The Art of the Metaobject Protocol
Chapters 5 and 6

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow
Xerox Palo Alto Research Center

(© 1991 MIT Press. The material included here comprises chapters 5 and 6 of “The Art of
the Metaobject Protocol.” MIT Press is expected to publish this entire work in the summer
of 1991. Please see page 1 for further information about the copyright of this material.

Contents

5 Concepts 3
Introduction L 3
Metaobjects L 3

Classes o 4
Slot Definitions 4
Generic Functionso 5
Methods 6
Specializers 6
Method Combinations 6
Inheritance Structure of Metaobject Classes 6
Implementation and User Specialization 8
Processing of the User Interface Macros 11
Compile-file Processing of the User Interface Macros 12
The defclass Macro 12
The defmethod Macro 16
Processing Method Bodieso 17
The defgeneric Macro 19
Subprotocols 20
Metaobject Initialization Protocols, 20
Class Finalization Protocol, 22
Instance Structure Protocol Lo 23
Funcallable Instances 25
Generic Function Invocation Protocol 26
Dependent Maintenance Protocol L. 26

6 Generic Functions and Methods 29
add-dependent L 30
add-direct-method 31
add-direct-subclass 32
add-method 33

i

CONTENTS

allocate-instance 34
class-... . e 35
compute-applicable-methodso 00000 35
compute-applicable-methods-using-classes 36
compute-class-precedence-listo 0oL 38
compute-default-initargso 39
compute-discriminating-functiono 40
compute-effective-methodo 41
compute-effective-slot-definition 000000 42
compute-slots 43
direct-slot-definition-class L 45
effective-slot-definition-class o L 45
ensure-class L. L L 46
ensure-class-using-class L L L 47
ensure-generic-function Lo L 49
ensure-generic-function-using-class oL o000 50
eql-specializer-object 52
extract-lambda-list 52
extract-specializer-names L. o L 53
finalize-inheritance 54
find-method-combination 54
funcallable-standard-instance-accesso L. 95
generic-function-... oL L 56
Initialization of Class Metaobjects 57
Initialization of Generic Function Metaobjects 61
Initialization of Method Metaobjects 64
Initialization of Slot Definition Metaobjects 67
intern-eql-specializero 70
make-instance Lo 70
make-method-lambda 71
map-dependents L 73
method-... . . . L 74
Readers for Class Metaobjects o 75
Readers for Generic Function Metaobjects 79
Readers for Method Metaobjects 81
Readers for Slot Definition Metaobjects 83
reader-method-class 86
remove-dependent L. 87
remove-direct-methodo 89
remove-direct-subclass oL 90
remove-method 91

set-funcallable-instance-function 91

CONTENTS 1l

(setf class-name) 92
(setf generic-function-name)o Lo 92
(setf slot-value-using-class) 93
slot-boundp-using-classo 94
slot-definition-... oL 95
slot-makunbound-using-class 0oL 96
slot-value-using-class L 97
specializer-direct-generic-functionso 98
specializer-direct-methodso 99
standard-instance-access L. Lo 100
update-dependent 101
validate-superclass 102

writer-method-class e e 103

v

CONTENTS

In this part of the book, we provide the detailed specification of a metaobject protocol
for CLOS. Our work with this protocol has always been rooted in our own implementation
of CLOS, PCL. This has made it possible for us to have a user community, which in turn
has provided us with feedback on this protocol as it has evolved. As a result, much of the
design presented here is well-tested and stable. As this is being written, those parts have
been implemented not only in PCL, but in at least three other CLOS implementations we
know of. Other parts of the protocol, even though they have been implemented in one form
or another in PCL and other implementations, are less well worked out. Work remains
to improve not only the ease of use of these protocols, but also the balance they provide
between user extensibility and implementor freedom.

In preparing this specification, it is our hope that it will provide a basis for the users and
implementors who wish to work with a metaobject protocol for CLOS. This document should
not be construed as any sort of final word or standard, but rather only as documentation
of what has been done so far. We look forward to seeing the improvements, both small and
large, which we hope this publication will catalyze.

To this end, for Part IT only (chapters 5 and 6), we grant permission to prepare revisions
or other derivative works including any amount of the original text. We ask only that
you properly acknowledge the source of the original text and explicitly allow subsequent
revisions and derivative works under the same terms. To further facilitate improvements in
this work, we have made the electronic source for these chapters publicly available; it can
be accessed by anonymous FTP from the /pcl/mop directory on arisia.xerox.com.

In addition to the valuable feedback from users of PCL, the protocol design presented
here has benefited from detailed comments and suggestions by the following people: Kim
Barrett, Scott Cyphers, Harley Davis, Patrick Dussud, John Foderaro, Richard P. Gabriel,
David Gray, David A. Moon, Andreas Paepcke, Chris Richardson, Walter van Roggen, and
Jon L. White. We are very grateful to each of them. Any remaining errors, inconsistencies
or design deficiencies are the responsibility of the authors alone.

CONTENTS

Chapter 5

Concepts

Introduction

The CLOS Specification [X3J13, CLtLII] describes the standard Programmer Interface for
the Common Lisp Object System (CLOS). This document extends that specification by
defining a metaobject protocol for CLOS—that is, a description of CLOS itself as an ex-
tensible CLOS program. In this description, the fundamental elements of CLOS programs
(classes, slot definitions, generic functions, methods, specializers and method combinations)
are represented by first-class objects. The behavior of CLOS is provided by these objects,
or, more precisely, by methods specialized to the classes of these objects.

Because these objects represent pieces of CLOS programs, and because their behavior
provides the behavior of the CLOS language itself, they are considered meta-level objects
or metaobjects. The protocol followed by the metaobjects to provide the behavior of CL.OS
is called the CLOS Metaobject Protocol (MOP).

Metaobjects

For each kind of program element there is a corresponding basic metaobject class. These
are the classes: class, slot-definition, generic-function, method and method-combi-
nation. A metaobject class is a subclass of exactly one of these classes. The results are
undefined if an attempt is made to define a class that is a subclass of more than one basic
metaobject class. A metaobject is an instance of a metaobject class.

Each metaobject represents one program element. Associated with each metaobject is
the information required to serve its role. This includes information that might be pro-
vided directly in a user interface macro such as defclass or defmethod. It also includes
information computed indirectly from other metaobjects such as that computed from class
inheritance or the full set of methods associated with a generic function.

3

4 CHAPTER 5. CONCEPTS

Much of the information associated with a metaobject is in the form of connections
to other metaobjects. This interconnection means that the role of a metaobject is always
based on that of other metaobjects. As an introduction to this interconnected structure,
this section presents a partial enumeration of the kinds of information associated with each
kind of metaobject. More detailed information is presented later.

Classes

A class metaobject determines the structure and the default behavior of its instances. The
following information is associated with class metaobjects:

o The name, if there is one, is available as an object.

o The direct subclasses, direct superclasses and class precedence list are available as lists
of class metaobjects.

e The slots defined directly in the class are available as a list of direct slot definition
metaobjects. The slots which are accessible in instances of the class are available as a
list of effective slot definition metaobjects.

e The documentation is available as a string or nil.

e The methods which use the class as a specializer, and the generic functions associated
with those methods are available as lists of method and generic function metaobjects
respectively.

Slot Definitions

A slot definition metaobject contains information about the definition of a slot. There are two
kinds of slot definition metaobjects. A direct slot definition metaobject is used to represent
the direct definition of a slot in a class. This corresponds roughly to the slot specifiers found
in defclass forms. An effective slot definition metaobject is used to represent information,
including inherited information, about a slot which is accessible in instances of a particular
class.

Associated with each class metaobject is a list of direct slot definition metaobjects rep-
resenting the slots defined directly in the class. Also associated with each class metaobject
is a list of effective slot definition metaobjects representing the set of slots accessible in
instances of that class.

The following information is associated with both direct and effective slot definitions
metaobjects:

e The name, allocation, and type are available as forms that could appear in a defclass
form.

METAOBJECTS 5

e The initialization form, if there is one, is available as a form that could appear in a
defclass form. The initialization form together with its lexical environment is available
as a function of no arguments which, when called, returns the result of evaluating the
initialization form in its lexical environment. This is called the nitfunction of the slot.

o The slot filling initialization arguments are available as a list of symbols.

e The documentation is available as a string or nil.

Certain other information is only associated with direct slot definition metaobjects. This
information applies only to the direct definition of the slot in the class (it is not inherited).

e The function names of those generic functions for which there are automatically gener-
ated reader and writer methods. This information is available as lists of function names.
Any accessors specified in the defclass form are broken down into their equivalent read-
ers and writers in the direct slot definition.

Information, including inherited information, which applies to the definition of a slot in
a particular class in which it is accessible is associated only with effective slot definition
metaobjects.

e For certain slots, the location of the slot in instances of the class is available.

Generic Functions

A generic function metaobject contains information about a generic function over and above
the information associated with each of the generic function’s methods.

o The name is available as a function name.

e The methods associated with the generic function are available as a list of method
metaobjects.

e The default class for this generic function’s method metaobjects is available as a class
metaobject.

e The lambda list is available as a list.
e The method combination is available as a method combination metaobject.
e The documentation is available as a string or nil.

e The argument precedence order is available as a permutation of those symbols from the
lambda list which name the required arguments of the generic function.

6 CHAPTER 5. CONCEPTS

o The declarations are available as a list of declarations.

Terminology Note:

There is some ambiguity in Common Lisp about the terms used to identify the various
parts of declare special forms. In this document, the term declaration is used to refer
to an object that could be an argument to a declare special form. For example, in
the special form (declare (special *g1%*)), the list (special *g1%*) is a declaration.

Methods

A method metaobject contains information about a specific method.
e The qualifiers are available as a list of of non-null atoms.
e The lambda list is available as a list.
o The specializers are available as a list of specializer metaobjects.

e The function is available as a function. This function can be applied to arguments and
a list of next methods using apply or funcall.

e When the method is associated with a generic function, that generic function metaobject
is available. A method can be associated with at most one generic function at a time.

e The documentation is available as a string or nil.

Specializers

A specializer metaobject represents the specializers of a method. Class metaobjects are
themselves specializer metaobjects. A special kind of specializer metaobject 1s used for eql
specializers.

Method Combinations

A method combination metaobject represents the information about the method combination
being used by a generic function.

Note:

This document does not specify the structure of method combination metaobjects.

Inheritance Structure of Metaobject Classes

The inheritance structure of the specified metaobject classes is shown in Table 5.1.

Each class marked with a “x¥” is an abstract class and is not intended to be instantiated.
The results are undefined if an attempt is made to make an instance of one of these classes
with make-instance.

INHERITANCE STRUCTURE OF METAOBJECT CLASSES

Metaobject Class

Direct Superclasses

standard-object
funcallable-standard-object
metaobject
generic-function

standard-generic-function
*+ method

standard-method
*+ standard-accessor-method
standard-reader-method
standard-writer-method
method-combination
slot-definition
direct-slot-definition
effective-slot-definition

* ¥ ¥ ¥ ¥

standard-slot-definition

standard-direct-slot-
definition

standard-effective-slot-
definition

x specializer

eql-specializer

* class

built-in-class

forward-referenced-class

standard-class

funcallable-standard-class

(t)

(standard-object function)

(standard-object)

(metaobject
funcallable-standard-object)

(generic-function)

(metaobject)

(method)

(standard-method)

(standard-accessor-method)

(standard-accessor-method)

(metaobject)

(metaobject)

(slot-definition)

(slot-definition)

(slot-definition)

(standard-slot-definition
direct-slot-definition)

(standard-slot-definition
effective-slot-definition)

(metaobject)

(specializer)

(specializer)

(class)

(class)

(class)

(class)

Table 5.1 Direct superclass relationships among the specified metaobject classes.
The class of every class shown i1s standard-class except for the class t which
is an instance of the class built-in-class and the classes generic-function
and standard-generic-function which are instances of the class funcallable-

standard-class.

8 CHAPTER 5. CONCEPTS

The classes standard-class, standard-direct-slot-definition, standard-effective-
slot-definition, standard-method, standard-reader-method, standard-writer-
method and standard-generic-function are called standard metaobject classes. For
each kind of metaobject, this is the class the user interface macros presented in the CLOS
Specification use by default. These are also the classes on which user specializations are
normally based.

The classes built-in-class, funcallable-standard-class and forward-referenced-
class are special-purpose class metaobject classes. Built-in classes are instances of the
class built-in-class. The class funcallable-standard-class provides a special kind of
instances described in the section called “Funcallable Instances.” When the definition of
a class references another class which has not yet been defined, an instance of forward-
referenced-class is used as a stand-in until the class is actually defined.

The class standard-object is the default direct superclass of the class standard-class.
When an instance of the class standard-class is created, and no direct superclasses are
explicitly specified, it defaults to the class standard-object. In this way, any behavior
associated with the class standard-object will be inherited, directly or indirectly, by all
instances of the class standard-class. A subclass of standard-class may have a different
class as its default direct superclass, but that class must be a subclass of the class standard-
object.

The same is true for funcallable-standard-class and funcallable-standard-object.

The class specializer captures only the most basic behavior of method specializers, and
is not itself intended to be instantiated. The class class is a direct subclass of specializer
reflecting the property that classes by themselves can be used as method specializers. The
class eql-specializer is used for eql specializers.

Implementation and User Specialization

The purpose of the Metaobject Protocol is to provide users with a powerful mechanism for
extending and customizing the basic behavior of the Common Lisp Object System. As an
object-oriented description of the basic CLOS behavior, the Metaobject Protocol makes it
possible to create these extensions by defining specialized subclasses of existing metaobject
classes.

The Metaobject Protocol provides this capability without interfering with the imple-
mentor’s ability to develop high-performance implementations. This balance between user
extensibility and implementor freedom is mediated by placing explicit restrictions on each.
Some of these restrictions are general—they apply to the entire class graph and the appli-
cability of all methods. These are presented in this section.

The following additional terminology is used to present these restrictions:

INHERITANCE STRUCTURE OF METAOBJECT CLASSES 9

e Metaobjects are divided into three categories. Those defined in this document are
called specified; those defined by an implementation but not mentioned in this docu-
ment are called implementation-specific; and those defined by a portable program are
called portable.

o A class I is interposed between two other classes C; and C's if and only if there is some
path, following direct superclasses, from the class C to the class C'y which includes I.

o A method is specialized to a class if and only if that class is in the list of specializers
associated with the method; and the method is in the list of methods associated with
some generic function.

e In a given implementation, a specified method is said to have been promoted if and only
if the specializers of the method, S; ...S,, are defined in this specification as the classes
C1...Cy, but in the implementation, one or more of the specializers .S;, is a superclass
of the class given in the specification Cj.

e For a given generic function and set of arguments, a method M, extends a method M;
if and only if:

(i) My and M; are both associated with the given generic function,

(ii) My and M are both applicable to the given arguments,

(iii) the specializers and qualifiers of the methods are such that when the generic
function is called, M, is executed before M,

(iv) My will be executed if and only if call-next-method is invoked from within the
body of M5 and

(v) call-next-method is invoked from within the body of M, thereby causing M;
to be executed.

e For a given generic function and set of arguments, a method M overrides a method M;
if and only if conditions i1 through iv above hold and

(v') call-next-method is not invoked from within the body of M, thereby prevent-
ing M; from being executed.

Restrictions on Implementations

Implementations are allowed latitude to modify the structure of specified classes and meth-
ods. This includes: the interposition of implementation-specific classes; the promotion of
specified methods; and the consolidation of two or more specified methods into a single
method specialized to interposed classes.

Any such modifications are permitted only so long as for any portable class C'p that is
a subclass of one or more specified classes Cj ...}, the following conditions are met:

10 CHAPTER 5. CONCEPTS

o In the actual class precedence list of C'p, the classes C'y...C; must appear in the same
order as they would have if no implementation-specific modifications had been made.

e The method applicability of any specified generic function must be the same in terms
of behavior as it would have been had no implementation-specific changes been made.
This includes specified generic functions that have had portable methods added. In this
context, the expression “the same in terms of behavior” means that methods with the
same behavior as those specified are applicable, and in the same order.

e No portable class Cp may inherit, by virtue of being a direct or indirect subclass of a
specified class, any slot for which the name is a symbol accessible in the common-lisp-
user package or exported by any package defined in the ANST Common Lisp standard.

e Implementations are free to define implementation-specific before- and after-methods
on specified generic functions. Implementations are also free to define implementation-
specific around-methods with extending behavior.

Restrictions on Portable Programs

Portable programs are allowed to define subclasses of specified classes, and are permitted to
define methods on specified generic functions, with the following restrictions. The results
are undefined if any of these restrictions is violated.

e Portable programs must not redefine any specified classes, generic functions, methods or
method combinations. Any method defined by a portable program on a specified generic
function must have at least one specializer that is neither a specified class nor an eql
specializer whose associated value is an instance of a specified class.

e Portable programs may define methods that extend specified methods unless the descrip-
tion of the specified method explicitly prohibits this. Unless there is a specific statement
to the contrary, these extending methods must return whatever value was returned by
the call to call-next-method.

e Portable programs may define methods that override specified methods only when the
description of the specified method explicitly allows this. Typically, when a method is
allowed to be overridden, a small number of related methods will need to be overridden
as well.

An example of this is the specified methods on the generic functions add-dependent,
remove-dependent and map-dependents. Overriding a specified method on one of
these generic functions requires that the corresponding method on the other two generic
functions be overridden as well.

e Portable methods on specified generic functions specialized to portable metaobject classes
must be defined before any instances of those classes (or any subclasses) are created, ei-
ther directly or indirectly by a call to make-instance. Methods can be defined after

PROCESSING OF THE USER INTERFACE MACROS 11

instances are created by allocate-instance however. Portable metaobject classes can-
not be redefined.

