FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Niu, QR
Xia, M
Rutherford, ES
Mason, DM
Anderson, EJ
Schwab, DJ
AF Niu, Qianru
Xia, Meng
Rutherford, Edward S.
Mason, Doran M.
Anderson, Eric J.
Schwab, David J.
TI Investigation of interbasin exchange and interannual variability in Lake
Erie using an unstructured-grid hydrodynamic model
SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
LA English
DT Article
DE FVCOM; water exchange; model; Lake Erie; Great Lakes
ID COORDINATE OCEAN MODELS; THERMAL STRUCTURE; GREAT-LAKES; CIRCULATION;
FVCOM; CURRENTS; BASIN; CYCLE
AB Interbasin exchange and interannual variability in Lake Erie's three basins are investigated with the help of a three-dimensional unstructured-grid-based Finite Volume Coastal Ocean Model (FVCOM). Experiments were carried out to investigate the influence of grid resolutions and different sources of wind forcing on the lake dynamics. Based on the calibrated model, we investigated the sensitivity of lake dynamics to major external forcing, and seasonal climatological circulation patterns are presented and compared with the observational data and existing model results. It was found that water exchange between the western basin (WB) and the central basin (CB) was mainly driven by hydraulic and density-driven flows, while density-driven flows dominate the interaction between the CB and the eastern basin (EB). River-induced hydraulic flows magnify the eastward water exchange and impede the westward one. Surface wind forcing shifts the pathway of hydraulic flows in the WB, determines the gyre pattern in the CB, contributes to thermal mixing, and magnifies interbasin water exchange during winter. Interannual variability is mainly driven by the differences in atmospheric forcing, and is most prominent in the CB.
C1 [Niu, Qianru; Xia, Meng] Univ Maryland Eastern Shore, Dept Nat Sci, Princess Anne, MD 21853 USA.
[Rutherford, Edward S.; Mason, Doran M.; Anderson, Eric J.] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48105 USA.
[Schwab, David J.] Univ Michigan, U M Water Ctr, Graham Environm Sustainabil Inst, Ann Arbor, MI 48109 USA.
RP Xia, M (reprint author), Univ Maryland Eastern Shore, Dept Nat Sci, Princess Anne, MD 21853 USA.
EM mxia@umes.edu
OI Mason, Doran/0000-0002-6017-4243; Rutherford,
Edward/0000-0002-7282-6667; Anderson, Eric/0000-0001-5342-8383
FU Great Lakes Fishery Commission
FX This project is funded by the Great Lakes Fishery Commission. Research
was carried on NSF Stampede (Support to M. Xia). NARR Reanalysis data
were provided by NCEP/NWS/NOAA/U.S. Department of Commerce (2005), NCEP
North American Regional Reanalysis (NARR), from website at
http://rda.ucar.edu/datasets/ds608.0/. Research Data are archived at the
National Center for Atmospheric Research, Computational and Information
Systems Laboratory, Boulder, Colorado. Long Jiang, a Ph.D student of Xia
helped calibrate the model and his effort is appreciated. GEM data were
provided by Environment Canada and Dmitry Beletsky from University of
Michigan, Ann Arbor. Comments from Kevin Pangle and Jose Marin Jarrin
are appreciated. The authors also thank reviewers for their comments. We
appreciate additional ADCP data provided by Rao Yerubandi from
Environmental Canada. This is GLERL contribution 1749.
NR 52
TC 4
Z9 4
U1 1
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9275
EI 2169-9291
J9 J GEOPHYS RES-OCEANS
JI J. Geophys. Res.-Oceans
PD MAR
PY 2015
VL 120
IS 3
BP 2212
EP 2232
DI 10.1002/2014JC010457
PG 21
WC Oceanography
SC Oceanography
GA CH3BG
UT WOS:000353900000041
ER
PT J
AU Farrar, JT
Rainville, L
Plueddemann, AJ
Kessler, WS
Lee, C
Hodges, BA
Schmitt, RW
Edson, JB
Riser, SC
Eriksen, CC
Fratantoni, DM
AF Farrar, J. Thomas
Rainville, Luc
Plueddemann, Albert J.
Kessler, William S.
Lee, Craig
Hodges, Benjamin A.
Schmitt, Raymond W.
Edson, James B.
Riser, Stephen C.
Eriksen, Charles C.
Fratantoni, David M.
TI Salinity and Temperature Balances at the SPURS Central Mooring During
Fall and Winter
SO OCEANOGRAPHY
LA English
DT Article
ID GLOBAL WATER CYCLE; NORTH-ATLANTIC; OCEAN SALINITIES; HEAT-BUDGET;
VARIABILITY; MAXIMUM; STRATUS; SALT
AB One part of the Salinity Processes in the Upper-ocean Regional Study (SPURS) field campaign focused on understanding the physical processes affecting the evolution of upper-ocean salinity in the region of climatological maximum sea surface salinity in the subtropical North Atlantic (SPURS-1). An upper-ocean salinity budget provides a useful framework for increasing this understanding. The SPURS-1 program included a central heavily instrumented mooring for making accurate measurements of air-sea surface fluxes, as well as other moorings, Argo floats, and gliders that together formed a dense observational array. Data from this array are used to estimate terms in the upper-ocean salinity and heat budgets during the SPURS-1 campaign, with a focus on the first several months (October 2012 to February 2013) when the surface mixed layer was becoming deeper, fresher, and cooler. Specifically, we examine the salinity and temperature balances for an upper-ocean mixed layer, defined as the layer where the density is within 0.4 kg m(-3) of its surface value. The gross features of the evolution of upper-ocean salinity and temperature during this fall/winter season are explained by a combination of evaporation and precipitation at the sea surface, horizontal transport of heat and salt by mixed-layer currents, and vertical entrainment of fresher, cooler fluid into the layer as it deepened. While all of these processes were important in the observed seasonal (fall) freshening at this location in the salinity-maximum region, the variability of salinity on monthly-to-intraseasonal time scales resulted primarily from horizontal advection.
C1 [Farrar, J. Thomas; Hodges, Benjamin A.; Schmitt, Raymond W.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
[Rainville, Luc; Lee, Craig] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA.
[Plueddemann, Albert J.] Woods Hole Oceanog Inst, Phys Oceanog, Woods Hole, MA 02543 USA.
[Kessler, William S.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
[Edson, James B.] Univ Connecticut, Dept Marine Sci, Groton, CT 06340 USA.
[Riser, Stephen C.; Eriksen, Charles C.] Univ Washington, Seattle, WA 98195 USA.
[Fratantoni, David M.] Horizon Marine Inc, Marion, MA USA.
RP Farrar, JT (reprint author), Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
EM jfarrar@whoi.edu
RI Farrar, John T./F-3532-2012
OI Farrar, John T./0000-0003-3495-1990
FU NASA [NNX11AE84G, NNX11AE78G, NNX11AE82G, NNX14AH38G]; NSF
[OCE-1129646]; PMEL; CNES
FX We are indebted to the large group of engineers, scientists,
technicians, and ships' crews who contributed to the collection of the
in situ and satellite data discussed here. We are grateful for comments
on the manuscript from two anonymous reviewers and for constructive
suggestions from guest editor Frank Bryan. J.T. Farrar, A. J.
Plueddemann, J.B. Edson, and the deployment of the central mooring were
supported by NASA grant NNX11AE84G. L. Rainville, C. Lee, C. Eriksen,
and the Seaglider program were supported by NASA grant NNX11AE78G. R.
Schmitt was supported by NSF grant OCE-1129646. B. Hodges and D.
Fratantoni were supported by NASA grant NNX11AE82G. The Prawler moorings
were funded by PMEL. The data analysis was also supported by NASA grant
NNX14AH38G. The sea surface height product was produced by Ssalto/Duacs
and distributed by AVISO, with support from CNES
(http://www.aviso.altimetry.fr). The Aquarius data (v2.0) were obtained
from the Physical Oceanography Distributed Active Archive Center
(PO.DAAC) at the NASA Jet Propulsion Laboratory
(http://podaac.jpl.nasa.gov). This is PMEL publication #4175.
NR 26
TC 11
Z9 11
U1 2
U2 13
PU OCEANOGRAPHY SOC
PI ROCKVILLE
PA P.O. BOX 1931, ROCKVILLE, MD USA
SN 1042-8275
J9 OCEANOGRAPHY
JI Oceanography
PD MAR
PY 2015
VL 28
IS 1
SI SI
BP 56
EP 65
DI 10.5670/oceanog.2015.06
PG 10
WC Oceanography
SC Oceanography
GA CH0QE
UT WOS:000353726500006
ER
PT J
AU Dong, SF
Goni, G
Lumpkin, R
AF Dong, Shenfu
Goni, Gustavo
Lumpkin, Rick
TI Mixed-Layer Salinity Budget in the SPURS Region on Seasonal to
Interannual Time Scales
SO OCEANOGRAPHY
LA English
DT Article
ID ATMOSPHERIC FRESH-WATER; NORTH-ATLANTIC; THERMOHALINE CIRCULATION; OCEAN
SALINITIES; SURFACE SALINITY; INDIAN-OCEAN; GLOBAL OCEAN; PACIFIC;
BALANCE; CYCLE
AB Surface salinity variations and processes affecting surface salinity in the high-salinity region of the subtropical North Atlantic (the SPURS-1 area) are investigated by combining data from in situ observations and satellite remote-sensing measurements. On temporal average, the surface freshwater flux term (evaporation minus precipitation) in the SPURS-1 region increases mixed-layer salinity. Oceanic advection plays the largest role in compensating this salinity increase. On seasonal time scales, mixed-layer salinity increases from April to August and decreases from September to March. This seasonal evolution of the mixed-layer salinity is largely controlled by the freshwater flux term, with vertical entrainment playing a secondary role. The domain-averaged oceanic advection and diffusion terms do not show significant seasonal cycles. The sum of all estimated salinity budget terms largely captures salinity variations on interannual time scales. Unlike the seasonal cycle, variations in freshwater flux, oceanic advection, and vertical entrainment all contribute to interannual variations in surface salinity. Oceanic advection plays a larger role in salinity changes during 2008-2012, whereas the surface freshwater flux term dominates surface salinity evolution during 2004-2007 and in 2013. Although evaporation in the SPURS-1 region dominates the mean freshwater flux, precipitation plays a larger role in interannual variations of the freshwater flux. Separating the advection term into geostrophic and Ekman components indicates that the Ekman component dominates the total advection term. The effect of Ekman advection on salinity changes in the SPURS-1 region is closely linked to the spatial distribution of salinity anomalies. Therefore, it is important to understand large-scale forcing changes.
C1 [Dong, Shenfu] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL USA.
[Dong, Shenfu; Goni, Gustavo; Lumpkin, Rick] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
RP Dong, SF (reprint author), Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL USA.
EM shenfu.dong@noaa.gov
RI Dong, Shenfu/I-4435-2013; Lumpkin, Rick/C-9615-2009; Goni,
Gustavo/D-2017-2012
OI Dong, Shenfu/0000-0001-8247-8072; Lumpkin, Rick/0000-0002-6690-1704;
Goni, Gustavo/0000-0001-7093-3170
FU NASA [NNX14AI85G]; CIMAS [NA10OAR4320143]; NOAA/AOML; NOAA Climate
Program Office
FX The authors thank the two anonymous reviewers for their insightful
comments. The authors would also like to thank Francis Bringas, Ricardo
Domingues, and Joaquin Trinanes for their help in generating figures
based on the sustained ocean observing system. This work was supported
by NASA Grant NNX14AI85G, CIMAS Cooperative Agreement #NA10OAR4320143,
and by NOAA/AOML. In situ data (Argo, XBT, surface drifters) used here
correspond to the sustained ocean observing system, which is partly
funded by the NOAA Climate Program Office. Surface drifter data can be
found at http://www.aoml.noaa.gov/phod/dac/dacdata.php. XBT data are
from http://www.aoml.noaa.gov/phod/hdenxbt/index.php.
NR 37
TC 1
Z9 1
U1 0
U2 2
PU OCEANOGRAPHY SOC
PI ROCKVILLE
PA P.O. BOX 1931, ROCKVILLE, MD USA
SN 1042-8275
J9 OCEANOGRAPHY
JI Oceanography
PD MAR
PY 2015
VL 28
IS 1
SI SI
BP 78
EP 85
DI 10.5670/oceanog.2015.05
PG 8
WC Oceanography
SC Oceanography
GA CH0QE
UT WOS:000353726500008
ER
PT J
AU Shcherbina, AY
D'Asaro, EA
Riser, SC
Kessler, WS
AF Shcherbina, Andrey Y.
