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isolation.forest Create Isolation Forest Model

Description

Isolation Forest is an algorithm originally developed for outlier detection that consists in splitting
sub-samples of the data according to some attribute/feature/column at random. The idea is that, the
rarer the observation, the more likely it is that a random uniform split on some feature would put
outliers alone in one branch, and the fewer splits it will take to isolate an outlier observation like
this. The concept is extended to splitting hyperplanes in the extended model (i.e. splitting by more
than one column at a time), and to guided (not entirely random) splits in the SCiForest and FCF
models that aim at isolating outliers faster and/or finding clustered outliers.

This version adds heuristics to handle missing data and categorical variables. Can be used to aprox-
imate pairwise distances by checking the depth after which two observations become separated, and
to approximate densities by fitting trees beyond balanced-tree limit. Offers options to vary between
randomized and deterministic splits too.

Important: The default parameters in this software do not correspond to the suggested parameters
in any of the references (see section "Matching models from references"). In particular, the fol-
lowing default values are likely to cause huge differences when compared to the defaults in other
software: ‘ndim‘, ‘sample_size‘, ‘ntrees‘. The defaults here are nevertheless more likely to result
in better models. In order to mimic the Python library "scikit-learn" for example, one would need
to pass ‘ndim=1‘, ‘sample_size=256‘, ‘ntrees=100‘, ‘missing_action="fail"‘, ‘nthreads=1‘.

Note that the default parameters will not scale to large datasets. In particular, if the amount of data
is large, it’s suggested to set a smaller sample size for each tree (parameter ‘sample_size‘), and to
fit fewer of them (parameter ‘ntrees‘). As well, the default option for ‘missing_action‘ might slow
things down significantly (see below for details). These defaults can also result in very big model
sizes in memory and as serialized files (e.g. models that weight over 10GB) when the number of
rows in the data is large. Using fewer trees, smaller sample sizes, and shallower trees can help to
reduce model sizes if that becomes a problem.

The model offers many tunable parameters (see reference [11] for a comparison). The most likely
candidate to tune is ‘prob_pick_pooled_gain‘, for which higher values tend to result in a better abil-
ity to flag outliers in multimodal datasets, at the expense of poorer generalizability to inputs with
values outside the variables’ ranges to which the model was fit (see plots generated from the exam-
ples for a better idea of the difference). The next candidate to tune is ‘sample_size‘ - the default is
to use all rows, but in some datasets introducing sub-sampling can help, especially for the single-
variable model. In smaller datasets, one might also want to experiment with ‘weigh_by_kurtosis‘
and perhaps lower ‘ndim‘.If using ‘prob_pick_pooled_gain‘, models are likely to benefit from
deeper trees (controlled by ‘max_depth‘), but using large samples and/or deeper trees can result
in significantly slower model fitting and predictions - in such cases, using ‘min_gain‘ (with a value
like 0.25) with ‘max_depth=NULL‘ can offer a better speed/performance trade-off than changing
‘max_depth‘.

If the data has categorical variables and these are more important important for determining outlier-
ness compared to numerical columns, one might want to experiment with ‘ndim=1‘, ‘categ_split_type="single_categ"‘,
and ‘scoring_metric="density"‘; while for all-numeric datasets - especially if there are missing val-
ues - one might want to experiment with ‘ndim=2‘ or ‘ndim=3‘.
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For small datasets, one might also want to experiment with ‘ndim=1‘, ‘scoring_metric="adj_depth"‘
and ‘penalize_range=TRUE‘.

Usage

isolation.forest(
data,
sample_size = min(nrow(data), 10000L),
ntrees = 500,
ndim = 1,
ntry = 1,
categ_cols = NULL,
max_depth = ceiling(log2(sample_size)),
ncols_per_tree = ncol(data),
prob_pick_pooled_gain = 0,
prob_pick_avg_gain = 0,
prob_pick_full_gain = 0,
prob_pick_dens = 0,
prob_pick_col_by_range = 0,
prob_pick_col_by_var = 0,
prob_pick_col_by_kurt = 0,
min_gain = 0,
missing_action = ifelse(ndim > 1, "impute", "divide"),
new_categ_action = ifelse(ndim > 1, "impute", "weighted"),
categ_split_type = ifelse(ndim > 1, "subset", "single_categ"),
all_perm = FALSE,
coef_by_prop = FALSE,
recode_categ = FALSE,
weights_as_sample_prob = TRUE,
sample_with_replacement = FALSE,
penalize_range = FALSE,
standardize_data = TRUE,
scoring_metric = "depth",
fast_bratio = TRUE,
weigh_by_kurtosis = FALSE,
coefs = "uniform",
assume_full_distr = TRUE,
build_imputer = FALSE,
output_imputations = FALSE,
min_imp_obs = 3,
depth_imp = "higher",
weigh_imp_rows = "inverse",
output_score = FALSE,
output_dist = FALSE,
square_dist = FALSE,
sample_weights = NULL,
column_weights = NULL,
lazy_serialization = TRUE,
seed = 1,
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use_long_double = FALSE,
nthreads = parallel::detectCores()

)

Arguments

data Data to which to fit the model. Supported inputs type are:

• A ‘data.frame‘, also accepted as ‘data.table‘ or ‘tibble‘.
• A ‘matrix‘ object from base R.
• A sparse matrix in CSC format, either from package ‘Matrix‘ (class ‘dgC-

Matrix‘) or from package ‘SparseM‘ (class ‘matrix.csc‘).

If passing a ‘data.frame‘, will assume that columns are:

• Numerical, if they are of types ‘numeric‘, ‘integer‘, ‘Date‘, ‘POSIXct‘.
• Categorical, if they are of type ‘character‘, ‘factor‘, ‘bool‘. Note that, if

factors are ordered, the order will be ignored here.

Other input and column types are not supported.

sample_size Sample size of the data sub-samples with which each binary tree will be built.
Recommended value in references [1], [2], [3], [4] is 256, while the default
value in the author’s code in reference [5] is ‘nrow(data)‘.
If passing ‘NULL‘, will take the full number of rows in the data (no sub-
sampling).
If passing a number between zero and one, will assume it means taking a sample
size that represents that proportion of the rows in the data.
Note that sub-sampling is incompatible with ‘output_score‘, ‘output_dist‘, and
‘output_imputations‘, and if any of those options is requested, ‘sample_size‘
will be overriden.
Hint: seeing a distribution of scores which is on average too far below 0.5 could
mean that the model needs more trees and/or bigger samples to reach conver-
gence (unless using non-random splits, in which case the distribution is likely to
be centered around a much lower number), or that the distributions in the data
are too skewed for random uniform splits.

ntrees Number of binary trees to build for the model. Recommended value in reference
[1] is 100, while the default value in the author’s code in reference [5] is 10. In
general, the number of trees required for good results is higher when (a) there
are many columns, (b) there are categorical variables, (c) categorical variables
have many categories, (d) ‘ndim‘ is high, (e) ‘prob_pick_pooled_gain‘ is used,
(f) ‘scoring_metric="density"‘ or ‘scoring_metric="boxed_density"‘ are used.
Hint: seeing a distribution of scores which is on average too far below 0.5 could
mean that the model needs more trees and/or bigger samples to reach conver-
gence (unless using non-random splits, in which case the distribution is likely to
be centered around a much lower number), or that the distributions in the data
are too skewed for random uniform splits.

ndim Number of columns to combine to produce a split. If passing 1, will produce
the single-variable model described in references [1] and [2], while if passing
values greater than 1, will produce the extended model described in references
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[3] and [4]. Recommended value in reference [4] is 2, while [3] recommends a
low value such as 2 or 3. Models with values higher than 1 are referred hereafter
as the extended model (as in reference [3]).
If passing ‘NULL‘, will assume it means using the full number of columns in
the data.
Note that, when using ‘ndim>1‘ plus ‘standardize_data=TRUE‘, the variables
are standardized at each step as suggested in [4], which makes the models
slightly different than in [3].
In general, when the data has categorical variables, models with ‘ndim=1‘ plus
‘categ_split_type="single_categ"‘ tend to produce better results, while models
‘ndim>1‘ tend to produce better results for numerical-only data, especially in
the presence of missing values.

ntry When using any of ‘prob_pick_pooled_gain‘, ‘prob_pick_avg_gain‘, ‘prob_pick_full_gain‘,
‘prob_pick_dens‘, how many variables (with ‘ndim=1‘) or linear combinations
(with ‘ndim>1‘) to try for determining the best one according to gain.
Recommended value in reference [4] is 10 (with ‘prob_pick_avg_gain‘, for
outlier detection), while the recommended value in reference [11] is 1 (with
‘prob_pick_pooled_gain‘, for outlier detection), and the recommended value in
reference [9] is 10 to 20 (with ‘prob_pick_pooled_gain‘, for missing value im-
putations).

categ_cols Columns that hold categorical features, when the data is passed as a matrix
(either dense or sparse). Can be passed as an integer vector (numeration starting
at 1) denoting the indices of the columns that are categorical, or as a character
vector denoting the names of the columns that are categorical, assuming that
‘data‘ has column names.
Categorical columns should contain only integer values with a continuous nu-
meration starting at zero (not at one as is typical in R packages), and with neg-
ative values and NA/NaN taken as missing. The maximum categorical value
should not exceed ‘.Machine$integer.max‘ (typically 231 − 1).
This is ignored when the input is passed as a ‘data.frame‘ as then it will consider
columns as categorical depending on their type/class (see the documentation for
‘data‘ for details).

max_depth Maximum depth of the binary trees to grow. By default, will limit it to the
corresponding depth of a balanced binary tree with number of terminal nodes
corresponding to the sub-sample size (the reason being that, if trying to detect
outliers, an outlier will only be so if it turns out to be isolated with shorter aver-
age depth than usual, which corresponds to a balanced tree depth). When a ter-
minal node has more than 1 observation, the remaining isolation depth for them
is estimated assuming the data and splits are both uniformly random (separation
depth follows a similar process with expected value calculated as in reference
[6]). Default setting for references [1], [2], [3], [4] is the same as the default
here, but it’s recommended to pass higher values if using the model for purposes
other than outlier detection.
If passing ‘NULL‘ or zero, will not limit the depth of the trees (that is, will grow
them until each observation is isolated or until no further split is possible).
Note that models that use ‘prob_pick_pooled_gain‘ or ‘prob_pick_avg_gain‘
are likely to benefit from deeper trees (larger ‘max_depth‘), but deeper trees can
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result in much slower model fitting and predictions.
If using pooled gain, one might want to substitute ‘max_depth‘ with ‘min_gain‘.

ncols_per_tree Number of columns to use (have as potential candidates for splitting at each iter-
ation) in each tree, somewhat similar to the ’mtry’ parameter of random forests.
In general, this is only relevant when using non-random splits and/or weighted
column choices.
If passing a number between zero and one, will assume it means taking a sample
size that represents that proportion of the columns in the data. Note that, if
passing exactly 1, will assume it means taking 100% of the columns, rather than
taking a single column.
If passing ‘NULL‘, will use the full number of columns in the data.

prob_pick_pooled_gain

his parameter indicates the probability of choosing the threshold on which to
split a variable (with ‘ndim=1‘) or a linear combination of variables (when us-
ing ‘ndim>1‘) as the threshold that maximizes a pooled standard deviation gain
criterion (see references [9] and [11]) on the same variable or linear combina-
tion, similarly to regression trees such as CART.
If using ‘ntry>1‘, will try several variables or linear combinations thereof and
choose the one in which the largest standardized gain can be achieved.
For categorical variables with ‘ndim=1‘, will use shannon entropy instead (like
in [7]).
Compared to a simple averaged gain, this tends to result in more evenly-divided
splits and more clustered groups when they are smaller. Recommended to pass
higher values when used for imputation of missing values. When used for outlier
detection, datasets with multimodal distributions usually see better performance
under this type of splits.
Note that, since this makes the trees more even and thus it takes more steps to
produce isolated nodes, the resulting object will be heavier. When splits are
not made according to any of ‘prob_pick_avg_gain‘, ‘prob_pick_pooled_gain‘,
‘prob_pick_full_gain‘, ‘prob_pick_dens‘, both the column and the split point are
decided at random. Note that, if passing value 1 (100%) with no sub-sampling
and using the single-variable model, every single tree will have the exact same
splits.
Be aware that ‘penalize_range‘ can also have a large impact when using ‘prob_pick_pooled_gain‘.
Under this option, models are likely to produce better results when increasing
‘max_depth‘. Alternatively, one can also control the depth through ‘min_gain‘
(for which one might want to set ‘max_depth=NULL‘).
Important detail: if using any of ‘prob_pick_avg_gain‘ or ‘prob_pick_pooled_gain‘,
‘prob_pick_full_gain‘, ‘prob_pick_dens‘, the distribution of outlier scores is un-
likely to be centered around 0.5.

prob_pick_avg_gain

This parameter indicates the probability of choosing the threshold on which to
split a variable (with ‘ndim=1‘) or a linear combination of variables (when using
‘ndim>1‘) as the threshold that maximizes an averaged standard deviation gain
criterion (see references [4] and [11]) on the same variable or linear combina-
tion.
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If using ‘ntry>1‘, will try several variables or linear combinations thereof and
choose the one in which the largest standardized gain can be achieved.
For categorical variables with ‘ndim=1‘, will take the expected standard devia-
tion that would be gotten if the column were converted to numerical by assigning
to each category a random number ‘~ Unif(0, 1)‘ and calculate gain with those
assumed standard deviations.
Compared to a pooled gain, this tends to result in more cases in which a single
observation or very few of them are put into one branch. Typically, datasets
with outliers defined by extreme values in some column more or less inde-
pendently of the rest, usually see better performance under this type of split.
Recommended to use sub-samples (parameter ‘sample_size‘) when passing this
parameter. Note that, since this will create isolated nodes faster, the resulting
object will be lighter (use less memory).
When splits are not made according to any of ‘prob_pick_avg_gain‘, ‘prob_pick_pooled_gain‘,
‘prob_pick_full_gain‘, ‘prob_pick_dens‘, both the column and the split point are
decided at random. Default setting for [1], [2], [3] is zero, and default for [4] is
1. This is the randomization parameter that can be passed to the author’s origi-
nal code in [5], but note that the code in [5] suffers from a mathematical error in
the calculation of running standard deviations, so the results from it might not
match with this library’s.
Be aware that, if passing a value of 1 (100%) with no sub-sampling and using
the single-variable model, every single tree will have the exact same splits.
Under this option, models are likely to produce better results when increasing
‘max_depth‘.
Important detail: if using either ‘prob_pick_avg_gain‘, ‘prob_pick_pooled_gain‘,
‘prob_pick_full_gain‘, ‘prob_pick_dens‘, the distribution of outlier scores is un-
likely to be centered around 0.5.