Implementation Note:

The purpose of this last restriction is to permit implementations to provide perfor-
mance optimizations by analyzing, at the time the first instance of a metaobject class
is initialized, what portable methods will be applicable to it. This can make it possible
to optimize calls to those specified generic functions which would have no applicable
portable methods.

Note:

The specification technology used in this document needs further development. The
concepts of object-oriented protocols and subclass specialization are intuitively fa-
miliar to programmers of object-oriented systems; the protocols presented here fit
quite naturally into this framework. Nonetheless, in preparing this document, we
have found it difficult to give specification-quality descriptions of the protocols in a
way that makes it clear what extensions users can and cannot write. Object-oriented
protocol specification is inherently about specifying leeway, and this seems difficult
using current technology.

Processing of the User Interface Macros

A list in which the first element is one of the symbols defclass, defmethod, defgeneric,
define-method-combination, generic-function, generic-flet or generic-labels, and
which has proper syntax for that macro is called a user interface macro form. This document
provides an extended specification of the defclass, defmethod and defgeneric macros.

The user interface macros defclass, defgeneric and defmethod can be used not only to
define metaobjects that are instances of the corresponding standard metaobject class, but
also to define metaobjects that are instances of appropriate portable metaobject classes.
To make it possible for portable metaobject classes to properly process the information
appearing in the macro form, this document provides a limited specification of the processing
of these macro forms.

User interface macro forms can be evaluated or compiled and later ezecuted. The effect
of evaluating or executing a user interface macro form is specified in terms of calls to
specified functions and generic functions which provide the actual behavior of the macro.
The arguments received by these functions and generic functions are derived in a specified
way from the macro form.

Converting a user interface macro form into the arguments to the appropriate functions
and generic functions has two major aspects: the conversion of the macro argument syntax
into a form more suitable for later processing, and the processing of macro arguments which
are forms to be evaluated (including method bodies).

12 CHAPTER 5. CONCEPTS

In the syntax of the defclass macro, the initform and defauli-initarg-initial-value-form
arguments are forms which will be evaluated one or more times after the macro form is
evaluated or executed. Special processing must be done on these arguments to ensure that
the lexical scope of the forms is captured properly. This is done by building a function of
zero arguments which, when called, returns the result of evaluating the form in the proper
lexical environment.

In the syntax of the defmethod macro the form* argument is a list of forms that
comprise the body of the method definition. This list of forms must be processed specially
to capture the lexical scope of the macro form. In addition, the lexical functions available
only in the body of methods must be introduced. To allow this and any other special
processing (such as slot access optimization), a specializable protocol is used for processing
the body of methods. This is discussed in the section “Processing Method Bodies.”

Compile-file Processing of the User Interface Macros

It is common practice for Common Lisp compilers, while processing a file or set of files, to
maintain information about the definitions that have been compiled so far. Among other
things, this makes it possible to ensure that a global macro definition (defmacro form)
which appears in a file will affect uses of the macro later in that file. This information about
the state of the compilation is called the compile-file environment.

When compiling files containing CLOS definitions, it is useful to maintain certain ad-
ditional information in the compile-file environment. This can make it possible to issue
various kinds of warnings (e.g., lambda list congruence) and to do various performance
optimizations that would not otherwise be possible.

At this time, there is such significant variance in the way existing Common Lisp im-
plementations handle compile-file environments that it would be premature to specify this
mechanism. Consequently, this document specifies only the behavior of evaluating or exe-
cuting user interface macro forms. What functions and generic functions are called during
compile-file processing of a user interface macro form is not specified. Implementations are
free to define and document their own behavior. Users may need to check implementation-
specific behavior before attempting to compile certain portable programs.

The defclass Macro

The evaluation or execution of a defclass form results in a call to the ensure-class function.
The arguments received by ensure-class are derived from the defclass form in a defined
way. The exact macro-expansion of the defclass form is not defined, only the relationship
between the arguments to the defclass macro and the arguments received by the ensure-
class function. Examples of typical defclass forms and sample expansions are shown in

Figures 5.1 and 5.2.

PROCESSING OF THE USER INTERFACE MACROS 13

(defclass plane (moving-object graphics-object)
((altitude :initform O :accessor plane-altitude)
(speed))
(:default-initargs :engine *jet*))

(ensure-class 'plane
":direct-superclasses '(moving-object graphics-object)
":direct-slots (list (list ':name 'altitude
':initform '0
":initfunction #'(lambda () 0)
':readers '(plane-altitude)
:writers '((setf plane-altitude)))
(1list ':name 'speed))
":direct-default-initargs (list (list ':engine
"kjet*
#'(lambda () *jet*))))

1

Figure 5.1 A defclass form with standard slot and class options and an expansion of it that would
result in the proper call to ensure-class.

e The name argument to defclass becomes the value of the first argument to ensure-
class. This is the only positional argument accepted by ensure-class; all other argu-
ments are keyword arguments.

e The direct-superclasses argument to defclass becomes the value of the :direct-super-
classes keyword argument to ensure-class.

e The direct slots argument to defclass becomes the value of the :direct-slots keyword
argument to ensure-class. Special processing of this value is done to regularize the form
of each slot specification and to properly capture the lexical scope of the initialization
forms. This is done by converting each slot specification to a property list called a
canonicalized slot specification. The resulting list of canonicalized slot specifications is
the value of the :direct-slots keyword argument.

Canonicalized slot specifications are later used as the keyword arguments to a generic
function which will, in turn, pass them to make-instance for use as a set of initialization
arguments. Each canonicalized slot specification is formed from the corresponding slot
specification as follows:

e The name of the slot is the value of the :name property. This property appears in
every canonicalized slot specification.

14 CHAPTER 5. CONCEPTS

(defclass sst (plane)
((mach mag-step 2

locator sst-mach
locator mach-location
:reader mach-speed
:reader mach))

(:metaclass faster-class)

(another-option foo bar))

(ensure-class 'sst

':direct-superclasses '(plane)

':direct-slots (list (list ':name 'mach
":readers '(mach-speed mach)
'mag-step '2
'locator '(sst-mach mach-location)))

':metaclass 'faster-class

'another-option '(foo bar))

Figure 5.2 A defclass form with non-standard class and slot options, and an expansion of it which
results in the proper call to ensure-class. Note that the order of the slot options has not affected
the order of the properties in the canonicalized slot specification, but has affected the order of the
elements in the lists which are the values of those properties.

PROCESSING OF THE USER INTERFACE MACROS 15

e When the :initform slot option is present in the slot specification, then both the
:initform and :initfunction properties are present in the canonicalized slot speci-
fication. The value of the :initform property is the initialization form. The value
of the :initfunction property is a function of zero arguments which, when called,
returns the result of evaluating the initialization form in its proper lexical environ-
ment.

If the :initform slot option is not present in the slot specification, then either
the :initfunction property will not appear, or its value will be false. In such cases,
the value of the :initform property, or whether it appears, is unspecified.

e The value of the :initargs property is a list of the values of each :initarg slot
option. If there are no :initarg slot options, then either the :initargs property will
not appear or its value will be the empty list.

e The value of the :readers property is a list of the values of each :reader and :ac-
cessor slot option. If there are no :reader or :accessor slot options, then either the
:readers property will not appear or its value will be the empty list.

e The value of the :writers property is a list of the values specified by each :writer
and :accessor slot option. The value specified by a :writer slot option is just the
value of the slot option. The value specified by an :accessor slot option is a two
element list: the first element is the symbol setf, the second element is the value of
the slot option. If there are no :writer or :accessor slot options, then either the
:writers property will not appear or its value will be the empty list.

e The value of the :documentation property is the value of the :documentation slot
option. If there is no :documentation slot option, then either the :documentation
property will not appear or its value will be false.

e All other slot options appear as the values of properties with the same name as the
slot option. Note that this includes not only the remaining standard slot options
(:allocation and :type), but also any other options and values appearing in the slot
specification. If one of these slot options appears more than once, the value of the
property will be a list of the specified values.

e An implementation is free to add additional properties to the canonicalized slot
specification provided these are not symbols accessible in the common-lisp-user
package, or exported by any package defined in the ANSI Common Lisp standard.

Returning to the correspondence between arguments to the defclass macro and the
arguments received by the ensure-class function:

o The default initargs class option, if it is present in the defclass form, becomes the value
of the :direct-default-initargs keyword argument to ensure-class. Special processing
of this value is done to properly capture the lexical scope of the default value forms. This
is done by converting each default initarg in the class option into a canonicalized default
initarg. The resulting list of canonicalized default initargs is the value of the :direct-
default-initargs keyword argument to ensure-class.

16 CHAPTER 5. CONCEPTS

A canonicalized default initarg is a list of three elements. The first element is the name;
the second is the actual form itself; and the third is a function of zero arguments which,
when called, returns the result of evaluating the default value form in its proper lexical
environment.

e The metaclass class option, if it is present in the defclass form, becomes the value of
the :metaclass keyword argument to ensure-class.

e The documentation class option, if it is present in the defclass form, becomes the value
of the :documentation keyword argument to ensure-class.

e Any other class options become the value of keyword arguments with the same name.
The value of the keyword argument is the tail of the class option. An error is signaled
if any class option appears more than once in the defclass form.

In the call to ensure-class, every element of its arguments appears in the same left-
to-right order as the corresponding element of the defclass form, except that the order of
the properties of canonicalized slot specifications is unspecified. The values of properties
in canonicalized slot specifications do follow this ordering requirement. Other ordering
relationships in the keyword arguments to ensure-class are unspecified.

The result of the call to ensure-class is returned as the result of evaluating or executing
the defclass form.

The defmethod Macro

The evaluation or execution of a defmethod form requires first that the body of the method
be converted to a method function. This process is described in the next section. The result
of this process is a method function and a set of additional initialization arguments to be
used when creating the new method. Given these two values, the evaluation or execution of
a defmethod form proceeds in three steps.

The first step ensures the existence of a generic function with the specified name. This
is done by calling the function ensure-generic-function. The first argument in this call
is the generic function name specified in the defmethod form.

The second step is the creation of the new method metaobject by calling make-instance.
The class of the new method metaobject is determined by calling generic-function-
method-class on the result of the call to ensure-generic-function from the first step.

The initialization arguments received by the call to make-instance are as follows:

e The value of the :qualifiers initialization argument is a list of the qualifiers which
appeared in the defmethod form. No special processing is done on these values. The
order of the elements of this list is the same as in the defmethod form.

e The value of the :lambda-list initialization argument is the unspecialized lambda list
from the defmethod form.

PROCESSING OF THE USER INTERFACE MACROS 17

e The value of the :specializers initialization argument is a list of the specializers for
the method. For specializers which are classes, the specializer is the class metaobject
itself. In the case of eql specializers, it will be an eql-specializer metaobject obtained
by calling intern-eql-specializer on the result of evaluating the eql specializer form in
the lexical environment of the defmethod form.

e The value of the :function initialization argument is the method function.

o The value of the :declarations initialization argument is a list of the declarations from
the defmethod form. If there are no declarations in the macro form, this initialization
argument either doesn’t appear, or appears with a value of the empty list.

e The value of the :documentation initialization argument is the documentation string
from the defmethod form. If there is no documentation string in the macro form this
initialization argument either doesn’t appear, or appears with a value of false.

e Any other initialization argument produced in conjunction with the method function are
also included.

e The implementation is free to include additional initialization arguments provided these
are not symbols accessible in the common-lisp-user package, or exported by any pack-
age defined in the ANSI Common Lisp standard.

In the third step, add-method is called to add the newly created method to the set of
methods associated with the generic function metaobject.

The result of the call to add-method is returned as the result of evaluating or executing
the defmethod form.

An example showing a typical defmethod form and a sample expansion is shown in
Figure 5.3. The processing of the method body for this method is shown in Figure 5.4.

Processing Method Bodies

Before a method can be created, the list of forms comprising the method body must be
converted to a method function. This conversion is a two step process.

Note:

The body of methods can also appear in the :initial-methods option of defgeneric

forms. Initial methods are not considered by any of the protocols specified in this docu-

ment.

The first step occurs during macro-expansion of the macro form. In this step, the
method lambda list, declarations and body are converted to a lambda expression called a
method lambda. This conversion is based on information associated with the generic function
definition in effect at the time the macro form is expanded.

18 CHAPTER 5. CONCEPTS

(defmethod move :before ((p position) (1 (eql 0))
&optional (visiblyp t)
&key color)
(set-to-origin p)
(when visiblyp (show-move p 0 color)))

(let ((#:g001 (ensure-generic-function 'move)))
(add-method #:g001
(make-instance (generic-function-method-class #:g001)
':qualifiers '(:before)
':specializers (list (find-class 'position)
(intern-eql-specializer 0))
":lambda-list '(p 1 &optional (visiblyp t)
&key color)

":function (function method-lambda)
'additional-initarg-1 't
'additional-initarg-2 '39)))

Figure 5.3 An example defmethod form and one possible correct expansion. In the expansion,
method-lambda is the result of calling make-method-lambda as described in the section “Process-
ing Method Bodies”. The initargs appearing after :function are assumed to be additional initargs
returned from the call to make-method-lambda.

(let ((gf (ensure-generic-function 'move)))
(make-method-lambda
gf
(class-prototype (generic-function-method-class gf))
"(lambda (p 1 &optional (visiblyp t) &key color)
(set-to-origin p)
(when visiblyp (show-move p 0 color)))
environment))

Figure 5.4 During macro-expansion of the defmethod macro shown in Figure 5.3, code similar
to this would be run to produce the method lambda and additional initargs. In this example,
environment 1s the macroexpansion environment of the defmethod macro form.

PROCESSING OF THE USER INTERFACE MACROS 19

The generic function definition is obtained by calling ensure-generic-function with a
first argument of the generic function name specified in the macro form. The :lambda-list
keyword argument is not passed in this call.

Given the generic function, production of the method lambda proceeds by calling make-
method-lambda. The first argument in this call is the generic function obtained as de-
scribed above. The second argument is the result of calling class-prototype on the result
of calling generic-function-method-class on the generic function. The third argument
is a lambda expression formed from the method lambda list, declarations and body. The
fourth argument is the macro-expansion environment of the macro form; this is the value of
the &environment argument to the defmethod macro.

The generic function make-method-lambda returns two values. The first is the
method lambda itself. The second is a list of initialization arguments and values. These are
included in the initialization arguments when the method is created.

In the second step, the method lambda is converted to a function which properly captures
the lexical scope of the macro form. This is done by having the method lambda appear in
the macro-expansion as the argument of the function special form. During the subsequent
evaluation of the macro-expansion, the result of the function special form is the method
function.

The defgeneric Macro

The evaluation or execution of a defgeneric form results in a call to the ensure-generic-
function function. The arguments received by ensure-generic-function are derived from
the defgeneric form in a defined way. As with defclass and defmethod, the exact macro-
expansion of the defgeneric form is not defined, only the relationship between the argu-
ments to the macro and the arguments received by ensure-generic-function.

e The function-name argument to defgeneric becomes the first argument to ensure-
generic-function. This is the only positional argument accepted by ensure-generic-
function; all other arguments are keyword arguments.

e The lambda-list argument to defgeneric becomes the value of the :lambda-list keyword
argument to ensure-generic-function.

e For each of the options :argument-precedence-order, :documentation, :generic-
function-class and :method-class, the value of the option becomes the value of the
keyword argument with the same name. If the option does not appear in the macro
form, the keyword argument does not appear in the resulting call to ensure-generic-
function.

e For the option declare, the list of declarations becomes the value of the :declarations
keyword argument. If the declare option does not appear in the macro form, the :dec-
larations keyword argument does not appear in the call to ensure-generic-function.

20 CHAPTER 5. CONCEPTS

e The handling of the :method-combination option is not specified.

The result of the call to ensure-generic-function is returned as the result of evaluating
or executing the defgeneric form.

Subprotocols

This section provides an overview of the Metaobject Protocols. The detailed behavior of each
function, generic function and macro in the Metaobject Protocol is presented in Chapter 6.
The remainder of this chapter is intended to emphasize connections among the parts of
the Metaobject Protocol, and to provide some examples of the kinds of specializations and
extensions the protocols are designed to support.

Metaobject Initialization Protocols

Like other objects, metaobjects can be created by calling make-instance. The initialization
arguments passed to make-instance are used to initialize the metaobject in the usual way.
The set of legal initialization arguments, and their interpretation, depends on the kind of
metaobject being created. Implementations and portable programs are free to extend the set
of legal initialization arguments. Detailed information about the initialization of each kind
of metaobject are provided in Chapter 6; this section provides an overview and examples of
this behavior.

Initialization of Class Metaobjects

Class metaobjects created with make-instance are usually anonymous; that is, they have
no proper name. An anonymous class metaobject can be given a proper name using (setf
find-class) and (setf class-name).

When a class metaobject is created with make-instance, it is initialized in the usual
way. The initialization arguments passed to make-instance are use to establish the defi-
nition of the class. Each initialization argument is checked for errors and associated with
the class metaobject. The initialization arguments correspond roughly to the arguments ac-
cepted by the defclass macro, and more closely to the arguments accepted by the ensure-
class function.

Some class metaobject classes allow their instances to be redefined. When permissible,
this is done by calling reinitialize-instance. This is discussed in the next section.

An example of creating an anonymous class directly using make-instance follows:

(flet ((zero () 0)
(propellor () *propellor*))
(make-instance 'standard-class
:name '(my-class foo)

SUBPROTOCOLS 21

:direct-superclasses (list (find-class 'plane)
another-anonymous-class)

:direct-slots ‘((:name x

:initform 0

:initfunction ,#'zero

tinitargs (:x)

:readers (position-x)

:writers ((setf position-x)))

(:name y

:initform 0

:initfunction ,#'zero

tinitargs (:y)

:readers (position-y)

:writers ((setf position-y))))
:direct-default-initargs ‘((:engine *propellor* ,#'propellor))))

Reinitialization of Class Metaobjects

Some class metaobject classes allow their instances to be reinitialized. This is done by
calling reinitialize-instance. The initialization arguments have the same interpretation
as in class initialization.