D'Asaro, Eric A.
Riser, Stephen C.
Kessler, William S.
TI Variability and Interleaving of Upper-Ocean Water Masses Surrounding the
North Atlantic Salinity Maximum
SO OCEANOGRAPHY
LA English
DT Article
ID LAYER; PHYTOPLANKTON; CIRCULATION; SUBDUCTION
AB The North Atlantic subtropical salinity maximum harbors the saltiest surface waters of the open world ocean. Subduction of these waters gives rise to Subtropical Underwater, spreading the high-salinity signature over the entire basin. The Salinity Processes in the Upper-ocean Regional Study (SPURS) is aimed at understanding the physics controlling the thermohaline structure in the salinity maximum region. A combination of moored and autonomous float observations is used here to describe the vertical water mass interleaving in the area. Seasonal intensification of interleaving in late spring and the abundance of small-scale thermohaline intrusions point to an important role for submesoscale processes in the initial subduction and subsequent evolution of Subtropical Underwater.
C1 [Shcherbina, Andrey Y.; D'Asaro, Eric A.] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA.
[D'Asaro, Eric A.; Riser, Stephen C.; Kessler, William S.] Univ Washington, Oceanog, Seattle, WA 98105 USA.
[Kessler, William S.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
RP Shcherbina, AY (reprint author), Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA.
EM shcher@uw.edu
FU NASA [NNX11AE81G, NNX11AF79G]; PMEL
FX We are grateful to the research and technical members of the SPURS team
who made these observations possible. We thank NASA, and particularly
Eric Lindstrom, for support of the SPURS program. Editorial assistance
by J. Lundquist is gratefully acknowledged. This work was supported by
NASA grants NNX11AE81G (AS, EDA) and NNX11AF79G (SR). The Prawler
moorings were funded by PMEL, and this is PMEL Contribution #4251.
Historical Argo float data were collected and made freely available by
the International Argo Project and the national programs that contribute
to it (http://www.argo.net). The Argo Program is part of the Global
Ocean Observing System.
NR 32
TC 5
Z9 5
U1 2
U2 10
PU OCEANOGRAPHY SOC
PI ROCKVILLE
PA P.O. BOX 1931, ROCKVILLE, MD USA
SN 1042-8275
J9 OCEANOGRAPHY
JI Oceanography
PD MAR
PY 2015
VL 28
IS 1
SI SI
BP 106
EP 113
DI 10.5670/oceanog.2015.12
PG 8
WC Oceanography
SC Oceanography
GA CH0QE
UT WOS:000353726500011
ER
PT J
AU Reverdin, G
Morisset, S
Marie, L
Bourras, D
Sutherland, G
Ward, B
Salvador, J
Font, J
Cuypers, Y
Centurioni, L
Hormann, V
Koldziejczyk, N
Boutin, J
D'Ovidio, F
Nencioli, F
Martin, N
Diverres, D
Alory, G
Lumpkin, R
AF Reverdin, Gilles
Morisset, Simon
Marie, Louis
Bourras, Denis
Sutherland, Graigory
Ward, Brian
Salvador, Joaquin
Font, Jordi
Cuypers, Yannis
Centurioni, Luca
Hormann, Verena
Koldziejczyk, Nicolas
Boutin, Jacqueline
D'Ovidio, Francesco
Nencioli, Francesco
Martin, Nicolas
Diverres, Denis
Alory, Gael
Lumpkin, Rick
TI Surface Salinity in the North Atlantic Subtropical Gyre During the
STRASSE/SPURS Summer 2012 Cruise
SO OCEANOGRAPHY
LA English
DT Article
ID AIR-SEA INTERACTION; OCEAN FRONTS; EVAPORATION; FLUXES
AB We investigated a 100 x 100 km high-salinity region of the North Atlantic subtropical gyre during the Sub-Tropical Atlantic Surface Salinity Experiment/Salinity Processes in the Upper-ocean Regional Study (STRASSE/SPURS) cruise from August 21, 2012, to September 9, 2012. Results showed great variability in sea surface salinity (SSS; over 0.3 psu) in the mesoscale, over 7 cm of total evaporation, and little diapycnal mixing below 36 m depth, the deepest mixed layers encountered. Strong currents in the southwestern part of the domain, and the penetration of freshwater, suggest that advection contributed greatly to salinity evolution. However, it was further observed that a smaller cyclonic structure tucked between the high SSS band and the strongest currents contributed to the transport of high SSS water along a narrow front. Cross-frontal transport by mixing is also a possible cause of summertime reduction of SSS. The observed structure was also responsible for significant southward salt transport over more than 200 km.
C1 [Reverdin, Gilles] Univ Paris 04, LOCEAN, CNRS UPMC IRD MNHN, Res, Paris, France.
[Morisset, Simon] LOCEAN IPSL, Paris, France.
[Marie, Louis] IFREMER, LPO, UMR 6523, CNRS,IRD,UBO, Plouzane, France.
[Bourras, Denis] Inst Mediterranean Oceanol MIO, Luminy, France.
[Sutherland, Graigory] Univ Oslo, Dept Math, Oslo, Norway.
[Ward, Brian] Natl Univ Ireland Univ Coll Galway, Galway, Ireland.
[Salvador, Joaquin] ICM CSIC, Barcelona, Catalunya, Spain.
[Font, Jordi] Inst Ciencies Mar CMIMA CSIC, Barcelona, Spain.
[Cuypers, Yannis; Koldziejczyk, Nicolas; D'Ovidio, Francesco; Martin, Nicolas] Univ Paris 04, LOCEAN, CNRS UPMC IRD MNHN, Paris, France.
[Centurioni, Luca] Univ Calif San Diego, Scripps Inst Oceanog, Global Drifter Program, La Jolla, CA 92093 USA.
[Hormann, Verena] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Boutin, Jacqueline] Univ Paris 04, LOCEAN, Res, Paris, France.
[Nencioli, Francesco] MIO, Luminy, France.
[Nencioli, Francesco] Plymouth Marine Lab, Plymouth, Devon, England.
[Diverres, Denis] IRD, US Instrumentat Moyens Analyt Observ Geophys & Oc, Plouzane, France.
[Alory, Gael] LEGOS, Toulouse, France.
[Lumpkin, Rick] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
RP Reverdin, G (reprint author), Univ Paris 04, LOCEAN, CNRS UPMC IRD MNHN, Res, Paris, France.
EM gilles.reverdin@locean-ipsl.upmc.fr
RI Kolodziejczyk, Nicolas/P-3553-2015; Marie, Louis/A-1815-2016; Lumpkin,
Rick/C-9615-2009; Cuypers, Yannis/H-9869-2016; Boutin,
Jacqueline/M-2253-2016
OI Kolodziejczyk, Nicolas/0000-0002-0751-1351; Marie,
Louis/0000-0003-2583-0994; Lumpkin, Rick/0000-0002-6690-1704;
FU CNES/TOSCA; Gloscal project; SMOS project; LEFE/INSU; Spanish national
R+D plan [AYA2010-22062-C05]; INSU; IFREMER; IPSL; CNES; Office of Naval
Research [N62909-12-1-7064]; Graig Sutherland's scholarship - National
Research Council of Canada [PGSD3-410251-258 2011]; Global Drifter
Program, NOAA [NA10OAR432056]; NASA [NNX12AI67G]; NOAA [NA10OAR432056]
FX This effort was supported nationally in France by CNES/TOSCA with the
Gloscal and SMOS projects and by LEFE/INSU for the STRASSE/SPURS
project, in Spain at ICM/CSIC by the Spanish national R+D plan (project
AYA2010-22062-C05). The cruise took place on board R/V Thalassa owned by
IFREMER and operated by GENAVIR. Support from the ship's captain and
crew during the STRASSE cruise is gratefully acknowledged. Some French
instruments were also funded by INSU and IFREMER, and the trimaran
platform Ocarina was also partially funded by IPSL. Nicolas
Kolodziejczyk's postdoctoral fellowship was awarded by CNES. Support for
ASIP work is from the Office of Naval Research under Award No.
N62909-12-1-7064, and Graig Sutherland's scholarship PGSD3-410251-258
2011 was awarded by the National Research Council of Canada. SVP
drifters were provided by the Global Drifter Program, NOAA grant
#NA10OAR432056. LC and VH were supported by NASA grant #NNX12AI67G and
NOAA grant #NA10OAR432056. The surface velocity data derived from
altimetry fields were produced by Ssalto/Duacs and distributed by Aviso
with support from CNES (http://www.aviso.altimetry.fr/duacs). The
manuscript was improved by comments from Julius Besecke and anonymous
reviewers.
NR 25
TC 6
Z9 6
U1 0
U2 6
PU OCEANOGRAPHY SOC
PI ROCKVILLE
PA P.O. BOX 1931, ROCKVILLE, MD USA
SN 1042-8275
J9 OCEANOGRAPHY
JI Oceanography
PD MAR
PY 2015
VL 28
IS 1
SI SI
BP 114
EP 123
DI 10.5670/oceanog.2015.09
PG 10
WC Oceanography
SC Oceanography
GA CH0QE
UT WOS:000353726500012
ER
PT J
AU Schmitt, RW
Asher, W
Bingham, F
Carton, J
Centurioni, L
Farrar, T
Gordon, A
Hodges, B
Jessup, A
Kessler, WS
Rainville, L
Shcherbina, A
AF Schmitt, Raymond W.
Asher, William
Bingham, Frederick
Carton, James
Centurioni, Luca
Farrar, Thomas
Gordon, Arnold
Hodges, Benjamin
Jessup, Andrew
Kessler, William S.
Rainville, Luc
Shcherbina, Andrey
TI From Salty to Fresh-Salinity Processes in the Upper-ocean Regional
Study-2 (SPURS-2): Diagnosing the Physics of a Rainfall-Dominated
Salinity Minimum
SO OCEANOGRAPHY
LA English
DT Article
ID MIXED-LAYER; PACIFIC
AB One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address.
C1 [Schmitt, Raymond W.; Farrar, Thomas; Hodges, Benjamin] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
[Asher, William; Jessup, Andrew; Rainville, Luc; Shcherbina, Andrey] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA.
[Bingham, Frederick] Univ North Carolina Wilmington, Wilmington, NC USA.
[Carton, James] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD USA.
[Centurioni, Luca] Scripps Inst Oceanog, La Jolla, CA USA.
[Gordon, Arnold] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA.
[Kessler, William S.] NOAA Pacific Marine Environm Lab, Seattle, WA USA.
RP Schmitt, RW (reprint author), Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
EM rschmitt@whoi.edu
RI Farrar, John T./F-3532-2012; carton, james/C-4807-2009
OI Farrar, John T./0000-0003-3495-1990; carton, james/0000-0003-0598-5198
NR 18
TC 7
Z9 7
U1 1
U2 6
PU OCEANOGRAPHY SOC
PI ROCKVILLE
PA P.O. BOX 1931, ROCKVILLE, MD USA
SN 1042-8275
J9 OCEANOGRAPHY
JI Oceanography
PD MAR
PY 2015
VL 28
IS 1
SI SI
BP 150
EP 159
DI 10.5670/oceanog.2015.15
PG 10
WC Oceanography
SC Oceanography
GA CH0QE
UT WOS:000353726500016
ER
PT J
AU Hammond, SR
Embley, RW
Baker, ET
AF Hammond, Stephen R.
Embley, Robert W.
Baker, Edward T.
TI The NOAA Vents Program 1983 to 2013: Thirty Years of Ocean Exploration
and Research
SO OCEANOGRAPHY
LA English
DT Article
ID DE-FUCA RIDGE; EAST PACIFIC RISE; HYDROTHERMAL PLUMES;
VOLCANIC-ERUPTION; GALAPAGOS RIFT; AXIAL SEAMOUNT; CLEFT SEGMENT;
MARIANA ARC; SEA; EVOLUTION
AB Two seminal advances in the late 1970s in science and technology spurred the establishment of the National Oceanic and Atmospheric Administration (NOAA) Vents Program: the unexpected discovery of seafloor vents and chemosynthetic ecosystems on the Galapagos Spreading Center (GSC), and civilian access to a previously classified multibeam mapping sonar system. A small team of NOAA scientists immediately embarked on an effort to apply the new mapping technology to the discovery of vents, animal communities, and polymetallic sulfide deposits on spreading ridges in the Northeast Pacific Ocean. The addition of interdisciplinary colleagues from NOAA's cooperative institutes at Oregon State University and the University of Washington led to the creation of the Vents Program in 1983 at NOAA's Pacific Marine Environmental Laboratory. Within a decade, Vents surveyed the entire Juan de Fuca and Gorda Ridges for hydrothermal activity, discovered the first "megaplume," established multiyear time series of hydrothermal fluid measurements, and, for the first time, acoustically detected and responded to a deep-sea volcanic eruption. With this experience, and partnering with researchers from around the globe, Vents expanded to exploration along the East Pacific and GSC divergent plate boundaries. In 1999, the Vents Program embarked on systematic surveys along volcanic arcs and back-arc basins of the Mariana and Kermadec-Tonga subduction zones. For three decades, the Vents Program focused on understanding the physical, chemical, and biological environmental consequences of global-scale processes that regulate the transfer of heat and mass from Earth's hot interior into the ocean. As the fourth decade began, the Vents Program was restructured into two new programs, Earth-Ocean Interactions and Acoustics, that together continue, and broaden, the scope of Vents' pioneering ocean exploration and research.