prob_pick_full_gain

This parameter indicates the probability of choosing the threshold on which to
split a variable (with ‘ndim=1‘) or a linear combination of variables (when using
‘ndim>1‘) as the threshold that minimizes the pooled sums of variances of all
columns (or a subset of them if using ‘ncols_per_tree‘).
In general, this is much slower to evaluate than the other gain types, and does
not tend to lead to better results. When using this option, one might want to
use a different scoring metric (particulatly ‘"density"‘, ‘"boxed_density2"‘ or
‘"boxed_ratio"‘). Note that the calculations are all done through the (exact)
sorted-indices approach, while is much slower than the (approximate) histogram
approach used by other decision tree software.
Be aware that the data is not standardized in any way for the variance calcula-
tions, thus the scales of features will make a large difference under this option,
which might not make it suitable for all types of data.
his option is not compatible with categorical data, and ‘min_gain‘ does not apply
to it.
When splits are not made according to any of ‘prob_pick_avg_gain‘, ‘prob_pick_pooled_gain‘,
‘prob_pick_full_gain‘, ‘prob_pick_dens‘, both the column and the split point are
decided at random. Default setting for references [1], [2], [3], [4] is zero.
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prob_pick_dens This parameter indicates the probability of choosing the threshold on which to
split a variable (with ‘ndim=1‘) or a linear combination of variables (when using
‘ndim>1‘) as the threshold that maximizes the pooled densities of the branch
distributions.
The ‘min_gain‘ option does not apply to this type of splits.
When splits are not made according to any of ‘prob_pick_avg_gain‘, ‘prob_pick_pooled_gain‘,
‘prob_pick_full_gain‘, ‘prob_pick_dens‘, both the column and the split point are
decided at random. Default setting for [1], [2], [3], [4] is zero.

prob_pick_col_by_range

When using ‘ndim=1‘, this denotes the probability of choosing the column to
split with a probability proportional to the range spanned by each column within
a node as proposed in reference [12].
When using ‘ndim>1‘, this denotes the probability of choosing columns to cre-
ate a hyperplane with a probability proportional to the range spanned by each
column within a node.
This option is not compatible with categorical data. If passing column weights,
the effect will be multiplicative.
Be aware that the data is not standardized in any way for the range calculations,
thus the scales of features will make a large difference under this option, which
might not make it suitable for all types of data.
If there are infinite values, all columns having infinite values will be treated as
having the same weight, and will be chosen before every other column with
non-infinite values.
Note that the proposed RRCF model from [12] uses a different scoring metric
for producing anomaly scores, while this library uses isolation depth regardless
of how columns are chosen, thus results are likely to be different from those
of other software implementations. Nevertheless, as explored in [11], isola-
tion depth as a scoring metric typically provides better results than the "co-
displacement" metric from [12] under these split types.

prob_pick_col_by_var

When using ‘ndim=1‘, this denotes the probability of choosing the column to
split with a probability proportional to the variance of each column within a
node.
When using ‘ndim>1‘, this denotes the probability of choosing columns to cre-
ate a hyperplane with a probability proportional to the variance of each column
within a node.
For categorical data, it will calculate the expected variance if the column were
converted to numerical by assigning to each category a random number ‘~ Unif(0,
1)‘, which depending on the number of categories and their distribution, pro-
duces numbers typically a bit smaller than standardized numerical variables.
Note that when using sparse matrices, the calculation of variance will rely on a
procedure that uses sums of squares, which has less numerical precision than the
calculation used for dense inputs, and as such, the results might differ slightly.
Be aware that this calculated variance is not standardized in any way, so the
scales of features will make a large difference under this option.
If passing column weights, the effect will be multiplicative.
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If passing a ‘missing_action‘ different than "fail", infinite values will be ignored
for the variance calculation. Otherwise, all columns with infinite values will
have the same probability and will be chosen before columns with non-infinite
values.

prob_pick_col_by_kurt

When using ‘ndim=1‘, this denotes the probability of choosing the column to
split with a probability proportional to the kurtosis of each column within a
node (unlike the option ‘weigh_by_kurtosis‘ which calculates this metric only
at the root).
When using ‘ndim>1‘, this denotes the probability of choosing columns to cre-
ate a hyperplane with a probability proportional to the kurtosis of each column
within a node.
For categorical data, it will calculate the expected kurtosis if the column were
converted to numerical by assigning to each category a random number ‘~ Unif(0,
1)‘.
Note that when using sparse matrices, the calculation of kurtosis will rely on a
procedure that uses sums of squares and higher-power numbers, which has less
numerical precision than the calculation used for dense inputs, and as such, the
results might differ slightly.
If passing column weights, the effect will be multiplicative. This option is not
compatible with ‘weigh_by_kurtosis‘.
If passing a ‘missing_action‘ different than "fail", infinite values will be ignored
for the kurtosis calculation. Otherwise, all columns with infinite values will
have the same probability and will be chosen before columns with non-infinite
values.
If using ‘missing_action="impute"‘, the calculation of kurtosis will not use im-
puted values in order not to favor columns with missing values (which would
increase kurtosis by all having the same central value).
Be aware that kurtosis can be a rather slow metric to calculate.

min_gain Minimum gain that a split threshold needs to produce in order to proceed with
a split. Only used when the splits are decided by a variance gain criterion
(‘prob_pick_pooled_gain‘ or ‘prob_pick_avg_gain‘, but not ‘prob_pick_full_gain‘
nor ‘prob_pick_dens‘). If the highest possible gain in the evaluated splits at a
node is below this threshold, that node becomes a terminal node.
This can be used as a more sophisticated depth control when using pooled gain
(note that ‘max_depth‘ still applies on top of this heuristic).

missing_action How to handle missing data at both fitting and prediction time. Options are
• ‘"divide"‘ (for the single-variable model only, recommended), which will

follow both branches and combine the result with the weight given by the
fraction of the data that went to each branch when fitting the model.

• ‘"impute"‘, which will assign observations to the branch with the most
observations in the single-variable model, or fill in missing values with
the median of each column of the sample from which the split was made
in the extended model (recommended for it) (but note that the calcula-
tion of medians does not take into account sample weights when using
‘weights_as_sample_prob=FALSE‘). When using ‘ndim=1‘, gain calcu-
lations will use median-imputed values for missing data under this option.
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• ‘"fail"‘, which will assume there are no missing values and will trigger
undefined behavior if it encounters any.

In the extended model, infinite values will be treated as missing. Passing ‘"fail"‘
will produce faster fitting and prediction times along with decreased model ob-
ject sizes.
Models from references [1], [2], [3], [4] correspond to ‘"fail"‘ here.
Typically, models with ‘ndim>1‘ are less affected by missing data that models
with ‘ndim=1‘.

new_categ_action

What to do after splitting a categorical feature when new data that reaches that
split has categories that the sub-sample from which the split was done did not
have. Options are

• ‘"weighted"‘ (for the single-variable model only, recommended), which
will follow both branches and combine the result with weight given by the
fraction of the data that went to each branch when fitting the model.

• ‘"impute"‘ (for the extended model only, recommended) which will assign
them the median value for that column that was added to the linear combi-
nation of features (but note that this median calculation does not use sample
weights when using ‘weights_as_sample_prob=FALSE‘).

• ‘"smallest"‘, which in the single-variable case will assign all observations
with unseen categories in the split to the branch that had fewer observa-
tions when fitting the model, and in the extended case will assign them the
coefficient of the least common category.

• ‘"random"‘, which will assing a branch (coefficient in the extended model)
at random for each category beforehand, even if no observations had that
category when fitting the model. Note that this can produce biased results
when deciding splits by a gain criterion.
Important: under this option, if the model is fitted to a ‘data.frame‘, when
calling ‘predict‘ on new data which contains new factor levels (unseen in
the data to which the model was fitted), they will be added to the model’s
state on-the-fly. This means that, if calling ‘predict‘ on data which has new
categories, there might be inconsistencies in the results if predictions are
done in parallel or if passing the same data in batches or with different row
orders.

Ignored when passing ‘categ_split_type‘ = ‘"single_categ"‘.
categ_split_type

Whether to split categorical features by assigning sub-sets of them to each branch
(by passing ‘"subset"‘ there), or by assigning a single category to a branch and
the rest to the other branch (by passing ‘"single_categ"‘ here). For the extended
model, whether to give each category a coefficient (‘"subset"‘), or only one
while the rest get zero (‘"single_categ"‘).

all_perm When doing categorical variable splits by pooled gain with ‘ndim=1‘ (single-
variable model), whether to consider all possible permutations of variables to
assign to each branch or not. If ‘FALSE‘, will sort the categories by their fre-
quency and make a grouping in this sorted order. Note that the number of combi-
nations evaluated (if ‘TRUE‘) is the factorial of the number of present categories
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in a given column (minus 2). For averaged gain, the best split is always to put
the second most-frequent category in a separate branch, so not evaluating all
permutations (passing ‘FALSE‘) will make it possible to select other splits that
respect the sorted frequency order. Ignored when not using categorical variables
or not doing splits by pooled gain or using ‘ndim>1‘.

coef_by_prop In the extended model, whether to sort the randomly-generated coefficients for
categories according to their relative frequency in the tree node. This might pro-
vide better results when using categorical variables with too many categories,
but is not recommended, and not reflective of real "categorical-ness". Ignored
for the single-variable model (‘ndim=1‘) and/or when not using categorical vari-
ables.

recode_categ Whether to re-encode categorical variables even in case they are already passed
as factors. This is recommended as it will eliminate potentially redundant cat-
egorical levels if they have no observations, but if the categorical variables are
already of type ‘factor‘ with only the levels that are present, it can be skipped for
slightly faster fitting times. You’ll likely want to pass ‘FALSE‘ here if merging
several models into one through isotree.append.trees.

weights_as_sample_prob

If passing sample (row) weights when fitting the model, whether to consider
those weights as row sampling weights (i.e. the higher the weights, the more
likely the observation will end up included in each tree sub-sample), or as dis-
tribution density weights (i.e. putting a weight of two is the same as if the row
appeared twice, thus higher weight makes it less of an outlier, but does not give
it a higher chance of being sampled if the data uses sub-sampling).

sample_with_replacement

Whether to sample rows with replacement or not (not recommended). Note that
distance calculations, if desired, don’t work when there are duplicate rows.
This option is not compatible with ‘output_score‘, ‘output_dist‘, ‘output_imputations‘.

penalize_range Whether to penalize (add -1 to the terminal depth) observations at prediction
time that have a value of the chosen split variable (linear combination in ex-
tended model) that falls outside of a pre-determined reasonable range in the data
being split (given by ‘2 * range‘ in data and centered around the split point),
as proposed in reference [4] and implemented in the authors’ original code in
reference [5]. Not used in single-variable model when splitting by categorical
variables.
This option is not supported when using density-based outlier scoring metrics.
It’s recommended to turn this off for faster predictions on sparse CSC matrices.
Note that this can make a very large difference in the results when using ‘prob_pick_pooled_gain‘.
Be aware that this option can make the distribution of outlier scores a bit differ-
ent (i.e. not centered around 0.5).

standardize_data

Whether to standardize the features at each node before creating alinear combi-
nation of them as suggested in [4]. This is ignored when using ‘ndim=1‘.

scoring_metric Metric to use for determining outlier scores (see reference [13]). Options are:
• "depth": Will use isolation depth as proposed in reference [1]. This is typ-

ically the safest choice and plays well with all model types offered by this
library.
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• "density": Will set scores for each terminal node as the ratio between the
fraction of points in the sub-sample that end up in that node and the fraction
of the volume in the feature space which defines the node according to the
splits that lead to it. If using ‘ndim=1‘, for categorical variables, this is
defined in terms of number of categories that go towards each side of the
split divided by number of categories in the observations that reached that
node.
The standardized outlier score from density for a given observation is cal-
culated as the negative of the logarithm of the geometric mean from the per-
tree densities, which unlike the standardized score produced from depth, is
unbounded, but just like the standardized score from depth, has a natural
threshold for definining outlierness, which in this case is zero is instead
of 0.5. The non-standardized outlier score is calculated as the geometric
mean, while the per-tree scores are calculated as the density values.
This might lead to better predictions when using ‘ndim=1‘, particularly in
the presence of categorical variables. Note however that using density re-
quires more trees for convergence of scores (i.e. good results) compared to
isolation-based metrics.
This option is incompatible with ‘penalize_range‘.