If the class metaobject was finalized before the call to reinitialize-instance, finalize-
inheritance will be called again once all the initialization arguments have been processed
and associated with the class metaobject. In addition, once finalization is complete, any
dependents of the class metaobject will be updated by calling update-dependent.

Initialization of Generic Function and Method Metaobjects

An example of creating a generic function and a method metaobject, and then adding the
method to the generic function is shown below. This example is comparable to the method
definition shown in Figure 5.3.

(let* ((gf (make-instance 'standard-generic-—function
:lambda-list '(p 1 &optional visiblyp &key)))
(method-class (generic-function-method-class gf)))
(multiple-value-bind (lambda initargs)
(make-method-lambda
gf
(class-prototype method-class)
"(lambda (p 1 &optional (visiblyp t) &key color)
(set-to-origin p)
(when visiblyp (show-move p O color)))
nil)

22 CHAPTER 5. CONCEPTS

(add-method gf
(apply #'make-instance method-class
:function (compile nil lambda)
:specializers (list (find-class 'position)
(intern-eql-specializer 0))
:qualifiers ()
:lambda-list '(p 1 &optional (visiblyp t)
&key color)
initargs))))

Class Finalization Protocol

Class finalization is the process of computing the information a class inherits from its su-
perclasses and preparing to actually allocate instances of the class. The class finalization
process includes computing the class’s class precedence list, the full set of slots accessible
in instances of the class and the full set of default initialization arguments for the class
These values are associated with the class metaobject and can be accessed by calling the
appropriate reader. In addition, the class finalization process makes decisions about how
instances of the class will be implemented.

To support forward-referenced superclasses, and to account for the fact that not all
classes are actually instantiated, class finalization is not done as part of the initialization of
the class metaobject. Instead, finalization is done as a separate protocol, invoked by calling
the generic function finalize-inheritance. The exact point at which finalize-inheritance
is called depends on the class of the class metaobject; for standard-class it is called some-
time after all the classes superclasses are defined, but no later than when the first instance
of the class is allocated (by allocate-instance).

The first step of class finalization is computing the class precedence list. Doing this first
allows subsequent steps to access the class precedence list. This step is performed by calling
the generic function compute-class-precedence-list. The value returned from this call is
associated with the class metaobject and can be accessed by calling the class-precedence-
list generic function.

The second step 1s computing the full set of slots that will be accessible in instances of
the class. This step is performed by calling the generic function compute-slots. The result
of this call is a list of effective slot definition metaobjects. This value is associated with the
class metaobject and can be accessed by calling the class-slots generic function.

The behavior of compute-slots is itself layered, consisting of calls to effective-slot-
definition-class and compute-effective-slot-definition.

The final step of class finalization is computing the full set of initialization arguments
for the class. This is done by calling the generic function compute-default-initargs. The
value returned by this generic function is associated with the class metaobject and can be
accessed by calling class-default-initargs.

SUBPROTOCOLS 23

If the class was previously finalized, finalize-inheritance may call make-instances-
obsolete. The circumstances under which this happens are describe in the section of the
CLOS specification called “Redefining Classes.”

Forward-referenced classes, which provide a temporary definition for a class which has
been referenced but not yet defined, can never be finalized. An error is signalled if finalize-
inheritance is called on a forward-referenced class.

Instance Structure Protocol

The instance structure protocol is responsible for implementing the behavior of the slot
access functions like slot-value and (setf slot-value).

For each CLOS slot access function other than slot-exists-p, there is a corresponding
generic function which actually provides the behavior of the function. When called, the slot
access function finds the pertinent effective slot definition metaobject, calls the correspond-
ing generic function and returns its result. The arguments passed on to the generic function
include one additional value, the class of the object argument, which always immediately
precedes the object argument

The correspondences between slot access function and underlying slot access generic
function are as follows:

Slot Access Function Corresponding Slot Access
Generic Function

slot-boundp slot-boundp-using-class
slot-makunbound slot-makunbound-using-class
slot-value slot-value-using-class

(setf slot-value) (setf slot-value-using-class)

At the lowest level, the instance structure protocol provides only limited mechanisms
for portable programs to control the implementation of instances and to directly access
the storage associated with instances without going through the indirection of slot access.
This is done to allow portable programs to perform certain commonly requested slot access
optimizations.

In particular, portable programs can control the implementation of, and obtain direct
access to, slots with allocation :instance and type t. These are called directly accessible
slots.

The relevant specified around-method on compute-slots determines the implementa-
tion of instances by deciding how each slot in the instance will be stored. For each directly
accessible slot, this method allocates a location and associates it with the effective slot def-
inition metaobject. The location can be accessed by calling the slot-definition-location

24 CHAPTER 5. CONCEPTS

generic function. Locations are non-negative integers. For a given class, the locations in-
crease consecutively, in the order that the directly accessible slots appear in the list of
effective slots. (Note that here, the next paragraph, and the specification of this around-
method are the only places where the value returned by compute-slots is described as a
list rather than a set.)

Given the location of a directly accessible slot, the value of that slot in an instance
can be accessed with the appropriate accessor. For standard-class, this accessor is the
function standard-instance-access. For funcallable-standard-class, this accessor is
the function funcallable-standard-instance-access. In each case, the arguments to the
accessor are the instance and the slot location, in that order. See the definition of each
accessor in Chapter 6 for additional restrictions on the use of these function.

Portable programs are permitted to affect and rely on the allocation of locations only
in the following limited way: By first defining a portable primary method on compute-
slots which orders the returned value in a predictable way, and then relying on the defined
behavior of the specified around-method to assign locations to all directly accessible slots.
Portable programs may compile-in calls to low-level accessors which take advantage of the
resulting predictable allocation of slot locations.

Example:

The following example shows the use of this mechanism to implement a new class metaob-

ject class, ordered-class and class option :slot-order. This option provides control over

the allocation of slot locations. In this simple example implementation, the :slot-order
option is not inherited by subclasses; it controls only instances of the class itself.

(defclass ordered-class (standard-class)
((slot-order :initform ()
:initarg :slot-order
:reader class-slot-order)))

(defmethod compute-slots ((class ordered-class))
(let ((order (class-slot-order class)))
(sort (copy-list (call-next-method))
#'(lambda (a b)
(< (position (slot-definition-name a) order)
(position (slot-definition-name a) order))))))

Following is the source code the user of this extension would write. Note that because
the code above doesn’t implement inheritance of the :slot-order option, the function
distance must not be called on instances of subclasses of point; it can only be called on
instances of point itself.

(defclass point ()
((x :initform O0)

SUBPROTOCOLS 25

(y :initform 0))
(:metaclass ordered-class)
(:slot-order x y))

(defun distance (point)
(sqrt (/ (+ (expt (standard-instance-access point 0) 2)
(expt (standard-instance-access point 1) 2))

2.0)))

In more realistic uses of this mechanism, the calls to the low-level instance structure
accessors would not actually appear textually in the source program, but rather would
be generated by a meta-level analysis program run during the process of compiling the
source program.

Funcallable Instances

Instances of classes which are themselves instances of funcallable-standard-class or one
of its subclasses are called funcallable instances. Funcallable instances can only be created
by allocate-instance (funcallable-standard-class).

Like standard instances, funcallable instances have slots with the normal behavior. They
differ from standard instances in that they can be used as functions as well; that is, they
can be passed to funcall and apply, and they can be stored as the definition of a function
name. Associated with each funcallable instance is the function which it runs when it is
called. This function can be changed with set-funcallable-instance-function.

Example:

The following simple example shows the use of funcallable instances to create a simple,

defstruct-like facility. (Funcallable instances are useful when a program needs to con-

struct and maintain a set of functions and information about those functions. They make
it possible to maintain both as the same object rather than two separate objects linked,
for example, by hash tables.)

(defclass constructor ()
((name :initarg :name :accessor constructor-name)
(fields :initarg :fields :accessor constructor-fields))
(:metaclass funcallable-standard-class))

(defmethod initialize-instance :after ((c constructor) &key)
(with-slots (name fields) c
(set-funcallable-instance-function
c
#'(lambda ()
(let ((new (make-array (1+ (length fields)))))

26 CHAPTER 5. CONCEPTS

(setf (aref new 0) name)

new)))))

(setq c1 (make-instance 'constructor
:name 'position :fields '(x y)))
#<CONSTRUCTOR 262437>

(setq p1 (funcall ci1))
#<ARRAY 3 263674>

Generic Function Invocation Protocol

Associated with each generic function is its discriminating function. Each time the generic
function is called, the discriminating function is called to provide the behavior of the generic
function. The discriminating function receives the full set of arguments received by the
generic function. It must lookup and execute the appropriate methods, and return the
appropriate values.

The discriminating function is computed by the highest layer of the generic function invo-
cation protocol, compute-discriminating-function. Whenever a generic function meta-
object is initialized, reinitialized, or a method is added or removed, the discriminating func-
tion is recomputed. The new discriminating function is then stored with set-funcallable-
instance-function.

Discriminating functions call compute-applicable-methods and compute-applicable-
methods-using-classes to compute the methods applicable to the generic functions argu-
ments. Applicable methods are combined by compute-effective-method to produce an
effective method. Provisions are made to allow memoization of the method applicability
and effective methods computations. (See the description of compute-discriminating-
function for details.)

The body of method definitions are processed by make-method-lambda. The result
of this generic function is a lambda expression which is processed by either compile or the
file compiler to produce a method function. The arguments received by the method function
are controlled by the call-method forms appearing in the effective methods. By default,
method functions accept two arguments: a list of arguments to the generic function, and a
list of next methods. The list of next methods corresponds to the next methods argument
to call-method. If call-method appears with additional arguments, these will be passed
to the method functions as well; in these cases, make-method-lambda must have created
the method lambdas to expect additional arguments.

Dependent Maintenance Protocol

It is convenient for portable metaobjects to be able to memoize information about other
metaobjects, portable or otherwise. Because class and generic function metaobjects can

SUBPROTOCOLS 27

be reinitialized, and generic function metaobjects can be modified by adding and removing
methods, a means must be provided to update this memoized information.

The dependent maintenance protocol supports this by providing a way to register an
object which should be notified whenever a class or generic function is modified. An object
which has been registered this way is called a dependent of the class or generic function
metaobject. The dependents of class and generic function metaobjects are maintained with
add-dependent and remove-dependent. The dependents of a class or generic function
metaobject can be accessed with map-dependents. Dependents are notified about a mod-
ification by calling update-dependent. (See the specification of update-dependent for
detailed description of the circumstances under which it is called.)

To prevent conflicts between two portable programs, or between portable programs and
the implementation, portable code must not register metaobjects themselves as dependents.
Instead, portable programs which need to record a metaobject as a dependent, should
encapsulate that metaobject in some other kind of object, and record that object as the
dependent. The results are undefined if this restriction is violated.

Example:

This example shows a general facility for encapsulating metaobjects before recording

them as dependents. The facility defines a basic kind of encapsulating object: an up-

dater. Specializations of the basic class can be defined with appropriate special updating
behavior. In this way, information about the updating required is associated with each
updater rather than with the metaobject being updated.

Updaters are used to encapsulate any metaobject which requires updating when a
given class or generic function is modified. The function record-updater is called to
both create an updater and add it to the dependents of the class or generic function.
Methods on the generic function update-dependent, specialized to the specific class of
updater do the appropriate update work.

(defclass updater ()
((dependent :initarg :dependent :reader dependent)))

(defun record-updater (class dependee dependent &rest initargs)
(let ((updater (apply #'make-instance class :dependent dependent
initargs)))
(add-dependent dependee updater)
updater))

A flush-cache-updater simply flushes the cache of the dependent when it is updated.
(defclass flush-cache-updater (updater) ())

(defmethod update-dependent (dependee (updater flush-cache-updater)
&rest args)

28 CHAPTER 5. CONCEPTS

(declare (ignore args))
(flush-cache (dependent updater)))

Chapter 6

Generic Functions and

Methods

This chapter describes each of the functions and generic functions that make up the CLOS
Metaobject Protocol. The descriptions appear in alphabetical order with the exception that
all the reader generic functions for each kind of metaobject are grouped together. So, for
example, method-function would be found with method-qualifiers and other method
metaobject readers under “Readers for Method Metaobjects.”

The description of functions follows the same form as used in the CLOS specification.
The description of generic functions is similar to that in the CLOS specification, but some
minor changes have been made in the way methods are presented.

The following is an example of the format for the syntax description of a generic function:

gfl
z y &optional z &key k

This description indicates that gfl is a generic function with two required parameters, z
and y, an optional parameter z and a keyword parameter .

The description of a generic function includes a description of its behavior. This provides
the general behavior, or protocol of the generic function. All methods defined on the generic
function, both portable and specified, must have behavior consistent with this description.

Every generic function described in this section is an instance of the class standard-
generic-function and uses standard method combination.

The description of a generic function also includes descriptions of the specified methods
for that generic function. In the description of these methods, a method signature is used
to describe the parameters and parameter specializers of each method. The following is an
example of the format for a method signature:

29

30 add-dependent Chapter 6

gfl Primary Method
(z class) y &optional z &key k

This signature indicates that this primary method on the generic function gfl has two
required parameters, named z and y. In addition, there is an optional parameter z
and a keyword parameter k. This signature also indicates that the method’s parameter
specializers are the classes named class and t.

The description of each method includes a description of the behavior particular to
that method.

An abbreviated syntax is used when referring to a method defined elsewhere in the
document. This abbreviated syntax includes the name of the generic function, the qual-
ifiers, and the parameter specializers. A reference to the method with the signature
shown above is written as: gfl (class t).

add-dependent Generic Function

SYNTAX
add-dependent
metaobject dependent

ARGUMENTS
The metaobject argument is a class or generic function metaobject.
The dependent argument is an object.

VALUES
The value returned by this generic function is unspecified.

PURrPOSE
This generic function adds dependent to the dependents of metaobject. If dependent is
already in the set of dependents it is not added again (no error is signaled).

The generic function map-dependents can be called to access the set of dependents
of a class or generic function. The generic function remove-dependent can be called to
remove an object from the set of dependents of a class or generic function. The effect of
calling add-dependent or remove-dependent while a call to map-dependents on the
same class or generic function is in progress is unspecified.

The situations in which add-dependent is called are not specified.

METHODS
add-dependent Primary Method
(class standard-class) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.

Generic Functions and Methods add-direct-method 31

This method cannot be overridden unless the following methods are overridden as

well:
remove-dependent (standard-class t)
map-dependents (standard-class t)
add-dependent Primary Method

(class funcallable-standard-class) dependent

No behavior is specified for this method beyond that which is specified for the generic

function.
This method cannot be overridden unless the following methods are overridden as
well:
remove-dependent (funcallable-standard-class t)
map-dependents (funcallable-standard-class t)
add-dependent Primary Method

(generic-function standard-generic-function) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.

This method cannot be overridden unless the following methods are overridden as
well:

remove-dependent (standard-generic-function t)
map-dependents (standard-generic-function t)

REMARKS
See the “Dependent Maintenance Protocol” section for remarks about the use of this facility.

add-direct-method Generic Function

SYNTAX
add-direct-method
spectalizer method

ARGUMENTS
The specializer argument is a specializer metaobject.
The method argument is a method metaobject.

VALUES
The value returned by this generic function is unspecified.

32 add-direct-subclass Chapter 6

PURPOSE

This generic function is called to maintain a set of backpointers from a specializer to the set
of methods specialized to it. If method is already in the set, it is not added again (no error
is signaled).

This set can be accessed as a list by calling the generic function specializer-direct-
methods. Methods are removed from the set by remove-direct-method.

The generic function add-direct-method is called by add-method whenever a method
is added to a generic function. It is called once for each of the specializers of the method.
Note that in cases where a specializer appears more than once in the specializers of a method,
this generic function will be called more than once with the same specializer as argument.

The results are undefined if the specializer argument is not one of the specializers of the
method argument.

METHODS

add-direct-method Primary Method
(specializer class)
(method method)

This method implements the behavior of the generic function for class specializers. No
behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as

well:

remove-direct-method (class method)

specializer-direct-generic-functions (class)

specializer-direct-methods (class)

add-direct-method Primary Method
(specializer eql-specializer)
(method method)

This method implements the behavior of the generic function for eql specializers. No
behavior is specified for this method beyond that which is specified for the generic
function.

add-direct-subclass Generic Function

SYNTAX
add-direct-subclass
superclass subclass

ARGUMENTS
The superclass argument is a class metaobject.

Generic Functions and Methods add-method 33

The subclass argument is a class metaobject.

VALUES
The value returned by this generic function is unspecified.

PURPOSE
This generic function is called to maintain a set of backpointers from a class to its direct
subclasses. This generic function adds subclass to the set of direct subclasses of superclass.
When a class is initialized, this generic function is called once for each direct superclass
of the class.
When a class is reinitialized, this generic function is called once for each added direct
superclass of the class. The generic function remove-direct-subclass is called once for
each deleted direct superclass of the class.

METHODS

add-direct-subclass Primary Method
(superclass class)
(subclass class)

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
remove-direct-subclass (class class)
class-direct-subclasses (class)

add-method Generic Function

SYNTAX
add-method

generic-function method

ARGUMENTS
The generic-function argument is a generic function metaobject.
The method argument is a method metaobject.

VALUES
The generic-function argument is returned.

PurPoSE
This generic function associates an unattached method with a generic function.

An error is signaled if the lambda list of the method is not congruent with the lambda
list of the generic function. An error is also signaled if the method is already associated
with some other generic function.

