
streamMOA: Interface to Algorithms from MOA for
stream

Michael Hahsler
Southern Methodist University

John Forrest
Microsoft

Matthew Bolaños
Microsoft

Abstract

This packages provides an interface for several algorithms from the Massive Online
Analysis (MOA) framework to be used in stream. This vignette contains some examples.

Keywords: data stream, data mining, clustering, MOA.

1. Introduction
Please refer to the vignette in package stream for an introduction to data stream mining
in R. In this vignette we give two examples that show how to use the stream framework
being used from start to finish. The examples encompasses the creation of data streams,
preparation of data stream clustering algorithms, the online clustering of data points into
micro-clusters, reclustering and finally evaluation. The first example shows how compare a
set of data stream clustering algorithms on a static data set. The second example shows how
to perform evaluation on a data stream with concept drift (clusters evolve over time).

2. Experimental Comparison on Static Data
First, we set up a static data set. We extract 1500 data points from the Bars and Gaussians
data stream generator with 5% noise and put them in a DSD_Memory. The wrapper is used to
replay the same part of the data stream for each algorithm. We will use the first 1000 points
to learn the clustering and the remaining 500 points for evaluation.

R> library("streamMOA")

R> stream <- DSD_BarsAndGaussians(noise=0.05) %>% DSD_Memory(n = 5500)
R> stream

Memorized Stream for Bars and Gaussians (d = 2, k = 4)
Class: DSD_Memory, DSD_R, DSD
Contains 5500 data points - currently at position 1 - loop is FALSE



2 Introduction to streamMOA

−5 0 5

−
5

0
5

x

y

Figure 1: Bar and Gaussians data set.

R> plot(stream)

Figure 1 shows the structure of the data set. It consists of four clusters, two Gaussians and
two uniformly filled rectangular clusters. The Gaussian and the bar to the right have 1/3 the
density of the other two clusters.
We initialize a k-means on a sample and multiple clusterers from streamMOA. We choose the
parameters experimentally so that the algorithm produce each (approximately) 100 micro-
clusters.

R> algorithms <- list(
+ 'Sample + k-means' = DSC_TwoStage(micro = DSC_Sample(k = 100),
+ macro = DSC_Kmeans(k = 4)),
+ 'DenStream' = DSC_DenStream(epsilon = .5, mu = 1),
+ 'cluStream' = DSC_CluStream(m = 100, k = 4),
+ 'Bico' = DSC_BICO_MOA(Cluster = 4, Dimensions = 2, MaxClusterFeatures = 100)
+ )

We store the algorithms in a list for easier handling and then cluster the same 1000 data points
with each algorithm. Note that we have to reset the stream each time before we cluster.

R> for (a in algorithms) {
+ reset_stream(stream)
+ update(a, stream, 1000)
+ }

We use nclusters() to inspect the number of micro-clusters.



Matthew Bolanos, John Forrest, Michael Hahsler 3

R> sapply(algorithms, nclusters, type = "micro")

Sample + k-means DenStream cluStream Bico
100 39 100 78

All algorithms except DenStream produce around 100 micro-clusters. We were not able to
adjust DenStream to produce more than around 50 micro-clusters for this data set.
To inspect micro-cluster placement, we plot the calculated micro-clusters and the original
data.

R> op <- par(no.readonly = TRUE)
R> layout(mat = matrix(1:4, ncol = 2))
R> for (a in algorithms) {
+ reset_stream(stream)
+ plot(a, stream, main = description(a), type = "micro")
+ }
R> par(op)

Figure 2 shows the micro-cluster placement by the different algorithms. Micro-clusters are
shown as red circles and the size is proportional to each cluster’s weight. Reservoir sampling
and the sliding window randomly place the micro-clusters and also a few noise points (shown
as grey dots). Clustream and BICO also do not suppress noise and places even more micro-
clusters on noise points since it tries to represent all data as faithfully as possible. DenStream
suppresses noise and concentrate the micro-clusters on the real clusters. DenStream produces
one heavy micro-cluster on one cluster, while using a large number of micro clusters for the
others. It also has problems with detecting the rectangular low-density cluster.
It is also interesting to compare the assignment areas for micro-clusters created by different
algorithms. The assignment area is the area around the center of a micro-cluster in which
points are considered to belong to the micro-cluster. In case that a point is in the assignment
area of several micro-clusters, the closer center is chosen. To show the assignment area we
add assignment = TRUE to plot. We also disable showing micro-cluster weights to make the
plot clearer.

R> op <- par(no.readonly = TRUE)
R> layout(mat = matrix(1:4, ncol = 2))
R> for (a in algorithms) {
+ reset_stream(stream)
+ plot(
+ a,
+ stream,
+ main = description(a),
+ assignment = TRUE,
+ weight = FALSE,
+ type = "micro"
+ )
+ }
R> par(op)



4 Introduction to streamMOA

−5 0 5

−
5

0
5

Reservoir sampling + k−Means (weighted)

x

y

−5 0 5

−
5

0
5

DenStream + Reachability

x

y

−5 0 5

−
5

0
5

CluStream

x

y

−5 0 5

−
5

0
5

BICO

x

y

Figure 2: Micro-cluster placement for different data stream clustering algorithms.