• "adj_depth": Will use an adjusted isolation depth that takes into account
the number of points that go to each side of a given split vs. the fraction of
the range of that feature that each side of the split occupies, by a metric as
follows:
d = 2

(1+ 1
2p

Where p is defined as:
p = ns

nt
/ rs
rt

With nt being the number of points that reach a given node, ns the num-
ber of points that are sent to a given side of the split/branch at that node,
rt being the range (maximum minus minimum) of the splitting feature or
linear combination among the points that reached the node, and rs being
the range of the same feature or linear combination among the points that
are sent to this same side of the split/branch. This makes each split add
a number between zero and two to the isolation depth, with this number’s
probabilistic distribution being centered around 1 and thus the expected iso-
lation depth remaing the same as in the original ‘"depth"‘ metric, but having
more variability around the extremes.
Scores (standardized, non-standardized, per-tree) are aggregated in the same
way as for ‘"depth"‘.
This might lead to better predictions when using ‘ndim=1‘, particularly
in the prescence of categorical variables and for smaller datasets, and for
smaller datasets, might make sense to combine it with ‘penalize_range=TRUE‘.

• "adj_density": Will use the same metric from ‘"adj_depth"‘, but applied
multiplicatively instead of additively. The expected value for this adjusted
density is not strictly the same as for isolation, but using the expected isola-
tion depth as standardizing criterion tends to produce similar standardized
score distributions (centered around 0.5).
Scores (standardized, non-standardized, per-tree) are aggregated in the same
way as for ‘"depth"‘.
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This option is incompatible with ‘penalize_range‘.

• "boxed_ratio": Will set the scores for each terminal node as the ratio be-
tween the volume of the boxed feature space for the node as defined by
the smallest and largest values from the split conditions for each column
(bounded by the variable ranges in the sample) and the variable ranges in
the tree sample. If using ‘ndim=1‘, for categorical variables this is defined
in terms of number of categories. If using ‘ndim=>1‘, this is defined in
terms of the maximum achievable value for the splitting linear combina-
tion determined from the minimum and maximum values for each variable
among the points in the sample, and as such, it has a rather different mean-
ing compared to the score obtained with ‘ndim=1‘ - boxed ratio scores with
‘ndim>1‘ typically provide very poor quality results and this metric is thus
not recommended to use in the extended model. With ‘ndim>1‘, it also has
a tendency of producing too small values which round to zero.
The standardized outlier score from boxed ratio for a given observation is
calculated simply as the the average from the per-tree boxed ratios. This
metric has a lower bound of zero and a theorical upper bound of one, but
in practice the scores tend to be very small numbers close to zero, and
its distribution across different datasets is rather unpredictable. In order to
keep rankings comparable with the rest of the metrics, the non-standardized
outlier scores are calculated as the negative of the average instead. The per-
tree scores are calculated as the ratios.
This metric can be calculated in a fast-but-not-so-precise way, and in a low-
but-precise way, which is controlled by parameter ‘fast_bratio‘. Usually,
both should give the same results, but in some fatasets, the fast way can
lead to numerical inaccuracies due to roundoffs very close to zero.
This metric might lead to better predictions in datasets with many rows
when using ‘ndim=1‘ and a relatively small ‘sample_size‘. Note that more
trees are required for convergence of scores when using this metric. In some
datasets, this metric might result in very bad predictions, to the point that
taking its inverse produces a much better ranking of outliers.
This option is incompatible with ‘penalize_range‘.

• "boxed_density2": Will set the score as the ratio between the fraction of
points within the sample that end up in a given terminal node and the boxed
ratio metric.
Aggregation of scores (standardized, non-standardized, per-tree) is done in
the same way as for density, and it also has a natural threshold at zero for
determining outliers and inliers.
This metric is typically usable with ‘ndim>1‘, but tends to produce much
bigger values compared to ‘ndim=1‘.
Albeit unintuitively, in many datasets, one can usually get better results
with metric ‘"boxed_density"‘ instead.
The calculation of this metric is also controlled by ‘fast_bratio‘.
This option is incompatible with ‘penalize_range‘.

• "boxed_density": Will set the score as the ratio between the fraction of
points within the sample that end up in a given terminal node and the
ratio between the boxed volume of the feature space in the sample and
the boxed volume of a node given by the split conditions (inverse as in
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‘"boxed_density2"‘). This metric does not have any theoretical or intuitive
justification behind its existence, and it is perhaps ilogical to use it as a
scoring metric, but tends to produce good results in some datasets.
The standardized outlier scores are defined as the negative of the geometric
mean of this metric, while the non-standardized scores are the geometric
mean, and the per-tree scores are simply the ’density’ values.
The calculation of this metric is also controlled by ‘fast_bratio‘.
This option is incompatible with ‘penalize_range‘.

fast_bratio When using "boxed" metrics for scoring, whether to calculate them in a fast way
through cumulative sum of logarithms of ratios after each split, or in a slower
way as sum of logarithms of a single ratio per column for each terminal node.
Usually, both methods should give the same results, but in some datasets, par-
ticularly when variables have too small or too large ranges, the first method can
be prone to numerical inaccuracies due to roundoff close to zero.
Note that this does not affect calculations for models with ‘ndim>1‘, since given
the split types, the calculation for them is different.

weigh_by_kurtosis

Whether to weigh each column according to the kurtosis obtained in the sub-
sample that is selected for each tree as briefly proposed in reference [1]. Note
that this is only done at the beginning of each tree sample. For categorical
columns, will calculate expected kurtosis if the column were converted to nu-
merical by assigning to each category a random number ‘~ Unif(0, 1)‘.
Note that when using sparse matrices, the calculation of kurtosis will rely on a
procedure that uses sums of squares and higher-power numbers, which has less
numerical precision than the calculation used for dense inputs, and as such, the
results might differ slightly.
Using this option makes the model more likely to pick the columns that have
anomalous values when viewed as a 1-d distribution, and can bring a large im-
provement in some datasets.
This is intended as a cheap feature selector, while the parameter ‘prob_pick_col_by_kurt‘
provides the option to do this at each node in the tree for a different overall type
of model.
If passing column weights or using weighted column choices proportional to
some other metric (‘prob_pick_col_by_range‘, ‘prob_pick_col_by_var‘), the ef-
fect will be multiplicative.
If passing ‘missing_action="fail"‘ and the data has infinite values, columns with
rows having infinite values will get a weight of zero. If passing a different value
for missing action, infinite values will be ignored in the kurtosis calculation.
If using ‘missing_action="impute"‘, the calculation of kurtosis will not use im-
puted values in order not to favor columns with missing values (which would
increase kurtosis by all having the same central value).

coefs For the extended model, whether to sample random coefficients according to a
normal distribution ‘~ N(0, 1)‘ (as proposed in reference [4]) or according to a
uniform distribution ‘~ Unif(-1, +1)‘ as proposed in reference [3]. Ignored for
the single-variable model. Note that, for categorical variables, the coefficients
will be sampled ~ N (0,1) regardless - in order for both types of variables to
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have transformations in similar ranges (which will tend to boost the importance
of categorical variables), pass ‘"uniform"‘ here.

assume_full_distr

When calculating pairwise distances (see reference [8]), whether to assume that
the fitted model represents a full population distribution (will use a standardiz-
ing criterion assuming infinite sample as in reference [6], and the results of the
similarity between two points at prediction time will not depend on the pres-
cence of any third point that is similar to them, but will differ more compared to
the pairwise distances between points from which the model was fit). If passing
‘FALSE‘, will calculate pairwise distances as if the new observations at predic-
tion time were added to the sample to which each tree was fit, which will make
the distances between two points potentially vary according to other newly in-
troduced points. This will not be assumed when the distances are calculated as
the model is being fit (see documentation for parameter ‘output_dist‘).
This was added for experimentation purposes only and it’s not recommended
to pass ‘FALSE‘. Note that when calculating distances using a tree indexer
(after calling isotree.build.indexer), there might be slight discrepancies between
the numbers produced with or without the indexer due to what are considered
"additional" observations in this calculation.

build_imputer Whether to construct missing-value imputers so that later this same model could
be used to impute missing values of new (or the same) observations. Be aware
that this will significantly increase the memory requirements and serialized ob-
ject sizes. Note that this is not related to ’missing_action’ as missing values
inside the model are treated differently and follow their own imputation or divi-
sion strategy.

output_imputations

Whether to output imputed missing values for ‘data‘. Passing ‘TRUE‘ here
will force ‘build_imputer‘ to ‘TRUE‘. Note that, for sparse matrix inputs, even
though the output will be sparse, it will generate a dense representation of each
row with missing values.
This is not supported when using sub-sampling, and if sub-sampling is specified,
will override it using the full number of rows.

min_imp_obs Minimum number of observations with which an imputation value can be pro-
duced. Ignored if passing ‘build_imputer‘ = ‘FALSE‘.

depth_imp How to weight observations according to their depth when used for imputing
missing values. Passing ‘"higher"‘ will weigh observations higher the further
down the tree (away from the root node) the terminal node is, while ‘"lower"‘
will do the opposite, and ‘"same"‘ will not modify the weights according to
node depth in the tree. Implemented for testing purposes and not recommended
to change from the default. Ignored when passing ‘build_imputer‘ = ‘FALSE‘.

weigh_imp_rows How to weight node sizes when used for imputing missing values. Passing
‘"inverse"‘ will weigh a node inversely proportional to the number of obser-
vations that end up there, while ‘"prop"‘ will weight them heavier the more
observations there are, and ‘"flat"‘ will weigh all nodes the same in this regard
regardless of how many observations end up there. Implemented for testing pur-
poses and not recommended to change from the default. Ignored when passing
‘build_imputer‘ = ‘FALSE‘.



isolation.forest 17

output_score Whether to output outlierness scores for the input data, which will be calculated
as the model is being fit and it’s thus faster. Cannot be done when using sub-
samples of the data for each tree (in such case will later need to call the ‘predict‘
function on the same data). If using ‘penalize_range‘, the results from this might
differet a bit from those of ‘predict‘ called after.
This is not supported when using sub-sampling, and if sub-sampling is specified,
will override it using the full number of rows.

output_dist Whether to output pairwise distances for the input data, which will be calculated
as the model is being fit and it’s thus faster. Cannot be done when using sub-
samples of the data for each tree (in such case will later need to call the ‘predict‘
function on the same data). If using ‘penalize_range‘, the results from this might
differ a bit from those of ‘predict‘ called after.
This is not supported when using sub-sampling, and if sub-sampling is specified,
will override it using the full number of rows.
Note that it might be much faster to calculate distances through a fitted model
object with isotree.build.indexer instead or calculating them while fitting like
this.

square_dist If passing ‘output_dist‘ = ‘TRUE‘, whether to return a full square matrix or just
the upper-triangular part, in which the entry for pair (i,j) with 1 <= i < j <= n is
located at position p(i, j) = ((i - 1) * (n - i/2) + j - i).

sample_weights Sample observation weights for each row of ‘data‘, with higher weights indicat-
ing either higher sampling probability (i.e. the observation has a larger effect on
the fitted model, if using sub-samples), or distribution density (i.e. if the weight
is two, it has the same effect of including the same data point twice), accord-
ing to parameter ‘weights_as_sample_prob‘. Not supported when calculating
pairwise distances while the model is being fit (done by passing ‘output_dist‘ =
‘TRUE‘).
If ‘data‘ is a ‘data.frame‘ and the variable passed here matches to the name of a
column in ‘data‘ (with or without enclosing ‘sample_weights‘ in quotes), it will
assume the weights are to be taken as that column name.

column_weights Sampling weights for each column in ‘data‘. Ignored when picking columns by
deterministic criterion. If passing ‘NULL‘, each column will have a uniform
weight. If used along with kurtosis weights, the effect is multiplicative.
Note that, if passing a data.frame with both numeric and categorical columns,
the column names must not be repeated, otherwise the column weights passed
here will not end up matching. If passing a ‘data.frame‘ to ‘data‘, will assume
the column order is the same as in there, regardless of whether the entries passed
to ‘column_weights‘ are named or not.

lazy_serialization

Whether to use a lazy serialization mechanism for the model C++ objects through
the ALTREP system, which would only call the serialization and de-serialization
methods when needed.
Passing ’TRUE’ here has the following effects:

• Fitting the model will not immediately trigger serialization of the model
object, not will it need to allocate extra memory for the serialized bytes -
instead, these serialized bytes will only get materialized when calling seri-
alization functions such as ‘save‘ or ‘saveRDS‘.
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• The resulting object will not be possible to serialize with library ’qs’ (‘qs::qsave‘),
nor with other serialization libraries that do not work with R’s ALTREP
system.

• If restoring a session with saved objects or loading serialized models through
‘load‘, if there is not enough memory to de-serialize the model object, this
will be manifested as silent failures in which the object simply disappears
from the environment without leaving any trace or error message.

• When reading a model through ‘readRDS‘, if there’s an error (such as ’in-
sufficient memory’), it will fail to load the R object at all.

• Since this uses a workaround for which the ALTREP system was not ini-
tially designed, calling methods such as ‘str‘ on the resulting object will
result in errors being displayed when it comes to the external pointer fields.

If passing ’FALSE’, on the other hand:

• Immediately after fitting the model, this fitted model will be serialized into
memory-contiguous raw bytes from which the C++ object can then be re-
constructed.

