
Package ‘pagoo’
November 18, 2022

Version 0.3.17

Title Analyze Bacterial Pangenomes in R with 'Pagoo'

Description Provides an encapsulated, object-oriented class system for
analyzing bacterial pangenomes. For a definition of this concept, see
Tettelin, et al. (2005) <doi:10.1073/pnas.0506758102>. It uses the R6
package as backend. It was designed in order to facilitate and speed-up
the comparative analysis of multiple bacterial genomes, standardizing and
optimizing routine tasks performed everyday. There are a handful of things
done everyday when working with bacterial pangenomes: subset, summarize,
extract, visualize and store data. So, 'pagoo' is intended to facilitate these
tasks as much as possible. For a description of the implemented data structure
and methods, see Ferres & Iraola (2020), <doi:10.1101/2020.07.29.226951>.

Maintainer Ignacio Ferres <iferres@pasteur.edu.uy>

URL https://iferres.github.io/pagoo/, https://github.com/iferres/pagoo

BugReports https://github.com/iferres/pagoo/issues

Depends R (>= 3.5.0), S4Vectors, Biostrings, ggplot2

biocViews
Imports R6, reshape2, vegan, GenomicRanges, BiocGenerics,

shinyWidgets, shinydashboard, DT, plotly, magrittr, heatmaply,
dendextend, ggfortify, shiny

Suggests micropan, patchwork, ape, phangorn, pegas, DECIPHER,
rhierbaps, IRanges, knitr, rmarkdown, testthat, covr

License GPL-3

Encoding UTF-8

ByteCompile true

RoxygenNote 7.2.1

VignetteBuilder knitr

NeedsCompilation no

Author Ignacio Ferres [aut, cre] (<https://orcid.org/0000-0003-0910-6568>),
Gregorio Iraola [aut] (<https://orcid.org/0000-0002-6516-3404>),
Institut Pasteur de Montevideo [fnd]

1

https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1101/2020.07.29.226951
https://iferres.github.io/pagoo/
https://github.com/iferres/pagoo
https://github.com/iferres/pagoo/issues
https://orcid.org/0000-0003-0910-6568
https://orcid.org/0000-0002-6516-3404

2 load_pangenomeRDS

Repository CRAN

Date/Publication 2022-11-18 18:50:02 UTC

R topics documented:

load_pangenomeRDS . 2
pagoo . 3
panaroo_2_pagoo . 10
PgR6 . 11
PgR6M . 15
PgR6MS . 20
roary_2_pagoo . 22

Index 24

load_pangenomeRDS Load A Pagoo Pangenome

Description

This function loads a pagoo pangenome from a ‘.RDS‘ file generated by the ‘save_pangenomeRDS‘
method. Objects loaded by this functions keep their states, i.e : dropped/recovered organisms are
conserved, as well as the ‘core_level‘ setted when the object was originally saved.

Usage

load_pangenomeRDS(file, pkg, ...)

Arguments

file The path to the pangenome ‘.RDS‘ file.

pkg The package to use to load the object. Shouldn’t be necessary to provide, but
may be useful in some cases.

... Arguments to be passed to the pagoo object. sep and core_level overwrite the
values stored in the file.

Value

A PgR6MS class object, or a PgR6M object (with or without sequences, respectively).

pagoo 3

pagoo Create a Pagoo Object

Description

This is the main function to load a pagoo object. It’s safer and more friendly than using pagoo’s
class constructors (PgR6, PgR6M, and PgR6MS). This function returns either a PgR6M class object,
or a PgR6MS class object, depending on the parameters provided. If sequences are provided, it
returns the latter. See below for more details.

Usage

pagoo(
data,
org_meta,
cluster_meta,
sequences,
core_level = 95,
sep = "__",
verbose = TRUE

)

Arguments

data A data.frame or DataFrame containing at least the following columns: gene
(gene name), org (organism name to which the gene belongs to), and cluster
(group of orthologous to which the gene belongs to). More columns can be
added as metadata for each gene.

org_meta (optional) A data.frame or DataFrame containing additional metadata for or-
ganisms. This data.frame must have a column named "org" with valid organ-
isms names (that is, they should match with those provided in data, column
org), and additional columns will be used as metadata. Each row should corre-
spond to each organism.

cluster_meta (optional) A data.frame or DataFrame containing additional metadata for clus-
ters. This data.frame must have a column named "cluster" with valid organ-
isms names (that is, they should match with those provided in data, column
cluster), and additional columns will be used as metadata. Each row should
correspond to each cluster.

sequences (optional) Can accept: 1) a named list of named character vector. Name
of list are names of organisms, names of character vector are gene names; or
2) a named list of DNAStringSetList objects (same requirements as (1), but
with BStringSet names as gene names); or 3) a DNAStringSetList (same re-
quirements as (2) but DNAStringSetList names are organisms names). If this
parameter is used, then a PgR6MS class object is returned.

4 pagoo

core_level The initial core_level (that’s the percentage of organisms a core cluster must be
in to be considered as part of the core genome). Must be a number between 100
and 85, (default: 95). You can change it later by using the $core_level field
once the object was created.

sep A separator. By default is ’__’(two underscores). It will be used to create a
unique gid (gene identifier) for each gene. gids are created by pasting org to
gene, separated by sep.

verbose logical. Whether to display progress messages when loading class.

