Metrics for Eclipse MicroProfile

The MicroProfile community and its contributors

Version 5.0.1-RC1, May 03, 2023: Draft

Table of Contents

Copyright

Eclipse Foundation Specification License

Disclaimers
Introduction
Motivation
Difference to health checks
Architecture
Metrics Setup
Scopes
Base metrics
Application metrics
Vendor specific Metrics
Tags
Metadata
Metric Registry
MetriclD
Reusing Metrics

Metrics and CDI scopes

Exposing metrics via REST API

Usage of MicroProfile Metrics in application servers with multiple applications

REST endpoints

Prometheus / OpenMetrics formats

Gauge
Counter
Histogram
Timer
Security
Base Metrics
General JVM Stats
Thread JVM Stats
Thread Pool Stats
ClassLoading JVM Stats
Operating System
REST

Mapped and Unmapped Exceptions
Application Metrics Programming Model

Responsibility of the MicroProfile Metrics implementation

Base Package

© © © L L & o o unu nn nu un d» M O MK

N N MNP O SR RPRPRPRPRP R PR R PR RRPRR
o 01 O P P O © 0 0 OO O O A W W NN DN DN P+ O

Annotations
Fields
Annotated Naming Convention
@Counted
CONSTRUCTOR
METHOD
TYPE
@Gauge
METHOD
@Timed
CONSTRUCTOR
METHOD
TYPE
@Metric
FIELD
PARAMETER
Usage of CDI stereotypes
Registering metrics dynamically
List of methods of the MetricRegistry related to registering new metrics
Unregistering metrics
List of methods of the MetricRegistry related to removing metrics
Metric Registries
@RegistryScope
@RegistryType
Application Metric Registry
Base Metric Registry
Vendor Metric Registry
Metadata
Micrometer Implementations
Micrometer Backends
Recommended setup and configuration for alternative Micrometer backends
Discoverability
Configuration
Enabling a backend
Example backend setup and configuration
Appendix
Alternatives considered
References
Example configuration format for base and vendor-specific data
Example Metric Registry Factory

Migration hints

26
27
28
30
30
30
31
31
31
31
32
32
32
33
33
33
34
34
34
35
35
35
35
36
36
36
37
37
39
39
40
40
40
40
40
42
42
42
43
43
44

To version 5.0
SimpleTimer / @SimplyTimed
ConcurrentGauge / @ConcurrentGauge
Meter /| @Metered
Snapshot
Metric names

Release Notes
Changes in 5.0

Incompatible Changes

Breaking changes

API/SPI Changes

Functional Changes

Specification Changes

Other Changes

Changes in 4.0

Incompatible Changes

Changes in 3.0

Breaking changes

API/SPI Changes

Functional Changes

Specification Changes

TCK enhancement

Changesin 2.3

API/SPI Changes

Functional Changes

Specification Changes

TCK enhancement

Changesin 2.2

API/SPI Changes

Functional Changes

Specification Changes

Changesin 2.1

API/SPI Changes

Functional Changes

Specification Changes

TCK enhancement

Miscellaneous

Changes in 2.0

API/SPI Changes

Functional Changes

Specification Changes

44
A4
A4
45
45
45
46
47
A7
AT
49
49
50
50
51
51
52
52
52
53
53
54
55
55
55
55
55
56
56
56
56
57
57
57
57
57
57
58
58
58
59

Changesin 1.1
API/SPI Changes
Functional Changes
Specification Changes

TCK enhancement

61
61
61
61
61

Specification: Metrics for Eclipse MicroProfile
Version: 5.0.1-RC1
Status: Draft

Release: May 03, 2023

Copyright

Copyright (c) 2017 , 2023 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

¥ link or URL to the original Eclipse Foundation document.

¥ All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS,"” AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE

DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Introduction

To ensure reliable operation of software it is necessary to monitor essential system parameters.
This enhancement proposes the addition of well-known monitoring endpoints and metrics for each
process adhering to the Eclipse MicroProfile standard.

This proposal does not talk about health checks. There is a separate specification for Health Checks .

In the previous release we mentioned our intent to investigate Micrometer . This has led to key
changes in this specification, and the corresponding API, to allow for a variety of possible
implementations. As examples, it should be possible to implement this specification using metrics
libraries from Micrometer or Open Telemetry . The modifications to the API, since the previous
release, have been made in consideration of maintaining backwards compatibility, as much as
possible, but while removing parts of the APl that limited the ability to plug in new
implementations.

Motivation

Reliable service of a platform needs monitoring. There is already JMX as standard to expose
metrics, but remote-JMX is not easy to deal with and especially does not fit well in a polyglot
environment where other services are not running on the JVM. To enable monitoring in an easy
fashion it is necessary that all MicroProfile implementations follow a certain standard with respect

to (base) API path, data types involved, always available metrics and return codes used.

Difference to health checks

Health checks are primarily targeted at a quick yes/no response to the question "Is my application
still running ok?". Modern systems that schedule the starting of applications (e.g. Kubernetes) use
this information to restart the application if the answer is 'no'.

Metrics on the other hand can help to determine the health. Beyond this they serve to pinpoint

issues, provide long term trend data for capacity planning and pro-active discovery of issues (e.g.
disk usage growing without bounds). Metrics can also help those scheduling systems decide when
to scale the application to run on more or fewer machines.

https://github.com/eclipse/microprofile-health
https://micrometer.io/
https://opentelemetry.io/

Architecture

This chapter describes the architectural overview of how metrics are setup, stored and exposed for
consumption. This chapter also lists the various scopes of metrics.

See section Base Metrics for more information regarding spec-described metrics that vendors may
provide.

See section Application Metrics Programming Model for more information regarding the
application metrics programming model.

Metrics Setup

Metrics that are exposed need to be configured in the server. On top of the pure metrics, metadata
needs to be provided.

The following three sets of sub-resource (scopes) are exposed.

¥ base: spec-described metrics that vendors may provide (optional)
¥ vendor: vendor specific metrics (optional)

¥ application: application-specific metrics (optional)

Scopes

Base metrics

Base metrics describe a set of optional metrics that MicroProfile-compliant servers may provide.
Vendors may choose to implement all of the base metrics, some of them, or none of them. They are
provided to ensure consistency between vendors that choose to implement them. One reason
vendors may choose to use a different set of metrics is that the metrics libraries they are using in
their implementation come with metrics with a similar purpose to the spec-described base metrics.

If vendors choose to use different metrics, for example to measure values related to the JVM, they
must do so using the vendor scope for those metrics. If vendors choose to use these base scope
metrics, they can implement the set-up of the metrics in a vendor-specific way. The metrics can be
hard coded into the server or read from a configuration file or supplied via the Java-API described

in Application Metrics Programming Model . The Appendix shows a possible data format for such a
configuration. The configuration and set up of the base scope is thus an implementation detail and

is not expected to be portable across vendors.

Section Base Metrics lists the base metrics.
The implementation must tag base metrics with mp_scope=base
Base metrics are exposed under /metrics?scope=base.

The base scope is used for, and only for, any metrics that are defined in MicroProfile specifications.
Metrics in the base scope, where implemented, are intended to be portable between different
MicroProfile-compatible runtimes at the same version.

Application metrics

Application specific metrics can not be baked into the server as they are supposed to be provided
by the application at runtime. Therefore a Java API is provided. Application specific metrics are
supposed to be portable to other MicroProfile implementations. That means that an application
written to this specification which exposes metrics, can expose the same metrics on a different
compliant server without change.

Details of this Java API are described in Application Metrics Programming Model

The implementation must automatically tag application metrics with scope=application , except
where the metric already has a scopetag.

Metrics with application scope are exposed under /metrics?scope=application

Applications may also define their own scope names by tagging metrics with another scope (other
than base vendor, application). Metrics with custom scopes are exposed under
/metrics?scope=scope_namewhere scope_name is defined by the application. Scope names must
match the regex [a-zA-Z_][a-zA-Z0-9_]* . If an illegal character is used, the implementation must
throw an lllegalArgumentException .

Metrics with application-defined scopes are exposed under /metrics?scope=scope_name

Vendor specific Metrics

Vendors may choose to provide metrics relevant to their runtime.
Vendor specific metrics are exposed under /metrics?scope=vendor.
Examples for vendor specific data could be metrics like:

¥ OSGi statistics if the MicroProfile-enabled container internally runs on top of OSGi.
¥ Statistics of some internal caching modules

¥ Any other metrics that are generated by application frameworks, but not directly declared in
application code, if these metrics are not based on any specification and therefore not expected
to be portable between different runtimes that might support the same application framework.

Vendor specific metrics are not supposed to be portable between different implementations of
MicroProfile servers, even if they are compliant with the same version of this specification.

Vendors are encouraged to use metric names consistent with the Open Telemetry Metrics Semantic
Conventions where applicable.

Tags

Tags (also known as labels) play an important role in modern microservices and microservice
scheduling systems (like e.g. Kubernetes). Application code can run on any node and can be re-
scheduled to a different node at any time. Each container in such an environment gets its own ID;
when the container is stopped and a new one started for the same image, it will get a different id.
The classical mapping of host/node and application runtime on it, therefore no longer works.

https://opentelemetry.io/docs/reference/specification/metrics/semantic_conventions/
https://opentelemetry.io/docs/reference/specification/metrics/semantic_conventions/

Tags have taken over the role to, for example, identify an application (app=myShgpthe tier inside
the application (tier=database or tier=app_server) and also the node/container id. Metric value
aggregation can then work over label queries (Give me the API hit count for app=myShop &&
tier=app_server).

In MicroProfile Metrics, tags add an additional dimension to metrics that share a common basis.
For example, a metric named carCount can be further differentiated by the car type (sedan, SUV,
coupe, and etc) and the colour (red, blue, white, black, and etc). Rather than incorporating this in
the metric name, tags can be used to capture this information in separate metrics.

carCount{type=sedan,colour=red}
carCount{type=sedan,colour=blue}
carCount{type=suv,colour=red}
carCount{type=coupe,colour=blue}

For portability reasons, the key name for the tag must match the regex [a-zA-Z_][a-zA-Z0-9_]*
(Ascii alphabet, numbers and underscore). If an illegal character is used, the implementation must
throw an lllegalArgumentException . If a duplicate tag is used, the last occurrence of the tag is used.