• If the model gets de-serialized from a saved file (for example through ’load’,
’readRDS’, ’qs::qread’, or by restarting R sessions), the underlying C++
model object will be lost, and as such will need to be restored (de-serialized
from the serialized bytes) the first time a method like ‘predict‘ gets called
on it (which means the first call will be slower and will result in additional
memory allocations).

seed Seed that will be used for random number generation.
use_long_double

Whether to use ’long double’ (extended precision) type for more precise cal-
culations about standard deviations, means, ratios, weights, gain, and other po-
tential aggregates. This makes such calculations accurate to a larger number
of decimals (provided that the compiler used has wider long doubles than dou-
bles) and it is highly recommended to use when the input data has a number of
rows or columns exceeding 253 (an unlikely scenario), and also highly recom-
mended to use when the input data has problematic scales (e.g. numbers that
differ from each other by something like 10−100 or columns that include values
like 10100, 10−10, and 10−100 and still need to be sensitive to a difference of
10−10), but will make the calculations slower, the more so in platforms in which
’long double’ is a software-emulated type (e.g. Power8 platforms). Note that
some platforms (most notably windows with the msvc compiler) do not make
any difference between ’double’ and ’long double’.
If ’long double’ is not going to be used, the library can be compiled without
support for it (making the library size smaller) by defining an environment
variable ‘NO_LONG_DOUBLE‘ before installing this package (e.g. through
‘Sys.setenv("NO_LONG_DOUBLE" = "1")‘ before running the ‘install.packages‘
command). If R itself was compiled without ’long double’ support, this library
will follow suit and disable long double too.
This option is not available on Windows, due to lack of support in some com-
pilers (e.g. msvc) and lack of thread-safety in the calculations in others (e.g.
mingw).
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nthreads Number of parallel threads to use. Note that, the more threads, the more memory
will be allocated, even if the thread does not end up being used. Be aware
that most of the operations are bound by memory bandwidth, which means that
adding more threads will not result in a linear speed-up. For some types of data
(e.g. large sparse matrices with small sample sizes), adding more threads might
result in only a very modest speed up (e.g. 1.5x faster with 4x more threads),
even if all threads look fully utilized.

Details

If requesting outlier scores or depths or separation/distance while fitting the model and using multi-
ple threads, there can be small differences in the predicted scores/depth/separation/distance between
runs due to roundoff error.

Value

If passing ‘output_score‘ = ‘FALSE‘, ‘output_dist‘ = ‘FALSE‘, and ‘output_imputations‘ = ‘FALSE‘
(the defaults), will output an ‘isolation_forest‘ object from which ‘predict‘ method can then be
called on new data.

If passing ‘TRUE‘ to any of the former options, will output a list with entries:

• ‘model‘: the ‘isolation_forest‘ object from which new predictions can be made.

• ‘scores‘: a vector with the outlier score for each inpuit observation (if passing ‘output_score‘
= ‘TRUE‘).

• ‘dist‘: the distances (either a ‘dist‘ object or a square matrix), if passing ‘output_dist‘ =
‘TRUE‘.

• ‘imputed‘: the input data with missing values imputed according to the model (if passing
‘output_imputations‘ = ‘TRUE‘).

Matching models from references

Shorthands for parameter combinations that match some of the references:

• ’iForest’ (reference [1]): ‘ndim=1‘, ‘sample_size=256‘, ‘max_depth=8‘, ‘ntrees=100‘, ‘miss-
ing_action="fail"‘.

• ’EIF’ (reference [3]): ‘ndim=2‘, ‘sample_size=256‘, ‘max_depth=8‘, ‘ntrees=100‘, ‘miss-
ing_action="fail"‘, ‘coefs="uniform"‘, ‘standardize_data=False‘ (plus standardizing the data
before passing it).

• ’SCiForest’ (reference [4]): ‘ndim=2‘, ‘sample_size=256‘, ‘max_depth=8‘, ‘ntrees=100‘, ‘miss-
ing_action="fail"‘, ‘coefs="normal"‘, ‘ntry=10‘, ‘prob_pick_avg_gain=1‘, ‘penalize_range=True‘.
Might provide much better results with ‘max_depth=NULL‘ despite the reference’s recom-
mendation.

• ’FCF’ (reference [11]): ‘ndim=2‘, ‘sample_size=256‘, ‘max_depth=NULL‘, ‘ntrees=200‘,
‘missing_action="fail"‘, ‘coefs="normal"‘, ‘ntry=1‘, ‘prob_pick_pooled_gain=1‘. Might pro-
vide similar or better results with ‘ndim=1‘ and/or sample size as low as 32. For the FCF
model aimed at imputing missing values, might give better results with ‘ntry=10‘ or higher
and much larger sample sizes.
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• ’RRCF’ (reference [12]): ‘ndim=1‘, ‘prob_pick_col_by_range=1‘, ‘sample_size=256‘ or more,
‘max_depth=NULL‘, ‘ntrees=100‘ or more, ‘missing_action="fail"‘. Note however that ref-
erence [12] proposed a different method for calculation of anomaly scores, while this library
uses isolation depth just like for ’iForest’, so results might differ significantly from those of
other libraries. Nevertheless, experiments in reference [11] suggest that isolation depth might
be a better scoring metric for this model.

Model serving considerations

If the model is built with ‘nthreads>1‘, the prediction function predict.isolation_forest will use
OpenMP for parallelization. In a linux setup, one usually has GNU’s "gomp" as OpenMP as back-
end, which will hang when used in a forked process - for example, if one tries to call this pre-
diction function from ‘RestRserve‘, which uses process forking for parallelization, it will cause
the whole application to freeze. A potential fix in these cases is to pass ‘nthreads=1‘ to ‘predict‘,
or to set the number of threads to 1 in the model object (e.g. ‘model$nthreads <- 1L‘ or calling
isotree.set.nthreads), or to compile this library without OpenMP (requires manually altering the
‘Makevars‘ file), or to use a non-GNU OpenMP backend (such as LLVM’s ’libomp’. This should
not be an issue when using this library normally in e.g. an RStudio session.

The R objects that hold the models contain heap-allocated C++ objects which do not map to R
types and which thus do not survive serializations the same way R objects do. In order to make
model objects serializable (i.e. usable with ‘save‘, ‘saveRDS‘, and similar), the package offers two
mechanisms: (a) a ’lazy_serialization’ option which uses the ALTREP system as a workaround,
by defining classes with serialization methods but without datapointer methods (see the docs for
‘lazy_serialization‘ for more info); (b) a more theoretically correct way in which raw bytes are
produced alongside the model and from which the C++ objects can be reconstructed. When us-
ing the lazy serialization system, C++ objects are restored automatically on load and the serial-
ized bytes then discarded, but this is not the case when using the serialized bytes approach. For
model serving, one would usually want to drop these serialized bytes after having loaded a model
through ‘readRDS‘ or similar (note that reconstructing the C++ object will first require calling
isotree.restore.handle, which is done automatically when calling ‘predict‘ and similar), as they can
increase memory usage by a large amount. These redundant raw bytes can be dropped as follows:
‘model$cpp_objects$model$ser <- NULL‘ (and an additional ‘model$cpp_objects$imputer$ser <-
NULL‘ when using ‘build_imputer=TRUE‘, and ‘model$cpp_objects$indexer$ser <- NULL‘ when
building a node indexer). After that, one might want to force garbage collection through ‘gc()‘.

Usually, for serving purposes, one wants a setup as minimalistic as possible (e.g. smaller docker
images). This library can be made smaller and faster to compile by disabling some features - partic-
ularly, the library will by default build with support for calculation of aggregated metrics (such as
standard deviations) in ’long double’ precision (an extended precision type), which is a functionality
that’s unlikely to get used (default is not to use this type as it is slower, and calculations done in the
‘predict‘ function do not use it for anything). Support for ’long double’ can be disable at compile
time by setting up an environment variable ‘NO_LONG_DOUBLE‘ before installing the package
(e.g. by issuing command ‘Sys.setenv("NO_LONG_DOUBLE" = "1")‘ before ‘install.packages‘).

References

1. Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation forest." 2008 Eighth IEEE
International Conference on Data Mining. IEEE, 2008.



isolation.forest 21

2. Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation-based anomaly detection." ACM
Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3.

3. Hariri, Sahand, Matias Carrasco Kind, and Robert J. Brunner. "Extended Isolation Forest."
arXiv preprint arXiv:1811.02141 (2018).

4. Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "On detecting clustered anomalies using
SCiForest." Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, Berlin, Heidelberg, 2010.

5. https://sourceforge.net/projects/iforest/

6. https://math.stackexchange.com/questions/3388518/expected-number-of-paths-required-to-separate-elements-in-a-binary-tree

7. Quinlan, J. Ross. "C4. 5: programs for machine learning." Elsevier, 2014.

8. Cortes, David. "Distance approximation using Isolation Forests." arXiv preprint arXiv:1910.12362
(2019).

9. Cortes, David. "Imputing missing values with unsupervised random trees." arXiv preprint
arXiv:1911.06646 (2019).

10. https://math.stackexchange.com/questions/3333220/expected-average-depth-in-random-binary-tree-constructed-top-to-bottom

11. Cortes, David. "Revisiting randomized choices in isolation forests." arXiv preprint arXiv:2110.13402
(2021).

12. Guha, Sudipto, et al. "Robust random cut forest based anomaly detection on streams." Inter-
national conference on machine learning. PMLR, 2016.

13. Cortes, David. "Isolation forests: looking beyond tree depth." arXiv preprint arXiv:2111.11639
(2021).

14. Ting, Kai Ming, Yue Zhu, and Zhi-Hua Zhou. "Isolation kernel and its effect on SVM."
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. 2018.

See Also

predict.isolation_forest, isotree.add.tree isotree.restore.handle

Examples

### Example 1: detect an obvious outlier
### (Random data from a standard normal distribution)
library(isotree)
set.seed(1)
m <- 100
n <- 2
X <- matrix(rnorm(m * n), nrow = m)

### Will now add obvious outlier point (3, 3) to the data
X <- rbind(X, c(3, 3))

### Fit a small isolation forest model
iso <- isolation.forest(X, ntrees = 10, nthreads = 1)

### Check which row has the highest outlier score

https://sourceforge.net/projects/iforest/
https://math.stackexchange.com/questions/3388518/expected-number-of-paths-required-to-separate-elements-in-a-binary-tree
https://math.stackexchange.com/questions/3333220/expected-average-depth-in-random-binary-tree-constructed-top-to-bottom


22 isolation.forest

pred <- predict(iso, X)
cat("Point with highest outlier score: ",

X[which.max(pred), ], "\n")

### Example 2: plotting outlier regions
### This example shows predicted outlier score in a small
### grid, with a model fit to a bi-modal distribution. As can
### be seen, the extended model is able to detect high
### outlierness outside of both regions, without having false
### ghost regions of low-outlierness where there isn't any data
library(isotree)
oldpar <- par(mfrow = c(2, 2), mar = c(2.5,2.2,2,2.5))

### Randomly-generated data from different distributions
set.seed(1)
group1 <- data.frame(x = rnorm(1000, -1, .4),

y = rnorm(1000, -1, .2))
group2 <- data.frame(x = rnorm(1000, +1, .2),

y = rnorm(1000, +1, .4))
X = rbind(group1, group2)

### Add an obvious outlier which is within the 1d ranges
### (As an interesting test, remove the outlier and see what happens,
### or check how its score changes when using sub-sampling or
### changing the scoring metric for 'ndim=1')
X = rbind(X, c(-1, 1))

### Produce heatmaps
pts = seq(-3, 3, .1)
space_d <- expand.grid(x = pts, y = pts)
plot.space <- function(Z, ttl) {

image(pts, pts, matrix(Z, nrow = length(pts)),
col = rev(heat.colors(50)),
main = ttl, cex.main = 1.4,
xlim = c(-3, 3), ylim = c(-3, 3),
xlab = "", ylab = "")

par(new = TRUE)
plot(X, type = "p", xlim = c(-3, 3), ylim = c(-3, 3),
col = "#0000801A",
axes = FALSE, main = "",
xlab = "", ylab = "")

}

### Now try out different variations of the model

### Single-variable model
iso_simple = isolation.forest(

X, ndim=1,
ntrees=100,
nthreads=1,
penalize_range=FALSE,
prob_pick_pooled_gain=0,
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prob_pick_avg_gain=0)
Z1 <- predict(iso_simple, space_d)
plot.space(Z1, "Isolation Forest")

### Extended model
iso_ext = isolation.forest(

X, ndim=2,
ntrees=100,
nthreads=1,
penalize_range=FALSE,
prob_pick_pooled_gain=0,
prob_pick_avg_gain=0)

Z2 <- predict(iso_ext, space_d)
plot.space(Z2, "Extended Isolation Forest")

### SCiForest
iso_sci = isolation.forest(

X, ndim=2, ntry=1,
coefs="normal",
ntrees=100,
nthreads=1,
penalize_range=TRUE,
prob_pick_pooled_gain=0,
prob_pick_avg_gain=1)

Z3 <- predict(iso_sci, space_d)
plot.space(Z3, "SCiForest")

### Fair-cut forest
iso_fcf = isolation.forest(

X, ndim=2,
ntrees=100,
nthreads=1,
penalize_range=FALSE,
prob_pick_pooled_gain=1,
prob_pick_avg_gain=0)

Z4 <- predict(iso_fcf, space_d)
plot.space(Z4, "Fair-Cut Forest")
par(oldpar)

### (As another interesting variation, try setting
### 'penalize_range=TRUE' for the last model)

### Example 3: calculating pairwise distances,
### with a short validation against euclidean dist.
library(isotree)

### Generate random data with 3 dimensions
set.seed(1)
m <- 100
n <- 3
X <- matrix(rnorm(m * n), nrow=m, ncol=n)

### Fit isolation forest model
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iso <- isolation.forest(X, ndim=2, ntrees=100, nthreads=1)

### Calculate distances with the model
### (this can be accelerated with 'isotree.build.indexer')
D_iso <- predict(iso, X, type = "dist")

### Check that it correlates with euclidean distance
D_euc <- dist(X, method = "euclidean")

cat(sprintf("Correlation with euclidean distance: %f\n",
cor(D_euc, D_iso)))

### (Note that euclidean distance will never take
### any correlations between variables into account,
### which the isolation forest model can do)

### Example 4: imputing missing values
### (requires package MASS)
library(isotree)

### Generate random data, set some values as NA
if (require("MASS")) {

set.seed(1)
S <- crossprod(matrix(rnorm(5 * 5), nrow = 5))
mu <- rnorm(5)
X <- MASS::mvrnorm(1000, mu, S)
X_na <- X
values_NA <- matrix(runif(1000 * 5) < .15, nrow = 1000)
X_na[values_NA] = NA

### Impute missing values with model
iso <- isolation.forest(

X_na,
build_imputer = TRUE,
prob_pick_pooled_gain = 1,
ndim = 2,
ntry = 10,
nthreads = 1

)
X_imputed <- predict(iso, X_na, type = "impute")
cat(sprintf("MSE for imputed values w/model: %f\n",

mean((X[values_NA] - X_imputed[values_NA])^2)))

### Compare against simple mean imputation
X_means <- apply(X, 2, mean)
X_imp_mean <- X_na
for (cl in 1:5)

X_imp_mean[values_NA[,cl], cl] <- X_means[cl]
cat(sprintf("MSE for imputed values w/means: %f\n",

mean((X[values_NA] - X_imp_mean[values_NA])^2)))
}
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#### A more interesting example
#### (requires package outliertree)

### Compare outliers returned by these different methods,
### and see why some of the outliers returned by the
### isolation forest could be flagged as outliers
if (require("outliertree")) {

hypothyroid <- outliertree::hypothyroid

iso <- isolation.forest(hypothyroid, nthreads=1)
pred_iso <- predict(iso, hypothyroid)
otree <- outliertree::outlier.tree(

hypothyroid,
z_outlier = 6,
pct_outliers = 0.02,
outliers_print = 20,
nthreads = 1)

### Now compare against the top
### outliers from isolation forest
head(hypothyroid[order(-pred_iso), ], 20)

}

isotree.add.tree Add additional (single) tree to isolation forest model

Description

Adds a single tree fit to the full (non-subsampled) data passed here. Must have the same columns
as previously-fitted data. Categorical columns, if any, may have new categories.