34 allocate-instance Chapter 6

If the given method agrees with an existing method of the generic function on parameter
specializers and qualifiers, the existing method is removed by calling remove-method be-
fore the new method is added. See the section of the CLOS Specification called “Agreement
on Parameter Specializers and Qualifiers” for a definition of agreement in this context.

Associating the method with the generic function then proceeds in four steps: (i) add
method to the set returned by generic-function-methods and arrange for method-
generic-function to return generic-function; (ii) call add-direct-method for each of the
method’s specializers; (iii) call compute-discriminating-function and install its result
with set-funcallable-instance-function; and (iv) update the dependents of the generic
function.

The generic function add-method can be called by the user or the implementation.

METHODS

add-method Primary Method
(generic-function standard-generic-function)
(method standard-method)

No behavior is specified for this method beyond that which is specified for the generic
function.

allocate-instance Generic Function

SYNTAX
allocate-instance
class &rest initargs

ARGUMENTS
The class argument is a class metaobject.
The initargs argument consists of alternating initialization argument names and values.

VALUES
The value returned is a newly allocated instance of class.

PURPOSE
This generic function is called to create a new, uninitialized instance of a class. The in-
terpretation of the concept of an “uninitialized” instance depends on the class metaobject
class.

Before allocating the new instance, class-finalized-p is called to see if class has been
finalized. If it has not been finalized, finalize-inheritance is called before the new instance
is allocated.

Generic Functions and Methods class-. .. 35

METHODS
allocate-instance Primary Method
(class standard-class) &rest initargs

This method allocates storage in the instance for each slot with allocation :instance.
These slots are unbound. Slots with any other allocation are ignored by this method (no
error is signaled).

allocate-instance Primary Method
(class funcallable-standard-class) &rest initargs

This method allocates storage in the instance for each slot with allocation :instance.
These slots are unbound. Slots with any other allocation are ignored by this method (no
error is signaled).

The funcallable instance function of the instance is undefined—the results are unde-
fined if the instance is applied to arguments before set-funcallable-instance-function
has been used to set the funcallable instance function.

allocate-instance Primary Method
(class built-in-class) &rest initargs

This method signals an error.

class-... Generic Function

The following generic functions are described together under “Readers for Class
Metaobjects” (page 75): class-default-initargs, class-direct-default-initargs, class-
direct-slots, class-direct-subclasses, class-direct-superclasses, class-finalized-p,
class-name, class-precedence-list, class-prototype and class-slots.

compute-applicable-methods Generic Function

SYNTAX
compute-applicable-methods
generic-function arguments

ARGUMENTS
The generic-function argument is a generic function metaobject.
The arguments argument is a list of objects.

VALUES
This generic function returns a possibly empty list of method metaobjects.

36 compute-applicable-methods-using-classes Chapter 6

PURPOSE

This generic function determines the method applicability of a generic function given a list
of required arguments. The returned list of method metaobjects is sorted by precedence
order with the most specific method appearing first. If no methods are applicable to the
supplied arguments the empty list is returned.

When a generic function is invoked, the discriminating function must determine the
ordered list of methods applicable to the arguments. Depending on the generic function and
the arguments, this is done in one of three ways: using a memoized value; calling compute-
applicable-methods-using-classes; or calling compute-applicable-methods. (Refer
to the description of compute-discriminating-function for the details of this process.)

The arguments argument is permitted to contain more elements than the generic function
accepts required arguments; in these cases the extra arguments will be ignored. An error
is signaled if arguments contains fewer elements than the generic function accepts required
arguments.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

METHODS

compute-applicable-methods Primary Method
(generic-function standard-generic-function)
arguments

This method signals an error if any method of the generic function has a specializer
which is neither a class metaobject nor an eql specializer metaobject.

Otherwise, this method computes the sorted list of applicable methods according to
the rules described in the section of the CLOS Specification called “Method Selection
and Combination.”

This method can be overridden. Because of the consistency requirements between
this generic function and compute-applicable-methods-using-classes, doing so may
require also overriding compute-applicable-methods-using-classes (standard-
generic-function t).

compute-applicable-methods-using-classes Generic Function

SYNTAX
compute-applicable-methods-using-classes
generic-function classes

ARGUMENTS
The generic-function argument is a generic function metaobject.
The classes argument is a list of class metaobjects.

Generic Functions and Methods compute-applicable-methods-using-classes 37

VALUES
This generic function returns two values. The first is a possibly empty list of method
metaobjects. The second is either true or false.

PURPOSE
This generic function is called to attempt to determine the method applicability of a generic
function given only the classes of the required arguments.

If it is possible to completely determine the ordered list of applicable methods based
only on the supplied classes, this generic function returns that list as its first value and true
as its second value. The returned list of method metaobjects is sorted by precedence order,
the most specific method coming first. If no methods are applicable to arguments with the
specified classes, the empty list and true are returned.

If it is not possible to completely determine the ordered list of applicable methods based
only on the supplied classes, this generic function returns an unspecified first value and false
as its second value.

When a generic function is invoked, the discriminating function must determine the
ordered list of methods applicable to the arguments. Depending on the generic function and
the arguments, this is done in one of three ways: using a memoized value; calling compute-
applicable-methods-using-classes; or calling compute-applicable-methods. (Refer
to the description of compute-discriminating-function for the details of this process.)

The following consistency relationship between compute-applicable-methods-using-
classes and compute-applicable-methods must be maintained: for any given generic
function and set of arguments, if compute-applicable-methods-using-classes returns
a second value of true, the first value must be equal to the value that would be returned
by a corresponding call to compute-applicable-methods. The results are undefined if a
portable method on either of these generic functions causes this consistency to be violated.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

METHODS

compute-applicable-methods-using-classes Primary Method
(generic-function standard-generic-function)
classes

If any method of the generic function has a specializer which is neither a class metaobject
nor an eql specializer metaobject, this method signals an error.

In cases where the generic function has no methods with eql specializers, or has no
methods with eql specializers that could be applicable to arguments of the supplied
classes, this method returns the ordered list of applicable methods as its first value and
true as its second value.

Otherwise this method returns an unspecified first value and false as its second value.

38 compute-class-precedence-list Chapter 6

This method can be overridden. Because of the consistency requirements between
this generic function and compute-applicable-methods, doing so may require also
overriding compute-applicable-methods (standard-generic-function t).

REMARKS

This generic function exists to allow user extensions which alter method lookup rules, but
which base the new rules only on the classes of the required arguments, to take advantage
of the class-based method lookup memoization found in many implementations. (There is
of course no requirement for an implementation to provide this optimization.)

Such an extension can be implemented by two methods, one on this generic function and
one on compute-applicable-methods. Whenever the user extension is in effect, the first
method will return a second value of true. This should allow the implementation to absorb
these cases into its own memoization scheme.

To get appropriate performance, other kinds of extensions may require methods on
compute-discriminating-function which implement their own memoization scheme.

compute-class-precedence-list Generic Function

SyNTAX
compute-class-precedence-list
class

ARGUMENTS
The class argument is a class metaobject.

VALUES
The value returned by this generic function is a list of class metaobjects.

PURPOSE
This generic-function is called to determine the class precedence list of a class.

The result is a list which contains each of class and its superclasses once and only once.
The first element of the list is class and the last element is the class named t.

All methods on this generic function must compute the class precedence list as a function
of the ordered direct superclasses of the superclasses of class. The results are undefined if
the rules used to compute the class precedence list depend on any other factors.

When a class is finalized, finalize-inheritance calls this generic function and associates
the returned value with the class metaobject. The value can then be accessed by calling
class-precedence-list.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

Generic Functions and Methods compute-default-initargs 39

METHODS
compute-class-precedence-list Primary Method
(class class)

This method computes the class precedence list according to the rules described in the
section of the CLOS Specification called “Determining the Class Precedence List.”

This method signals an error if class or any of its superclasses is a forward referenced
class.

This method can be overridden.

compute-default-initargs Generic Function

SYNTAX
compute-default-initargs
class

ARGUMENTS

The class argument is a class metaobject.

VALUES

The value returned by this generic function is a list of canonicalized default initialization
arguments.

PurPoSE
This generic-function is called to determine the default initialization arguments for a class.

The result is a list of canonicalized default initialization arguments, with no duplication
among initialization argument names.

All methods on this generic function must compute the default initialization arguments
as a function of only: (i) the class precedence list of class, and (ii) the direct default
initialization arguments of each class in that list. The results are undefined if the rules used
to compute the default initialization arguments depend on any other factors.

When a class is finalized, finalize-inheritance calls this generic function and associates
the returned value with the class metaobject. The value can then be accessed by calling
class-default-initargs.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

40 compute-discriminating-function Chapter 6

METHODS
compute-default-initargs Primary Method
(class standard-class)

compute-default-initargs Primary Method
(class funcallable-standard-class)

These methods compute the default initialization arguments according to the rules de-
scribed in the section of the CLOS Specification called “Defaulting of Initialization Ar-
guments.”

These methods signal an error if class or any of its superclasses is a forward referenced
class.

These methods can be overridden.

compute-discriminating-function Generic Function

SYNTAX
compute-discriminating-function
generic-function

ARGUMENTS
The generic-function argument is a generic function metaobject.

VALUES
The value returned by this generic function is a function.

PURrRPOSE

This generic function is called to determine the discriminating function for a generic function.
When a generic function is called, the installed discriminating function is called with the
full set of arguments received by the generic function, and must implement the behavior of
calling the generic function: determining the ordered set of applicable methods, determining
the effective method, and running the effective method.

To determine the ordered set of applicable methods, the discriminating function first
calls compute-applicable-methods-using-classes. If compute-applicable-methods-
using-classes returns a second value of false, the discriminating function then calls
compute-applicable-methods.

When compute-applicable-methods-using-classes returns a second value of true,
the discriminating function is permitted to memoize the first returned value as follows. The
discriminating function may reuse the list of applicable methods without calling compute-
applicable-methods-using-classes again provided that:

(1) the generic function is being called again with required arguments which are
instances of the same classes,
(i1) the generic function has not been reinitialized,

Generic Functions and Methods compute-effective-method 41

(iii) no method has been added to or removed from the generic function,

(iv) for all the specializers of all the generic function’s methods which are classes,
their class precedence lists have not changed and

(v) for any such memoized value, the class precedence list of the class of each of
the required arguments has not changed.

Determination of the effective method is done by calling compute-effective-method.
When the effective method is run, each method’s function is called, and receives as argu-
ments: (i) a list of the arguments to the generic function, and (ii) whatever other arguments
are specified in the call-method form indicating that the method should be called. (See
make-method-lambda for more information about how method functions are called.)

The generic function compute-discriminating-function is called, and its result
installed, by add-method, remove-method, initialize-instance and reinitialize-
instance.

METHODS
compute-discriminating-function Primary Method
(generic-function standard-generic-function)

No behavior is specified for this method beyond that specified for the generic function.
This method can be overridden.

compute-effective-method Generic Function

SYNTAX
compute-effective-method
generic-function method-combination methods

ARGUMENTS

The generic-function argument is a generic function metaobject.
The method-combination argument is a method combination metaobject.
The methods argument is a list of method metaobjects.

VALUES
This generic function returns two values. The first is an effective method, the second is a
list of effective method options.

PURPOSE
This generic function is called to determine the effective method from a sorted list of method
metaobjects.

An effective method 1s a form that describes how the applicable methods are to be
combined. Inside of effective method forms are call-method forms which indicate that a
particular method is to be called. The arguments to the call-method form indicate exactly

42 compute-effective-slot-definition Chapter 6

how the method function of the method should be called. (See make-method-lambda for
more details about method functions.)

An effective method option has the same interpretation and syntax as either the :argu-
ments or the :generic-function option in the long form of define-method-combination.

More information about the form and interpretation of effective methods and effective
method options can be found under the description of the define-method-combination
macro in the CLOS specification.

This generic function can be called by the user or the implementation. It is called by
discriminating functions whenever a sorted list of applicable methods must be converted to
an effective method.

METHODS

compute-effective-method Primary Method
(generic-function standard-generic-function)
method-combination
methods

This method computes the effective method according to the rules of the method com-
bination type implemented by method-combination.
This method can be overridden.

compute-effective-slot-definition Generic Function

SyNTAX
compute-effective-slot-definition
class name direct-slot-definitions

ARGUMENTS
The class argument is a class metaobject.

The name argument is a slot name.

The direct-slot-definitions argument is an ordered list of direct slot definition metaob-
jects. The most specific direct slot definition metaobject appears first in the list.

VALUES
The value returned by this generic function is an effective slot definition metaobject.

PURPOSE
This generic function determines the effective slot definition for a slot in a class. It is called
by compute-slots once for each slot accessible in instances of class.

This generic function uses the supplied list of direct slot definition metaobjects to com-
pute the inheritance of slot properties for a single slot. The returned effective slot definition
represents the result of computing the inheritance. The name of the new effective slot
definition is the same as the name of the direct slot definitions supplied.

Generic Functions and Methods compute-slots 43

The class of the effective slot definition metaobject is determined by calling effective-
slot-definition-class. The effective slot definition is then created by calling make-
instance. The initialization arguments passed in this call to make-instance are used to
initialize the new effective slot definition metaobject. See “Initialization of Slot Definition
Metaobjects” for details.

METHODS

compute-effective-slot-definition Primary Method
(class standard-class)
name

direct-slot-definitions

This method implements the inheritance and defaulting of slot options following the rules
described in the “Inheritance of Slots and Options” section of the CLOS Specification.

This method can be extended, but the value returned by the extending method must
be the value returned by this method.

compute-effective-slot-definition Primary Method
(class funcallable-standard-class)
name
direct-slot-definitions

This method implements the inheritance and defaulting of slot options following the rules
described in the “Inheritance of Slots and Options” section of the CLOS Specification.

This method can be extended, but the value returned by the extending method must
be the value returned by this method.

compute-slots Generic Function

SYNTAX
compute-slots
class

ARGUMENTS
The class argument is a class metaobject.

VALUES
The value returned is a set of effective slot definition metaobjects.

PURPOSE
This generic function computes a set of effective slot definition metaobjects for the class
class. The result is a list of effective slot definition metaobjects: one for each slot that will
be accessible in instances of class.

This generic function proceeds in 3 steps:

44 compute-slots Chapter 6

The first step collects the full set of direct slot definitions from the superclasses of class.

The direct slot definitions are then collected into individual lists, one list for each slot
name associated with any of the direct slot definitions. The slot names are compared with
eql. Each such list is then sorted into class precedence list order. Direct slot definitions
coming from classes earlier in the class precedence list of class appear before those coming
from classes later in the class precedence list. For each slot name, the generic function
compute-effective-slot-definition is called to compute an effective slot definition. The
result of compute-slots is a list of these effective slot definitions, in unspecified order.

In the final step, the location for each effective slot definition is set. This is done by
specified around-methods; portable methods cannot take over this behavior. For more
information on the slot definition locations, see the section “Instance Structure Protocol.”

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

METHODS
compute-slots Primary Method
(class standard-class)

This method implements the specified behavior of the generic function.

This method can be overridden.
compute-slots Primary Method
(class funcallable-standard-class)

This method implements the specified behavior of the generic function.

This method can be overridden.
compute-slots Around-Method
(class standard-class)
This method implements the specified behavior of computing and storing slot locations.
This method cannot be overridden.
compute-slots Around-Method

(class funcallable-standard-class)

This method implements the specified behavior of computing and storing slot locations.
This method cannot be overridden.

Generic Functions and Methods direct-slot-definition-class 45

direct-slot-definition-class Generic Function

SYNTAX
direct-slot-definition-class
class &rest initargs

ARGUMENTS
The class argument is a class metaobject.
The initargs argument is a set of initialization arguments and values.

VALUES
The value returned is a subclass of the class direct-slot-definition.

PURPOSE
When a class is initialized, each of the canonicalized slot specifications must be converted
to a direct slot definition metaobject. This generic function is called to determine the class
of that direct slot definition metaobject.

The initargs argument is simply the canonicalized slot specification for the slot.

METHODS

direct-slot-definition-class Primary Method
(class standard-class)
&rest initargs

This method returns the class standard-direct-slot-definition.
This method can be overridden.

direct-slot-definition-class Primary Method
(class funcallable-standard-class)
&rest initargs

This method returns the class standard-direct-slot-definition.
This method can be overridden.

effective-slot-definition-class Generic Function

SYNTAX
effective-slot-definition-class
class &rest initargs

ARGUMENTS
The class argument is a class metaobject.
The initargs argument is a set of initialization arguments and values.

46 ensure-class Chapter 6

VALUES
The value returned is a subclass of the class effective-slot-definition-class.

PURPOSE

This generic function is called by compute-effective-slot-definition to determine the
class of the resulting effective slot definition metaobject. The initargs argument is the set of
initialization arguments and values that will be passed to make-instance when the effective
slot definition metaobject is created.

METHODS

effective-slot-definition-class Primary Method
(class standard-class)
&rest initargs

This method returns the class standard-effective-slot-definition.
This method can be overridden.

effective-slot-definition-class Primary Method
(class funcallable-standard-class)
&rest initargs

This method returns the class standard-effective-slot-definition.
This method can be overridden.

ensure-class Function

SYNTAX
ensure-class
name &key &allow-other-keys

ARGUMENTS
The name argument is a symbol.

Some of the keyword arguments accepted by this function are actually processed by
ensure-class-using-class, others are processed during initialization of the class metaobject
(as described in the section called “Initialization of Class Metaobjects”).

VALUES
The result is a class metaobject.

PURPOSE

This function is called to define or redefine a class with the specified name, and can be called
by the user or the implementation. It is the functional equivalent of defclass, and is called
by the expansion of the defclass macro.

Generic Functions and Methods ensure-class-using-class 47

The behavior of this function is actually implemented by the generic function ensure-
class-using-class. When ensure-class is called, it immediately calls ensure-class-using-
class and returns that result as its own.

