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Abstract

The tipsae package implements a set of small area estimation tools for mapping pro-
portions and indicators defined on the unit interval. It provides for small area models
defined at area level, including the classical Beta regression, zero and/or one inflated Beta
and Flexible Beta ones, possibly accounting for spatial and/or temporal dependency struc-
tures. The models, developed within a Bayesian framework, are estimated through Stan
language, allowing fast estimation and customized parallel computing. The additional
features of the tipsae package, such as diagnostics, visualization and exporting functions
as well as variance smoothing and benchmarking functions, improve the user experience
through the entire process of estimation, validation and outcome presentation. A Shiny
application with a user-friendly interface further eases the implementation of Bayesian
models for small area analysis.
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1. Introduction

The growing demand for timely and reliable statistical estimates leads to the extensive ex-
ploitation of survey data at an increasingly greater level of disaggregation. However, domains
or areas of study are often different from the ones for which the survey was originally planned,
leading to possibly unreliable direct estimates due to observation-poor samples. Small area
estimation (SAE) tackles this problem by providing a set of indirect estimation techniques,
relying on external information, which borrow strength across areas and increase the efficiency
of the estimates (Rao and Molina 2015). Indirect estimators based on explicit regression mod-
els are labeled model-based estimators and assume a relationship between the target variable
and explanatory variables, which remains constant across areas. Classical small area models
embrace two basic linear mixed models: the Fay-Herriot model (Fay and Herriot 1979) and the
Battese-Harter-Fuller model (Battese, Harter, and Fuller 1988), which are foundational for
the strand of area-level models and unit-level models, respectively. While the former relates
area-specific target quantities to area covariates, the second relates individual observations of
the underlying variables of interest to individual covariates.

Hereafter, we focus on area-level models due to their practical convenience. In fact, they
only require covariates aggregated at the area level and account for design-based properties;
in contrast with unit-level models that generally need auxiliary information available for the
entire population. In area-level contexts, a well-established body of literature is concentrated
on Gaussian models. However, many quantities of interest have specific features that are not
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considered in the Gaussian setting and need to be accounted for, such as bounded support
and markedly skewed or heavy-tailed distributions. Specifically, we focus on unit interval
responses, common in SAE modeling because of the growing need for rates and proportions
releases in official statistics, such as Head-Count Ratio for poverty mapping (?) or Health
Insurance Coverage rates (Bauder, Luery, and Szelepka 2015). Not to mention the treatment
of other measures of interest defined in (0,1) or [0,1], such as some inequality measures (e.g.,
Gini index).

In this regard, two different bodies of literature revolve around linear mixed models, possibly
with suitable transformations (Rao and Molina 2015), and Beta regression models (Janicki
2020). The first approach is widely used, as the Fay-Herriot model is often a good option
when the response variable is not close to the boundaries and/or the auxiliary variables
have strong predictive power. We recall the works by Marhuenda, Molina, and Morales
(2013); Marhuenda, Morales, and del Carmen Pardo (2014), Morales, Pagliarella, and Sal-
vatore (2015), and Esteban, Morales, Pérez, and Santamaría (2012); Esteban, Lombardía,
López-Vizcaíno, Morales, and Pérez (2020). The second strand focus on classical Beta regres-
sion, both in the univariate case (Liu, Lahiri, and Kalton 2007; Bauder et al. 2015; Fabrizi
and Trivisano 2016; Giovinazzi and Cocchi 2021) and in the multivariate ones (Fabrizi, Fer-
rante, Pacei, and Trivisano 2011; Souza and Moura 2016), considering also zero and/or one
inflated extensions (Wieczorek, Nugent, and Hawala 2012; Fabrizi, Ferrante, and Trivisano
2016, 2020). Lastly, a Beta mixture approach in SAE has been proposed by De Nicolò,
Ferrante, and Pacei (2022).

By considering the SAE field as a whole, there is a clear imbalance between a plethora of
methodological proposals defined in academic literature and the tight circle of methods ac-
tually used in official statistics and applied researchers. A bridge-building process between
methodological and applied fields is needed, involving collaboration, dissemination, and de-
velopment of user-friendly tools to facilitate tough steps. With the latter aim, several routines
for SAE have been released by developer teams of R (R Core Team 2021), SAS (SAS Institute
Inc. 2003), SPSS (IBM Corporation 2010), and STATA (Stata Corporation 2007). Our focus
is on R routines due to flexibility and availability reasons as well as for the equipment of
complementary tools. Several R packages have been developed to implement SAE tools, and
in the following, we attempt to provide a clear overview focusing on model-based methods.

In general, the most complete released packages are:

• sae (Molina and Marhuenda 2015). It implements a wide range of small area methods
from a frequentist perspective, including both area-level and unit-level models.

• emdi (Kreutzmann, Pannier, Rojas-Perilla, Schmid, Templ, and Tzavidis 2019). It
allows making inference on both area-level and unit-level models in a frequentist frame-
work, providing model diagnostics, plots, and exporting tools.

• mcmcsae (Boonstra 2021). It comprises hierarchical area and unit-level models esti-
mated via Markov chain Monte Carlo (MCMC) simulation, allowing for spatial and
temporal dependencies. It includes different prior settings, model diagnostics, and pos-
terior predictive checks functions.

Among the listed packages, only the emdi package (Schmid, Bruckschen, Salvati, and Zbiran-
ski 2017) directly accounts for unit interval responses at area-level by providing the arc-sin
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transformation in a Gaussian setting. Thus, while a Fay-Herriot model for unit interval re-
sponses may be implemented via existing packages, Beta-based small area models lack proper
implementations.

Note that estimating Beta mixed regression models is possible in R through other packages
that, however, cannot easily accommodate peculiarities of small area models, e.g., the as-
sumption of known dispersion parameter and popular structured random effects. Within
the frequentist framework, the betareg package (Cribari-Neto and Zeileis 2010) is worth to
be mentioned. On the other hand, the function stan_betareg() of the rstanarm pack-
age (Goodrich, Gabry, Ali, and Brilleman 2020) can be employed to fit Beta models in
the Bayesian setting. Lastly, the zoib package (Liu and Kong 2015) allows fitting Bayesian
zero/one inflated Beta models.

The tipsae package (De Nicolò and Gardini 2022) aims at filling this gap by implementing
Beta-based small area models specified at the area-level on measures that can assume values
in (0, 1), [0, 1), (0, 1], and [0, 1] intervals. We decided to operate in a Bayesian fashion in or-
der to exploit the advantages brought by approaching this inferential framework via MCMC
methods. For instance, it is possible to easily manage non-Gaussian assumptions, incorpo-
rate structured random effects, obtain straightforward estimates for out-of-sample areas, and
capture the uncertainty about all target parameters through posterior inference. Nowadays,
several tools are available to implement Bayesian models with probabilistic languages: our
choice falls on Stan (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker,
Guo, Li, and Riddell 2017), which can be easily employed to fit statistical models within R
packages thanks to the tools provided by the rstantools package (Gabry, Goodrich, and Lysy
2020).

The main features of the tipsae package are listed in the following:

• It includes a variety of area-level models based on the Beta likelihood. Besides the stan-
dard Beta-regression model, Zero and/or One Inflated Beta (ZOIB) and Flexible Beta
models can be chosen. Moreover, particular dependence structures can be modelled,
including spatial and/or temporal random effects.

• It implements an efficient Hamiltonian Monte Carlo (HMC) fitting algorithm and cus-
tomized parallel computing imported from rstan (Stan Development Team 2020). We
also tested other languages that build MCMC samplers, and Stan turned out to be
the most efficient one for Beta regression models. Such models are particularly tricky
to handle: location and scale parameters are non-orthogonal (Ferrari and Cribari-Neto
2004) due to the re-parametrization of the Beta distribution that introduces correlation
between them.

• The ‘stanfit’ S4 object produced by the rstan package can be exploited to check
convergence, monitor sampler diagnostics, and, lastly, perform an exhaustive posterior
analysis, relying on existing tools such as loo (Vehtari, Gabry, Magnusson, Yao, Bürkner,
Paananen, and Gelman 2020) and bayesplot (Gabry and Mahr 2021) packages. In
this way, users familiar with posterior predictive checks can carefully assess the model
performance.

• Specific diagnostics for small area models are produced by ad-hoc functions, facing the
most relevant aspects to deepen within the SAE framework. We implemented both
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visualization tools for graphical assessments and functions that easily export the final
results. Moreover, variance smoothing routines and benchmarking procedures are also
provided, remarking that, to the best of our knowledge, the first tool is not available in
any existing SAE package.

