
Package ‘sdbuildR’
November 19, 2025

Title Easily Build, Simulate, and Visualise Stock-and-Flow Models

Version 1.0.8

Date 2025-10-23

Description Stock-and-flow models are a computational method from the field of
system dynamics. They represent how systems change over time and are
mathematically equivalent to ordinary differential equations. 'sdbuildR'
(system dynamics builder) provides an intuitive interface for constructing
stock-and-flow models without requiring extensive domain knowledge. Models
can quickly be simulated and revised, supporting iterative development.
'sdbuildR' simulates models in 'R' and 'Julia', where 'Julia' offers unit
support and large-scale ensemble simulations. Additionally, 'sdbuildR' can
import models created in 'Insight Maker' (<https://insightmaker.com/>).

URL https://kcevers.github.io/sdbuildR/,

https://github.com/KCEvers/sdbuildR

BugReports https://github.com/KCEvers/sdbuildR/issues

Depends R (>= 4.2.0)

Imports data.table, deSolve, DiagrammeR, dplyr, igraph, jsonlite,
JuliaConnectoR, magrittr, parallel, plotly, purrr, rlang,
rvest, stringr, xml2

Suggests DiagrammeRsvg, htmlwidgets, kableExtra, knitr, rsvg, styler,
testthat (>= 3.0.0), textutils, webshot2

Config/Needs/website rmarkdown

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

License GPL (>= 3)

NeedsCompilation no

Author Kyra Caitlin Evers [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-6890-3482>)

Maintainer Kyra Caitlin Evers <kyra.c.evers@gmail.com>

1

https://insightmaker.com/
https://kcevers.github.io/sdbuildR/
https://github.com/KCEvers/sdbuildR
https://github.com/KCEvers/sdbuildR/issues
https://orcid.org/0000-0001-6890-3482

2 Contents

Repository CRAN

Date/Publication 2025-11-19 12:20:02 UTC

Contents
as.data.frame.sdbuildR_sim . 3
as.data.frame.sdbuildR_xmile . 4
build . 5
contains_IM . 9
convert_u . 10
debugger . 11
drop_u . 12
ensemble . 13
expit . 16
export_plot . 17
find_dependencies . 18
get_build_code . 19
get_regex_time_units . 19
get_regex_units . 20
get_units . 20
header . 21
indexof . 22
insightmaker_to_sfm . 22
install_julia_env . 24
julia_status . 25
length_IM . 26
logistic . 26
logit . 27
macro . 28
model_units . 29
plot.sdbuildR_ensemble . 30
plot.sdbuildR_sim . 31
plot.sdbuildR_xmile . 33
print.summary.sdbuildR_xmile . 34
pulse . 35
ramp . 36
rbool . 37
rdist . 38
rem . 38
round_IM . 39
seasonal . 40
simulate . 41
sim_specs . 42
solvers . 44
step . 45
summary.sdbuildR_xmile . 46
u . 46

as.data.frame.sdbuildR_sim 3

unit_prefixes . 48
url_to_IM . 48
use_julia . 49
use_threads . 50
xmile . 51

Index 53

as.data.frame.sdbuildR_sim

Create data frame of simulation results

Description

Convert simulation results to a data.frame.

Usage

S3 method for class 'sdbuildR_sim'
as.data.frame(x, row.names = NULL, optional = FALSE, direction = "long", ...)

Arguments

x Output of simulate().

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional Ignored parameter.

direction Format of data frame, either "long" (default) or "wide".

... Optional parameters

Value

A data.frame with simulation results. For direction = "long" (default), the data frame has three
columns: time, variable, and value. For direction = "wide", the data frame has columns time
followed by one column per variable.

See Also

simulate(), xmile()

Examples

sfm <- xmile("SIR")
sim <- simulate(sfm)
df <- as.data.frame(sim)
head(df)

Get results in wide format

4 as.data.frame.sdbuildR_xmile

df_wide <- as.data.frame(sim, direction = "wide")
head(df_wide)

as.data.frame.sdbuildR_xmile

Convert stock-and-flow model to data frame

Description

Create a data frame with properties of all model variables, model units, and macros. Specify the
variable types, variable names, and/or properties to get a subset of the data frame.

Usage

S3 method for class 'sdbuildR_xmile'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
type = NULL,
name = NULL,
properties = NULL,
...

)

Arguments

x A stock-and-flow model object of class sdbuildR_xmile.
row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed.
optional Ignored parameter.
type Variable types to retain in the data frame. Must be one or more of ’stock’, ’flow’,

’constant’, ’aux’, ’gf’, ’macro’, or ’model_units’. Defaults to NULL to include
all types.

name Variable names to retain in the data frame. Defaults to NULL to include all
variables.

properties Variable properties to retain in the data frame. Defaults to NULL to include all
properties.

... Optional arguments

Value

A data.frame with one row per model component (variable, unit definition, or macro). Common
columns include type (component type), name (variable name), eqn (equation), units (units of
measurement), and label (descriptive label). Additional columns may include to, from, non_negative,
and others depending on variable types. The exact columns returned depend on the type and
properties arguments. Returns an empty data.frame if no components match the filters.

build 5

Examples

as.data.frame(xmile("SIR"))

Only show stocks
as.data.frame(xmile("SIR"), type = "stock")

Only show equation and label
as.data.frame(xmile("SIR"), properties = c("eqn", "label"))

build Create, modify or remove variables

Description

Add, change, or erase variables in a stock-and-flow model. Variables may be stocks, flows, con-
stants, auxiliaries, or graphical functions.

Usage

build(
sfm,
name,
type,
eqn = "0.0",
units = "1",
label = name,
doc = "",
change_name = NULL,
change_type = NULL,
erase = FALSE,
to = NULL,
from = NULL,
non_negative = FALSE,
xpts = NULL,
ypts = NULL,
source = NULL,
interpolation = "linear",
extrapolation = "nearest",
df = NULL

)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.

name Variable name. Character vector.

6 build

type Type of building block(s); one of ’stock’, ’flow’, ’constant’, ’aux’, or ’gf’). Does
not need to be specified to modify an existing variable.

eqn Equation (or initial value in the case of stocks). Defaults to "0.0".

units Unit of variable, such as ’meter’. Defaults to "1" (no units).

label Name of variable used for plotting. Defaults to the same as name.

doc Description of variable. Defaults to "" (no description).

change_name New name for variable (optional). Defaults to NULL to indicate no change.

change_type New type for variable (optional). Defaults to NULL to indicate no change.

erase If TRUE, remove variable from model. Defaults to FALSE.

to Target of flow. Must be a stock in the model. Defaults to NULL to indicate no
target.

from Source of flow. Must be a stock in the model. Defaults to NULL to indicate no
source.

non_negative If TRUE, variable is enforced to be non-negative (i.e. strictly 0 or positive).
Defaults to FALSE.

xpts Only for graphical functions: vector of x-domain points. Must be of the same
length as ypts.

ypts Only for graphical functions: vector of y-domain points. Must be of the same
length as xpts.

source Only for graphical functions: name of the variable which will serve as the input
to the graphical function. Necessary to specify if units are used. Defaults to
NULL.

interpolation Only for graphical functions: interpolation method. Must be either "constant"
or "linear". Defaults to "linear".

extrapolation Only for graphical functions: extrapolation method. Must be either "nearest" or
"NA". Defaults to "nearest".

df A data.frame with variable properties to add and/or modify. Each row repre-
sents one variable to build. Required columns depend on the variable type being
created:

• All types require: ’type’, ’name’
• Stocks require: ’eqn’ (initial value)
• Flows require: ’eqn’, and at least one of ’from’ or ’to’
• Constants require: ’eqn’
• Auxiliaries require: ’eqn’
• Graphical functions require: ’xpts’, ’ypts’

Optional columns for all types: ’units’, ’label’, ’doc’, ’non_negative’ Optional
columns for graphical functions: ’source’, ’interpolation’, ’extrapolation’
Columns not applicable to a variable type should be set to NA. See Examples
for a complete demonstration.

Value

A stock-and-flow model object of class sdbuildR_xmile

build 7

Stocks

Stocks define the state of the system. They accumulate material or information over time, such as
people, products, or beliefs, which creates memory and inertia in the system. As such, stocks need
not be tangible. Stocks are variables that can increase and decrease, and can be measured at a single
moment in time. The value of a stock is increased or decreased by flows. A stock may have multiple
inflows and multiple outflows. The net change in a stock is the sum of its inflows minus the sum of
its outflows.