The first argument to ensure-class-using-class is computed as follows:

e If name names a class (find-class returns a class when called with name) use that class.
o Otherwise use nil.

The second argument is name. The remaining arguments are the complete set of keyword
arguments received by the ensure-class function.

ensure-class-using-class Generic Function

SYNTAX
ensure-class-using-class
class name &key :direct-default-initargs :direct-slots
:direct-superclasses :name
:metaclass

&allow-other—-keys

ARGUMENTS
The class argument is a class metaobject or nil.

The name argument is a class name.

The :metaclass argument is a class metaobject class or a class metaobject class name.
If this argument is not supplied, it defaults to the class named standard-class. If a class
name is supplied, it is interpreted as the class with that name. If a class name is supplied,
but there is no such class, an error is signaled.

The :direct-superclasses argument is a list of which each element is a class metaobject
or a class name. An error is signaled if this argument is not a proper list.

For the interpretation of additional keyword arguments, see “Initialization of Class Meta-
objects” (page 57).

VALUES
The result i1s a class metaobject.

PURPOSE
This generic function is called to define or modify the definition of a named class. It is called
by the ensure-class function. It can also be called directly.

The first step performed by this generic function is to compute the set of initialization
arguments which will be used to create or reinitialize the named class. The initialization
arguments are computed from the full set of keyword arguments received by this generic
function as follows:

48 ensure-class-using-class Chapter 6

e The :metaclass argument is not included in the initialization arguments.

o If the :direct-superclasses argument was received by this generic function, it is con-
verted into a list of class metaobjects. This conversion does not affect the structure
of the supplied :direct-superclasses argument. For each element in the :direct-
superclasses argument:

e If the element is a class metaobject, that class metaobject is used.

e If the element names a class, that class metaobject is used.

e Otherwise an instance of the class forward-referenced-class is created and used.
The proper name of the newly created forward referenced class metaobject is set to
name.

e All other keyword arguments are included directly in the initialization arguments.

If the class argument is nil, a new class metaobject is created by calling the make-
instance generic function with the value of the :metaclass argument as its first argument,
and the previously computed initialization arguments. The proper name of the newly created
class metaobject is set to name. The newly created class metaobject is returned.

If the class argument is a forward referenced class, change-class is called to change
its class to the value specified by the :metaclass argument. The class metaobject is then
reinitialized with the previously initialization arguments. (This is a documented violation
of the general constraint that change-class not be used with class metaobjects.)

If the class of the class argument is not the same as the class specified by the :metaclass
argument, an error is signaled.

Otherwise, the class metaobject class is redefined by calling the reinitialize-instance
generic function with class and the initialization arguments. The class argument is then
returned.

METHODS
ensure-class-using-class Primary Method
(class class)
name
&key :metaclass
:direct-superclasses

&allow-other-keys

This method implements the behavior of the generic function in the case where the class
argument is a class.

This method can be overridden.

Generic Functions and Methods ensure-generic-function 49

ensure-class-using-class Primary Method
(class forward-referenced-class)
name
&key :metaclass
:direct-superclasses

&allow-other-keys

This method implements the behavior of the generic function in the case where the class
argument is a forward referenced class.

ensure-class-using-class Primary Method
(class null)
name
&key :metaclass
:direct-superclasses

&allow-other-keys

This method implements the behavior of the generic function in the case where the class
argument is nil.

ensure-generic-function Function

SYNTAX
ensure-generic-function
function-name &key &allow-other-keys

ARGUMENTS
The function-name argument is a symbol or a list of the form (setf symbol).

Some of the keyword arguments accepted by this function are actually processed by
ensure-generic-function-using-class, others are processed during initialization of the
generic function metaobject (as described in the section called “Initialization of Generic
Function Metaobjects”).

VALUES
The result is a generic function metaobject.

PURPOSE

This function is called to define a globally named generic function or to specify or modify
options and declarations that pertain to a globally named generic function as a whole. Tt
can be called by the user or the implementation.

50 ensure-generic-function-using-class Chapter 6

It is the functional equivalent of defgeneric, and is called by the expansion of the
defgeneric and defmethod macros.

The behavior of this function is actually implemented by the generic function ensure-
generic-function-using-class. When ensure-generic-function is called, it immediately
calls ensure-generic-function-using-class and returns that result as its own.

The first argument to ensure-generic-function-using-class is computed as follows:

e If function-name names a non-generic function, a macro, or a special form, an error is
signaled.

o If function-name names a generic function, that generic function metaobject is used.

e Otherwise, nil is used.

The second argument is function-name. The remaining arguments are the complete set
of keyword arguments received by ensure-generic-function.

ensure-generic-function-using-class Generic Function

SYNTAX
ensure-generic-function-using-class
generic-function
function-name
&key :argument-precedence-order :declarations
:documentation :generic-function-class
:lambda-list :method-class
:method-combination :name

&allow-other-keys

ARGUMENTS
The generic-function argument is a generic function metaobject or nil.

The function-name argument is a symbol or a list of the form (setf symbol).

The :generic-function-class argument is a class metaobject or a class name. If it is
not supplied, it defaults to the class named standard-generic-function. If a class name
is supplied, it is interpreted as the class with that name. If a class name is supplied, but
there 1s no such class, an error is signaled.

For the interpretation of additional keyword arguments, see “Initialization of Generic
Function Metaobjects” (page 61).

VALUES
The result is a generic function metaobject.

Generic Functions and Methods ensure-generic-function-using-class 51

PURPOSE

The generic function ensure-generic-function-using-class is called to define or modify
the definition of a globally named generic function. It is called by the ensure-generic-
function function. It can also be called directly.

The first step performed by this generic function is to compute the set of initialization
arguments which will be used to create or reinitialize the globally named generic function.
These initialization arguments are computed from the full set of keyword arguments received
by this generic function as follows:

¢ The :generic-function-class argument is not included in the initialization arguments.

e If the :method-class argument was received by this generic function, it is converted
into a class metaobject. This is done by looking up the class name with find-class. If
there is no such class, an error is signalled.

e All other keyword arguments are included directly in the initialization arguments.

If the generic-function argument is nil, an instance of the class specified by the :generic-
function-class argument is created by calling make-instance with the previously com-
puted initialization arguments. The function name function-name is set to name the generic
function. The newly created generic function metaobject is returned.

If the class of the generic-function argument is not the same as the class specified by
the :generic-function-class argument, an error is signaled.

Otherwise the generic function generic-function is redefined by calling the reinitialize-
instance generic function with generic-function and the initialization arguments. The
generic-function argument is then returned.

METHODS

ensure-generic-function-using-class Primary Method
(generic-function generic-function)
function-name
&key :generic-function-class

&allow-other-keys

This method implements the behavior of the generic function in the case where function-
name names an existing generic function.

This method can be overridden.

52 extract-lambda-list Chapter 6

ensure-generic-function-using-class Primary Method
(generic-function null)
function-name
&key :generic-function-class

&allow-other-keys

This method implements the behavior of the generic function in the case where function-
name names no function, generic function, macro or special form.

eql-specializer-object Function

SyNTAX
eql-specializer-object
eql-specializer

ARGUMENTS
The eql-specializer argument is an eql specializer metaobject.

VALUES
The value returned by this function is an object.

PurPOSE
This function returns the object associated with egl-specializer during initialization. The
value is guaranteed to be eql to the value originally passed to intern-eql-specializer, but
it is not necessarily eq to that value.

This function signals an error if egl-specializer is not an eql specializer.

extract-lambda-list Function

SYNTAX
extract-lambda-list
spectalized-lambda-list

ARGUMENTS

The specialized-lambda-list argument is a specialized lambda list as accepted by defmethod.

VALUES
The result is an unspecialized lambda list.

Generic Functions and Methods extract-specializer-names 53

PURPOSE
This function takes a specialized lambda list and returns the lambda list with the specializers
removed. This is a non-destructive operation. Whether the result shares any structure with
the argument is unspecified.

If the specialized-lambda-list argument does not have legal syntax, an error is signaled.
This syntax checking does not check the syntax of the actual specializer names, only the
syntax of the lambda list and where the specializers appear.

EXAMPLES
(extract-lambda-list '((p position))) ==> (P)
(extract-lambda-list '((p position) x y)) => (P XY)

(extract-lambda-list '(a (b (eql x)) ¢ &rest i)) ==> (A B C &OPTIONAL I)

extract-specializer-names Function

SYNTAX
extract-specializer-names
spectalized-lambda-list

ARGUMENTS
The specialized-lambda-list argument is a specialized lambda list as accepted by defmethod.

VALUES
The result is a list of specializer names.

PURPOSE
This function takes a specialized lambda list and returns its specializer names. This is a non-
destructive operation. Whether the result shares structure with the argument is unspecified.
The results are undefined if the result of this function is modified.
The result of this function will be a list with a number of elements equal to the number
of required arguments in specialized-lambda-list. Specializers are defaulted to the symbol t.
If the specialized-lambda-list argument does not have legal syntax, an error is signaled.
This syntax checking does not check the syntax of the actual specializer names, only the
syntax of the lambda list and where the specializers appear.

EXAMPLES
(extract-specializer-names '((p position))) ==> (POSITION)
(extract-specializer-names '((p position) x y)) ==> (POSITION T T)

(extract-specializer-names '(a (b (eql x)) ¢ &rest i)) ==> (T (EQL X) T)

54 find-method-combination Chapter 6

finalize-inheritance Generic Function

SYNTAX
finalize-inheritance
class

ARGUMENTS
The class argument is a class metaobject.

VALUES
The value returned by this generic function is unspecified.

PURPOSE
This generic function is called to finalize a class metaobject. This is described in the Section
named “Class Finalization Protocol.”

After finalize-inheritance returns, the class metaobject is finalized and the result of
calling class-finalized-p on the class metaobject will be true.

METHODS
finalize-inheritance Primary Method
(class standard-class)

finalize-inheritance Primary Method
(class funcallable-standard-class)

No behavior is specified for these methods beyond that which is specified for the generic
function.
finalize-inheritance Primary Method

(class forward-referenced-class)

This method signals an error.

find-method-combination Generic Function

SyNTAX

find-method-combination
generic-function
method-combination-type-name
method-combination-options

ARGUMENTS
The generic-function argument is a generic function metaobject.

Generic Functions and Methods funcallable-standard-instance-access 55

The method-combination-type-name argument is a symbol which names a type of method
combination.

The method-combination-options argument is a list of arguments to the method combi-
nation type.

VALUES
The value returned by this generic function is a method combination metaobject.

PurPoOSE
This generic function is called to determine the method combination object used by a generic
function.

REMARKS
Further details of method combination metaobjects are not specified.

funcallable-standard-instance-access Function

SYNTAX
funcallable-standard-instance-access
instance location

ARGUMENTS
The tnstance argument is an object.
The location argument is a slot location.

VALUES
The result of this function is an object.

PURPOSE
This function is called to provide direct access to a slot in an instance. By usurping the
normal slot lookup protocol, this function is intended to provide highly optimized access to
the slots associated with an instance.

The following restrictions apply to the use of this function:

o The instance argument must be a funcallable instance (it must have been returned by
allocate-instance (funcallable-standard-class)).

e The instance argument cannot be an non-updated obsolete instance.

e The location argument must be a location of one of the directly accessible slots of the
instance’s class.

e The slot must be bound.

The results are undefined if any of these restrictions are not met.

56 generic-function-. . . Chapter 6

generic-function-. .. Generic Function

The following generic functions are described together under “Readers for Generic Func-
tion Metaobjects” (page 79): generic-function-argument-precedence-order, generic-
function-declarations, generic-function-lambda-list, generic-function-method-
class, generic-function-method-combination, generic-function-methods and generic-
function-name.

Generic Functions and Methods Initialization of Class Metaobjects 57

Initialization of Class Metaobjects

A class metaobject can be created by calling make-instance. The initialization argu-
ments establish the definition of the class. A class metaobject can be redefined by calling
reinitialize-instance. Some classes of class metaobject do not support redefinition; in
these cases, reinitialize-instance signals an error.

Initialization of a class metaobject must be done by calling make-instance and allowing
it to call initialize-instance. Reinitialization of a class metaobject must be done by calling
reinitialize-instance. Portable programs must not call initialize-instance directly to
initialize a class metaobject. Portable programs must not call shared-initialize directly
to initialize or reinitialize a class metaobject. Portable programs must not call change-
class to change the class of any class metaobject or to turn a non-class object into a class
metaobject.

Since metaobject classes may not be redefined, no behavior is specified for the result
of calls to update-instance-for-redefined-class on class metaobjects. Since the class of
class metaobjects may not be changed, no behavior is specified for the result of calls to
update-instance-for-different-class on class metaobjects.

During initialization or reinitialization, each initialization argument is checked for errors
and then associated with the class metaobject. The value can then be accessed by calling
the appropriate accessor as shown in Table 6.1.

This section begins with a description of the error checking and processing of each
initialization argument. This is followed by a table showing the generic functions that can
be used to access the stored initialization arguments. Initialization behavior specific to
the different specified class metaobject classes comes next. The section ends with a set of
restrictions on portable methods affecting class metaobject initialization and reinitialization.

In these descriptions, the phrase “this argument defaults to value” means that when
that initialization argument is not supplied, initialization or reinitialization is performed as
if value had been supplied. For some initialization arguments this could be done by the use
of default initialization arguments, but whether it is done this way is not specified. Imple-
mentations are free to define default initialization arguments for specified class metaobject
classes. Portable programs are free to define default initialization arguments for portable
subclasses of the class class.

Unless there is a specific note to the contrary, then during reinitialization, if an initial-
ization argument is not supplied, the previously stored value is left unchanged.

e The :direct-default-initargs argument is a list of canonicalized default initialization
arguments.

An error is signaled if this value is not a proper list, or if any element of the list is not
a canonicalized default initialization argument.

If the class metaobject is being initialized, this argument defaults to the empty list.

58

Initialization of Class Metaobjects Chapter 6

The :direct-slots argument is a list of canonicalized slot specifications.

An error is signaled if this value is not a proper list or if any element of the list is not a
canonicalized slot specification.

After error checking, this value is converted to a list of direct slot definition metaob-
jects before it is associated with the class metaobject. Conversion of each canonicalized
slot specification to a direct slot definition metaobject is a two-step process. First, the
generic function direct-slot-definition-class is called with the class metaobject and
the canonicalized slot specification to determine the class of the new direct slot definition
metaobject; this permits both the class metaobject and the canonicalized slot specifi-
cation to control the resulting direct slot definition metaobject class. Second, make-
instance is applied to the direct slot definition metaobject class and the canonicalized
slot specification. This conversion could be implemented as shown in the following code:

(defun convert-to-direct-slot-definition (class canonicalized-slot)
(apply #'make-instance
(apply #'direct-slot-definition-class
class canonicalized-slot)
canonicalized-slot))

If the class metaobject is being initialized, this argument defaults to the empty list.

Once the direct slot definition metaobjects have been created, the specified reader and
writer methods are created. The generic functions reader-method-class and writer-
method-class are called to determine the classes of the method metaobjects created.

The :direct-superclasses argument is a list of class metaobjects. Classes which do not
support multiple inheritance signal an error if the list contains more than one element.

An error is signaled if this value is not a proper list or if validate-superclass applied
to class and any element of this list returns false.

When the class metaobject is being initialized, and this argument is either not supplied
or is the empty list, this argument defaults as follows: if the class is an instance of
standard-class or one of its subclasses the default value is a list of the class standard-
object; if the class is an instance of funcallable-standard-class or one of its subclasses
the default value is list of the class funcallable-standard-object.

After any defaulting of the value, the generic function add-direct-subclass is called
once for each element of the list.

When the class metaobject is being reinitialized and this argument is supplied, the
generic function remove-direct-subclass is called once for each class metaobject in
the previously stored value but not in the new value; the generic function add-direct-
subclass is called once for each class metaobject in the new value but not in the previ-
ously stored value.

Generic Functions and Methods Initialization of Class Metaobjects 59

e The :documentation argument is a string or nil.
An error is signaled if this value is not a string or nil.

If the class metaobject is being initialized, this argument defaults to nil.

e The :name argument is an object.

If the class is being initialized, this argument defaults to nil.

After the processing and defaulting of initialization arguments described above, the value
of each initialization argument is associated with the class metaobject. These values can
then be accessed by calling the corresponding generic function. The correspondences are as
follows:

Initialization Argument Generic Function
:direct-default-initargs class-direct-default-initargs
:direct-slots class-direct-slots
:direct-superclasses class-direct-superclasses
:documentation documentation

:name class-name

Table 6.1 Initialization arguments and accessors for class metaobjects.

Instances of the class standard-class support multiple inheritance and reinitialization.
Instances of the class funcallable-standard-class support multiple inheritance and reini-
tialization. For forward referenced classes, all of the initialization arguments default to
nil.

Since built-in classes cannot be created or reinitialized by the user, an error is signaled if
initialize-instance or reinitialize-instance are called to initialize or reinitialize a derived
instance of the class built-in-class.

METHODS

It is not specified which methods provide the initialization and reinitialization behavior
described above. Instead, the information needed to allow portable programs to specialize
this behavior is presented as a set of restrictions on the methods a portable program can
define. The model is that portable initialization methods have access to the class metaobject
when either all or none of the specified initialization has taken effect.

These restrictions govern the methods that a portable program can define on the generic
functions initialize-instance, reinitialize-instance, and shared-initialize. These re-
strictions apply only to methods on these generic functions for which the first specializer
is a subclass of the class class. Other portable methods on these generic functions are not
affected by these restrictions.

