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.cbindOme cbind Ome

Description

cbind Ome

Usage

.cbindOme(et, mat, n)

Arguments

et The theta data frame
mat The full matrix simulation from omegas
n number of subject simulated
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Value

data frame with et combined with simulated omega matrix values

Author(s)

Matthew Fidler

.vecDf Convert numeric vector to repeated data.frame

Description

Convert numeric vector to repeated data.frame

Usage

.vecDf(vec, n)

Arguments

vec Named input vector

n Number of columns

Value

Data frame with repeated vec

Author(s)

Matthew Fidler

cvPost Sample a covariance Matrix from the Posterior Inverse Wishart distri-
bution.

Description

Note this Inverse wishart rescaled to match the original scale of the covariance matrix.
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Usage

cvPost(
nu,
omega,
n = 1L,
omegaIsChol = FALSE,
returnChol = FALSE,
type = c("invWishart", "lkj", "separation"),
diagXformType = c("log", "identity", "variance", "nlmixrSqrt", "nlmixrLog",
"nlmixrIdentity")

)

Arguments

nu Degrees of Freedom (Number of Observations) for covariance matrix simula-
tion.

omega Either the estimate of covariance matrix or the estimated standard deviations in
matrix form each row forming the standard deviation simulated values

n Number of Matrices to sample. By default this is 1. This is only useful when
omega is a matrix. Otherwise it is determined by the number of rows in the input
omega matrix of standard deviations

omegaIsChol is an indicator of if the omega matrix is in the Cholesky decomposition. This is
only used when type="invWishart"

returnChol Return the Cholesky decomposition of the covariance matrix sample. This is
only used when type="invWishart"

type The type of covariance posterior that is being simulated. This can be:

• invWishart The posterior is an inverse wishart; This allows for correla-
tions between parameters to be modeled. All the uncertainty in the param-
eter is captured in the degrees of freedom parameter.

• lkj The posterior separates the standard deviation estimates (modeled out-
side and provided in the omega argument) and the correlation estimates. The
correlation estimate is simulated with the rLKJ1(). This simulation uses
the relationship eta=(nu-1)/2. This is relationship based on the proof of
the relationship between the restricted LKJ-distribution and inverse wishart
distribution (XXXXXX). Once the correlation posterior is calculated, the
estimated standard deviations are then combined with the simulated corre-
lation matrix to create the covariance matrix.

• separation Like the lkj option, this separates out the estimation of the
correlation and standard deviation. Instead of using the LKJ distribution to
simulate the correlation, it simulates the inverse wishart of the identity ma-
trix and converts the result to a correlation matrix. This correlation matrix is
then used with the standard deviation to calculate the simulated covariance
matrix.

diagXformType Diagonal transformation type. These could be:

• log The standard deviations are log transformed, so the actual standard
deviations are exp(omega)
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• identity The standard deviations are not transformed. The standard devi-
ations are not transformed; They should be positive.

• variance The variances are specified in the omega matrix; They are trans-
formed into standard deviations.

• nlmixrSqrt These standard deviations come from an nlmixr omega matrix
where diag(chol(inv(omega))) = x^2

• nlmixrLog These standard deviations come from a nlmixr omega matrix
omega matrix where diag(chol(solve(omega))) = exp(x)

• nlmixrIdentity These standard deviations come from a nlmixr omega
matrix omega matrix where diag(chol(solve(omega))) = x

The nlmixr transformations only make sense when there is no off-diagonal cor-
relations modeled.

Details

If your covariance matrix is a 1x1 matrix, this uses an scaled inverse chi-squared which is equivalent
to the Inverse Wishart distribution in the uni-directional case.

In general, the separation strategy is preferred for diagonal matrices. If the dimension of the ma-
trix is below 10, lkj is numerically faster than separation method. However, the lkj method
has densities too close to zero (XXXX) when the dimension is above 10. In that case, though
computationally more expensive separation method performs better.

For matrices with modeled covariances, the easiest method to use is the inverse Wishart which
allows the simulation of correlation matrices (XXXX). This method is more well suited for well
behaved matrices, that is the variance components are not too low or too high. When modeling non-
linear mixed effects modeling matrices with too high or low variances are considered sub-optimal
in describing a system. With these rules in mind, it is reasonable to use the inverse Wishart.