Usage

isotree.add.tree(
model,
data,
sample_weights = NULL,
column_weights = NULL,
refdata = NULL

)

Arguments

model An Isolation Forest object as returned by isolation.forest, to which an additional
tree will be added.
This object will be modified in-place.
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data A ‘data.frame‘, ‘data.table‘, ‘tibble‘, ‘matrix‘, or sparse matrix (from package
‘Matrix‘ or ‘SparseM‘, CSC format) to which to fit the new tree.

sample_weights Sample observation weights for each row of ’X’, with higher weights indicating
distribution density (i.e. if the weight is two, it has the same effect of including
the same data point twice). If not ‘NULL‘, model must have been built with
‘weights_as_sample_prob‘ = ‘FALSE‘.

column_weights Sampling weights for each column in ‘data‘. Ignored when picking columns by
deterministic criterion. If passing ‘NULL‘, each column will have a uniform
weight. If used along with kurtosis weights, the effect is multiplicative.

refdata Reference points for distance and/or kernel calculations, if these were previously
added to the model object through isotree.set.reference.points. Must correspond
to the same points that were passed in the call to that function. If sparse, only
CSC format is supported.

This is ignored if the model has no stored reference points.

Details

If constructing trees with different sample sizes, the outlier scores with depth-based metrics will not
be centered around 0.5 and might have a very skewed distribution. The standardizing constant for
the scores will be taken according to the sample size passed in the model construction argument.

If trees are going to be fit to samples of different sizes, it’s strongly recommended to use density-
based scoring metrics instead.

Be aware that, if an out-of-memory error occurs, the resulting object might be rendered unusable
(might crash when calling certain functions).

For safety purposes, the model object can be deep copied (including the underlying C++ object)
through function isotree.deep.copy before undergoing an in-place modification like this.

If this function is going to be called frequently, it’s highly recommended to use ‘lazy_serialization=TRUE‘
as then it will not need to copy over serialized bytes.

Value

The same ‘model‘ object now modified, as invisible.

See Also

isolation.forest isotree.restore.handle

isotree.append.trees Append isolation trees from one model into another
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Description

This function is intended for merging models that use the same hyperparameters but were fitted
to different subsets of data.

In order for this to work, both models must have been fit to data in the same format - that is, same
number of columns, same order of the columns, and same column types, although not necessarily
same object classes (e.g. can mix ‘base::matrix‘ and ‘Matrix::dgCMatrix‘).

If the data has categorical variables, the models should have been built with parameter ‘recode_categ=FALSE‘
in the call to isolation.forest, and the categorical columns passed as type ‘factor‘ with the same ‘lev-
els‘ - otherwise different models might be using different encodings for each categorical column,
which will not be preserved as only the trees will be appended without any associated metadata.

Note that this function will not perform any checks on the inputs, and passing two incompatible
models (e.g. fit to different numbers of columns) will result in wrong results and potentially crashing
the R process when using the resulting object.

Also be aware that the first input will be modified in-place.

If using ‘lazy_serialization=FALSE‘, this will trigger a re-serialization so it will be slower than if
using ‘lazy_serialization=TRUE‘.

Usage

isotree.append.trees(model, other)

Arguments

model An Isolation Forest model (as returned by function isolation.forest) to which
trees from ‘other‘ (another Isolation Forest model) will be appended into.
Will be modified in-place, and on exit will contain the resulting merged model.

other Another Isolation Forest model, from which trees will be appended into ‘model‘.
It will not be modified during the call to this function.

Details

Be aware that, if an out-of-memory error occurs, the resulting object might be rendered unusable
(might crash when calling certain functions).

For safety purposes, the model object can be deep copied (including the underlying C++ object)
through function isotree.deep.copy before undergoing an in-place modification like this.

Value

The same input ‘model‘ object, now with the new trees appended, returned as invisible.

Examples

library(isotree)

### Generate two random sets of data
m <- 100
n <- 2
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set.seed(1)
X1 <- matrix(rnorm(m*n), nrow=m)
X2 <- matrix(rnorm(m*n), nrow=m)

### Fit a model to each dataset
iso1 <- isolation.forest(X1, ntrees=3, ndim=2, nthreads=1)
iso2 <- isolation.forest(X2, ntrees=2, ndim=2, nthreads=1)

### Check the terminal nodes for some observations
nodes1 <- predict(iso1, head(X1, 3), type="tree_num")
nodes2 <- predict(iso2, head(X1, 3), type="tree_num")

### Check also the average isolation depths
nodes1.depths <- predict(iso1, head(X1, 3), type="avg_depth")
nodes2.depths <- predict(iso2, head(X1, 3), type="avg_depth")

### Append the trees from 'iso2' into 'iso1'
iso1 <- isotree.append.trees(iso1, iso2)

### Check that it predicts the same as the two models
nodes.comb <- predict(iso1, head(X1, 3), type="tree_num")
nodes.comb == cbind(nodes1, nodes2)

### The new predicted scores will be a weighted average
### (Be aware that, due to round-off, it will not match with '==')
nodes.comb.depths <- predict(iso1, head(X1, 3), type="avg_depth")
nodes.comb.depths
(3*nodes1.depths + 2*nodes2.depths) / 5

isotree.build.indexer Build Indexer for Faster Terminal Node Predictions and/or Distance
Calculations

Description

Builds an index of terminal nodes for faster prediction of terminal node numbers (calling ‘predict‘
with ‘type="tree_num"‘).

Optionally, can also pre-calculate terminal node distances in order to speed up distance calculations
(calling ‘predict‘ with ‘type="dist"‘ or ‘type="avg_sep"‘).

Usage

isotree.build.indexer(model, with_distances = FALSE, nthreads = model$nthreads)

Arguments

model An Isolation Forest model (as returned by function isolation.forest) for which an
indexer for terminal node numbers and/or distances will be added.
The object will be modified in-place.
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with_distances Whether to also pre-calculate node distances in order to speed up ‘predict‘ with
‘type="dist"‘ or ‘type="avg_sep"‘. Note that this will consume a lot more mem-
ory and make the resulting object significantly heavier.

nthreads Number of parallel threads to use.

Details

This feature is not available for models that use ‘missing_action="divide"‘ or ‘new_categ_action="weighted"‘
(which are the defaults when passing ‘ndim=1‘).

Value

The same ‘model‘ object (as invisible), but now with an indexer added to it. Note the input object
is modified in-place regardless.

See Also

isotree.drop.indexer

isotree.deep.copy Deep-Copy an Isolation Forest Model Object

Description

Generates a deep copy of a model object, including the C++ objects inside it. This function is only
meaningful if one intends to call a function that modifies the internal C++ objects - currently, the
only such function are isotree.add.tree and isotree.append.trees - as otherwise R’s objects follow a
copy-on-write logic.

Usage

isotree.deep.copy(model)

Arguments

model An ‘isolation_forest‘ model object.

Value

A new ‘isolation_forest‘ object, with deep-copied C++ objects.

See Also

isotree.is.same
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isotree.drop.imputer Drop Imputer Sub-Object from Isolation Forest Model Object

Description

Drops the imputer sub-object from an isolation forest model object, if it was fitted with data impu-
tation capabilities. The imputer, if constructed, is likely to be a very heavy object which might not
be needed for all purposes.

Usage

isotree.drop.imputer(model, manually_delete_cpp = TRUE)

Arguments

model An ‘isolation_forest‘ model object.

manually_delete_cpp

Whether to manually delete the underlying C++ object after calling this func-
tion.

If passing ‘FALSE‘, memory will not be freed until the underlying R ’exter-
nalptr’ object is garbage-collected, which typically happens after the next call to
‘gc()‘.

If passing ‘TRUE‘, will manually delete the C++ object held in the ’externalptr’
object before nullifying it. Note that, if somehow one assigned the pointer ad-
dress to some other R variable through e.g. a deep copy of the ’externalptr’
object (that happened without copying the full model object where this R vari-
able is stored), then other pointers pointing at the same address might trigger
crashes at the moment they are used.

Note that, unless one starts manually fiddling with the internals of model objects
and assigning variables to/from them, it should not be possible to end up in a
situation in which an ’externalptr’ object ends up deep-copied, especially when
using ‘lazy_serialization=TRUE‘.

Value

The same ‘model‘ object, but now with the imputer removed. Note that ‘model‘ is modified in-
place in any event.
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isotree.drop.indexer Drop Indexer Sub-Object from Isolation Forest Model Object

Description

Drops the indexer sub-object from an isolation forest model object, if it was constructed. The in-
dexer, if constructed, is likely to be a very heavy object which might not be needed for all purposes.

Usage

isotree.drop.indexer(model, manually_delete_cpp = TRUE)

Arguments

model An ‘isolation_forest‘ model object.
manually_delete_cpp

Whether to manually delete the underlying C++ object after calling this func-
tion.
If passing ‘FALSE‘, memory will not be freed until the underlying R ’exter-
nalptr’ object is garbage-collected, which typically happens after the next call to
‘gc()‘.
If passing ‘TRUE‘, will manually delete the C++ object held in the ’externalptr’
object before nullifying it. Note that, if somehow one assigned the pointer ad-
dress to some other R variable through e.g. a deep copy of the ’externalptr’
object (that happened without copying the full model object where this R vari-
able is stored), then other pointers pointing at the same address might trigger
crashes at the moment they are used.
Note that, unless one starts manually fiddling with the internals of model objects
and assigning variables to/from them, it should not be possible to end up in a
situation in which an ’externalptr’ object ends up deep-copied, especially when
using ‘lazy_serialization=TRUE‘.

Details

Note that reference points as added through isotree.set.reference.points are associated with the in-
dexer object and will also be dropped if any were added.

Value

The same ‘model‘ object, but now with the indexer removed. Note that ‘model‘ is modified in-
place in any event.

See Also

isotree.build.indexer
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isotree.drop.reference.points

Drop Reference Points from Isolation Forest Model Object

Description

Drops any reference points used for distance and/or kernel calculations from the model object, if
any were set through isotree.set.reference.points.

Usage

isotree.drop.reference.points(model)

Arguments

model An ‘isolation_forest‘ model object.

Value

The same ‘model‘ object, but now with the reference points removed. Note that ‘model‘ is modi-
fied in-place in any event.

See Also

isotree.set.reference.points

isotree.export.model Export Isolation Forest model

Description

Save Isolation Forest model to a serialized file along with its metadata, in order to be used in the
Python or the C++ versions of this package.

This function is not suggested to be used for passing models to and from R - in such case, one can
use ‘saveRDS‘ and ‘readRDS‘ instead, although the function still works correctly for serializing
objects between R sessions.

Note that, if the model was fitted to a ‘data.frame‘, the column names must be something ex-
portable as JSON, and must be something that Python’s Pandas could use as column names (e.g.
strings/character).

Can optionally generate a JSON file with metadata such as the column names and the levels of cat-
egorical variables, which can be inspected visually in order to detect potential issues (e.g. character
encoding) or to make sure that the columns are of the right types.

Requires the ‘jsonlite‘ package in order to work.
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Usage

isotree.export.model(model, file, add_metadata_file = FALSE)

Arguments

model An Isolation Forest model as returned by function isolation.forest.

file File path where to save the model. File connections are not accepted, only file
paths

add_metadata_file

Whether to generate a JSON file with metadata, which will have the same
name as the model but will end in ’.metadata’. This file is not used by the
de-serialization function, it’s only meant to be inspected manually, since such
contents will already be written in the produced model file.

Details

The metadata file, if produced, will contain, among other things, the encoding that was used for
categorical columns - this is under ‘data_info.cat_levels‘, as an array of arrays by column, with the
first entry for each column corresponding to category 0, second to category 1, and so on (the C++
version takes them as integers). When passing ‘categ_cols‘, there will be no encoding but it will
save the maximum category integer and the column numbers instead of names.

The serialized file can be used in the C++ version by reading it as a binary file and de-serializing its
contents using the C++ function ’deserialize_combined’ (recommended to use ’inspect_serialized_object’
beforehand).

Be aware that this function will write raw bytes from memory as-is without compression, so the file
sizes can end up being much larger than when using ‘saveRDS‘.

The metadata is not used in the C++ version, but is necessary for the R and Python versions.