60 Initialization of Class Metaobjects Chapter 6

e Portable programs must not define methods on shared-initialize.

e For initialize-instance and reinitialize-instance:

e Portable programs must not define primary methods.

e Portable programs may define around-methods, but these must be extending, not
overriding methods.

e Portable before-methods must assume that when they are run, none of the initializa-
tion behavior described above has been completed.

e Portable after-methods must assume that when they are run, all of the initialization
behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

Generic Functions and Methods Initialization of Generic Function Metaobjects 61

Initialization of Generic Function Metaobjects

A generic function metaobject can be created by calling make-instance. The initialization
arguments establish the definition of the generic function. A generic function metaobject can
be redefined by calling reinitialize-instance. Some classes of generic function metaobject
do not support redefinition; in these cases, reinitialize-instance signals an error.

Initialization of a generic function metaobject must be done by calling make-instance
and allowing it to call initialize-instance. Reinitialization of a generic-function metaobject
must be done by calling reinitialize-instance. Portable programs must not call initialize-
instance directly to initialize a generic function metaobject. Portable programs must not
call shared-initialize directly to initialize or reinitialize a generic function metaobject.
Portable programs must not call change-class to change the class of any generic function
metaobject or to turn a non-generic-function object into a generic function metaobject.

Since metaobject classes may not be redefined, no behavior is specified for the result of
calls to update-instance-for-redefined-class on generic function metaobjects. Since the
class of a generic function metaobject may not be changed, no behavior is specified for the
results of calls to update-instance-for-different-class on generic function metaobjects.

During initialization or reinitialization, each initialization argument is checked for errors
and then associated with the generic function metaobject. The value can then be accessed
by calling the appropriate accessor as shown in Table 6.2.

This section begins with a description of the error checking and processing of each
initialization argument. This is followed by a table showing the generic functions that
can be used to access the stored initialization arguments. The section ends with a set of
restrictions on portable methods affecting generic function metaobject initialization and
reinitialization.

In these descriptions, the phrase “this argument defaults to value” means that when
that initialization argument is not supplied, initialization or reinitialization is performed as
if value had been supplied. For some initialization arguments this could be done by the use
of default initialization arguments, but whether it is done this way is not specified. Imple-
mentations are free to define default initialization arguments for specified generic function
metaobject classes. Portable programs are free to define default initialization arguments for
portable subclasses of the class generic-function.

Unless there is a specific note to the contrary, then during reinitialization, if an initial-
ization argument is not supplied, the previously stored value is left unchanged.

e The :argument-precedence-order argument is a list of symbols.

An error is signaled if this argument appears but the :lambda-list argument does not
appear. An error is signaled if this value is not a proper list or if this value is not
a permutation of the symbols from the required arguments part of the :lambda-list
initialization argument.

62

Initialization of Generic Function Metaobjects Chapter 6

When the generic function is being initialized or reinitialized, and this argument is not
supplied, but the :lambda-list argument is supplied, this value defaults to the symbols
from the required arguments part of the :lambda-list argument, in the order they
appear in that argument. If neither argument is supplied, neither are initialized (see the
description of :lambda-list.)

The :declarations argument is a list of declarations.

An error is signaled if this value is not a proper list or if each of its elements is not a
legal declaration.

When the generic function is being initialized, and this argument is not supplied, it
defaults to the empty list.

The :documentation argument is a string or nil.

An error is signaled if this value is not a string or nil.

If the generic function is being initialized, this argument defaults to nil.

The :lambda-list argument is a lambda list.
An error is signaled if this value is not a proper generic function lambda list.

When the generic function is being initialized, and this argument is not supplied, the
generic function’s lambda list is not initialized. The lambda list will be initialized later,
either when the first method is added to the generic function, or a later reinitialization
of the generic function.

The :method-combination argument is a method combination metaobject.

The :method-class argument is a class metaobject.

An error is signaled if this value is not a subclass of the class method.

When the generic function is being initialized, and this argument is not supplied, it
defaults to the class standard-method.

The :name argument is an object.

If the generic function is being initialized, this argument defaults to nil.

After the processing and defaulting of initialization arguments described above, the

value of each initialization argument is associated with the generic function metaobject.
These values can then be accessed by calling the corresponding generic function. The
correspondences are as follows:

Generic Functions and Methods Initialization of Generic Function Metaobjects 63

Initialization Argument Generic Function

:argument-precedence-order generic-function-argument-precedence-order

:declarations generic-function-declarations
:documentation documentation

:lambda-list generic-function-lambda-list
:method-combination generic-function-method-combination
:method-class generic-function-method-class

:name generic-function-name

Table 6.2 Initialization arguments and accessors for generic function metaobjects.

METHODS

It is not specified which methods provide the initialization and reinitialization behavior
described above. Instead, the information needed to allow portable programs to specialize
this behavior is presented as a set of restrictions on the methods a portable program can
define. The model is that portable initialization methods have access to the generic function
metaobject when either all or none of the specified initialization has taken effect.

These restrictions govern the methods that a portable program can define on the generic
functions initialize-instance, reinitialize-instance, and shared-initialize. These re-
strictions apply only to methods on these generic functions for which the first specializer
is a subclass of the class generic-function. Other portable methods on these generic
functions are not affected by these restrictions.

e Portable programs must not define methods on shared-initialize.

e For initialize-instance and reinitialize-instance:

e Portable programs must not define primary methods.

e Portable programs may define around-methods, but these must be extending, not
overriding methods.

e Portable before-methods must assume that when they are run, none of the initializa-
tion behavior described above has been completed.

e Portable after-methods must assume that when they are run, all of the initialization
behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

64 Initialization of Method Metaobjects Chapter 6

Initialization of Method Metaobjects

A method metaobject can be created by calling make-instance. The initialization argu-
ments establish the definition of the method. A method metaobject cannot be redefined;
calling reinitialize-instance signals an error.

Initialization of a method metaobject must be done by calling make-instance and allow-
ing it to call initialize-instance. Portable programs must not call initialize-instance di-
rectly to initialize a method metaoject. Portable programs must not call shared-initialize
directly to initialize a method metaobject. Portable programs must not call change-class
to change the class of any method metaobject or to turn a non-method object into a method
metaobject.

Since metaobject classes may not be redefined, no behavior is specified for the result of
calls to update-instance-for-redefined-class on method metaobjects. Since the class of
a method metaobject cannot be changed, no behavior is specified for the result of calls to
update-instance-for-different-class on method metaobjects.

During initialization, each initialization argument is checked for errors and then associ-
ated with the method metaobject. The value can then be accessed by calling the appropriate
accessor as shown in Table 6.3.

This section begins with a description of the error checking and processing of each
initialization argument. This is followed by a table showing the generic functions that
can be used to access the stored initialization arguments. The section ends with a set of
restrictions on portable methods affecting method metaobject initialization.

In these descriptions, the phrase “this argument defaults to value” means that when
that initialization argument is not supplied, initialization is performed as if value had been
supplied. For some initialization arguments this could be done by the use of default initial-
ization arguments, but whether it is done this way is not specified. Implementations are free
to define default initialization arguments for specified method metaobject classes. Portable
programs are free to define default initialization arguments for portable subclasses of the
class method.

e The :qualifiers argument is a list of method qualifiers. An error is signaled if this value
is not a proper list, or if any element of the list is not a non-null atom. This argument
defaults to the empty list.

¢ The :lambda-list argument is the unspecialized lambda list of the method. An error is
signaled if this value is not a proper lambda list. If this value is not supplied, an error
is signaled.

¢ The :specializers argument is a list of the specializer metaobjects for the method. An
error is signaled if this value is not a proper list, or if the length of the list differs from
the number of required arguments in the :lambda-list argument, or if any element of
the list is not a specializer metaobject. If this value is not supplied, an error is signaled.

Generic Functions and Methods Initialization of Method Metaobjects 65

e The :function argument is a method function. It must be compatible with the methods
on compute-effective-method defined for this class of method and generic function
with which it will be used. That is, it must accept the same number of arguments as
all uses of call-method that will call it supply. (See compute-effective-method for
more information.) An error is signaled if this argument is not supplied.

o When the method being initialized is an instance of a subclass of standard-accessor-
method, the :slot-definition initialization argument must be provided. Its value is the
direct slot definition metaobject which defines this accessor method. An error is signaled
if the value is not an instance of a subclass of direct-slot-definition.

e The :documentation argument is a string or nil. An error is signaled if this value is
not a string or nil. This argument defaults to nil.

After the processing and defaulting of initialization arguments described above, the value
of each initialization argument is associated with the method metaobject. These values can
then be accessed by calling the corresponding generic function. The correspondences are as
follows:

Initialization Argument Generic Function

:qualifiers method-qualifiers

:lambda-list method-lambda-list
:specializers method-specializers

:function method-function
:slot-definition accessor-method-slot-definition
:documentation documentation

Table 6.3 Initialization arguments and accessors for method metaobjects.

METHODS

It is not specified which methods provide the initialization behavior described above. In-
stead, the information needed to allow portable programs to specialize this behavior is
presented in as a set of restrictions on the methods a portable program can define. The
model is that portable initialization methods have access to the method metaobject when
either all or none of the specified initialization has taken effect.

These restrictions govern the methods that a portable program can define on the generic
functions initialize-instance, reinitialize-instance, and shared-initialize. These re-
strictions apply only to methods on these generic functions for which the first specializer is
a subclass of the class method. Other portable methods on these generic functions are not
affected by these restrictions.

66 Initialization of Method Metaobjects Chapter 6

e Portable programs must not define methods on shared-initialize or reinitialize-
instance.

e For initialize-instance:

e Portable programs must not define primary methods.

e Portable programs may define around-methods, but these must be extending, not
overriding methods.

e Portable before-methods must assume that when they are run, none of the initializa-
tion behavior described above has been completed.

e Portable after-methods must assume that when they are run, all of the initialization
behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

Generic Functions and Methods Initialization of Slot Definition Metaobjects 67

Initialization of Slot Definition Metaobjects

A slot definition metaobject can be created by calling make-instance. The initialization
arguments establish the definition of the slot definition. A slot definition metaobject cannot
be redefined; calling reinitialize-instance signals an error.

Initialization of a slot definition metaobject must be done by calling make-instance
and allowing it to call initialize-instance. Portable programs must not call initialize-
instance directly to initialize a slot definition metaobject. Portable programs must not
call shared-initialize directly to initialize a slot definition metaobject. Portable programs
must not call change-class to change the class of any slot definition metaobject or to turn
a non-slot-definition object into a slot definition metaobject.

Since metaobject classes may not be redefined, no behavior is specified for the result
of calls to update-instance-for-redefined-class on slot definition metaobjects. Since the
class of a slot definition metaobject cannot be changed, no behavior is specified for the result
of calls to update-instance-for-different-class on slot definition metaobjects.

During initialization, each initialization argument is checked for errors and then asso-
ciated with the slot definition metaobject. The value can then be accessed by calling the
appropriate accessor as shown in Table 6.4.

This section begins with a description of the error checking and processing of each
initialization argument. This is followed by a table showing the generic functions that can
be used to access the stored initialization arguments.

In these descriptions, the phrase “this argument defaults to value” means that when
that initialization argument is not supplied, initialization is performed as if value had been
supplied. For some initialization arguments this could be done by the use of default initial-
ization arguments, but whether it is done this way is not specified. Implementations are
free to define default initialization arguments for specified slot definition metaobject classes.
Portable programs are free to define default initialization arguments for portable subclasses
of the class slot-definition.

e The :name argument is a slot name. An error is signaled if this argument is not a
symbol which can be used as a variable name. An error is signaled if this argument is
not supplied.

e The :initform argument is a form. The :initform argument defaults to nil. An error is
signaled if the :initform argument is supplied, but the :initfunction argument is not
supplied.

e The :initfunction argument is a function of zero arguments which, when called, evalu-
ates the :initform in the appropriate lexical environment. The :initfunction argument
defaults to false. An error is signaled if the :initfunction argument is supplied, but the
:initform argument is not supplied.

68

Initialization of Slot Definition Metaobjects Chapter 6

The :type argument is a type specifier name. An error is signaled otherwise. The :type
argument defaults to the symbol t.

The :allocation argument is a symbol. An error is signaled otherwise. The :allocation
argument defaults to the symbol :instance.

The :initargs argument is a list of symbols. An error is signaled if this argument is
not a proper list, or if any element of this list is not a symbol. The :initargs argument
defaults to the empty list.

The :readers argument is a list of function names. An error is signaled if it is not a
proper list, or if any element is not a valid function name. It defaults to the empty list.
An error is signaled if this argument is supplied and the metaobject is not a direct slot
definition.

The :writers argument is a list of function names. An error is signaled if it is not a
proper list, or if any element is not a valid function name. It defaults to the empty list.
An error is signaled if this argument is supplied and the metaobject is not a direct slot
definition.

The :documentation argument is a string or nil. An error is signaled otherwise. The
:documentation argument defaults to nil.

After the processing and defaulting of initialization arguments described above, the value

of each initialization argument is associated with the slot definition metaobject. These values
can then be accessed by calling the corresponding generic function. The correspondences
are as follows:

Generic Functions and Methods Initialization of Slot Definition Metaobjects 69

Initialization Argument Generic Function

:name slot-definition-name
:initform slot-definition-initform
:initfunction slot-definition-initfunction
itype slot-definition-type
:allocation slot-definition-allocation
dinitargs slot-definition-initargs
:readers slot-definition-readers
:writers slot-definition-writers
:documentation documentation

Table 6.4 Initialization arguments and accessors for slot definition
metaobjects.

METHODS

It is not specified which methods provide the initialization and reinitialization behavior
described above. Instead, the information needed to allow portable programs to specialize
this behavior is presented as a set of restrictions on the methods a portable program can
define. The model is that portable initialization methods have access to the slot definition
metaobject when either all or none of the specified initialization has taken effect.

These restrictions govern the methods that a portable program can define on the generic
functions initialize-instance, reinitialize-instance, and shared-initialize. These re-
strictions apply only to methods on these generic functions for which the first specializer is
a subclass of the class slot-definition. Other portable methods on these generic functions
are not affected by these restrictions.

e Portable programs must not define methods on shared-initialize or reinitialize-
instance.

e For initialize-instance:

e Portable programs must not define primary methods.

e Portable programs may define around-methods, but these must be extending, not
overriding methods.

e Portable before-methods must assume that when they are run, none of the initializa-
tion behavior described above has been completed.

e Portable after-methods must assume that when they are run, all of the initialization
behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

70 make-instance Chapter 6

intern-eql-specializer Function

SYNTAX
intern-eql-specializer
object

ARGUMENTS
The object argument is any Lisp object.

VALUES
The result is the eql specializer metaobject for object.

PURPOSE
This function returns the unique eql specializer metaobject for object, creating one if nec-
essary. Two calls to intern-eql-specializer with eql arguments will return the same (i.e.,
eq) value.

REMARKS
The result of calling eql-specializer-object on the result of a call to intern-eql-special-
izer is only guaranteed to be eql to the original object argument, not necessarily eq.

make-instance Generic Function

SYNTAX
make-instance
class &rest initargs

ARGUMENTS
The class argument is a class metaobject or a class name.
The initargs argument is a list of alternating initialization argument names and values.

VALUES
The result is a newly allocated and initialized instance of class.

PURPOSE
The generic function make-instance creates and returns a new instance of the given class.
Its behavior and use is described in the CLOS specification.

METHODS
make-instance Primary Method
(class symbol) &rest initargs

This method simply invokes make-instance recursively on the arguments (find-class
class) and initargs.

Generic Functions and Methods make-method-lambda 71

make-instance Primary Method
(class standard-class) &rest initargs

make-instance Primary Method
(class funcallable-standard-class) &rest initargs

These methods implement the behavior of make-instance described in the CLOS spec-
ification section named “Object Creation and Initialization.”

make-method-lambda Generic Function

SYNTAX
make-method-lambda
generic-function method lambda-expression environment

ARGUMENTS
The generic-function argument is a generic function metaobject.

The method argument is a (possibly uninitialized) method metaobject.

The lambda-expression argument is a lambda expression.

The environment argument is the same as the &environment argument to macro
expansion functions.

VALUES
This generic function returns two values. The first is a lambda expression, the second is a
list of initialization arguments and values.

PURPOSE

This generic function is called to produce a lambda expression which can itself be used to
produce a method function for a method and generic function with the specified classes.
The generic function and method the method function will be used with are not required
to be the given ones. Moreover, the method metaobject may be uninitialized.

Either the function compile, the special form function or the function coerce must be
used to convert the lambda expression a method function. The method function itself can
be applied to arguments with apply or funcall.

When a method is actually called by an effective method, its first argument will be a
list of the arguments to the generic function. Its remaining arguments will be all but the
first argument passed to call-method. By default, all method functions must accept two
arguments: the list of arguments to the generic function and the list of next methods.

For a given generic function and method class, the applicable methods on make-
method-lambda and compute-effective-method must be consistent in the following
way: each use of call-method returned by the method on compute-effective-method
must have the same number of arguments, and the method lambda returned by the method
on make-method-lambda must accept a corresponding number of arguments.

72 make-method-lambda Chapter 6

Note that the system-supplied implementation of call-next-method is not required to
handle extra arguments to the method function. Users who define additional arguments to
the method function must either redefine or forego call-next-method. (See the example
below.)

When the method metaobject is created with make-instance, the method function
must be the value of the :function initialization argument. The additional initialization
arguments, returned as the second value of this generic function, must also be passed in this
call to make-instance.

METHODS
make-method-lambda Primary Method
(generic-function standard-generic-function)
(method standard-method)
lambda-expression
environment

This method returns a method lambda which accepts two arguments, the list of ar-
guments to the generic function, and the list of next methods. What initialization
arguments may be returned in the second value are unspecified.

This method can be overridden.

Example:

This example shows how to define a kind of method which, from within the body
of the method, has access to the actual method metaobject for the method. This
simplified code overrides whatever method combination is specified for the generic
function, implementing a simple method combination supporting only primary meth-
ods, call-next-method and next-method-p. (In addition, its a simplified version
of call-next-method which does no error checking.)