• To further facilitate the workflow for non-expert users of R, a Shiny application (Chang,
Cheng, Allaire, Sievert, Schloerke, Xie, Allen, McPherson, Dipert, and Borges 2021)
with an intuitive graphical user interface can be launched through runShiny_tipsae().
The application assists the user in carrying out a complete SAE analysis, exploiting all
the main features of the tipsae package.

The paper is organized as follows: covered models and implemented methodology are set out
in Section 2, the datasets made available in the package are presented in Section 3, while
Section 4 provides a step-by-step description of inputs and outputs of the available functions.
Section 5 outlines the features of the Shiny application and, eventually, Section 6 contains
some concluding remarks, discussing possible extensions that could be supplied.

2. Methodology

In this section, the theory behind the statistical methods implemented in the tipsae package
is summarized. The main aspects are those related to the area-level models for indices and
proportions that can be estimated using the function fit_sae().

From now on, we consider a finite population of size N that is partitioned into D small areas
having sizes N1, . . . , ND. We are interested in estimating a generic measure defined on the
unit interval that we denote as θd, d = 1, . . . , D. To this aim, a random sample of size n
is drawn from the whole population using a possibly complex survey design, obtaining sub-
samples of sizes n1, . . . , nD, specified for each domain. Among them, we define the first D̃
domains, with D̃ ≤ D as the ones actually observed, i.e., with nd > 0. The observations
recorded at the individual level are aggregated to produce the direct estimates yd, which are
stored in the vector y and are the observed determinations of the direct estimator Yd for
a quantity of interest θd, with d = 1, . . . D̃. The Bayesian area-level model is specified for
Yd, including also a set of auxiliary variables xd, which are assumed to be available for each
domain.

The details about the statistical models that can be set through the argument likelihood

are discussed in Section 2.1. Furthermore, a small area model usually includes random effects
in the linear predictor. The random effect part, hereafter indicated with ed, can incorporate
either a temporal and/or a spatial dependency structure, as will be discussed in Section 2.2,
devoted to the prior specification settings. In addition, different prior assumptions can be
specified for the unstructured random effects, allowing for robust and shrinking priors.

In small area models, the dispersion parameters are generally assumed as given and previously
estimated from the data. Separate estimation could involve a smoothing procedure to refine
the sampling variances estimates and reduce their errors. Section 2.3 describes the proposed
algorithms to carry out this step if required. Eventually, Section 2.4 outlines the main aspects
of posterior inference: we will mainly focus on the out-of-sample treatment, diagnostics, and
goodness-of-fit tools employed to validate or select the models and, lastly, the benchmarking
procedures complementing SAE analysis.
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2.1. Area-level models: Likelihoods

The statistical models available in tipsae are set out in the following sections, whereas a com-
prehensive overview of the key quantities under each model is provided in Table 1. In partic-
ular, we specify the response support, the conditional expectation, constituting the predictor
for θd, the conditional variance, allowed parametrizations, and the out-of-sample predictor
(denoted with θoos

d ). From now on, η indicates the vector of all the model parameters.

The Beta model

Let us consider the mean-precision parametrization of the Beta random variable (Ferrari and
Cribari-Neto 2004): in this case, if Y ∼ Beta(µφ, (1 − µ)φ), then its probability density
function is

fB(y;µ, φ) =
Γ (φ)

Γ (µφ) Γ ((1 − µ)φ)
yµφ−1(1 − y)(1−µ)φ−1, y ∈ (0, 1),

where µ ∈ (0, 1) is the location parameter and φ ∈ (0,+∞) is the dispersion one. In SAE
context, the Beta regression area-level model is usually specified as

Yd|µd, φd
ind
∼ Beta (µdφd, (1 − µd)φd) ,

logit (µd) = x
>
d β + ed, d = 1, . . . , D;

where β is the vector of regression coefficients and φd is the area-specific dispersion parameter,
usually assumed to be known to guarantee identifiability. Recalling the expression of V [Yd|η]
from Table 1, it can be shown that, when the target response is a proportion, the parameter
φd is related to the effective sample size, i.e., the corresponding sample size under simple
random sampling (Janicki 2020). For a more complete explanation of those aspects, we refer
to the discussion in Section 2.3. On the other hand, if a generic indicator (e.g., Gini index)
is considered, the meaning of φd becomes less clear. For this reason, we let the user specify
the model parametrization (argument type_disp), choosing between:

• "neff" option, namely an estimate of the effective sample size φd + 1 is provided;

• "var" option, in which an estimate of the sampling variance of the direct estimator i.e.,
V̂[Yd], is used. In this case, the parameters φd are retrieved using the relations in Table 1,
replacing V [Yd|η] with V̂[Yd], and substantially changing model parameterization.

The Flexible Beta model

When the distribution of the response is characterized by heavy tails and/or high skewness,
the standard Beta regression could fail in properly modelling Yd (Bayes, Bazán, and García
2012; Migliorati, Di Brisco, and Ongaro 2018). To improve the model performances in these
conditions, the standard Beta distribution can be replaced by the Flexible Beta distribution.
The Flexible Beta small area model has been proposed by De Nicolò et al. (2022). It is defined
as a mixture of two Beta random variables having a common dispersion parameter φd:

Yd|λ1d, λ2d, φd, p
ind
∼ p Beta (λ1dφd, (1 − λ1d)φd) +

+ (1 − p) Beta (λ2dφd, (1 − λ2d)φd) ,

logit (λ2d) = x
>
d β + ed, d = 1, . . . , D.
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In this case, only the direct estimator variance (i.e., disp_type = "var") can be used as input
to determine the dispersion parameter of the model. Therefore, φd is expressed as a function of
the sampling variances and other model parameters (see the expression of V [Yd|η] in Table 1).
The Flexible Beta distribution is characterized by four parameters: this enhances the model
flexibility if compared to the standard Beta distribution, leading to better performances in
modelling not well-behaved measures and, consequently, reducing the bias of model-based
estimators.

The zero/one inflated Beta model

The supports of Beta and Flexible Beta models do not include the extremes 0 and 1. However,
in some applications, zero and one values are observed, and a model able to encompass them
is required. Therefore, following Wieczorek et al. (2012), we include in the package the ZOIB
model, specified as:

Yd|µd, φd, p
z
d, p

o
d

ind
∼ pz

d1{Yd = 0} + po
d1{Yd = 1}+

+ (1 − pz
d − po

d)Beta (µdφd, (1 − µd)φd)1{0 < Yd < 1}

logit (pz
d) = x

>
d βz

p, logit (po
d) = x

>
d βo

p,

logit (µd) = x
>
d β + ed, d = 1, . . . , D;

where pz
d and po

d denote the probabilities of observing zero and one values, respectively. They
are modelled by means of a logit regression model having coefficients βz

p and βo
p. The notation

1{A} defines the indicator function that assumes value 1 if the event A is observed, and 0
otherwise. The user can specify a model that accounts both for zeroes and ones setting
likelihood = "Infbeta01"; however, simpler versions inflating only the ones or the zeroes
are also available ("Infbeta1" and "Infbeta0", respectively). Relevant quantities for each
version of the ZOIB model are listed in Table 1, having defined αd = pz

d + po
d and ζd = po

d/αd.
For further details, see Ospina and Ferrari (2010).

2.2. Prior distributions

To facilitate practitioners, standard wide-range prior distributions are assumed for the param-
eters included in the model. Starting from the priors for the regression coefficients, classical
Gaussian priors are specified. To avoid issues related to possibly different magnitudes, auxil-
iary variables are standardized and posterior results must be interpreted accordingly. Hence,
the priors for intercept and the regression coefficients are:

βj
ind
∼ N (0, h2

c), j = 0, . . . , p,

with hc = 2.5 as default option, following suggestions from the popular rstanarm package
(Goodrich et al. 2020). Such value can be changed through the scale_prior argument. Note
that the same prior setting is also assumed for coefficients βz

p and βo
p involved in ZOIB models.

As regards the Flexible Beta model, we additionally specify the following priors for the mixing
probability p and the differences between the means of mixture components:

p ∼ Beta(2, 2),

λ1d − λ2d|p, λ2d ∼ Unif

(
0,min

{
1 − λ2d

p
,

√
V(Yd|η)

p(1 − p)

})
,
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following De Nicolò et al. (2022).

