second position after the batch size because internally only the format channels first is
used.

InterpretingMethod 59

converter (Converter)
An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

channels_first (logical(1))
The channel position of the given data. If TRUE, the channel axis is placed at the second po-
sition between the batch size and the rest of the input axes, e.g., c(10,3,32,32) for a batch
of ten images with three channels and a height and width of 32 pixels. Otherwise (FALSE),
the channel axis is at the last position, i.e., c(10,32,32,3). This is especially important for
layers like flatten, where the order is crucial and therefore the channels have to be moved from
the internal format "channels first" back to the original format before the layer is calculated.

dtype (character(1))
The data type for the calculations. Either 'float' for torch_float or 'double' for torch_double.

ignore_last_act (logical(1))
A logical value to include the last activation functions into all the calculations, or not.

result (list)
The results of the method on the passed data. A unified list structure is used regardless of the
complexity of the model: The outer list contains the individual output layers and the inner list
the input layers. The results for the respective output and input layer are then stored there as
torch tensors in the given data format (field dtype). In addition, the channel axis is moved to
its original place and the last axis contains the selected output nodes for the individual output
layers (see output_idx).
For example, the structure of the result for two output layers (output node 1 for the first and 2
and 4 for the second) and two input layers with channels_first = FALSE looks like this:

List of 2 # both output layers
$:List of 2 # both input layers
..$: torch_tensor [batch_size, dim_in_1, channel_axis, 1]
..$: torch_tensor [batch_size, dim_in_2, channel_axis, 1]

$:List of 2 # both input layers
..$: torch_tensor [batch_size, dim_in_1, channel_axis, 2]
..$: torch_tensor [batch_size, dim_in_2, channel_axis, 2]

output_idx (list)
This list of indices specifies the output nodes to which the method is to be applied. In the
order of the output layers, the list contains the respective output nodes indices and unwanted
output layers have the entry NULL instead of a vector of indices, e.g., list(NULL, c(1,3)) for
the first and third output node in the second output layer.

output_label (list)
This list of factors specifies the output nodes to which the method is to be applied. In the
order of the output layers, the list contains the respective output nodes labels and unwanted
output layers have the entry NULL instead of a vector of labels, e.g., list(NULL, c("a", "c"))
for the first and third output node in the second output layer.

60 InterpretingMethod

verbose (logical(1))
This logical value determines whether a progress bar is displayed for the calculation of the
method or not. The default value is the output of the primitive R function interactive().

winner_takes_all (logical(1))
This logical value is only relevant for models with a MaxPooling layer. Since many zeros are
produced during the backward pass due to the selection of the maximum value in the pool-
ing kernel, another variant is implemented, which treats a MaxPooling as an AveragePooling
layer in the backward pass to overcome the problem of too many zero relevances. With the
default value TRUE, the whole upper-layer relevance is passed to the maximum value in each
pooling window. Otherwise, if FALSE, the relevance is distributed equally among all nodes in
a pooling window.

preds (list)
In this field, all calculated predictions are stored as a list of torch_tensors. Each output layer
has its own list entry and contains the respective predicted values.

decomp_goal (list)
In this field, the method-specific decomposition objectives are stored as a list of torch_tensors
for each output layer. For example, GradientxInput and LRP attempt to decompose the pre-
diction into feature-wise additive effects. DeepLift and IntegratedGradient decompose the
difference between f(x) and f(x′). On the other hand, DeepSHAP and ExpectedGradient
aim to decompose f(x) minus the averaged prediction across the reference values.

Methods

Public methods:

• InterpretingMethod$new()

• InterpretingMethod$get_result()

• InterpretingMethod$plot()

• InterpretingMethod$plot_global()

• InterpretingMethod$print()

• InterpretingMethod$clone()

Method new(): Create a new instance of this super class.

Usage:
InterpretingMethod$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
output_label = NULL,
ignore_last_act = TRUE,
winner_takes_all = TRUE,
verbose = interactive(),

InterpretingMethod 61

dtype = "float"
)

Arguments:
converter (Converter)

An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),

if e.g., the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g. c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector of
indices, e.g. list(NULL, c(1,3)) for the first and third output node in the second output
layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names

62 InterpretingMethod

are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

ignore_last_act (logical(1))
Set this logical value to include the last activation functions for each output layer, or not
(default: TRUE). In practice, the last activation (especially for softmax activation) is often
omitted.

winner_takes_all (logical(1))
This logical argument is only relevant for models with a MaxPooling layer. Since many ze-
ros are produced during the backward pass due to the selection of the maximum value in the
pooling kernel, another variant is implemented, which treats a MaxPooling as an Average-
Pooling layer in the backward pass to overcome the problem of too many zero relevances.
With the default value TRUE, the whole upper-layer relevance is passed to the maximum
value in each pooling window. Otherwise, if FALSE, the relevance is distributed equally
among all nodes in a pooling window.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

dtype (character(1))
The data type for the calculations. Use either 'float' for torch_float or 'double' for
torch_double.

Method get_result(): This function returns the result of this method for the given data either
as an array ('array'), a torch tensor ('torch.tensor', or 'torch_tensor') of size (batch_size,
dim_in, dim_out) or as a data.frame ('data.frame'). This method is also implemented as a
generic S3 function get_result. For a detailed description, we refer to our in-depth vignette
(vignette("detailed_overview", package = "innsight")) or our website.

Usage:
InterpretingMethod$get_result(type = "array")

Arguments:
type (character(1))

The data type of the result. Use one of 'array', 'torch.tensor', 'torch_tensor' or
'data.frame' (default: 'array').

Returns: The result of this method for the given data in the chosen type.

https://bips-hb.github.io/innsight/articles/detailed_overview.html#get-results

InterpretingMethod 63

Method plot(): This method visualizes the result of the selected method and enables a visual
in-depth investigation with the help of the S4 classes innsight_ggplot2 and innsight_plotly.
You can use the argument data_idx to select the data points in the given data for the plot. In addi-
tion, the individual output nodes for the plot can be selected with the argument output_idx. The
different results for the selected data points and outputs are visualized using the ggplot2-based S4
class innsight_ggplot2. You can also use the as_plotly argument to generate an interactive
plot with innsight_plotly based on the plot function plotly::plot_ly. For more information and
the whole bunch of possibilities, see innsight_ggplot2 and innsight_plotly.

Notes:
1. For the interactive plotly-based plots, the suggested package plotly is required.
2. The ggplot2-based plots for models with multiple input layers are a bit more complex, there-

fore the suggested packages 'grid', 'gridExtra' and 'gtable' must be installed in your
R session.

3. If the global Connection Weights method was applied, the unnecessary argument data_idx
will be ignored.

4. The predictions, the sum of relevances, and, if available, the decomposition target are dis-
played by default in a box within the plot. Currently, these are not generated for plotly
plots.