Value

a matrix (n=1) or a list of matrices (n > 1)

Author(s)

Matthew L.Fidler & Wenping Wang

References

Alvarez I, Niemi J and Simpson M. (2014) Bayesian Inference for a Covariance Matrix. Conference
on Applied Statistics in Agriculture. https://newprairiepress.org/cgi/viewcontent.cgi?
article=1004&context=agstatconference

Wang1 Z, Wu Y, and Chu H. (2018) On Equivalence of the LKJ distribution and the restricted
Wishart distribution. arXiv:1809.04746

Examples

## Sample a single covariance.
draw1 <- cvPost(3, matrix(c(1, .3, .3, 1), 2, 2))

https://newprairiepress.org/cgi/viewcontent.cgi?article=1004&context=agstatconference
https://newprairiepress.org/cgi/viewcontent.cgi?article=1004&context=agstatconference
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## Sample 3 covariances
set.seed(42)
draw3 <- cvPost(3, matrix(c(1, .3, .3, 1), 2, 2), n = 3)

## Sample 3 covariances, but return the cholesky decomposition
set.seed(42)
draw3c <- cvPost(3, matrix(c(1, .3, .3, 1), 2, 2), n = 3, returnChol = TRUE)

## Sample 3 covariances with lognormal standard deviations via LKJ
## correlation sample
cvPost(3, sapply(1:3, function(...) {

rnorm(10)
}), type = "lkj")

## or return cholesky decomposition
cvPost(3, sapply(1:3, function(...) {

rnorm(10)
}),
type = "lkj",
returnChol = TRUE
)

## Sample 3 covariances with lognormal standard deviations via separation
## strategy using inverse Wishart correlation sample
cvPost(3, sapply(1:3, function(...) {

rnorm(10)
}), type = "separation")

## or returning the cholesky decomposition
cvPost(3, sapply(1:3, function(...) {

rnorm(10)
}),
type = "separation",
returnChol = TRUE
)

dfWishart This uses simulations to match the rse

Description

This uses simulations to match the rse

Usage

dfWishart(omega, n, rse, upper, totN = 1000, diag = TRUE, seed = 1234)
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Arguments

omega represents the matrix for simulation

n This represents the number of subjects/samples this comes from (used to calcu-
late rse). When present it assumes the rse= sqrt(2)/sqrt(n)

rse This is the rse that we try to match, if not specified, it is derived from n

upper The upper boundary for root finding in terms of degrees of freedom. If not
specified, it is n*200

totN This represents the total number of simulated inverse wishart deviates

diag When TRUE, represents the rse to match is the diagonals, otherwise it is the total
matrix.

seed to make the simulation reproducible, this represents the seed that is used for
simulating the inverse Wishart distribution

Value

output from uniroot() to find the right estimate

Author(s)

Matthew L. Fidler

Examples

dfWishart(lotri::lotri(a+b~c(1, 0.5, 1)), 100)

phi Cumulative distribution of standard normal

Description

Cumulative distribution of standard normal

Usage

phi(q)

Arguments

q vector of quantiles

Value

cumulative distribution of standard normal distribution
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Author(s)

Matthew Fidler

Examples

# phi is equivalent to pnorm(x)
phi(3)

# See
pnorm(3)

# This is provided for NONMEM-like compatibility in rxode2 models

rinvchisq Scaled Inverse Chi Squared distribution

Description

Scaled Inverse Chi Squared distribution

Usage

rinvchisq(n = 1L, nu = 1, scale = 1)

Arguments

n Number of random samples

nu degrees of freedom of inverse chi square

scale Scale of inverse chi squared distribution (default is 1).

Value

a vector of inverse chi squared deviates.