The priors for the random effects are discussed in the following considering the case of un-
structured random effects, spatially structured random effects, and temporal random effects.

Unstructured random effects

The basic assumption on the random effect is ed = vd, where vd is an unstructured area-
specific random effect accounting for deviations from the synthetic predictor. We propose
three different strategies to specify its prior distribution, that can be chosen through the
prior_reff argument of fit_sae(). Firstly, a zero-mean normal prior with scale σv is
considered ("normal" option, default), putting a half-normal prior for σv, in line with Gelman
(2006):

vd|σv
ind
∼ N

(
0, σ2

v

)
, d = 1, . . . , D;

σv ∼ Half-N (0, h2
v).

The default choice of such half-normal prior with hv = 2.5 is usually weakly informative,
compared to the scale of the random effects. However, the scale_prior argument allows
tuning such value. This might speed up the computational algorithms.

When covariates have poor explanatory power, in some domains, it is possible to observe
large deviations of the predicted value from the observed one, requiring more flexible han-
dling of random effect through a robust prior. Among those proposed in the literature, we
implement the one introduced by Figueroa-Zúñiga, Arellano-Valle, and Ferrari (2013), and
previously considered in the small area framework by Fabrizi and Trivisano (2016). It consists
of a Student’s t prior with exponential hyperprior for degrees of freedom ν and half-normal
hyperprior for the scale σv ("t" option):

vd|ν, σv
ind
∼ t (ν, 0, σv) , d = 1, . . . , D;

ν ∼ Exponential(0.1);

σv ∼ Half-N (0, h2
v).

The notation t (ν, 0, σv) indicates a Student’s t distribution with ν degrees of freedom, location
parameter equal to 0, and scale σv.

In other cases, the variability of the small area parameters may not require the inclusion of
a random effect term in presence of very informative covariates (Datta, Hall, and Mandal
2011b). Therefore, the variance gamma shrinkage prior introduced by Brown and Griffin
(2010) and implemented in a small area application by Fabrizi, Ferrante, and Trivisano (2018)
is included as a prior choice for vd ("VG" option). This option enables for shrinking to 0 the
random effects related to a subset of the areas by mimicking the behaviour of a spike-and-slab
prior. Following Fabrizi et al. (2018) and De Nicolò, Fabrizi, and Gardini (2022), we propose
the following general hyperparameters choice:

vd|ψd, λ
ind
∼ N

(
0, ψdσ

2
v

)
, d = 1, . . . , D;

ψd
ind
∼ Gamma(0.5, 1), d = 1, . . . , D;

σv ∼ Half-N (0, h2
v).

It can be noted that the independent ψd are local scales, whereas σv is a global scale hyper-
parameter.
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Spatially structured random effects

Setting the argument spatial_error equal to TRUE, we let the user add a spatially structured
effect sd to the linear predictor, leading to the formulation ed = vd + sd. For the vector
s = (s1, . . . , sD), we assume an intrinsic conditional autoregressive (ICAR) prior (Besag,
York, and Mollié 1991), i.e., an improper prior whose density is proportional to:

f (s|σs) ∝ exp

{
−

1

2σ2
s

s>
K̃

−
s s

}
,

where K̃
− is the generalized inverse of a singular precision matrix. To describe its structure,

we first define K = D−W, where D is a diagonal matrix containing the number of connections
for each area and W is the adjacency matrix (the generic entry [w]ij is 1 if area i and j are
adjacent and 0 otherwise). Following Freni-Sterrantino, Ventrucci, and Rue (2018), the actual
precision matrix K̃ is obtained with a scaling procedure aimed at reducing the impact of the
structure on the prior variability, keeping into consideration the possible presence of G ≥ 1
disconnected graphs in the model (e.g., islands). Note thatG−1 dummy variables are added to
the linear predictor in order to obtain island-specific means, placing a sum-to-zero constraint
on the random effects related to the same island. Islands defined by singleton areas are also
allowed, even if they do not constitute a graph counted in G. Lastly, a half-normal prior with
variance h2

s is fixed for the hyperparameter σs. For further details on the implementation of
ICAR priors in Stan, see Morris, Wheeler-Martin, Simpson, Mooney, Gelman, and DiMaggio
(2019).

To include a spatially structured effect, an object of class ‘SpatialPolygonsDataFrame’ (from
the sp package, Bivand, Pebesma, and Gomez-Rubio 2013) or class ‘sf’ (from the sf package,
Pebesma 2018) is required as input of the spatial_df argument. Furthermore, the argument
domains_spatial_df must receive as input a string containing the name of a column in
spatial_df@data for a ‘SpatialPolygonsDataFrame’, or in spatial_df for a ‘sf’. Such a
variable contains the labels of the areas in spatial_df that need to match the names in the
domains column of data. For this reason, the user must carefully check the coherence of the
denominations in the two objects.
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Temporally structured random effects

If multiple observations of the target indicator are available for different time periods, a
suitable model can be specified, in order to borrow strength from time repetitions. In this
framework, a second subscript must be added in the notation: Ydt indicates the direct es-
timator for area d at time t = 1, . . . , T , whereas edt is the random effect component in the
linear predictor. The user can choose to add a temporal random effect udt to the unstructured
one (edt = vd + udt) setting temporal_error = TRUE and declaring in temporal_variable

the name of the dataset column that contains the times of the observations. Such a variable
must be numeric and the underlying assumption is that the time periods are all equispaced.
Note that all the areas must be contained in the dataset the same number of times, hence,
possible missing observations need to be included in the dataset, specifying NA in the columns
related to survey information. If both temporal and spatial random effects are declared in
fit_sae(), then a spatio-temporal model is fitted, removing the unstructured random effect
(edt = sd + udt).

As prior for the sequence of random effects {udt}t, we specify a random walk prior of order
1, assuming independence among the areas (Rao and Molina 2015). It represents a flexible
prior that can be defined recursively as:

udt|ud,t−1, σu ∼ N
(
ud,t−1, σ

2
u

)
, t = 2, . . . , T ;

implicitly assuming a uniform improper prior on ud1. Sum-to-zero constraints are placed for
each area-specific time sequences, to guarantee the identifiability of all the parameters in the
linear predictor. Again, a half-normal prior with variance h2

u is fixed for the hyperparameter
σu and the contribution of the correlation structure to the prior variability is mitigated by
adopting a scaling procedure (Riebler, Sørbye, Simpson, and Rue 2016).

2.3. Data pre-processing

Area-level models require given sampling variances V[Yd] for each domain as an input. In
small sample sizes contexts, the estimates of such sampling variances can be imprecise and
unreliable. As this may affect model performances, its unreliability can be mitigated via
different approaches. The most common ones are the treatment of variance estimates by
means of a smoothing procedure and the estimation of alternative quantities such as the
so-called effective sample size in case of proportion (Chen, Sartore, Benecha, Bejleri, and
Nandram 2022).

Let us consider that, under simple random sampling, a general variance function has the
following structure:

Vsrs [Yd] =
f(θd)

nd

,

where nd is the sample size. Note that, if the target quantity is a proportion, then f(θd) =
θd(1 − θd). When dealing with complex survey designs, the selection process invariably in-
troduces a correlation structure in the data. In this way, the information actually available
may be lower than the one provided by a sample of the same size under simple random
sampling. This is formalized by the effective sample size ñd, which denotes the amount of
effective information provided by the sample and generally ñd < nd holds. It can be es-
timated as ñd = nd/deff, where deff is the design effect, defined as the ratio between the
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complex design-based variance Vcd [Yd] and Vsrs [Yd]. Clearly, under simple random sampling,
ñd equals nd.

We propose the smoothing() function that performs both variance smoothing and ñd esti-
mation through three different methods. The first method "kish" enables the estimation of
the effective sample sizes through the use of survey weights. When survey weights are not
accessible and/or raw estimates of the sampling variance (e.g., from bootstrap) are available,
the remaining two methods "ols" and "gls" perform a variance smoothing procedure of the
raw estimates, allowing for different variance functions (argument var_function) and pro-
viding also related effective sample sizes in case of proportion. In particular, the argument
method allows to choose among:

• "kish", implementing an area-specific design effect estimation proposed by Kish (1992).
It employs solely the design weights and requires an additional data frame as input of
the survey_data argument, whose structure is specified in Section 4.3. The specific
design effect is estimated as:

deffd = nd ·
∑

h∈d

W 2
dh

ndh

where h refers to a generic sampling unit in area d (e.g., the household). Indicating
with subscript c the generic individual in sampling unit h, we define Wdh = N̂dh/N̂d,
N̂dh =

∑
c∈hwdhc, N̂d =

∑
h∈dwdh and nd =

∑
h∈d ndh. We denote with wdh and ndh

the design weight and the sample size of unit h in area d, respectively; while wdhc is the
individual design weight. Thus, the design-based variance can be defined as

Vcd [Yd] =
f(θd)

nd

deffd, (1)

while ñd = nd/deffd. This method has already been used in small area contexts by
Wieczorek and Hawala (2011) and Liu et al. (2007). Kalton, Brick, and Le (2005)
found this approximation accurate for proportions ranging between 0.2 and 0.8.