Usage:
InterpretingMethod$plot(
data_idx = 1,
output_idx = NULL,
output_label = NULL,
aggr_channels = "sum",
as_plotly = FALSE,
same_scale = FALSE,
show_preds = TRUE

)

Arguments:
data_idx (integer)

An integer vector containing the numbers of the data points whose result is to be plotted,
e.g., c(1,3) for the first and third data point in the given data. Default: 1. This argument
will be ignored for the global Connection Weights method.

output_idx (integer, list or NULL)
The indices of the output nodes for which the results is to be plotted. This can be either a
integer vector of indices or a list of integer vectors of indices but must be a subset of
the indices for which the results were calculated, i.e., a subset of output_idx from the ini-
tialization new() (see argument output_idx in method new() of this R6 class for details).
By default (NULL), the smallest index of all calculated output nodes and output layers is used.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:

64 InterpretingMethod

• A character vector or factor of labels: If the model has only one output layer, the
values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

aggr_channels (character(1) or function)
Pass one of 'norm', 'sum', 'mean' or a custom function to aggregate the channels, e.g.,
the maximum (base::max) or minimum (base::min) over the channels or only individual
channels with function(x) x[1]. By default ('sum'), the sum of all channels is used.
Note: This argument is used only for 2D and 3D input data.

as_plotly (logical(1))
This logical value (default: FALSE) can be used to create an interactive plot based on the
library plotly (see innsight_plotly for details).
Note: Make sure that the suggested package plotly is installed in your R session.

same_scale (logical)
A logical value that specifies whether the individual plots have the same fill scale across
multiple input layers or whether each is scaled individually. This argument is only used if
more than one input layer results are plotted.

show_preds (logical)
This logical value indicates whether the plots display the prediction, the sum of calculated
relevances, and, if available, the targeted decomposition value. For example, in the case
of GradientxInput, the goal is to obtain a decomposition of the predicted value, while for
DeepLift and IntegratedGradient, the goal is the difference between the prediction and the
reference value, i.e., f(x) − f(x′).

Returns: Returns either an innsight_ggplot2 (as_plotly = FALSE) or an innsight_plotly
(as_plotly = TRUE) object with the plotted individual results.

Method plot_global(): This method visualizes the results of the selected method summarized
as boxplots/median image and enables a visual in-depth investigation of the global behavior with
the help of the S4 classes innsight_ggplot2 and innsight_plotly.
You can use the argument output_idx to select the individual output nodes for the plot. For
tabular and 1D data, boxplots are created in which a reference value can be selected from the
data using the ref_data_idx argument. For images, only the pixel-wise median is visualized due
to the complexity. The plot is generated using the ggplot2-based S4 class innsight_ggplot2.
You can also use the as_plotly argument to generate an interactive plot with innsight_plotly

InterpretingMethod 65

based on the plot function plotly::plot_ly. For more information and the whole bunch of possibil-
ities, see innsight_ggplot2 and innsight_plotly.

Notes:
1. This method can only be used for the local Connection Weights method, i.e., if times_input

is TRUE and data is provided.
2. For the interactive plotly-based plots, the suggested package plotly is required.
3. The ggplot2-based plots for models with multiple input layers are a bit more complex, there-

fore the suggested packages 'grid', 'gridExtra' and 'gtable' must be installed in your
R session.

Usage:
InterpretingMethod$plot_global(
output_idx = NULL,
output_label = NULL,
data_idx = "all",
ref_data_idx = NULL,
aggr_channels = "sum",
preprocess_FUN = abs,
as_plotly = FALSE,
individual_data_idx = NULL,
individual_max = 20

)

Arguments:
output_idx (integer, list or NULL)

The indices of the output nodes for which the results is to be plotted. This can be either
a vector of indices or a list of vectors of indices but must be a subset of the indices for
which the results were calculated, i.e., a subset of output_idx from the initialization new()
(see argument output_idx in method new() of this R6 class for details). By default (NULL),
the smallest index of all calculated output nodes and output layers is used.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for

66 InterpretingMethod

more output nodes.

data_idx (integer)
By default, all available data points are used to calculate the boxplot information. However,
this parameter can be used to select a subset of them by passing the indices. For example,
with c(1:10, 25, 26) only the first 10 data points and the 25th and 26th are used to calcu-
late the boxplots.

ref_data_idx (integer(1) or NULL)
This integer number determines the index for the reference data point. In addition to the
boxplots, it is displayed in red color and is used to compare an individual result with the
summary statistics provided by the boxplot. With the default value (NULL), no individual
data point is plotted. This index can be chosen with respect to all available data, even if
only a subset is selected with argument data_idx.
Note: Because of the complexity of 2D inputs, this argument is used only for tabular and
1D inputs and disregarded for 2D inputs.

aggr_channels (character(1) or function)
Pass one of 'norm', 'sum', 'mean' or a custom function to aggregate the channels, e.g.,
the maximum (base::max) or minimum (base::min) over the channels or only individual
channels with function(x) x[1]. By default ('sum'), the sum of all channels is used.
Note: This argument is used only for 2D and 3D input data.

preprocess_FUN (function)
This function is applied to the method’s result before calculating the boxplots or medians.
Since positive and negative values often cancel each other out, the absolute value (abs) is
used by default. But you can also use the raw results (identity) to see the results’ ori-
entation, the squared data (function(x) x^2) to weight the outliers higher or any other
function.

as_plotly (logical(1))
This logical value (default: FALSE) can be used to create an interactive plot based on the
library plotly (see innsight_plotly for details).
Note: Make sure that the suggested package plotly is installed in your R session.

individual_data_idx (integer or NULL)
Only relevant for a plotly plot with tabular or 1D inputs! This integer vector of data
indices determines the available data points in a dropdown menu, which are drawn individ-
ually analogous to ref_data_idx only for more data points. With the default value NULL,
the first individual_max data points are used.
Note: If ref_data_idx is specified, this data point will be added to those from individual_data_idx
in the dropdown menu.

individual_max (integer(1))
Only relevant for a plotly plot with tabular or 1D inputs! This integer determines the maxi-
mum number of individual data points in the dropdown menu without counting ref_data_idx.
This means that if individual_data_idx has more than individual_max indices, only the
first individual_max will be used. A too high number can significantly increase the run-

LIME 67

time.

Returns: Returns either an innsight_ggplot2 (as_plotly = FALSE) or an innsight_plotly
(as_plotly = TRUE) object with the plotted summarized results.

Method print(): Print a summary of the method object. This summary contains the individual
fields and in particular the results of the applied method.

Usage:

InterpretingMethod$print()

Returns: Returns the method object invisibly via base::invisible.

Method clone(): The objects of this class are cloneable with this method.

Usage:

InterpretingMethod$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

LIME Local interpretable model-agnostic explanations (LIME)

Description

The R6 class LIME calculates the feature weights of a linear surrogate of the prediction model for
a instance to be explained, namely the local interpretable model-agnostic explanations (LIME). It
is a model-agnostic method that can be applied to any predictive model. This means, in particular,
that LIME can be applied not only to objects of the Converter class but also to any other model.
The only requirement is the argument pred_fun, which generates predictions with the model for
given data. However, this function is pre-implemented for models created with nn_sequential,
keras_model, neuralnet or Converter. Internally, the suggested package lime is utilized and
applied to data.frame.

The R6 class can also be initialized using the run_lime function as a helper function so that no
prior knowledge of R6 classes is required.

Note: Even signal and image data are initially transformed into a data.frame using as.data.frame()
and then lime::lime and lime::explain are applied. In other words, a custom pred_fun may
need to convert the data.frame back into an array as necessary.