C1 [Hammond, Stephen R.] NOAA, Pacific Marine Environm Lab, Portland, OR USA.
[Hammond, Stephen R.] NOAA, Off Ocean Explorat & Res, Portland, OR USA.
[Embley, Robert W.] NOAA PMEL, Newport, OR USA.
[Baker, Edward T.] Univ Washington, Joint Inst Study Atmosphere & Ocean, PMEL, Seattle, WA 98195 USA.
RP Hammond, SR (reprint author), NOAA, Pacific Marine Environm Lab, Portland, OR USA.
EM stephen.r.hammond@noaa.gov
FU NOAA Office of Ocean Exploration and Research; NSF; NOAA's Office of
Ocean Exploration and Research; NOAA's Pacific Marine Environmental
Laboratory; NOAA's Earth-Ocean Interactions Program; University of
Washington's Joint Institute for the Study of the Atmosphere and Ocean
through NOAA [NA10OAR4320148]
FX The contributions of all these colleagues can best be expressed through
an extended bibliography of the Vents Program available at:
http://www.pmel.noaa.gov/eoi/bibliography.html. We make special note of
E. Bernard, PMEL's Director for virtually the entire duration of the
program and a constant and inspirational supporter of the program, and
V. Tunnicliffe, our primary collaborator for the biological aspects of
hydrothermal systems since the inception of the program. H. Milburn and
C. Meinig were the principal engineering leads for the Vents Program's
many technical innovations. A multitude of organizations, programs,
agencies, and universities, both domestic and international, also
provided intellectual and material support that directly contributed to
the success of Vents. We are especially grateful for long-term support
of the NOAA Office of Ocean Exploration and Research and NSF. Thanks are
due as well to the crews of the ships of the NOAA and UNOLS fleets as
well as those of our international partners. Without all of these
assets, we would not have been able to make the sustained year-to-year
observations that are at the scientific heart of the program. This paper
was materially improved by the reviews of R. Koski, M. Perfit, and V.
Tunnicliffe. Financial support for the paper was supplied by NOAA's
Office of Ocean Exploration and Research and NOAA's Pacific Marine
Environmental Laboratory (S.R.H.), NOAA's Earth-Ocean Interactions
Program (R.W.E.), and the University of Washington's Joint Institute for
the Study of the Atmosphere and Ocean through NOAA Cooperative Agreement
NA10OAR4320148 (E.T.B). S. Merle and K. Birchfield provided graphics
support for many of the paper's figures.
NR 51
TC 0
Z9 0
U1 3
U2 26
PU OCEANOGRAPHY SOC
PI ROCKVILLE
PA P.O. BOX 1931, ROCKVILLE, MD USA
SN 1042-8275
J9 OCEANOGRAPHY
JI Oceanography
PD MAR
PY 2015
VL 28
IS 1
SI SI
BP 160
EP 173
DI 10.5670/oceanog.2015.17
PG 14
WC Oceanography
SC Oceanography
GA CH0QE
UT WOS:000353726500017
ER
PT J
AU Elvidge, CD
Zhizhin, M
Baugh, K
Hsu, FC
AF Elvidge, Christopher D.
Zhizhin, Mikhail
Baugh, Kimberly
Hsu, Feng-Chi
TI Automatic Boat Identification System for VIIRS Low Light Imaging Data
SO REMOTE SENSING
LA English
DT Article
ID FISHING FLEET; SATELLITE; CAPABILITIES; IMAGES; SEA
AB The ability for satellite sensors to detect lit fishing boats has been known since the 1970s. However, the use of the observations has been limited by the lack of an automatic algorithm for reporting the location and brightness of offshore lighting features arising from boats. An examination of lit fishing boat features in Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band (DNB) data indicates that the features are essentially spikes. We have developed a set of algorithms for automatic detection of spikes and characterization of the sharpness of spike features. A spike detection algorithm generates a list of candidate boat detections. A second algorithm measures the height of the spikes for the discard of ionospheric energetic particle detections and to rate boat detections as either strong or weak. A sharpness index is used to label boat detections that appear blurry due to the scattering of light by clouds. The candidate spikes are then filtered to remove features on land and gas flares. A validation study conducted using analyst selected boat detections found the automatic algorithm detected 99.3% of the reference pixel set. VIIRS boat detection data can provide fishery agencies with up-to-date information of fishing boat activity and changes in this activity in response to new regulations and enforcement regimes. The data can provide indications of illegal fishing activity in restricted areas and incursions across Exclusive Economic Zone (EEZ) boundaries. VIIRS boat detections occur widely offshore from East and Southeast Asia, South America and several other regions.
C1 [Elvidge, Christopher D.] NOAA, Earth Observat Grp, Natl Geophys Data Ctr, Boulder, CO 80305 USA.
[Zhizhin, Mikhail; Baugh, Kimberly; Hsu, Feng-Chi] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80303 USA.
RP Elvidge, CD (reprint author), NOAA, Earth Observat Grp, Natl Geophys Data Ctr, 325 Broadway, Boulder, CO 80305 USA.
EM chris.elvidge@noaa.gov; mikhail.zhizhin@noaa.gov; kim.baugh@noaa.gov;
feng.c.hsu@noaa.gov
RI ZHIZHIN, Mikhail/B-9795-2014; Elvidge, Christopher/C-3012-2009
FU U.S. Agency for International Development office in Jakarta, Indonesia
through NOAA's Coral Reef Conservation Program
FX This project was sponsored by the U.S. Agency for International
Development office in Jakarta, Indonesia through NOAA's Coral Reef
Conservation Program.
NR 18
TC 10
Z9 10
U1 4
U2 19
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2072-4292
J9 REMOTE SENS-BASEL
JI Remote Sens.
PD MAR
PY 2015
VL 7
IS 3
BP 3020
EP 3036
DI 10.3390/rs70303020
PG 17
WC Remote Sensing
SC Remote Sensing
GA CH0BZ
UT WOS:000353685200033
ER
PT J
AU Majumdar, SJ
Chang, EKM
Pena, M
Tatusko, R
Toth, Z
AF Majumdar, Sharanya J.
Chang, Edmund K. M.
Pena, Malaquias
Tatusko, Renee
Toth, Zoltan
TI PLANNING THE NEXT DECADE OF COORDINATED US RESEARCH ON
MINUTES-TO-SEASONAL PREDICTION OF HIGH-IMPACT WEATHER
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Editorial Material
C1 [Majumdar, Sharanya J.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA.
[Chang, Edmund K. M.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA.
[Pena, Malaquias] NOAA, IMSG, NWS, NCEP,EMC, College Pk, MD USA.
[Tatusko, Renee] NOAA, NWS, Int Act Off, Silver Spring, MD USA.
[Toth, Zoltan] NOAA, Global Syst Div, OAR, ESRL, Boulder, CO USA.
RP Majumdar, SJ (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA.
EM smajumdar@rsmas.miami.edu
RI Toth, Zoltan/I-6624-2015
OI Toth, Zoltan/0000-0002-9635-9194
NR 4
TC 0
Z9 0
U1 0
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD MAR
PY 2015
VL 96
IS 3
BP 461
EP 464
DI 10.1175/BAMS-D-14-00191.1
PG 4
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CG9RT
UT WOS:000353657200009
ER
PT J
AU Robertson, AW
Kumar, A
Pena, M
Vitart, F
AF Robertson, Andrew W.
Kumar, Arun
Pena, Malaquias
Vitart, Frederic
TI IMPROVING AND PROMOTING SUBSEASONAL TO SEASONAL PREDICTION
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Editorial Material
C1 [Robertson, Andrew W.] Columbia Univ, Int Res Inst Climate & Soc, Palisades, NY 10964 USA.
[Kumar, Arun] NOAA, Climate Predict Ctr, NWS, NCEP, College Pk, MD USA.
[Pena, Malaquias] NOAA, Environm Modeling Ctr, NWS, NCEP, College Pk, MD USA.
[Vitart, Frederic] ECMWF, Reading, Berks, England.
RP Robertson, AW (reprint author), Columbia Univ, IRI, 61 Rte 9W, Palisades, NY 10964 USA.
EM awr@iri.columbia.edu
RI Robertson, Andrew/H-7138-2015
FU WMO; WWRP; WCRP; NCEP; NOAA Climate Program Office Modeling, Analysis,
Predictions, and Projections (CPO-MAPP) program
FX We wish to thank all the presenters at the workshop. The organizers of
the workshop are grateful for the support provided by WMO, WWRP, WCRP,
NCEP, and the NOAA Climate Program Office Modeling, Analysis,
Predictions, and Projections (CPO-MAPP) program. The NWS International
Activities Office (NWS-IAO) and logistic support from I.M. Systems
Group, Inc. (IMSG) contractors M. Hart and S. Link are gratefully
acknowledged.
NR 1
TC 10
Z9 11
U1 2
U2 13
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD MAR
PY 2015
VL 96
IS 3
BP ES49
EP ES53
DI 10.1175/BAMS-D-14-00139.1
PG 5
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CG9RT
UT WOS:000353657200001
ER
PT J
AU Akasaka, R
Zhou, Y
Lemmon, EW
AF Akasaka, Ryo
Zhou, Yong
Lemmon, Eric W.
TI A Fundamental Equation of State for 1,1,1,3,3-Pentafluoropropane
(R-245fa)
SO JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA
LA English
DT Article
DE equation of state; R-245fa; thermodynamic properties
ID ORGANIC RANKINE-CYCLE; VAPOR-PRESSURES; ALTERNATIVE REFRIGERANTS;
FLUORINATED PROPANE; BUTANE DERIVATIVES; LIQUID DENSITIES;
HEAT-TRANSFER; R245FA; HFC-245FA; ORC
AB A new fundamental equation of state explicit in the Helmholtz energy is presented for 1,1,1,3,3-pentafluoropropane (R-245fa), based on recent experimental data for vapor pressures, densities, and sound speeds. The functional form uses Gaussian bell-shaped terms, according to recent trends in the development of accurate equations of state. The independent variables of the equation of state are temperature and density. The equation is valid for temperatures between the triple point (170.0 K) and 440 K, and for pressures up to 200 MPa. Estimated uncertainties in this range are 0.1% for vapor pressures, 0.1% for saturated liquid densities, 0.1% for liquid densities below 70 MPa, 0.2% for densities at higher pressures, 0.3% for vapor densities, 0.3% for liquid sound speeds, and 0.1% for vapor sound speeds. The uncertainties in the critical region are higher for all properties except vapor pressures. The equation shows reasonable extrapolation behavior at extremely low and high temperatures, and at high pressures. (C) 2015 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved.
C1 [Akasaka, Ryo] Kyushu Sangyo Univ, Dept Mech Engn, Fac Engn, Higashi Ku, Fukuoka 8138503, Japan.
[Zhou, Yong] Honeywell Integrated Technol China Co Ltd, Shanghai 201203, Peoples R China.
[Lemmon, Eric W.] NIST, Appl Chem & Mat Div, Boulder, CO 80305 USA.
RP Akasaka, R (reprint author), Kyushu Sangyo Univ, Dept Mech Engn, Fac Engn, Higashi Ku, 2-3-1 Matsukadai, Fukuoka 8138503, Japan.
FU Japan Science and Technology Agency (JST)
FX The authors would like to thank the Japan Science and Technology Agency
(JST) for a grant that made it possible to complete this study. The
authors are also grateful for the suggestions of Eiji Hihara, Shigeru
Koyama, Yukihiro Higashi, Akio Miyara, Eiichi Sakaue, Katsuyuki Tanaka,
Yohei Kayukawa, Yuya Kano, and Chieko Kondou.