The obligatory properties of a stock are "name", "type", and "eqn". Optional additional properties
are "units", "label", "doc", "non_negative".

Flows

Flows move material and information through the system. Stocks can only decrease or increase
through flows. A flow must flow from and/or flow to a stock. If a flow is not flowing from a stock,
the source of the flow is outside of the model boundary. Similarly, if a flow is not flowing to a stock,
the destination of the flow is outside the model boundary. Flows are defined in units of material or
information moved over time, such as birth rates, revenue, and sales.

The obligatory properties of a flow are "name", "type", "eqn", and either "from", "to", or both.
Optional additional properties are "units", "label", "doc", "non_negative".

Constants

Constants are variables that do not change over the course of the simulation - they are time-
independent. These may be numbers, but also functions. They can depend only on other constants.

The obligatory properties of a constant are "name", "type", and "eqn". Optional additional proper-
ties are "units", "label", "doc", "non_negative".

Auxiliaries

Auxiliaries are dynamic variables that change over time. They are used for intermediate calculations
in the system, and can depend on other flows, auxiliaries, constants, and stocks.

The obligatory properties of an auxiliary are "name", "type", and "eqn". Optional additional prop-
erties are "units", "label", "doc", "non_negative".

Graphical functions

Graphical functions, also known as table or lookup functions, are interpolation functions used to
define the desired output (y) for a specified input (x). They are defined by a set of x- and y-domain
points, which are used to create a piecewise linear function. The interpolation method defines the
behavior of the graphical function between x-points ("constant" to return the value of the previous
x-point, "linear" to linearly interpolate between defined x-points), and the extrapolation method
defines the behavior outside of the x-points ("NA" to return NA values outside of defined x-points,
"nearest" to return the value of the closest x-point).

The obligatory properties of a graphical function are "name", "type", "xpts", and "ypts". "xpts"
and "ypts" must be of the same length. Optional additional properties are "units", "label", "doc",
"source", "interpolation", "extrapolation".

8 build

See Also

xmile()

Examples

First initialize an empty model
sfm <- xmile()
summary(sfm)

Add two stocks. Specify their initial values in the "eqn" property
and their plotting label.
sfm <- build(sfm, "predator", "stock", eqn = 10, label = "Predator") |>

build("prey", "stock", eqn = 50, label = "Prey")

Add four flows: the births and deaths of both the predators and prey. The
"eqn" property of flows represents the rate of the flow. In addition, we
specify which stock the flow is coming from ("from") or flowing to ("to").
sfm <- build(sfm, "predator_births", "flow",

eqn = "delta*prey*predator",
label = "Predator Births", to = "predator"

) |>
build("predator_deaths", "flow",
eqn = "gamma*predator",
label = "Predator Deaths", from = "predator"

) |>
build("prey_births", "flow",

eqn = "alpha*prey",
label = "Prey Births", to = "prey"

) |>
build("prey_deaths", "flow",

eqn = "beta*prey*predator",
label = "Prey Deaths", from = "prey"

)
plot(sfm)

The flows make use of four other variables: "delta", "gamma", "alpha", and
"beta". Define these as constants in a vectorized manner for efficiency.
sfm <- build(sfm, c("delta", "gamma", "alpha", "beta"), "constant",

eqn = c(.025, .5, .5, .05),
label = c("Delta", "Gamma", "Alpha", "Beta"),
doc = c(

"Birth rate of predators", "Death rate of predators",
"Birth rate of prey", "Death rate of prey by predators"

)
)

We now have a complete predator-prey model which is ready to be simulated.
sim <- simulate(sfm)
plot(sim)

contains_IM 9

Modify a variable - note that we no longer need to specify type
sfm <- build(sfm, "delta", eqn = .03, label = "DELTA")

Change variable name (throughout the model)
sfm <- build(sfm, "delta", change_name = "DELTA")

Change variable type
sfm <- build(sfm, "DELTA", change_type = "stock")

Remove variable
sfm <- build(sfm, "prey", erase = TRUE)

To add and/or modify variables more quickly, pass a data.frame.
The data.frame is processed row-wise.
For instance, to create a logistic population growth model:
df <- data.frame(

type = c("stock", "flow", "flow", "constant", "constant"),
name = c("X", "inflow", "outflow", "r", "K"),
eqn = c(.01, "r * X", "r * X^2 / K", 0.1, 1),
label = c(
"Population size", "Births", "Deaths", "Growth rate",
"Carrying capacity"

),
to = c(NA, "X", NA, NA, NA),
from = c(NA, NA, "X", NA, NA)

)
sfm <- build(xmile(), df = df)

Check for errors in the model
debugger(sfm)

contains_IM Check if needle is in haystack

Description

Check whether value is in vector or string. Equivalent of .Contains() in Insight Maker.

Usage

contains_IM(haystack, needle)

Arguments

haystack Vector or string to search through

needle Value to search for

10 convert_u

Value

Logical value

Examples

contains_IM(c("a", "b", "c"), "d") # FALSE
contains_IM(c("abcdef"), "bc") # TRUE

convert_u Convert unit in equation

Description

In rare cases, it may be desirable to change the units of a variable within an equation. Use
convert_u() to convert a variable to another matching unit. See u() for more information on
the rules of specifying units. Note that units are only supported in Julia, not in R.

Usage

convert_u(x, unit_def)

Arguments

x Variable

unit_def Unit definition, e.g. u(’seconds’)

Value

Variable with new unit (only in Julia)

See Also

model_units(), unit_prefixes(), u(), drop_u()

Examples

Change the unit of rate from minutes to hours
sfm <- xmile() |>

build("rate", "constant", eqn = "10", units = "minutes") |>
build("change", "flow",
eqn = "(room_temperature - coffee_temperature) / convert_u(rate, u('hour'))"

)

debugger 11

debugger Debug stock-and-flow model

Description

Check for common formulation problems in a stock-and-flow model.

Usage

debugger(sfm, quietly = FALSE)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.

quietly If TRUE, don’t print problems. Defaults to FALSE.

Details

The following problems are detected:

• An absence of stocks

• Flows without a source (from) or target (to)

• Flows connected to a stock that does not exist

• Undefined variable references in equations

• Circularity in equations

• Connected stocks and flows without both having units or no units

• Missing unit definitions

The following potential problems are detected:

• Absence of flows

• Stocks without inflows or outflows

• Equations with a value of 0

Value

If quietly = FALSE, list with problems and potential problems.

12 drop_u

Examples

No issues
sfm <- xmile("SIR")
debugger(sfm)

Detect absence of stocks or flows
sfm <- xmile()
debugger(sfm)

Detect stocks without inflows or outflows
sfm <- xmile() |> build("Prey", "stock")
debugger(sfm)

Detect circularity in equation definitions
sfm <- xmile() |>

build("Prey", "stock", eqn = "Predator") |>
build("Predator", "stock", eqn = "Prey")

debugger(sfm)

drop_u Drop unit in equation

Description

In rare cases, it may be desirable to drop the units of a variable within an equation. Use drop_u()
to render a variable unitless. See u() for more information on the rules of specifying units. Note
that units are only supported in Julia, not in R.

Usage

drop_u(x)

Arguments

x Variable with unit

Value

Unitless variable (only in Julia)

See Also

model_units(), unit_prefixes(), u(), convert_u()

ensemble 13

Examples

For example, the cosine function only accepts unitless arguments or
arguments with units in radians or degrees
sfm <- xmile() |>

build("a", "constant", eqn = "10", units = "minutes") |>
build("b", "constant", eqn = "cos(drop_u(a))")

ensemble Run ensemble simulations

Description

Run an ensemble simulation of a stock-and-flow model, varying initial conditions and/or parameters
in the range specified in range. The ensemble can be run in parallel using multiple threads by
first setting use_threads(). The results are returned as a data.frame with summary statistics and
optionally individual simulations.