• "ols", implementing a variance smoothing model using a Generalized Variance Function
approach, as in Fabrizi et al. (2011) and Fabrizi and Trivisano (2016). Considering the
design-based variance as

Vcd [Yd] =
f(θd)

nd

deff,

the smoothing procedure is based on the assumption that the design effect does not
vary across areas. By assuming V̂raw[Yd] as a raw estimator of complex survey variance,
let us specify the following smoothing equation:

f(Yd)

V̂raw[Yd]
= ψnd + εd,

where ψ = 1/deff and εd are zero-mean and homoscedastic residuals. The model is esti-
mated using ordinary least squares via the gls() function from nlme package (Pinheiro,
Bates, DebRoy, Sarkar, and R Core Team 2021), providing the smoothed dispersion pa-
rameters ñd = ψ̂nd and the refined variance estimate V̂[Yd] = f(yd)/ñd.
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• "gls", extending the "ols" method in case of heteroskedasticity of the error component
εd of Equation 1. The default method assumes only heteroskedastic error with a power
variance function on absolute fitted values (see Pinheiro et al. 2021, for further details).

We remark that when the response is a proportion, φ̂d = ñd − 1; alternatively, only the
variance specification must be considered. The output estimates are ready to be used as known
parameters in an area-level model, and they need to be added to the analyzed ‘data.frame’
object.

2.4. Posterior inference

We are interested in making posterior inference on θd. Since we are not dealing with conjugate
models, not even conditionally, the posterior inference is carried out through MCMC draws.
As a point estimate, the optimal Bayes estimator of θd under quadratic loss is considered,
i.e., the posterior mean. We indicate it with the notation:

θ̂HB
d = E[θd|y] d = 1, . . . D. (2)

where HB states for hierarchical Bayes. The point estimates can be complemented with
uncertain measures like the posterior standard deviation and credible intervals, determined
by the quantiles of the posterior distribution. The generic method summary() applied on as
S3 object of class ‘fitsae’ produces by default point estimates (posterior mean and median)
and credible intervals (at 95% and 50% levels) for predictors, basic model parameters, and
random effects.

Out-of-sample treatment

The package automatically provides out-of-sample predictions, which are made available
through the export() function. In practice, when the direct estimates for an area are missing
but auxiliary information is observed, then the area can be included in the dataset labeled as
NA. In this way, the functions of the package draw a sample from the posterior distribution
of the predictor. This feature is available for all considered likelihood, except for Flexible
Beta, since in this specific case, θd depends on its sampling variance, which is not available
in case of out-of-samples.

Recalling that θoos
d , d = D̃, . . . , D denotes the out-of-sample target quantity, their predictors

are reported in Table 1. Note that they depend on ed: when spatial and temporal dependen-
cies are defined, sd and udt gain information from the assumed correlation structure, whereas
vd is always drawn from a zero-mean distribution, contributing only to the posterior variabil-
ity of θoos

d . Exploiting the MCMC estimation framework, it is possible to obtain a sample
from the posterior of θoos

d by combining the samples drawn from the posterior of the in-
volved parameters. Eventually, the point predictor defined in (2) holds also for out-of-sample
observations, together with the other posterior summaries.

Diagnostics and goodness-of-fit tools

The method summary() returns, in addition, goodness-of-fit and model validation diagnostics,
as well as SAE-specific diagnostics. In the following, we provide a brief theoretical overview
of such measures.



Silvia De Nicolò, Aldo Gardini 13

One of the main advantages of estimating models within the Bayesian framework is the
plethora of tools that allow investigating model performances. Among the most relevant
ones, we can find those relying on the posterior predictive distribution, which we denote with
Y •

d |y, d = 1, . . . , D. Area-specific Bayesian p values (BPd) under the following discrepancy
measure (You and Rao 2002; Fabrizi et al. 2011) are computed:

BPd = P [Y •
d > yd|y] , d = 1, . . . , D. (3)

In absence of systematic deviations, the expected Bayesian p value is 0.5, whereas values near
0 or 1 highlight issues of over-estimation and under-estimation, respectively.

Information criteria are widely used in Bayesian inference to compare models with different
specifications, e.g., diverse distributional assumptions, random effects structures, or covari-
ates. Following Vehtari, Gelman, and Gabry (2017), we consider the approximate leave-one-
out cross-validation information criterion (LOOIC) computed using Pareto-smoothed impor-
tance sampling. It can be retrieved through the loo package and is provided together with
the approximate standard errors for estimated predictive errors.

Stepping into SAE-specific diagnostics, the standard deviation reduction (SDRd) indicator is
commonly used to assess the decrease of uncertainty associated with the employment of a
small area model. It is obtained by evaluating

SDRd = 1 −

√
V [θd|y]

E[V [Yd|η] |y]
, d = 1, . . . , D, (4)

where the denominator is defined in this way when type_disp = "neff", taking into account
the fact that V [Yd|η] has a posterior distribution to be summarized. Conversely, if type_disp

= "var", the denominator is replaced by V̂ [Yd]. This diagnostic has to be considered with
caution when performing model selection since it does not account for the different biases
that can affect distinct model-based estimators.

Lastly, the shrinkage bound rate (SBR) is computed:

SBR =
1

D̃

D̃∑

d=1

1{θ̂HB
d ∈ (p∗

d, Yd)}, (5)

where p∗
d = exp(x>

d β)/
[
1 + exp(x>

d β)
]

is the synthetic estimate of θd. In fact, in the standard

Fay-Herriot model, the shrinking process is clearly identified by the shape of the best linear
unbiased predictor, for known values of β and σ2

v such as

γdYd + (1 − γd)p∗
d with γd =

σ2
v

σ2
v + V[Yd|η]

.

Beta regression models do not provide a closed-form predictor, since the conditional distri-
bution of θd, ∀d = 1, . . . , D does not belong to a standard family. Janicki (2020) shows that,
in a Beta regression model with standard diffuse priors, θ̂HB

d converges to the direct estimate
as V(Yd|η) −→ 0 and the synthetic estimates as σ2

v −→ 0. The first property has also been
proved by Fabrizi et al. (2020). However, θ̂HB

d is not bounded by its convergence limits, con-

jecturing Yd < θ̂HB
d < p∗

d will hold only for V(Yd|η) sufficiently small (Janicki 2020). Thus,
checking whether model estimates fit inside the bound, could yield important insights into
the shrinking process and estimators consistency.
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Benchmarking procedure

The benchmark() function gives the chance to perform a benchmarking procedure on model-
based estimates. Small area models do not guarantee coherence of obtained estimates with
respect to aggregates known in population (external benchmark) or retrieved by direct esti-
mates (internal benchmark). In particular, latter quantities could refer to a larger geograph-
ical area or a larger socio-demographic group whose target domains are a subset of, and,
therefore, might be reliable. This feature may introduce drawbacks in many situations (e.g.,
when small area estimates are used to allocate funding), and exact benchmarking is required
to avoid surpluses or shortfalls (Datta, Ghosh, Steorts, and Maples 2011a; Zhang and Bryant
2020).

A standard approach in the Bayesian literature is the one proposed by Datta et al. (2011a),
which is implemented in the benchmark() function. It consists of an ex-post treatment of pos-
terior area estimates, as those in formula (2). In this case, the point estimates, obtained by the
fit_sae() function, are adjusted leading to a new set of estimates θ̂BM

d , d = 1, . . . , D. They
minimize the posterior risk under a weighted squared error loss satisfying the benchmarking
constraints. This procedure could solely target the point estimators (single benchmarking)
or, alternatively, also the ensemble variability (double benchmarking). When in-sample areas
are treated and a single benchmarking is performed, an estimate of the overall posterior risk
is provided.