Super classes

innsight::InterpretingMethod -> innsight::AgnosticWrapper -> LIME

68 LIME

Methods

Public methods:

• LIME$new()

• LIME$clone()

Method new(): Create a new instance of the LIME R6 class. When initialized, the method LIME
is applied to the given data and the results are stored in the field result.

Usage:

LIME$new(
model,
data,
data_ref,
output_type = NULL,
pred_fun = NULL,
output_idx = NULL,
output_label = NULL,
channels_first = TRUE,
input_dim = NULL,
input_names = NULL,
output_names = NULL,
...

)

Arguments:

model (any prediction model)
A fitted model for a classification or regression task that is intended to be interpreted. A
Converter object can also be passed. In order for the package to know how to make pre-
dictions with the given model, a prediction function must also be passed with the argument
pred_fun. However, for models created by nn_sequential, keras_model, neuralnet or
Converter, these have already been pre-implemented and do not need to be specified.

data (array, data.frame or torch_tensor)
The individual instances to be explained by the method. These must have the same format
as the input data of the passed model and has to be either matrix, an array, a data.frame
or a torch_tensor. If no value is specified, all instances in the dataset data will be ex-
plained.
Note: For the model-agnostic methods, only models with a single input and output layer is
allowed!

data_ref (array, data.frame or torch_tensor)
The dataset to which the method is to be applied. These must have the same format as the
input data of the passed model and has to be either matrix, an array, a data.frame or a
torch_tensor.
Note: For the model-agnostic methods, only models with a single input and output layer is
allowed!

LIME 69

output_type (character(1))
Type of the model output, i.e., either "classification" or "regression".

pred_fun (function)
Prediction function for the model. This argument is only needed if model is not a model
created by nn_sequential, keras_model, neuralnet or Converter. The first argument
of pred_fun has to be newdata, e.g.,
function(newdata, ...) model(newdata)

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,

70 LIME

c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

input_dim (integer)
The model input dimension excluding the batch dimension. It can be specified as vector of
integers, but has to be in the format "channels first".

input_names (character, factor or list)
The input names of the model excluding the batch dimension. For a model with a single in-
put layer and input axis (e.g., for tabular data), the input names can be specified as a charac-
ter vector or factor, e.g., for a dense layer with 3 input features use c("X1", "X2", "X3"). If
the model input consists of multiple axes (e.g., for signal and image data), use a list of char-
acter vectors or factors for each axis in the format "channels first", e.g., use list(c("C1",
"C2"), c("L1","L2","L3","L4","L5")) for a 1D convolutional input layer with signal
length 4 and 2 channels.
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found input names in the passed model will be disregarded.

output_names (character, factor)
A character vector with the names for the output dimensions excluding the batch dimension,
e.g., for a model with 3 output nodes use c("Y1", "Y2", "Y3"). Instead of a character vec-
tor you can also use a factor to set an order for the plots.
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found output names in the passed model will be disregarded.

... other arguments forwarded to lime::explain.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LIME$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other methods: ConnectionWeights, DeepLift, DeepSHAP, ExpectedGradient, Gradient, IntegratedGradient,
LRP, SHAP, SmoothGrad

Examples

#----------------------- Example 1: Torch -----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(
nn_linear(5, 12),

LIME 71

nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)
)

data <- torch_randn(25, 5)

Calculate LIME for the first 10 instances and set the
feature and outcome names
lime <- LIME$new(model, data[1:10,], data_ref = data,

input_names = c("Car", "Cat", "Dog", "Plane", "Horse"),
output_names = c("Buy it!", "Don't buy it!"))

You can also use the helper function `run_lime` for initializing
an R6 LIME object
lime <- run_lime(model, data[1:10,], data_ref = data,

input_names = c("Car", "Cat", "Dog", "Plane", "Horse"),
output_names = c("Buy it!", "Don't buy it!"))

Get the result as an array for the first two instances
get_result(lime)[1:2,,]

Plot the result for both classes
plot(lime, output_idx = c(1, 2))

Show the boxplot over all 10 instances
boxplot(lime, output_idx = c(1, 2))

We can also forward some arguments to lime::explain, e.g. n_permutatuins
to get more accurate values
lime <- run_lime(model, data[1:10,], data_ref = data,

input_names = c("Car", "Cat", "Dog", "Plane", "Horse"),
output_names = c("Buy it!", "Don't buy it!"),
n_perturbations = 200)

Plot the boxplots again
boxplot(lime, output_idx = c(1, 2))

#----------------------- Example 2: Converter object --------------------------
We can do the same with an Converter object (all feature and outcome names
will be extracted by the LIME method!)
conv <- convert(model,

input_dim = c(5),
input_names = c("Car", "Cat", "Dog", "Plane", "Horse"),
output_names = c("Buy it!", "Don't buy it!"))

Calculate LIME for the first 10 instances
lime <- run_lime(conv, data[1:10], data_ref = data, n_perturbations = 300)

Plot the result for both classes
plot(lime, output_idx = c(1, 2))

#----------------------- Example 3: Other model -------------------------------
if (require("neuralnet") & require("ranger")) {

72 LRP

library(neuralnet)
library(ranger)
data(iris)

Fit a random forest unsing the ranger package
model <- ranger(Species ~ ., data = iris, probability = TRUE)

There is no pre-implemented predict function for ranger models, i.e.,
we have to define it ourselves.
pred_fun <- function(newdata, ...) {

predict(model, newdata, ...)$predictions
}

Calculate LIME for the instances of index 1 and 111 and add
the outcome labels (for LIME, the output_type is required!)
lime <- run_lime(model, iris[c(1, 111), -5],

data_ref = iris[, -5],
pred_fun = pred_fun,
output_type = "classification",
output_names = levels(iris$Species),
n_perturbations = 300)

Plot the result for the first two classes and all selected instances
plot(lime, data_idx = 1:2, output_idx = 1:2)

Get the result as a torch_tensor
get_result(lime, "torch_tensor")

}

LRP Layer-wise relevance propagation (LRP)

Description

This is an implementation of the layer-wise relevance propagation (LRP) algorithm introduced by
Bach et al. (2015). It’s a local method for interpreting a single element of the dataset and calculates
the relevance scores for each input feature to the model output. The basic idea of this method is to
decompose the prediction score of the model with respect to the input features, i.e.,

f(x) =
∑
i

R(xi).

Because of the bias vector that absorbs some relevance, this decomposition is generally an approxi-
mation. There exist several propagation rules to determine the relevance scores. In this package are
implemented: simple rule ("simple"), ε-rule ("epsilon") and α-β-rule ("alpha_beta").

The R6 class can also be initialized using the run_lrp function as a helper function so that no prior
knowledge of R6 classes is required.