Matthew Bolanos, John Forrest, Michael Hahsler 5

−5 0 5

−
5

0
5

Reservoir sampling + k−Means (weighted)

x

y

−5 0 5

−
5

0
5

DenStream + Reachability

x

y

−5 0 5

−
5

0
5

CluStream

x

y

−5 0 5

−
5

0
5

BICO

x

y

Figure 3: Micro-cluster assignment areas for different data stream clustering algorithms.



6 Introduction to streamMOA

Figure 3 shows the assignment areas as dotted circles around micro-clusters. Not all algo-
rithms provide assignment ares.

R> sapply(
+ algorithms,
+ FUN = function(a) {
+ reset_stream(stream, 1001)
+ evaluate_static(
+ a,
+ stream,
+ measure = c("numMicroClusters", "purity", "SSQ", "silhouette"),
+ n = 500,
+ assignmentMethod = "auto",
+ type = "micro"
+ )
+ })

Sample + k-means DenStream cluStream Bico
numMicroClusters 100.000 39.00000 100.000 78.000
purity 0.976 0.95105 0.973 0.958
SSQ 114.768 269.80727 72.674 122.497
silhouette 0.141 -0.00623 0.209 0.245

We need to be careful with the comparison of these numbers, since the depend heavily on the
number of micro-clusters with more clusters leading to a better value. Therefore, a comparison
with DenStream is not valid. We can compare the measures, of the other algorithms since
the number of micro-clusters is close. Sampling produces very good values for purity, BICO
achieves the highest average silhouette coefficient and CluStream produces the lowest sum of
squares. For better results more data and cross-validation could be used.

3. Outlier detection
To support the outlier detection area, streamMOA contains a wrapper to the MOA implemen-
tation of the Micro-cluster Continuous Outlier Detector (MCOD). To demonstrate a synergy
of outlier detection capabilities between stream and streamMOA packages, we bring two ba-
sic examples. First, we create a fixed data stream with noise outliers that are well separated
from the clusters using Mahalanobis distance.

R> library(stream)
R> set.seed(1000)
R> stream <- DSD_Gaussians(k = 3, d = 2,
+ variance_limit = c(0.1, 1),
+ space_limit = c(0, 30),
+ noise = .01,
+ noise_limit = c(0, 30),
+ noise_separation = 6,



Matthew Bolanos, John Forrest, Michael Hahsler 7

0 5 10 15 20 25

5
10

15
20

25
30

X1

X
2

Figure 4: Data points from DSD_Gaussians having 3 clusters and 1% is outliers (noise).

+ separation_type = "Mahalanobis"
+ ) %>% DSD_Memory(n = 1000)

R> plot(stream, n = 1000)

The generated stream can be seen in Figure 4.
Then we define a DSC_MCOD clusterer. Since this is a single-pass clusterer DSC_SinglePass,
we do not need to update the model first, we can immediately call evaluation.

R> reset_stream(stream)
R> mic_c <- DSOutlier_MCOD(r = 2, w = 1000)
R> evaluate_static(
+ mic_c,
+ stream,
+ n = 1000,
+ type = "micro",
+ measure = c("crand", "outlierjaccard")
+ )

Evaluation results for micro-clusters.
Points were assigned to micro-clusters.

cRand outlierJaccard
0.4476 0.0361

attr(,"type")
[1] "micro"
attr(,"assign")
[1] "micro"



8 Introduction to streamMOA

0 5 10 15 20 25

5
10

15
20

25
30

X1

X
2

Figure 5: MCOD outlier detection.

R> reset_stream(stream)
R> plot(mic_c, stream, n = 1000)

In Figure 5 we can see micro-cluster and outlier assignments for the generated data stream.

Acknowledgments
This work is supported in part by the U.S. National Science Foundation as a research ex-
perience for undergraduates (REU) under contract number IIS-0948893 and by the National
Human Genome Research Institute under contract number R21HG005912.

Affiliation:
Michael Hahsler
Engineering Management, Information, and Systems
Lyle School of Engineering
Southern Methodist University
P.O. Box 750122
Dallas, TX 75275-0122
E-mail: mhahsler@lyle.smu.edu
URL: http://michael.hahsler.net

John Forrest
Microsoft Corporation
E-mail: jforrest@microsoft.com

Matthew Bolaños
Microsoft Corporation
E-mail: mbolanos@curiouscrane.com

mailto:mhahsler@lyle.smu.edu
http://michael.hahsler.net
mailto:jforrest@microsoft.com
mailto:mbolanos@curiouscrane.com

	Introduction
	Experimental Comparison on Static Data
	Outlier detection