Usage

ensemble(
sfm,
n = 10,
return_sims = FALSE,
range = NULL,
cross = TRUE,
quantiles = c(0.025, 0.975),
only_stocks = TRUE,
keep_nonnegative_flow = TRUE,
keep_nonnegative_stock = FALSE,
keep_unit = TRUE,
verbose = TRUE

)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.

n Number of simulations to run in the ensemble. When range is specified, n de-
fines the number of simulations to run per condition. If each condition only
needs to be run once, set n = 1. Defaults to 10.

return_sims If TRUE, return the individual simulations in the ensemble. Set to FALSE to
save memory. Defaults to FALSE.

range A named list specifying parameter ranges for ensemble conditions. Names must
correspond to existing stock or constant variable names in the model. Each list
element should be a numeric vector of values to test.
If cross = TRUE (default), all combinations of values are generated. For ex-
ample, list(param1 = c(1, 2), param2 = c(10, 20)) creates 4 conditions: (1,10),
(1,20), (2,10), (2,20).

14 ensemble

If cross = FALSE, values are paired element-wise, requiring all vectors to have
equal length. For example, list(param1 = c(1, 2, 3), param2 = c(10, 20, 30))
creates 3 conditions: (1,10), (2,20), (3,30). Defaults to NULL (no parameter
variation).

cross If TRUE, cross the parameters in the range list to generate all possible combina-
tions of parameters. Defaults to TRUE.

quantiles Quantiles to calculate in the summary, e.g. c(0.025, 0.975).

only_stocks If TRUE, only return stocks in output, discarding flows and auxiliaries. If
FALSE, flows and auxiliaries are saved, which slows down the simulation. De-
faults to FALSE.

keep_nonnegative_flow

If TRUE, keeps original non-negativity setting of flows. Defaults to TRUE.
keep_nonnegative_stock

If TRUE, keeps original non-negativity setting of stocks Defaults to FALSE.

keep_unit If TRUE, keeps units of variables. Defaults to TRUE.

verbose If TRUE, print details and duration of simulation. Defaults to TRUE.

Details

To run large simulations, it is recommended to limit the output size by saving fewer values. To
create a reproducible ensemble simulation, set a seed using sim_specs().

If you do not see any variation within a condition of the ensemble (i.e. the confidence bands are
virtually non-existent), there are likely no random elements in your model. Without these, there can
be no variability in the model. Try specifying a random initial condition or adding randomness to
other model elements.

Value

Object of class sdbuildR_ensemble, which is a list containing:

success If TRUE, simulation was successful. If FALSE, simulation failed.

error_message If success is FALSE, contains the error message.

df data.frame with simulation results in long format, if return_sims is TRUE. The iteration number
is indicated by column "i". If range was specified, the condition is indicated by column "j".

summary data.frame with summary statistics of the ensemble, including quantiles specified in
quantiles. If range was specified, summary statistics are calculated for each condition (j) in
the ensemble.

n Number of simulations run in the ensemble (per condition j if range is specified).

n_total Total number of simulations run in the ensemble (across all conditions if range is specified).

n_conditions Total number of conditions.

conditions data.frame with the conditions used in the ensemble, if range is specified.

init List with df (if return_sims = TRUE) and summary, containing data.frame with the initial
values of the stocks used in the ensemble.

constants List with df (if return_sims = TRUE) and summary, containing data.frame with the con-
stant parameters used in the ensemble.

ensemble 15

script Julia script used for the ensemble simulation.

duration Duration of the simulation in seconds.

... Other parameters passed to ensemble

See Also

use_threads(), build(), xmile(), sim_specs(), use_julia()

Examples

Load example and set simulation language to Julia
sfm <- xmile("predator_prey") |> sim_specs(language = "Julia")

Set random initial conditions
sfm <- build(sfm, c("predator", "prey"), eqn = "runif(1, min = 20, max = 80)")

For ensemble simulations, it is highly recommended to reduce the
returned output. For example, to save only every 1 time units and discard
the first 100 time units, use:
sfm <- sim_specs(sfm, save_at = 1, save_from = 100)

Run ensemble simulation with 100 simulations
sims <- ensemble(sfm, n = 100)
plot(sims)

Plot individual trajectories
sims <- ensemble(sfm, n = 10, return_sims = TRUE)
plot(sims, type = "sims")

Specify which trajectories to plot
plot(sims, type = "sims", i = 1)

Plot the median with lighter individual trajectories
plot(sims, central_tendency = "median", type = "sims", alpha = 0.1)

Ensembles can also be run with exact values for the initial conditions
and parameters. Below, we vary the initial values of the predator and the
birth rate of the predators (delta). We generate a hunderd samples per
condition. By default, the parameters are crossed, meaning that all
combinations of the parameters are run.
sims <- ensemble(sfm,

n = 50,
range = list("predator" = c(10, 50), "delta" = c(.025, .05))

)

plot(sims)

By default, a maximum of nine conditions is plotted.
Plot specific conditions:
plot(sims, j = c(1, 3), nrows = 1)

Generate a non-crossed design, where the length of each range needs to be

16 expit

equal:
sims <- ensemble(sfm,

n = 10, cross = FALSE,
range = list(
"predator" = c(10, 20, 30),
"delta" = c(.020, .025, .03)

)
)
plot(sims, nrows = 3)

Run simulation in parallel
use_threads(4)
sims <- ensemble(sfm, n = 10)

Stop using threads
use_threads(stop = TRUE)

Close Julia
use_julia(stop = TRUE)

expit Expit function

Description

Inverse of the logit function

Usage

expit(x)

Arguments

x Numerical value

Value

Numerical value

Examples

expit(1)

export_plot 17

export_plot Save plot to a file

Description

Save a plot of a stock-and-flow diagram or a simulation to a specified file path. Note that saving
plots requires additional packages to be installed (see below).

Usage

export_plot(pl, file, width = 3, height = 4, units = "cm", dpi = 300)

Arguments

pl Plot object.

file File path to save plot to, including a file extension. For plotting a stock-and-flow
model, the file extension can be one of png, pdf, svg, ps, eps, webp. For plotting
a simulation, the file extension can be one of png, pdf, jpg, jpeg, webp. If no file
extension is specified, it will default to png.

width Width of image in units.

height Height of image in units.

units Units in which width and height are specified. Either "cm", "in", or "px".

dpi Resolution of image. Only used if units is not "px".

Value

Returns NULL invisibly, called for side effects.

Examples

Only if dependencies are installed
if (require("DiagrammeRsvg", quietly = TRUE) &

require("rsvg", quietly = TRUE)) {
sfm <- xmile("SIR")
file <- tempfile(fileext = ".png")
export_plot(plot(sfm), file)

Remove plot
file.remove(file)

}

Not run:
requires internet
Only if dependencies are installed
if (require("htmlwidgets", quietly = TRUE) &

require("webshot2", quietly = TRUE)) {

18 find_dependencies

Requires Chrome to save plotly plot:
sim <- simulate(sfm)
export_plot(plot(sim), file)

Remove plot
file.remove(file)

}

End(Not run)

find_dependencies Find dependencies

Description

Find which other variables each variable is dependent on.

Usage

find_dependencies(sfm, reverse = FALSE)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.

reverse If FALSE, list for each variable X which variables Y it depends on for its equa-
tion definition. If TRUE, don’t show dependencies but dependents. This re-
verses the dependencies, such that for each variable X, it lists what other vari-
ables Y depend on X.

Value

List, with for each model variable what other variables it depends on, or if reverse = TRUE, which
variables depend on it

Examples

sfm <- xmile("SIR")
find_dependencies(sfm)

get_build_code 19

get_build_code Generate code to build stock-and-flow model

Description

Create R code to rebuild an existing stock-and-flow model. This may help to understand how a
model is built, or to modify an existing one.

Usage

get_build_code(sfm)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.

Value

String with code to build stock-and-flow model from scratch.

Examples

sfm <- xmile("SIR")
get_build_code(sfm)

get_regex_time_units Get regular expressions for time units in Julia

Description

Get regular expressions for time units in Julia

Usage

get_regex_time_units()

Value

Named vector with regular expressions as names and units as entries

Examples

x <- get_regex_time_units()
head(x)

20 get_units

get_regex_units Get regular expressions for units in Julia

Description

Get regular expressions for units in Julia

Usage

get_regex_units(sfm = NULL)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.

Value

Named vector with regular expressions as names and units as entries

Examples

x <- get_regex_units()
head(x)

get_units View all standard units

Description

Obtain a data frame with all standard units in Julia’s Unitful package and added custom units by
sdbuildR.