The tags named mp_scopeand mp_apyare reserved. If an application attempts to create a metric with
either of these tags, the implementation must throw an lllegalArgumentException .

The tag value may contain any UTF-8 encoded character.

The REST endpoints provided by MicroProfile Metrics have different reserved
characters based on the format. The characters are only escaped as needed when
exposed through the REST endpoints. See REST endpoints for more information on
the reserved characters.

Tags can be supplied in two ways:

¥ At the level of a metric as described in Application Metrics Programming Model

¥ At the application server level by using MicroProfile Config and setting a configuration property
of the name mp.metrics.tags . The implementation MUST make sure that an implementation of
MicroProfile Config version at least 2.0 is available at runtime. If it is supplied as an
environment variable rather than system property, it can be named MP_METRICS_TA@bBwill be
picked up too.

I Tag values set through mp.metrics.tags MUST escape equal symbols =and commas , with a
backslash \

Set up global tags via environment variable

export MP_METRICS_TAGS=app=shop,tier=integration,special=deli\=ver\,y

Global tags and tags registered with the metric are included in the output returned from the REST
API.

https://github.com/eclipse/microprofile-config

Global tags MUST NOT be added to the MetriclD objects. Global tags must be included in list of tags
when metrics are exported.

In application servers with multiple applications deployed, values of the reserved

tag mp_applistinguish metrics from different applications and must not be used for
any other purpose. For details, see section Usage of MicroProfile Metrics in
application servers with multiple applications

Metadata

Metadata can be specified for metrics in any scope. For base metrics, metadata must be provided by
the implementation. Metadata is exposed by the REST handler.

While technically it is possible to expose metrics without (some) of the metadata, it
| helps tooling and also operators when correct metadata is provided, as this helps
getting a context and an explanation of the metric.

The Metadata:

¥ name: The name of the metric.
¥ unit: a fixed set of string units

¥ description (optional): A human readable description of the metric.

Metadata must not change over the lifetime of a process (i.e. it is not allowed to return the units as
seconds in one retrieval and as hours in a subsequent one). The reason behind it is that e.g. a
monitoring agent on Kubernetes may read the metadata once it sees the new container and store it.
It may not periodically re-query the process for the metadata.

In fact, metadata should not change during the life-time of the whole container

n image or an application, as all containers spawned from it will be "the same" and
form part of an app, where it would be confusing in an overall view if the same
metric has different metadata.

Metric Registry

The MetricRegistry stores the metrics and metadata information. There is one MetricRegistry
instance for each of the predefined scopes listed in Scopes.

Metrics can be added to or retrieved from the registry either using the @Metric annotation (see
Metrics Annotations) or using the MetricRegistry object directly.

A metric is uniquely identified by the MetricRegistry if the MetriclD associated with the metric is
unique. That is to say, there are no other metrics with the same combination of metric name and
tags. However, all metrics of the same name must be of the same type and be identified by the same

set of tag names otherwise an lllegalArgumentException will be thrown. This exception will be
thrown during registration.

The metadata information is registered under a unique metric name and is immutable. All metrics
of the same name must be registered with the same metadata information otherwise an
"lllegalArgumentException” will be thrown. This exception will be thrown during registration.

MetriclD

The MetricID consists of the metricOs name and tags (if supplied). This is used by the MetricRegistry
to uniquely identify a metric and its corresponding metadata.

The MetriclD:

¥ name: The name of the metric.

¥ tags (optional): A list of Tag objects. See also Tags.

Reusing Metrics

For metrics declared using annotations, it is allowed to reference one metric by multiple
annotations. The prerequisite for this is that all such annotations must carry the same metadata
and tag names. If multiple annotations declare the same metric but contain different metadata or
tag names, an lllegalArgumentException must be thrown during startup.

Reusability does not apply to gauges though. The implementation must throw an
lllegalArgumentException during startup if it detects multiple @Gaugannotations referring to the
same gauge (with the same MetriclD).

Example of reused counters

E (name= "countMé&, absolute = true, tags={"tagl=valuel"})
E public void countMed) { }
E (hame= "countMé, absolute = true, tags={"tagl=valuel"})
E public void countMeB) { }

In the above examples both countMeA() and countMeB() will share a single Counter with registered
name countMeand the same tags in application scope.

Metrics and CDI scopes

Depending on CDI bean scope, there may be multiple instances of the CDI bean created over the
lifecycle of an application. In these cases, where multiple bean instances exist, only one instance of

the corresponding metric will be created (per annotated method), and updates to that metric will be
combined from all related invocations regardless of the bean instance where the invocation
happens. For example, calls to a method annotated with @Counteavill increase the value of the
same counter no matter which bean instance is the one where the counted method is being
invoked.

The only exception from this are gauges, which donOt support multiple instances of the underlying
bean to be created, because in that case it would not be clear which instance should be used for
obtaining the gauge value. For this reason, gauges should only be used with beans that create only

one instance, in CDI terms this means @ApplicationScoped and @Singleton beans. The
implementation may employ validation checks that throw an error eagerly when it is detected that
there is a @Gaugan a bean that will probably have multiple instances.

Exposing metrics via REST API

Data is exposed via REST over HTTP under the /metrics base path in different data formats for GET
requests:

¥ OpenMetrics exposition format - used when the HTTP Accept header best matches
application/openmetrics-text; version=1.0.0 . Support for this format by implementations is
optional.

¥ Prometheus text-based exposition format - used when the HTTP Accept header best matches
text/plain; version=0.0.4 . This format is also returned when no media type is requested (i.e. no
Accept header is provided in the request)

Implementations and/or future versions of this specification may allow for more
export formats that are triggered by their specific media type. The Prometheus
text-based exposition format will stay as fall-back.

Formats are detailed below.
Data access must honour the HTTP response codes, especially

¥ 200 for successful retrieval of an object

¥ 204 when retrieving a subtree that would exist, but has no content. E.g. when the application-
specific subtree has no application specific metrics defined.

¥ 404 if a directly-addressed item does not exist. This may be a non-existing sub-tree or non-
existing object

¥ 406 if the HTTP Accept Header in the request cannot be handled by the server.

¥ 500 to indicate that a request failed due to "bad health". The body SHOULD contain details if
possible { "details": <text>}

The API MUST NOT return a 500 Internal Server Error code to represent a non-existing resource.

Table 1. Supported REST endpoints

Endpoint Request Supported Description
Type Formats
/metrics GET Prometheus, Returns all registered metrics
OpenMetrics
Imetrics?scope=<scope_nameGgT Prometheus, Returns metrics registered for the
>

OpenMetrics respective scope. Scopes are listed in
Metrics Setup

Imetrics?scope=<scope_nameGEgT Prometheus, Returns metrics that match the metric

> =< i > . .
&name=<metric_name OpenMetrics name for the respective scope

10

Usage of MicroProfile Metrics in application servers
with multiple applications

Even though multi-app servers are generally outside the scope of MicroProfile, this section
describes recommendations how such application servers should behave if they want to support
MicroProfile Metrics.

Metrics from all applications and scopes should be available under a single REST endpoint ending
with /metrics similarly as in case of single-application deployments (microservices).

To help distinguish between metrics pertaining to each deployed application, a tag named mp_app
should be added to each metric.

The value of the mp_appag should be passed by the application server to the application via a
MicroProfile Config property named mp.metrics.appName It should be possible to override this value
by bundling the file META-INF/microprofile-config.properties within the application archive and
setting a custom value for the property ~ mp.metrics.appNamadnside it.

It is allowed for application servers to choose to not add the mp_appag at all. Implementations may
differ in how they handle cases where metrics are registered with the same name from two or
more applications running in the same server. This behavior is not expected to be portable across
vendors.

11

REST endpoints

This section describes the REST-API, that monitoring agents would use to retrieve the collected
metrics. (Java-) methods mentioned refer to the respective Objects in the Java APIl. See also
Application Metrics Programming Model

While vendors are required to provide a /metrics endpoint, as described in this
section, it is permissible for implementations to be configurable to run without the
endpoint in cases where the metrics capability is not wanted or a different
monitoring backend is in use that does not require the endpoint.

Prometheus / OpenMetrics formats

The REST API must respond to GET requests with data formatted according to the Prometheus text-
based exposition format, version 0.0.4 (hereafter Prometheus format). For details of how to format
metrics data in this format, see Prometheus format .

Implementations may additionally provide the ability to respond to GET requests with data
formatted according to the OpenMetrics exposition format, version 1.0 (hereafter OpenMetrics
format). For details on how to format metrics data in this format, see OpenMetrics format

This section provides the details of how to map from the Gauge, Counter, Timer and Histogram
types defined in this specification into appropriate fields in the Prometheus format.

Details of how to format metric names, including conventions, special character mapping and
placement of the unit (if provided) in the name, are as described by the Prometheus format and
OpenMetrics format documentation.

Quantile values, as used in Histogram and Timer output, should represent recent values (typically
from the last 5-10 minutes). If no data is available from that timeframe, the value must be set to
NaN.

Gauge

Example Gauge with unit celsius in Prometheus format.

HELP current_temperature_celsius The current temperature. !
TYPE current_temperature_celsius gauge "
current_temperature_celsius {mp_scope'application ", server ="'front_office "} 36.2 #

' The description of the gauge, from the getDescription() method of the Metadataassociated to the
gauge, must be provided in the HELP line

The type of the metric, in this case gauge must be shown in the TYPE line

The value specified must be the value of the gaugeOs getValue() method. Tags, if provided, are
included in brackets separated by commas.

12

https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-details
https://prometheus.io/docs/instrumenting/exposition_formats/#openmetrics-text-format

Counter

Example Counter with unit events in Prometheus format.

HELP messages_processed_events_total Number of messages handled!
TYPE messages_processed_events_total counter "
messages_processed_events_totaf mp_scope'application "} 1.0 #

' The description of the counter must be provided in the HELP line
The type of the metric, in this case counter, must be shown in the TYPE line

The value specified must be the value of the counterOs getCount() method. Tags, if provided, are
included in brackets separated by commas. By convention, _total should be added to the end of
the counter name.

Histogram

Example Histogram with unit meters in Prometheus format.