Examples

rinvchisq(3, 4, 1) ## Scale = 1, degrees of freedom = 4
rinvchisq(2, 4, 2) ## Scale = 2, degrees of freedom = 4
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rxbeta Simulate beta variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxbeta(shape1, shape2, n = 1L, ncores = 1L)

Arguments

shape1, shape2 non-negative parameters of the Beta distribution.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

beta random deviates

Examples

## Use threefry engine

rxbeta(0.5, 0.5, n = 10) # with rxbeta you have to explicitly state n
rxbeta(5, 1, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxbeta(1, 3)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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rxbinom Simulate Binomial variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxbinom(size, prob, n = 1L, ncores = 1L)

Arguments

size number of trials (zero or more).

prob probability of success on each trial.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

binomial random deviates

Examples

## Use threefry engine

rxbinom(10, 0.9, n = 10) # with rxbinom you have to explicitly state n
rxbinom(3, 0.5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxbinom(4, 0.7)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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rxcauchy Simulate Cauchy variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxcauchy(location = 0, scale = 1, n = 1L, ncores = 1L)

Arguments

location, scale

location and scale parameters.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

Cauchy random deviates

Examples

## Use threefry engine

rxcauchy(0, 1, n = 10) # with rxcauchy you have to explicitly state n
rxcauchy(0.5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxcauchy(3)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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rxchisq Simulate chi-squared variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxchisq(df, n = 1L, ncores = 1L)

Arguments

df degrees of freedom (non-negative, but can be non-integer).

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

chi squared random deviates

Examples

## Use threefry engine

rxchisq(0.5, n = 10) # with rxchisq you have to explicitly state n
rxchisq(5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxchisq(1)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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rxexp Simulate exponential variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxexp(rate, n = 1L, ncores = 1L)

Arguments

rate vector of rates.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

exponential random deviates

Examples

## Use threefry engine

rxexp(0.5, n = 10) # with rxexp you have to explicitly state n
rxexp(5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxexp(1)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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rxf Simulate F variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxf(df1, df2, n = 1L, ncores = 1L)

Arguments

df1, df2 degrees of freedom. Inf is allowed.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
ncores Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

f random deviates

Examples

## Use threefry engine

rxf(0.5, 0.5, n = 10) # with rxf you have to explicitly state n
rxf(5, 1, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxf(1, 3)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/


rxgamma 15

rxgamma Simulate gamma variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxgamma(shape, rate = 1, n = 1L, ncores = 1L)

Arguments

shape The shape of the gamma random variable

rate an alternative way to specify the scale.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

gamma random deviates

Examples

## Use threefry engine

rxgamma(0.5, n = 10) # with rxgamma you have to explicitly state n
rxgamma(5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxgamma(1)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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rxgeom Simulate geometric variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxgeom(prob, n = 1L, ncores = 1L)

Arguments

prob probability of success in each trial. 0 < prob <= 1.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

geometric random deviates

Examples

## Use threefry engine

rxgeom(0.5, n = 10) # with rxgeom you have to explicitly state n
rxgeom(0.25, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxgeom(0.75)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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rxGetSeed Get the rxode2 seed

Description

Get the rxode2 seed

Usage

rxGetSeed()

Value

rxode2 seed state or -1 when the seed isn’t set

See Also

rxSetSeed, rxWithSeed, rxWithPreserveSeed

Examples

# without setting seed

rxGetSeed()
# Now set the seed
rxSetSeed(42)

rxGetSeed()

rxnorm()

rxGetSeed()

# don't use the rxode2 seed again

rxSetSeed(-1)

rxGetSeed()

rxnorm()

rxGetSeed()
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rxnbinom Simulate Binomial variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxnbinom(size, prob, n = 1L, ncores = 1L)

rxnbinomMu(size, mu, n = 1L, ncores = 1L)

Arguments

size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.

prob probability of success in each trial. 0 < prob <= 1.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

mu alternative parametrization via mean: see ‘Details’.

