
ipsecr 1.4 - spatially explicit capture–recapture by inverse prediction

Murray Efford

2024-01-15

Contents

Inverse prediction for capture–recapture estimation 2

Simple example 3

Proxy functions 4

Multi-session models 5

Fitting a density gradient 5

Non-target interference 7

Tuning the algorithm 8

Fractional designs 8

Models with extra parameters 10

Relationship to package secr 12

Troubleshooting and limitations 12

References 13

This document provides an overview of ipsecr 1.4, an R package for spatially explicit capture–recapture
analysis (SECR) that uses simulation and inverse prediction instead of maximum likelihood, as in secr

(Efford 2022), or MCMC, as in various Bayesian approaches. The parent package secr included the function
ip.secr, now deprecated; ipsecr extends that capability in its central function ipsecr.fit whose arguments
are closely modelled on secr.fit from secr.

Simulation and inverse prediction allows some models to be fitted that strictly cannot be fitted by other
methods. Single-catch traps are a common example.

There are limitations: ipsecr 1.4 allows variation in detection parameters (e.g., λ0, σ) only with respect to
individual and session. This excludes variation with respect to occasion, detector or previous detection (e.g.,
~t, ~b or ~bk as allowed in secr). ipsecr does allow variation in λ0 and σ that depends on the location of
each animal’s activity centre, which is not allowed in secr.

The package plot3D should be installed to display Fig. 2, and some results require secr >= 4.5.9.

1

Inverse prediction for capture–recapture estimation

The method (Efford 2004; Efford, Dawson and Robbins 2004; see also Carothers 1979 and Pledger and Efford
1998) uses a vector-valued function of the raw data that provides one or more proxies for each coefficient
(beta parameter) in the capture–recapture model. Each proxy is assumed to be monotonically related to the
corresponding coefficient.

We use xp for the vector of known parameter values at which simulations are performed and yp for the
vectors of proxies computed from these simulated data. The method fits a multivariate multiple regression
over a set of points in parameter space (‘box’) and inverts that regression to estimate parameter values x

from the observed proxy vector y.

The default proxy function proxy.ms works for simple models with two detection parameters. It uses a naive
non-spatial estimate of population size (simply the number detected), the corresponding non-spatial detection
probability p, and the ‘root-pooled spatial variance’ measure from the function RPSV in secr (argument CC
= TRUE):

Parameter Proxy Proxy scale

Density D number detected n log
Detection intercept g0 or λ0* p̂ cloglog
Detection spatial scale σ RPSV log

* depends on detection function

The monotonic relationship is demonstrated by simulation in the following figure.

Figure 1. Monotonic relationships between parameters (x-axis, log scale) and their default proxies (y-axis).
100 single-catch traps at 20-m spacing on a square grid. 50 simulations for each level, with other parameters
held at their central value. Red line follows mean.

The algorithm includes these steps

1. Compute proxy function from data
2. Simulate data for parameters at the vertices* of a box around plausible estimates
3. Compute proxy function for each simulation to generate predictor matrix
4. Fit a multivariate multiple regression model with proxies at each vertex as the dependent variables
5. Invert regression model to estimate vector of parameters from the data proxies (1)
6. If the estimated parameters do not all lie inside box, adjust the box and repeat from (2)
7. Simulate at the estimates to obtain variance-covariance matrix

* including some centre points

2

D

lambda0

sigm
a

logn
cloglogp

logR
P

S
V

D

lambda0

sigm
a

logn

cloglogp

logR
P

S
V

Parameter space Proxy space

Figure 2. Schematic process of fitting in ipsecr.fit (requires package plot3D). Simulations are conducted
at the vertices of a box in parameter space (top left; link scale) centred on an initial guess (blue diamond).
The results in proxy space (top right; frame connects design point means, centre omitted for clarity) support
a linear model for proxies as a function of parameters. The model is inverted and applied to the observed
proxy vector (yellow square) giving the centre of a new, smaller box in parameter space (bottom left). The
model is refined by further simulations (bottom right) from which the final estimate is inferred (white square,
bottom left)

Simple example

This example uses a simulated single-catch trap dataset in secr that is loaded automatically when ipsecr is
loaded. See here for instructions on reading actual data.

library(ipsecr)

if (!require("spatstat")) warning ("install spatstat to run vignette code")

setNumThreads(2) # adjust to number of available cores

3

https://www.otago.ac.nz/density/pdfs/secr-datainput.pdf

ip.single <- ipsecr.fit(captdata, buffer = 100, detectfn = 'HHN')