HELP distance_to_hole_meters_max Distance of golf ball to hole !

TYPE distance_to_hole_meters_max gauge"

distance_to_hole_meters_max{ mp_scope'golf _stats "} 12.72272661631550%

HELP distance_to_hole_meters Distance of golf ball to hole !

TYPE distance_to_hole_meters summary "

distance_to_hole_meters {mp_scope'golf stats ", quantile ="0.5"} 2.8748779296875#
distance_to_hole_meters {mp_scope'golf stats ", quantile ="0.75"} 4.4998779296875#
distance_to_hole_meters { mp_scope'golf_stats ", quantile ="0.95"} 7.9998779296875#
distance_to_hole_meters {mp_scope'golf stats ", quantile ="0.98"} 9.4998779296875#
distance_to_hole_meters {mp_scope'golf_stats ", quantile ='0.99"} 11.9998779296875#
distance_to_hole_meters {mp_scope'golf stats ", quantile ='0.999"} 12.9998779296875#
distance_to_hole_meters_count {mp_scope"'golf_stats "} 487.0 #
distance_to_hole_meters_sum{mp_scope'golf stats "} 1569.378569422332%

Histogram output is comprised of a maximum section and a summary section.

I' The description of the histogram must be provided on the HELP lines for the maximum and
summary

The type of the metrics, in this case gauge(for the maximum) and summaryor the summary. The
summaryype is comprised of the count, sum and multiple quantile values.

The value of each metric included in the output is described in the table below. Tags, if provided,
are included in brackets separated by commas. Percentile metrics include a quantile label that is
merged with the metricOs tags.

Table 2. Prometheus format mapping for a Histogram metric

Suffix{label} TYPE Value (Histogram method) Units
<units>_max Gauge getSnapshot().getMax() <units>
<units>{quantile="0.5"} Summary getSnapshot().getValue(0.5) <units>

13

Suffix{label} TYPE Value (Histogram method) Units

<units>{quantile="0.75"} Summary getSnapshot().getValue(0.75) <units>
<units>{quantile="0.95"} Summary getSnapshot().getValue(0.95) <units>
<units>{quantile="0.98"} Summary getSnapshot().getValue(0.98) <units>
<units>{quantile="0.99"} Summary getSnapshot().getValue(0.99) <units>
<units>{quantile="0.999"} Summary getSnapshot().getValue(0.999) <units>
<units>_count Summary getCounty() <units>
<units>_sum Summary getSum() <units>
Timer

Example Timer in Prometheus format. Timers use secondsas the unit.

HELP myClass_myMethod_seconds duration of myMethod

TYPE myClass_myMethod_seconds summary
myClass_myMethod_secordasp_scope'vendor", quantile ='0.5"} 0.0524288 #
myClass_myMethod_secordasp_scope'vendor", quantile ="'0.75"} 0.0524288 #
myClass_myMethod_secordadsp_scope'vendor”, quantile ="'0.95"} 0.054525952 #
myClass_myMethod_secordsp_scope'vendor”, quantile ="0.98"} 0.054525952#
myClass_myMethod_secodadsp_scope'vendor”, quantile ="'0.99"} 0.054525952 #
myClass_myMethod_secordasp_scopeg'vendor’, quantile ='0.999"} 0.054525952 #
myClass_myMethod_seconds_cofintp_scope'vendor'} 100.0 #
myClass_myMethod_seconds_¢$ump_scope'vendor'} 5.310349419 #

HELP myClass_myMethod_seconds_max duration of myMethdd

TYPE myClass_myMethod_seconds_max gatige
myClass_myMethod_seconds_fmap_scope'vendor'} 0.05507899 #

Timer output is comprised of a maximum section and a summary section.

The description of the timer must be provided on the HELP lines for the maximum and
summary

The type of the metrics, in this case gauge(for the maximum) and summanfor the summary. The
summaryype is comprised of the count, sum and multiple quantile values.

The value of each metric included in the output is described in the table below. Tags, if provided,
are included in brackets separated by commas. Percentile metrics include a quantile label that is
merged with the metricOs tags.

Table 3. Prometheus format mapping for a Timer metric

Suffix{label} TYPE Value (Timer method) Units

max_seconds Gauge getSnapshot().getMax() SECONDS
seconds{quantile="0.5"} Summary getSnapshot().getValue(0.5) SECONDS
seconds{quantile="0.75"} Summary getSnapshot().getValue(0.75) SECONDS
seconds{quantile="0.95"} Summary getSnapshot().getValue(0.95) SECONDS

14

Suffix{label} TYPE Value (Timer method) Units

seconds{quantile="0.98"} Summary getSnapshot().getValue(0.98) SECONDS
seconds{quantile="0.99"} Summary getSnapshot().getValue(0.99) SECONDS
seconds{quantile="0.999"} Summary getSnapshot().getValue(0.999) SECONDS
seconds_count Summary getCount() SECONDS
seconds_sum Summary getElapsedTime() SECONDS
! The implementation is expected to convert the result returned by the Timer into seconds
Security

It must be possible to secure the endpoints via the usual means. The definition of 'usual means' is in
this version of the specification implementation specific.

In case of a secured endpoint, accessing /metrics without valid credentials must return a 401
Unauthorized header.

A server SHOULD implement TLS encryption by default.

It is allowed to ignore security for trusted origins (e.g. localhost)

15

Base Metrics

Base metrics is an optional list of metrics that vendors may implement in whole or in part. These
metrics are exposed under /metrics/base .

The following is a list of base metrics. All metrics are singletons and have Multi: set to false unless
otherwise stated. Visit Metadata for the meaning of each key

Some virtual machines can not provide the data required for some of the base
metrics. Vendors should either use other metrics that are close enough as
substitute or not fill these base metrics at all.

General JVM Stats

UsedHeapMemory

Name memory.usedHeap

Type Gauge

Unit Bytes

Description Displays the amount of used heap memory in bytes.
MBean java.lang:type=Memory/HeapMemoryUsage#used

CommittedHeapMemory

Name memory.committedHeap

Type Gauge

Unit Bytes

Description Displays the amount of memory in bytes that is committed for the Java virtual

machine to use. This amount of memory is guaranteed for the Java virtual
machine to use.

MBean java.lang:type=Memory/HeapMemoryUsage#committed
Notes Also from JSR 77

MaxHeapMemory

Name memory.maxHeap

Type Gauge

Unit Bytes

16

Description

MBean

GCCount

Name
Type
Unit
Multi
Tags

Description

MBean

Notes

Displays the maximum amount of heap memory in bytes that can be used for
memory management. This attribute displays -1 if the maximum heap
memory size is undefined. This amount of memory is not guaranteed to be
available for memory management if it is greater than the amount of
committed memory. The Java virtual machine may fail to allocate memory
even if the amount of used memory does not exceed this maximum size.

java.lang:type=Memory/HeapMemoryUsage#max

gc.total

Counter

None

true

{name=%s}

Displays the total number of collections that have occurred. This attribute lists
-1 if the collection count is undefined for this collector.

java.lang:type=GarbageCollector,name=%s/CollectionCount

There can be multiple garbage collectors active that are assigned to different
memory pools. The %s should be substituted with the name of the garbage
collector.

GCTime - Approximate accumulated collection elapsed time in ms

Name
Type
Unit
Multi
Tags

Description

MBean

Notes

gc.time
Gauge
Seconds
true

{name=%s}

Displays the approximate accumulated collection elapsed time in seconds. This

attribute displays -1 if the collection elapsed time is undefined for this
collector. The Java virtual machine implementation may use a high resolution
timer to measure the elapsed time. This attribute may display the same value
even if the collection count has been incremented if the collection elapsed
time is very short.

java.lang:type=GarbageCollector,name=%s/CollectionTime

There can be multiple garbage collectors active that are assigned to different
memory pools. The %s should be substituted with the name of the garbage
collector. The MicroProfile Metrics runtime will need to convert the metricOs
value to seconds if the value is provided in a different unit.

JVM Uptime - Up time of the Java Virtual machine

17

Name
Type
Unit

Description

MBean

Notes

Thread JVM

ThreadCount

Name

Type
Unit

Description

MBean

jvm.uptime
Gauge
Seconds

Displays the time elapsed since the start of the Java virtual machine in
seconds.

java.lang:type=Runtime/Uptime

Also from JSR 77. The MicroProfile Metrics runtime will need to convert the
metricOs value to seconds if the value is provided in a different unit.

Stats

thread.count
Gauge
None

Displays the current number of live threads including both daemon and non-
daemon threads

java.lang:type=Threading/ThreadCount

DaemonThreadCount

Name
Type

Unit
Description

MBean

PeakThreadCount

Name

Type
Unit

Description

MBean

thread.daemon.count

Gauge

None

Displays the current number of live daemon threads.

java.lang:type=Threading/DaemonThreadCount

thread.max.count
Gauge
None

Displays the peak live thread count since the Java virtual machine started or
peak was reset. This includes daemon and non-daemon threads.

java.lang:type=Threading/PeakThreadCount

Thread Pool Stats

ActiveThreads

18

Name
Type

Unit

Multi

Tags
Description

Notes

PoolSize

Name
Type

Unit

Multi

Tags
Description

Notes

threadpool.activeThreads

Gauge

None

true

{pool=%s}

Number of active threads that belong to a specific thread pool.

The %s should be substituted with the name of the thread pool. This is a
vendor specific attribute/operation that is not defined in java.lang.

threadpool.size

Gauge

None

true

{pool=%s}

The size of a specific thread pool.

The %s should be substituted with the name of the thread pool. This is a
vendor specific attribute/operation that is not defined in java.lang.