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

negative binomial random deviates. Note that rxbinom2 uses the mu parameterization an the rxbinom
uses the prob parameterization (mu=size/(prob+size))

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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Examples

## Use threefry engine

rxnbinom(10, 0.9, n = 10) # with rxbinom you have to explicitly state n
rxnbinom(3, 0.5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxnbinom(4, 0.7)

# use mu parameter
rxnbinomMu(40, 40, n=10)

rxnorm Simulate random normal variable from threefry/vandercorput genera-
tor

Description

Simulate random normal variable from threefry/vandercorput generator

Usage

rxnorm(mean = 0, sd = 1, n = 1L, ncores = 1L)

Arguments

mean vector of means.

sd vector of standard deviations.

n number of observations

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Value

normal random number deviates

Examples

## Use threefry engine

rxnorm(n = 10) # with rxnorm you have to explicitly state n
rxnorm(n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxnorm(2, 3) ## The first 2 arguments are the mean and standard deviation
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rxode2randomMd5 Get the MD5 hash of the current rxode2random revision

Description

Get the MD5 hash of the current rxode2random revision

Usage

rxode2randomMd5()

Value

md5 hash of rxode2random revision

Author(s)

Matthew L. Fidler

Examples

rxode2randomMd5()

rxord Simulate ordinal value

Description

Simulate ordinal value

Usage

rxord(...)

Arguments

... the probabilities to be simulated. These should sum up to a number below one.

Details

The values entered into the ’rxord’ simulation will simulate the probability of falling each group.
If it falls outside of the specified probabilities, it will simulate the group (number of probabilities
specified + 1)

Value

A number from 1 to the (number of probabilities specified + 1)
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Author(s)

Matthew L. Fidler

Examples

# This will give values 1, and 2
rxord(0.5)
rxord(0.5)
rxord(0.5)
rxord(0.5)

# This will give values 1, 2 and 3
rxord(0.3, 0.3)
rxord(0.3, 0.3)
rxord(0.3, 0.3)

rxpois Simulate random Poisson variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxpois(lambda, n = 1L, ncores = 1L)

Arguments

lambda vector of (non-negative) means.
n number of random values to return.
ncores Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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Value

poission random number deviates

Examples

## Use threefry engine

rxpois(lambda = 3, n = 10) # with rxpois you have to explicitly state n
rxpois(lambda = 3, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxpois(4) ## The first arguments are the lambda parameter

rxPp Simulate a from a Poisson process

Description

Simulate a from a Poisson process

Usage

rxPp(
n,
lambda,
gamma = 1,
prob = NULL,
t0 = 0,
tmax = Inf,
randomOrder = FALSE

)

Arguments

n Number of time points to simulate in the Poisson process

lambda Rate of Poisson process

gamma Asymmetry rate of Poisson process. When gamma=1.0, this simulates a ho-
mogenous Poisson process. When gamma<1.0, the Poisson process has more
events early, when gamma > 1.0, the Poisson process has more events late in the
process.
When gamma is non-zero, the tmax should not be infinite but indicate the end
of the Poisson process to be simulated. In most pharamcometric cases, this will
be the end of the study. Internally this uses a rate of:
l(t) = lambdagamma(t/tmax)^(gamma-1)

prob When specified, this is a probability function with one argument, time, that gives
the probability that a Poisson time t is accepted as a rejection time.
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t0 the starting time of the Poisson process

tmax the maximum time of the Poisson process

randomOrder when TRUE randomize the order of the Poisson events. By default (FALSE) it
returns the Poisson process is in order of how the events occurred.

Value

This returns a vector of the Poisson process times; If the dropout is >= tmax, then all the rest of the
times are = tmax to indicate the dropout is equal to or after tmax.

Author(s)

Matthew Fidler

Examples

## Sample homogenous Poisson process of rate 1/10
rxPp(10, 1 / 10)

## Sample inhomogenous Poisson rate of 1/10

rxPp(10, 1 / 10, gamma = 2, tmax = 100)

## Typically the Poisson process times are in a sequential order,
## using randomOrder gives the Poisson process in random order

rxPp(10, 1 / 10, gamma = 2, tmax = 10, randomOrder = TRUE)

## This uses an arbitrary function to sample a non-homogenous Poisson process

rxPp(10, 1 / 10, prob = function(x) {
1 / x

})

rxRmvn Simulate from a (truncated) multivariate normal

Description

This is simulated with the fast, thread-safe threefry simulator and can use multiple cores to generate
the random deviates.
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Usage

rxRmvn(
n,
mu = NULL,
sigma,
lower = -Inf,
upper = Inf,
ncores = 1,
isChol = FALSE,
keepNames = TRUE,
a = 0.4,
tol = 2.05,
nlTol = 1e-10,
nlMaxiter = 100L

)