The fitted model is of class ‘ipsecr’ for which there are the usual methods matching those in secr (print,
coef, predict, summary etc. as detailed below).

predict(ip.single)

link estimate SE.estimate lcl ucl

D log 5.6237165 0.67323230 4.4512887 7.1049509

lambda0 log 0.4382384 0.06696152 0.3253861 0.5902307

sigma log 28.2457061 1.31161350 25.7897687 30.9355203

Proxy functions

The proxy function takes an secr capthist object as its first argument. It returns a vector of surrogate values,
at least one for each coefficient (beta parameter) in the model. There does not strictly need to be a one-to-one
relationship between proxies and coefficients, but multiple proxies have not so far been found useful and may
muddy the water. The default function is proxy.ms. For example,

proxy.ms(captdata)

logn cloglogp logRPSV

4.33073334 -0.03724765 3.24371994

proxy.ms works for models with variation in parameters D and NT. Detection parameters may vary spatially
and by session. Users are free to define their own proxyfn.

Changing the proxy function may have little effect on the estimates. Here we demonstrate an older builtin
proxy function proxyfn1:

ip.single.1 <- ipsecr.fit(captdata, buffer = 100, detectfn = 'HHN', proxyfn = proxyfn1,

N.estimator = "null", verbose = FALSE)

secr function 'collate' works for both secr and ipsecr fits

collate(ip.single, ip.single.1)[1,,,]

, , D

##

estimate SE.estimate lcl ucl

ip.single 5.623717 0.6732323 4.451289 7.104951

ip.single.1 5.650595 0.7244975 4.399477 7.257506

##

, , lambda0

##

estimate SE.estimate lcl ucl

ip.single 0.4382384 0.06696152 0.3253861 0.5902307

ip.single.1 0.4409693 0.07895862 0.3113119 0.6246274

##

, , sigma

##

estimate SE.estimate lcl ucl

ip.single 28.24571 1.311614 25.78977 30.93552

ip.single.1 28.26378 1.560606 25.36683 31.49156

4

Multi-session models

Data may take the form of independent samples. Models are constructed as in secr (secr-multisession.pdf).
In ipsecr 1.4, density D, detection parameters, and non-target NT parameters may all depend on session or
session covariates as in secr.

Fitting a density gradient

Distiller and Borchers (2015) simulated an example with a gradient in population density to demonstrate
their method for data from single-catch traps when the time of each capture is known. Inverse prediction
may be used to estimate density from these data, but assuming a constant density can result in bias. Here
we illustrate a strategy for fitting the density gradient with inverse prediction.

This requires a proxy function that includes a proxy for the density gradient. As the function is a function of
the capture histories alone we must use a gradient over detectors to stand for a gradient over points on the
habitat mask. The default function proxy.ms does this automatically. A model in terms of mask coordinates
and covariates is re-cast as a model in terms of detector coordinates and covariates. Proxies are coefficients
of a glm for detector-specific counts as a function of the predictors, using a log link.

First simulate some data with an east-west gradient in density.

tr <- traps(captdata)

mask <- make.mask(tr)

covariates(mask) <- data.frame(D = (mask$x-265)/20) # for sim.pop

set.seed(1237)

pop <- sim.popn(D = 'D', core = mask, model2D = 'IHP', buffer = 100)

ch <- sim.capthist(tr, popn = pop, detectfn = 'HHN', noccasions = 5,

detectpar = list(lambda0 = 0.2, sigma = 25))

show east-west trend

table(tr[trap(ch),'x'])

##

365 395 425 455 485 515 545 575 605 635

12 17 21 20 28 24 22 23 31 36

Note that the x- and y-coordinates of traps and mask are scaled internally and independently to zero mean
and unit variance.

ipx <- ipsecr.fit(ch, mask = mask, detectfn = 'HHN', model = list(D~x))

coef(ipx)

beta SE.beta lcl ucl

D 2.3856258 0.10242293 2.1848805 2.586371

D.x 0.5154916 0.14363647 0.2339693 0.797014

lambda0 -1.7330217 0.12028393 -1.9687738 -1.497269

sigma 3.2556566 0.05067609 3.1563333 3.354980

predict(ipx)

link estimate SE.estimate lcl ucl

D log 10.8658603 1.11583837 8.889586 13.2814861

lambda0 log 0.1767495 0.02133726 0.139628 0.2237403

sigma log 25.9366397 1.31521170 23.484329 28.6450294

plot(predictDsurface(ipx))

plot(tr, add = TRUE)

plotMaskEdge(ipx$mask, add=T)