ClassLoading JVM Stats

LoadedClassCount

Name

Type
Unit

Description

MBean

classloader.loadedClasses.count
Gauge

None

Displays the number of classes that are currently loaded in the Java virtual

machine.

java.lang:type=ClassLoading/LoadedClassCount

TotalLoadedClassCount

Name

Type
Unit

Description

MBean

classloader.loadedClasses.total
Counter

None

Displays the total number of classes that have been loaded since the Java

virtual machine has started execution.

java.lang:type=ClassLoading/TotalLoadedClassCount

19

UnloadedClassCount

Name

Type
Unit

Description

MBean

classloader.unloadedClasses.total
Counter
None

Displays the total number of classes unloaded since the Java virtual machine
has started execution.

java.lang:type=ClassLoading/UnloadedClassCount

Operating System

AvailableProcessors

Name

Type

Unit
Description
MBean

SystemLoadAverage

Name

Type
Unit

Description

MBean

ProcessCpulLoad

Name

Type
Unit

20

cpu.availableProcessors
Gauge
None

Displays the number of processors available to the Java virtual machine. This
value may change during a particular invocation of the virtual machine.

java.lang:type=OperatingSystem/AvailableProcessors

cpu.systemLoadAverage
Gauge
None

Displays the system load average for the last minute. The system load average
is the sum of the number of runnable entities queued to the available
processors and the number of runnable entities running on the available
processors averaged over a period of time. The way in which the load average
is calculated is operating system specific but is typically a damped time-
dependent average. If the load average is not available, a negative value is
displayed. This attribute is designed to provide a hint about the system load
and may be queried frequently. The load average may be unavailable on some
platforms where it is expensive to implement this method.

java.lang:type=OperatingSystem/SystemLoadAverage

cpu.processCpuload
Gauge

Percent

Description Displays the "recent cpu usage" for the Java Virtual Machine process

MBean java.lang:type=OperatingSystem
(com.sun.management.UnixOperatingSystemMXBean for Oracle Java, similar
one exists for IBM Java:
com.ibm.lang.management.ExtendedOperatingSystem) Note: This is a vendor
specific attribute/operation that is not defined in java.lang

ProcessCpuTime

Name cpu.processCpuTime

Type Gauge

Unit Seconds

Description Displays the CPU time used by the process on which the Java virtual machine

is running in seconds.

MBean java.lang:type=OperatingSystem
(com.sun.management.UnixOperatingSystemMXBean for Oracle Java, similar
one exists for IBM Java:
com.ibm.lang.management.ExtendedOperatingSystem) Note: This is a vendor
specific attribute/operation that is not defined in java.lang. The MicroProfile
Metrics runtime will need to convert the metricOs value to seconds if the value
is provided in a different unit.

REST

The MicroProfile Metrics runtime may track metrics from RESTful resource method calls during
runtime (ie. GET, POST, PUT, DELETE, OPTIONS, PATCH, HEAD). It is up to the implementation to
decide how to enable the REST metrics.

Mapped and Unmapped Exceptions

The metrics defined below will treat a REST request that ends in a mapped exception or an
unmapped exception differently. For the MicroProfile Metrics runtime, mapped exceptions and
succesful REST requests should be considered and handled the same way. This is because mapped
exceptions are expected by the developer and may then be handled appropriately as part of the
applicationOs expected behviour. Unmapped exceptions on the other hand are unexpected and can
skew metric data if its' respective REST request is recorded. To avoid contaminating the metric
values with these unsuccesful REST requests, the below metrics may omit tracking a REST request
that ends with an unmapped exception. There are also metrics that purposely track REST requests
that end with an unmapped exception.

RESTRequest

Name REST.request

Type Timer

Unit
Multi
Tags

Description

Notes

None
true
{class=%s1,method=%s2}

The number of invocations and total response time of this RESTful resource
method since the start of the server. The metric will not record the elapsed

time nor count of a REST request if it resulted in an unmapped exception. Also
tracks the highest recorded time duration and the 50th, 75th, 95th, 98th, 99th

and 99.9th percentile.

With an asynchronous request the timing that is tracked by the REST metric
must incorporate the time spent by the asynchronous call.

The %slshould be substituted with the fully qualified name of the RESTful
resource class.

The %sZshould be substituted with the name of the RESTful resource method
and appended with its parameter types using an underscore _. Multiple
parameter types are appended one after another (e.qg.
<methodName>_<paramTypel> <paramType2>

Parameter type formatting rules:

- The paramter types are fully qualified (e.qg. java.lang.Object).

- Array paramter types will be formatted as paramType[] (e.g
java.lang.Object[]).

- A Vararg parameter will be treated as an array.

- Generics will be ignored. For example List<String> will be formatted as
java.util.List

RESTRequestUnmappedExceptions

Name
Type
Unit
Multi
Tags

Description

22

REST.request.unmappedException.total
Counter

None

true

{class=%s1,method=%s2}

The total number of unmapped exceptions that occur from this RESTful
resouce method since the start of the server.

Notes The %slshould be substituted with the fully qualified name of the RESTful
resource class.

The %sZshould be substituted with the name of the RESTful resource method
and appended with its parameter types using an underscore _. Multiple
parameter types are appended one after another (e.g.
<methodName>_<paramTypel>_ <paramType2>

Parameter type formatting rules:

- The paramter types are fully qualified (e.g. java.lang.Object).

- If the implementation supports array parameters, array parameter types will
be formatted as paramType[] (e.g java.lang.Object[]).

- A Vararg parameter will be treated as an array.

- Generics will be ignored. For example List<String> will be formatted as
java.util.List

For example given the following RESTful resource:

package org.eclipse.microprofile.metrics.demo X

public class RestDemd

public void postMethod Object o, String ... s){

}

> [Tp TP TP [T»

The OpenMetrics formatted rest metrics would be:

TYPE REST request_seconds_max gauge
REST_request_seconds_max{class="org.eclipse.microprofile.metrics.demo.RestDemo",method
="postMethod_java.lang.Object_java.lang.String[]",mp_scope="base"} 1.0

TYPE REST _request_seconds summary
REST_request_seconds{class="com.ibm.metrics.demo.MyMetrics",method="postMethod_java.la
ng.Object_java.lang.String[]",mp_scope="base",quantile="0.5"} 0.99999744

REST _request_seconds{class="com.ibm.metrics.demo.MyMetrics",method="postMethod_java.la
ng.Object_java.lang.String[]",mp_scope="base",quantile="0.75"} 0.99999744

REST _request_seconds{class="com.ibm.metrics.demo.MyMetrics",method="postMethod_java.la
ng.Object_java.lang.String[]",mp_scope="base",quantile="0.95"} 0.99999744

REST _request_seconds{class="com.ibm.metrics.demo.MyMetrics",method="postMethod_java.la
ng.Object_java.lang.String[]",mp_scope="base",quantile="0.98"} 0.99999744

REST request_seconds{class="com.ibm.metrics.demo.MyMetrics",method="postMethod_java.la
ng.Object_java.lang.String[]",mp_scope="base",quantile="0.99"} 0.99999744

REST request_seconds{class="com.ibm.metrics.demo.MyMetrics",method="postMethod_java.la
ng.Object_java.lang.String[]",mp_scope="base",quantile="0.999"} 0.99999744
REST_request_seconds_count{class="com.ibm.metrics.demo.MyMetrics",method="postMethod_j

24

ava.lang.Object_java.lang.String[]",mp_scope="base"} 1.0

REST request_seconds_sum{class="com.ibm.metrics.demo.MyMetrics",method="postMethod_jav
a.lang.Object_java.lang.String[]",mp_scope="base"} 1.0

TYPE REST_request_unmappedException_total counter
REST_request_unmappedException_total{class="org.eclipse.microprofile.metrics.demo.Rest
Demo",method="postMethod_java.lang.Object_java.lang.String[]",mp_scope="base"} 0

Application Metrics Programming Model

MicroProfile Metrics provides a way to register Application-specific metrics to allow applications to
expose metrics in the application scope (see Scopesfor the description of scopes).

Metrics and their metadata are added to a Metric Registry upon definition and can afterwards have
their values set and retrieved via the Java-API and also be exposed via the REST-API (see Exposing
metrics via REST API).

| Implementors of this specification can use the Java API to also expose metrics for
. base and vendor scope by using the respective Metric Registry.

There are two options for registering metrics. The easier one is using annotations - the metrics
declared by annotations will be automatically added to the registry when the application starts. In
some cases, however, for example when the full list of required metrics is not known in advance, or
when it is too large, it might be necessary to interact with the registry programmatically and create
new metrics dynamically at runtime. Both approaches can also be combined.

Example set-up of a Gauge metric by an annotation. No unit is given, so MetricUnits.NONE s used, an
explicit name is provided

(enit = MetricUnits . NONEname= "queueSize")
public int getQueueSizg) {
E return queue size ;

}

¥ NOTE: There are no hard limits on the number of metrics, but it is often not a good practice to
create a huge number of metrics, because the downstream time series databases that need to
store the metrics may not deal well with this amount of data.

Responsibility of the MicroProfile Metrics
implementation

¥ The implementation must scan the application at deploy time for Annotations and register the
Metrics along with their metadata in the application MetricsRegistry. This does not apply to
gauges, they can be registered lazily when the declaring bean is being instantiated.

¥ The implementation must watch the annotated objects and update internal data structures
when the values of the annotated objects change. The value of a Gauges recomputed each time
a client requests the value.

¥ The implementation must expose the values of the objects registered in the MetricsRegistry via
REST-API as described in Exposing metrics via REST API .

¥ Metrics registered via non-annotations APl need their values be set via updates from the
application code.

¥ The implementation must detect if multiple annotations declare the same gauge (with the same
MetriclD) and throw an lllegalArgumentException if such duplicate exists

25

I Seereusing of metrics for more detalils.

¥ The implementation must reject metrics upon registration if the metadata information being
registered is not equivalent to the metadata information that has already been registered under
the given metric name (if it already exists).

I All metrics of a given metric name must be associated with the same metadata information.
I The implementation must throw an lllegalArgumentException when the metric is rejected.

¥ The implementation must reject metrics upon registration if the set of tag names specified is not
the same as the set of tag names used in prior registrations of metrics with the same metric

name.
I The implementation must throw an lllegalArgumentException when the metric is rejected.
¥ The implementation must throw an lllegalStateException if an annotated metric is invoked,

but the metric no longer exists in the MetricRegistry. This applies to the following annotations :
@Timed, @Counted

¥ The implementation must make sure that metric registries are thread-safe, in other words,
concurrent calls to methods of MetricRegistry must not leave the registry in an inconsistent
state.

Base Package

All Java-Classes are in the top-level package org.eclipse.microprofile.metrics or one of its sub-
packages.

Annotations

All Annotations are in the org.eclipse.microprofile.metrics.annotation package

These annotations include interceptor bindings as defined by the Java Interceptors
specification.