LRP 73

Super class

innsight::InterpretingMethod -> LRP

Public fields

rule_name (character(1) or list)
The name of the rule with which the relevance scores are calculated. Implemented are "simple",
"epsilon", "alpha_beta" (and "pass" but only for ’BatchNorm_Layer’). However, this
value can also be a named list that assigns one of these three rules to each implemented layer
type separately, e.g., list(Dense_Layer = "simple", Conv2D_Layer = "alpha_beta"). Lay-
ers not specified in this list then use the default value "simple". The implemented layer types
are:

· ’Dense_Layer’ · ’Conv1D_Layer’ · ’Conv2D_Layer’
· ’BatchNorm_Layer’ · ’AvgPool1D_Layer’ · ’AvgPool2D_Layer’
· ’MaxPool1D_Layer’ · ’MaxPool2D_Layer’

rule_param (numeric or list)
The parameter of the selected rule. Similar to the argument rule_name, this can also be a
named list that assigns a rule parameter to each layer type.

Methods

Public methods:
• LRP$new()

• LRP$clone()

Method new(): Create a new instance of the LRP R6 class. When initialized, the method LRP is
applied to the given data and the results are stored in the field result.

Usage:
LRP$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
output_label = NULL,
ignore_last_act = TRUE,
rule_name = "simple",
rule_param = NULL,
winner_takes_all = TRUE,
verbose = interactive(),
dtype = "float"

)

Arguments:

converter (Converter)
An instance of the Converter class that includes the torch-converted model and some other

74 LRP

model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),

if e.g., the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead

LRP 75

of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

ignore_last_act (logical(1))
Set this logical value to include the last activation functions for each output layer, or not
(default: TRUE). In practice, the last activation (especially for softmax activation) is often
omitted.

rule_name (character(1) or list)
The name of the rule with which the relevance scores are calculated. Implemented are
"simple", "epsilon", "alpha_beta". You can pass one of the above characters to apply
this rule to all possible layers. However, this value can also be a named list that assigns one
of these three rules to each implemented layer type separately, e.g., list(Dense_Layer =
"simple", Conv2D_Layer = "alpha_beta"). Layers not specified in this list then use the
default value "simple". The implemented layer types are:

· ’Dense_Layer’ · ’Conv1D_Layer’ · ’Conv2D_Layer’
· ’BatchNorm_Layer’ · ’AvgPool1D_Layer’ · ’AvgPool2D_Layer’
· ’MaxPool1D_Layer’ · ’MaxPool2D_Layer’

Note: For normalization layers like ’BatchNorm_Layer’, the rule "pass" is implemented
as well, which ignores such layers in the backward pass.

rule_param (numeric(1) or list)
The parameter of the selected rule. Note: Only the rules "epsilon" and "alpha_beta"
take use of the parameter. Use the default value NULL for the default parameters ("epsilon"
: 0.01, "alpha_beta" : 0.5). Similar to the argument rule_name, this can also be a named
list that assigns a rule parameter to each layer type. If the layer type is not specified in the
named list, the default parameters will be used.

winner_takes_all (logical(1))
This logical argument is only relevant for models with a MaxPooling layer. Since many ze-
ros are produced during the backward pass due to the selection of the maximum value in the
pooling kernel, another variant is implemented, which treats a MaxPooling as an Average-
Pooling layer in the backward pass to overcome the problem of too many zero relevances.
With the default value TRUE, the whole upper-layer relevance is passed to the maximum
value in each pooling window. Otherwise, if FALSE, the relevance is distributed equally
among all nodes in a pooling window.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

dtype (character(1))

76 LRP

The data type for the calculations. Use either 'float' for torch_float or 'double' for
torch_double.

Returns: A new instance of the R6 class LRP.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LRP$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

S. Bach et al. (2015) On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PLoS ONE 10, p. 1-46

See Also

Other methods: ConnectionWeights, DeepLift, DeepSHAP, ExpectedGradient, Gradient, IntegratedGradient,
LIME, SHAP, SmoothGrad

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)

Create Converter
converter <- convert(model, input_dim = c(5))

Apply method LRP with simple rule (default)
lrp <- LRP$new(converter, data)

You can also use the helper function `run_lrp` for initializing
an R6 LRP object
lrp <- run_lrp(converter, data)

Print the result as an array for data point one and two
get_result(lrp)[1:2,,]

Plot the result for both classes

LRP 77

plot(lrp, output_idx = 1:2)

Plot the boxplot of all datapoints without a preprocess function
boxplot(lrp, output_idx = 1:2, preprocess_FUN = identity)

------------------------- Example 2: Neuralnet ---------------------------
if (require("neuralnet")) {

library(neuralnet)
data(iris)
nn <- neuralnet(Species ~ .,
iris,
linear.output = FALSE,
hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5

)

Create an converter for this model
converter <- convert(nn)

Create new instance of 'LRP'
lrp <- run_lrp(converter, iris[, -5], rule_name = "simple")

Get the result as an array for data point one and two
get_result(lrp)[1:2,,]

Get the result as a torch tensor for data point one and two
get_result(lrp, type = "torch.tensor")[1:2]

Use the alpha-beta rule with alpha = 2
lrp <- run_lrp(converter, iris[, -5],

rule_name = "alpha_beta",
rule_param = 2

)

Include the last activation into the calculation
lrp <- run_lrp(converter, iris[, -5],

rule_name = "alpha_beta",
rule_param = 2,
ignore_last_act = FALSE

)

Plot the result for all classes
plot(lrp, output_idx = 1:3)

}

------------------------- Example 3: Keras -------------------------------
if (require("keras") & keras::is_keras_available()) {

library(keras)

Make sure keras is installed properly
is_keras_available()

data <- array(rnorm(10 * 60 * 3), dim = c(10, 60, 3))

78 plot_global

model <- keras_model_sequential()
model %>%

layer_conv_1d(
input_shape = c(60, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid") %>%

layer_conv_1d(
kernel_size = 8, filters = 4, activation = "tanh",
padding = "same") %>%

layer_conv_1d(
kernel_size = 4, filters = 2, activation = "relu",
padding = "valid") %>%

layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 3, activation = "softmax")

Convert the model
converter <- convert(model)

Apply the LRP method with the epsilon rule for the dense layers and
the alpha-beta rule for the convolutional layers
lrp_comp <- run_lrp(converter, data,

channels_first = FALSE,
rule_name = list(Dense_Layer = "epsilon", Conv1D_Layer = "alpha_beta"),
rule_param = list(Dense_Layer = 0.1, Conv1D_Layer = 1)

)

Plot the result for the first datapoint and all classes
plot(lrp_comp, output_idx = 1:3)

Plot the result as boxplots for first two classes
boxplot(lrp_comp, output_idx = 1:2)

}

#------------------------- Plotly plots ------------------------------------
if (require("plotly")) {

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)

Result as boxplots
boxplot(lrp, as_plotly = TRUE)

Result of the second data point
plot(lrp, data_idx = 2, as_plotly = TRUE)

}

plot_global Get the result of an interpretation method

print,innsight_ggplot2-method 79

Description

This is a generic S3 method for the R6 method InterpretingMethod$plot_global(). See the
respective method described in InterpretingMethod for details.

Usage

plot_global(x, ...)

Arguments

x An object of the class InterpretingMethod including the subclasses Gradient,
SmoothGrad, LRP, DeepLift, DeepSHAP, IntegratedGradient, ExpectedGradient
and ConnectionWeights.