Usage

get_units()

Value

A character matrix with 5 columns: description (unit description), name (unit symbol or abbre-
viation), full_name (full unit name), definition (mathematical definition in terms of base units),
and prefix (logical indicating whether SI prefixes like kilo- or milli- can be applied). Includes SI
base units, derived units, CGS units, US customary units, and custom units added by sdbuildR.

Examples

x <- get_units()
head(x)

header 21

header Modify header of stock-and-flow model

Description

The header of a stock-and-flow model contains metadata about the model, such as the name, author,
and version. Modify the header of an existing model with standard or custom properties.

Usage

header(
sfm,
name = "My Model",
caption = "My Model Description",
created = Sys.time(),
author = "Me",
version = "1.0",
URL = "",
doi = "",
...

)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.
name Model name. Defaults to "My Model".
caption Model description. Defaults to "My Model Description".
created Date the model was created. Defaults to Sys.time().
author Creator of the model. Defaults to "Me".
version Model version. Defaults to "1.0".
URL URL associated with model. Defaults to "".
doi DOI associated with the model. Defaults to "".
... Optional other entries to add to the header.

Value

A stock-and-flow model object of class sdbuildR_xmile

Examples

sfm <- xmile() |>
header(
name = "My first model",
caption = "This is my first model",
author = "Kyra Evers",
version = "1.1"

)

22 insightmaker_to_sfm

indexof Find index of needle in haystack

Description

Find index of value in vector or string. Equivalent of .IndexOf() in Insight Maker.

Usage

indexof(haystack, needle)

Arguments

haystack Vector or string to search through

needle Value to search for

Value

Index, integer

Examples

indexof(c("a", "b", "c"), "b") # 2
indexof("haystack", "hay") # 1
indexof("haystack", "m") # 0

insightmaker_to_sfm Import Insight Maker model

Description

Import a stock-and-flow model from Insight Maker. Models may be your own or another user’s.
Importing causal loop diagrams or agent-based models is not supported.

Usage

insightmaker_to_sfm(
URL,
file,
keep_nonnegative_flow = TRUE,
keep_nonnegative_stock = FALSE,
keep_solver = FALSE

)

https://insightmaker.com/

insightmaker_to_sfm 23

Arguments

URL URL to Insight Maker model. Character.

file File path to Insight Maker model. Only used if URL is not specified. Needs to
be a character with suffix .InsightMaker.

keep_nonnegative_flow

If TRUE, keeps original non-negativity setting of flows. Defaults to TRUE.

keep_nonnegative_stock

If TRUE, keeps original non-negativity setting of stocks Defaults to FALSE.

keep_solver If TRUE, keep the ODE solver as it is. If FALSE, switch to Euler integration
in case of non-negative stocks to reproduce the Insight Maker data exactly. De-
faults to FALSE.

Details

Insight Maker models can be imported using either a URL or an Insight Maker file. Ensure the URL
refers to a public (not private) model. To download a model file from Insight Maker, first clone the
model if it is not your own. Then, go to "Share" (top right), "Export", and "Download Insight Maker
file".

Value

A stock-and-flow model object of class sdbuildR_xmile

See Also

build(), xmile()

Examples

Load a model from Insight Maker
sfm <- insightmaker_to_sfm(

URL =
"https://insightmaker.com/insight/43tz1nvUgbIiIOGSGtzIzj/Romeo-Juliet"

)
plot(sfm)

Simulate the model
sim <- simulate(sfm)
plot(sim)

24 install_julia_env

install_julia_env Install, update, or remove Julia environment

Description

Instantiate the Julia environment for sdbuildR to run stock-and-flow models using Julia. For more
guidance, please see this vignette.

Usage

install_julia_env(remove = FALSE)

Arguments

remove If TRUE, remove Julia environment for sdbuildR. This will delete the Mani-
fest.toml file, as well as the SystemDynamicsBuildR.jl package. All other Julia
packages remain untouched.

Details

install_julia_env() will:

• Start a Julia session

• Activate a Julia environment using sdbuildR’s Project.toml

• Install SystemDynamicsBuildR.jl from GitHub (https://github.com/KCEvers/SystemDynamicsBuildR.jl)

• Install all other required Julia packages

• Create Manifest.toml

• Precompile packages for faster subsequent loading

• Stop the Julia session

Note that this may take 10-25 minutes the first time as Julia downloads and compiles packages.

Value

Invisibly returns NULL after instantiating the Julia environment.

See Also

use_julia(), julia_status()

https://kcevers.github.io/sdbuildR/articles/julia-setup.html

julia_status 25

Examples

Not run:
install_julia_env()

Remove Julia environment
install_julia_env(remove = TRUE)

End(Not run)

julia_status Check status of Julia installation and environment

Description

Check if Julia can be found and if the Julia environment for sdbuildR has been instantiated. Note
that this does not mean a Julia session has been started, merely whether it could be. For more
guidance, please see this vignette.

Usage

julia_status(verbose = TRUE)

Arguments

verbose If TRUE, print detailed status information. Defaults to TRUE.

Value

A list with components:

julia_found Logical. TRUE if Julia installation found.
julia_version Character. Julia version string, or "" if not found.
env_exists Logical. TRUE if Project.toml exists in sdbuildR package, which specifies the

Julia packages and versions needed to instantiate the Julia environment for sd-
buildR.

env_instantiated

Logical. TRUE if Manifest.toml exists (i.e., Julia environment was instantiated).
status Character. Overall status: "julia_not_installed", "julia_needs_update", "sdbuildR_needs_reinstall",

"install_julia_env", "ready", or "unknown".

What to Do Next

Based on the ’status’ value:

"julia_not_installed" Install Julia from https://julialang.org/install/

"julia_needs_update" Update Julia to >= version 1.10
"install_julia_env" Run install_julia_env()

"ready" Run use_julia() to start a session

https://kcevers.github.io/sdbuildR/articles/julia-setup.html
https://julialang.org/install/

26 logistic

Examples

status <- julia_status()
print(status)

length_IM Length of vector or string

Description

Equivalent of .Length() in Insight Maker, which returns the number of elements when performed
on a vector, but returns the number of characters when performed on a string

Usage

length_IM(x)

Arguments

x A vector or a string

Value

The number of elements in x if x is a vector; the number of characters in x if x is a string

Examples

length_IM(c("a", "b", "c")) # 3
length_IM("abcdef") # 6

logistic Logistic function

Description

Computes the logistic (i.e., sigmoid) function with configurable slope, midpoint, and upper asymp-
tote.

Usage

logistic(x, slope = 1, midpoint = 0, upper = 1)

sigmoid(x, slope = 1, midpoint = 0, upper = 1)

logit 27

Arguments

x Value at which to evaluate the function

slope Slope of logistic function at the midpoint. Defaults to 1.

midpoint Midpoint of logistic function where the output is upper/2. Defaults to 0.

upper Upper asymptote (maximal value) of the logistic function. Defaults to 1.

Details

The logistic function is a smooth S-shaped curve bounded between 0 and upper. It transitions from
near 0 to near upper around the midpoint, with the steepness of this transition controlled by slope.

Value

Numeric value given by

f(x) =
upper

1 + e−slope·(x−midpoint)

Examples

logistic(0)
equivalent:
sigmoid(0)
logistic(1, slope = 5, midpoint = 0.5, upper = 10)

Visualize different slopes
x <- seq(-5, 5, length.out = 1000)
plot(x, logistic(x, slope = 1), type = "l", ylab = "f(x)", ylim = c(0, 1))
lines(x, logistic(x, slope = 5), col = "blue")
lines(x, logistic(x, slope = 50), col = "red")
legend("topleft", legend = c("slope = 1", "slope = 5", "slope = 50"),

col = c("black", "blue", "red"), lty = 1)

logit Logit function

Description

Logit function

Usage

logit(p)

Arguments

p Probability, numerical value between 0 and 1

28 macro

Value

Numerical value

Examples

logit(.1)

macro Create, modify or remove a global variable or function

Description

Macros are global variables or functions that can be used throughout your stock-and-flow model.
macro() adds, changes, or erases a macro.