Note that the model treats boolean/logical variables as categorical. Thus, if the model was fit to a
‘data.frame‘ with boolean columns, when importing this model into C++, they need to be encoded
in the same order - e.g. the model might encode ‘TRUE‘ as zero and ‘FALSE‘ as one - you need to
look at the metadata for this.

The files produced by this function will be compatible between:

• Different operating systems.

• Different compilers.

• Different Python/R versions.

• Systems with different ’size_t’ width (e.g. 32-bit and 64-bit), as long as the file was produced
on a system that was either 32-bit or 64-bit, and as long as each saved value fits within the
range of the machine’s ’size_t’ type.

• Systems with different ’int’ width, as long as the file was produced on a system that was 16-
bit, 32-bit, or 64-bit, and as long as each saved value fits within the range of the machine’s int
type.

• Systems with different bit endianness (e.g. x86 and PPC64 in non-le mode).
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• Versions of this package from 0.3.0 onwards, but only forwards compatible (e.g. a model
saved with versions 0.3.0 to 0.3.5 can be loaded under version 0.3.6, but not the other way
around, and attempting to do so will cause crashes and memory curruptions without an infor-
mative error message). This last point applies also to models saved through save, saveRDS,
qsave, and similar. Note that loading a model produced by an earlier version of the library
might be slightly slower.

But will not be compatible between:

• Systems with different floating point numeric representations (e.g. standard IEEE754 vs. a
base-10 system).

• Versions of this package earlier than 0.3.0.

This pretty much guarantees that a given file can be serialized and de-serialized in the same machine
in which it was built, regardless of how the library was compiled.

Reading a serialized model that was produced in a platform with different characteristics (e.g. 32-bit
vs. 64-bit) will be much slower.

On Windows, if compiling this library with a compiler other than MSVC or MINGW, (not currently
supported by CRAN’s build systems at the moment of writing) there might be issues exporting
models larger than 2GB.

In non-windows systems, if the file name contains non-ascii characters, the file name must be in the
system’s native encoding. In windows, file names with non-ascii characters are supported as long
as the package is compiled with GCC5 or newer.

Note that, while ‘readRDS‘ and ‘load‘ will not make any changes to the serialized format of the
objects, reading a serialized model from a file will forcibly re-serialize, using the system’s own
setup (e.g. 32-bit vs. 64-bit, endianness, etc.), and as such can be used to convert formats.

Value

The same ‘model‘ object that was passed as input, as invisible.

See Also

isotree.import.model isotree.restore.handle

isotree.get.num.nodes Get Number of Nodes per Tree

Description

Get Number of Nodes per Tree

Usage

isotree.get.num.nodes(model)
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Arguments

model An Isolation Forest model as produced by function ‘isolation.forest‘.

Value

A list with entries ‘"total"‘ and ‘"terminal"‘, both of which are integer vectors with length equal to
the number of trees. ‘"total"‘ contains the total number of nodes that each tree has, while ‘"termi-
nal"‘ contains the number of terminal nodes per tree.

isotree.import.model Load an Isolation Forest model exported from Python

Description

Loads a serialized Isolation Forest model as produced and exported by the Python version of this
package. Note that the metadata must be something importable in R - e.g. column names must be
valid for R (numbers are valid for Python’s pandas, but not for R, for example).

It’s recommended to generate a ’.metadata’ file (passing ‘add_metada_file=TRUE‘) and to visually
inspect said file in any case.

This function is not meant to be used for passing models to and from R - in such case, one can
use ‘saveRDS‘ and ‘readRDS‘ instead as they will likely result in smaller file sizes (although this
function will still work correctly for serialization within R).

Usage

isotree.import.model(file, lazy_serialization = TRUE)

Arguments

file Path to the saved isolation forest model. Must be a file path, not a file connection,
and the character encoding should correspond to the system’s native encoding.

lazy_serialization

Whether to use lazy serialization through the ALTREP system for the resulting
objects. See the documentation for this same parameter in isolation.forest for
details.

Details

If the model was fit to a ‘DataFrame‘ using Pandas’ own Boolean types, take a look at the metadata
to check if these columns will be taken as booleans (R logicals) or as categoricals with string values
‘"True"‘ and ‘"False"‘.

See the documentation for isotree.export.model for details about compatibility of the generated files
across different machines and versions.

Value

An isolation forest model, as if it had been constructed through isolation.forest.
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See Also

isotree.export.model isotree.restore.handle

isotree.is.same Check if two Isolation Forest Models Share the Same C++ Object

Description

Checks if two isolation forest models, as produced by functions like isolation.forest, have a refer-
ence to the same underlying C++ object.

When this is the case, functions that produce in-place modifications, such as isotree.build.indexer,
will produce changes in all of the R variables that share the same C++ object.

Two R variables will have the same C++ object when assigning one variable to another, but will
have different C++ objects when these R objects are serialized and deserialized or when calling
isotree.deep.copy.

Usage

isotree.is.same(obj1, obj2)

Arguments

obj1 First model to compare (against ‘obj2‘).

obj2 Second model to compare (against ‘obj1‘).

Value

A logical (boolean) value which will be ‘TRUE‘ when both models have a reference to the same
C++ object, or ‘FALSE‘ otherwise.

See Also

isotree.deep.copy

Examples

library(isotree)
data(mtcars)
model <- isolation.forest(mtcars, ntrees = 10, nthreads = 1, ndim = 1)

model_shallow_copy <- model
isotree.is.same(model, model_shallow_copy)

model_deep_copy <- isotree.deep.copy(model)
isotree.is.same(model, model_deep_copy)

isotree.add.tree(model_shallow_copy, mtcars)
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length(isotree.get.num.nodes(model_shallow_copy)$total)
length(isotree.get.num.nodes(model)$total)
length(isotree.get.num.nodes(model_deep_copy)$total)

isotree.plot.tree Plot Tree from Isolation Forest Model

Description

Plots a given tree from an isolation forest model.

Requires the ‘DiagrammeR‘ library to be installed.

Note that this is just a wrapper over isotree.to.graphviz + ‘DiagrammeR::grViz‘.

Usage

isotree.plot.tree(
model,
output_tree_num = FALSE,
tree = 1L,
column_names = NULL,
column_names_categ = NULL,
nthreads = model$nthreads,
width = NULL,
height = NULL

)

Arguments

model An Isolation Forest object as returned by isolation.forest.
output_tree_num

Whether to make the statements / outputs return the terminal node number in-
stead of the isolation depth. The numeration will start at one.

tree Tree for which to generate SQL statements or other outputs. If passed, will gen-
erate the statements only for that single tree. If passing ‘NULL‘, will generate
statements for all trees in the model.

column_names Column names to use for the numeric columns. If not passed and the model was
fit to a ‘data.frame‘, will use the column names from that ‘data.frame‘, which
can be found under ‘model$metadata$cols_num‘. If not passing it and the model
was fit to data in a format other than ‘data.frame‘, the columns will be named
‘column_N‘ in the resulting SQL statement. Note that the names will be taken
verbatim - this function will not do any checks for e.g. whether they constitute
valid SQL or not when exporting to SQL, and will not escape characters such as
double quotation marks when exporting to SQL.

column_names_categ

Column names to use for the categorical columns. If not passed, will use the
column names from the ‘data.frame‘ to which the model was fit. These can be
found under ‘model$metadata$cols_cat‘.
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nthreads Number of parallel threads to use.

width Width for the plot, to pass to ‘DiagrammeR::grViz‘.

height Height for the plot, to pass to ‘DiagrammeR::grViz‘.

Details

In general, isolation forest trees tend to be rather large, and the contents on the nodes can be very
long when using ‘ndim>1‘ - if the idea is to get easily visualizable trees, one might want to use
parameters like ‘ndim=1‘, ‘sample_size=256‘, ‘max_depth=8‘.

Value

An ‘htmlwidget‘ object that contains the plot.

isotree.restore.handle

Unpack isolation forest model after de-serializing

Description

After persisting an isolation forest model object through ‘saveRDS‘, ‘save‘, or restarting a session,
the underlying C++ objects that constitute the isolation forest model and which live only on the
C++ heap memory are not saved along, and depending on parameter ‘lazy_serialization‘, might not
get automatically restored after loading a saved model through ‘readRDS‘ or ‘load‘.

The model object however keeps serialized versions of the C++ objects as raw bytes, from which the
C++ objects can be reconstructed, and are done so automatically upon de-serialization when using
‘lazy_serialization=TRUE‘, but otherwise, the C++ objects will only get de-serialized after calling
‘predict‘, ‘print‘, ‘summary‘, or ‘isotree.add.tree‘ on the freshly-loaded object from ‘readRDS‘ or
‘load‘.

This function allows to automatically de-serialize the object ("complete" or "restore" the handle)
without having to call any function that would do extra processing when one uses ‘lazy_serialization=FALSE‘
(calling the function is not needed when using ‘lazy_serialization=TRUE‘).

It is an analog to XGBoost’s ‘xgb.Booster.complete‘ and CatBoost’s ‘catboost.restore_handle‘ func-
tions.

If the model was buit with ‘lazy_serialization=TRUE‘, this function will not do anything to the
object.

Usage

isotree.restore.handle(model)

Arguments

model An Isolation Forest object as returned by ‘isolation.forest‘, which has been just
loaded from a disk file through ‘readRDS‘, ‘load‘, or a session restart, and which
was constructed with ‘lazy_serialization=FALSE‘.
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Details

If using this function to de-serialize a model in a production system, one might want to delete
the serialized bytes inside the object afterwards in order to free up memory. These are under
‘model$cpp_objects$(model,imputer,indexer)$ser‘ - e.g.: ‘model$cpp_objects$model$ser = NULL;
gc()‘.

Value

The same model object that was passed as input. Object is modified in-place however, so it does
not need to be re-assigned.

Examples

### Warning: this example will generate a temporary .Rds
### file in your temp folder, and will then delete it

### First, create a model from random data
library(isotree)
set.seed(1)
X <- matrix(rnorm(100), nrow = 20)
iso <- isolation.forest(X, ntrees=10, nthreads=1, lazy_serialization=FALSE)

### Now serialize the model
temp_file <- file.path(tempdir(), "iso.Rds")
saveRDS(iso, temp_file)
iso2 <- readRDS(temp_file)
file.remove(temp_file)

cat("Model pointer after loading is this: \n")
print(iso2$cpp_objects$model$ptr)

### now unpack it
isotree.restore.handle(iso2)

cat("Model pointer after unpacking is this: \n")
print(iso2$cpp_objects$model$ptr)

### Note that this function is not needed when using lazy_serialization=TRUE
iso_lazy <- isolation.forest(X, ntrees=10, nthreads=1, lazy_serialization=TRUE)
temp_file_lazy <- file.path(tempdir(), "iso_lazy.Rds")
saveRDS(iso_lazy, temp_file_lazy)
iso_lazy2 <- readRDS(temp_file_lazy)
file.remove(temp_file_lazy)
cat("Model pointer after unpacking lazy-serialized: \n")
print(iso_lazy2$cpp_objects$model$ptr)

isotree.set.nthreads Set Number of Threads for Isolation Forest Model Object
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Description

Changes the number of threads that an isolation forest model object will use when calling functions
such as ‘predict‘.

Usage

isotree.set.nthreads(model, nthreads = 1L)

Arguments

model An Isolation Forest model (as returned by function isolation.forest) for which an
indexer for terminal node numbers and/or distances will be added.

The object will be modified in-place.

nthreads Number of threads to set for this model object to use.

Value

The same ‘model‘ object (as invisible), but now with a different configured number of threadst.
Note the input object is modified in-place regardless.

isotree.set.reference.points

Set Reference Points to Calculate Distances or Kernels With

Description

Sets some points as pre-defined landmarks with respect to which distances and/or isolation kernel
values will be calculated for arbitrary new points in calls to ‘predict‘ with types ‘"dist"‘, ‘"avg_sep"‘,
‘"kernel"‘. If any points have already been set as references in the model object, they will be over-
written with the new points passed here.

Be aware that adding reference points requires building a tree indexer.

Usage

isotree.set.reference.points(
model,
data,
with_distances = FALSE,
nthreads = model$nthreads

)
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Arguments

model An Isolation Forest model (as returned by function isolation.forest) for which
reference points for distance and/or kernel calculations will be set.
The object will be modified in-place. If there were any previous references,
they will be overwritten with the new ones passed here.

data Observations to set as reference points for future distance and/or isolation kernel
calculations. Same format as for predict.isolation_forest.

with_distances Whether to pre-calculate node distances (this is required to calculate distance
from arbitrary points to the reference points).
Note that reference points for distances can only be set when using ‘assume_full_distr=FALSE‘
(which is the default).

nthreads Number of parallel threads to use.

Details

Note that points are added in terms of their terminal node indices, but the raw data about them is
not kept - thus, calling isotree.add.tree later on a model with reference points requires passing those
reference points again to add their node indices to the new tree.

If using ‘lazy_serialization=TRUE‘, and the process fails while setting references (e.g. due to out-
of-memory errors), previous references that the model might have had will be lost.

Value

The same ‘model‘ object (as invisible), but now with added reference points that can be used for
new distance and/or kernel calculations with respect to other arbitrary points.

See Also

isotree.build.indexer

isotree.subset.trees Subset trees of a given model

Description

Creates a new isolation forest model containing only selected trees of a given isolation forest model
object. Note that, if using ‘lazy_serialization=FALSE‘, this will re-trigger serialization.

Usage

isotree.subset.trees(model, trees_take)

## S3 method for class 'isolation_forest'
x[i]
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Arguments

model, x An ‘isolation_forest‘ model object.

trees_take, i Indices of the trees of ‘model‘ to copy over to a new model, as an integer vector.
Must be integers with numeration starting at one

Value

A new isolation forest model object, containing only the subset of trees from this ‘model‘ that was
specified under ‘trees_take‘.

isotree.to.graphviz Generate GraphViz Dot Representation of Tree

Description

Generate GraphViz representations of model trees in ’dot’ format - either separately per tree (the
default), or for a single tree if needed (if passing ‘tree‘) Can also be made to output terminal node
numbers (numeration starting at one).