5

https://www.otago.ac.nz/density/pdfs/secr-multisession.pdf

D.0

4

8
12

16

20
24

28

The fitted relationship is linear on the log scale, whereas it was simulated as linear on the natural scale. To
better match the original trend it is possible to use an identity link for D.

oldpar <- par(mar = c(4,6,4,4))

model refers to scaled values of x, so repeat here

m <- mean(traps(ch)$x); s <- sd(traps(ch)$x)

xval <- seq(270,730,10)

xvals <- scale(xval, m, s)

pred <- predict(ipx, newdata = data.frame(x = xvals))

plot(0,0, type='n', xlim= c(270,730), ylim = c(0,40), xlab = 'x', ylab = 'Density')

lines(xval, sapply(pred, '[', 'D','estimate'), col = 'red', lwd=2)

abline(-265/20,0.05) # true linear trend

rug(unique(tr$x)) # trap locations

300 400 500 600 700

0
10

20
30

40

x

D
en

si
ty

par(oldpar)

Figure 3. Estimated trend in density from log-linear model (red). Actual trend shown as black line.

6

Non-target interference

The capthist data object may include an attribute ‘nontarget’ that is a binary K × S matrix (K detectors, S

occasions) indicating whether detector k was disturbed or occupied by non-target species on each occasion s.

Disturbance at single-catch and capped detectors is usually taken to be exclusive of captures: an occupied
trap cannot later catch a non-target animal or be disturbed, and vice versa. Multi-catch traps or binary
proximity detectors may be disturbed after having registered detections, and both detections and interference
are recorded (disturbance is independent of prior detector status, and has the effect of truncating the sampling
interval). Variations may be specified with the details argument ‘nontargettype’ that takes one of the values
‘exclusive’, ‘truncated’, ‘erased’ or ‘independent’.

Type Allowed detectors Explanation

‘exclusive’ single, capped detector may be occupied or interfered with, but not both
‘truncated’ all sampling interval ends at time of interference (default for all detectors

except single and capped)
‘erased’ all interference erases any previous detections at a site in the particular

interval
‘independent’ all interference has no effect on detections, but is recorded and modelled

We illustrate the fitting of a model with non-target captures by simulating disturbance at about 50% of
the 235 unoccupied traps in the ‘captdata’ dataset. (This is an ad hoc method, used only for generating
demonstration data).

set.seed(123)

ch <- captdata

attr(ch, 'nontarget') <- (1-t(apply(ch,2:3,sum))) * (runif(500)>0.5)

summary(ch)$nontarget

1 2 3 4 5 Total

detectors nontarget 25 27 29 27 28 136

The attribute ‘nontarget’ is a matrix with one row per trap and one column per occasion. Entries are either
1 (nontarget or disturbed) or 0 (target species or undisturbed). For a dataset including non-target data
ipsecr.fit automatically adds the parameter ‘NT’ for the hazard of a single ubiquitous disturbance process
competing (in the ‘exclusive’ case) for detectors with each individual-specific capture process. The non-target
model may be suppressed by setting the details argument ‘ignorenontarget = TRUE’.

Information on the disturbance process is given by the frequency of nontarget events in the capthist input
(attribute ‘nontarget’). The last element of the vector returned by the proxy function proxy.ms transforms
this to a hazard on the log scale (i.e. complementary log-log of proportion):

proxy.ms(ch)

logn cloglogp logRPSV cloglogNT

4.33073334 -0.03724765 3.24371994 -1.14742163

ip.single.nontarget <- ipsecr.fit(ch, detectfn = 'HHN')

The estimate of lambda0 has risen compared to ip.single:

predict(ip.single.nontarget)

link estimate SE.estimate lcl ucl

D log 5.6363589 0.75114333 4.3457030 7.3103344

lambda0 log 0.6288584 0.10570868 0.4533825 0.8722500

sigma log 28.1845337 1.41140896 25.5512151 31.0892432

7

NT log 0.5509196 0.04872183 0.4634008 0.6549673

Note that ‘NT’ cannot be estimated if all traps are occupied. ‘NT’ may be modelled as a function of session
and detector (trap), but not occasion.