Usage

macro(sfm, name, eqn = "0.0", doc = "", change_name = NULL, erase = FALSE)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.

name Name of the macro. The equation will be assigned to this name.

eqn Equation of the macro. A character vector. Defaults to "0.0".

doc Documentation of the macro. Defaults to "".

change_name New name for macro (optional). Defaults to NULL to indicate no change.

erase If TRUE, remove macro from the model. Defaults to FALSE.

Value

A stock-and-flow model object of class sdbuildR_xmile

Examples

Simple function
sfm <- xmile() |>

macro("double", eqn = "function(x) x * 2") |>
build("a", "constant", eqn = "double(2)")

Function with defaults
sfm <- xmile() |>

macro("scale", eqn = "function(x, factor = 10) x * factor") |>
build("b", "constant", eqn = "scale(2)")

If the logistic() function did not exist, you could create it yourself:
sfm <- macro(xmile(), "func", eqn = "function(x, slope = 1, midpoint = .5){

1 / (1 + exp(-slope*(x-midpoint)))

model_units 29

}") |>
build("c", "constant", eqn = "func(2, slope = 50)")

model_units Create, modify or remove custom units

Description

A large library of units already exists, but you may want to define your own custom units. Use
model_units() to add, change, or erase custom units from a stock-and-flow model. Custom units
may be new base units, or may be defined in terms of other (custom) units. See u() for more
information on the rules of specifying units. Note that units are only supported in Julia, not in R.

Usage

model_units(sfm, name, eqn = "1", doc = "", erase = FALSE, change_name = NULL)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.

name Name of unit. A character vector.

eqn Definition of unit. String or vector of unit definitions. Defaults to "1" to indicate
a base unit not defined in terms of other units.

doc Documentation of unit.

erase If TRUE, remove model unit from the model. Defaults to FALSE.

change_name New name for model unit. Defaults to NULL to indicate no change.

Value

A stock-and-flow model object of class sdbuildR_xmile

See Also

unit_prefixes()

Examples

Units are only supported with Julia
sfm <- xmile("Crielaard2022")
sfm <- model_units(sfm, "BMI", eqn = "kg/m^2", doc = "Body Mass Index")

You may also use words rather than symbols for the unit definition.
The following modifies the unit BMI:
sfm <- model_units(sfm, "BMI", eqn = "kilogram/meters^2")

Remove unit:

30 plot.sdbuildR_ensemble

sfm <- model_units(sfm, "BMI", erase = TRUE)

Unit names may be changed to be syntactically valid and avoid overlap:
sfm <- model_units(xmile(), "C0^2")

plot.sdbuildR_ensemble

Plot timeseries of ensemble

Description

Visualize ensemble simulation results of a stock-and-flow model. Either summary statistics or
individual trajectories can be plotted. When multiple conditions j are specified, a grid of subplots is
plotted. See ensemble() for examples.

Usage

S3 method for class 'sdbuildR_ensemble'
plot(
x,
type = c("summary", "sims")[1],
i = seq(1, min(c(x[["n"]], 10))),
j = seq(1, min(c(x[["n_conditions"]], 9))),
vars = NULL,
add_constants = FALSE,
nrows = ceiling(sqrt(max(j))),
shareX = TRUE,
shareY = TRUE,
palette = "Dark 2",
colors = NULL,
font_family = "Times New Roman",
font_size = 16,
wrap_width = 25,
showlegend = TRUE,
j_labels = TRUE,
central_tendency = c("mean", "median", FALSE)[1],
central_tendency_width = 3,
...

)

Arguments

x Output of ensemble().

type Type of plot. Either "summary" for a summary plot with mean or median lines
and confidence intervals, or "sims" for individual simulation trajectories with
mean or median lines. Defaults to "summary".

plot.sdbuildR_sim 31

i Indices of the individual trajectories to plot if type = "sims". Defaults to 1:10.
Including a high number of trajectories will slow down plotting considerably.

j Indices of the condition to plot. Defaults to 1:9. If only one condition is speci-
fied, the plot will not be a grid of subplots.

vars Variables to plot. Defaults to NULL to plot all variables.

add_constants If TRUE, include constants in plot. Defaults to FALSE.

nrows Number of rows in the plot grid. Defaults to ceiling(sqrt(n_conditions)).

shareX If TRUE, share the x-axis across subplots. Defaults to TRUE.

shareY If TRUE, share the y-axis across subplots. Defaults to TRUE.

palette Colour palette. Must be one of hcl.pals().

colors Vector of colours. If NULL, the color palette will be used. If specified, will
override palette. The number of colours must be equal to the number of variables
in the simulation data frame. Defaults to NULL.

font_family Font family. Defaults to "Times New Roman".

font_size Font size. Defaults to 16.

wrap_width Width of text wrapping for labels. Must be an integer. Defaults to 25.

showlegend Whether to show legend. Must be TRUE or FALSE. Defaults to TRUE.

j_labels Whether to plot labels indicating the condition of the subplot.
central_tendency

Central tendency to use for the mean line. Either "mean", "median", or FALSE
to not plot the central tendency. Defaults to "mean".

central_tendency_width

Line width of central tendency. Defaults to 3.

... Optional parameters

Value

Plotly object

See Also

ensemble()

plot.sdbuildR_sim Plot timeseries of simulation

Description

Visualize simulation results of a stock-and-flow model. Plot the evolution of stocks over time, with
the option of also showing other model variables.

32 plot.sdbuildR_sim

Usage

S3 method for class 'sdbuildR_sim'
plot(
x,
add_constants = FALSE,
vars = NULL,
palette = "Dark 2",
colors = NULL,
font_family = "Times New Roman",
font_size = 16,
wrap_width = 25,
showlegend = TRUE,
...

)

Arguments

x Output of simulate().

add_constants If TRUE, include constants in plot. Defaults to FALSE.

vars Variables to plot. Defaults to NULL to plot all variables.

palette Colour palette. Must be one of hcl.pals().

colors Vector of colours. If NULL, the color palette will be used. If specified, will
override palette. The number of colours must be equal to the number of variables
in the simulation data frame. Defaults to NULL.

font_family Font family. Defaults to "Times New Roman".

font_size Font size. Defaults to 16.

wrap_width Width of text wrapping for labels. Must be an integer. Defaults to 25.

showlegend Whether to show legend. Must be TRUE or FALSE. Defaults to TRUE.

... Optional parameters

Value

Plotly object

See Also

simulate(), as.data.frame.sdbuildR_sim(), plot.sdbuildR_xmile()

Examples

sfm <- xmile("SIR")
sim <- simulate(sfm)
plot(sim)

The default plot title and axis labels can be changed like so:
plot(sim, main = "Simulated trajectory", xlab = "Time", ylab = "Value")

plot.sdbuildR_xmile 33

Add constants to the plot
plot(sim, add_constants = TRUE)

plot.sdbuildR_xmile Plot stock-and-flow diagram

Description

Visualize a stock-and-flow diagram using the R package DiagrammeR. Stocks are represented as
boxes. Flows are represented as arrows between stocks and/or double circles, where the latter
represent what it outside of the model boundary. Thin grey edges indicate dependencies between
variables. By default, constants (indicated by italic labels) are not shown. Hover over the variables
to see their equations.

Usage

S3 method for class 'sdbuildR_xmile'
plot(
x,
vars = NULL,
format_label = TRUE,
wrap_width = 20,
font_size = 18,
font_family = "Times New Roman",
stock_col = "#83d3d4",
flow_col = "#f48153",
dependency_col = "#999999",
show_dependencies = TRUE,
show_constants = FALSE,
show_aux = TRUE,
minlen = 2,
...

)

Arguments

x A stock-and-flow model object of class sdbuildR_xmile.

vars Variables to plot. Defaults to NULL to plot all variables.

format_label If TRUE, apply default formatting (removing periods and underscores) to labels
if labels are the same as variable names.

wrap_width Width of text wrapping for labels. Must be an integer. Defaults to 20.

font_size Font size. Defaults to 18.

font_family Font name. Defaults to "Times New Roman".

stock_col Colour of stocks. Defaults to "#83d3d4".

34 print.summary.sdbuildR_xmile

flow_col Colour of flows. Defaults to "#f48153".

dependency_col Colour of dependency arrows. Defaults to "#999999".
show_dependencies

If TRUE, show dependencies between variables. Defaults to TRUE.

show_constants If TRUE, show constants. Defaults to FALSE.

show_aux If TRUE, show auxiliary variables. Defaults to TRUE.

minlen Minimum length of edges; must be an integer. Defaults to 2.