These can be loaded as graphs through e.g. ‘DiagrammeR::grViz(x)‘, where ‘x‘ would be the output
of this function for a given tree.

Graph format is based on XGBoost’s.

Usage

isotree.to.graphviz(
model,
output_tree_num = FALSE,
tree = NULL,
column_names = NULL,
column_names_categ = NULL,
nthreads = model$nthreads

)

Arguments

model An Isolation Forest object as returned by isolation.forest.
output_tree_num

Whether to make the statements / outputs return the terminal node number in-
stead of the isolation depth. The numeration will start at one.

tree Tree for which to generate SQL statements or other outputs. If passed, will gen-
erate the statements only for that single tree. If passing ‘NULL‘, will generate
statements for all trees in the model.
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column_names Column names to use for the numeric columns. If not passed and the model was
fit to a ‘data.frame‘, will use the column names from that ‘data.frame‘, which
can be found under ‘model$metadata$cols_num‘. If not passing it and the model
was fit to data in a format other than ‘data.frame‘, the columns will be named
‘column_N‘ in the resulting SQL statement. Note that the names will be taken
verbatim - this function will not do any checks for e.g. whether they constitute
valid SQL or not when exporting to SQL, and will not escape characters such as
double quotation marks when exporting to SQL.

column_names_categ

Column names to use for the categorical columns. If not passed, will use the
column names from the ‘data.frame‘ to which the model was fit. These can be
found under ‘model$metadata$cols_cat‘.

nthreads Number of parallel threads to use.

Details

• The generated graphs will not include range penalizations, thus predictions might differ from
calls to ‘predict‘ when using ‘penalize_range=TRUE‘.

• The generated graphs will only include handling of missing values when using ‘missing_action="impute"‘.
When using the single-variable model with categorical variables + subset splits, the rule buck-
ets might be incomplete due to not including categories that were not present in a given node -
this last point can be avoided by using ‘new_categ_action="smallest"‘, ‘new_categ_action="random"‘,
or ‘missing_action="impute"‘ (in the latter case will treat them as missing, but the ‘predict‘
function might treat them differently).

• If using ‘scoring_metric="density"‘ or ‘scoring_metric="boxed_ratio"‘ plus ‘output_tree_num=FALSE‘,
the outputs will correspond to the logarithm of the density rather than the density.

Value

If passing ‘tree=NULL‘, will return a list with one element per tree in the model, where each
element consists of an R character / string with the ’dot’ format representation of the tree. If passing
‘tree‘, the output will be instead a single character / string element with the ’dot’ representation for
that tree.

Examples

library(isotree)
set.seed(123)
X <- matrix(rnorm(100 * 3), nrow = 100)
model <- isolation.forest(X, ndim=1, max_depth=3, ntrees=2, nthreads=1)
model_as_graphviz <- isotree.to.graphviz(model)

# These can be parsed and plotted with library 'DiagrammeR'
if (require("DiagrammeR")) {

# first tree
DiagrammeR::grViz(model_as_graphviz[[1]])

DiagrammeR::grViz(model_as_graphviz[[1]])
}
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isotree.to.json Generate JSON representations of model trees

Description

Generates a JSON representation of either a single tree in the model, or of all the trees in the model.

The JSON for a given tree will consist of a sub-json/list for each node, where nodes are indexed by
their number (base-1 indexing) as keys in these JSONs (note that they are strings, not numbers, in
order to conform to JSON format).

Nodes will in turn consist of another map/list indicating whether they are terminal nodes or not, their
score and terminal node index if terminal, or otherwise the split conditions, nodes to follow when
the condition is or isn’t met, and other aspects such as imputation values if applicable, acceptable
ranges when using range penalizations, fraction of the data that went into the left node if recorded,
among others.

Note that the JSON structure will be very different for models that have ‘ndim=1‘ than for models
that have ‘ndim>1‘. In the case of ‘ndim=1‘, the conditions are based on the value of only one
variable, but for ‘ndim=2‘, they will consist of a linear combination of different columns (which is
expressed as a list of JSONs with one entry per column that goes into the calculation) - for numeric
columns for example, these will be expressed in the json by a coefficient for the given column, and
a centering that needs to be applied, with the score from that column being added as

coef × (x− centering)

and the imputation value being applied in replacement of this formula in the case of missing values
for that column (depending on the model parameters); while in the case of categorical columns,
might either have a different coefficient for each possible category (‘categ_split_type="subset"‘), or
a single category that gets a non-zero coefficient while the others get zeros (‘categ_split_type="single_categ"‘).

The JSONs might contain redundant information in order to ease understanding of the model logic
- for example, when using ‘ndim>1‘ and ‘categ_split_type="single_categ"‘, the coefficient for the
non-chosen categories will always be zero, but is nevertheless added to every node’s JSON, even if
not needed.

Usage

isotree.to.json(
model,
output_tree_num = FALSE,
tree = NULL,
column_names = NULL,
column_names_categ = NULL,
as_str = FALSE,
nthreads = model$nthreads

)

Arguments

model An Isolation Forest object as returned by isolation.forest.
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output_tree_num

Whether to make the statements / outputs return the terminal node number in-
stead of the isolation depth. The numeration will start at one.

tree Tree for which to generate SQL statements or other outputs. If passed, will gen-
erate the statements only for that single tree. If passing ‘NULL‘, will generate
statements for all trees in the model.

column_names Column names to use for the numeric columns. If not passed and the model was
fit to a ‘data.frame‘, will use the column names from that ‘data.frame‘, which
can be found under ‘model$metadata$cols_num‘. If not passing it and the model
was fit to data in a format other than ‘data.frame‘, the columns will be named
‘column_N‘ in the resulting SQL statement. Note that the names will be taken
verbatim - this function will not do any checks for e.g. whether they constitute
valid SQL or not when exporting to SQL, and will not escape characters such as
double quotation marks when exporting to SQL.

column_names_categ

Column names to use for the categorical columns. If not passed, will use the
column names from the ‘data.frame‘ to which the model was fit. These can be
found under ‘model$metadata$cols_cat‘.

as_str Whether to return the result as raw JSON strings (returned as R’s character type)
instead of being parsed into R lists (internally, it uses ‘jsonlite::fromJSON‘).

nthreads Number of parallel threads to use.

Details

• If using ‘scoring_metric="density"‘ or ‘scoring_metric="boxed_ratio"‘ plus ‘output_tree_num=FALSE‘,
the outputs will correspond to the logarithm of the density rather than the density.

Value

Either a list of lists (when passing ‘as_str=FALSE‘) or a vector of characters (when passing ‘as_str=TRUE‘),
or a single such list or character element if passing ‘tree‘.

isotree.to.sql Generate SQL statements from Isolation Forest model

Description

Generate SQL statements - either separately per tree (the default), for a single tree if needed (if
passing ‘tree‘), or for all trees concatenated together (if passing ‘table_from‘). Can also be made to
output terminal node numbers (numeration starting at one).

Some important considerations:

• Making predictions through SQL is much less efficient than from the model itself, as each
terminal node will have to check all of the conditions that lead to it instead of passing obser-
vations down a tree.
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• If constructed with the default arguments, the model will not perform any sub-sampling, which
can lead to very big trees. If it was fit to a large dataset, the generated SQL might consist of
gigabytes of text, and might lay well beyond the character limit of commands accepted by
SQL vendors.

• The generated SQL statements will not include range penalizations, thus predictions might
differ from calls to ‘predict‘ when using ‘penalize_range=TRUE‘.

• The generated SQL statements will only include handling of missing values when using ‘miss-
ing_action="impute"‘. When using the single-variable model with categorical variables + sub-
set splits, the rule buckets might be incomplete due to not including categories that were not
present in a given node - this last point can be avoided by using ‘new_categ_action="smallest"‘,
‘new_categ_action="random"‘, or ‘missing_action="impute"‘ (in the latter case will treat them
as missing, but the ‘predict‘ function might treat them differently).

• The resulting statements will include all the tree conditions as-is, with no simplification. Thus,
there might be lots of redundant conditions in a given terminal node (e.g. "X > 2" and "X >
1", the second of which is redundant).

• If using ‘scoring_metric="density"‘ or ‘scoring_metric="boxed_ratio"‘ plus ‘output_tree_num=FALSE‘,
the outputs will correspond to the logarithm of the density rather than the density.

Usage

isotree.to.sql(
model,
enclose = "doublequotes",
output_tree_num = FALSE,
tree = NULL,
table_from = NULL,
select_as = "outlier_score",
column_names = NULL,
column_names_categ = NULL,
nthreads = model$nthreads

)

Arguments

model An Isolation Forest object as returned by isolation.forest.

enclose With which symbols to enclose the column names in the select statement so as
to make them SQL compatible in case they include characters like dots. Options
are:

• ‘"doublequotes"‘, which will enclose them as ‘"column_name"‘ - this will
work for e.g. PostgreSQL.

• ‘"squarebraces"‘, which will enclose them as ‘[column_name]‘ - this will
work for e.g. SQL Server.

• ‘"none"‘, which will output the column names as-is (e.g. ‘column_name‘)
output_tree_num

Whether to make the statements / outputs return the terminal node number in-
stead of the isolation depth. The numeration will start at one.
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tree Tree for which to generate SQL statements or other outputs. If passed, will gen-
erate the statements only for that single tree. If passing ‘NULL‘, will generate
statements for all trees in the model.

table_from If passing this, will generate a single select statement for the outlier score from
all trees, selecting the data from the table name passed here. In this case,
will always output the outlier score, regardless of what is passed under ‘out-
put_tree_num‘.

select_as Alias to give to the generated outlier score in the select statement. Ignored when
not passing ‘table_from‘.

column_names Column names to use for the numeric columns. If not passed and the model was
fit to a ‘data.frame‘, will use the column names from that ‘data.frame‘, which
can be found under ‘model$metadata$cols_num‘. If not passing it and the model
was fit to data in a format other than ‘data.frame‘, the columns will be named
‘column_N‘ in the resulting SQL statement. Note that the names will be taken
verbatim - this function will not do any checks for e.g. whether they constitute
valid SQL or not when exporting to SQL, and will not escape characters such as
double quotation marks when exporting to SQL.

column_names_categ

Column names to use for the categorical columns. If not passed, will use the
column names from the ‘data.frame‘ to which the model was fit. These can be
found under ‘model$metadata$cols_cat‘.

nthreads Number of parallel threads to use.

Value

• If passing neither ‘tree‘ nor ‘table_from‘, will return a list of ‘character‘ objects, containing at
each entry the SQL statement for the corresponding tree.

• If passing ‘tree‘, will return a single ‘character‘ object with the SQL statement representing
that tree.

• If passing ‘table_from‘, will return a single ‘character‘ object with the full SQL select state-
ment for the outlier score, selecting the columns from the table name passed under ‘ta-
ble_from‘.

Examples

library(isotree)
data(iris)
set.seed(1)
iso <- isolation.forest(iris, ntrees=2, sample_size=16, ndim=1, nthreads=1)
sql_forest <- isotree.to.sql(iso, table_from="my_iris_table")
cat(sql_forest)
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length.isolation_forest

Get Number of Trees in Model

Description

Returns the number of trees in an isolation forest model.

Usage

## S3 method for class 'isolation_forest'
length(x)

Arguments

x An isolation forest model, as returned by function isolation.forest.

Value

The number of trees in the model, as an integer.

predict.isolation_forest

Predict method for Isolation Forest

Description

Predict method for Isolation Forest

Usage

## S3 method for class 'isolation_forest'
predict(
object,
newdata,
type = "score",
square_mat = ifelse(type == "kernel", TRUE, FALSE),
refdata = NULL,
use_reference_points = TRUE,
nthreads = object$nthreads,
...

)
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Arguments

object An Isolation Forest object as returned by isolation.forest.

newdata A ‘data.frame‘, ‘data.table‘, ‘tibble‘, ‘matrix‘, or sparse matrix (from package
‘Matrix‘ or ‘SparseM‘, CSC/dgCMatrix supported for outlierness, distance, ker-
nels; CSR/dgRMatrix supported for outlierness and imputations) for which to
predict outlierness, distance, kernels, or imputations of missing values.
If ‘newdata‘ is sparse and one wants to obtain the outlier score or average depth
or tree numbers, it’s highly recommended to pass it in CSC (‘dgCMatrix‘) for-
mat as it will be much faster when the number of trees or rows is large.

type Type of prediction to output. Options are:

• ‘"score"‘ for the standardized outlier score - for isolation-based metrics (the
default), values closer to 1 indicate more outlierness, while values closer to
0.5 indicate average outlierness, and close to 0 more averageness (harder to
isolate). For all scoring metrics, higher values indicate more outlierness.

• ‘"avg_depth"‘ for the non-standardized average isolation depth or density
or log-density. For ‘scoring_metric="density"‘, will output the geometric
mean instead. See the documentation for ‘scoring_metric‘ for more details
about the calculations for density-based metrics. For all scoring metrics,
higher values indicate less outlierness.

• ‘"dist"‘ for approximate pairwise or between-points distances (must pass
more than 1 row) - these are standardized in the same way as outlierness,
values closer to zero indicate nearer points, closer to one further away
points, and closer to 0.5 average distance. To make this computation faster,
it is highly recommended to build a node indexer with isotree.build.indexer
(with ‘with_distances=TRUE‘) before calling this function.

• ‘"avg_sep"‘ for the non-standardized average separation depth. To make
this computation faster, it is highly recommended to build a node indexer
with isotree.build.indexer (with ‘with_distances=TRUE‘) before calling this
function.