Details

This package uses [R6](https://r6.r-lib.org/articles/Introduction.html) classes to provide a unified,
comprehensive, standardized, but at the same time flexible, way to analyze a pangenome. The idea
is to have a single object which contains both the data and the basic methods to analyze them, as
well as manipulate fields, explore, and to use in harmony with the already existing and extensive
list of R packages available created for comparative genomics and genetics.

For more information, tutorials, and resources, please visit https://iferres.github.io/pagoo/ .

Index

Active Bindings:

• $pan_matrix

• $organisms

• $clusters

• $genes

• $sequences

• $core_level

• $core_genes

• $core_clusters

• $core_sequences

• $shell_genes

• $shell_clusters

• $shell_sequences

• $cloud_genes

• $cloud_clusters

• $cloud_sequences

Active bindings

• $pan_matrix The panmatrix. Rows are organisms, and columns are groups of orthol-
ogous. Cells indicates the presence (>=1) or absence (0) of a given gene, in a given
organism. Cells can have values greater than 1 if contain in-paralogs.

• $organisms A DataFrame with available organism names, and organism number identi-
fier as rownames(). (Dropped organisms will not be displayed in this field, see $dropped
below). Additional metadata will be shown if provided, as additional columns.

pagoo 5

• $clusters A DataFrame with the groups of orthologous (clusters). Additional metadata
will be shown as additional columns, if provided before. Each row corresponds to each
cluster.

• $genes A SplitDataFrameList object with one entry per cluster. Each element contains
a DataFrame with gene ids (<gid>) and additional metadata, if provided. gid are created
by pasteing organism and gene names, so duplication in gene names are avoided.

• $sequences A DNAStringSetList with the set of sequences grouped by cluster. Each
group is accessible as were a list. All Biostrings methods are available.

• $core_level The percentage of organisms a gene must be in to be considered as part
of the coregenome. core_level = 95 by default. Can’t be set above 100, and below 85
raises a warning.

• $core_genes Like genes, but only showing core genes.
• $core_clusters Like $clusters, but only showing core clusters.
• $core_sequences Like $sequences, but only showing core sequences.
• $cloud_genes Like genes, but only showing cloud genes. These are defined as those

clusters which contain a single gene (singletons), plus those which have more than one
but its organisms are probably clonal due to identical general gene content. Colloquially
defined as strain-specific genes.

• $cloud_clusters Like $clusters, but only showing cloud clusters as defined above.
• $cloud_sequences Like $sequences, but only showing cloud sequences as defined

above.
• $shell_genes Like genes, but only showing shell genes. These are defined as those

clusters than don’t belong neither to the core genome, nor to cloud genome. Colloquially
defined as genes that are present in some but not all strains, and that aren’t strain-specific.

• $shell_clusters Like $clusters, but only showing shell clusters, as defined above.
• $shell_sequences Like $sequences, but only showing shell sequences, as defined

above.
• $summary_stats A DataFrame with information about the number of core, shell, and

cloud clusters, as well as the total number of clusters.
• $random_seed The last .Random.seed. Used for reproducibility purposes only.
• $dropped A character vector with dropped organism names, and organism number

identifier as names()

Methods

Below is a comprehensive description of all the methods provided by the object.

Add metadata Description:: Add metadata to the object. You can add metadata to each organ-
ism, to each group of orthologous, or to each gene. Elements with missing data should be
filled by NA (dimensions of the provided data.frame must be coherent with object data).

Usage:: $add_metadata(map = 'org', df)

Arguments::
• map: character identifying the metadata to map. Can be one of "org", "group", or
"gid".

• df: data.frame or DataFrame with the metadata to add. For each case, a column
named as "map" must exists, which should contain identifiers for each element. In the

6 pagoo

case of adding gene (gid) metadata,each gene should be referenced by the name of the
organism and the name of the gene as provided in the "data" data.frame, separated by
the "sep" argument.

Return:: self invisibly, but with additional metadata.

Drop an organism Description:: Drop an organism from the dataset. This method allows to
hide an organism from the real dataset, ignoring it in downstream analyses. All the fields
and methods will behave as it doesn’t exist. For instance, if you decide to drop organism 1,
the $pan_matrix field (see below) would not show it when called.

Usage:: $drop(x)

Arguments::
• x: character or numeric. The name of the organism wanted to be dropped, or its

numeric id as returned in $organism field (see below).

Return:: self invisibly, but with x dropped. It isn’t necessary to assign the function call
to a new object, nor to re-write it as R6 objects are mutable.

Recover a dropped organism Description:: Recover a previously $drop()ped organism (see
above). All fields and methods will start to behave considering this organism again.

Usage:: $recover(x)

Arguments::
• x: character or numeric. The name of the organism wanted to be recover, or its

numeric id as returned in $dropped field (see below).

Return:: self invisibly, but with x recovered. It isn’t necessary to assign the function call
to a new object, nor to re-write it as R6 objects are mutable.

Write a pangenome as flat (text) files. Description:: Write the pangenome data as flat tables
(text). Is not the most recommended way to save a pangenome, since you can loose in-
formation as numeric precision, column classes (factor, numeric, integer), and the state
of the object itself (i.e. dropped organisms, or core_level), loosing reproducibility. Use
save_pangenomeRDS for a more precise way of saving a pagoo object. Still, it is useful if
you want to work with the data outside R, just keep the above in mind.

Usage:: $write_pangenome(dir = "pangenome", force = FALSE)

Arguments::
• dir: The unexisting directory name where to put the data files. Default is "pangenome".
• force: logical. Whether to overwrite the directory if it already exists. Default: FALSE.