The procedure requires the definition of an area-specific set of weights, which, in the case
of proportions, is wd = Nd/

∑D
j=1Nj , where Nd is the population size for area d. In what

follows, the constraint is indicated with B. The function allows performing three different
benchmarking methods, according to the argument method.

• The "ratio" method provides the following benchmarked estimates:

θ̂BM
d = θ̂HB

d +
B −

∑
dwdθ̂

HB
d

s
rd, (6)

where rd = θ̂HB
d , and s =

∑
dwdθ̂

HB
d . The posterior risk for the whole set of bench-

marked estimates is

∑

d

wd

rd

[
V[θd|y] +

(B −
∑

dwdYd)2

s2
r2

d

]
. (7)

• The "raking" method provides the benchmarked estimate in Equation 6 and the pos-
terior risk in Equation 7 with rd = 1 and s = 1.

• The "double" method extends this procedure accounting for a further benchmark on the
weighted ensemble variability. The simultaneous constraints are

∑
dwdθ̂

BM
d = B and∑

dwd(θ̂BM
d −B)2 = H, where H is a prespecified value of the benchmarked estimators

variability. The resulting estimate is:

θ̂BM
d = B +

√√√√
H

∑
dwd

(
θ̂HB

d −
∑

dwdθ̂
HB
d

)2

(
θ̂HB

d −
∑

d

wdθ̂
HB
d

)
.
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The benchmarking procedure can be performed also in the case of temporal or spatio-temporal
models by specifying multiple benchmarks related to different time periods.

Lastly, we remark that such methods, even if widely used and easy to be implemented, are
endowed with some drawbacks as summarized in Okonek and Wakefield (2022). For example,
being the benchmarked estimates obtained under a weighted squared error loss, they are not
guaranteed to lay in the unit interval. Furthermore, the estimate uncertainty measure cannot
be computed for each area, as the method is not fully Bayesian.

3. Datasets

In the SAE field, data typically come from multiple sources. Direct estimators and their
sampling variances typically result from survey data, aggregated at area-level, while covariates
come from census and/or administrative/register sources. As a consequence, explanatory
variables, aggregated at area level, are required to be defined at population level i.e., without
error, and potentially correlated with the target variable. In order to outline the workflow of
tipsae package, its functions are illustrated in Section 4 and applied to an example dataset,
released within the package. The whole dataset is named emilia and consists of a panel on
poverty mapping concerning 38 health districts within the Emilia-Romagna region, located
in North-East of Italy, with annual observations recorded from 2014 to 2018. We built it
starting from model-based estimates and related coefficients of variation freely available on
the Emilia-Romagna region website 1. Since it is used for illustrative purposes only, such
estimates are assumed to be unreliable direct estimates, requiring an SAE procedure.

We considered the Head-Count Ratio estimates as direct ($hcr) and its associated variance
as sampling variance ($vars). A fake standardized covariate $x has been generated. We also
provide area sample sizes ($n), population sizes ($pop), province identification ($prov), years
($year) and health district name ($id). The emilia dataset can be loaded as follows.

R> library("tipsae")

R> data("emilia")

R> head(emilia)

id prov year hcr vars n x pop

1 CASALECCHIO DI RENO BO 2014 0.0404 9.090478e-05 42 -0.2624 108261

2 CITTA' DI BOLOGNA BO 2014 0.0825 6.404001e-05 285 -0.0008 371151

3 IMOLA BO 2014 0.1033 3.120275e-04 49 -0.0522 130007

4 PIANURA EST BO 2014 0.0633 1.025764e-04 190 -0.4007 154213

5 PIANURA OVEST BO 2014 0.0625 1.562500e-04 10 -0.2277 80951

6 PORRETTA TERME BO 2014 0.1276 6.643609e-04 26 -0.4434 56428

A cross-sectional subset concerning a single year (2016) is taken from emilia, for non-
temporal models illustration purposes: it is named emilia_cs and can be loaded as follows.

R> data("emilia_cs")

1https://statistica.regione.emilia-romagna.it/documentazione/pubblicazioni/documenti_

catalogati/stima-poverta-2009-2018-distretti-sociosanitari-province-emilia-romagna

https://statistica.regione.emilia-romagna.it/documentazione/pubblicazioni/documenti_catalogati/stima-poverta-2009-2018-distretti-sociosanitari-province-emilia-romagna
https://statistica.regione.emilia-romagna.it/documentazione/pubblicazioni/documenti_catalogati/stima-poverta-2009-2018-distretti-sociosanitari-province-emilia-romagna
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Figure 1: Flowchart that describe the structure of the tools implemented in tipsae package.

4. Workflow

In this section, a typical flow of an SAE analysis is outlined with step-by-step instructions,
showing the potential of tipsae tools. As illustrated with a flowchart in Figure 1, the package
is structured into three parts that relate to: model building and fitting ( , Section 4.1),
diagnostics and results displaying ( , Section 4.2), and complementary tools for SAE analysis
( , Section 4.3). Figure 1 displays also the possible connections with external functions, drawn
with dashed arrows, useful to further exploit the produced objects.

4.1. Model building and fitting

The first step of the workflow represents the core of our package, concerning the estimation
of models with the diverse extensions and parametrizations defined in Section 2. The sole
function fit_sae() allows users to construct personalized models and fit them using Stan
routines, called up through the sampling() function of rstan package. It also allows cus-
tomized parallel computing when the model runs on multiple chains. A simple parallelization
can be set out using the following command, which imposes a number of R processes equal
to the number of CPU cores.

R> options(mc.cores = parallel::detectCores())

The function setDefaultClusterOptions() from parallel package can be used to change the
default options for parallelization. For further details, see rstan guidelines.

A complete list of the input arguments of the fit_sae() function is specified in Table 2, and a
first example of model fitting on the emilia_cs dataset is provided. Firstly, we consider model
default options: a Beta likelihood and a Gaussian prior for unstructured random effects. Since
emilia_cs dataset contains the sampling variance as a measure of dispersion, disp_direct
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must be fixed equal to "var", setting a mean-variance parametrization. Moreover, argument
domains_size has to be specified for having visual design consistency diagnostics in the
subsequent plotting function.

The estimation can be done in practice by running the fit_sae() function as follows. For
the sake of reproducibility, we set seed=0.

R> fit_beta <- fit_sae(formula_fixed = hcr ~ x,

+ data = emilia_cs,

+ domains = "id",

+ type_disp = "var",

+ disp_direct = "vars",

+ domain_size = "n",

+ seed = 0)

Note that further arguments, concerning rstan::sampling() function options, can be ad-
ditionally specified. In particular, we mention those related to HMC algorithm setting such
as iter, allowing to set the number of iterations per chain (default equal to 2000), warmup,
determining the number of iterations per chain to be discarded as warm-up period (default
iter/2), chains, fixing the number of independent Markov chains (default 4).

Different models can be estimated relying on diverse assumptions, being subsequently com-
pared with each other. For example, we assume a Flexible Beta likelihood and a variance
gamma shrinking prior for the unstructured random effect, in order to propose a more flexible
model for the data. Given the increasing complexity of model assumptions, more HMC iter-
ations are required, together with a higher proposal acceptance probability (adapt_delta).

R> fit_FB <- fit_sae(formula_fixed = hcr ~ x,

+ data = emilia_cs,

+ domains = "id",

+ type_disp = "var",

+ disp_direct = "vars",

+ domain_size = "n",

+ likelihood = "flexbeta",

+ prior_reff = "VG",

+ adapt_delta = 0.99,

+ iter = 8000,

+ seed = 0)

Warnings:

1: There were 10 divergent transitions after warmup. See

http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

to find out why this is a problem and how to eliminate them.

2: Examine the pairs() plot to diagnose sampling problems

The fit_sae() function returns an S3 object of class ‘fitsae’, being a list of relevant items
that are listed in Table 3. The core element is the $stanfit object, incorporating posterior
draws and raw MCMC information to be extracted, whereas the remaining elements only
provide details about the function call and model settings.
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Argument Short description Default

formula_fixed ‘formula’ object specifying the fixed regression part. -

data ‘data.frame’ containing all relevant quantities. -

domains data column name displaying domains names. If NULL

(default) the domains are denoted with a progressive
number.

NULL

type_disp Parametrization of the dispersion parameter. The
choices are variance ("var") or φd + 1 ("neff") param-
eter.

"neff"

disp_direct data column name displaying given values of sampling
dispersion for each domain. In out-of-sample areas, dis-
persion must be NA.