... Optional arguments

Value

Stock-and-flow diagram

See Also

insightmaker_to_sfm(), xmile(), plot.sdbuildR_sim()

Examples

sfm <- xmile("SIR")
plot(sfm)

Don't show constants or auxiliaries
plot(sfm, show_constants = FALSE, show_aux = FALSE)

Only show specific variables
plot(sfm, vars = "Susceptible")

print.summary.sdbuildR_xmile

Print method for summary.sdbuildR_xmile

Description

Print method for summary.sdbuildR_xmile

Usage

S3 method for class 'summary.sdbuildR_xmile'
print(x, ...)

Arguments

x A summary object of class summary.sdbuildR_xmile

... Additional arguments (unused)

pulse 35

Value

Invisibly returns the summary object of class summary.sdbuildR_xmile

pulse Create pulse function

Description

Create a pulse function that jumps from zero to a specified height at a specified time, and returns to
zero after a specified width. The pulse can be repeated at regular intervals.

Usage

pulse(times, start, height = 1, width = 1, repeat_interval = NULL)

Arguments

times Vector of simulation times

start Start time of pulse in simulation time units.

height Height of pulse. Defaults to 1.

width Width of pulse in simulation time units. This cannot be equal to or less than 0.
To indicate an instantaneous pulse, specify the simulation step size.

repeat_interval

Interval at which to repeat pulse. Defaults to NULL to indicate no repetition.

Details

Equivalent of Pulse() in Insight Maker

Value

Pulse interpolation function

See Also

step(), ramp(), seasonal()

Examples

Create a simple model with a pulse function
that starts at time 5, jumps to a height of 2
with a width of 1, and does not repeat
sfm <- xmile() |>

build("a", "stock") |>
Specify the global variable "times" as simulation times
build("input", "constant", eqn = "pulse(times, 5, 2, 1)") |>
build("inflow", "flow", eqn = "input(t)", to = "a")

36 ramp

sim <- simulate(sfm, only_stocks = FALSE)
plot(sim)

Create a pulse that repeats every 5 time units
sfm <- build(sfm, "input", eqn = "pulse(times, 5, 2, 1, 5)")

sim <- simulate(sfm, only_stocks = FALSE)
plot(sim)

ramp Create ramp function

Description

Create a ramp function that increases linearly from 0 to a specified height at a specified start time,
and stays at this height after the specified end time.

Usage

ramp(times, start, finish, height = 1)

Arguments

times Vector of simulation times

start Start time of ramp

finish End time of ramp

height End height of ramp, defaults to 1

Details

Equivalent of Ramp() in Insight Maker

Value

Ramp interpolation function

See Also

step(), pulse(), seasonal()

rbool 37

Examples

Create a simple model with a ramp function
sfm <- xmile() |>

build("a", "stock") |>
Specify the global variable "times" as simulation times
build("input", "constant", eqn = "ramp(times, 20, 30, 3)") |>
build("inflow", "flow", eqn = "input(t)", to = "a")

sim <- simulate(sfm, only_stocks = FALSE)
plot(sim)

To create a decreasing ramp, set the height to a negative value
sfm <- build(sfm, "input", eqn = "ramp(times, 20, 30, -3)")

sim <- simulate(sfm, only_stocks = FALSE)
plot(sim)

rbool Generate random logical value

Description

Equivalent of RandBoolean() in Insight Maker

Usage

rbool(p)

Arguments

p Probability of TRUE, numerical value between 0 and 1

Value

Logical value

Examples

rbool(.5)

38 rem

rdist Generate random number from custom distribution

Description

Equivalent of RandDist() in Insight Maker

Usage

rdist(a, b)

Arguments

a Vector to draw sample from

b Vector of probabilities

Value

One sample from custom distribution

Examples

rdist(c(1, 2, 3), c(.5, .25, .25))

rem Remainder and modulus

Description

Remainder and modulus operators. The modulus and remainder are not the same in case either a or
b is negative. If you work with negative numbers, modulus is always non-negative (it matches the
sign of the divisor).

Usage

rem(a, b)

mod(a, b)

a %REM% b

Arguments

a Dividend

b Divisor

round_IM 39

Value

Remainder

Examples

Modulus and remainder are the same when a and b are positive
a <- 7
b <- 3
rem(a, b)
mod(a, b)
Modulus and remainder are NOT when either a or b is negative
a <- -7
b <- 3
rem(a, b)
mod(a, b)
a <- 7
b <- -3
rem(a, b)
mod(a, b)
Modulus and remainder are the same when both a and b are negative
a <- -7
b <- -3
rem(a, b)
mod(a, b)

Alternative way of computing the remainder:
a %REM% b

round_IM Round Half-Up (as in Insight Maker)

Description

R rounds .5 to 0, whereas Insight Maker rounds .5 to 1. This function is the equivalent of Insight
Maker’s Round() function.

Usage

round_IM(x, digits = 0)

Arguments

x Value

digits Number of digits; optional, defaults to 0

Value

Rounded value

40 seasonal

Examples

round_IM(.5) # 1
round(.5) # 0
round_IM(-0.5) # 0
round(-0.5) # 0
round_IM(1.5) # 2
round(1.5) # 2

seasonal Create a seasonal wave function

Description

Create a seasonal wave function that oscillates between -1 and 1, with a specified period and shift.
The wave peaks at the specified shift time.

Usage

seasonal(times, period = 1, shift = 0)

Arguments

times Vector of simulation times
period Duration of wave in simulation time units. Defaults to 1.
shift Timing of wave peak in simulation time units. Defaults to 0.

Details

Equivalent of Seasonal() in Insight Maker

Value

Seasonal interpolation function

See Also

step(), pulse(), ramp()

Examples

Create a simple model with a seasonal wave
sfm <- xmile() |>

build("a", "stock") |>
Specify the global variable "times" as simulation times
build("input", "constant", eqn = "seasonal(times, 10, 0)") |>
build("inflow", "flow", eqn = "input(t)", to = "a")

sim <- simulate(sfm, only_stocks = FALSE)
plot(sim)

simulate 41

simulate Simulate stock-and-flow model

Description

Simulate a stock-and-flow model with simulation specifications defined by sim_specs(). If sim_specs(language
= "julia"), the Julia environment will first be set up with use_julia(). If any problems are de-
tected by debugger(), the model cannot be simulated.

Usage

simulate(
sfm,
keep_nonnegative_flow = TRUE,
keep_nonnegative_stock = FALSE,
keep_unit = TRUE,
only_stocks = TRUE,
verbose = FALSE,
...

)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.
keep_nonnegative_flow

If TRUE, keeps original non-negativity setting of flows. Defaults to TRUE.
keep_nonnegative_stock

If TRUE, keeps original non-negativity setting of stocks Defaults to FALSE.

keep_unit If TRUE, keeps units of variables. Defaults to TRUE.

only_stocks If TRUE, only return stocks in output, discarding flows and auxiliaries. If
FALSE, flows and auxiliaries are saved, which slows down the simulation. De-
faults to FALSE.

verbose If TRUE, print duration of simulation. Defaults to FALSE.

... Optional arguments

Value

Object of class sdbuildR_sim, a list containing:

df Data frame: simulation results (time, variable, value)

init Named vector: initial stock values

constants Named vector: constant parameters

script Character: generated simulation code (R or Julia)

duration Numeric: simulation time in seconds

42 sim_specs

success Logical: TRUE if completed without errors

... Other parameters passed to simulate

Use as.data.frame() to extract results, plot() to visualize.

See Also

build(), xmile(), debugger(), sim_specs(), use_julia()

Examples

sfm <- xmile("SIR")
sim <- simulate(sfm)
plot(sim)

Obtain all model variables
sim <- simulate(sfm, only_stocks = FALSE)
plot(sim, add_constants = TRUE)

Use Julia for models with units
sfm <- sim_specs(xmile("coffee_cup"), language = "Julia")
sim <- simulate(sfm)
plot(sim)

Close Julia session
use_julia(stop = TRUE)

sim_specs Modify simulation specifications

Description

Simulation specifications are the settings that determine how the model is simulated, such as the
integration method (i.e. solver), start and stop time, and timestep. Modify these specifications for
an existing stock-and-flow model.