Tuning the algorithm

The inverse prediction method assumes

1. linear relationships between proxies and parameters (jointly, a hyper-plane), and
2. negligible error in the predicted (mean) proxy for a given set of parameter values.

Performance of the algorithm with respect to these assumptions depends on several components of the ‘details’
argument of ipsecr.fit that may be seen as tuning parameters. The first assumption is more plausible for
small regions of parameter space (hence a small ‘boxsize’). The second assumption is eased by increasing the
number of simulations. Actual settings are a compromise between these requirements and execution time.
Users may choose a different compromise.

By default, the size of the box in parameter space is set to ± ‘boxsize’ units on the link scale. This may be
changed to a multiple of the central value with boxtype = 'relative'.

It is usual to start with a wide box and to use a narrower box for subsequent simulations, on the assumption
that the first box has selected a region of parameter space very close to the solution.

The stopping criterion ‘dev.max’ is used to exit the simulation loop early when sufficient precision has been
achieved for all parameters. If boxtype = 'absolute' then the criterion is the standard error on the link
scale. If boxtype = 'relative' then the criterion is the relative standard error (RSE or CV) on the link
scale.

Tuning parameter Default Description

boxtype ‘absolute’ ‘absolute’ or ‘relative’
boxsize1 0.2 size of first box
boxsize2 0.05 boxsize for boxes after the first
centre 3 number of centre points
dev.max 0.002 stopping criterion
min.nsim 20 minimum number of simulations per vertex
max.nsim 200 maximum number of simulations per vertex
max.nbox 5 maximum number of boxes
max.ntries 2 maximum number of attempts to achieve valid simulation
var.nsim 2000 number of simulations for variance-covariance matrix

Fractional designs

By default, ipsecr fits a full factorial design in the parameter space. For NP parameters, simulations are
performed at 2

NP points, the corners of a hyperrectangle (box), plus possible centre points. The total number
of simulations grows rapidly for large NP. Fractional factorial designs may omit some parameter combinations
while retaining balance and other desirable characteristics.

The package FrF2 may be used for fractional factorial designs (Groemping, 2014). Fractional designs are
selected by setting details = list(factorial = 'fractional') in ipsecr.fit.

ip.Fr <- ipsecr.fit(captdata, detectfn = 'HHN', details = list(factorial = 'fractional'))

collate(ip.single, ip.Fr)[1,,,]

8

, , D

##

estimate SE.estimate lcl ucl

ip.single 5.623717 0.6732323 4.451289 7.104951

ip.Fr 5.619563 0.6741916 4.445766 7.103272

##

, , lambda0

##

estimate SE.estimate lcl ucl

ip.single 0.4382384 0.06696152 0.3253861 0.5902307

ip.Fr 0.4393181 0.07165968 0.3197755 0.6035495

##

, , sigma

##

estimate SE.estimate lcl ucl

ip.single 28.24571 1.311614 25.78977 30.93552

ip.Fr 28.27523 1.324641 25.79591 30.99285

ip.single$proctime

[1] 100.43

ip.Fr$proctime

[1] 109.53

In this example the fractional design was actually slower than the full design because (i) there is little
difference in the number of design points when NP = 3 (7 vs 11 with 3 centre points) and (ii) the fractional
fit went to a third box. Conditions when fractional designs are faster have not been determined - they are
probably useful only when parameters are numerous.

The default fractional design is a 1/2 factorial, illustrated by this code:

if (require('FrF2')) {

NP <- 3

boxsize <- rep(0.2,3)

design <- FrF2(2ˆ(NP-1),NP, factor.names = c('D','lambda0','sigma'), ncenter = 2)

recast factors as numeric

design <- sapply(design, function(x) as.numeric(as.character(x)))

design <- sweep(design, MAR=2, STATS = boxsize, FUN='*')

apply to beta

beta <- log(c(5,0.2,25))

designbeta <- sweep(design, MAR=2, STATS=beta, FUN='+')

round(designbeta,3)

}

D lambda0 sigma

[1,] 1.609 -1.609 3.219

[2,] 1.809 -1.409 3.419

[3,] 1.809 -1.809 3.019

[4,] 1.409 -1.809 3.419

[5,] 1.409 -1.409 3.019

[6,] 1.609 -1.609 3.219

The first and last rows are centre points.