-

domain_size data column name indicating domain sizes (optional). In
out-of-sample areas, sizes must be NA.

NULL

likelihood Sampling likelihood to be used. The choices are
"beta", "flexbeta", "Infbeta0", "Infbeta1" and
"Infbeta01".

"beta"

prior_reff Prior distribution of the unstructured random effect. The
choices are: "normal", "t", "VG".

"normal"

spatial_error Logical indicating whether to include a spatially struc-
tured random effect.

FALSE

spatial_df Object of class ‘SpatialPolygonsDataFrame’ or ‘sf’
with the shapefile of the studied region. Required if
spatial_error = TRUE.

NULL

domains_spatial_df Column name in spatial_df@data with domains names.
Must be in accordance with the column provided in
domains.

NULL

temporal_error Logical indicating whether to include a temporally struc-
tured random effect.

FALSE

temporal_variable data column name indicating temporal variable. Re-
quired if temporal_error = TRUE.

NULL

scale_prior list with 4 named elements containing scales of the
prior: "Unstructured" for hv, "Spatial" for hs,
"Temporal" for hu and "Coeff." for hc.

All 2.5

adapt_delta HMC option: target average proposal acceptance proba-
bility. See Stan documentation.

0.95

max_treedepth HMC option: maximum allowed tree depth for each tran-
sition. See Stan documentation.

10

init HMC option: initial values setting. The choices are: "0",
"random", or manual setup via list or function. See Stan
documentation.

"0"

... Further inputs for the sampling function.

Table 2: Input arguments for function fit_sae().
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Position Name Short description

1 model_settings List summarizing all the assumptions of the model: sampling
likelihood, presence of intercept, dispersion parametrization,
random effects priors and possible structures.

2 data_obj List containing input objects including in-sample and out-of-
sample relevant quantities.

3 stanfit ‘stanfit’ object, outcome of sampling() function containing
full posterior draws. For details, see rstan documentation.

4 pars_interest Vector containing the names of parameters whose posterior
samples are stored.

5 call Image of the function call that produced the ‘fitsae’ object.

Table 3: Components of ‘fitsae’ objects.
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Figure 2: Traceplots of the parameters β0 and β1 of the Beta regression model.

4.2. Diagnostics and results displaying

After the MCMC drawing, a careful check on algorithm convergence is required, in order to
validate posterior results. With this aim, our suggestion is to exploit the plethora of diagnostic
methods implemented for ‘stanfit’ objects within the bayesplot package. For example, the
following code generates the trace plots related to the fit_beta model, as in Figure 2, useful
to visually inspect the convergence of the chains to a unique stationary distribution.

R> library("bayesplot")

R> post_beta <- as.array(fit_beta$stanfit, pars = c("beta0", "beta"))

R> mcmc_trace(x = post_beta)

The ‘stanfit’ object also provides useful visual diagnostics to deepen the warnings printed
by Stan, such as those about the maximum tree depth and divergent transitions after the
warm-up period.

However, small area diagnostics are required at this stage, in order to check whether results
meet specific properties which turn out to be desirable in such a context. Peculiar diag-
nostic measures can be obtained through summary() method applied on ‘fitsae’ objects.
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Besides the printed output, the method produces an object of class ‘summary_fitsae’ which
contains relevant information for posterior inference. Argument probs allows specifying the
quantiles of interest to be visualized as posterior summary measures. The logical argument
compute_loo allows deciding whether LOOIC should be computed or not.

R> summ_beta <- summary(fit_beta)

Warnings:

Some Pareto k diagnostic values are too high.

See help('pareto-k-diagnostic') for details.

R> summ_beta

Summary for the SAE model call:

fit_sae(formula_fixed = hcr ~ x, domains = "id", disp_direct = "vars",

type_disp = "var", domain_size = "n", data = emilia_cs, seed = 0)

----- S.D. of the random effects: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%

sigma_v 0.267 0.055 0.168 0.23 0.263 0.299 0.388

----- Fixed effects coefficients: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%

(Intercept) -2.428 0.060 -2.550 -2.467 -2.428 -2.387 -2.309

x 0.253 0.061 0.135 0.213 0.253 0.293 0.372

--------------- Model diagnostics summaries ---------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

Residuals -0.016 -0.004 0.002 0.004 0.011 0.032

S.D. Reduction -0.100 0.197 0.254 0.240 0.318 0.390

Bayesian p-value 0.172 0.339 0.459 0.461 0.555 0.785

Shrinkage Bound Rate: 100 %

LOO Information Criterion:

Estimate SE

elpd_loo 87.719 3.629

p_loo 17.787 2.546

looic -175.439 7.259

If printed, the produced summary displays:

• Posterior summaries about the fixed effect coefficients and the scale parameters related
to unstructured and possible structured random effects.
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• Model diagnostics summaries of (a) model residuals; (b) standard deviation reductions
computed using Equation 4; (c) Bayesian p values obtained approximating the Equa-
tion 3 with the MCMC samples.

• Shrinkage bound rate, defined in Equation 5.

• LOOIC and related diagnostics from the loo package.

What can accidentally be done with a ‘summary_fitsae’ object

The ‘summary_fitsae’ object contains additional valuable elements for further exploration.
For instance, the $loo element consists of the whole object of class ‘loo’ which may be
employed in external functions, such as the ones provided by loo package e.g., for model
comparison, as follows.

R> summ_FB <- summary(fit_FB)

Warnings:

Some Pareto k diagnostic values are too high.

See help('pareto-k-diagnostic') for details.

R> library("loo")

R> loo_compare(list("beta" = summ_beta$loo, "flexbeta" = summ_FB$loo))

elpd_diff se_diff

flexbeta 0.0 0.0

beta -6.9 2.9

The output shows that the Flexible Beta model has a significantly higher expected log point-
wise predictive density for a new dataset, gaining prediction power with respect to the default
model.

Another element that can be employed in external functions to assess model goodness of fit is
$y_rep, an array with values generated from the posterior predictive distribution, enabling the
implementation of posterior predictive checks through the bayesplot package. The observed
data, required for the checks, can be extracted through $direct_est element. The following
code allows comparing the empirical densities of generated samples under the considered
models, reported in Figure 3.

R> library("ggplot2")

R> ppc_dens_overlay(y = summ_beta$direct_est, yrep = summ_beta$y_rep[1:100,]) +

+ ggtitle("Beta likelihood")

R> ppc_dens_overlay(y = summ_FB$direct_est, yrep = summ_FB$y_rep[1:100,]) +

+ ggtitle("Flexible Beta likelihood")

Lastly, all the posterior summaries related to random effects are stored in the $raneff ele-
ment, being a list of ‘data.frame’ objects, one for each type: $unstructured, $temporal, and
$spatial. Such outputs may be exploited to produce meaningful plots, e.g., the caterpillar
plot of Figure 4, created via the following code.
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Figure 3: The empirical densities from posterior predictive samples (yrep) versus the observed
data one (y).

R> ggplot(summ_beta$raneff$unstructured, aes(x = reorder(Domains, mean))) +

+ geom_point(aes(y = mean)) +

+ geom_linerange(aes(ymin = `2.5%`, ymax = `97.5%`)) +

+ geom_hline(yintercept = 0, lty = 2) +

+ ylab("Random effect") + xlab("") +

+ theme_bw(base_size = 12) +

+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))

Ad-hoc plot functions

Our package comes equipped with ad-hoc functions for visual diagnostic tools. The S3 object
‘summary_fitsae’ can be used as input for plot() and density() visual methods as well as
for map() function.

The generic method plot() provides, in a grid (default) or sequence, (a) a scatterplot of
direct estimates versus model-based estimates, visually capturing the shrinking process, (b)
a Bayesian p values histogram, (c) a boxplot of standard deviation reduction values, and, if
areas sample sizes are provided as input in fit_sae(), (d) a scatterplot of model residuals
versus sample sizes, in order to check for design-consistency i.e., as long as sizes increase
residuals should converge to zero. The following code line produces Figure 5.

R> plot(summ_beta)

The method density() provides, in a grid (default) or sequence, the density plot of direct
estimates versus HB model estimates and the density plot of standardized posterior means
of the random effects versus standard normal, in order to check for Gaussian assumption.
Figure 6 is produced as the output of the following command.