... Other arguments specified in the R6 method InterpretingMethod$plot_global().
See InterpretingMethod for details.

print,innsight_ggplot2-method

Generic print, plot and show for innsight_ggplot2

Description

The class innsight_ggplot2 provides the generic visualization functions print, plot and show,
which all behave the same in this case. They create the plot of the results (see innsight_ggplot2 for
details) and return it invisibly.

Usage

S4 method for signature 'innsight_ggplot2'
print(x, ...)

S4 method for signature 'innsight_ggplot2'
show(object)

S4 method for signature 'innsight_ggplot2'
plot(x, y, ...)

Arguments

x An instance of the S4 class innsight_ggplot2.

... Further arguments passed to the base function print if x@multiplot is FALSE.
Otherwise, if x@multiplot is TRUE, the arguments are passed to gridExtra::arrangeGrob.

object An instance of the S4 class innsight_ggplot2.

y unused argument

80 print,innsight_plotly-method

Value

For multiple plots (x@multiplot = TRUE), a gtable::gtable and otherwise a ggplot2::ggplot object is
returned invisibly.

See Also

innsight_ggplot2, +.innsight_ggplot2, [.innsight_ggplot2, [[.innsight_ggplot2, [<-.innsight_ggplot2,
[[<-.innsight_ggplot2

print,innsight_plotly-method

Generic print, plot and show for innsight_plotly

Description

The class innsight_plotly provides the generic visualization functions print, plot and show,
which all behave the same in this case. They create a plot of the results using plotly::subplot
(see innsight_plotly for details) and return it invisibly.

Usage

S4 method for signature 'innsight_plotly'
print(x, shareX = TRUE, ...)

S4 method for signature 'innsight_plotly'
show(object)

S4 method for signature 'innsight_plotly'
plot(x, y, ...)

Arguments

x An instance of the S4 class innsight_plotly.

shareX A logical value whether the x-axis should be shared among the subplots.

... Further arguments passed to plotly::subplot.

object An instance of the S4 class innsight_plotly.

y unused argument

SHAP 81

SHAP Shapley values

Description

The R6 class SHAP calculates the famous Shapley values based on game theory for an instance to
be explained. It is a model-agnostic method that can be applied to any predictive model. This
means, in particular, that SHAP can be applied not only to objects of the Converter class but also
to any other model. The only requirement is the argument pred_fun, which generates predic-
tions with the model for given data. However, this function is pre-implemented for models created
with nn_sequential, keras_model, neuralnet or Converter. Internally, the suggested package
fastshap is utilized and applied to data.frame.

The R6 class can also be initialized using the run_shap function as a helper function so that no
prior knowledge of R6 classes is required.

Note: Even signal and image data are initially transformed into a data.frame using as.data.frame()
and then fastshap::explain is applied. In other words, a custom pred_fun may need to convert
the data.frame back into an array as necessary.

Super classes

innsight::InterpretingMethod -> innsight::AgnosticWrapper -> SHAP

Methods

Public methods:
• SHAP$new()

• SHAP$clone()

Method new(): Create a new instance of the SHAP R6 class. When initialized, the method SHAP
is applied to the given data and the results are stored in the field result.

Usage:
SHAP$new(
model,
data,
data_ref,
pred_fun = NULL,
output_idx = NULL,
output_label = NULL,
channels_first = TRUE,
input_dim = NULL,
input_names = NULL,
output_names = NULL,
...

)

Arguments:

82 SHAP

model (any prediction model)
A fitted model for a classification or regression task that is intended to be interpreted. A
Converter object can also be passed. In order for the package to know how to make pre-
dictions with the given model, a prediction function must also be passed with the argument
pred_fun. However, for models created by nn_sequential, keras_model, neuralnet or
Converter, these have already been pre-implemented and do not need to be specified.

data (array, data.frame or torch_tensor)
The individual instances to be explained by the method. These must have the same format
as the input data of the passed model and has to be either matrix, an array, a data.frame
or a torch_tensor. If no value is specified, all instances in the dataset data will be ex-
plained.
Note: For the model-agnostic methods, only models with a single input and output layer is
allowed!

data_ref (array, data.frame or torch_tensor)
The dataset to which the method is to be applied. These must have the same format as the
input data of the passed model and has to be either matrix, an array, a data.frame or a
torch_tensor.
Note: For the model-agnostic methods, only models with a single input and output layer is
allowed!

pred_fun (function)
Prediction function for the model. This argument is only needed if model is not a model
created by nn_sequential, keras_model, neuralnet or Converter. The first argument
of pred_fun has to be newdata, e.g.,

function(newdata, ...) model(newdata)

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be

SHAP 83

used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

input_dim (integer)
The model input dimension excluding the batch dimension. It can be specified as vector of
integers, but has to be in the format "channels first".

input_names (character, factor or list)
The input names of the model excluding the batch dimension. For a model with a single in-
put layer and input axis (e.g., for tabular data), the input names can be specified as a charac-
ter vector or factor, e.g., for a dense layer with 3 input features use c("X1", "X2", "X3"). If
the model input consists of multiple axes (e.g., for signal and image data), use a list of char-
acter vectors or factors for each axis in the format "channels first", e.g., use list(c("C1",
"C2"), c("L1","L2","L3","L4","L5")) for a 1D convolutional input layer with signal
length 4 and 2 channels.
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found input names in the passed model will be disregarded.

output_names (character, factor)
A character vector with the names for the output dimensions excluding the batch dimension,
e.g., for a model with 3 output nodes use c("Y1", "Y2", "Y3"). Instead of a character vec-
tor you can also use a factor to set an order for the plots.
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found output names in the passed model will be disregarded.

... other arguments forwarded to fastshap::explain.

Method clone(): The objects of this class are cloneable with this method.

84 SHAP

Usage:
SHAP$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other methods: ConnectionWeights, DeepLift, DeepSHAP, ExpectedGradient, Gradient, IntegratedGradient,
LIME, LRP, SmoothGrad

Examples

#----------------------- Example 1: Torch -----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)
)

data <- torch_randn(25, 5)

Calculate Shapley values for the first 10 instances and set the
feature and outcome names
shap <- SHAP$new(model, data[1:10,], data_ref = data,

input_names = c("Car", "Cat", "Dog", "Plane", "Horse"),
output_names = c("Buy it!", "Don't buy it!"))

You can also use the helper function `run_shap` for initializing
an R6 SHAP object
shap <- run_shap(model, data[1:10,], data_ref = data,

input_names = c("Car", "Cat", "Dog", "Plane", "Horse"),
output_names = c("Buy it!", "Don't buy it!"))

Get the result as an array for the first two instances
get_result(shap)[1:2,,]

Plot the result for both classes
plot(shap, output_idx = c(1, 2))

Show the boxplot over all 10 instances
boxplot(shap, output_idx = c(1, 2))

We can also forward some arguments to fastshap::explain, e.g. nsim to
get more accurate values
shap <- run_shap(model, data[1:10,], data_ref = data,

input_names = c("Car", "Cat", "Dog", "Plane", "Horse"),
output_names = c("Buy it!", "Don't buy it!"),
nsim = 10)

SmoothGrad 85

Plot the boxplots again
boxplot(shap, output_idx = c(1, 2))

#----------------------- Example 2: Converter object --------------------------
We can do the same with an Converter object (all feature and outcome names
will be extracted by the SHAP method!)
conv <- convert(model,

input_dim = c(5),
input_names = c("Car", "Cat", "Dog", "Plane", "Horse"),
output_names = c("Buy it!", "Don't buy it!"))