Arguments

n Number of random row vectors to be simulated OR the matrix to use for simu-
lation (faster).

mu mean vector

sigma Covariance matrix for multivariate normal or a list of covariance matrices. If
a list of covariance matrix, each matrix will simulate n matrices and combine
them to a full matrix

lower is a vector of the lower bound for the truncated multivariate norm

upper is a vector of the upper bound for the truncated multivariate norm

ncores Number of cores used in the simulation

isChol A boolean indicating if sigma is a cholesky decomposition of the covariance
matrix.

keepNames Keep the names from either the mean or covariance matrix.

a threshold for switching between methods; They can be tuned for maximum
speed; There are three cases that are considered:
case 1: a < l < u
case 2: l < u < -a
case 3: otherwise
where l=lower and u = upper

tol When case 3 is used from the above possibilities, the tol value controls the ac-
ceptance rejection and inverse-transformation;
When abs(u-l)>tol, uses accept-reject from randn

nlTol Tolerance for newton line-search

nlMaxiter Maximum iterations for newton line-search
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Value

If n==integer (default) the output is an (n x d) matrix where the i-th row is the i-th simulated
vector.

If is.matrix(n) then the random vector are store in n, which is provided by the user, and the
function returns NULL invisibly.

Author(s)

Matthew Fidler, Zdravko Botev and some from Matteo Fasiolo

References

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw (2011). Parallel Random
Numbers: As Easy as 1, 2, 3. D. E. Shaw Research, New York, NY 10036, USA.

The thread safe multivariate normal was inspired from the mvnfast package by Matteo Fasiolo
https://CRAN.R-project.org/package=mvnfast

The concept of the truncated multivariate normal was taken from Zdravko Botev Botev (2017)
doi:10.1111/rssb.12162 and Botev and L’Ecuyer (2015) doi:10.1109/WSC.2015.7408180 and con-
verted to thread safe simulation;

Examples

## From mvnfast
## Unlike mvnfast, uses threefry simulation

d <- 5
mu <- 1:d

# Creating covariance matrix
tmp <- matrix(rnorm(d^2), d, d)
mcov <- tcrossprod(tmp, tmp)

set.seed(414)
rxRmvn(4, 1:d, mcov)

set.seed(414)
rxRmvn(4, 1:d, mcov)

set.seed(414)
rxRmvn(4, 1:d, mcov, ncores = 2) # r.v. generated on the second core are different

###### Here we create the matrix that will hold the simulated
# random variables upfront.
A <- matrix(NA, 4, d)
class(A) <- "numeric" # This is important. We need the elements of A to be of class "numeric".

set.seed(414)
rxRmvn(A, 1:d, mcov, ncores = 2) # This returns NULL ...

https://CRAN.R-project.org/package=mvnfast
https://doi.org/10.1111/rssb.12162
https://doi.org/10.1109/WSC.2015.7408180
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A # ... but the result is here

## You can also simulate from a truncated normal:

rxRmvn(10, 1:d, mcov, lower = 1:d - 1, upper = 1:d + 1)

# You can also simulate from different matrices (if they match
# dimensions) by using a list of matrices.

matL <- lapply(1:4, function(...) {
tmp <- matrix(rnorm(d^2), d, d)
tcrossprod(tmp, tmp)

})

rxRmvn(4, setNames(1:d, paste0("a", 1:d)), matL)

rxSetSeed Set the parallel seed for rxode2 random number generation

Description

This sets the seed for the rxode2 parallel random number generation. If set, then whenever a seed is
set for the threefry or vandercorput simulation engine, it will use this seed, increment for the number
of seeds and continue with the sequence the next time the random number generator is called.

Usage

rxSetSeed(seed)

Arguments

seed An integer that represents the rxode2 parallel and internal random number gen-
erator seed. When positive, use this seed for random number generation and
increment and reseed any parallel or new engines that are being called. When
negative, turn off the rxode2 seed and generate a seed from the R’s uniform
random number generator. Best practice is to set this seed.