Usage

sim_specs(
sfm,
method = "euler",
start = "0.0",
stop = "100.0",
dt = "0.01",
save_at = dt,
save_from = start,
seed = NULL,

sim_specs 43

time_units = "s",
language = "R"

)

Arguments

sfm Stock-and-flow model, object of class sdbuildR_xmile.

method Integration method. Defaults to "euler".

start Start time of simulation. Defaults to 0.

stop End time of simulation. Defaults to 100.

dt Timestep of solver; controls simulation accuracy. Smaller = more accurate but
slower. Defaults to 0.01.

save_at Timestep at which to save computed values; controls output size. Must be >= dt.
Use larger than dt to reduce memory without sacrificing accuracy. Example: dt
= 0.01, save_at = 1 gives accurate simulation but only saves every 100th point.
Defaults to dt (save everything).

save_from Time at which to start saving values. Use to discard initial transient behavior.
Must be >= start. Defaults to start.

seed Seed number to ensure reproducibility across runs in case of random elements.
Must be an integer. Defaults to NULL (no seed).

time_units Simulation time unit, e.g. ’s’ (second). Defaults to "s".

language Coding language in which to simulate model. Either "R" or "Julia". Julia is
necessary for using units or delay functions. Defaults to "R".

Value

A stock-and-flow model object of class sdbuildR_xmile

See Also

solvers()

Examples

sfm <- xmile("predator_prey") |>
sim_specs(start = 0, stop = 50, dt = 0.1)

sim <- simulate(sfm)
plot(sim)

Change the simulation method to "rk4"
sfm <- sim_specs(sfm, method = "rk4")

Change the time units to "years", such that one time unit is one year
sfm <- sim_specs(sfm, time_units = "years")

To save storage but not affect accuracy, use save_at and save_from
sfm <- sim_specs(sfm, save_at = 1, save_from = 10)
sim <- simulate(sfm)

44 solvers

head(as.data.frame(sim))

Add stochastic initial condition but specify seed to obtain same result
sfm <- sim_specs(sfm, seed = 1) |>

build(c("predator", "prey"), eqn = "runif(1, 20, 50)")

Change the simulation language to Julia to use units
sfm <- sim_specs(sfm, language = "Julia")

solvers Check or translate between deSolve and Julia DifferentialEquations
solvers

Description

This function either checks whether a solver method exists or provides bidirectional translation
between R’s deSolve package solvers and Julia’s DifferentialEquations.jl solvers.

Usage

solvers(method, from = c("R", "Julia"), to = NULL, show_info = FALSE)

Arguments

method Character string of solver name

from Character string indicating source language: "R" or "Julia"

to Character string indicating target language: "R" or "Julia"

show_info Logical, whether to display additional solver information

Value

Character vector of equivalent solver(s) or list with details

Examples

Translate from R to Julia
solvers("euler", from = "R", to = "Julia")
solvers("rk45dp6", from = "R", to = "Julia")

Translate from Julia to R
solvers("Tsit5", from = "Julia", to = "R")
solvers("DP5", from = "Julia", to = "R", show_info = TRUE)

List all available solvers
solvers(from = "R")
solvers(from = "Julia")

step 45

step Create step function

Description

Create a step function that jumps from zero to a specified height at a specified time, and remains at
that height until the end of the simulation time.

Usage

step(times, start, height = 1)

Arguments

times Vector of simulation times
start Start time of step
height Height of step, defaults to 1

Details

Equivalent of Step() in Insight Maker

Value

Step interpolation function

See Also

ramp(), pulse(), seasonal()

Examples

Create a simple model with a step function
that jumps at time 50 to a height of 5
sfm <- xmile() |>

build("a", "stock") |>
Specify the global variable "times" as simulation times
build("input", "constant", eqn = "step(times, 50, 5)") |>
build("inflow", "flow", eqn = "input(t)", to = "a")

sim <- simulate(sfm, only_stocks = FALSE)
plot(sim)

Negative heights are also possible
sfm <- build(sfm, "input", eqn = "step(times, 50, -10)")

sim <- simulate(sfm, only_stocks = FALSE)
plot(sim)

46 u

summary.sdbuildR_xmile

Print overview of stock-and-flow model

Description

Print summary of stock-and-flow model, including number of stocks, flows, constants, auxiliaries,
graphical functions, macros, and custom model units, as well as simulation specifications and use
of delay functions.

Usage

S3 method for class 'sdbuildR_xmile'
summary(object, ...)

Arguments

object A stock-and-flow model object of class sdbuildR_xmile

... Optional arguments

Value

Summary object of class summary.sdbuildR_xmile

See Also

build()

Examples

sfm <- xmile("SIR")
summary(sfm)

u Specify unit in equations

Description

Flexibly use units in equations by enclosing them in u(). Note that units are only supported in Julia,
not in R.

Usage

u(unit_str)

u 47

Arguments

unit_str Unit string; e.g. ’3 seconds’

Details

Unit strings are converted to their standard symbols using regular expressions. This means that you
can easily specify units without knowing their standard symbols. For example, u(’kilograms per
meters squared’) will become ’kg/m^2’. You can use title-case for unit names, but letters cannot all
be uppercase if this is not the standard symbol. For example, ’kilogram’ works, but ’KILOGRAM’
does not. This is to ensure that the right unit is detected.

Value

Specified unit (only in Julia)

See Also

model_units(), unit_prefixes(), convert_u(), drop_u()

Examples

Use units in equations
sfm <- xmile() |>

build("a", "constant",
eqn = "u('10kilometers') - u('3meters')",
units = "centimeters"

)

Units can also be set by multiplying a number with a unit
sfm <- xmile() |>

build("a", "constant", eqn = "10 * u('kilometers') - u('3meters')")

Addition and subtraction is only allowed between matching units
sfm <- xmile() |>

build("a", "constant", eqn = "u('3seconds') + u('1hour')")

Division, multiplication, and exponentiation are allowed between different units
sfm <- xmile() |>

build("a", "constant", eqn = "u('10grams') / u('1minute')")

Use custom units in equations
sfm <- xmile() |>

model_units("BMI", eqn = "kilograms/meters^2", doc = "Body Mass Index") |>
build("weight_gain", "flow", eqn = "u('2 BMI / year')", units = "BMI/year")

Unit strings are often needed in flows to ensure dimensional consistency
sfm <- xmile() |>

sim_specs(stop = 1, time_units = "days") |>
build("consumed_food", "stock", eqn = "1", units = "kilocalories") |>
build("eating", "flow",
eqn = "u('750kilocalories') / u('6hours')",

48 url_to_IM

units = "kilocalories/day", to = "consumed_food"
)

unit_prefixes Show unit prefixes

Description

Show unit prefixes

Usage

unit_prefixes()

Value

A character matrix with 3 columns: prefix (prefix name like "kilo" or "micro"), symbol (prefix
symbol like "k"), and scale (power-of-ten multiplier like "10^3" or "10^-6"). Rows are ordered
from largest (yotta, 10^24) to smallest (yocto, 10^-24).

Examples

unit_prefixes()

url_to_IM Extract Insight Maker model from URL

Description

Create XML string from Insight Maker URL. For internal use; use insightmaker_to_sfm() to
import an Insight Maker model.

Usage

url_to_IM(URL, file = NULL)

Arguments

URL String with URL to an Insight Maker model

file If specified, file path to save Insight Maker model to. If NULL, do not save
model.

Value

XML string with Insight Maker model

use_julia 49

See Also

insightmaker_to_sfm()

Examples

xml <- url_to_IM(
URL =
"https://insightmaker.com/insight/43tz1nvUgbIiIOGSGtzIzj/Romeo-Juliet"

)

use_julia Start Julia and activate environment

Description

Start Julia session and activate Julia environment to simulate stock-and-flow models. To do so, Julia
needs to be installed and findable from within R. See this vignette for guidance. In addition, the
Julia environment specifically for sdbuildR needs to have been instantiated. This can be set up with
install_julia_env().

Usage

use_julia(stop = FALSE, force = FALSE)

Arguments

stop If TRUE, stop active Julia session. Defaults to FALSE.

force If TRUE, force Julia setup to execute again.