CDI leverages the Java Interceptors specification to provide the ability to associate
interceptors to beans via typesafe interceptor bindings, as a means to separate
cross-cutting concerns, like Metrics annotations instrumentation, from the
application business logic.

Both the Java Interceptors and CDI specifications set restrictions about the type of
bean to which an interceptor can be bound.

That implies only managed beans whose bean types are proxyable can be
instrumented using the Metrics annotations.

The following Annotations exist, see below for common fields:

26

Annotation Applies to Description Default Unit

@Counted M,C, T Denotes a counter, which counts the MetricUnits.NONE
invocations of the annotated object.

@Gauge M Denotes a gauge, which samples the no default , must be
value of the annotated object. supplied by the user

@Metric F, P An annotation that contains the metadata MetricUnits.NONE
information when requesting a metric to
be injected.

@Timed M,C, T Denotes a timer, which tracks duration of MetricUnits. NANOSECOND
the annotated object. s

(C=Constructor, F=Field, M=Method, P=Parameter, T=Type)

' Prometheus output will always display timer values in seconds. When using the Timer API to
retrieve the Snapshot the values returned from the Snapshotwill be in nanoseconds.

Annotation Description Default
@RegistryScop Indicates the scope of Metric Registry to inject application (scope)
e when injecting a MetricRegistry.

@RegqistryType Qualifies the scope of Metric Registry to inject application (scope)

when injecting a MetricRegistry. Note: This is
deprecated. Please use @RegistryScope

Fields

All annotations (Except RegistryScope and RegistryType) have the following fields that correspond
to the metadata fields described in Metadata .

String name
Optional. Sets the name of the metric. If not explicitly given the name of the annotated object is
used.

boolean absolute

If true, uses the given name as the absolute name of the metric. If false , prepends the package
name and class name before the given name. Default value is false .

String description

Optional. A description of the metric.

String unit
Unit of the metric. For @Gaugao default is provided. Check the MetricUnits class for a set of pre-
defined units.

String scope

Optional. The MetricRegistry scope that this metric belongs to. Default value is application .

27

Implementors are encouraged to issue warnings in the server log if metadata is

missing. Implementors MAY stop the deployment of an application if Metadata is
missing.

Annotated Naming Convention

Annotated metrics are registered into the application MetricRegistry with the name computed using
the rules in the following tables.

If the metric annotation is placed on a method, parameter, or field:

namds specified namds not specified *
absolute=true Value of the nameargument Name of the annotated element
absolute=false <canonical-name-of-declaring- <canonical-name-of-declaring-

class>.<value-of-name- class>.<name-of-element>

argument>

! Java parameter names are not always available at runtime, so developers of Microprofile applications are encouraged to
use a @Metricannotation which specifies at least namewith each injected metric parameter. A future release of MicroProfile
Metrics might require this for all injected metrics parameters.

If the metric annotation is placed on a class, then for each method (including constructors), the
metric name will be:

namds specified names not specified
absolute=true <value-of-name- <short-name-of-class>.<name-

argument>.<name-of-the-method> of-the-method>
absolute=false <package-of-the-declaring- <canonical-name-of-the-

class>.<value-of-name- declaring-class>.<name-of-the-

argument>.<name-of-the-method> method>

In case of constructors, "name of the method" is the short name of the declaring class.

Examples of metric names when metric annotations are applied to beans
package com.example
import jakarta.inject.Inject ;
import org.eclipse.microprofile.metrics.Counter ;

import org.eclipse.microprofile.metrics.annotation.Metric

public class Colours {

E @Counted

E public void red() {

E ...

E }

E @Countgthame" blueCount")
E public void blue() {

28

...

m [m»

E (name" greenCount’, absolute =true)
E public void green() {
E ...
E }
E (@bsolute =true)
E public void yellow () {
E ...
E }
}
The above bean would produce the following entries in the MetricRegistry

com.example.Colours.red
com.example.Colours.blueCount
greenCount

yellow

Examples of metric names when @Inject is used together with @Metric
package com.example
import jakarta.inject.Inject ;
import org.eclipse.microprofile.metrics.Counter ;

import org.eclipse.microprofile.metrics.annotation.Metric ;

public class Colours {

T [T [T

Counter redCount

(name"blue")
Counter blueCount;

T [T [T

(absolute =true)
Counter greenCount

m [T [m»

(name'purple ", absolute =true)
Counter purpleCount;

> [T> [T> T»

29

The above bean would produce the following entries in the MetricRegistry

com.example.Colours.redCount
com.example.Colours.blue
greenCount

purple

@Counted
An annotation for marking a method, constructor, or type as a counter.
The implementation must support the following annotation targets:

¥ CONSTRUCTOR
¥ METHOD
¥ TYPE

This annotation has changed in MicroProfile Metrics 2.0: Counters now always
increase monotonically upon invocation.

If the metric no longer exists in the MetricRegistry when the annotated element is invoked then an
lllegalStateException will be thrown.

The following lists the behavior for each annotation target.

CONSTRUCTOR

When a constructor is annotated, the implementation must register a counter for the constructor
using the Annotated Naming Convention . The counter is increased by one when the constructor is
invoked.

Example of an annotated constructor

public CounterBearf) {
}

METHOD

When a non-private method is annotated, the implementation must register a counter for the
method using the Annotated Naming Convention . The counter is increased by one when the
method is invoked.

Example of an annotated method

public void run() {

30

TYPE

When a type/class is annotated, the implementation must register a counter for each of the
constructors and non-private methods using the Annotated Naming Convention . The counters are
increased by one when the corresponding constructor/method is invoked.

Example of an annotated type/class

public class CounterBean{

E public void countMethodX) {}
E public void countMethodZ) {}

@Gauge

An annotation for marking a method as a gauge. No default MetricUnit is supplied, so the unit must
always be specified explicitly.

The implementation must support the following annotation target:
¥ METHOD

The following lists the behavior for each annotation target.

METHOD

When a non-private method is annotated, the implementation must register a gauge for the method
using the Annotated Naming Convention . The gauge value and type is equal to the annotated
method return value and type.

Example of an annotated method

(enit = MetricUnits . NONE
public long getValue() {
E return value:

}

@Timed

An annotation for marking a constructor or method of an annotated object as timed. The metric of
type Timer tracks how frequently the annotated object is invoked, and tracks how long it took the
invocations to complete. The data is aggregated to calculate duration statistics and throughput
statistics.

31

The implementation must support the following annotation targets:

¥ CONSTRUCTOR
¥ METHOD
¥ TYPE

If the metric no longer exists in the MetricRegistry when the annotated element is invoked then an
lllegalStateException will be thrown.

The following lists the behavior for each annotation target.

CONSTRUCTOR

When a constructor is annotated, the implementation must register a timer for the constructor
using the Annotated Naming Convention . Each time the constructor is invoked, the execution will
be timed.

Example of an annotated constructor

public TimedBea() {
}

METHOD

When a non-private method is annotated, the implementation must register a timer for the method
using the Annotated Naming Convention . Each time the method is invoked, the execution will be
timed.

Example of an annotated method

public void run() {
}

TYPE

When a type/class is annotated, the implementation must register a timer for each of the
constructors and non-private methods using the Annotated Naming Convention . Each time a
constructor/method is invoked, the execution will be timed with the corresponding timer.

Example of an annotated type/class

public class TimedBear

E public void timedMethodY) {}
E public void timedMethodZ) {}

32

@Metric
An annotation requesting that a metric should be injected or registered.
The implementation must support the following annotation targets:

¥ FIELD
¥ PARAMETER

The following lists the behavior for each annotation target.

FIELD

When a metric injected field is annotated, the implementation must provide the registered metric

with the given name (using the Annotated Naming Convention) if the metric already exists. If no
metric exists with the given name then the implementation must produce and register the
requested metric.

Gauges are an exception to this rule, because it could happen that an annotated gauge is not
registered yet when the reference to it is being injected. In that case, the implementation must
inject a proxy gauge implementation which forwards getValue() calls to the actual gauge, if the
actual gauge already exists. If getValue() is called on the proxy gauge and the actual gauge still does
not exist in the registry, getValue() will return null.

Example of an injected field

(name= "applicationCount ")
Counter count;

PARAMETER

When a metric parameter is annotated, the implementation must provide the registered metric

with the given name (using the Annotated Naming Convention) if the metric already exist. If no
metric exists with the given name then the implementation must produce and register the
requested metric.

Example of an annotated parameter

public void init ((name'instances ") Counter instances) {
E instances .inc();
}

33

Usage of CDI stereotypes

If a metric annotation is applied to a bean through a CDI stereotype, the implementation must
handle it the same way as if the metric annotation was applied on the target bean directly. Metric
names are computed relative to the name and package of the bean itself, not of the stereotype.

Registering metrics dynamically

In addition to declaring metrics via annotations, it is possible to dynamically (un)register metrics by
calling methods of a MetricRegistry object. Registering metrics dynamically can be useful in some
cases, for example, when the final list of metrics is not known in advance (when the application is
being coded), or when there are too many similar metrics and it would be more practical to register
them in a for loop than to introduce lots of annotations in the code. The two approaches can also be

combined if necessary.

List of methods of the MetricRegistry related to registering new metrics

Method

counter(String name)
counter(String name, TagE tags)
counter(Metadata metadata)

counter(Metadata metadata, TagE tags)

histogram(String name)
histogram(String name, TagE tags)
histogram(Metadata metadata)

histogram(Metadata metadata, TagE tags)

timer(String name)
timer(String name, TagE tags)
timer(Metadata metadata)

timer(Metadata metadata, TagE tags)

All metrics in the table above, except the variants of
MetriclD already exists, the existing one is returned.

if a compatible metric with the same

Description

Counter with given name and no tags
Counter with given name and tags
Counter from given Metadataobject

Counter from given Metadataobject with given
tags

Histogram with given name and no tags
Histogram with given name and tags
Histogram from given Metadataobject

Histogram from given Metadataobject with given
tags

Timer with given name and no tags
Timer with given name and tags
Timer from given Metadataobject

Timer from given Metadataobject with given tags

register , exhibit the get-or-create semantics, so

"Compatible" in this context means that the type and all specified metadata must be equal - else an
exception is thrown. If a metric exists under the same name but with different tags, the newly
created metric must have all of its metadata equal to the existing metricOs metadata.