Details

In contrast, when this is not called, the time that the vandercorput or threefry simulation engines are
seeded it comes from a uniform random number generated from the standard R random seed. This
may cause a duplicate seed based on the R seed state. This means that there could be correlations
between simulations that do not exist This will avoid the birthday problem picking exactly the same
seed using the seed state of the R random number generator. The more times the seed is called, the
more likely this becomes.
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Value

Nothing, called for its side effects

Author(s)

Matthew Fidler

References

JD Cook. (2016). Random number generator seed mistakes. https://www.johndcook.com/blog/
2016/01/29/random-number-generator-seed-mistakes/

See Also

rxGetSeed, rxWithSeed, rxWithPreserveSeed

Examples

rxSetSeed(42)

# seed with generator 42
rxnorm()

# Use R's random number generator
rnorm(1)

rxSetSeed(42)

# reproduces the same number
rxnorm()

# But R's random number is not the same

rnorm(1)

# If we reset this to use the R's seed
# (internally rxode2 uses a uniform random number to span seeds)
# This can lead to duplicate sequences and seeds

rxSetSeed(-1)

# Now set seed works for both.

# This is not recommended, but illustrates the different types of
# seeds that can be generated.

set.seed(42)

rxnorm()

rnorm(1)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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set.seed(42)

rxnorm()

rnorm(1)

rxt Simulate student t variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxt(df, n = 1L, ncores = 1L)

Arguments

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

t-distribution random numbers

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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Examples

## Use threefry engine

rxt(df = 3, n = 10) # with rxt you have to explicitly state n
rxt(df = 3, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxt(4) ## The first argument is the df parameter

rxunif Simulate uniform variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxunif(min = 0, max = 1, n = 1L, ncores = 1L)

Arguments

min, max lower and upper limits of the distribution. Must be finite.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

uniform random numbers

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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Examples

## Use threefry engine

rxunif(min = 0, max = 4, n = 10) # with rxunif you have to explicitly state n
rxunif(min = 0, max = 4, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxunif()

rxweibull Simulate Weibull variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxweibull(shape, scale = 1, n = 1L, ncores = 1L)

Arguments

shape, scale shape and scale parameters, the latter defaulting to 1.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator;

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

Weibull random deviates

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
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Examples

## Use threefry engine

# with rxweibull you have to explicitly state n
rxweibull(shape = 1, scale = 4, n = 10)

# You can parallelize the simulation using openMP
rxweibull(shape = 1, scale = 4, n = 10, ncores = 2)

rxweibull(3)

rxWithSeed Preserved seed and possibly set the seed

Description

Preserved seed and possibly set the seed

Usage

rxWithSeed(
seed,
code,
rxseed = rxGetSeed(),
kind = "default",
normal.kind = "default",
sample.kind = "default"

)

rxWithPreserveSeed(code)

Arguments

seed R seed to use for the session

code Is the code to evaluate

rxseed is the rxode2 seed that is being preserved

kind character or NULL. If kind is a character string, set R’s RNG to the kind desired.
Use "default" to return to the R default. See ‘Details’ for the interpretation of
NULL.

normal.kind character string or NULL. If it is a character string, set the method of Normal
generation. Use "default" to return to the R default. NULL makes no change.

sample.kind character string or NULL. If it is a character string, set the method of discrete
uniform generation (used in sample, for instance). Use "default" to return to
the R default. NULL makes no change.
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Value

returns whatever the code is returning

See Also

rxGetSeed, rxSetSeed

Examples

rxGetSeed()
rxWithSeed(1, {

print(rxGetSeed())
rxnorm()
print(rxGetSeed())
rxnorm()

}, rxseed=3)

swapMatListWithCube Swaps the matrix list with a cube

Description

Swaps the matrix list with a cube

Usage

swapMatListWithCube(matrixListOrCube)

Arguments

matrixListOrCube

Either a list of 2-dimensional matrices or a cube of matrices

Value

A list or a cube (opposite format as input)

Author(s)

Matthew L. Fidler



swapMatListWithCube 33

Examples

# Create matrix list
matLst <- cvPost(10, lotri::lotri(a+b~c(1, 0.25, 1)), 3)
print(matLst)

# Convert to cube
matCube <- swapMatListWithCube(matLst)
print(matCube)

# Convert back to list
matLst2 <- swapMatListWithCube(matCube)
print(matLst2)
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