Calculate Shapley values for the first 10 instances
shap <- run_shap(conv, data[1:10], data_ref = data)

Plot the result for both classes
plot(shap, output_idx = c(1, 2))

#----------------------- Example 3: Other model -------------------------------
if (require("neuralnet") & require("ranger")) {

library(neuralnet)
library(ranger)
data(iris)

Fit a random forest unsing the ranger package
model <- ranger(Species ~ ., data = iris, probability = TRUE)

There is no pre-implemented predict function for ranger models, i.e.,
we have to define it ourselves.
pred_fun <- function(newdata, ...) {
predict(model, newdata, ...)$predictions

}

Calculate Shapley values for the instances of index 1 and 111 and add
the outcome labels
shap <- run_shap(model, iris[c(1, 111), -5], data_ref = iris[, -5],

pred_fun = pred_fun,
output_names = levels(iris$Species),
nsim = 10)

Plot the result for the first two classes and all selected instances
plot(shap, data_idx = 1:2, output_idx = 1:2)

Get the result as a torch_tensor
get_result(shap, "torch_tensor")

}

SmoothGrad SmoothGrad and SmoothGrad×Input

86 SmoothGrad

Description

SmoothGrad was introduced by D. Smilkov et al. (2017) and is an extension to the classical Vanilla
Gradient method. It takes the mean of the gradients for n perturbations of each data point, i.e., with
ε ∼ N(0, σ)

1/n
∑
n

df(x+ ε)j/dxj .

Analogous to the Gradient×Input method, you can also use the argument times_input to multiply
the gradients by the inputs before taking the average (SmoothGrad×Input).

The R6 class can also be initialized using the run_smoothgrad function as a helper function so that
no prior knowledge of R6 classes is required.

Super classes

innsight::InterpretingMethod -> innsight::GradientBased -> SmoothGrad

Public fields

n (integer(1))
Number of perturbations of the input data (default: 50).

noise_level (numeric(1))
The standard deviation of the Gaussian perturbation, i.e., σ = (max(x)−min(x))∗ noise_level.

Methods

Public methods:
• SmoothGrad$new()

• SmoothGrad$clone()

Method new(): Create a new instance of the SmoothGrad R6 class. When initialized, the method
SmoothGrad or SmoothGrad×Input is applied to the given data and the results are stored in the
field result.

Usage:
SmoothGrad$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
output_label = NULL,
ignore_last_act = TRUE,
times_input = FALSE,
n = 50,
noise_level = 0.1,
verbose = interactive(),
dtype = "float"

)

SmoothGrad 87

Arguments:
converter (Converter)

An instance of the Converter class that includes the torch-converted model and some other
model-specific attributes. See Converter for details.

data (array, data.frame, torch_tensor or list)
The data to which the method is to be applied. These must have the same format as the
input data of the passed model to the converter object. This means either
• an array, data.frame, torch_tensor or array-like format of size (batch_size, dim_in),

if e.g., the model has only one input layer, or
• a list with the corresponding input data (according to the upper point) for each of the

input layers.

channels_first (logical(1))
The channel position of the given data (argument data). If TRUE, the channel axis is
placed at the second position between the batch size and the rest of the input axes, e.g.,
c(10,3,32,32) for a batch of ten images with three channels and a height and width of 32
pixels. Otherwise (FALSE), the channel axis is at the last position, i.e., c(10,32,32,3). If
the data has no channel axis, use the default value TRUE.

output_idx (integer, list or NULL)
These indices specify the output nodes for which the method is to be applied. In order to
allow models with multiple output layers, there are the following possibilities to select the
indices of the output nodes in the individual output layers:
• An integer vector of indices: If the model has only one output layer, the values cor-

respond to the indices of the output nodes, e.g., c(1,3,4) for the first, third and fourth
output node. If there are multiple output layers, the indices of the output nodes from the
first output layer are considered.

• A list of integer vectors of indices: If the method is to be applied to output nodes from
different layers, a list can be passed that specifies the desired indices of the output nodes
for each output layer. Unwanted output layers have the entry NULL instead of a vector
of indices, e.g., list(NULL, c(1,3)) for the first and third output node in the second
output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

output_label (character, factor, list or NULL)
These values specify the output nodes for which the method is to be applied. Only val-
ues that were previously passed with the argument output_names in the converter can be
used. In order to allow models with multiple output layers, there are the following possibil-
ities to select the names of the output nodes in the individual output layers:
• A character vector or factor of labels: If the model has only one output layer, the

values correspond to the labels of the output nodes named in the passed Converter ob-
ject, e.g., c("a", "c", "d") for the first, third and fourth output node if the output names
are c("a", "b", "c", "d"). If there are multiple output layers, the names of the output
nodes from the first output layer are considered.

88 SmoothGrad

• A list of charactor/factor vectors of labels: If the method is to be applied to output
nodes from different layers, a list can be passed that specifies the desired labels of the
output nodes for each output layer. Unwanted output layers have the entry NULL instead
of a vector of labels, e.g., list(NULL, c("a", "c")) for the first and third output node
in the second output layer.

• NULL (default): The method is applied to all output nodes in the first output layer but is
limited to the first ten as the calculations become more computationally expensive for
more output nodes.

ignore_last_act (logical(1))
Set this logical value to include the last activation functions for each output layer, or not
(default: TRUE). In practice, the last activation (especially for softmax activation) is often
omitted.

times_input (logical(1)
Multiplies the gradients with the input features. This method is called SmoothGrad×Input.

n (integer(1))
Number of perturbations of the input data (default: 50).

noise_level (numeric(1))
Determines the standard deviation of the Gaussian perturbation, i.e., σ = (max(x) −
min(x))∗ noise_level.

verbose (logical(1))
This logical argument determines whether a progress bar is displayed for the calculation of
the method or not. The default value is the output of the primitive R function interactive().

dtype (character(1))
The data type for the calculations. Use either 'float' for torch_float or 'double' for
torch_double.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SmoothGrad$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

D. Smilkov et al. (2017) SmoothGrad: removing noise by adding noise. CoRR, abs/1706.03825

See Also

Other methods: ConnectionWeights, DeepLift, DeepSHAP, ExpectedGradient, Gradient, IntegratedGradient,
LIME, LRP, SHAP

SmoothGrad 89

Examples

------------------------- Example 1: Torch -------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 10),
nn_relu(),
nn_linear(10, 2),
nn_sigmoid()

)
data <- torch_randn(25, 5)

Create Converter
converter <- convert(model, input_dim = c(5))

Calculate the smoothed Gradients
smoothgrad <- SmoothGrad$new(converter, data)

You can also use the helper function `run_smoothgrad` for initializing
an R6 SmoothGrad object
smoothgrad <- run_smoothgrad(converter, data)

Print the result as a data.frame for first 5 rows
head(get_result(smoothgrad, "data.frame"), 5)

Plot the result for both classes
plot(smoothgrad, output_idx = 1:2)

Plot the boxplot of all datapoints
boxplot(smoothgrad, output_idx = 1:2)