NR 29
TC 6
Z9 6
U1 2
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0047-2689
EI 1529-7845
J9 J PHYS CHEM REF DATA
JI J. Phys. Chem. Ref. Data
PD MAR
PY 2015
VL 44
IS 1
AR 013104
DI 10.1063/1.4913493
PG 11
WC Chemistry, Multidisciplinary; Chemistry, Physical; Physics,
Multidisciplinary
SC Chemistry; Physics
GA CH2YB
UT WOS:000353890400004
ER
PT J
AU Trattner, KJ
Onsager, TG
Petrinec, SM
Fuselier, SA
AF Trattner, K. J.
Onsager, T. G.
Petrinec, S. M.
Fuselier, S. A.
TI Distinguishing between pulsed and continuous reconnection at the dayside
magnetopause
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE magnetic reconnection; pulsed reconnection; continuous reconnection;
magnetopause; cusp observations
ID INTERPLANETARY MAGNETIC-FIELD; LOW-ALTITUDE OBSERVATIONS; SHEET
BOUNDARY-LAYER; FLUX-TRANSFER EVENTS; EARTHS MAGNETOPAUSE; NORTHWARD
IMF; LATITUDE RECONNECTION; MIDDLE ALTITUDES; ELECTRIC-FIELD; DOUBLE
CUSP
AB Magnetic reconnection has been established as the dominant mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy and momentum to flow into the magnetosphere. One of the persistent problems of magnetic reconnection is the question of whether the process is continuous or intermittent and what input condition(s) might favor one type of reconnection over the other. Observations from imagers that record FUV emissions caused by precipitating cusp ions demonstrate the global nature of magnetic reconnection. Those images show continuous ionospheric emissions even during changing interplanetary magnetic field conditions. On the other hand, in situ observations from polar-orbiting satellites show distinctive cusp structures in flux distributions of precipitating ions, which are interpreted as the telltale signature of intermittent reconnection. This study uses a modification of the low-velocity cutoff method, which was previously successfully used to determine the location of the reconnection site, to calculate for the cusp ion distributions the time since reconnection occurred. The time since reconnection is used to determine the reconnection time for the cusp magnetic field lines where these distributions have been observed. The profile of the reconnection time, either continuous or stepped, is a direct measurement of the nature of magnetic reconnection at the reconnection site. This paper will discuss a continuous and pulsed reconnection event from the Polar spacecraft to illustrate the methodology.
C1 [Trattner, K. J.] Univ Colorado Boulder, LASP, Boulder, CO 80309 USA.
[Onsager, T. G.] NOAA, Boulder, CO USA.
[Petrinec, S. M.] Lockheed Martin STAR Labs, Palo Alto, CA USA.
[Fuselier, S. A.] Southwest Res Inst, San Antonio, TX USA.
[Fuselier, S. A.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA.
RP Trattner, KJ (reprint author), Univ Colorado Boulder, LASP, Boulder, CO 80309 USA.
EM karlheinz.trattner@lasp.colorado.edu
FU NASA [NNX08AF35G, NNX14AF71G, NNX11AI35G]; NSF [1102572, 1303186]
FX The research at LASP is supported by a NASA grant NNX08AF35G and by the
NSF under grant 1102572. The research at Lockheed Martin was funded by
NSF grant 1303186. The Laboratory for Aeronomy and Space Physics,
Lockheed Martin, and Southwest Research Institute was funded by NASA
under grant NNX14AF71G. The research at SWRI was funded by NASA grant
NNX11AI35G. We acknowledge the use of the ISTP KP database
(http://cdaweb.gsfc.nasa.gov/istp_public/). Solar wind observations were
provided by the Wind "Solar Wind Experiment" (Wind SWE) [Ogilvie et al.,
1995]. The IMF measurements are provided by the Wind "Magnetic Field
Instrument" (Wind MFI) [Lepping et al., 1995].
NR 59
TC 3
Z9 3
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD MAR
PY 2015
VL 120
IS 3
BP 1684
EP 1696
DI 10.1002/2014JA020713
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CG4EY
UT WOS:000353237600015
ER
PT J
AU Gkioulidou, M
Ohtani, S
Mitchell, DG
Ukhorskiy, AY
Reeves, GD
Turner, DL
Gjerloev, JW
Nose, M
Koga, K
Rodriguez, JV
Lanzerotti, LJ
AF Gkioulidou, Matina
Ohtani, S.
Mitchell, D. G.
Ukhorskiy, A. Y.
Reeves, G. D.
Turner, D. L.
Gjerloev, J. W.
Nose, M.
Koga, K.
Rodriguez, J. V.
Lanzerotti, L. J.
TI Spatial structure and temporal evolution of energetic particle
injections in the inner magnetosphere during the 14 July 2013 substorm
event
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE energetic particle injections; substorms; dipolarization fronts; inner
magnetosphere; bubbles
ID ALLEN PROBES OBSERVATIONS; GEOSYNCHRONOUS ORBIT; ION INJECTIONS; PLASMA
SHEET; ACCELERATION; STORM; DIPOLARIZATION; MAGNETOTAIL; CLUSTER; MOTION
AB Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst similar to-40nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within 10min, with different dipolarization signatures and duration. The first one is a dispersionless, short-timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer-timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations and in situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.
C1 [Gkioulidou, Matina; Ohtani, S.; Mitchell, D. G.; Ukhorskiy, A. Y.; Gjerloev, J. W.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Turner, D. L.] Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA.
[Nose, M.] Kyoto Univ, Grad Sch Sci, Data Anal Ctr Geomagnetism & Space Magnetism, Kyoto, Japan.
[Koga, K.] Japan Aerosp Explorat Agcy, Tsukuba, Ibaraki, Japan.
[Rodriguez, J. V.] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
[Rodriguez, J. V.] NOAA, Natl Geophys Data Ctr, Boulder, CO 80303 USA.
[Lanzerotti, L. J.] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA.
RP Gkioulidou, M (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
EM gkioum1@jhuapl.edu
RI Nose, Masahito/B-1900-2015; Gkioulidou, Matina/G-9009-2015; Reeves,
Geoffrey/E-8101-2011; Ohtani, Shinichi/E-3914-2016; Ukhorskiy,
Aleksandr/E-6429-2016
OI Nose, Masahito/0000-0002-2789-3588; Gkioulidou,
Matina/0000-0001-9979-2164; RODRIGUEZ, JUAN/0000-0002-6847-4136; Reeves,
Geoffrey/0000-0002-7985-8098; Ohtani, Shinichi/0000-0002-9565-6840;
Ukhorskiy, Aleksandr/0000-0002-3326-4024
FU JHU/APL under NASA [937836, NAS5-01072]; NSF [AGS-1303646];
International Space Science Institute's (ISSI) International Teams
program; NASA [NAS5-01072, NNX12AJ52G, NAS5-02099]; National Geophysical
Data Center (NGDC) Task II under the CIRES; NOAA; University of
Colorado; Ministry of Education, Culture, Sports, Science and Technology
(MEXT) [25287127]
FX The authors thank team discussions with the larger RBSPICE and Van Allen
Probes teams. The RBSPICE instrument was supported by JHU/APL
subcontract 937836 to the New Jersey Institute of Technology under NASA
prime contract NAS5-01072. MG was also supported by NSF grant
AGS-1303646 and the International Space Science Institute's (ISSI)
International Teams program. SO was supported by NASA grant NNX12AJ52G.
D.L.T. was supported by NASA's THEMIS (contract NAS5-02099) and Van
Allen Probes (contract NAS5-01072) missions. J.V.R. was supported by
National Geophysical Data Center (NGDC) Task II under the CIRES
Cooperative Agreement between NOAA and the University of Colorado. MN
was supported by the Ministry of Education, Culture, Sports, Science and
Technology (MEXT) Grant-in-Aid Scientific Research (B) (grant 25287127).
Solar wind data and AL and SYM-H indices were retrieved from OMNIweb
service. The Wp index was retrieved from http://s-cubed.info/. One
second resolution magnetometer data were collected at various magnetic
observatories within the INTERMAGNET project. One minute resolution
magnetometer data were collected at various magnetic observatories
within the SuperMAG project. We thank the national institutes that
support the magnetic observatories and INTERMAGNET (www.intermagnet.org)
and SuperMAG (http://supermag.jhuapl.edu/) projects for promoting high
standards of magnetic observatory practice. Magnetic field data from the
geosynchronous ETS-8 satellite were provided by the Japan Aerospace
Exploration Agency upon request. THEMIS-D data were retrieved with the
Space Physics Environment Data Analysis System (SPEDAS) software
(http://themis.igpp.ucla.edu/software.shtml). GOES 15 magnetometer data
were retrieved from CDAweb service. GOES MAGPD data are available upon
request from NGDC Van Allen Probes RBSPICE data were retrieved from
http://rbspice.ftecs.com/, and HOPE and MagEIS data were retrieved from
http://www.rbsp-ect.lanl.gov/rbsp_ect.php. LANL-01A data were provided
by the Los Alamos National Laboratory upon request.
NR 39
TC 12
Z9 12
U1 0
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD MAR
PY 2015
VL 120
IS 3
BP 1924
EP 1938
DI 10.1002/2014JA020872
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CG4EY
UT WOS:000353237600031
ER
PT J
AU Hwang, KJ
Sibeck, DG
Fok, MCH
Zheng, Y
Nishimura, Y
Lee, JJ
Glocer, A
Partamies, N
Singer, HJ
Reeves, GD
Mitchell, DG
Kletzing, CA
Onsager, T
AF Hwang, K. -J.
Sibeck, D. G.
Fok, M. -C. H.
Zheng, Y.
Nishimura, Y.
Lee, J. -J.
Glocer, A.
Partamies, N.
Singer, H. J.
Reeves, G. D.
Mitchell, D. G.
Kletzing, C. A.
Onsager, T.
TI The global context of the 14 November 2012 storm event
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE flux dropout; radiation belt; Van Allen Probes; flux rope; geomagnetic
storm
ID OUTER RADIATION BELT; ION-CYCLOTRON WAVES; VAN ALLEN RADIATION;
GEOMAGNETIC STORMS; RELATIVISTIC ELECTRONS; MAGNETIC STORM;
ACCELERATION; PLASMA; CHORUS; FIELD
AB From 2 to 5 UT on 14 November 2012, the Van Allen Probes observed repeated particle flux dropouts during the main phase of a geomagnetic storm as the satellites traversed the post-midnight to dawnside inner magnetosphere. Each flux dropout corresponded to an abrupt change in the magnetic topology, i.e., from a more dipolar configuration to a configuration with magnetic field lines stretched in the dawn-dusk direction. Geosynchronous GOES spacecraft located in the dusk and near-midnight sectors and the LANL constellation with wide local time coverage also observed repeated flux dropouts and stretched field lines with similar occurrence patterns to those of the Van Allen Probe events. THEMIS recorded multiple transient abrupt expansions of the evening-side magnetopause approximate to 20-30 min prior to the sequential Van Allen Probes observations. Ground-based magnetograms and all sky images demonstrate repeatable features in conjunction with the dropouts. We combine the various in situ and ground-based measurements to define and understand the global spatiotemporal features associated with the dropouts observed by the Van Allen Probes. We discuss various proposed hypotheses for the mechanism that plausibly caused this storm-time dropout event as well as formulate a new hypothesis that explains the combined in situ and ground-based observations: the earthward motion of magnetic flux ropes containing lobe plasmas that form along an extended magnetotail reconnection line in the near-Earth plasma sheet.
C1 [Hwang, K. -J.; Sibeck, D. G.; Fok, M. -C. H.; Zheng, Y.; Glocer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Hwang, K. -J.] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA.
[Nishimura, Y.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA.
[Lee, J. -J.] Korea Astron & Space Sci Inst, Solar & Space Weather Res Grp, Taejon, South Korea.
[Partamies, N.] Finnish Meteorol Inst, Helskinki, Finland.
[Singer, H. J.; Onsager, T.] NOAA, Space Weather Predict Ctr, Boulder, CO USA.
[Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Mitchell, D. G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
RP Hwang, KJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM Kyoung-Joo.Hwang@nasa.gov
RI Reeves, Geoffrey/E-8101-2011; Partamies, Noora/G-3408-2014
OI Reeves, Geoffrey/0000-0002-7985-8098; Kletzing,
Craig/0000-0002-4136-3348; Partamies, Noora/0000-0003-2536-9341
FU NASA; NSF [AGS-1305374]
FX This study was supported, in part, by NASA's Van Allen Probes grant to
the Goddard Space Flight Center with data from THEMIS, GOES, LANL,
Geotail missions, ground magnetometers, and all sky imagers. Geotail,
Van Allen Probes, and THEMIS data sets were provided by the Space
Physics Data Facility at Goddard Space Flight Center through their
Coordinated Data Analysis Web (http://cdaweb.gsfc.nasa.gov) and THEMIS
Web (http://themis.ssl.berkeley.edu/). We acknowledge S. Claudepierre
for providing data from the MagEIS instrument of the Van Allen Probes
Mission. H. Singer (howard.singer@noaa.gov), G. Reeves
(reeves@lanl.gov), N. Partamies (noora.partamies@fmi.fi), and Y.
Nishimura (toshi@atmos.ucla.edu) provided GOES, LANL, auroral keogram,
and high-resolution all sky image data, respectively. K. J. H. thanks E.
A. MacDonald for useful discussions. A portion of this work was
supported by NSF Magnetospheric Physics grant AGS-1305374.
NR 62
TC 3
Z9 3
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD MAR
PY 2015
VL 120
IS 3
BP 1939
EP 1956
DI 10.1002/2014JA020826
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CG4EY
UT WOS:000353237600032
ER
PT J
AU Kim, H
Clauer, CR
Engebretson, MJ
Matzka, J
Sibeck, DG
Singer, HJ
Stolle, C
Weimer, DR
Xu, Z
AF Kim, H.
Clauer, C. R.
Engebretson, M. J.
Matzka, J.
Sibeck, D. G.
Singer, H. J.
Stolle, C.
Weimer, D. R.
Xu, Z.
TI Conjugate observations of traveling convection vortices associated with
transient events at the magnetopause
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE transient event; TCV; conjugacy; magnetopause
ID WIND DYNAMIC PRESSURE; GROUND MAGNETIC SIGNATURES; GEOMAGNETIC SUDDEN
COMMENCEMENTS; LATITUDE BOUNDARY-LAYER; FIELD-ALIGNED CURRENTS;
FLUX-TRANSFER EVENTS; DAWN-DUSK ASYMMETRY; SOLAR-WIND; IMPULSE EVENTS;
TWIN-VORTICES
AB Traveling convection vortices (TCVs) are generally produced by field-aligned currents (FACs) at high latitudes associated with transient changes of the magnetopause. This paper presents multipoint conjugate observations of transient events at the magnetopause measured in space and on the ground. The transient events showing radial fluctuation of the magnetopause in association with sudden increases in solar wind dynamic pressure were detected by both the Time History of Events and Macroscale Interactions during Substorms and the Geostationary Operational Environmental Satellite spacecraft. Geomagnetic signatures seen as TCVs in response to the transient events were observed by the ground magnetometer array in Greenland and Canada and their conjugate locations in Antarctica including recently developed Antarctic magnetometers, mostly located along the 40 degrees magnetic meridian. This new conjugate network provides a unique opportunity to observe geomagnetic field signatures over a relatively large region in both hemispheres. This study focuses mainly on the spatial and temporal features of the TCVs in the conjugate hemispheres in relation to the transient events at the magnetopause. The TCV events are characterized by their single or twin vortex, of which the centers are located approximately at 72 degrees-76 degrees magnetic latitude, propagating either dawnward or duskward away from local noon. While interhemispheric conjugacy is expected with an assumption that TCV signatures are created by FACs directed in both hemispheres, our observations suggest that there might be more complex mechanisms contributing the asymmetrical features, perhaps due to field line mapping and/or conductivity differences.
C1 [Kim, H.; Clauer, C. R.; Weimer, D. R.; Xu, Z.] Virginia Polytech Inst & State Univ, Ctr Space Sci & Engn Res, Blacksburg, VA 24061 USA.
[Kim, H.; Clauer, C. R.; Weimer, D. R.; Xu, Z.] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA.
[Engebretson, M. J.] Augsburg Coll, Dept Phys, Minneapolis, MN USA.
[Matzka, J.; Stolle, C.] German Res Ctr Geosci, Helmholtz Ctr Potsdam, GFZ, Potsdam, Germany.
[Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Singer, H. J.] NOAA, Space Weather Predict Ctr, Boulder, CO USA.
RP Kim, H (reprint author), Virginia Polytech Inst & State Univ, Ctr Space Sci & Engn Res, Blacksburg, VA 24061 USA.
EM hmkim@vt.edu
OI Xu, Zhonghua/0000-0002-3800-2162
FU National Science Foundation [ATM-0922979]; NSF [ANT-0839588,
PLR-1243398, PLR-1341493]; NASA [NAS5-02099]; German Ministry for
Economy and Technology; German Center for Aviation and Space (DLR) [50
OC 0302]
FX Support for this research has been provided by the National Science
Foundation through grants to Virginia Tech: ATM-0922979 for the
development of the Antarctic measurement systems that provided the data
and NSF grants ANT-0839588 and PLR-1243398 that have supported the
continuing operation of the measurement program, acquisition and
processing of the data, and scientific analysis of the data. The work of
M. J. Engebretson was supported by NSF grant, PLR-1341493 to Augsburg
College. The OMNI and THEMIS data were obtained and processed using
THEMIS Data Analysis Software (TDAS). We acknowledge NASA contract
NAS5-02099 and V. Angelopoulos for use of data from the THEMIS Mission.
Specifically, we thank K. H. Glassmeier, U. Auster, and W. Baumjohann
for the use of FGM data provided under the lead of the Technical
University of Braunschweig and with financial support through the German
Ministry for Economy and Technology and the German Center for Aviation
and Space (DLR) under contract 50 OC 0302. The ACE and Cluster data were
provided from Coordinated Data Analysis Web (CDAWeb) at
http://cdaweb.gsfc.nasa.gov. The GOES data were accessed using the data
archive at NOAA Space Weather Prediction Center
(http://www.swpc.noaa.gov). The magnetic field tracing tool (IDL GEOPACK
DLM) is provided by Haje Korth at Applied Physics Laboratory, Johns
Hopkins University. We would like to thank the following
persons/institutes for providing ground magnetometer data: Jeff Love at
USGS Geomagnetism Program and Lorne McKee at Natural Resources Canada
for the INTERMAGNET data (IQA), DTU Space for the Greenland magnetometer
data, GFZ Potsdam and Observatory Niemegk for the Kp index, and Polar
Experiment Network for Geospace Upper-atmosphere Investigations
(PENGUIn) team for the AGO and South Pole data.
NR 65
TC 1
Z9 1
U1 0
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD MAR
PY 2015
VL 120
IS 3
BP 2015
EP 2035
DI 10.1002/2014JA020743
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CG4EY
UT WOS:000353237600036
ER
PT J
AU Kirstetter, PE
Gourley, JJ
Hong, Y
Zhang, J
Moazamigoodarzi, S
Langston, C
Arthur, A
AF Kirstetter, Pierre-Emmanuel
Gourley, Jonathan J.
Hong, Yang
Zhang, Jian
Moazamigoodarzi, Saber
Langston, Carrie
Arthur, Ami
TI Probabilistic precipitation rate estimates with ground-based radar
networks
SO WATER RESOURCES RESEARCH
LA English
DT Article
DE probabilistic quantitative precipitation estimation; NEXRAD; MRMS;
conditional bias; uncertainty
ID UNCERTAINTY MODEL; STRATIFORM RAIN; HYDROLOGY; ERRORS; PRODUCT; QPE;
SCALE
AB The uncertainty structure of radar quantitative precipitation estimation (QPE) is largely unknown at fine spatiotemporal scales near the radar measurement scale. By using the WSR-88D radar network and gauge data sets across the conterminous US, an investigation of this subject has been carried out within the framework of the NOAA/NSSL ground radar-based Multi-Radar Multi-Sensor (MRMS) QPE system. A new method is proposed and called PRORATE for probabilistic QPE using radar observations of rate and typology estimates. Probability distributions of precipitation rates are computed instead of deterministic values using a model quantifying the relation between radar reflectivity and the corresponding true precipitation. The model acknowledges the uncertainty arising from many factors operative at the radar measurement scale and from the correction algorithm. Ensembles of reflectivity-to-precipitation rate relationships accounting explicitly for precipitation typology were derived at a 5 min/1 km scale. This approach conditions probabilistic quantitative precipitation estimates (PQPE) on the precipitation rate and type. The model components were estimated on the basis of a 1 year long data sample over the CONUS. This PQPE model provides the basis for precipitation probability maps and the generation of radar precipitation ensembles. Maps of the precipitation exceedance probability for specific thresholds (e.g., precipitation return periods) are computed. Precipitation probability maps are accumulated to the hourly time scale and compare favorably to the deterministic QPE. As an essential property of precipitation, the impact of the temporal correlation on the hourly accumulation is examined. This approach to PQPE can readily apply to other systems including space-based passive and active sensor algorithms.
C1 [Kirstetter, Pierre-Emmanuel] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA.
[Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Zhang, Jian; Langston, Carrie; Arthur, Ami] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA.
[Kirstetter, Pierre-Emmanuel; Hong, Yang; Moazamigoodarzi, Saber] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA.
[Langston, Carrie; Arthur, Ami] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA.
RP Kirstetter, PE (reprint author), Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA.
EM pierre.kirstetter@noaa.gov
RI Kirstetter, Pierre/E-2305-2013; Gourley, Jonathan/C-7929-2016; Hong,
Yang/D-5132-2009
OI Kirstetter, Pierre/0000-0002-7381-0229; Gourley,
Jonathan/0000-0001-7363-3755; Hong, Yang/0000-0001-8720-242X
FU NASA Global Precipitation Measurement mission Ground Validation
Management; NOAA/Office of Oceanic and Atmospheric Research under
NOAA-University of Oklahoma [NA17RJ1227]
FX We are very much indebted to the team responsible for the MRMS products
who provided the data for this study. P.-E. Kirstetter was funded by a
postdoctoral grant from the NASA Global Precipitation Measurement
mission Ground Validation Management. Partial funding was provided by
the NOAA/Office of Oceanic and Atmospheric Research under
NOAA-University of Oklahoma Cooperative Agreement NA17RJ1227 to support
Langston and Arthur. The authors would like to thank the three anonymous
reviewers whose comments helped to improve the presentation
significantly. The authors would like to thank Stasinopoulos, Rigby,
Akantziliotou, and Ruckdeschel for making the gamlss [Stasinopoulos and
Rigby, 2007] and distr [Ruckdeschel et al., 2006] freely available in R
[R Development Core Team, 2012].
NR 44
TC 13
Z9 13
U1 0
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD MAR
PY 2015
VL 51
IS 3
BP 1422
EP 1442
DI 10.1002/2014WR015672
PG 21
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA CG3DU
UT WOS:000353158800003
ER
PT J
AU Stevenson, DE
AF Stevenson, Duane E.
TI The Validity of Nominal Species of Malacocottus (Teleostei: Cottiformes:
Psychrolutidae) Known from the Eastern North Pacific with a Key to the
Species
SO COPEIA
LA English
DT Article
ID FISHES; JAPAN; SEA
AB Eastern North Pacific species of the fathead sculpin genus Malacocottus Bean are assessed following examination of over 300 specimens collected from throughout the known range of the genus, from the west coast of North America around the Pacific Rim to Japan, including the marginal waters of the Salish Sea, Bering Sea, Sea of Okhotsk, and Sea of Japan. The results of this study demonstrate that two species of Malacocottus occur in the eastern North Pacific. Malacocottus zonurus is found in the North Pacific from Washington State around the Pacific Rim to japan, and in all marginal seas. Malacocottus kincaidi Gilbert and Thompson is apparently endemic to the Sa fish Sea, known only from Puget Sound and the Strait of Georgia. These two species differ in preopercular spine morphology and gill-raker counts. Malacocottus aleuticus Smith, based on a single juvenile specimen, is a synonym of M. zonurus. This study includes redescriptions of M. zonurus and M. kincaidi, comparisons of both species with M. gibber, and a key to the three known species of the genus.
C1 Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Resource Assessment & Conservat Engn Div, Seattle, WA 98115 USA.
RP Stevenson, DE (reprint author), Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Resource Assessment & Conservat Engn Div, 7600 Sand Point Way NE, Seattle, WA 98115 USA.