Return:: A directory with at least 3 files. "data.tsv" contain the basic pangenome data as
it is provided to the data argument in the initialization method ($new(...)). "clusters.tsv"
contain any metadata associated to the clusters. "organisms.tsv" contain any metadata asso-
ciated to the organisms. The latter 2 files will contain a single column if no metadata was
provided.

Save a pangenome as a RDS (binary) file. Description:: Save a pagoo pangenome object.
This function provides a method for saving a pagoo object and its state into a "RDS" file. To
load the pangenome, use the load_pangenomeRDS function in this package. It *should* be
compatible between pagoo versions, so you could update pagoo and still recover the same
pangenome. Even sep and core_level are restored unless the user provides those argu-
ments in load_pangenomeRDS. dropped organisms also kept hidden, as you where working
with the original object.

pagoo 7

Usage:: $save_pangenomeRDS(file = "pangenome.rds")

Arguments::
• file: The name of the file to save. Default: "pangenome.rds".

Return:: Writes a list with all the information needed to restore the object by using the
load_pangenomeRDS function, into an RDS (binary) file.

Clone a pagoo object. Description:: The objects of this class are clonable with this method.

Usage:: $clone(deep = FALSE)

Arguments::
• deep: character identifying the metadata to map. Can be one of "org", "group", or
"gid".

Return:: Whether to make a deep clone.

Compute distances Description:: Compute distance between all pairs of genomes. The default
dist method is "bray" (Bray-Curtis distance). Another used distance method is "jaccard",
but you should set binary = FALSE (see below) to obtain a meaningful result. See vegdist
for details, this is just a wrapper function.

Usage:: $dist(method = "bray", binary = FALSE, diag = FALSE,
upper = FALSE, na.rm = FALSE, ...)

Arguments::
• method: The distance method to use. See vegdist for available methods, and details for

each one.
• binary: Transform abundance matrix into a presence/absence matrix before computing

distance.
• diag: Compute diagonals.
• upper: Return only the upper diagonal.
• na.rm: Pairwise deletion of missing observations when computing dissimilarities.
• ...: Other parameters. See vegdist for details.

Return:: A dist object containing all pairwise dissimilarities between genomes.

Compute a Principal Component Analysis Description:: Performs a principal components
analysis on the panmatrix.

Usage:: $pan_pca(center = TRUE, scale. = FALSE, ...)

Arguments::
• center: a logical value indicating whether the variables should be shifted to be zero

centered. Alternately, a vector of length equal the number of columns of x can be
supplied. The value is passed to scale.

• scale.: a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default is TRUE.

• ...: Other arguments. See prcomp

Return:: Returns a list with class "prcomp". See prcomp for more information.

Fit a Power Law Function for the Pangenome Description:: Fits a power law curve for the
pangenome rarefaction simulation.

Usage:: $pg_power_law_fit(raref, ...)

8 pagoo

Arguments::
• raref: (Optional) A rarefaction matrix, as returned by rarefact().
• ...: Further arguments to be passed to rarefact(). If raref is missing, it will be

computed with default arguments, or with the ones provided here.

Return:: A list of two elements: $formula with a fitted function, and $params with
fitted parameters. An attribute "alpha" is also returned (If alpha>1, then the pangenome is
closed, otherwise is open.

Fit an Exponential Decay Function for the Coregenome Description:: Fits an exponential
decay curve for the coregenome rarefaction simulation.

Usage:: $cg_exp_decay_fit(raref, pcounts = 10, ...)

Arguments::
• raref: (Optional) A rarefaction matrix, as returned by rarefact().
• pcounts: An integer of pseudo-counts. This is used to better fit the function at small

numbers, as the linearization method requires to subtract a constant C, which is the
coregenome size, from y. As y becomes closer to the coregenome size, this operation
tends to 0, and its logarithm goes crazy. By default pcounts=10.

• ...: Further arguments to be passed to rarefact(). If raref is missing, it will be
computed with default arguments, or with the ones provided here.

Return:: A list of two elements: $formula with a fitted function, and $params with
fitted intercept and decay parameters.

Compute Genomic Fluidity Description:: Computes the genomic fluidity, which is a measure
of population diversity. See fluidity for more details.

Usage:: $fluidity(nsim = 10)

Arguments::
• nsim:An integer specifying the number of random samples to use in the computations.

Return:: A list with two elements, the mean fluidity and its sample standard deviation over
the n.sim computed values.

Plot Accessory Frequency Plot Description:: Plot a barplot with the frequency of genes within
the total number of genomes.

Usage:: $gg_barplot()

Return:: A barplot, and a gg object (ggplot2 package) invisibly.

Plot a Distance Heatmap Description:: Plot a heatmap showing the computed distance be-
tween all pairs of organisms.

Usage:: $gg_dist(method = "bray", ...)

Arguments::
• method: Distance method. One of "Jaccard" (default), or "Manhattan",see above.
• ...: More arguments to be passed to distManhattan

Return:: A heatmap (ggplot2::geom_tile()), and a gg object (ggplot2 package) invis-
ibly.

Plot a Pangenome Binary Map Description:: Plot a pangenome binary map representing the
presence/absence of each gene within each organism.

pagoo 9

Usage:: $gg_binmap()

Return:: A binary map (ggplot2::geom_raster()), and a gg object (ggplot2 package)
invisibly.

Plot a PCA Description:: Plot a scatter plot of a Principal Components Analysis.

Usage:: $gg_pca(colour = NULL, ...))