------------------------- Example 2: Neuralnet ---------------------------
if (require("neuralnet")) {

library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet(Species ~ ., iris,
linear.output = FALSE,
hidden = c(10, 5),
act.fct = "logistic",
rep = 1

)

Convert the trained model
converter <- convert(nn)

Calculate the smoothed gradients
smoothgrad <- run_smoothgrad(converter, iris[, -5], times_input = FALSE)

90 SmoothGrad

Plot the result for the first and 60th data point and all classes
plot(smoothgrad, data_idx = c(1, 60), output_idx = 1:3)

Calculate SmoothGrad x Input and do not ignore the last activation
smoothgrad <- run_smoothgrad(converter, iris[, -5], ignore_last_act = FALSE)

Plot the result again
plot(smoothgrad, data_idx = c(1, 60), output_idx = 1:3)

}

------------------------- Example 3: Keras -------------------------------
if (require("keras") & keras::is_keras_available()) {

library(keras)

Make sure keras is installed properly
is_keras_available()

data <- array(rnorm(64 * 60 * 3), dim = c(64, 60, 3))

model <- keras_model_sequential()
model %>%

layer_conv_1d(
input_shape = c(60, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid") %>%

layer_conv_1d(
kernel_size = 8, filters = 4, activation = "tanh",
padding = "same") %>%

layer_conv_1d(
kernel_size = 4, filters = 2, activation = "relu",
padding = "valid") %>%

layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 3, activation = "softmax")

Convert the model
converter <- convert(model)

Apply the SmoothGrad method
smoothgrad <- run_smoothgrad(converter, data, channels_first = FALSE)

Plot the result for the first datapoint and all classes
plot(smoothgrad, output_idx = 1:3)

Plot the result as boxplots for first two classes
boxplot(smoothgrad, output_idx = 1:2)

}

#------------------------- Plotly plots ------------------------------------
if (require("plotly")) {

You can also create an interactive plot with plotly.

[,innsight_ggplot2,ANY,ANY,ANY-method 91

This is a suggested package, so make sure that it is installed
library(plotly)

Result as boxplots
boxplot(smoothgrad, as_plotly = TRUE)

Result of the second data point
plot(smoothgrad, data_idx = 2, as_plotly = TRUE)

}

[,innsight_ggplot2,ANY,ANY,ANY-method

Indexing plots of innsight_ggplot2

Description

The S4 class innsight_ggplot2 visualizes the results in the form of a matrix, with the output nodes
(and also the input layers) in the columns and the selected data points in the rows. With these basic
generic indexing functions, the plots of individual rows and columns can be accessed, modified and
the overall plot can be adjusted accordingly.

Usage

S4 method for signature 'innsight_ggplot2,ANY,ANY,ANY'
x[i, j, ..., restyle = TRUE, drop = TRUE]

S4 method for signature 'innsight_ggplot2'
x[[i, j, ..., restyle = TRUE]]

S4 replacement method for signature 'innsight_ggplot2,ANY,ANY,ANY'
x[i, j, ...] <- value

S4 replacement method for signature 'innsight_ggplot2'
x[[i, j, ...]] <- value

Arguments

x An instance of the S4 class innsight_ggplot2.
i The numeric (or missing) index for the rows.
j The numeric (or missing) index for the columns.
... other unused arguments
restyle This logical value determines whether the labels and facet stripes remain as they

were in the original plot or are adjusted to the subplot accordingly. However,
this argument is only used if the innsight_ggplot2 instance is a multiplot, i.e.,
x@multiplot is TRUE.

drop unused argument
value Another instance of the S4 class innsight_ggplot2 but of shape i x j.

92 [,innsight_plotly,ANY,ANY,ANY-method

Value

• [.innsight_ggplot2: Selects only the plots from the i-th rows and j-th columns and returns
them as a new instance of innsight_ggplot2. If restyle = TRUE the facet stripes and axis
labels of the original plot are transferred to the subplot, otherwise they are returned as they
are.

• [[.innsight_ggplot2: Selects only the subplot in row i and column j and returns it as a
ggplot2::ggplot object. If restyle = TRUE the facet stripes and axis labels of the original plot
are transferred to the subplot, otherwise they are returned as they are.

• [<-.innsight_ggplot2: Replaces the plots in the rows i and columns j with those from
value and returns the modified instance of innsight_ggplot2.

• [[<-.innsight_ggplot2: Replaces the plot from the i-th row and j-th column with the plot
from value and returns the modified instance of innsight_ggplot2.

See Also

innsight_ggplot2, print.innsight_ggplot2, +.innsight_ggplot2

[,innsight_plotly,ANY,ANY,ANY-method

Indexing plots of innsight_plotly

Description

The S4 class innsight_plotly visualizes the results as a matrix of plots based on plotly::plot_ly.
The output nodes (and also input layers) are displayed in the columns and the selected data points
in the rows. With these basic generic indexing functions, the plots of individual rows and columns
can be accessed.

Usage

S4 method for signature 'innsight_plotly,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'innsight_plotly'
x[[i, j, ..., drop]]

Arguments

x An instance of the S4 class innsight_plotly.

i The numeric (or missing) index for the rows.

j The numeric (or missing) index for the columns.

... other unused arguments

drop unused argument

[,innsight_plotly,ANY,ANY,ANY-method 93

Value

• [.innsight_plotly: Selects the plots from the i-th rows and j-th columns and returns them
as a new instance of innsight_plotly.

• [[.innisght_plotly: Selects only the single plot in the i-th row and j-th column and returns
it as a plotly object.

See Also

innsight_plotly, print.innsight_plotly, plot.innsight_plotly, show.innsight_plotly

Index

∗ methods
ConnectionWeights, 8
DeepLift, 22
DeepSHAP, 27
ExpectedGradient, 33
Gradient, 39
IntegratedGradient, 52
LIME, 67
LRP, 72
SHAP, 81
SmoothGrad, 85

+, 47, 48
+,innsight_ggplot2,ANY-method, 4
+.innsight_ggplot2, 47, 80, 92
+.innsight_ggplot2

(+,innsight_ggplot2,ANY-method),
4

[, 47–49
[,innsight_ggplot2,ANY,ANY,ANY-method,

91
[,innsight_ggplot2-method

([,innsight_ggplot2,ANY,ANY,ANY-method),
91

[,innsight_plotly,ANY,ANY,ANY-method,
92

[,innsight_plotly-method
([,innsight_plotly,ANY,ANY,ANY-method),
92

[.innsight_ggplot2, 4, 80
[.innsight_ggplot2

([,innsight_ggplot2,ANY,ANY,ANY-method),
91

[.innsight_plotly
([,innsight_plotly,ANY,ANY,ANY-method),
92

[<-,innsight_ggplot2,ANY,ANY,ANY-method
([,innsight_ggplot2,ANY,ANY,ANY-method),
91