EM duane.stevenson@noaa.gov
NR 22
TC 0
Z9 1
U1 0
U2 1
PU AMER SOC ICHTHYOLOGISTS & HERPETOLOGISTS
PI MIAMI
PA MAUREEN DONNELLY, SECRETARY FLORIDA INT UNIV BIOLOGICAL SCIENCES, 11200
SW 8TH STREET, MIAMI, FL 33199 USA
SN 0045-8511
EI 1938-5110
J9 COPEIA
JI Copeia
PD MAR
PY 2015
VL 103
IS 1
BP 22
EP 33
DI 10.1643/CI-14-074
PG 12
WC Zoology
SC Zoology
GA CF3RD
UT WOS:000352465300003
ER
PT J
AU Ding, XW
Nunziata, F
Li, XF
Migliaccio, M
AF Ding, Xianwen
Nunziata, Ferdinando
Li, Xiaofeng
Migliaccio, Maurizio
TI Performance Analysis and Validation of Waterline Extraction Approaches
Using Single- and Dual-Polarimetric SAR Data
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article
DE Intertidal flat; multiscale normalized cuts; polarization; synthetic
aperture radar (SAR); waterline
ID COASTLINE DETECTION; EDGE-DETECTION; IMAGES; SEGMENTATION; AREAS; MODEL
AB In this study, the performance of two waterline extraction approaches is analyzed using dual-polarization Cosmo-SkyMed (CSK) Synthetic Aperture Radar (SAR) data and ancillary ground truth information. The single-polarization approach is based on multiscale normalized cuts segmentation; while, the dual-polarization one exploits the inherent peculiarities of the CSK PING PONG incoherent dual-polarimetric imaging mode together with a tailored scattering model to perform land/sea discrimination. The two approaches are applied to the actual CSK SAR data collected over the coastal area of Shanghai, China. To provide a detailed and complete validation of the two approaches, we carried out several field surveys collecting in situ ancillary information including Global Positioning System (GPS) data and tidal information. Experimental results show that 1) both approaches provide satisfactory results in extracting waterline from CSK SAR data in the intertidal flat under low-to-moderate wind conditions and under a very broad range of incidence angles; 2) the accuracy of the waterline extracted by both approaches decreases in case of water within the intertidal flat; 3) the single-polarization approach is unsupervised when the land/sea contrast ratio is high. However, it needs manual supervision to correct the extracted waterline when the land/sea contrast is low or in complex areas. A typical CSK scene is processed in about 25 min; 4) the dual-polarization approach is unsupervised and very effective: a typical CSK SAR scene is processed in seconds.
C1 [Ding, Xianwen] Shanghai Ocean Univ, Int Ctr Marine Studies, Shanghai 201306, Peoples R China.
[Nunziata, Ferdinando; Migliaccio, Maurizio] Univ Napoli Parthenope, Dipartimento Ingn, I-80143 Naples, Italy.
[Li, Xiaofeng] NOAA, GST, Satellite & Informat Serv NESDIS, Ctr Satellite Applicat & Res STAR, College Pk, MD 20740 USA.
RP Li, XF (reprint author), NOAA, GST, Satellite & Informat Serv NESDIS, Ctr Satellite Applicat & Res STAR, College Pk, MD 20740 USA.
EM xiaofeng.li@noaa.gov
RI Nunziata, Ferdinando/D-4054-2012; Li, Xiaofeng/B-6524-2008
OI Nunziata, Ferdinando/0000-0003-4567-0377; Li,
Xiaofeng/0000-0001-7038-5119
FU Shanghai Municipal Science and Technology Commission [12510501900];
State Key Laboratory of Satellite Ocean Environment Dynamics, China
[SOED 1206]; National Natural Science Foundation of China [41306184];
NOAA Product Development, Readiness, and Application (PDRA)/Ocean Remote
Sensing (ORS) Program Funding; ESA-MOST Dragon-3 Cooperation Project
[10689, 10412]; Program for Professor of Special Appointment (Eastern
Scholar) at Shanghai Institutions of Higher Learning, the National
Natural Science Foundation of China [41306194]; Italian Space Agency
(ASI) [1221]
FX This work was supported in part by Shanghai Municipal Science and
Technology Commission under Grant 12510501900, in part by the State Key
Laboratory of Satellite Ocean Environment Dynamics, China, under Grant
SOED 1206, in part by the National Natural Science Foundation of China
under Grant 41306184, in part by NOAA Product Development, Readiness,
and Application (PDRA)/Ocean Remote Sensing (ORS) Program Funding and
the ESA-MOST Dragon-3 Cooperation Project under Grant 10689 and Grant
10412, in part by the Program for Professor of Special Appointment
(Eastern Scholar) at Shanghai Institutions of Higher Learning, the
National Natural Science Foundation of China under Grant 41306194. CSK
SAR Data used in this study are provided by Italian Space Agency (ASI)
under the project ID 1221. COSMO-SkyMed product-ASI-Agenzia Spaziale
Italiana-2012. In situ tide level data are provided by the Shanghai
Pudong New Area Hydrology and Water Resource Administration. The views,
opinions, and findings contained in this report are those of the authors
and should not be construed as an official NOAA or US government
position, policy, or decision.
NR 34
TC 9
Z9 10
U1 3
U2 12
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD MAR
PY 2015
VL 8
IS 3
BP 1019
EP 1027
DI 10.1109/JSTARS.2014.2362511
PG 9
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA CF1BS
UT WOS:000352279200007
ER
PT J
AU Hoef, JMV
Jansen, JK
AF Hoef, Jay M. Ver
Jansen, John K.
TI Estimating Abundance from Counts in Large Data Sets of Irregularly
Spaced Plots using Spatial Basis Functions
SO JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS
LA English
DT Article
DE Sampling; Change-of-support; Spatial point processes; Intensity
function; Random effects; Poisson process; Overdispersion
ID MODELS
AB Monitoring plant and animal populations is an important goal for both academic research and management of natural resources. Successful management of populations often depends on obtaining estimates of their mean or total over a region. The basic problem considered in this paper is the estimation of a total from a sample of plots containing count data, but the plot placements are spatially irregular and non-randomized. Our application had counts from thousands of irregularly spaced aerial photo images. We used change-of-support methods to model counts in images as a realization of an inhomogeneous Poisson process that used spatial basis functions to model the spatial intensity surface. The method was very fast and took only a few seconds for thousands of images. The fitted intensity surface was integrated to provide an estimate from all unsampled areas, which is added to the observed counts. The proposed method also provides a finite area correction factor to variance estimation. The intensity surface from an inhomogeneous Poisson process tends to be too smooth for locally clustered points, typical of animal distributions, so we introduce several new overdispersion estimators due to poor performance of the classic one. We used simulated data to examine estimation bias and to investigate several variance estimators with overdispersion. A real example is given of harbor seal counts from aerial surveys in an Alaskan glacial fjord.
C1 [Hoef, Jay M. Ver; Jansen, John K.] NOAA Natl Marine Mammal Lab, NMFS Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA.
[Hoef, Jay M. Ver] Int Arctic Res Ctr, Fairbanks, AK 99775 USA.
RP Hoef, JMV (reprint author), NOAA Natl Marine Mammal Lab, NMFS Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE,Bldg 4, Seattle, WA 98115 USA.
EM jay.verhoef@noaa.gov
OI Ver Hoef, Jay/0000-0003-4302-6895
FU NOAA's National Marine Fisheries Service, Alaska Fisheries Science
Center
FX The project received financial support from NOAA's National Marine
Fisheries Service, Alaska Fisheries Science Center. In kind support was
provided by the Yakutat office of the U.S. National Weather Service and
the Yakutat Tlingit Tribe whose concerns about the seal population
provided the impetus for this study. Planes were provided by NOAA's
Office of Marine and Aviation Operations. We appreciate the safety
awareness and skill exhibited by the NOAA Corp pilots in planning for
and completing surveys in very challenging conditions. The findings and
conclusions in this paper are those of the authors and do not
necessarily represent the views of the National Marine Fisheries
Service.
NR 46
TC 0
Z9 0
U1 0
U2 6
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1085-7117
EI 1537-2693
J9 J AGR BIOL ENVIR ST
JI J. Agric. Biol. Environ. Stat.
PD MAR
PY 2015
VL 20
IS 1
BP 1
EP 27
DI 10.1007/s13253-014-0192-z
PG 27
WC Biology; Mathematical & Computational Biology; Statistics & Probability
SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational
Biology; Mathematics
GA CF6WY
UT WOS:000352698600001
ER
PT J
AU Wang, QY
Gao, RS
Cao, JJ
Schwarz, JP
Fahey, DW
Shen, ZX
Hu, TF
Wang, P
Xu, XB
Huang, RJ
AF Wang, Q. Y.
Gao, R. S.
Cao, J. J.
Schwarz, J. P.
Fahey, D. W.
Shen, Z. X.
Hu, T. F.
Wang, P.
Xu, X. B.
Huang, R. -J.
TI Observations of high level of ozone at Qinghai Lake basin in the
northeastern Qinghai-Tibetan Plateau, western China
SO JOURNAL OF ATMOSPHERIC CHEMISTRY
LA English
DT Article
DE Ozone; Photochemical production; Qinghai-Tibetan Plateau
ID SURFACE OZONE; IMPACTS; TROPOSPHERE; STRATOSPHERE; EVENTS; WINTER;
CROPS; SITE
AB Measurements of surface ozone (O-3), nitrogen oxides (NOx = NO + NO2), carbon monoxide (CO), and dew point were made at Qinghai Lake (QHL), China, a basin in the remote Tibetan Plateau area, in October 2010 and October 2011. The O-3 mixing ratio was found to be high with average of 41 +/- 9 ppb in October 2010 and 57 +/- 10 ppb in October 2011. The observed diurnal pattern of O-3 mixing ratio was characterized by a minimum between 07:00 and 10:00 local standard time (LST) increasing 20 ppb to a broad peak occurring between 13:00 and 18:00 LST. This diurnal pattern differs substantially from that observed at WMO's GAW Baseline Observatory located above the basin on Mount Waliguan, 130 km southeast of QHL. The elevated O-3 mixing ratios observed in the afternoon are attributed to in situ photochemical production in the air trapped in the QHL basin by surrounding mountains. The low O-3 mixing ratios observed in the morning are most likely due to surface removal in a shallow nocturnal boundary layer. The data indicate substantial impacts of pollution on air quality even in this remote area. The high O-3 values observed in 2011 may cause observable damage to the vegetation, adding stress to an ecosystem ready under the threat of desertification.
C1 [Wang, Q. Y.; Cao, J. J.; Hu, T. F.; Wang, P.; Huang, R. -J.] Chinese Acad Sci, Inst Earth Environm, Key Lab Aerosol Chem & Phys, Xian 710061, Peoples R China.
[Gao, R. S.; Schwarz, J. P.; Fahey, D. W.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA.
[Cao, J. J.] Xi An Jiao Tong Univ, Inst Global Environm Change, Xian 710049, Peoples R China.
[Schwarz, J. P.; Fahey, D. W.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Shen, Z. X.] Xi An Jiao Tong Univ, Dept Environm Sci & Engn, Xian 710049, Peoples R China.
[Xu, X. B.] Chinese Acad Meteorol Sci, CMA, Key Lab Atmospher Chem, Ctr Atmospher Watch & Serv, Beijing 100081, Peoples R China.
[Huang, R. -J.] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland.
[Huang, R. -J.] Natl Univ Ireland Galway, Ryan Inst, Ctr Climate & Air Pollut Studies, Galway, Ireland.
RP Huang, RJ (reprint author), Xi An Jiao Tong Univ, Inst Global Environm Change, Xian 710049, Peoples R China.
EM cao@loess.llqg.ac.cn; Rujin.Huang@psi.ch
RI shen, zhenxing/P-8430-2014; Wang, Qiyuan/P-8867-2014; Gao,
Ru-Shan/H-7455-2013; Xu, Xiaobin/B-3844-2012; Fahey, David/G-4499-2013;
schwarz, joshua/G-4556-2013; Cao, Junji/D-3259-2014; Manager, CSD
Publications/B-2789-2015
OI Xu, Xiaobin/0000-0003-4321-9267; Fahey, David/0000-0003-1720-0634;
schwarz, joshua/0000-0002-9123-2223; Cao, Junji/0000-0003-1000-7241;
FU Natural Science Foundation of China [NSFC 41230641]; Ministry of Science
and Technology [2012BAH31B03]; NOAA Atmospheric Composition and Climate
Program; NOAA Health of the Atmosphere Program
FX This project is supported by the Natural Science Foundation of China
(NSFC 41230641) and the Ministry of Science and Technology
(2012BAH31B03). RSG, JPS, and DWF were supported by the NOAA Atmospheric
Composition and Climate Program and the NOAA Health of the Atmosphere
Program. The authors thank the Qinghai Institute of Meteorological
Science for providing the meteorological data.