• ‘"kernel"‘ for pairwise or between-points isolation kernel calculations (also
known as proximity matrix), which denotes the fraction of trees in which
two observations end up in the same terminal node. This is typically not as
good quality as the separation distance, but it’s much faster to calculate, and
has other potential uses - for example, this "kernel" can be used as an es-
timate of the correlations between residuals for a generalized least-squares
regression, for which distance might not be as appropirate. Note that build-
ing an indexer will not speed up kernel/proximity calculations unless it has
reference points. This calculation can be sped up significantly by setting
reference points in the model object through isotree.set.reference.points,
and it’s highly recommended to do so if this calculation is going to be per-
formed repeatedly.

• ‘"kernel_raw"‘ for the isolation kernel or proximity matrix, but having as
output the number of trees instead of the fraction of total trees.

• ‘"tree_num"‘ for the terminal node number for each tree - if choosing this
option, will return a list containing both the average isolation depth and
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the terminal node numbers, under entries ‘avg_depth‘ and ‘tree_num‘, re-
spectively. If this calculation is going to be perform frequently, it’s recom-
mended to build node indices through isotree.build.indexer.

• ‘"tree_depths"‘ for the non-standardized isolation depth or expected iso-
lation depth or density or log-density for each tree (note that they will
not include range penalties from ‘penalize_range=TRUE‘). See the doc-
umentation for ‘scoring_metric‘ for more details about the calculations for
density-based metrics.

• ‘"impute"‘ for imputation of missing values in ‘newdata‘.

square_mat When passing ‘type‘ = ‘"dist‘ or ‘"avg_sep"‘ or ‘"kernel"‘ or ‘"kernel_raw"‘
with no ‘refdata‘, whether to return a full square matrix (returned as a numeric
‘matrix‘ object) or just its upper-triangular part (returned as a ‘dist‘ object and
compatible with functions such as ‘hclust‘), in which the entry for pair (i,j) with
1 <= i < j <= n is located at position p(i, j) = ((i - 1) * (n - i/2) + j - i).
Ignored when not predicting distance/separation/kernels or when passing ‘ref-
data‘ or ‘use_reference_points=TRUE‘ plus having reference points.

refdata If passing this and calculating distances or average separation depths or kernels,
will calculate distances between each point in ‘newdata‘ and each point in ‘ref-
data‘, outputing a matrix in which points in ‘newdata‘ correspond to rows and
points in ‘refdata‘ correspond to columns. Must be of the same type as ‘newdata‘
(e.g. ‘data.frame‘, ‘matrix‘, ‘dgCMatrix‘, etc.). If this is not passed, and type
is ‘"dist"‘ or ‘"avg_sep"‘ or ‘"kernel"‘ or ‘"kernel_raw"‘, will calculate pairwise
distances/separation between the points in ‘newdata‘.
Note that, if ‘refdata‘ is passed and and the model object has an indexer with ref-
erence points added (through isotree.set.reference.points), those reference points
will be ignored for the calculation.

use_reference_points

When the model object has an indexer with reference points (which can be added
through isotree.set.reference.points) and passing ‘type="dist"‘ or ‘"avg_sep"‘ or
‘"kernel"‘ or ‘"kernel_raw"‘, whether to calculate the distances/kernels from
‘newdata‘ to those reference points instead of the pairwise distances between
points in ‘newdata‘.
This is ignored when passing ‘refdata‘ or when the model object does not con-
tain an indexer or the indexer does not contain reference points.

nthreads Number of parallel threads to use. Note: for better performance, it’s recom-
mended to set the number of threads to the number of physical CPU cores,
which in a typical desktop CPU, corresponds to half the number of threads (see
details for more information).
Shorthand for best performance: ‘nthreads = RhpcBLASctl::get_num_cores()‘

... Not used.

Details

The standardized outlier score for isolation-based metrics is calculated according to the original
paper’s formula: 2−

d̄
c(n) , where d̄ is the average depth under each tree at which an observation

becomes isolated (a remainder is extrapolated if the actual terminal node is not isolated), and c(n)
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is the expected isolation depth if observations were uniformly random (see references under isola-
tion.forest for details). The actual calculation of c(n) however differs from the paper as this package
uses more exact procedures for calculation of harmonic numbers.

For density-based matrics, see the documentation for ‘scoring_metric‘ in isolation.forest for details
about the score calculations.

The distribution of outlier scores for isolation-based metrics should be centered around 0.5, unless
using non-random splits (parameters ‘prob_pick_avg_gain‘, ‘prob_pick_pooled_gain‘, ‘prob_pick_full_gain‘,
‘prob_pick_dens‘) and/or range penalizations, or having distributions which are too skewed. For
‘scoring_metric="density"‘, most of the values should be negative, and while zero can be used as a
natural score threshold, the scores are unlikely to be centered around zero.

The more threads that are set for the model, the higher the memory requirement will be as each
thread will allocate an array with one entry per row (outlierness) or combination (distance), with an
exception being calculation of distances/kernels to reference points, which do not do this.

For multi-threaded predictions on many rows, it is recommended to set the number of threads to the
number of physical cores of the CPU rather than the number of logical cores, as it will typically have
better performance that way. Assuming a typical x86-64 desktop CPU, this typically involves divid-
ing the number of threads by 2 - for example: ‘model$nthreads <- RhpcBLASctl::get_num_cores()‘

Outlierness predictions for sparse data will be much slower than for dense data. Not recommended
to pass sparse matrices unless they are too big to fit in memory.

Note that after loading a serialized object from ‘isolation.forest‘ through ‘readRDS‘ or ‘load‘, if
it was constructed with ‘lazy_serialization=FALSE‘ it will only de-serialize the underlying C++
object upon running ‘predict‘, ‘print‘, or ‘summary‘, so the first run will be slower, while subsequent
runs will be faster as the C++ object will already be in-memory. This does not apply when using
‘lazy_serialization=TRUE‘.

In order to save memory when fitting and serializing models, the functionality for outputting termi-
nal node numbers will generate index mappings on the fly for all tree nodes, even if passing only
1 row, so it’s only recommended for batch predictions. If this type of prediction is desired, it can
be sped up by building an index of terminal nodes through isotree.build.indexer, which will avoid
having to recompute these every time.

The outlier scores/depth predict functionality is optimized for making predictions on one or a few
rows at a time - for making large batches of predictions, it might be faster to use the option ‘out-
put_score=TRUE‘ in ‘isolation.forest‘.

When making predictions on CSC matrices with many rows using multiple threads, there can be
small differences between runs due to roundoff error.

When imputing missing values, the input may contain new columns (i.e. not present when the
model was fitted), which will be output as-is.

If passing ‘type="dist"‘ or ‘type="avg_sep"‘, by default, it will do the calculation through a proce-
dure that counts steps as observations are passed down the trees, which is especially slow and not
recommended for more than a few thousand observations. If this calculation is going to be called re-
peatedly and/or it is going to be called for a large number of rows, it’s highly recommended to build
node distance indexes beforehand through isotree.build.indexer with option ‘with_distances=TRUE‘,
as then the computation will be done based on terminal node indices instead, which is a much faster
procedure. If distance calculations are all going to be performed with respect to a fixed set of points,
it’s highly recommended to set those points as references through isotree.set.reference.points.
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If using ‘assume_full_distr=FALSE‘ (not recommended to use such option), distance predictions
with and without an indexer will differ slightly due to differences in what they count towards "ad-
ditional" observations in the calculation.

Value

The requested prediction type, which can be:

• A numeric vector with one entry per row in ‘newdata‘ (for output types ‘"score"‘ and ‘"avg_depth"‘).

• An integer matrix with number of rows matching to rows in ‘newdata‘ and number of columns
matching to the number of trees in the model, indicating the terminal node number under each
tree for each observation, with trees as columns, for output type ‘"tree_num"‘.

• A numeric matrix with rows matching to those in ‘newdata‘ and one column per tree in the
model, for output type ‘"tree_depths"‘.

• A numeric square matrix or ‘dist‘ object which consists of a vector with the upper triangular
part of a square matrix, (for output types ‘"dist"‘, ‘"avg_sep"‘, ‘"kernel"‘, ‘"kernel_raw"‘;
with no ‘refdata‘ and no reference points or ‘use_reference_points=FALSE‘).

• A numeric matrix with points in ‘newdata‘ as rows and points in ‘refdata‘ as columns (for
output types ‘"dist"‘, ‘"avg_sep"‘, ‘"kernel"‘, ‘"kernel_raw"‘; with ‘refdata‘).

• A numeric matrix with points in ‘newdata‘ as rows and reference points set through isotree.set.reference.points
as columns (for output types ‘"dist"‘, ‘"avg_sep"‘, ‘"kernel"‘, ‘"kernel_raw"‘; with ‘use_reference_points=TRUE‘
and no ‘refdata‘).

• The same type as the input ‘newdata‘ (for output type ‘"impute"‘).

Model serving considerations

If the model is built with ‘nthreads>1‘, the prediction function predict.isolation_forest will use
OpenMP for parallelization. In a linux setup, one usually has GNU’s "gomp" as OpenMP as back-
end, which will hang when used in a forked process - for example, if one tries to call this pre-
diction function from ‘RestRserve‘, which uses process forking for parallelization, it will cause
the whole application to freeze. A potential fix in these cases is to pass ‘nthreads=1‘ to ‘predict‘,
or to set the number of threads to 1 in the model object (e.g. ‘model$nthreads <- 1L‘ or calling
isotree.set.nthreads), or to compile this library without OpenMP (requires manually altering the
‘Makevars‘ file), or to use a non-GNU OpenMP backend (such as LLVM’s ’libomp’. This should
not be an issue when using this library normally in e.g. an RStudio session.

The R objects that hold the models contain heap-allocated C++ objects which do not map to R
types and which thus do not survive serializations the same way R objects do. In order to make
model objects serializable (i.e. usable with ‘save‘, ‘saveRDS‘, and similar), the package offers two
mechanisms: (a) a ’lazy_serialization’ option which uses the ALTREP system as a workaround,
by defining classes with serialization methods but without datapointer methods (see the docs for
‘lazy_serialization‘ for more info); (b) a more theoretically correct way in which raw bytes are
produced alongside the model and from which the C++ objects can be reconstructed. When us-
ing the lazy serialization system, C++ objects are restored automatically on load and the serial-
ized bytes then discarded, but this is not the case when using the serialized bytes approach. For
model serving, one would usually want to drop these serialized bytes after having loaded a model
through ‘readRDS‘ or similar (note that reconstructing the C++ object will first require calling
isotree.restore.handle, which is done automatically when calling ‘predict‘ and similar), as they can
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increase memory usage by a large amount. These redundant raw bytes can be dropped as follows:
‘model$cpp_objects$model$ser <- NULL‘ (and an additional ‘model$cpp_objects$imputer$ser <-
NULL‘ when using ‘build_imputer=TRUE‘, and ‘model$cpp_objects$indexer$ser <- NULL‘ when
building a node indexer). After that, one might want to force garbage collection through ‘gc()‘.

Usually, for serving purposes, one wants a setup as minimalistic as possible (e.g. smaller docker
images). This library can be made smaller and faster to compile by disabling some features - partic-
ularly, the library will by default build with support for calculation of aggregated metrics (such as
standard deviations) in ’long double’ precision (an extended precision type), which is a functionality
that’s unlikely to get used (default is not to use this type as it is slower, and calculations done in the
‘predict‘ function do not use it for anything). Support for ’long double’ can be disable at compile
time by setting up an environment variable ‘NO_LONG_DOUBLE‘ before installing the package
(e.g. by issuing command ‘Sys.setenv("NO_LONG_DOUBLE" = "1")‘ before ‘install.packages‘).

See Also

isolation.forest isotree.restore.handle isotree.build.indexer isotree.set.reference.points

print.isolation_forest

Print summary information from Isolation Forest model

Description

Displays the most general characteristics of an isolation forest model (same as ‘summary‘).

Usage

## S3 method for class 'isolation_forest'
print(x, ...)

Arguments

x An Isolation Forest model as produced by function ‘isolation.forest‘.

... Not used.

Details

Note that after loading a serialized object from ‘isolation.forest‘ through ‘readRDS‘ or ‘load‘,
when using ‘lazy_serialization=FALSE‘, it will only de-serialize the underlying C++ object upon
running ‘predict‘, ‘print‘, or ‘summary‘, so the first run will be slower, while subsequent runs
will be faster as the C++ object will already be in-memory. This does not apply when using
‘lazy_serialization=TRUE‘.

Value

The same model that was passed as input.



54 summary.isolation_forest

See Also

isolation.forest

summary.isolation_forest

Print summary information from Isolation Forest model

Description

Displays the most general characteristics of an isolation forest model (same as ‘print‘).

Usage

## S3 method for class 'isolation_forest'
summary(object, ...)

Arguments

object An Isolation Forest model as produced by function ‘isolation.forest‘.

... Not used.

Details

Note that after loading a serialized object from ‘isolation.forest‘ through ‘readRDS‘ or ‘load‘,
when using ‘lazy_serialization=FALSE‘, it will only de-serialize the underlying C++ object upon
running ‘predict‘, ‘print‘, or ‘summary‘, so the first run will be slower, while subsequent runs
will be faster as the C++ object will already be in-memory. This does not apply when using
‘lazy_serialization=TRUE‘.

Value

No return value.

See Also

isolation.forest
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variable.names.isolation_forest

Get Variable Names for Isolation Forest Model

Description

Returns the names of the input data columns / variables to which an isolation forest model was
fitted.

If the data did not have column names, it will make them up as "column_1..N".

Note that columns will always be reordered so that numeric columns come first, followed by cate-
gorical columns.

Usage

## S3 method for class 'isolation_forest'
variable.names(object, ...)

Arguments

object An isolation forest model, as returned by function isolation.forest.

... Not used.

Value

A character vector containing the column / variable names.
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