R> density(summ_beta)

Lastly, the map() function enables the investigation of the analysed phenomenon by account-
ing for its geographical dimension, if it exists. More in detail, a ‘SpatialPolygonsDataFrame’
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Figure 4: Caterpillar plot of unstructured random effects from Beta regression model.

object from the sp package or an ‘sf’ object from package sf should be provided as input in
spatial_df argument. The spatial_id_domains argument must receive as input the name
of spatial_df variable containing area denominations, in order to correctly match the areas.
If such names match the ones provided through the original dataset, no extra arguments are
required. Otherwise, the match_names argument should receive an encoding two-columns
‘data.frame’: the first with the original data coding (domains) and the second one with
corresponding spatial_df object labels. The feature to be displayed on the map can be
defined in quantity argument, choosing among HB model estimates HB_est, direct estimates
Direct_est, posterior standard deviations SD, and benchmarked estimates Bench_est when
a ‘benchmark_fitsae’ class object is given as input (see Section 4.3). The following code
loads the Emilia-Romagna health districts shapefile and produces the maps in Figure 7, with
model-based estimates and their posterior standard deviations.

R> data("emilia_shp")

R> map(x = summ_beta,

+ spatial_df = emilia_shp,

+ spatial_id_domains = "NAME_DISTRICT")

R> map(x = summ_beta,

+ spatial_df = emilia_shp,

+ quantity = "SD",

+ spatial_id_domains = "NAME_DISTRICT")

Take-home function

Lastly, ‘summary_fitsae’ object provides target parameters posterior and model-based esti-
mates, visually accessible through the function extract() as follows.

R> HB_estimates <- extract(summ_beta)

R> head(HB_estimates$in_sample)
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Figure 5: plot() method outcome on object of class ‘summary_fitsae’.

Domains Direct est. HB est. sd

1 CARPI 0.1150 0.09849286 0.018908397

2 CASALECCHIO DI RENO 0.0469 0.05520587 0.009091909

3 CASTELFRANCO EMILIA 0.0852 0.07881687 0.013033233

4 CASTELNUOVO NE' MONTI 0.1102 0.10365822 0.018956978

5 CENTRO-NORD 0.0643 0.07624522 0.009018549

6 CESENA - VALLE DEL SAVIO 0.1520 0.13304523 0.020597384

2.5% 25% 50% 75% 97.5%

1 0.06385145 0.08519075 0.09771193 0.11114178 0.13726237

2 0.03754547 0.04911544 0.05521359 0.06132120 0.07351599

3 0.05367668 0.07006726 0.07876813 0.08732918 0.10519085

4 0.06925913 0.09045561 0.10276287 0.11642678 0.14172486

5 0.05805585 0.07029542 0.07652406 0.08226180 0.09363761

6 0.09215469 0.11938203 0.13325937 0.14667475 0.17303065

The function returns an object of class ‘estimates_fitsae’, being a list of two data frames,
distinguishing between $in_sample and $out_of_sample areas, which gathers domains name,
direct and HB estimates, as well as posterior summaries of parameters θd, ∀d.

A function for exporting such results in CSV format is directly accessible, with name export().
This function requires an ‘estimate_fitsae’ object and a character string naming the out-
put file (argument file). It is also possible to indicate whether to export both in-sample
and out-of-sample areas results (default, type = "all"), or only in-sample or out-of-sample
areas, ("in" or "out", respectively), as follows.
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Figure 6: density() method visual outcome.
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Figure 7: map() function visual outcome.

R> export(HB_estimates,

+ file = "results.csv",

+ type = "all")

Additional arguments of write.csv() function from utils package can be further indicated.

4.3. Complementary tools

Complementary tools for small-area analysis provided by the package are the smoothing
and benchmarking functions. The smoothing() function allows for data pre-processing of
sampling variance estimates and retrieving effective sample sizes, as described in Section 2.3.
After its usage, output results have to be incorporated in the dataset used as input of the
fit_sae() function. The smoothing() function requires as input the data including the
direct estimates, whose variable name has to be specified in direct_estimates argument,
the method to be used among "ols", "gls" and "kish" (method), and the specification of a
variance function f(θ), through var_function argument. The default option (NULL) for f(θ)
matches the proportion case, being equal to θ(1 − θ), while for other measures it can widely
differ, for instance, the Gini index variance can be approximated to f(θ) = θ2(1−θ2) (Fabrizi
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and Trivisano 2016) and therefore the following object has to be provided in var_function

argument:

R> gini_variance <- function(x){ x^2 * (1 - x^2) }

If method "ols" or "gls" is chosen, the function requires the raw variance estimates (ar-
gument raw_variance), areas sample sizes (areas_sample_sizes), and, possibly, additional
covariates (additional_covariates), all of them being column names of the ‘data.frame’
provided to the data argument. On the other hand, method "kish" requires the domain
names (area_id, as column name in data) and the specification of an additional dataset
(survey_data), defined at sampling unit level (e.g., households). The dataset must include
sampling weights (weights), unit sizes (sizes) and domain names (survey_area_id), in
order to allow for matching. The output is an object of ‘smoothing_fitsae’ class, being
a list of vectors including dispersion estimates: the variance and, if no alternative variance
functions are specified, φ̂d. If "ols" or "gls" method has been selected, the list incorporates
also an object of class ‘gls’ from nlme package, ready to be further explored through nlme

additional tools. The plot() method is available for ‘smoothing_fitsae’ objects, showing
a boxplot of variance estimates, when effective sample sizes are estimated through "kish"

method, or a scatterplot of both original and smoothed estimates versus sample sizes, when
variance smoothing is performed through "ols" or "gls".

R> smoo <- smoothing(data = emilia_cs,

+ direct_estimates = "hcr",

+ area_id = "id",

+ raw_variance = "vars",

+ areas_sample_sizes = "n",

+ var_function = NULL,

+ method = "ols")

R> smoo

Smoothing procedure for the dispersion parameters

* Adopted method: ols

* Variance function:

function(mu) {

mu * (1 - mu)

}

---------------------------------------------------------------------

Generalized Variance Function regression:

Generalized least squares fit by REML

Model: as.formula(paste0("y ~ -1", str))

Data: regdata

AIC BIC logLik

481.1331 484.3549 -238.5666

Coefficients:
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Value Std.Error t-value p-value

n 2.888026 0.1825709 15.81866 0

Standardized residuals:

Min Q1 Med Q3 Max

-1.5003066 -0.3865189 0.4100642 0.7766002 3.1200482

Residual standard error: 127.9598

Degrees of freedom: 38 total; 37 residual

---------------------------------------------------------------------

Summaries of involved quantities

* Smoothed variance estimates:

Min. 1st Qu. Median Mean. 3rd Qu. Max.

7.71e-05 1.74e-04 3.81e-04 1.01e-03 1.20e-03 4.17e-03

* Differences between smoothed and raw variances:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.33e-03 -5.02e-04 -5.50e-05 -6.28e-04 2.21e-05 2.28e-04

* Smoothed Phi:

Min. 1st Qu. Median Mean 3rd Qu. Max.

27.9 85.6 181.0 256.0 372.0 822.0

R> emilia_cs$smoo_phi <- smoo$phi

R> emilia_cs$smoo_vars <- smoo$vars

The benchmark() function implements benchmarking procedures, described in Section 2.4.3,
on model-based estimates provided by indicating a ‘summary_fitsae’ object, given a vector
of areas weights (share), in our case the population shares, a benchmark value (bench),
and a method among "raking", "ratio" and "double" (method). When the double bench-
marking method is selected, the user must also indicate a second benchmark through the
H argument, corresponding to the ensemble variability. The output is an object of class
‘benchmark_fitsae’, being a list including the vector of benchmark estimates, the pos-
terior risk, and relevant information about the call. The method plot() is available for
‘benchmark_fitsae’ objects, displaying boxplots of original and benchmarked estimates in
comparison with benchmark value. A ‘benchmark_fitsae’ object may be also used as in-
put of map() function, in order to spatially display benchmarked estimates, extract() or
export() functions. The first option is included in the following code, whose visual output
is in Figure 8.

R> shares <- emilia_cs$pop / sum(emilia_cs$pop)

R> bmk <- benchmark(x = summ_beta,

+ bench = 0.13,

+ share = shares,
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Figure 8: Benchmarked estimates plotted through map() function.

+ method = "raking")

R> map(x = bmk,

+ spatial_df = emilia_shp,

+ spatial_id_domains = "NAME_DISTRICT")

Benchmarking can be done on the whole set of areas (default option) or even on a subset of
them. In the latter case, the vector containing the names of the considered areas has to be
indicated through the areas argument. Moreover, the function automatically takes out-of-
sample estimates if they are involved in the benchmarking procedure. Benchmark estimates
and posterior risk are stored within an object of class ‘benchmark_fitsae’.