Notice that the extra lexical function bindings get wrapped around the body before
call-next-method is called. In this way, the user’s definition of call-next-method
and next-method-p are sure to override the system’s definitions.

(defclass my-generic-function (standard-generic-function)

O
(:default-initargs :method-class (find-class 'my-method)))

(defclass my-method (standard-method) ())

(defmethod make-method-lambda ((gf my-generic-function)
(method my-method)
lambda-expression
environment)

(declare (ignore environment))

Generic Functions and Methods map-dependents 73

“(lambda (args next-methods this-method)
(, (call-next-method gf method
‘(lambda , (cadr lambda-expression)
(flet ((this-method () this-method)
(call-next-method (&rest cnm-args)
(funcall (method-function (car next-methods))
(or cnm-args args)
(cdr next-methods)
(car next-methods)))
(next-method-p ()
(not (null next-methods))))
,@(cddr lambda-expression)))
environment)
args next-methods)))

(defmethod compute-effective-method ((gf my-generic-function)
method-combination
methods)

‘(call-method , (car methods) ,(cdr methods) ,(car methods)))

map-dependents Generic Function

SYNTAX
map-dependents
metaobject function

ARGUMENTS
The metaobject argument is a class or generic function metaobject.

The function argument is a function which accepts one argument.

VALUES

The value returned is unspecified.

PuUrPOSE

This generic function applies function to each of the dependents of metaobject. The order in
which the dependents are processed is not specified, but function 1s applied to each depen-
dent once and only once. If, during the mapping, add-dependent or remove-dependent
is called to alter the dependents of metaobject, it is not specified whether the newly added
or removed dependent will have function applied to it.

74 method-. .. Chapter 6

METHODS
map-dependents Primary Method
(metaobject standard-class) function

This method has no specified behavior beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-dependent (standard-class t)
remove-dependent (standard-class t)

map-dependents Primary Method
(metaobject funcallable-standard-class) function

This method has no specified behavior beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-dependent (funcallable-standard-class t)
remove-dependent (funcallable-standard-class t)

map-dependents Primary Method
(metaobject standard-generic—function) function

This method has no specified behavior beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-dependent (standard-generic-function t)
remove-dependent (standard-generic-function t)

REMARKS
See the “Dependent Maintenance Protocol” section for remarks about the use of this facility.

method-... Generic Function

The following generic functions are described together under “Readers for Method Metaob-
jects” (page 81): method-function, method-generic-function, method-lambda-list,
method-specializers, method-qualifiers and accessor-method-slot-definition.

Generic Functions and Methods Readers for Class Metaobjects 75

Readers for Class Metaobjects

In this and the immediately following sections, the “reader” generic functions which simply
return information associated with a particular kind of metaobject are presented together.
General information is presented first, followed by a description of the purpose of each, and
ending with the specified methods for these generic functions.

The reader generic functions which simply return information associated with class meta-
objects are presented together in this section.

Each of the reader generic functions for class metaobjects has the same syntax, accepting
one required argument called class, which must be an class metaobject; otherwise, an error
is signaled. An error is also signaled if the class metaobject has not been initialized.

These generic functions can be called by the user or the implementation.

For any of these generic functions which returns a list, such lists will not be mutated by
the implementation. The results are undefined if a portable program allows such a list to
be mutated.

class-default-initargs Generic Function
class

Returns a list of the default initialization arguments for class. Each element of this list
is a canonicalized default initialization argument. The empty list is returned if class has
no default initialization arguments.

During finalization finalize-inheritance calls compute-default-initargs to com-
pute the default initialization arguments for the class. That value is associated with the
class metaobject and is returned by class-default-initargs.

This generic function signals an error if class has not been finalized.

class-direct-default-initargs Generic Function
class

Returns a list of the direct default initialization arguments for class. Each element of
this list is a canonicalized default initialization argument. The empty list is returned
if class has no direct default initialization arguments. This is the defaulted value of
the :direct-default-initargs initialization argument that was associated with the class
during initialization or reinitialization.

class-direct-slots Generic Function
class

Returns a set of the direct slots of class. The elements of this set are direct slot definition
metaobjects. If the class has no direct slots, the empty set is returned. This is the

76 Readers for Class Metaobjects Chapter 6

defaulted value of the :direct-slots initialization argument that was associated with the
class during initialization and reinitialization.

class-direct-subclasses Generic Function
class

Returns a set of the direct subclasses of class. The elements of this set are class meta-
objects that all mention this class among their direct superclasses. The empty set is
returned if class has no direct subclasses. This value is maintained by the generic func-
tions add-direct-subclass and remove-direct-subclass.

class-direct-superclasses Generic Function
class

Returns a list of the direct superclasses of class. The elements of this list are class
metaobjects. The empty list is returned if class has no direct superclasses. This is the
defaulted value of the :direct-superclasses initialization argument that was associated
with the class during initialization or reinitialization.

class-finalized-p Generic Function
class

Returns true if class has been finalized. Returns false otherwise. Also returns false if
the class has not been initialized.

class-name Generic Function
class

Returns the name of class. This value can be any Lisp object, but is usually a symbol,
or nil if the class has no name. This is the defaulted value of the :name initialization
argument that was associated with the class during initialization or reinitialization. (Also
see (setf class-name).)

class-precedence-list Generic Function
class

Returns the class precedence list of class. The elements of this list are class metaobjects.

During class finalization finalize-inheritance calls compute-class-precedence-
list to compute the class precedence list of the class. That value is associated with the
class metaobject and is returned by class-precedence-list.

This generic function signals an error if class has not been finalized.

Generic Functions and Methods Readers for Class Metaobjects 77

class-prototype Generic Function
class

Returns a prototype instance of class. Whether the instance is initialized is not specified.
The results are undefined if a portable program modifies the binding of any slot of
prototype instance.

This generic function signals an error if class has not been finalized.

class-slots Generic Function
class

Returns a possibly empty set of the slots accessible in instances of class. The elements
of this set are effective slot definition metaobjects.

During class finalization finalize-inheritance calls compute-slots to compute the
slots of the class. That value is associated with the class metaobject and is returned by
class-slots.

This generic function signals an error if class has not been finalized.

METHODS

The specified methods for the class metaobject reader generic functions are presented below.
Each entry in the table indicates a method on one of the reader generic functions,

specialized to a specified class. The number in each entry is a reference to the full description

of the method. The full descriptions appear after the table.

78 Readers for Class Metaobjects Chapter 6

standard-class forward- built-in-
and referenced- class
funcallable- class

standard-class

class-default-initargs 2 3 4
class-direct-default-initargs 1 4 4
class-direct-slots 1 4 4
class-direct-subclasses 9 9 7
class-direct-superclasses 1 4 7
class-finalized-p 2 6 5
class-name 1 1 8
class-precedence-list 2 3 7
class-prototype 10 10 10
class-slots 2 3 4

1. This method returns the value which was associated with the class metaobject during
initialization or reinitialization.

2. This method returns the value associated with the class metaobject by finalize-
inheritance (standard-class) or finalize-inheritance (funcallable-standard-
class).

3. This method signals an error.

4. This method returns the empty list.
5. This method returns true.

6. This method returns false.

7. This method returns a value derived from the information in Table 5.1, except that
implementation-specific modifications are permitted as described in section “Implemen-
tation and User Specialization.”

8. This method returns the name of the built-in class.

9. This methods returns a value which is maintained by add-direct-subclass (class class)
and remove-direct-subclass (class class). This method can be overridden only if
those methods are overridden as well.

10. No behavior is specified for this method beyond that specified for the generic function.

Generic Functions and Methods Readers for Generic Function Metaobjects 79

Readers for Generic Function Metaobjects

The reader generic functions which simply return information associated with generic func-
tion metaobjects are presented together in this section.

Each of the reader generic functions for generic function metaobjects has the same syn-
tax, accepting one required argument called generic-function, which must be a generic func-
tion metaobject; otherwise, an error is signaled. An error is also signaled if the generic
function metaobject has not been initialized.

These generic functions can be called by the user or the implementation.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

generic-function-argument-precedence-order Generic Function
generic-function

Returns the argument precedence order of the generic function. This value is a list
of symbols, a permutation of the required parameters in the lambda list of the generic
function. This is the defaulted value of the :argument-precedence-order initialization
argument that was associated with the generic function metaobject during initialization
or reinitialization.

generic-function-declarations Generic Function
generic-function

Returns a possibly empty list of the declarations of the generic function. The elements
of this list are declarations. This list is the defaulted value of the :declarations ini-
tialization argument that was associated with the generic function metaobject during
initialization or reinitialization.

generic-function-lambda-list Generic Function
generic-function

Returns the lambda list of the generic function. This is the defaulted value of the
:lambda-list initialization argument that was associated with the generic function meta-
object during initialization or reinitialization. An error is signaled if the lambda list has
yet to be supplied.

80 Readers for Generic Function Metaobjects Chapter 6

generic-function-method-class Generic Function
generic-function

Returns the default method class of the generic function. This class must be a subclass
of the class method. This is the defaulted value of the :method-class initialization
argument that was associated with the generic function metaobject during initialization
or reinitialization.

generic-function-method-combination Generic Function
generic-function

Returns the method combination of the generic function. This is a method combination
metaobject. This is the defaulted value of the :method-combination initialization
argument that was associated with the generic function metaobject during initialization
or reinitialization.

generic-function-methods Generic Function
generic-function

Returns the set of methods currently connected to the generic function. This is a set of
method metaobjects. This value is maintained by the generic functions add-method
and remove-method.

generic-function-name Generic Function
generic-function

Returns the name of the generic function, or nil if the generic function has no name.
This is the defaulted value of the :name initialization argument that was associated
with the generic function metaobject during initialization or reinitialization. (Also see
(setf generic-function-name).)

METHODS

The specified methods for the generic function metaobject reader generic functions are
presented below.

Generic Functions and Methods Readers for Method Metaobjects 81

generic-function-argument-precedence-order Primary Method
(generic-function standard-generic-function)

generic-function-declarations Primary Method
(generic-function standard-generic-function)

generic-function-lambda-list Primary Method
(generic-function standard-generic-function)

generic-function-method-class Primary Method
(generic-function standard-generic-function)

generic-function-method-combination Primary Method
(generic-function standard-generic-function)

generic-function-name Primary Method
(generic-function standard-generic-function)

No behavior is specified for these methods beyond that which is specified for their re-
spective generic functions.

generic-function-methods Primary Method
(generic-function standard-generic-function)

No behavior is specified for this method beyond that which is specified for their respective
generic functions.

The value returned by this method is maintained by add-method (standard-
generic-function standard-method) and remove-method (standard-generic-
function standard-method).

Readers for Method Metaobjects

The reader generic functions which simply return information associated with method meta-
objects are presented together here in the format described under “Readers for Class Meta-
objects.”

Each of these reader generic functions have the same syntax, accepting one required
argument called method, which must be a method metaobject; otherwise, an error is signaled.
An error is also signaled if the method metaobject has not been initialized.

These generic functions can be called by the user or the implementation.

For any of these generic functions which returns a list, such lists will not be mutated by
the implementation. The results are undefined if a portable program allows such a list to
be mutated.

82 Readers for Method Metaobjects Chapter 6

method-function Generic Function
method

Returns the method function of method. This is the defaulted value of the :function
initialization argument that was associated with the method during initialization.

method-generic-function Generic Function
method

Returns the generic function that method is currently connected to, or nil if it is not
currently connected to any generic function. This value is either a generic function
metaobject or nil. When a method is first created it is not connected to any generic
function. This connection is maintained by the generic functions add-method and
remove-method.

method-lambda-list Generic Function
method

Returns the (unspecialized) lambda list of method. This value is a Common Lisp lambda
list. This is the defaulted value of the :lambda-list initialization argument that was
associated with the method during initialization.

method-specializers Generic Function
method

Returns a list of the specializers of method. This value is a list of specializer metaob-
jects. This is the defaulted value of the :specializers initialization argument that was
associated with the method during initialization.

method-qualifiers Generic Function
method

Returns a (possibly empty) list of the qualifiers of method. This value is a list of non-nil
atoms. This is the defaulted value of the :qualifiers initialization argument that was
associated with the method during initialization.

accessor-method-slot-definition Generic Function
method

This accessor can only be called on accessor methods. It returns the direct slot defi-
nition metaobject that defined this method. This is the value of the :slot-definition
initialization argument associated with the method during initialization.

METHODS
The specified methods for the method metaobject readers are presented below.

Generic Functions and Methods Readers for Slot Definition Metaobjects 83

method-function Primary Method
(method standard-method)

method-lambda-list Primary Method
(method standard-method)

method-specializers Primary Method
(method standard-method)

method-qualifiers Primary Method
(method standard-method)

No behavior is specified for these methods beyond that which is specified for their re-
spective generic functions.

method-generic-function Primary Method
(method standard-method)

No behavior is specified for this method beyond that which is specified for its generic
function.

The value returned by this method is maintained by add-method (standard-
generic-function standard-method) and remove-method (standard-generic-
function standard-method).

accessor-method-slot-definition Primary Method
(method standard-accessor-method)

No behavior is specified for this method beyond that which is specified for its generic
function.

Readers for Slot Definition Metaobjects

The reader generic functions which simply return information associated with slot definition
metaobjects are presented together here in the format described under “Readers for Class
Metaobjects.”

Each of the reader generic functions for slot definition metaobjects has the same syntax,
accepting one required argument called slo, which must be a slot definition metaobject;
otherwise, an error is signaled. An error is also signaled if the slot definition metaobject has
not been initialized.

These generic functions can be called by the user or the implementation.

84 Readers for Slot Definition Metaobjects Chapter 6

For any of these generic functions which returns a list, such lists will not be mutated by
the implementation. The results are undefined if a portable program allows such a list to
be mutated.

GENERIC FUNCTIONS
slot-definition-allocation Generic Function
slot

Returns the allocation of slot. This is a symbol. This is the defaulted value of the :allo-
cation initialization argument that was associated with the slot definition metaobject
during initialization.

slot-definition-initargs Generic Function
slot

Returns the set of initialization argument keywords for slot. This is the defaulted value
of the :initargs initialization argument that was associated with the slot definition
metaobject during initialization.

slot-definition-initform Generic Function
slot

Returns the initialization form of slot. This can be any form. This is the defaulted value
of the :initform initialization argument that was associated with the slot definition
metaobject during initialization. When slot has no initialization form, the value returned
is unspecified (however, slot-definition-initfunction is guaranteed to return nil).

slot-definition-initfunction Generic Function
slot

Returns the initialization function of slot. This value is either a function of no arguments,
or nil, indicating that the slot has no initialization function. This is the defaulted value
of the :initfunction initialization argument that was associated with the slot definition
metaobject during initialization.

slot-definition-name Generic Function
slot

Returns the name of slot. This value is a symbol that can be used as a variable name.
This is the value of the :name initialization argument that was associated with the slot
definition metaobject during initialization.

Generic Functions and Methods Readers for Slot Definition Metaobjects 85

slot-definition-type Generic Function
slot

Returns the allocation of slot. This is a type specifier name. This is the defaulted
value of the :name initialization argument that was associated with the slot definition
metaobject during initialization.

METHODS

The specified methods for the slot definition metaobject readers are presented below.

slot-definition-allocation Primary Method
(slot-definition standard-slot-definition)

slot-definition-initargs Primary Method
(slot-definition standard-slot-definition)

slot-definition-initform Primary Method
(slot-definition standard-slot-definition)

slot-definition-initfunction Primary Method
(slot-definition standard-slot-definition)

slot-definition-name Primary Method
(slot-definition standard-slot-definition)

slot-definition-type Primary Method
(slot-definition standard-slot-definition)

No behavior is specified for these methods beyond that which is specified for their re-
spective generic functions.

DIiRECT SLoT DEFINITION METAOBJECTS

The following additional reader generic functions are defined for direct slot definition meta-
objects.

slot-definition-readers Generic Function
direct-slot

Returns a (possibly empty) set of readers of the direct slot. This value is a list of
function names. This is the defaulted value of the :readers initialization argument that
was associated with the direct slot definition metaobject during initialization.

86 reader-method-class Chapter 6

slot-definition-writers Generic Function
direct-slot

Returns a (possibly empty) set of writers of the direct slot. This value is a list of
function names. This is the defaulted value of the :writers initialization argument that
was associated with the direct slot definition metaobject during initialization.

slot-definition-readers Primary Method
(direct-slot-definition standard-direct-slot-definition)

slot-definition-writers Primary Method
(direct-slot-definition standard-direct-slot-definition)

No behavior is specified for these methods beyond what is specified for their generic
functions.

EFFECTIVE SLoT DEFINITION METAOBJECTS
The following reader generic function is defined for effective slot definition metaobjects.

slot-definition-location Generic Function
effective-slot-definition
Returns the location of effective-slot-definition. The meaning and interpretation of this
value is described in the section called “Instance Structure Protocol.”
slot-definition-location Primary Method
(effective-slot-definition standard-effective-slot-definition)

This method returns the value stored by compute-slots :around (standard-class)
and compute-slots :around (funcallable-standard-class).

reader-method-class Generic Function

SYNTAX
reader-method-class
class direct-slot &rest initargs

ARGUMENTS
The class argument is a class metaobject.
The direct-slot argument is a direct slot definition metaobject.
The initargs argument consists of alternating initialization argument names and values.

Generic Functions and Methods remove-dependent 87

VALUES
The value returned is a class metaobject.

PURPOSE
This generic function is called to determine the class of reader methods created during
class initialization and reinitialization. The result must be a subclass of standard-reader-
method.

The initargs argument must be the same as will be passed to make-instance to create
the reader method. The initargs must include :slot-definition with sloi-definition as its
value.