Arguments::
• colour:The name of the column in $organisms field from which points will take color

(if provided). NULL (default) renders black points.
• ...: More arguments to be passed to ggplot2::autoplot().

Return:: A scatter plot (ggplot2::autoplot()), and a gg object (ggplot2 package)
invisibly.

Plot a Pie with Pangenome Categories Description:: Plot a pie chart showing the number of
clusters of each pangenome category: core, shell, or cloud.

Usage:: $gg_pie()

Return:: A pie chart (ggplot2::geom_bar() + coord_polar()), and a gg object (ggplot2
package) invisibly.

Plot Pangenome Curves Description:: Plot pangenome and/or coregenome curves with the
fitted functions returned by pg_power_law_fit() and cg_exp_decay_fit(). You can add
points by adding + geom_points(), of ggplot2 package.

Usage:: $gg_curves(what = c("pangenome", "coregenome", ...)

Arguments::
• what: "pangenome" and/or "coregenome".
• ...: ignored

Return:: A scatter plot, and a gg object (ggplot2 package) invisibly.

Run a Shiny App Description:: Launch an interactive shiny app. It contains a sidebar with
controls and switches to interact with the pagoo object. You can drop/recover organisms
from the dataset, modify the core_level, visualize statistics, plots, and browse cluster and
gene information. In the main body, it contains 2 tabs to switch between summary statistics
plots and core genome information on one side, and accessory genome plots and information
on the other.
The lower part of each tab contains two tables, side by side. On the "Summary" tab, the left
one contain information about core clusters, with one cluster per row. When one of them
is selected (click), the one on the right is updated to show information about its genes (if
provided), one gene per row. On the "Accessory" tab, a similar configuration is shown, but
on this case only accessory clusters/genes are displayed. There is a slider on the sidebar
where one can select the accessory frequency range to display.
Give it a try!
Take into account that big pangenomes can slow down the performance of the app. More
than 50-70 organisms often leads to a delay in the update of the plots/tables.

Usage:: $runShinyApp()

Return:: Opens a shiny app on the browser.

10 panaroo_2_pagoo

Retrieve Core Genes for Phylogeny Description:: A field for obtaining core gene sequences
is available (see below), but for creating a phylogeny with this sets is useful to: 1) have
the possibility of extracting just one sequence of each organism on each cluster, in case
paralogues are present, and 2) filling gaps with empty sequences in case the core_level was
set below 100%, allowing more genes (some not in 100% of organisms) to be incorporated
to the phylogeny. That is the purpose of this special function.

Usage:: $core_seqs_4_phylo(max_per_org = 1, fill = TRUE)

Arguments::
• max_per_org: Maximum number of sequences of each organism to be taken from each

cluster.
• fill: logical. If fill DNAStringSet with empty DNAString in cases where core_level

is set below 100%, and some clusters with missing organisms are also considered.

Return:: A DNAStringSetList with core genes. Order of organisms on each cluster is
conserved, so it is easier to concatenate them into a super-gene suitable for phylogenetic
inference.

panaroo_2_pagoo Read panaroos’s output into a pagoo’s R6 class object

Description

This function handle conversion of panaroo’s output files into a pagoo R6 class object. It takes
the "gene_presence_absence.csv" file and (optionally but recommended) gff input file paths, and
returns an object of class PgR6MS (or PgR6M if left empty the gffs argument). Panaroo identifies
some genes with unusual lengths tagging them with ’stop’, ’length’, or ’refound’ labels. In the
current version, this function discards those genes.

Usage

panaroo_2_pagoo(gene_presence_absence_csv, gffs, sep = "__")

Arguments

gene_presence_absence_csv

character, path to the "gene_presence_absence.csv" file. (Do not confuse with
the file with the same name but with .Rtab extension).

gffs A character vector with paths to original gff files used as roary’s input. Typi-
cally the return value of list.files() function. This parameter is optional but
highly recommended if you want to manipulate sequences.

sep character. Default: "__" (two underscores). See PgR6MS for a more detail
argument description.

Value

A pagoo’s R6 class object. Either PgR6M, if gffs argument is left empty, or PgR6MS if path to gff
files is provided.

https://gtonkinhill.github.io/panaroo/#/

PgR6 11

References

Tonkin-Hill, G., MacAlasdair, N., Ruis, C. et al. Producing polished prokaryotic pangenomes with
the Panaroo pipeline. Genome Biol 21, 180 (2020). https://doi.org/10.1186/s13059-020-02090-4

Examples

Not run:
gffs <- list.files(path = "path/to/gffs/",

pattern = "[.]gff$",
full.names = TRUE)

gpa_csv <- "path/to/gene_presence_absence.csv"

library(pagoo)
pg <- panaroo_2_pagoo(gene_presence_absence_csv = gpa_csv,

gffs = gffs)

End(Not run)

PgR6 PgR6 basic class

Description

A basic PgR6 class constructor. It contains basic fields and subset functions to handle a pangenome.
Final users should use pagoo instead of this, since is more easy to understand.