For other designs you may specify the desired arguments of FrF2 as a list e.g., details = list(factorial

= 'fractional', FrF2args = list(nruns = 4, nfactors = 3, ncenter = 3)).

9

Models with extra parameters

Extensions of ipsecr may involve the estimation of additional ‘real’ parameters (i.e. parameters other than
D, g0, lambda0, sigma or NT). Extra parameters should be specified in the details argument ‘extraparam’, a
named list with the numeric starting value of each parameter. Extra parameters are assumed to be constant:
their corresponding models are set automatically to ~1. Extra parameters are passed internally to user-defined
simulation functions via the ‘details’ argument.

Our example fits a clumped distribution of activity centres instead of the usual Poisson distribution. This
uses a form of Neyman-Scott clustering (a Thomas distribution). The Thomas distribution draws cluster
‘parent’ points from a uniform (Poisson) distribution and places a Poisson random number of centres in a
bivariate normal pattern around each parent. Parameters to be estimated are the overall intensity (density
D), the expected number of centres per parent (mu), and the spatial spread of each cluster (named hsigma,
following the cluster option in secr::sim.popn). Experimentation suggests that SECR data are usually
inadequate to estimate both mu and hsigma, but there are biologically interesting scenarios for which hsigma
may be considered known: specifically, clumped groups of animals sharing an activity centre may be modelled
with hsigma = ϵ where ϵ is a small positive distance (e.g. 1 metre).

We proceed to estimate mu and fix hsigma. This requires a custom function for simulation and a custom
proxy function. Simulation is straightforward - just a wrapper around the function from secr. For a cluster
proxy we fit a Thomas distribution in spatstat (Baddeley and Turner 2005). This proxy is one of several
possibilities, none obviously better than the rest. This requires that spatstat has been installed.

First simulate some test data (requires secr >= 4.5.9):

grid <- make.grid(nx = 10, ny = 10, spacing = 20, detector = 'proximity')

msk <- make.mask(grid, buffer = 100)

set.seed(123)

pop <- sim.popn(D = 20, core = grid, buffer = 100, model2D = 'cluster',

details = list(mu = 5, hsigma = 1))

ch <- sim.capthist(grid, pop, detectfn = 14, detectpar =

list(lambda0 = 0.2, sigma = 20), noccasions = 5)

plot(ch, border = 20)

1
5 occasions, 429 detections, 107 animals

Next, call ipsecr.fit with these customizations:

10

• user proxyfn : clusterproxyT
• user popmethod : simclusteredpop
• user parameters : mu, hsigma
• fixed parameter : hsigma = 1

user function to simulate Thomas (Neyman-Scott) distribution of activity centres

expect parameters mu and hsigma in list 'details$extraparam'

simclusteredpop <- function (mask, D, N, details) {

secr::sim.popn(

D = D[1],

core = mask,

buffer = 0,

Ndist = 'poisson', # necessary for N-S cluster process

model2D = 'cluster',

details = details$extraparam)

}

extend the built-in proxy with clumping argument mu

spatstat fits Thomas process parameters kappa and scale = hsigmaˆ2

mu is a model parameter derived from mu = D / kappa

clusterproxyT <- function (capthist, ...) {

pr <- ipsecr::proxy.ms(capthist)

pp <- spatstat.geom::as.ppp(secr::centroids(capthist),

W = as.numeric(apply(secr::traps(capthist),2,range)))

tfit <- spatstat.core::thomas.estK(pp)

c(pr, logmu = log(tfit$modelpar['mu']))

}

clusterfitT <- ipsecr.fit(ch, proxyfn = clusterproxyT, mask = msk,

detectfn = 'HHN', details = list(popmethod = simclusteredpop,

extraparam = list(mu = 5, hsigma = NA)), fixed = list(hsigma = 1))

predict(clusterfitT)

link estimate SE.estimate lcl ucl

D log 19.1320785 5.99039474 10.506335 34.8395933

lambda0 log 0.2052792 0.03070909 0.153360 0.2747755

sigma log 19.4953885 0.88410258 17.838170 21.3065669

mu log 7.0044856 4.65039396 2.142833 22.8962419

The results are not very impressive (wide confidence intervals on both D̂ and µ̂), but at least mu can be
estimated. Let’s compare with the MLE assuming a Poisson distribution of activity centres:

clusterfitML <- secr.fit(ch, mask = msk, detectfn = 'HHN', trace = FALSE)

predict(clusterfitML)

link estimate SE.estimate lcl ucl

D log 17.9234488 1.76726799 14.7807093 21.7344114

lambda0 log 0.2185081 0.01681006 0.1879664 0.2540124

sigma log 19.8730580 0.64043382 18.6569565 21.1684277

If the concern is to correct for the effect of clumping on the confidence interval for overall density then we
would be better to apply a simple adjustment for overdispersion. Fletcher’s c-hat (computed from the number
of animals per detector) is 2.98, which suggests a more modest inflation of the variance estimate (below).
Time-consuming simulations would be needed to determine which is the better approach, but I’m guessing it
is Fletcher’s c-hat.