[<-,innsight_ggplot2-method

([,innsight_ggplot2,ANY,ANY,ANY-method),
91

[<-.innsight_ggplot2
([,innsight_ggplot2,ANY,ANY,ANY-method),
91

[[, 47–49
[[,innsight_ggplot2-method

([,innsight_ggplot2,ANY,ANY,ANY-method),
91

[[,innsight_plotly-method
([,innsight_plotly,ANY,ANY,ANY-method),
92

[[.innsight_ggplot2, 4, 80
[[.innsight_ggplot2

([,innsight_ggplot2,ANY,ANY,ANY-method),
91

[[.innsight_plotly
([,innsight_plotly,ANY,ANY,ANY-method),
92

[[<-,innsight_ggplot2-method
([,innsight_ggplot2,ANY,ANY,ANY-method),
91

[[<-.innsight_ggplot2
([,innsight_ggplot2,ANY,ANY,ANY-method),
91

AgnosticWrapper, 5
array, 6, 9, 23, 24, 29, 30, 34, 35, 40, 45, 52,

54, 61, 68, 74, 82, 87

base::invisible, 19, 67
base::max, 64, 66
base::min, 64, 66

ConnectionWeights, 3, 8, 16, 25, 31, 36, 39,
42, 50, 56, 58, 70, 76, 79, 84, 88

convert, 16
convert (innsight_sugar), 50
ConvertedModel, 3, 13, 16, 17, 19

94

INDEX 95

Converter, 3, 5, 6, 9, 13, 16, 17, 23, 29, 34,
40, 45, 50–53, 59, 61, 67–69, 73, 74,
81, 82, 87

data.frame, 6, 9, 23, 24, 29, 30, 34, 35, 40,
45, 52, 54, 61, 68, 74, 82, 87

DeepLift, 3, 11, 16, 22, 27, 31, 36, 39, 42, 50,
52, 56, 58, 70, 76, 79, 84, 88

DeepSHAP, 3, 11, 16, 25, 27, 36, 39, 42, 50, 56,
58, 70, 76, 79, 84, 88

ExpectedGradient, 3, 11, 16, 25, 31, 33, 39,
42, 44, 50, 56, 58, 70, 76, 79, 84, 88

fastshap::explain, 5, 81, 83
function, 64, 66

get_result, 39, 62
ggplot2, 4, 47
ggplot2::+.gg, 4, 47
ggplot2::facet_grid, 48
ggplot2::ggplot, 4, 80, 92
ggplot2::theme, 4
Gradient, 3, 8, 11, 16, 25, 31, 36, 39, 39, 44,

50, 56, 58, 70, 76, 79, 84, 86, 88
GradientBased, 44
gridExtra::arrangeGrob, 48, 79
gtable::gtable, 80

innsight (innsight-package), 3
innsight-package, 3
innsight::AgnosticWrapper, 67, 81
innsight::GradientBased, 34, 39, 53, 86
innsight::InterpretingMethod, 5, 8, 22,

28, 34, 39, 44, 53, 67, 73, 81, 86
innsight_ggplot2, 4, 47, 63–65, 67, 79, 80,

91, 92
innsight_plotly, 49, 63–67, 80, 92, 93
innsight_sugar, 50
IntegratedGradient, 3, 11, 16, 25, 31, 33,

36, 39, 42, 44, 50, 52, 58, 70, 76, 79,
84, 88

interactive(), 10, 25, 30, 36, 41, 46, 55, 60,
62, 75, 88

InterpretingMethod, 5, 39, 44, 58, 79

keras, 16, 17
keras::keras_model, 3
keras::keras_model_sequential, 3
keras_model, 6, 16, 18, 51, 67–69, 81, 82

keras_model_sequential, 16, 18, 51

LIME, 3, 5, 11, 16, 25, 31, 36, 42, 50, 56, 58,
67, 76, 84, 88

lime::explain, 67, 70
lime::lime, 5, 67
LRP, 3, 11, 16, 22, 25, 31, 36, 39, 42, 50, 56,

58, 70, 72, 79, 84, 88

matrix, 6, 52, 68, 82

neuralnet, 6, 16–18, 51, 67–69, 81, 82
neuralnet::neuralnet, 3
nn_module, 16
nn_sequential, 6, 16–18, 51, 67–69, 81, 82

plot, 47–49, 79, 80
plot,innsight_ggplot2-method

(print,innsight_ggplot2-method),
79

plot,innsight_plotly-method
(print,innsight_plotly-method),
80

plot.innsight_ggplot2
(print,innsight_ggplot2-method),
79

plot.innsight_plotly, 93
plot.innsight_plotly

(print,innsight_plotly-method),
80

plot_global, 78
plotly::layout, 50
plotly::plot_ly, 63, 65, 92
plotly::subplot, 49, 80
print, 47–49, 79, 80
print,innsight_ggplot2-method, 79
print,innsight_plotly-method, 80
print.innsight_ggplot2, 4, 92
print.innsight_ggplot2

(print,innsight_ggplot2-method),
79

print.innsight_plotly, 93
print.innsight_plotly

(print,innsight_plotly-method),
80

R6::R6Class, 52
run_cw, 8
run_cw (innsight_sugar), 50

96 INDEX

run_deeplift, 22
run_deeplift (innsight_sugar), 50
run_deepshap, 28
run_deepshap (innsight_sugar), 50
run_expgrad, 33
run_expgrad (innsight_sugar), 50
run_grad, 39
run_grad (innsight_sugar), 50
run_intgrad, 53
run_intgrad (innsight_sugar), 50
run_lime, 67
run_lime (innsight_sugar), 50
run_lrp, 72
run_lrp (innsight_sugar), 50
run_shap, 81
run_shap (innsight_sugar), 50
run_smoothgrad, 86
run_smoothgrad (innsight_sugar), 50

SHAP, 3, 5, 11, 16, 25, 31, 36, 42, 50, 56, 58,
70, 76, 81, 88

show, 47–49, 79, 80
show,innsight_ggplot2-method

(print,innsight_ggplot2-method),
79

show,innsight_plotly-method
(print,innsight_plotly-method),
80

show.innsight_ggplot2
(print,innsight_ggplot2-method),
79

show.innsight_plotly, 93
show.innsight_plotly

(print,innsight_plotly-method),
80

SmoothGrad, 3, 11, 16, 25, 31, 36, 39, 42, 44,
50, 56, 58, 70, 76, 79, 84, 85

torch::nn_sequential, 3
torch::torch_double, 14, 15, 18
torch::torch_float, 14, 15, 18
torch_double, 10, 25, 31, 36, 41, 47, 55, 59,

62, 76, 88
torch_float, 10, 25, 30, 36, 41, 47, 55, 59,

62, 76, 88
torch_tensor, 6, 9, 23, 24, 29, 30, 34, 35, 40,

45, 52, 54, 61, 68, 74, 82, 87

	innsight-package
	+,innsight_ggplot2,ANY-method
	AgnosticWrapper
	ConnectionWeights
	ConvertedModel
	Converter
	DeepLift
	DeepSHAP
	ExpectedGradient
	get_result
	Gradient
	GradientBased
	innsight_ggplot2
	innsight_plotly
	innsight_sugar
	IntegratedGradient
	InterpretingMethod
	LIME
	LRP
	plot_global
	print,innsight_ggplot2-method
	print,innsight_plotly-method
	SHAP
	SmoothGrad
	[,innsight_ggplot2,ANY,ANY,ANY-method
	[,innsight_plotly,ANY,ANY,ANY-method
	Index