Active bindings

pan_matrix The panmatrix. Rows are organisms, and columns are groups of orthologous. Cells
indicates the presence (>=1) or absence (0) of a given gene, in a given organism. Cells can
have values greater than 1 if contain in-paralogs.

organisms A DataFrame with available organism names, and organism number identifier as rownames().
(Dropped organisms will not be displayed in this field, see $dropped below). Additional meta-
data will be shown if provided, as additional columns.

genes A SplitDataFrameList object with one entry per cluster. Each element contains a DataFrame
with gene ids (<gid>) and additional metadata, if provided. gid are created by pasteing or-
ganism and gene names, so duplication in gene names are avoided.

clusters A DataFrame with the groups of orthologous (clusters). Additional metadata will be
shown as additional columns, if provided before. Each row corresponds to each cluster.

core_level The percentage of organisms a gene must be in to be considered as part of the coregenome.
core_level = 95 by default. Can’t be set above 100, and below 85 raises a warning.

core_genes Like genes, but only showing core genes.

core_clusters Like $clusters, but only showing core clusters.

12 PgR6

cloud_genes Like genes, but only showing cloud genes. These are defined as those clusters which
contain a single gene (singletons), plus those which have more than one but its organisms are
probably clonal due to identical general gene content. Colloquially defined as strain-specific
genes.

cloud_clusters Like $clusters, but only showing cloud clusters as defined above.

shell_genes Like genes, but only showing shell genes. These are defined as those clusters than
don’t belong neither to the core genome, nor to cloud genome. Colloquially defined as genes
that are present in some but not all strains, and that aren’t strain-specific.

shell_clusters Like $clusters, but only showing shell clusters, as defined above.

summary_stats A DataFrame with information about the number of core, shell, and cloud clusters,
as well as the total number of clusters.

random_seed The last .Random.seed. Used for reproducibility purposes only.

dropped A character vector with dropped organism names, and organism number identifier as
names()

Methods

Public methods:

• PgR6$new()

• PgR6$add_metadata()

• PgR6$drop()

• PgR6$recover()

• PgR6$write_pangenome()

• PgR6$save_pangenomeRDS()

• PgR6$clone()

Method new(): A basic PgR6 class constructor. It contains basic fields and subset functions to
handle a pangenome.

Usage:
PgR6$new(
data,
org_meta,
cluster_meta,
core_level = 95,
sep = "__",
verbose = TRUE,
DF,
group_meta

)

Arguments:

data A data.frame or DataFrame containing at least the following columns: gene (gene
name), org (organism name to which the gene belongs to), and cluster (group of or-
thologous to which the gene belongs to). More columns can be added as metadata for each
gene.

PgR6 13

org_meta (optional) A data.frame or DataFrame containing additional metadata for organ-
isms. This data.frame must have a column named "org" with valid organisms names (that
is, they should match with those provided in data, column org), and additional columns
will be used as metadata. Each row should correspond to each organism.

cluster_meta (optional) A data.frame or DataFrame containing additional metadata for clus-
ters. This data.frame must have a column named "cluster" with valid organisms names
(that is, they should match with those provided in data, column cluster), and additional
columns will be used as metadata. Each row should correspond to each cluster.

core_level The initial core_level (that’s the percentage of organisms a core cluster must be
in to be considered as part of the core genome). Must be a number between 100 and 85,
(default: 95). You can change it later by using the $core_level field once the object was
created.

sep A separator. By default is ’__’(two underscores). It will be used to create a unique gid
(gene identifier) for each gene. gids are created by pasting org to gene, separated by sep.

verbose logical. Whether to display progress messages when loading class.
DF Deprecated. Use data instead.
group_meta Deprecated. Use cluster_meta instead.

Returns: An R6 object of class PgR6. It contains basic fields and methods for analyzing a
pangenome.

Method add_metadata(): Add metadata to the object. You can add metadata to each organism,
to each group of orthologous (cluster), or to each gene. Elements with missing data should be
filled by NA (dimensions of the provided data.frame must be coherent with object data).

Usage:
PgR6$add_metadata(map = "org", data)

Arguments:

map character identifying the metadata to map. Can be one of "org", "cluster", or "gid".
data data.frame or DataFrame with the metadata to add. For each case, a column named as

"map" must exists, which should contain identifiers for each element. In the case of adding
gene (gid) metadata,each gene should be referenced by the name of the organism and the
name of the gene as provided in the "data" data.frame, separated by the "sep" argument.

Returns: self invisibly, but with additional metadata.

Method drop(): Drop an organism from the dataset. This method allows to hide an organism
from the real dataset, ignoring it in downstream analyses. All the fields and methods will behave
as it doesn’t exist. For instance, if you decide to drop organism 1, the $pan_matrix field (see
below) would not show it when called.

Usage:
PgR6$drop(x)

Arguments:

x character or numeric. The name of the organism wanted to be dropped, or its numeric id
as returned in $organism field (see below).

Returns: self invisibly, but with x dropped. It isn’t necessary to assign the function call to a
new object, nor to re-write it as R6 objects are mutable.

14 PgR6

Method recover(): Recover a previously $drop()ped organism (see above). All fields and
methods will start to behave considering this organism again.

Usage:
PgR6$recover(x)

Arguments:
x character or numeric. The name of the organism wanted to be recover, or its numeric id as

returned in $dropped field (see below).

Returns: self invisibly, but with x recovered. It isn’t necessary to assign the function call to a
new object, nor to re-write it as R6 objects are mutable.

Method write_pangenome(): Write the pangenome data as flat tables (text). Is not the most
recommended way to save a pangenome, since you can loose information as numeric precision,
column classes (factor, numeric, integer), and the state of the object itself (i.e. dropped organisms,
or core_level), loosing reproducibility. Use $save_pangenomeRDS for a more precise way of
saving a pagoo object. Still, it is useful if you want to work with the data outside R, just keep the
above in mind.