The register method variants exhibit the

create semantics, that means, if a metric with the same

MetriclD already exists, an exception is thrown. If a metric exists under the same name but with
different tags, the newly created metric must have all of its metadata equal to the existing metricOs

metadata.

34

Unregistering metrics

While the general recommendation is that metrics live for the whole lifecycle of the application, it
is still possible to dynamically remove metrics from metric registries at runtime.

List of methods of the MetricRegistry related to removing metrics

Method Description

remove(String name) Removes all metrics with the given name

remove(MetricID metriciD) Removes the metric with the given ~ MetriclD | if it
exists

remove(MetricFilter filter) Removes all metrics that are accepted by the

given MetricFilter instance

Metric Registries

The MetricRegistry is used to maintain a collection of metrics along with their metadata . There is
one shared singleton of the MetricRegistry per pre-defined scope (application , base, and vendor).
There is also one shared singleton of the MetricRegistry per custom scope. When metrics are
registered using annotations and no scope is provided, the metrics are registered in the application
MetricRegistry (and thus the application scope).

When injected, the @RegistryScopéds used to selectively inject one of the application , base, vendor or
custom registries. If no scope parameter is used, the default MetricRegistry returned is the
application registry.

If using the deprecated @RegistryType it will be used as a qualifier to selectively inject one of the
application , base or vendor registries. If no qualifier is used, the default MetricRegistry returned is
the application registry. Note that @RegistryTypeis now deprecated. Please use @RegistryScope
instead.

The @RegistryScopeannotation and @RegistryTypequalifer annotation should not be used together
for the same MetricRegistry injection. The application , base or vendor registry produced by either
injection strategies should be the same respective to the scope. That is to say, an injection of a
MetricRegistry with @RegistryScope(scope = MetricRegistry. APPLICATION_SCOPHR)ill produce the
same MetricRegistry from using @RegistryType(type = MetricRegistry.Type.APPLICATION) and vice-
versa.

Implementations may choose to use a Factory class to produce the injectable MetricRegistry bean
via CDI. See Example Metric Registry Factory . Note: The factory would be an internal class and not
exposed to the application.

@RegistryScope

The @RegistryScope can be used to retrieve the MetricRegistry for a specific scope. The
implementation must produce the corresponding MetricRegistry specified by the RegistryScope.

35

@RegistryType

The @ReqistryType can be used to retrieve the MetricRegistry for a specific scope. The
implementation must produce the corresponding MetricRegistry specified by the RegistryType.

The implementor can optionally provide a read_only copy of the MetricRegistry for
base and vendor scopes.

! The @RegistryTypeis deprecated . Please use @RegistryScopéanstead.

Application Metric Registry

The implementation must produce the application MetricRegistry when no RegistryScope (or
RegistryType) is provided or when the RegistryScope is application (i.e.
MetricRegistry. APPLICATION_SCOPEor if the deprecated RegistryType is application (i.e.
MetricRegistry. Type.APPLICATION. Application-defined metrics can also be registered to user-
defined scopes

Example of the application injecting the application registry

@Inject
MetricRegistry metricRegistry ;

is equivalent to the following with ~ @RegistryScope

@Inject
@RegistryScopéscope=MetricRegistry . APPLICATION_SCOPE
MetricRegistry metricRegistry ;

or is equivalent to the following with the deprecated @RegistryType

/~k

E* @RegistryType is deprecated. Please use @RegistryScope
E*/

@Inject

@Registry Typg type =MetricRegistry . Type APPLICATIQN
MetricRegistry metricRegistry ;

Base Metric Registry

The implementation must produce the base MetricRegistry when the RegistryScope is base (i.e.
MetricRegistry.BASE_SCOPEThe base MetricRegistry contains any metrics the vendor has chosen to
provide from Base Metrics .

Example of the application injecting the base registry using ~ @RegistryScope

@Inject
@RegistryScopéscope=MetricRegistry . BASE_SCQPE

36

MetricRegistry baseRegistry;

Example of the application injecting the base registry using the deprecated @RegistryType

{type=MetricRegistry . Type BASE
MetricRegistry baseRegistry;

Vendor Metric Registry

The implementation must produce the vendor MetricRegistry when the RegistryScope is vendor (i.e.
MetricRegistry. VENDOR_SCOPREhe vendor MetricRegistry must contain any vendor specific metrics.

Example of the application injecting the vendor registry using @ReqgistryScope

¢scope=MetricRegistry . VENDOR_SCOPE
MetricRegistry vendorRegistry ;

Example of the application injecting the vendor registry using the deprecated @RegistryType

{type =MetricRegistry . Type VENDQR
MetricRegistry vendorRegistry ;

The implementation must produce the MetricRegistry corresponding to the custom-named registry
when the RegistryType is a custom value. If the custom-named MetricRegistry does not yet exist the
implementation must create a MetricRegistry with the specified name.

Example of the application injecting a custom-named registry

¢scope="motorguide")
MetricRegistry motorGuideRegistry;

Metadata

Metadata is used in MicroProfile-Metrics to provide immutable information about a Metric at
registration time. Metadata in the architecture section describes this further.

Therefore Metadata is an interface to construct an immutable metadata object. The object can be
built via a MetadataBuilder with a fluent API.

Example of constucting a Metadataobject for a Meter and registering it in Application scope

Metadata m= Metadata builder ()
E . withNam¢" myMetet)

E .withDescription ("Example metel')

37

E . build ();

Meter me= new MyMeterimp() ;
metricRegistry .register (m me new Tag "colour ", "blue"));

A default implementation DefaultMetadata is provided in the API for convenience.

38

Micrometer Implementations

Vendor implementations are required to implement the REST interfaces detailed in the REST
endpoints section of this document, including the /metrics endpoint that provides metrics data in
Prometheus format, in order to provide metrics to monitoring agents.

In order to achieve this, vendors MAY choose to implement metrics in their products using
Micrometer, OpenTelemetry Metrics or another library, but they are not required to do so.

Micrometer Backends

Where a vendor chooses to use Micrometer, they MAY additionally wish to support MicrometerOs
other monitoring backends, which at the time of writing include:

¥ AppOptics

¥ Azure Monitor

¥ Netflix Atlas

¥ CloudWatch

¥ Datadog

¥ Dynatrace

¥ Elastic

¥ Ganglia

¥ Graphite

¥ Humio

¥ Influx/Telegraf

¥ JMX

¥ KairosDB

¥ New Relic

¥ Prometheus

¥ SignalFx

¥ Google Stackdriver

¥ StatsD

¥ Wavefront
The /metrics REST endpoint provides Prometheus metrics as a pull-based mechanism. A monitoring
agent will need to make a request to the endpoint to obtain the metrics data at that point in time.
Conversely, the Micrometer backends listed above are typically push-based, so vendor products

using the Micrometer backends will be periodically pushing metrics data from the server to the
metrics backend.

39

Recommended setup and configuration for alternative
Micrometer backends

The following suggestions are OPTIONAL, and provided with a view of attempting to make
configuring Micrometer-based metrics implementations consistent for consumers.

Discoverability

Each Micrometer backend is packaged separately by the Micrometer project in its own .jar file. In
order to allow an implementation to push to Graphite, for example, the vendor will either need to
provide the io.micrometer:micrometer-registry-graphite jar and its runtime dependencies as part

of their product, or enable consumers to add it to their classpath. Where consumers are adding
libraries to the classpath, vendors can check for the presence of the appropriate MeterRegistry
class. Taking Graphite as an example, the vendor would need to check for the presence of
io.micrometer.graphite.GraphiteMeterRegistry

Configuration

Each Micrometer backend has its own Config interface, which requires a String get(final String
propertyName) method to be implemented. In order to configure the Micrometer backends in a way
that is both consistent across all the Micrometer backends and also consistent with MicroProfile

itself, it is suggested that the String get(final String propertyName) is implemented to obtain the
relevant config using MicroProfile config. Micrometer property names are already prefixed with
the name of the relevant backend, so it is suggested that a prefix of mp.metrics. is added to the

property when it is obtained from MicroProfile config.

Enabling a backend

Micrometer backends have many values in their config set by default. It is therefore recommended
that backends are not enabled by default, and enabled by setting mp.metrics.<backend name>.enabled
to true , for example:

mp.metrics.graphite.enabled = true

Example backend setup and configuration

If a vendor is implementing MicroProfile Metrics as a CDI extension, the above can be achieved by
registering a Producer for a backend, if the relevant Micrometer registry class is available on the
classpath.

The following is provided as an example of a CDI producer for the Graphite backend.

public static class GraphiteBackendProducer {

@Inject
private Config config;

[T [T

40

E @Produces

E @Backend

E public MeterRegistry produce() {

E if (\Boolean.parseBoolean(

E config.getOptionalValue("mp.metrics.graphite.enabled",
String.class).orElse("false"))) {

E return null;

E }

E return new GraphiteMeterRegistry(new GraphiteConfig() {

E @Override

E public String get(final String propertyName) {

E return config.getOptionalValue("mp.metrics." + propertyName,
String.class)

E .orElse(null);

E }

E }, io.micrometer.core.instrument.Clock.SYSTEM);

E }

E }

41

Appendix

Alternatives considered
We addressed some significant questions while creating MicroProfile Metrics v5.0.
API or no API

In light of the increasing prevalence of developer use of APIs from Micrometer and OpenTelemetry,
we considered whether we should continue to have a distinct API for MicroProfile Metrics. We
decided to continue our path of providing an API for the following reasons:

1. provides an easy-to-use metrics API for application developers
2. provides continuity for the existing MicroProfile Metrics user community

3. provides a MicroProfile-style API (for example, CDI-based annotations), and configurability
(MicroProfile Config), for ease of adoption by MicroProfile users

4. ensures compatibility across APIs within the same MicroProfile release

We also considered feedback from an informal poll in which a majority of respondents said they
would use a MicroProfile Metrics API, given the other options.