11

secr::adjustVarD(clusterfitML)

link estimate SE.estimate lcl ucl c-hat

D log 17.92345 3.065829 12.84905 25.00186 2.980687

Relationship to package secr

Some functionality of ipsecr is shared with secr.

Methods for ‘ipsecr’ of generic functions defined in secr

Function Description

makeNewData generate dataframe suitable for predict.ipsecr

Methods for ‘ipsecr’ of generic functions from base R and stats

Function Description

coef coefficients (beta parameters) of fitted model
plot plot detection function from fitted model
print display ‘ipsecr’ object
predict predict real parameters
summary summarise fitted model
vcov variance-covariance matrix of coefficients (beta parameters)

Functions from secr that work on fitted ‘ipsecr’ objects as-is

Function Description

ellipse.secr plot confidence ellipse for 2 parameters
predictDsurface predict density for each cell of mask
makeStart generate starting values from various inputs
collate tabulate results from multiple models

Troubleshooting and limitations

ipsecr 1.4 is not intended for models with many sessions or many covariates.

This version does not allow for variation in detection parameters (g0, lambda0, sigma) among occasions (e.g.,
g0~t, g0~b, g0~bk).

Only 2-parameter detection functions are allowed in ipsecr.fit (HN, EX, UN, HHN, HEX) (see ?detectfn).
3-parameter functions are simulated by simCH, but proxies for the shape parameter have not been explored
(maybe some sample measure of bivariate skewness or tail weight).

Sparse data

Simulation becomes unreliable with very sparse populations, or sparse sampling, because some simulated
datasets will have no recaptures or even no captures. The code allows a failed simulation to be repeated
(set the ‘max.ntries’ details argument > 1), but results probably should not be relied upon when there are
warning messages regarding failed simulations.

12

“simulations for box 1 did not reach target for proxy SE 0.002”

This message may not be fatal. The target precision is arbitrary. Review the ‘Variance bootstrap’ table of
verbose output.

“solution not found after 5 attempts”

It seems ipsecr.fit is not converging on the right part of the parameter space. Try specifying a wider boxsize1
for the first box, or set starting values.

References

Baddeley, A. and Turner, R. (2005) spatstat: An R package for analyzing spatial point patterns. Journal of

Statistical Software 12, 1–42. DOI: 10.18637/jss.v012.i06

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture–recapture
studies. Biometrics 64, 377–385.

Carothers, A. D. (1979) The effects of unequal catchability on Jolly–Seber estimates. Biometrics 29, 79–100.

Distiller, G. and Borchers, D. L. (2015) A spatially explicit capture–recapture estimator for single-catch traps.
Ecology and Evolution 5, 5075–5087.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G. (2022). secr: Spatially explicit capture–recapture models. R package version 4.5.6. https:
//CRAN.R-project.org/package=secr/

Efford, M. G. (2023) ipsecr: An R package for awkward spatial capture–recapture data. Methods in Ecology

and Evolution In review.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-recapture
data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Groemping, U. (2014). R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level Designs.
Journal of Statistical Software, 56, 1–56. https://www.jstatsoft.org/article/view/v056i01.

Pledger, S. and Efford, M. G. (1998) Correction of bias due to heterogeneous capture probability in capture-
recapture studies of open populations. Biometrics 54, 888–898.

13

https://CRAN.R-project.org/package=secr/
https://CRAN.R-project.org/package=secr/
https://www.jstatsoft.org/article/view/v056i01

	Inverse prediction for capture–recapture estimation
	Simple example
	Proxy functions
	Multi-session models
	Fitting a density gradient
	Non-target interference
	Tuning the algorithm
	Fractional designs
	Models with extra parameters
	Relationship to package secr
	Troubleshooting and limitations
	References