Usage:
PgR6$write_pangenome(dir = "pangenome", force = FALSE)

Arguments:
dir The non-existing directory name where to put the data files. Default is "pangenome".
force logical. Whether to overwrite the directory if it already exists. Default: FALSE.

Returns: A directory with at least 3 files. "data.tsv" contain the basic pangenome data as it is
provided to the data argument in the initialization method ($new(...)). "clusters.tsv" contain
any metadata associated to the clusters. "organisms.tsv" contain any metadata associated to the
organisms. The latter 2 files will contain a single column if no metadata was provided.

Method save_pangenomeRDS(): Save a pagoo pangenome object. This function provides a
method for saving a pagoo object and its state into a "RDS" file. To load the pangenome, use the
load_pangenomeRDS function in this package. It *should* be compatible between pagoo versions,
so you could update pagoo and still recover the same pangenome. Even sep and core_level are
restored unless the user provides those arguments in load_pangenomeRDS. dropped organisms
also kept hidden, as you where working with the original object.

Usage:
PgR6$save_pangenomeRDS(file = "pangenome.rds")

Arguments:
file The name of the file to save. Default: "pangenome.rds".

Returns: Writes a list with all the information needed to restore the object by using the
load_pangenomeRDS function, into an RDS (binary) file.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PgR6$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

PgR6M 15

PgR6M PgR6 class with methods.

Description

PgR6 with Methods. Final users should use pagoo instead of this, since is more easy to understand.
Inherits: PgR6

Super class

pagoo::PgR6 -> PgR6M

Methods

Public methods:

• PgR6M$new()

• PgR6M$rarefact()

• PgR6M$dist()

• PgR6M$pan_pca()

• PgR6M$pg_power_law_fit()

• PgR6M$cg_exp_decay_fit()

• PgR6M$gg_barplot()

• PgR6M$gg_binmap()

• PgR6M$gg_dist()

• PgR6M$gg_pca()

• PgR6M$gg_pie()

• PgR6M$gg_curves()

• PgR6M$runShinyApp()

• PgR6M$clone()

Method new(): Create a PgR6M object.

Usage:
PgR6M$new(
data,
org_meta,
cluster_meta,
core_level = 95,
sep = "__",
verbose = TRUE,
DF,
group_meta

)

Arguments:

16 PgR6M

data A data.frame or DataFrame containing at least the following columns: gene (gene
name), org (organism name to which the gene belongs to), and cluster (group of or-
thologous to which the gene belongs to). More columns can be added as metadata for each
gene.

org_meta (optional) A data.frame or DataFrame containing additional metadata for organ-
isms. This data.frame must have a column named "org" with valid organisms names (that
is, they should match with those provided in data, column org), and additional columns
will be used as metadata. Each row should correspond to each organism.

cluster_meta (optional) A data.frame or DataFrame containing additional metadata for clus-
ters. This data.frame must have a column named "cluster" with valid organisms names
(that is, they should match with those provided in data, column cluster), and additional
columns will be used as metadata. Each row should correspond to each cluster.

core_level The initial core_level (that’s the percentage of organisms a core cluster must be
in to be considered as part of the core genome). Must be a number between 100 and 85,
(default: 95). You can change it later by using the $core_level field once the object was
created.

sep A separator. By default is ’__’(two underscores). It will be used to create a unique gid
(gene identifier) for each gene. gids are created by pasting org to gene, separated by sep.

verbose logical. Whether to display progress messages when loading class.
DF Deprecated. Use data instead.
group_meta Deprecated. Use cluster_meta instead.

Returns: An R6 object of class PgR6M. It contains basic fields and methods for analyzing a
pangenome. It also contains additional statistical methods for analyze it, and methods to make
basic exploratory plots.

Method rarefact(): Rarefact pangenome or corgenome. Compute the number of genes which
belong to the pangenome or to the coregenome, for a number of random permutations of increas-
ingly bigger sample of genomes.

Usage:
PgR6M$rarefact(what = "pangenome", n.perm = 10)

Arguments:

what One of "pangenome" or "coregenome".
n.perm The number of permutations to compute (default: 10).

Returns: A matrix, rows are the number of genomes added, columns are permutations, and
the cell number is the number of genes in each category.

Method dist(): Compute distance between all pairs of genomes. The default dist method is
"bray" (Bray-Curtis distance). Another used distance method is "jaccard", but you should set
binary = FALSE (see below) to obtain a meaningful result. See vegdist for details, this is just a
wrapper function.

Usage:
PgR6M$dist(
method = "bray",
binary = FALSE,
diag = FALSE,

PgR6M 17

upper = FALSE,
na.rm = FALSE,
...

)

Arguments:

method The distance method to use. See vegdist for available methods, and details for each
one.

binary Transform abundance matrix into a presence/absence matrix before computing dis-
tance.

diag Compute diagonals.
upper Return only the upper diagonal.
na.rm Pairwise deletion of missing observations when computing dissimilarities.
... Other parameters. See vegdist for details.

Returns: A dist object containing all pairwise dissimilarities between genomes.

Method pan_pca(): Performs a principal components analysis on the panmatrix

Usage:
PgR6M$pan_pca(center = TRUE, scale. = FALSE, ...)

Arguments:

center a logical value indicating whether the variables should be shifted to be zero centered.
Alternately, a vector of length equal the number of columns of x can be supplied. The value
is passed to scale.

scale. a logical value indicating whether the variables should be scaled to have unit variance
before the analysis takes place. The default is TRUE.

... Other arguments. See prcomp

Returns: Returns a list with class "prcomp". See prcomp for more information.