NR 35
TC 2
Z9 4
U1 3
U2 19
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0167-7764
EI 1573-0662
J9 J ATMOS CHEM
JI J. Atmos. Chem.
PD MAR
PY 2015
VL 72
IS 1
BP 19
EP 26
DI 10.1007/s10874-015-9301-9
PG 8
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA CG0RQ
UT WOS:000352975400002
ER
PT J
AU Lin, YL
Zhao, M
Zhang, MH
AF Lin, Yanluan
Zhao, Ming
Zhang, Minghua
TI Tropical cyclone rainfall area controlled by relative sea surface
temperature
SO NATURE COMMUNICATIONS
LA English
DT Article
ID RADIATIVE-CONVECTIVE EQUILIBRIUM; POTENTIAL INTENSITY; HURRICANE
ACTIVITY; CLIMATE-CHANGE; PRECIPITATION; FREQUENCY; MODEL; SIZE;
ENVIRONMENTS; SIMULATIONS
AB Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates.
C1 [Lin, Yanluan] Tsinghua Univ, Ctr Earth Syst Sci, Minist Educ, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China.
[Zhao, Ming] Univ Corp Atmospher Res, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
[Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA.
RP Lin, YL (reprint author), Tsinghua Univ, Ctr Earth Syst Sci, Minist Educ, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China.
EM yanluan@tsinghua.edu.cn
RI Zhao, Ming/C-6928-2014; lin, yanluan/A-6333-2015
FU Tsinghua University Initiative Scientific Research Program
[20131089356]; Ministry of Science and Technology of China
[2013CBA01805, 2010CB951800, 2012BAC19B08]; Office of Science of the US
Department of Energy; National Science Foundation
FX The research is supported by Tsinghua University Initiative Scientific
Research Program (no. 20131089356) and the Ministry of Science and
Technology of China (Grant 2013CBA01805, 2010CB951800, 2012BAC19B08). It
was additionally supported by the Office of Science of the US Department
of Energy and the National Science Foundation to the Stony Brook
University. The CLAUS archive is held at the British Atmospheric Data
Centre, produced using ISCCP source data distributed by the NASA Langley
Data Center.
NR 38
TC 9
Z9 9
U1 3
U2 16
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD MAR
PY 2015
VL 6
AR 6591
DI 10.1038/ncomms7591
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CG1NR
UT WOS:000353040300004
PM 25761457
ER
PT J
AU Ropp, C
Cummins, Z
Nah, S
Fourkas, JT
Shapiro, B
Waks, E
AF Ropp, Chad
Cummins, Zachary
Nah, Sanghee
Fourkas, John T.
Shapiro, Benjamin
Waks, Edo
TI Nanoscale probing of image-dipole interactions in a metallic
nanostructure
SO NATURE COMMUNICATIONS
LA English
DT Article
ID PHOTONIC MODE DENSITY; QUANTUM DOTS; LOCALIZATION ANALYSIS; OPTICAL
MICROSCOPY; HOT-SPOTS; SINGLE; EMISSION; FLUORESCENCE; SERS;
NANOPARTICLES
AB An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young's interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications.
C1 [Ropp, Chad; Waks, Edo] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA.
[Ropp, Chad; Waks, Edo] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA.
[Cummins, Zachary; Shapiro, Benjamin] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA.
[Cummins, Zachary; Shapiro, Benjamin] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA.
[Nah, Sanghee; Fourkas, John T.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Fourkas, John T.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA.
[Waks, Edo] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA.
RP Waks, E (reprint author), Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA.
EM edowaks@umd.edu
RI Fourkas, John/B-3500-2009
OI Fourkas, John/0000-0002-4522-9584
FU DARPA Defense Science Office grant [W31P4Q0910013]; National Science
Foundation CAREER Award [ECCS-0846494]; Physics Frontier Center at the
Joint Quantum Institute [PHY-0822671]; Office of Naval Research Applied
Electromagnetics Center [N000140911190]
FX This work was supported by a DARPA Defense Science Office grant (Grant
W31P4Q0910013). E.W. acknowledges funding support from a National
Science Foundation CAREER Award (grant number ECCS-0846494), the Physics
Frontier Center at the Joint Quantum Institute (grant number
PHY-0822671) and the Office of Naval Research Applied Electromagnetics
Center (grant number N000140911190).
NR 44
TC 14
Z9 14
U1 10
U2 47
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD MAR
PY 2015
VL 6
AR 6558
DI 10.1038/ncomms7558
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CG1NM
UT WOS:000353039800001
PM 25790228
ER
PT J
AU Perkins, RA
Huber, ML
Assael, MJ
Mihailidou, EK
Mylona, SK
Sykioti, EA
AF Perkins, Richard A.
Huber, Marcia L.
Assael, Marc J.
Mihailidou, Efthimia K.
Mylona, Sofia K.
Sykioti, Evita A.
TI Reference correlations for the viscosity and thermal conductivity of
fluids over an extended range of conditions: hexane in the vapor,
liquid, and supercritical regions (IUPAC Technical Report)
SO PURE AND APPLIED CHEMISTRY
LA English
DT Article
DE correlation; critical evaluation; hexane; International Association for
Transport Properties (IATP); IUPAC Physical and Biophysical Chemistry
Division; thermal conductivity; transport properties; viscosity
ID INITIAL DENSITY-DEPENDENCE; TRANSPORT-PROPERTIES; HIGH-PRESSURES;
NORMAL-ALKANES; N-ALKANES; TEMPERATURE; HYDROCARBONS; ETHANE; GAS;
COEFFICIENTS
AB This article summarizes the correlation procedures developed for IUPAC Project 2012-040-1-100 [Reference correlations for the thermal conductivity and viscosity of fluids over extended range of conditions (vapor, liquid and supercritical regions)]. This project is focused on the development of wide-range reference correlations for the thermal conductivity and viscosity of fluids that incorporate as much theoretical knowledge of these properties as possible. The thermal conductivity and viscosity correlations developed here for pure fluids are functions of temperature and density. The best available equations of state for a given fluid are used to calculate the thermodynamic properties required for these correlations, often from measured temperatures and pressures. The correlation methodology developed during this project has been applied to hexane in this report but can be applied to any pure fluid with a reliable equation of state and reliable data for the thermal conductivity and viscosity over a significant range of temperatures and densities.
C1 [Perkins, Richard A.; Huber, Marcia L.] Natl Inst Stand & Technol, Appl Chem & Mat Div, Boulder, CO 80305 USA.
[Assael, Marc J.; Mihailidou, Efthimia K.; Mylona, Sofia K.; Sykioti, Evita A.] Aristotle Univ Thessaloniki, Dept Chem Engn, Lab Thermophys Properties & Environm Proc, Thessaloniki 54124, Greece.
RP Perkins, RA (reprint author), Natl Inst Stand & Technol, Appl Chem & Mat Div, 325 Broadway, Boulder, CO 80305 USA.
EM richard.perkins@nist.gov
NR 71
TC 0
Z9 0
U1 4
U2 10
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
SN 0033-4545
EI 1365-3075
J9 PURE APPL CHEM
JI Pure Appl. Chem.
PD MAR
PY 2015
VL 87
IS 3
BP 321
EP 337
DI 10.1515/pac-2014-0104
PG 17
WC Chemistry, Multidisciplinary
SC Chemistry
GA CF4HG
UT WOS:000352508800012
ER
PT J
AU Meredith, NP
Horne, RB
Isles, JD
Rodriguez, JV
AF Meredith, Nigel P.
Horne, Richard B.
Isles, John D.
Rodriguez, Juan V.
TI Extreme relativistic electron fluxes at geosynchronous orbit: Analysis
of GOES E > 2 MeV electrons
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Article
ID OUTER RADIATION BELT; SINGLE EVENT UPSETS; SPACE ENVIRONMENT;
SOLAR-WIND; ACCELERATION; ANOMALIES; ENERGIES; ENHANCEMENT; SATELLITE;
STORMS
AB Relativistic electrons (E > 1 MeV) cause internal charging on satellites and are an important space weather hazard. A key requirement in space weather research concerns extreme events and knowledge of the largest flux expected to be encountered over the lifetime of a satellite mission. This is interesting both from scientific and practical points of view since satellite operators, engineers, and the insurance industry need this information to better evaluate the effects of extreme events on their spacecraft. Here we conduct an extreme value analysis of daily averaged E > 2 MeV electron fluxes from the Geostationary Operational Environmental Satellites (GOES) during the 19.5 year period from 1 January 1995 to 30 June 2014. We find that the daily averaged flux measured at GOES West is typically a factor of about 2.5 higher than that measured at GOES East, and we conduct independent analyses for these two locations. The 1 in 10, 1 in 50, and 1 in 100 year daily averaged E > 2 MeV electron fluxes at GOES West are 1.84 x10(5), 5.00 x10(5), and 7.68 x10(5) cm(-2) s(-1) sr(-1), respectively. The corresponding fluxes at GOES East are 6.53 x10(4), 1.98 x10(5), and 3.25 x10(5) cm(-2) s(-1) sr(-1), respectively. The largest fluxes seen during the 19.5 year period on 29 July 2004 were particularly extreme and were seen by satellites at GOES West and GOES East. The extreme value analysis suggests that this event was a 1 in 50 year event.
C1 [Meredith, Nigel P.; Horne, Richard B.; Isles, John D.] NERC, British Antarct Survey, Cambridge, England.
[Rodriguez, Juan V.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Rodriguez, Juan V.] Natl Ocean & Atmospher Adm, Natl Geophys Data Ctr, Boulder, CO USA.
RP Meredith, NP (reprint author), NERC, British Antarct Survey, Cambridge, England.
EM nmer@bas.ac.uk
OI Horne, Richard/0000-0002-0412-6407; Meredith, Nigel/0000-0001-5032-3463
FU Natural Environment Research Council; European Union [606716]; NGDC Task
II under the CIRES
FX We thank T. Onsager and A. Newman for providing the count rates from the
earlier GOES satellites in support of the dead time correction
calculation. We also thank the Satellite Situation Center Web (SSCWeb)
at NASA Goddard Space Flight Center for making the satellite locations
available and the NSSDC Omniweb for provision of the geomagnetic
indices. This study is part of the British Antarctic Survey Polar
Science for Planet Earth program. The research leading to these results
has received funding from the Natural Environment Research Council and
the European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement 606716 (SPACESTORM). J.V.R. was supported by NGDC Task
II under the CIRES Cooperative Agreement between NOAA and the University
of Colorado. The data used to generate the plots in this paper are
stored at the BAS Polar Data Centre and are available on request.
NR 62
TC 5
Z9 5
U1 1
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD MAR
PY 2015
VL 13
IS 3
BP 170
EP 184
DI 10.1002/2014SW001143
PG 15
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA CG1JX
UT WOS:000353030000005
ER
PT J
AU Sardeshmukh, PD
Penland, C
AF Sardeshmukh, Prashant D.
Penland, Cecile
TI Understanding the distinctively skewed and heavy tailed character of
atmospheric and oceanic probability distributions
SO CHAOS
LA English
DT Article
ID STOCHASTIC DIFFERENTIAL-EQUATIONS; CLIMATE MODELS; SYSTEM;
PREDICTABILITY; VARIABILITY; BACKSCATTER; SKILL
AB The probability distributions of large-scale atmospheric and oceanic variables are generally skewed and heavy-tailed. We argue that their distinctive departures from Gaussianity arise fundamentally from the fact that in a quadratically nonlinear system with a quadratic invariant, the coupling coefficients between system components are not constant but depend linearly on the system state in a distinctive way. In particular, the skewness arises from a tendency of the system trajectory to linger near states of weak coupling. We show that the salient features of the observed non-Gaussianity can be captured in the simplest such nonlinear 2-component system. If the system is stochastically forced and linearly damped, with one component damped much more strongly than the other, then the strongly damped fast component becomes effectively decoupled from the weakly damped slow component, and its impact on the slow component can be approximated as a stochastic noise forcing plus an augmented nonlinear damping. In the limit of large time-scale separation, the nonlinear augmentation of the damping becomes small, and the noise forcing can be approximated as an additive noise plus a correlated additive and multiplicative noise (CAM noise) forcing. Much of the diversity of observed large-scale atmospheric and oceanic probability distributions can be interpreted in this minimal framework. (C) 2015 AIP Publishing LLC.
C1 [Sardeshmukh, Prashant D.] Univ Colorado, CIRES, Boulder, CO 80309 USA.
[Sardeshmukh, Prashant D.; Penland, Cecile] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA.