R> subset <- c("RIMINI", "RICCIONE", "RUBICONE",

+ "CESENA - VALLE DEL SAVIO")

R> pop <- emilia_cs$pop[emilia_cs$id %in% subset]

R> shares_subset <- pop / sum(pop)

R> bmk_subset <- benchmark(x = summ_beta,

+ bench = 0.13,

+ share = shares_subset,

+ method = "raking",

+ areas = subset)

R> bmk_subset

Benchmarked estimates

* Adopted method: raking

* Benchmark for indicator: 0.13

* Weighted sum of original estimates: 0.122

* Number of considered areas: RIMINI, RICCIONE, RUBICONE,

CESENA - VALLE DEL SAVIO

---------------------------------------------------------------------

Summaries of involved quantities

* Shares:

Min. 1st Qu. Median Mean 3rd Qu. Max.
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0.169 0.198 0.212 0.250 0.264 0.407

* Benchmarked estimates:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.121 0.129 0.133 0.132 0.136 0.142

* Posterior Risk: 0

* Differences between original and benchmarked estimates:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.00837 -0.00837 -0.00837 -0.00837 -0.00837 -0.00837

For temporal models, a benchmark can be specified only for one time period at a time,
indicated in the time argument.

4.4. Spatio-temporal examples

As explained in Section 2, it is possible to fit models that incorporate a spatial dependency
structure, a temporal dependency structure or even both of them. The first extension, use-
ful when the domains of interest are geographical entities, relaxes the assumption of spatial
independence. Commonly, the boundaries across areas are arbitrarily set, and thus it can be
reasonable to assume that the quantities of interest belonging to neighboring areas are corre-
lated. This can happen when dealing with data where the spatial dimension is relevant, e.g.,
agricultural, environmental, economic and epidemiological analyses. A spatial extension can
be implemented through the fit_sae() function by switching to TRUE the spatial_error ar-
gument and supplying an object of class ‘SpatialPolygonsDataFrame’ or ‘sf’ in spatial_df

argument.

When dealing with panel data, such as the emilia dataset, a temporal dependency structure
has to be taken into account due to the presence of repeated measures across time. It is
possible to implement a temporal model by switching to TRUE the temporal_error argument
and by providing the name of the dataset temporal variable in temporal_variable argument.

To fit a spatio-temporal model, the emilia dataset, together with the shapefile stored in
emilia_shp must be loaded.

R> data("emilia")

R> data("emilia_shp")

The following code allows estimating a spatio-temporal model under a Beta likelihood. In
the presence of structured random effects within the model, our suggestion is to increase
the max_treedepth argument above 10, to improve the mixing of the HMC algorithm. The
NUTS builds a binary tree to explore the target posterior distribution by means of directional
steps guided by the gradient of the log-posterior distribution. The max_treedepth parameter
fixes the maximum value of the binary tree size. Increasing it may help in case of posteriors
difficult to sample from, at the price of increasing the computational time (Stan Development
Team 2017).

After estimating the model, the ‘fitsae’ object can be explored through summary() method.
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R> fit_ST <- fit_sae(formula_fixed = hcr ~ x,

+ domains = "id",

+ disp_direct = "vars",

+ type_disp = "var",

+ domain_size = "n",

+ data = emilia,

+ spatial_error = TRUE,

+ spatial_df = emilia_shp,

+ domains_spatial_df = "NAME_DISTRICT",

+ temporal_error = TRUE,

+ temporal_variable = "year",

+ max_treedepth = 15,

+ seed = 0)

R> summ_ST <- summary(fit_ST)

R> summ_ST

Summary for the SAE model call:

fit_sae(formula_fixed = hcr ~ x, domains = "id", disp_direct = "vars",

type_disp = "var", domain_size = "n", data = emilia,

spatial_error = TRUE, spatial_df = emilia_shp,

domains_spatial_df = "NAME_DISTRICT",

temporal_error = TRUE, temporal_variable = "year",

max_treedepth = 15, seed = 0, iter = 2000)

----- S.D. of the random effects: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%

sigma_t 0.104 0.022 0.061 0.090 0.104 0.12 0.148

sigma_s 0.297 0.055 0.205 0.259 0.292 0.33 0.418

----- Fixed effects coefficients: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%

(Intercept) -2.273 0.016 -2.305 -2.284 -2.273 -2.261 -2.242

x 0.123 0.020 0.084 0.109 0.123 0.136 0.163

--------------- Model diagnostics summaries ---------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

Residuals -0.024 -0.006 0.001 0.002 0.009 0.036

S.D. Reduction 0.113 0.372 0.456 0.445 0.517 0.677

Bayesian p-value 0.076 0.314 0.465 0.475 0.608 0.978

Shrinkage Bound Rate: 100 %

LOO Information Criterion:

Estimate SE
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elpd_loo 484.699 8.332

p_loo 47.063 4.892

looic -969.398 16.664

In the case of temporal or spatio-temporal objects, it is possible to select the year of interest
for map plotting via map() or when performing benchmarking as follows:

R> shares <- aggregate(emilia$pop, list(emilia$year),

+ function(x) x / sum(x))

R> shares <- as.vector(t(shares[,-1]))

R> bmk_st <- benchmark(summ_ST,

+ bench = 0.09,

+ share = shares[1:38],

+ method = "raking",

+ time = "2014")

5. The Shiny Interface

The basic steps, constituting the workflow described in Section 4, have been embedded within
a Shiny application that assists the user from the data loading step to the export of the
outputs. The application can be launched without any preliminary action by running the
following command.

R> runShiny_tipsae()

A browser window is opened, which allows users to navigate on the application, being orga-
nized into 5 main tabs briefly described in what follows.

1. Home-page, where a schematic description of the application is provided.

2. Data-page, concerning the step of the data entry, providing also graphical exploratory
tools. In the Loading Data subsection, a CSV file must be loaded, specifying the con-
tents of the imported variable (e.g., response, covariates, dispersion parameter, etc.).
The "ols" and "gls" smoothing procedure (see Section 2.3) can be carried out in the
Smoothing part. Whereas, in Load shapefile, it is possible to include in the procedure
a spatial structure: the user can choose to directly load an SHP file or an RDS file
containing a ‘SpatialPolygonsDataFrame’ or ‘sf’ object. The last tab, named Data

Summary, allows an accurate data exploration before moving to the modelling step.

3. Model Fitting: where a small area model can be fitted. The application automatically
constrains the model choice among those allowed by the input data. The progress of
the model fitting is printed.

4. Once computations are completed, the mixing of the MCMC algorithm can be checked
through graphical tools within Check Convergence tab.
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5. Lastly, if the algorithm has properly converged, the Results tab can be visualized. Be-
sides all the outputs described in Section 4, further graphical tools concerning the
random effects are also reported.

Notice that the Shiny app does not include all the package tools. Specifically, the benchmark-
ing procedure has not been implemented and the smoothing procedure does not include as
an option the "kish" method. Such options, however, may be included in future releases of
the package.

6. Conclusions and future developments

The tipsae package is a dedicated tool for mapping proportions and indicators defined on the
unit interval, widely used to measure, for instance, unemployment, educational attainment
and also disease prevalence. To the best of our knowledge, it is the first package implement-
ing Beta-based small area methods, particularly indicated for unit interval responses. Such
methods, developed within a Bayesian framework, come equipped with a set of diagnostics
and complementary tools, visualizing and exporting functions. The features of the tipsae

package assist the user in carrying out a complete SAE analysis through the entire process
of estimation, validation and results presentation, making the application of Bayesian algo-
rithms and complex SAE methods straightforward. A Shiny application with a user-friendly
interface can be launched to further simplifies the process.

Additional features to be integrated into future releases could be, firstly, the implementation
of shrinking priors for the regression coefficients, useful for variable selection when several
covariates are employed. Secondly, the Beta zero and/or one inflated version already imple-
mented could fail when very few zero or one values are observed. Thus, a possible extension
could comprise further flexible alternatives. Lastly, other directions may focus on model ex-
tensions for variance shrinking (You and Chapman 2006; Sugasawa, Tamae, and Kubokawa
2017), able to relax the assumption of known dispersion parameter, and for covariates mea-
sured with error (Arima, Datta, and Liseo 2015).
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