Method pg_power_law_fit(): Fits a power law curve for the pangenome rarefaction simula-
tion.

Usage:
PgR6M$pg_power_law_fit(raref, ...)

Arguments:

raref (Optional) A rarefaction matrix, as returned by rarefact().
... Further arguments to be passed to rarefact(). If raref is missing, it will be computed

with default arguments, or with the ones provided here.

Returns: A list of two elements: $formula with a fitted function, and $params with fitted
parameters. An attribute "alpha" is also returned (If alpha>1, then the pangenome is closed,
otherwise is open.

Method cg_exp_decay_fit(): Fits an exponential decay curve for the coregenome rarefaction
simulation.

Usage:
PgR6M$cg_exp_decay_fit(raref, pcounts = 10, ...)

18 PgR6M

Arguments:
raref (Optional) A rarefaction matrix, as returned by rarefact().
pcounts An integer of pseudo-counts. This is used to better fit the function at small numbers,

as the linearization method requires to subtract a constant C, which is the coregenome size,
from y. As y becomes closer to the coregenome size, this operation tends to 0, and its
logarithm goes crazy. By default pcounts=10.

... Further arguments to be passed to rarefact(). If raref is missing, it will be computed
with default arguments, or with the ones provided here.

Returns: A list of two elements: $formula with a fitted function, and $params with fitted
intercept and decay parameters.

Method gg_barplot(): Plot a barplot with the frequency of genes within the total number of
genomes.

Usage:
PgR6M$gg_barplot()

Returns: A barplot, and a gg object (ggplot2 package) invisibly.

Method gg_binmap(): Plot a pangenome binary map representing the presence/absence of each
gene within each organism.

Usage:
PgR6M$gg_binmap()

Returns: A binary map (ggplot2::geom_raster()), and a gg object (ggplot2 package) in-
visibly.

Method gg_dist(): Plot a heatmap showing the computed distance between all pairs of organ-
isms.

Usage:
PgR6M$gg_dist(method = "bray", ...)

Arguments:
method Distance method. One of "Jaccard" (default), or "Manhattan", see above.
... More arguments to be passed to distManhattan.

Returns: A heatmap (ggplot2::geom_tile()), and a gg object (ggplot2 package) invisibly.

Method gg_pca(): Plot a scatter plot of a Principal Components Analysis.

Usage:
PgR6M$gg_pca(colour = NULL, ...)

Arguments:
colour The name of the column in $organisms field from which points will take colour (if

provided). NULL (default) renders black points.
... More arguments to be passed to ggplot2::autoplot().

Returns: A scatter plot (ggplot2::autoplot()), and a gg object (ggplot2 package) invisibly.

Method gg_pie(): Plot a pie chart showing the number of clusters of each pangenome category:
core, shell, or cloud.

PgR6M 19

Usage:

PgR6M$gg_pie()

Returns: A pie chart (ggplot2::geom_bar() + coord_polar()), and a gg object (ggplot2
package) invisibly.

Method gg_curves(): Plot pangenome and/or coregenome curves with the fitted functions
returned by pg_power_law_fit() and cg_exp_decay_fit(). You can add points by adding +
geom_points(), of ggplot2 package

Usage:

PgR6M$gg_curves(what = c("pangenome", "coregenome"), ...)

Arguments:

what One of "pangenome" or "coregenome".

... ????

Returns: A scatter plot, and a gg object (ggplot2 package) invisibly.

Method runShinyApp(): Launch an interactive shiny app. It contains a sidebar with controls
and switches to interact with the pagoo object. You can drop/recover organisms from the dataset,
modify the core_level, visualize statistics, plots, and browse cluster and gene information. In
the main body, it contains 2 tabs to switch between summary statistics plots and core genome
information on one side, and accessory genome plots and information on the other.

The lower part of each tab contains two tables, side by side. On the "Summary" tab, the left one
contain information about core clusters, with one cluster per row. When one of them is selected
(click), the one on the right is updated to show information about its genes (if provided), one gene
per row. On the "Accessory" tab, a similar configuration is shown, but on this case only accessory
clusters/genes are displayed. There is a slider on the sidebar where one can select the accessory
frequency range to display.

Give it a try!

Take into account that big pangenomes can slow down the performance of the app. More than
50-70 organisms often leads to a delay in the update of the plots/tables.

Usage:

PgR6M$runShinyApp()

Method clone(): The objects of this class are cloneable with this method.

Usage:

PgR6M$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

20 PgR6MS

PgR6MS PgR6 class with Methods and Sequences.

Description

PgR6 with Methods and Sequences. Final users should use pagoo instead of this, since is more easy
to understand. Inherits: PgR6M

Super classes

pagoo::PgR6 -> pagoo::PgR6M -> PgR6MS

Active bindings

sequences A DNAStringSetList with the set of sequences grouped by cluster. Each group is
accessible as were a list. All Biostrings methods are available.

core_sequences Like $sequences, but only showing core sequences.

cloud_sequences Like $sequences, but only showing cloud sequences as defined above.

shell_sequences Like $sequences, but only showing shell sequences, as defined above.

Methods

Public methods:
• PgR6MS$new()

• PgR6MS$core_seqs_4_phylo()

• PgR6MS$clone()

Method new(): Create a PgR6MS object.