Fixed implementation or vendor-chosen implementation

We considered whether MicroProfile Metrics should require vendors to use a particular metrics
library in their implementations. The benefit of requiring a particular metrics library would be the
potential for improved consistency across vendors. The benefits of not requiring a particular
metrics library would be avoiding MicroProfile potentially overreaching by telling vendors which
libraries to use, and leaving flexibility for vendors to change their implementation in the future if
needed. Ultimately, we decided to not require a specific metrics library to be used in the
implementation. Vendors may choose to implement using Micrometer libraries, OpenTelemetry
libraries, Dropwizard libraries, custom code, or anything else they choose.

References

Micrometer

OpenTelemetry Metrics

Dropwizard Metrics 3.2.3

CDI extension for Dropwizard Metrics 1.4.0
HTTP return codes

UoM, JSR 363

Metrics 2.0

42

https://micrometer.io/
https://opentelemetry.io/docs/reference/specification/metrics/
https://github.com/dropwizard/metrics/tree/v3.2.3
https://github.com/astefanutti/metrics-cdi/tree/1.4.0
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://github.com/unitsofmeasurement
http://metrics20.org/spec/

Example configuration format for base and vendor-
specific data

The following is an example configuration in YAML format.

E - name: "thread-count"

E mbean: "java.lang:type=Threading/ThreadCount"
E description: "Number of currently deployed threads"
E unit: "none"

E type: "gauge"

E - name: "peak-thread-count"

E mbean: "java.lang:type=Threading/PeakThreadCount"
E description: "Max number of threads"
E unit: "none"

E type: "gauge"

E - name: "total-started-thread-count"
E mbean: "java.lang:type=Threading/TotalStartedThreadCount"
E description: "Number of threads started for this server"

E unit: "none"

E type: "counter"

E - name: "max-heap"

E mbean: "java.lang:type=Memory/HeapMemoryUsage#max"
E description: "Number of threads started for this server"

E unit: "bytes"

E type: "counter"

E tags: "kind=memory"

vendor:
E - name: "msc-loaded-modules”
mbean: "jboss.modules:type=ModuleLoader,name=BootModuleLoader-2/LoadedModuleCount"

description: "Number of loaded modules"
unit: "none"

type: "gauge"

This configuration can be backed into the runtime or be provided via an external configuration file.

Example Metric Registry Factory

Sample skeleton factory class to produce MetricRegistry via CDI

public class MetricRegistryFactory {

™™ [T [T

public MetricRegistry getMetricRegistry (InjectionPoint ip) {

43

E RegistryScope registryTypeAnnotation = ip . getAnnotated() . getAnnotation
(RegistryScope. class);

E if (registryTypeAnnotation == null) {

E return getOrCreate(MetricRegistry . APPLICATION_SCOPE
E } else {

E String annoScope= registryTypeAnnotation . scop€g();
E return getOrCreate(annoScopg;

E }

E }

E

E (type = MetricRegistry . Type APPLICATIQN
E public MetricRegistry getApplicationRegistry () {

E return getOrCreate(MetricRegistry . Type APPLICATIQN
E }

E

E (type = MetricRegistry . Type BASE

E public MetricRegistry getBaseRegistry() {

E return getOrCreate(MetricRegistry . Type BASE

E }

E

E (type = MetricRegistry . Type VENDQR

E public MetricRegistry getVendorRegistry () {

E return getOrCreate(MetricRegistry . Type VENDQR

E }

}

Migration hints

To version 5.0

SimpleTimer / @SimplyTimed

The SimpleTimer class and @SimplyTime@nnotation have been removed. This change was made to
make it possible to implement the spec using commonly used metrics libraries that lack a similar
metric type.

Use Timer class or @Time@dnnotation instead. Alternatively, you can create your own Gaugeto track
the total time and your own Counter to track the total number of hits of something you want to time.

ConcurrentGauge / @ConcurrentGauge

The ConcurrentGaugeclass and @ConcurrentGaugannotation have been removed. This change was
made to make it possible to implement the spec using commonly used metrics libraries that lack a
similar metric type.

44

Use Gaugeclass or @Gaugannotation instead. A Gaugeallows you to track a value that may go up or
down over time. If you need to track the recent maximum or minimum with precision (as was
handled by a ConcurrentGaugé, create a separate Gaugefor each of those statistics, in addition to the
Gaugeo track the current value of what you are observing.

Meter /| @Metered

The Meter class and @Meterecannotation have been removed. This change was made to make it
possible to implement the spec using commonly used metrics libraries that lack a similar metric

type.

Use Counter class or @Counte@nnotation instead. Tools, such as Prometheus, are able to compute
the rate of increase of an observed metric over a specified period of time.

Snapshot

The Snapshot class has been modified to avoid restricting the list of percentiles to a fixed set of
percentile values. This change was made in anticipation of making the list of percentiles be
configurable in the future. As in prior releases, the Timer and Histogram classes still track the 50th,
75th, 95th, 98th, 99th, and 99.9th percentiles in the corresponding Snapshot

Use snapshot.percentileValues() method, then iterate over the returned array of PercentileValue
objects to find the value at the specific percentile youOre interested in.

Metric names

The base_, vendor_and application_ prefixes for metric names that were used in prior releases have
been replaced by a tag named mp_scopeavith value base, vendor, or application (you can also register
metrics with custom scopes).

When using the Prometheus format output from the /metrics endpoint, use
metric_name{mp_scope="scopeValue",E} instead of scopeValue_metric_name{E} where metric_nameis
the Prometheus-formatted name of your metric and scopeValueis one of base vendor, application or
a custom value.

45

Release Notes

46

Changes in 5.0

A full list of changes may be found on the

Metrics 5.0.1 Milestone

Incompatible Changes

MicroProfile Metrics 5.0 Milestone

and MicroProfile

¥ This release aligns with Jakarta EE 10, so it wonOt work with earlier versions of Jakarta or Java

EE

Breaking changes

¥ Removed SimpleTimer class and SimplyTimed annotation

¥ Removed ConcurrentGauge class and ConcurrentGauge annotation

¥ Removed Meter class and Metered annotation

¥ Removed Metered interface

¥ Removed MetricType enum

¥ Updated Timer class

Removed getFifteenMinuteRate() method
Removed getFiveMinuteRate() method
Removed getMeanRate() method
Removed getOneMinuteRate() method

Removed getStdDev() method

¥ Updated MetricRegistry class

Removed register(String name, T metric) method
Removed register(Metadata metadata, T metric) method
Removed register(Metadata metadata, T metric, TagE tags)

Removed concurrentGauge(String name) method

Removed concurrentGauge(String name, TagE tags) method

Removed concurrentGauge(MetriclD metriclD) method
Removed concurrentGauge(Metadata metadata) method
Removed concurrentGauge(Metadata metadata, TagE tags)
Removed meter(String name) method

Removed meter(String name, TagE tags) method
Removed meter(MetriclD metriclD) method

Removed meter(Metadata metadata) method

Removed meter(Metadata metadata, TagE tags) method

method

method

a7

https://github.com/eclipse/microprofile-metrics/milestone/15
https://github.com/eclipse/microprofile-metrics/milestone/17
https://github.com/eclipse/microprofile-metrics/milestone/17

Removed simpleTimer(String name) method

Removed simpleTimer(String name, TagE tags)

Removed simpleTimer(MetriclD

method

metriclD) method

Removed simpleTimer(Metadata metadata) method

Removed simpleTimer(Metadata metadata, TagE tags) method

Removed getConcurrentGauge(MetriclD metriclD) method

Removed getConcurrentGauges() method

Removed getConcurrentGauges(MetricFilter filter) method

Removed getMeter(MetriclD metriclD)

Removed getMeters() method

Removed getMeters(MetricFilter filter)

Removed getSimpleTimer(MetricID metricID)

Removed getSimpleTimers() method

I Removed getSimpleTimers(MetricFilter filter)

¥ Updated DefaultMetadata class

I Removed displayName from constructor

Removed getDisplayname() method

Removed displayName() method

Removed metricType from constructor

Removed getType() method

Removed getTypeRaw()method

¥ Updated Metadata class

! Removed getDisplayname() method

I Removed displayName() method

Removed getType() method

Removed getTypeRaw()method

¥ Updated MetadataBuilder class

method

method

method

method

I Removed withDisplayName(String displayName) method

I Removed withType(MetricType type) method

¥ Updated Snapshot class

48

I Removed getValue(double quantile) method

Removed getValues() method
Removed get75thPercentile()
Removed get95thPercentile()

Removed get98thPercentile()

method
method

method

I Removed get999thPercentile() method

I Removed get99thPercentile() method

! Removed getMedian() method

I Removed getMin() method

I Removed getStdDev() method

! Modified size() method to return long

I Modified getMax() method to return double
¥ Updated Gauge class

I can now only work with types that extend Number
¥ Updated MetricType class

I Removed CONCURRENT _G&uGE

I Removed METEREDuUmM

! Removed SIMPLE_TIMERum

API/SPI Changes

¥ Updated Snapshot class
I Added percentileValues() method
I Added Snapshot.PercentileValue inner class

¥ Deprecated @RegistryType and MetricRegistry. Type (746)

Functional Changes

¥ Added concept of custom scopes for metrics (677)
! added tagging of all metrics with mp_scope=value
I changed /metrics/base to /metrics?scope=base (692)
I changed /metrics/vendor to /metrics?scope=vendor (692)
I changed /metrics/application to /metrics?scope=application (692)
I added /metrics?scope=myScope for custom scoped metrics (677)
! added ability for applications to add metrics to a custom scope (677)
! added ability to use custom scope names with @RegistryScope annotation (677)
I replaced @RegistryType with @RegistryScope (677)
¥ Other changes
I removed requirement to convert metrics to base units for Prometheus output
! changed from prepending scope to the metric name to putting the scope in mp_scope tag

I clarified that implementations of /metrics endpoint must support Prometheus text-based
exposition format, and may also support OpenMetrics exposition format. (678)

https://github.com/eclipse/microprofile-metrics/issues/746
https://github.com/eclipse/microprofile-metrics/issues/677
https://github.com/eclipse/microprofile-metrics/issues/692
https://github.com/eclipse/microprofile-metrics/issues/692
https://github.com/eclipse/microprofile-metrics/issues/692
https://github.com/eclipse/microprofile-metrics/issues/677
https://github.com/eclipse/microprofile-metrics/issues/677
https://github.com/eclipse/microprofile-metrics/issues/677
https://github.com/eclipse/microprofile-metrics/issues/677
https://github.com/eclipse/microprofile-metrics/issues/678