METHODS

reader-method-class Primary Method
(class standard-class)
(direct-slot standard-direct-slot—definition)
&rest initargs

reader-method-class Primary Method
(class funcallable-standard-class)
(direct-slot standard-direct-slot—definition)
&rest initargs

These methods return the class standard-reader-method. These methods can be
overridden.

remove-dependent Generic Function

SYNTAX
remove-dependent
metaobject dependent

ARGUMENTS
The metaobject argument is a class or generic function metaobject.
The dependent argument is an object.

VALUES
The value returned by this generic function is unspecified.

PURPOSE
This generic function removes dependent from the dependents of metaobject. If dependent
is not one of the dependents of metaobject, no error is signaled.

The generic function map-dependents can be called to access the set of dependents
of a class or generic function. The generic function add-dependent can be called to add
an object from the set of dependents of a class or generic function. The effect of calling

88 remove-dependent Chapter 6

add-dependent or remove-dependent while a call to map-dependents on the same
class or generic function is in progress is unspecified.

The situations in which remove-dependent is called are not specified.

METHODS
remove-dependent Primary Method
(class standard-class) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.

This method cannot be overridden unless the following methods are overridden as

well:
add-dependent (standard-class t)
map-dependents (standard-class t)
remove-dependent Primary Method

(class funcallable-standard-class) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.

This method cannot be overridden unless the following methods are overridden as

well:
add-dependent (funcallable-standard-class t)
map-dependents (funcallable-standard-class t)
remove-dependent Primary Method

(generic-function standard-generic-function) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.

This method cannot be overridden unless the following methods are overridden as
well:

add-dependent (standard-generic-function t)
map-dependents (standard-generic-function t)

REMARKS

See the “Dependent Maintenance Protocol” section for remarks about the use of this facility.

Generic Functions and Methods remove-direct-method 89

remove-direct-method Generic Function

SYNTAX
remove-direct-method
spectalizer method

ARGUMENTS
The specializer argument is a specializer metaobject.
The method argument is a method metaobject.

VALUES
The value returned by remove-direct-method is unspecified.

PURPOSE
This generic function is called to maintain a set of backpointers from a specializer to the
set of methods specialized to it. If method is in the set it is removed. If it is not, no error
is signaled.

This set can be accessed as a list by calling the generic function specializer-direct-
methods. Methods are added to the set by add-direct-method.

The generic function remove-direct-method is called by remove-method whenever
a method is removed from a generic function. It is called once for each of the specializers of
the method. Note that in cases where a specializer appears more than once in the specializers
of a method, this generic function will be called more than once with the same specializer
as argument.

The results are undefined if the specializer argument is not one of the specializers of the
method argument.

METHODS

remove-direct-method Primary Method
(specializer class)
(method method)

This method implements the behavior of the generic function for class specializers. No
behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as

well:

add-direct-method (class method)

specializer-direct-generic-functions (class)

specializer-direct-methods (class)

90 remove-direct-subclass Chapter 6

remove-direct-method Primary Method
(specializer eql-specializer)
(method method)

This method implements the behavior of the generic function for eql specializers. No
behavior is specified for this method beyond that which is specified for the generic
function.

remove-direct-subclass Generic Function

SYNTAX
remove-direct-subclass
superclass subclass

ARGUMENTS
The superclass argument is a class metaobject.

The subclass argument is a class metaobject.

VALUES

The value returned by this generic function is unspecified.

PURPOSE

This generic function is called to maintain a set of backpointers from a class to its direct
subclasses. It removes subclass from the set of direct subclasses of superclass. No error is
signaled if subclass is not in this set.

Whenever a class is reinitialized, this generic function is called once with each deleted
direct superclass of the class.

METHODS

remove-direct-subclass Primary Method
(superclass class)
(subclass class)

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-direct-subclass (class class)
class-direct-subclasses (class)

Generic Functions and Methods remove-method 91

remove-method Generic Function

SYNTAX
remove-method
generic-function method

ARGUMENTS
The generic-function argument is a generic function metaobject.
The method argument is a method metaobject.

VALUES
The generic-function argument is returned.

PURPOSE
This generic function breaks the association between a generic function and one of its meth-
ods.

No error is signaled if the method is not among the methods of the generic function.

Breaking the association between the method and the generic function proceeds in four
steps: (i) remove method from the set returned by generic-function-methods and arrange
for method-generic-function to return nil; (ii) call remove-direct-method for each
of the method’s specializers; (iii) call compute-discriminating-function and install its
result with set-funcallable-instance-function; and (iv) update the dependents of the
generic function.

The generic function remove-method can be called by the user or the implementation.

METHODS

remove-method Primary Method
(generic-function standard-generic-function)
(method standard-method)

No behavior is specified for this method beyond that which is specified for the generic
function.

set-funcallable-instance-function Function

SYNTAX
set-funcallable-instance-function
funcallable-instance function

ARGUMENTS
The funcallable-instance argument is a funcallable instance (it must have been returned by
allocate-instance (funcallable-standard-class)).

The function argument is a function.

92 (setf generic-function-name) Chapter 6

VALUES
The value returned by this function is unspecified.

PURPOSE

This function is called to set or to change the function of a funcallable instance. After
set-funcallable-instance-function is called, any subsequent calls to funcallable-instance
will run the new function.

(setf class-name) Function
SYNTAX
(setf class-name) Generic Function

new-name class

ARGUMENTS
The class argument is a class metaobject.
The new-name argument is any Lisp object.

REesuLTs
This function returns its new-name argument.

PurPOSE
This function changes the name of class to new-name. This value is usually a symbol, or
nil if the class has no name.

This function works by calling reinitialize-instance with class as its first argument,
the symbol :name as its second argument and new-name as its third argument.

(setf generic-function-name) Function
SYNTAX
(setf generic-function-name) Generic Function

new-name generic-function

ARGUMENTS
The generic-function argument is a generic function metaobject.
The new-name argument is a function name or nil.

REsuLTs
This function returns its new-name argument.

Generic Functions and Methods (setf slot-value-using-class) 93

PuUrPOSE

This function changes the name of generic-function to new-name. This value is usually
a function name (i.e., a symbol or a list of the form (setf symbol)) or nil, if the generic
function is to have no name.

This function works by calling reinitialize-instance with generic-function as its first
argument, the symbol :name as its second argument and new-name as its third argument.

(setf slot-value-using-class) Generic Function

SYNTAX
(setf slot-value-using-class)
new-value class object slot
ARGUMENTS
The new-value argument is an object.
The class argument is a class metaobject. It is the class of the object argument.
The object argument is an object.

The slot argument is an effective slot definition metaobject.

VALUES

This generic function returns the new-value argument.

PURrPOSE

The generic function (setf slot-value-using-class) implements the behavior of the (setf
slot-value) function. It is called by (setf slot-value) with the class of object as its second
argument and the pertinent effective slot definition metaobject as its fourth argument.

The generic function (setf slot-value-using-class) sets the value contained in the given
slot of the given object to the given new value; any previous value is lost.

The results are undefined if the class argument is not the class of the object argument,
or if the slot argument does not appear among the set of effective slots associated with the
class argument.

94 slot-boundp-using-class Chapter 6

METHODS
(setf slot-value-using-class) Primary Method
new-value
(class standard-class)
object
(slot standard-effective-slot-definition)
(setf slot-value-using-class) Primary Method
new-value
(class funcallable-standard-class)
object

(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for slots with alloca-
tion :instance and :class. If the supplied slot has an allocation other than :instance
or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other methods in
the standard implementation of the slot access protocol.

(setf slot-value-using-class) Primary Method
new-value
(class built-in-class)
object
slot

This method signals an error.

slot-boundp-using-class Generic Function

SYNTAX
slot-boundp-using-class
class object slot

ARGUMENTS
The class argument is a class metaobject. It is the class of the object argument.
The object argument is an object.

The slot argument is an effective slot definition metaobject.

VALUES

This generic function returns true or false.

Generic Functions and Methods slot-definition-. . . 95

PURPOSE
This generic function implements the behavior of the slot-boundp function. It is called by
slot-boundp with the class of object as its first argument and the pertinent effective slot
definition metaobject as its third argument.

The generic function slot-boundp-using-class tests whether a specific slot in an in-
stance is bound.

The results are undefined if the class argument is not the class of the object argument,
or if the slot argument does not appear among the set of effective slots associated with the
class argument.

METHODS

slot-boundp-using-class Primary Method
(class standard-class)
object
(slot standard-effective-slot-definition)

slot-boundp-using-class Primary Method
(class funcallable-standard-class)
object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for slots with alloca-
tion :instance and :class. If the supplied slot has an allocation other than :instance
or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other methods in
the standard implementation of the slot access protocol.

slot-boundp-using-class Primary Method
(class built-in-class)
object
slot

This method signals an error.
REMARKS

In cases where the class metaobject class does not distinguish unbound slots, true should
be returned.

slot-definition-. .. Generic Function

The following generic functions are described together under “Readers for Slot Def-
inition Metaobjects” (page 83): slot-definition-allocation, slot-definition-initargs,

96 slot-makunbound-using-class Chapter 6

slot-definition-initform, slot-definition-initfunction, slot-definition-location, slot-
definition-name, slot-definition-readers, slot-definition-writers and slot-definition-

type.

slot-makunbound-using-class Generic Function

SYNTAX
slot-makunbound-using-class
class object slot

ARGUMENTS

The class argument is a class metaobject. It is the class of the object argument.
The object argument is an object.
The slot argument is an effective slot definition metaobject.

VALUES
This generic function returns its object argument.

PURPOSE

This generic function implements the behavior of the slot-makunbound function. It is
called by slot-makunbound with the class of object as its first argument and the pertinent
effective slot definition metaobject as its third argument.

The generic function slot-makunbound-using-class restores a slot in an object to its
unbound state. The interpretation of “restoring a slot to its unbound state” depends on the
class metaobject class.

The results are undefined if the class argument is not the class of the object argument,
or if the slot argument does not appear among the set of effective slots associated with the
class argument.

METHODS

slot-makunbound-using-class Primary Method
(class standard-class)
object
(slot standard-effective-slot-definition)

slot-makunbound-using-class Primary Method
(class funcallable-standard-class)
object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for slots with alloca-
tion :instance and :class. If the supplied slot has an allocation other than :instance
or :class an error is signaled.

Generic Functions and Methods slot-value-using-class 97

Overriding these methods is permitted, but may require overriding other methods in
the standard implementation of the slot access protocol.

slot-makunbound-using-class Primary Method
(class built-in-class)
object
slot

This method signals an error.

slot-value-using-class Generic Function

SyNTAX
slot-value-using-class
class object slot

ARGUMENTS
The class argument is a class metaobject. It is the class of the object argument.
The object argument is an object.

The slot argument is an effective slot definition metaobject.

VALUES

The value returned by this generic function is an object.

PURPOSE

This generic function implements the behavior of the slot-value function. It is called by
slot-value with the class of object as its first argument and the pertinent effective slot
definition metaobject as its third argument.

The generic function slot-value-using-class returns the value contained in the given
slot of the given object. If the slot is unbound slot-unbound is called.

The results are undefined if the class argument is not the class of the object argument,
or if the slot argument does not appear among the set of effective slots associated with the
class argument.

98 specializer-direct-generic-functions Chapter 6

METHODS

slot-value-using-class Primary Method
(class standard-class)
object
(slot standard-effective-slot-definition)

slot-value-using-class Primary Method
(class funcallable-standard-class)
object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for slots with alloca-
tion :instance and :class. If the supplied slot has an allocation other than :instance
or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other methods in
the standard implementation of the slot access protocol.

slot-value-using-class Primary Method
(class built-in-class)
object
slot

This method signals an error.

specializer-direct-generic-functions Generic Function

SYNTAX
specializer-direct-generic-functions
spectalizer

ARGUMENTS

The specializer argument is a specializer metaobject.

VALUES
The result of this generic function is a possibly empty list of generic function metaobjects.

PURPOSE

This generic function returns the possibly empty set of those generic functions which have
a method with specializer as a specializer. The elements of this set are generic function
metaobjects. This value is maintained by the generic functions add-direct-method and
remove-direct-method.

Generic Functions and Methods specializer-direct-methods 99

METHODS
specializer-direct-generic-functions Primary Method
(specializer class)

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-direct-method (class method)
remove-direct-method (class method)
specializer-direct-methods (class)

specializer-direct-generic-functions Primary Method
(specializer eql-specializer)

No behavior is specified for this method beyond that which is specified for the generic
function.

specializer-direct-methods Generic Function

SYNTAX
specializer-direct-methods
specializer

ARGUMENTS
The specializer argument is a specializer metaobject.

VALUES
The result of this generic function is a possibly empty list of method metaobjects.

PURPOSE

This generic function returns the possibly empty set of those methods, connected to generic
functions, which have specializer as a specializer. The elements of this set are method
metaobjects. This value is maintained by the generic functions add-direct-method and
remove-direct-method.

METHODS
specializer-direct-methods Primary Method
(specializer class)

No behavior is specified for this method beyond that which is specified for the generic
function.

This method cannot be overridden unless the following methods are overridden as
well:

100 standard-instance-access Chapter 6

add-direct-method (class method)
remove-direct-method (class method)
specializer-direct-generic-functions (class)

specializer-direct-methods Primary Method
(specializer eql-specializer)

No behavior is specified for this method beyond that which is specified for the generic
function.

standard-instance-access Function

SYNTAX
standard-instance-access
instance location

ARGUMENTS
The instance argument is an object.
The location argument is a slot location.

VALUES
The result of this function is an object.

PURPOSE

This function is called to provide direct access to a slot in an instance. By usurping the
normal slot lookup protocol, this function is intended to provide highly optimized access to
the slots associated with an instance.

The following restrictions apply to the use of this function:

e The instance argument must be a standard instance (it must have been returned by
allocate-instance (standard-class)).

e The instance argument cannot be an non-updated obsolete instance.

o The location argument must be a location of one of the directly accessible slots of the
instance’s class.

o The slot must be bound.

The results are undefined if any of these restrictions are not met.

Generic Functions and Methods update-dependent 101

update-dependent Generic Function

SYNTAX
update-dependent
metaobject dependent &rest initargs

ARGUMENTS
The metaobject argument is a class or generic function metaobject. It is the metaobject
being reinitialized or otherwise modified.

The dependent argument is an object. It is the dependent being updated.

The tnitargs argument is a list of the initialization arguments for the metaobject redefi-
nition.

VALUES
The value returned by update-dependent is unspecified.

PURPOSE
This generic function is called to update a dependent of metaobject.

When a class or a generic function is reinitialized each of its dependents is updated. The
imitargs argument to update-dependent is the set of initialization arguments received by
reinitialize-instance.

When a method is added to a generic function, each of the generic function’s dependents
is updated. The initargs argument is a list of two elements: the symbol add-method, and
the method that was added.

When a method is removed from a generic function, each of the generic function’s de-
pendents i1s updated. The initargs argument is a list of two elements: the symbol remove-
method, and the method that was removed.

In each case, map-dependents is used to call update-dependent on each of the
dependents. So, for example, the update of a generic function’s dependents when a method
is added could be performed by the following code:

(map-dependents generic-function
#' (lambda (dep)
(update-dependent generic-function
dep
'add-method
new-method)))

METHODS
There are no specified methods on this generic function.

REMARKS
See the “Dependent Maintenance Protocol” section for remarks about the use of this facility.

102 validate-superclass Chapter 6

validate-superclass Generic Function

SyNTAX
validate-superclass
class superclass

ARGUMENTS
The class argument is a class metaobject.
The superclass argument 1s a class metaobject.

VALUES
This generic function returns true or false.

PURPOSE
This generic function is called to determine whether the class superclass is suitable for use
as a superclass of class.

This generic function can be be called by the implementation or user code. It is called
during class metaobject initialization and reinitialization, before the direct superclasses are
stored. If this generic function returns false, the initialization or reinitialization will signal
an error.

METHODS

validate-superclass Primary Method
(class class)
(superclass class)

This method returns true in three situations:

(1) If the superclass argument is the class named t,

(i1) if the class of the class argument is the same as the class of the superclass
argument or

(iii) if the classes one of the arguments is standard-class and the class of the
other is funcallable-standard-class.

In all other cases, this method returns false.
This method can be overridden.

REMARKS

Defining a method on validate-superclass requires detailed knowledge of of the internal
protocol followed by each of the two class metaobject classes. A method on validate-
superclass which returns true for two different class metaobject classes declares that they
are compatible.

Generic Functions and Methods writer-method-class 103

writer-method-class Generic Function

SYNTAX
writer-method-class
class direct-slot &rest initargs

ARGUMENTS
The class argument is a class metaobject.
The direct-slot argument is a direct slot definition metaobject.
The initargs argument is a list of initialization arguments and values.

VALUES
The value returned is a class metaobject.

PURPOSE
This generic function is called to determine the class of writer methods created during
class initialization and reinitialization. The result must be a subclass of standard-writer-
method.

The initargs argument must be the same as will be passed to make-instance to create
the reader method. The initargs must include :slot-definition with sloi-definition as its
value.

METHODS

writer-method-class Primary Method
(class standard-class)
(direct-slot standard-direct-slot—definition)
&rest nitargs

writer-method-class Primary Method
(class funcallable-standard-class)
(direct-slot standard-direct-slot—definition)
&rest initargs

These methods returns the class standard-writer-method. These methods can be
overridden.

104 writer-method-class

Bibliography

[CLtLIT] Steele, Guy Common Lisp: The Language, Second Edition, Digital Press, 1990.

[X3713]

Bobrow, Daniel G. Linda G. Demichiel, Richard P. Gabriel, Sonya E. Keene,
Gregor Kiczales, and David A. Moon Common Lisp Object System Specification,
X3J13 Document 88-002R, June 1988; appears in Lisp and Symbolic Computation
1, 3/4, January 1989, 245-394, and as Chapter 28 of [CLtLII], 770-864.

105