Usage:
PgR6MS$new(
data,
org_meta,
cluster_meta,
core_level = 95,
sep = "__",
DF,
group_meta,
sequences,
verbose = TRUE

)

Arguments:
data A data.frame or DataFrame containing at least the following columns: gene (gene

name), org (organism name to which the gene belongs to), and cluster (group of or-
thologous to which the gene belongs to). More columns can be added as metadata for each
gene.

PgR6MS 21

org_meta (optional) A data.frame or DataFrame containing additional metadata for organ-
isms. This data.frame must have a column named "org" with valid organisms names (that
is, they should match with those provided in data, column org), and additional columns
will be used as metadata. Each row should correspond to each organism.

cluster_meta (optional) A data.frame or DataFrame containing additional metadata for clus-
ters. This data.frame must have a column named "cluster" with valid organisms names
(that is, they should match with those provided in data, column cluster), and additional
columns will be used as metadata. Each row should correspond to each cluster.

core_level The initial core_level (that’s the percentage of organisms a core cluster must be
in to be considered as part of the core genome). Must be a number between 100 and 85,
(default: 95). You can change it later by using the $core_level field once the object was
created.

sep A separator. By default is ’__’(two underscores). It will be used to create a unique gid
(gene identifier) for each gene. gids are created by pasting org to gene, separated by sep.

DF Deprecated. Use data instead.
group_meta Deprecated. Use cluster_meta instead.
sequences Can accept: 1) a named list of named character vector. Name of list are

names of organisms, names of character vector are gene names; or 2) a named list of
DNAStringSetList objects (same requirements as (1), but with BStringSet names as gene
names); or 3) a DNAStringSetList (same requirements as (2) but DNAStringSetList
names are organisms names).

verbose logical. Whether to display progress messages when loading class.
Returns: An R6 object of class PgR6MS. It contains basic fields and methods for analyzing a
pangenome. It also contains additional statistical methods for analyze it, methods to make basic
exploratory plots, and methods for sequence manipulation.

Method core_seqs_4_phylo(): A field for obtaining core gene sequences is available (see
below), but for creating a phylogeny with this sets is useful to: 1) have the possibility of extracting
just one sequence of each organism on each cluster, in case paralogues are present, and 2) filling
gaps with empty sequences in case the core_level was set below 100%, allowing more genes
(some not in 100% of organisms) to be incorporated to the phylogeny. That is the purpose of this
special function.

Usage:
PgR6MS$core_seqs_4_phylo(max_per_org = 1, fill = TRUE)

Arguments:
max_per_org Maximum number of sequences of each organism to be taken from each cluster.
fill logical. If fill DNAStringSet with empty DNAString in cases where core_level is set

below 100%, and some clusters with missing organisms are also considered.
Returns: A DNAStringSetList with core genes. Order of organisms on each cluster is con-
served, so it is easier to concatenate them into a super-gene suitable for phylogenetic inference.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PgR6MS$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

22 roary_2_pagoo

roary_2_pagoo Read roary’s output into a pagoo’s R6 class object

Description

This function handle conversion of roary’s output files into a pagoo R6 class object. It takes the
"gene_presence_absence.csv" file and (optionally but recommended) gff input file paths, and returns
an object of class PgR6MS (or PgR6M if left empty the gffs argument).

Usage

roary_2_pagoo(gene_presence_absence_csv, gffs, sep = "__", paralog_sep = "\t")

Arguments

gene_presence_absence_csv

character, path to the "gene_presence_absence.csv" file. (Do not confuse with
the file with the same name but with .Rtab extension).

gffs A character vector with paths to original gff files used as roary’s input. Typi-
cally the return value of list.files() function. This parameter is optional but
highly recommended if you want to manipulate sequences.

sep character. Default: "__" (two underscores). See PgR6MS for a more detail
argument description.

paralog_sep character. A gene separator for cases where the clusters have in-paralogs.
(Default: "\t" - tab).

Value

A pagoo’s R6 class object. Either PgR6M, if gffs argument is left empty, or PgR6MS if path to gff
files is provided.

References

Andrew J. Page, Carla A. Cummins, Martin Hunt, Vanessa K. Wong, Sandra Reuter, Matthew T.
G. Holden, Maria Fookes, Daniel Falush, Jacqueline A. Keane, Julian Parkhill, "Roary: Rapid
large-scale prokaryote pan genome analysis", Bioinformatics, 2015;31(22):3691-3693

Examples

Not run:
gffs <- list.files(path = "path/to/gffs/",

pattern = "[.]gff$",
full.names = TRUE)

gpa_csv <- "path/to/gene_presence_absence.csv"

library(pagoo)
pg <- roary_2_pagoo(gene_presence_absence_csv = gpa_csv,

https://sanger-pathogens.github.io/Roary/

roary_2_pagoo 23

gffs = gffs)

End(Not run)

Index

DataFrame, 3–5, 11–13, 16, 20, 21
distManhattan, 8, 18
DNAStringSetList, 3, 5, 20, 21

fluidity, 8

load_pangenomeRDS, 2

pagoo, 3, 11, 15, 20
pagoo::PgR6, 15, 20
pagoo::PgR6M, 20
panaroo_2_pagoo, 10
PgR6, 3, 11, 15
PgR6M, 3, 10, 15, 20, 22
PgR6MS, 3, 10, 20, 22
prcomp, 7, 17

roary_2_pagoo, 22

SplitDataFrameList, 5, 11

vegdist, 7, 16, 17

24

	load_pangenomeRDS
	pagoo
	panaroo_2_pagoo
	PgR6
	PgR6M
	PgR6MS
	roary_2_pagoo
	Index