I removed JSON format for /metrics output (685)

! added restriction to block apps from adding metric IDs with the reserved mp_scope and

mp_app tag names (700)

I changed _app tag name to mp_app (705)
! added mp_scope tag to indicate metric scope

! added configuration recommendations for vendors implementing the API with Micrometer

libraries

I added rule that metrics of the same name must all contain the same label set (721)
! changed REST.request metric from SimpleTimer to Timer type

! changed the base metrics to be optional (680)

Specification Changes

¥ (5.0.1) Clarify naming convention when @Metricapplies to a parameter (767)

Other Changes

¥ (5.0.1) Removed private gauges from TCK (770)

¥ (5.0.1) The @Timednnotation defaults to SECONDS when it should be NANOSECONDS (760)

¥ (5.0.1) Errors in MicroProfile 6.0 javadoc generation (764)

50

https://github.com/eclipse/microprofile-metrics/issues/685
https://github.com/eclipse/microprofile-metrics/issues/700
https://github.com/eclipse/microprofile-metrics/issues/705
https://github.com/eclipse/microprofile-metrics/issues/721
https://github.com/eclipse/microprofile-metrics/issues/680
https://github.com/eclipse/microprofile-metrics/issues/767
https://github.com/eclipse/microprofile-metrics/pull/770
https://github.com/eclipse/microprofile-metrics/issues/760
https://github.com/eclipse/microprofile-metrics/issues/764

Changes in 4.0

Incompatible Changes

¥ This release aligns with Jakarta EE 9.1, so it wonOt work with earlier versions of Jakarta or Java
EE #639)

51

https://github.com/eclipse/microprofile-metrics/issues/639

Changes in 3.0

Breaking changes

¥ Removed everything related to reusability from the API code. All metrics are now considered
reusable.

¥ CDI producers annotated with ~ @Metric no longer trigger metric registration. If these metrics
should be registered, it must be done differently (for example using the MetricRegistry
methods)

¥ MetricRegistry changed from abstract class to interface

¥ Changed Timer.update(long duration, java.util.concurrent. TimeUnit) to
Timer.update(java.time.Duration duration)

¥ Removed MetadataBuilder.withOptional* methods, the remaining with* methods do accept null
value (considered not present) except withNamewhich does not accept null or ™

¥ Changed Metadata.getDescription() and Metadata.getUnit() to return String instead of
Optional<String> and added Metadata.description() and Metadata.unit() that return
Optional<String>

API/SPI Changes

¥ Updated dependencies scopes and versions to align with Jakarta EE 8

¥ MetricRegistry changed from abstract class to interface

¥ Added the MetricRegistry.getType() method

¥ Added the MetricRegistry.counter(MetriclD) method

¥ Added the MetricRegistry.concurrentGauge(MetricilD) method

¥ Added the MetricRegistry.gauge(String, Object, Function, Tag[]) method
¥ Added the MetricRegistry.gauge(MetriclD, Object, Function) method

¥ Added the MetricRegistry.gauge(Metadata, Object, Function, Tag[]) method
¥ Added the MetricRegistry.gauge(String, Supplier, Tag[]) method

¥ Added the MetricRegistry.gauge(MetriclD, Supplier) method

¥ Added the MetricRegistry.gauge(Metadata), Supplier, Tag|]) method

¥ Added the MetricRegistry.histogram(MetriclD) method

¥ Added the MetricRegistry.meter(MetriclD) method

¥ Added the MetricRegistry.timer(MetriclD) method

¥ Added the MetricRegistry.simpleTimer(MetricID) method

¥ Added the MetricRegistry.getMetric(MetriclD) method

¥ Added the MetricRegistry.getMetric(MetriclD metriclD, Class) method

¥ Added the MetricRegistry.getCounter(MetriclD) method

52

¥ Added the MetricRegistry.getConcurrentGauge(MetriclD) method

¥ Added the MetricRegistry.getGauge(MetriclD) method

¥ Added the MetricRegistry.getHistogram(MetricID) method

¥ Added the MetricRegistry.getMeter(MetriclD) method

¥ Added the MetricRegistry.getTimer(MetriclD) method

¥ Added the MetricRegistry.getSimpleTimer(MetriclD) method

¥ Added the MetricRegistry.getMetadata(String) method

¥ Added the MetricRegistry.getMetrics(MetricFilter) method

¥ Added the MetricRegistry.getMetrics(Class, MetricFilter) method

¥ Added SimpleTimer.getMinTimeDuration() and SimpleTimer.getMaxTimeDuration() methods which
return a java.time.Duration object (#523)

¥ Timer class updated (#524)

I Changed Timer.update(long duration, java.util.concurrent. TimeUnit) to
Timer.update(java.time.Duration duration)

I Added Timer.getElapsedTime() which returns java.time.Duration
¥ Removed MetadataBuilder.withOptional* methods

¥ Global tags and _app tag are no longer handled automatically by the MetriclD class, the
implementation is expected to add them by itself, for example during metric export

¥ Added the Histogram.getSum() which returns long (#597)

Functional Changes
¥ Simple Timer metrics now track the highest and lowest recorded timing duration of the
previous completed minute (#523)
¥ Timer now exposes total elapsed time duration as a metric value. (#524)

¥ Clarified that the existing REST metric REST.requestwill not monitor and track a REST request to
a REST endpoint if an unmapped exception occurs.

¥ Introduced a new base REST metric REST.request.unmappedException.total that counts the
occurrences of unmapped exceptions for each REST endpoint (#533)

¥ Histogram now exposes the total sum of recorded values as a sumvalue (#597)
I In JSON format it is exposed as a sunvalue
! In OpenMetrics format it is exposed as a sumvalue under the summaryype

¥ Timer now exposes the elapsedTime metric value as sumunder the summarnytype in OpenMetrics
format (#597)

Specification Changes

¥ Removed the concept of reusability

53

https://github.com/eclipse/microprofile-metrics/issues/523
https://github.com/eclipse/microprofile-metrics/issues/524
https://github.com/eclipse/microprofile-metrics/issues/597
https://github.com/eclipse/microprofile-metrics/issues/523
https://github.com/eclipse/microprofile-metrics/issues/524
https://github.com/eclipse/microprofile-metrics/issues/533
https://github.com/eclipse/microprofile-metrics/issues/597
https://github.com/eclipse/microprofile-metrics/issues/597

¥ CDI producers annotated with ~ @Metricno longer trigger metric registration
¥ Clarified how the implementation must handle metrics applied via CDI stereotypes

¥ The implementation is required to sanitize Metadata passed by the application in cases when it
does not contain an explicit type, but the type is implied by the name of the registration method
that is being called.

¥ Clarified that the existing REST metric REST.requestwill not monitor and track a REST request to
a REST endpoint if an unmapped exception occurs

¥ Introduced a new base REST metric REST.request.unmappedException.total that counts the
occurrences of unmapped exceptions for each REST endpoint (#533)

¥ Histogram now exposes the total sum of recorded values as a sumvalue (#597)
I In JSON format it is exposed as a sunmvalue
I In OpenMetrics format it is exposed asa sumvalue under the summaryype

¥ Timer now exposes the elapsedTime metric value as sumunder the summarnytype in OpenMetrics
format (#597)

TCK enhancement

¥ Improved TCK - Use newly introduced MetricRegistry methods to retrieve single metrics and
avoid use of the getMetrics() and getMetadata() methods

54

https://github.com/eclipse/microprofile-metrics/issues/533
https://github.com/eclipse/microprofile-metrics/issues/597
https://github.com/eclipse/microprofile-metrics/issues/597

Changesin 2.3

A full list of changes may be found on the MicroProfile Metrics 2.3 Milestone

API/SPI Changes

¥ Introduced the simple timer (@SimplyTimeédmetric. (#496)

¥ Added withOptional* methods to the MetadataBuilder , they donOt fail when null values are passed
to them (#464)

¥ Added the MetriclD.getTagsAsArray() method to the API. (#457)

¥ Added the method MetricType.fromClassName(#455)

Functional Changes

¥ Introduced a new base metric derived from RESTful stats into the base scope.

I REST.request: Tracks the total count of requests and total elapsed time spent at the REST
endpoint

¥ Introduced the simple timer (@SimplyTimeédmetric. (#496)

¥ The APl code no longer requires a correctly configured MP Config implementation to be
available at runtime, so it is possible to slim down deployments if MP Config is not necessary

(#466)

Specification Changes

¥ Introduced a new base metric derived from RESTTful stats into the base scope.

! REST.request: Tracks the total count of requests and total elapsed time spent at the REST
endpoint

¥ Introduced the simple timer (@SimplyTimeédmetric. (#496)

¥ Added ProcessCpuTime as a new optional base metric. (#442)

TCK enhancement

¥ Improved TCK - Use WebArchive for deployment

55

https://github.com/eclipse/microprofile-metrics/milestone/9
https://github.com/eclipse/microprofile-metrics/issues/496
https://github.com/eclipse/microprofile-metrics/issues/464
https://github.com/eclipse/microprofile-metrics/issues/457
https://github.com/eclipse/microprofile-metrics/issues/455
https://github.com/eclipse/microprofile-metrics/issues/496
https://github.com/eclipse/microprofile-metrics/pull/466
https://github.com/eclipse/microprofile-metrics/issues/496
https://github.com/eclipse/microprofile-metrics/issues/442

Changesin 2.2

A full list of changes may be found on the MicroProfile Metrics 2.2.1 Milestone

API/SPI Changes

¥ Reverted a problematic change from 2.1 where Gauges were required to return subclasses of
java.lang.Number

Functional Changes

¥ Reverted a problematic change from 2.1 where Gauges were required to return subclasses of
java.lang.Number

¥ (2.2.1) Added ProcessCpuTime as a new optional base metric. (#480)

Specification Changes

¥ (2.2.1) Added ProcessCpuTime as a new optional base metric. (#480)

56

https://github.com/eclipse/microprofile-metrics/milestone/12
https://github.com/eclipse/microprofile-metrics/issues/480
https://github.com/eclipse/microprofile-metrics/issues/480