Details

Julia supports running stock-and-flow models with units as well as ensemble simulations (see
ensemble()).

In every R session, use_julia() needs to be run once (which is done automatically in simulate()),
which can take around 30-60 seconds.

Value

Returns NULL invisibly, used for side effects

See Also

julia_status(), install_julia_env()

https://kcevers.github.io/sdbuildR/articles/julia-setup.html

50 use_threads

Examples

Start a Julia session and activate the Julia environment for sdbuildR
use_julia()

Stop Julia session
use_julia(stop = TRUE)

use_threads Set up threaded ensemble simulations

Description

Specify the number of threads for ensemble simulations in Julia. This will not overwrite your cur-
rent global setting for JULIA_NUM_THREADS. Note that this does not affect regular simulations
with simulate().

Usage

use_threads(n = parallel::detectCores() - 1, stop = FALSE)

Arguments

n Number of Julia threads to use. Defaults to parallel::detectCores() - 1. If set to
a value higher than the number of available cores minus 1, it will be set to the
number of available cores minus 1.

stop Stop using threaded ensemble simulations. Defaults to FALSE.

Value

No return value, called for side effects

See Also

ensemble(), use_julia()

Examples

Use Julia with 4 threads
use_julia()
use_threads(n = 4)

Stop using threads
use_threads(stop = TRUE)

Stop using Julia
use_julia(stop = TRUE)

xmile 51

xmile Create a new stock-and-flow model

Description

Initialize a stock-and-flow model of class sdbuildR_xmile. You can either create an empty stock-
and-flow model or load a template from the model library.

Usage

xmile(name = NULL)

Arguments

name Name of the template to load. If NULL, an empty stock-and-flow model will be
created with default simulation parameters and a default header. If specified,
name should be one of the available templates:

• logistic_model: Population growth with carrying capacity
• SIR: Epidemic model (Susceptible-Infected-Recovered)
• predator_prey: Lotka-Volterra dynamics
• cusp: Cusp catastrophe model
• Crielaard2022: Eating behavior (doi: 10.1037/met0000484)
• coffee_cup: Temperature equilibration (Meadows)
• bank_account: Compound interest (Meadows)
• Lorenz: Lorenz attractor (chaotic)
• Rossler: Rossler attractor (chaotic)
• vanderPol: Van der Pol oscillator
• Duffing: Forced Duffing oscillator
• Chua: Chua’s circuit (chaotic)
• JDR: Job Demands-Resources Theory as formalized in Evers et al. (sub-

mitted)

Details

Do not edit the object manually; this will likely lead to errors downstream. Rather, use header(),
sim_specs(), build(), macro(), and model_units() for safe manipulation.

Value

A stock-and-flow model object of class sdbuildR_xmile. Its structure is based on XML Inter-
change Language for System Dynamics (XMILE). It is a nested list, containing:

header Meta-information about model. A list containing arguments listed in header().

sim_specs Simulation specifications. A list containing arguments listed in sim_specs().

https://docs.oasis-open.org/xmile/xmile/v1.0/os/xmile-v1.0-os.html
https://docs.oasis-open.org/xmile/xmile/v1.0/os/xmile-v1.0-os.html

52 xmile

model Model variables, grouped under the variable types stock, flow, aux (auxiliaries), constant,
and gf (graphical functions). Each variable contains arguments as listed in build().

macro Global variable or functions. A list containing arguments listed in macro().

model_units Custom model units. A list containing arguments listed in model_units().

Use summary() to summarize, as.data.frame() to convert to a data.frame, plot() to visualize.

See Also

build(), header(), macro(), model_units(), sim_specs()

Examples

sfm <- xmile()
summary(sfm)

Load a template
sfm <- xmile("Lorenz")
sim <- simulate(sfm)
plot(sim)

Index

∗ build
as.data.frame.sdbuildR_sim, 3
as.data.frame.sdbuildR_xmile, 4
build, 5
debugger, 11
find_dependencies, 18
get_build_code, 19
header, 21
macro, 28
plot.sdbuildR_xmile, 33
print.summary.sdbuildR_xmile, 34
summary.sdbuildR_xmile, 46
xmile, 51

∗ custom
contains_IM, 9
expit, 16
indexof, 22
length_IM, 26
logistic, 26
logit, 27
rbool, 37
rdist, 38
rem, 38
round_IM, 39

∗ input
pulse, 35
ramp, 36
seasonal, 40
step, 45

∗ insightmaker
insightmaker_to_sfm, 22
url_to_IM, 48

∗ julia
install_julia_env, 24
julia_status, 25
use_julia, 49
use_threads, 50

∗ simulate
ensemble, 13

export_plot, 17
plot.sdbuildR_ensemble, 30
plot.sdbuildR_sim, 31
sim_specs, 42
simulate, 41
solvers, 44

∗ units
convert_u, 10
drop_u, 12
get_regex_time_units, 19
get_regex_units, 20
get_units, 20
model_units, 29
u, 46
unit_prefixes, 48

%REM% (rem), 38

as.data.frame(), 42, 52
as.data.frame.sdbuildR_sim, 3
as.data.frame.sdbuildR_sim(), 32
as.data.frame.sdbuildR_xmile, 4

build, 5
build(), 15, 23, 42, 46, 51, 52

contains_IM, 9
convert_u, 10
convert_u(), 10, 12, 47

debugger, 11
debugger(), 41, 42
drop_u, 12
drop_u(), 10, 12, 47

ensemble, 13
ensemble(), 30, 31, 50
expit, 16
export_plot, 17

find_dependencies, 18

53

54 INDEX

get_build_code, 19
get_regex_time_units, 19
get_regex_units, 20
get_units, 20

header, 21
header(), 51, 52

indexof, 22
insightmaker_to_sfm, 22
insightmaker_to_sfm(), 34, 49
install_julia_env, 24
install_julia_env(), 49

julia_status, 25
julia_status(), 24, 49

length_IM, 26
logistic, 26
logit, 27

macro, 28
macro(), 28, 51, 52
mod (rem), 38
model_units, 29
model_units(), 10, 12, 29, 47, 51, 52

plot(), 42, 52
plot.sdbuildR_ensemble, 30
plot.sdbuildR_sim, 31
plot.sdbuildR_sim(), 34
plot.sdbuildR_xmile, 33
plot.sdbuildR_xmile(), 32
print.summary.sdbuildR_xmile, 34
pulse, 35
pulse(), 36, 40, 45

ramp, 36
ramp(), 35, 40, 45
rbool, 37
rdist, 38
rem, 38
round_IM, 39

sdbuildR_ensemble, 14
sdbuildR_sim, 41
sdbuildR_xmile, 4–6, 11, 13, 18–21, 23, 28,

29, 33, 41, 43, 46, 51
seasonal, 40
seasonal(), 35, 36, 45

sigmoid (logistic), 26
sim_specs, 42
sim_specs(), 14, 15, 41, 42, 51, 52
simulate, 41
simulate(), 3, 32, 50
solvers, 44
solvers(), 43
step, 45
step(), 35, 36, 40
summary(), 52
summary.sdbuildR_xmile, 34, 35, 46, 46

u, 46
u(), 10, 12, 29, 46
unit_prefixes, 48
unit_prefixes(), 10, 12, 29, 47
url_to_IM, 48
use_julia, 49
use_julia(), 15, 24, 41, 42, 50
use_threads, 50
use_threads(), 13, 15

xmile, 51
xmile(), 3, 8, 15, 23, 34, 42

	as.data.frame.sdbuildR_sim
	as.data.frame.sdbuildR_xmile
	build
	contains_IM
	convert_u
	debugger
	drop_u
	ensemble
	expit
	export_plot
	find_dependencies
	get_build_code
	get_regex_time_units
	get_regex_units
	get_units
	header
	indexof
	insightmaker_to_sfm
	install_julia_env
	julia_status
	length_IM
	logistic
	logit
	macro
	model_units
	plot.sdbuildR_ensemble
	plot.sdbuildR_sim
	plot.sdbuildR_xmile
	print.summary.sdbuildR_xmile
	pulse
	ramp
	rbool
	rdist
	rem
	round_IM
	seasonal
	simulate
	sim_specs
	solvers
	step
	summary.sdbuildR_xmile
	u
	unit_prefixes
	url_to_IM
	use_julia
	use_threads
	xmile
	Index