RP Sardeshmukh, PD (reprint author), Univ Colorado, CIRES, Boulder, CO 80309 USA.
EM Prashant.D.Sardeshmukh@noaa.gov
FU U.S. Department of Energy (DOE) Office for Science (BER) [DE-SC0006965]
FX This work was partly supported by the U.S. Department of Energy (DOE)
Office for Science (BER) under Grant No. DE-SC0006965. We also
gratefully acknowledge the comments of two anonymous reviewers, whose
remarks significantly improved the article.
NR 31
TC 5
Z9 5
U1 2
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1054-1500
EI 1089-7682
J9 CHAOS
JI Chaos
PD MAR
PY 2015
VL 25
IS 3
AR 036410
DI 10.1063/1.4914169
PG 10
WC Mathematics, Applied; Physics, Mathematical
SC Mathematics; Physics
GA CF1OB
UT WOS:000352314600027
PM 25833448
ER
PT J
AU Scott, MG
Gronowski, AM
Reid, IR
Holick, MF
Thadhani, R
Phinney, K
AF Scott, Mitchell G.
Gronowski, Ann M.
Reid, Ian R.
Holick, Michael F.
Thadhani, Ravi
Phinney, Karen
TI Vitamin D: The More We Know, the Less We Know
SO CLINICAL CHEMISTRY
LA English
DT Editorial Material
C1 [Scott, Mitchell G.; Gronowski, Ann M.] Washington Univ, Sch Med, Div Lab & Genom Med, St Louis, MO 63110 USA.
[Reid, Ian R.] Univ Auckland, Med, Auckland 1, New Zealand.
[Holick, Michael F.] Boston Univ, Med Ctr, Bone Hlth Care Clin, Med Physiol & Biophys,Gen Clin Res Unit, Boston, MA 02215 USA.
[Thadhani, Ravi] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Div Nephrol,Med, Boston, MA 02114 USA.
[Phinney, Karen] NIST, Biomol Measurement Div, Grp Leader Bioanalyt Sci, Gaithersburg, MD 20899 USA.
RP Gronowski, AM (reprint author), Washington Univ, Sch Med, Div Lab & Genom Med, Box 8118,660 S Euclid, St Louis, MO 63110 USA.
EM gronowski@wustl.edu
NR 4
TC 7
Z9 8
U1 1
U2 10
PU AMER ASSOC CLINICAL CHEMISTRY
PI WASHINGTON
PA 2101 L STREET NW, SUITE 202, WASHINGTON, DC 20037-1526 USA
SN 0009-9147
EI 1530-8561
J9 CLIN CHEM
JI Clin. Chem.
PD MAR
PY 2015
VL 61
IS 3
BP 462
EP 465
DI 10.1373/clinchem.2014.222521
PG 4
WC Medical Laboratory Technology
SC Medical Laboratory Technology
GA CE9JX
UT WOS:000352161300004
PM 25056405
ER
PT J
AU Roa, L
Klimov, AB
Maldonado-Trapp, A
AF Roa, Luis
Klimov, A. B.
Maldonado-Trapp, A.
TI A measure for maximum similarity between outcome states (vol 109, 40001,
2015)
SO EPL
LA English
DT Correction
C1 [Roa, Luis; Maldonado-Trapp, A.] Univ Concepcion, Dept Fis, Concepcion, Chile.
[Klimov, A. B.] Univ Guadalajara, Dept Fis, Guadalajara 44420, Jalisco, Mexico.
[Maldonado-Trapp, A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Maldonado-Trapp, A.] Univ Maryland, NIST, College Pk, MD 20742 USA.
RP Roa, L (reprint author), Univ Concepcion, Dept Fis, Casilla 160-C, Concepcion, Chile.
RI Roa, Luis/F-9884-2010; Klimov, Andrei/I-5785-2015; Maldonado Trapp,
Alejandra /H-5695-2013
OI Maldonado Trapp, Alejandra /0000-0003-2131-6090
NR 1
TC 0
Z9 0
U1 1
U2 2
PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
PI MULHOUSE
PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE
SN 0295-5075
EI 1286-4854
J9 EPL-EUROPHYS LETT
JI EPL
PD MAR
PY 2015
VL 109
IS 5
AR 59901
DI 10.1209/0295-5075/109/59901
PG 1
WC Physics, Multidisciplinary
SC Physics
GA CF2SI
UT WOS:000352397500028
ER
PT J
AU Schwarz, JP
Perring, AE
Markovic, MZ
Gao, RS
Ohata, S
Langridge, J
Law, D
McLaughlin, R
Fahey, DW
AF Schwarz, J. P.
Perring, A. E.
Markovic, M. Z.
Gao, R. S.
Ohata, S.
Langridge, J.
Law, D.
McLaughlin, R.
Fahey, D. W.
TI Technique and theoretical approach for quantifying the hygroscopicity of
black-carbon-containing aerosol using a single particle soot photometer
SO JOURNAL OF AEROSOL SCIENCE
LA English
DT Article
DE Black carbon (BC) aerosol; Hygroscopicity; Mie scattering;
Aircraft-based measurements; kappa-Kohler theory; SP2
ID RELATIVE-HUMIDITY; LIGHT-SCATTERING; DEPENDENCE; RECOMMENDATIONS;
INSTRUMENTS; PACIFIC; CHAMBER; SULFATE; GROWTH; WATER
AB A single particle soot photometer (SP2), an instrument that measures the optical size and refractory black carbon (BC) mass content of individual aerosol particles, was modified to include a compact humidification system, described here. This permits quantification of water uptake by BC-containing particles, an important process that can affect their optical properties and lifetime. A Mie and kappa-Kohler theory framework was developed to relate measured humidity-dependent changes in BC aerosol optical size to the hygroscopicity parameter (kappa) of the non-BC content in the particles (which is responsible for water uptake by these particles). Laboratory testing of this experimental and theoretical system with both homogeneous non-light-absorbing particles and BC-containing particles was carried out Agreement between the theoretical predictions and laboratory measurements for the homogenous aerosols validates the experimental methodology. For BC with a 70-nm thick coating of ammonium sulfate, reasonable agreement (equivalent to similar to 20% in kappa) between measurements and theoretical predictions were observed over a span of RH from 70% to 90%. Two SP2s were configured to sample in parallel, one dry and one humidified, permitting continuous monitoring of water uptake by BC-containing aerosol. Operational refinements in SP2 setup to optimize the optical size measurement of BC-containing aerosol, and the consistency between the two SP2s are presented. This system was flown on the NASA DC8 research aircraft during the 2012 DO and 2013 SEAC4RS campaigns, providing engineering data included here that demonstrate the system's performance under challenging sampling conditions. Finally, SP2-scattering lookup tables used in the theoretical portions of this work are provided for reference. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Schwarz, J. P.; Perring, A. E.; Markovic, M. Z.; Gao, R. S.; Law, D.; McLaughlin, R.; Fahey, D. W.] NOAA, Earth Sci Res Lab, Div Chem Sci, Boulder, CO 80305 USA.
[Schwarz, J. P.; Perring, A. E.; Markovic, M. Z.; Law, D.; McLaughlin, R.; Fahey, D. W.] Univ Colorado, Cooperat Inst Environm Res, Boulder, CO 80309 USA.
[Ohata, S.] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Tokyo 113, Japan.
[Langridge, J.] Met Off, Observat Based Res, Exeter, Devon, England.
RP Schwarz, JP (reprint author), NOAA, Earth Sci Res Lab, Div Chem Sci, 325 Broadway,R CSD6, Boulder, CO 80305 USA.
EM Joshua.p.schwarz@noaa.gov
RI Gao, Ru-Shan/H-7455-2013; Perring, Anne/G-4597-2013; Fahey,
David/G-4499-2013; McLaughlin, Richard/I-4386-2013; schwarz,
joshua/G-4556-2013; Manager, CSD Publications/B-2789-2015
OI Perring, Anne/0000-0003-2231-7503; Fahey, David/0000-0003-1720-0634;
schwarz, joshua/0000-0002-9123-2223;
FU NOAA Atmospheric Composition and Climate Program; NASA Radiation
Sciences Program; NASA Upper Atmosphere Research Program
FX The authors thank C. A. Brock for useful discussion. NOAA SP2 research
was supported by the NOAA Atmospheric Composition and Climate Program,
the NASA Radiation Sciences Program, and the NASA Upper Atmosphere
Research Program.
NR 34
TC 14
Z9 14
U1 8
U2 57
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0021-8502
EI 1879-1964
J9 J AEROSOL SCI
JI J. Aerosol. Sci.
PD MAR
PY 2015
VL 81
BP 110
EP 126
DI 10.1016/j.jaerosci.2014.11.009
PG 17
WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences;
Meteorology & Atmospheric Sciences
SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric
Sciences
GA CF0OY
UT WOS:000352245300011
ER
PT J
AU Lassudrie, M
Wikfors, GH
Sunila, I
Alix, JH
Dixon, MS
Combot, D
Soudant, P
Fabioux, C
Hegaret, H
AF Lassudrie, Malwenn
Wikfors, Gary H.
Sunila, Inke
Alix, Jennifer H.
Dixon, Mark S.
Combot, Doriane
Soudant, Philippe
Fabioux, Caroline
Hegaret, Helene
TI Physiological and pathological changes in the eastern oyster Crassostrea
virginica infested with the trematode Bucephalus sp and exposed to the
toxic dinoflagellate Alexandrium fundyense
SO JOURNAL OF INVERTEBRATE PATHOLOGY
LA English
DT Article
DE Crassostrea virginica; Alexandrium fundyense; Bucephalus sp.; Perkinsus
marinus; Host-pathogen interaction
ID PARASITE PERKINSUS-MARINUS; HAPLOSPORIDIUM-NELSONI MSX; HARMFUL ALGAL
BLOOMS; RUDITAPES-PHILIPPINARUM; MYTILUS-GALLOPROVINCIALIS; TEMPERATURE
ELEVATION; BIVALVE MOLLUSKS; OLSENI BURDEN; HEMOCYTES; GIGAS
AB Effects of experimental exposure to Alexandrium fundyense, a Paralytic Shellfish Toxin (PST) producer known to affect bivalve physiological condition, upon eastern oysters, Crassostrea virginica with a variable natural infestation of the digenetic trematode Bucephalus sp. were determined.
After a three-week exposure to cultured A. fundyense or to a control algal treatment with a non-toxic dinoflagellate, adult oysters were assessed for a suite of variables: histopathological condition, hematological variables (total and differential hemocyte counts, morphology), hemocyte functions (Reactive Oxygen Species (ROS) production and mitochondrial membrane potential), and expression in gills of genes involved in immune responses and cellular protection (MnSOD, CAT, GPX, MT-IV, galectin CvGal) or suspected to be (Dominin, Segon).
By comparing individual oysters infested heavily with Bucephalus sp. and uninfested individuals, we found altered gonad and digestive gland tissue and an inflammatory response (increased hemocyte concentration in circulating hemolymph and hemocyte infiltrations in tissues) associated with trematode infestation. Exposure to A. fundyense led to a higher weighted prevalence of infection by the protozoan parasite Perkinsus marinus, responsible for Dermo disease. Additionally, exposure to A. fundyense in trematode-infested oysters was associated with the highest prevalence of P. marinus infection. These observations suggest that the development of P. marinus infection was advanced by A. fundyense exposure, and that, in trematode-infested oysters, P. marinus risk of infection was higher when exposed to A. fundyense. These effects were associated with suppression of the inflammatory response to trematode infestation by A. fundyense exposure. Additionally, the combination of trematode infestation and A. fundyense exposure caused degeneration of adductor muscle fibers, suggesting alteration of valve movements and catch state, which could increase susceptibility to predation. Altogether, these results suggest that exposure of trematode-infested oysters to A. fundyense can lead to overall physiological weakness that decrease oyster defense mechanisms. (C) 2015 Elsevier Inc. All rights reserved.
C1 [Lassudrie, Malwenn; Combot, Doriane; Soudant, Philippe; Fabioux, Caroline; Hegaret, Helene] IFREMER, Lab Sci Environm Marin LEMAR, IUEM, UBO,CNRS,IRD, F-29280 Plouzane, France.
[Wikfors, Gary H.; Alix, Jennifer H.; Dixon, Mark S.] Natl Marine Fisheries Serv, NE Fisheries Sci Ctr, NOAA, Milford, CT 06460 USA.
[Sunila, Inke] State Connecticut, Dept Agr, Bur Aquaculture, Milford, CT 06460 USA.
RP Lassudrie, M (reprint author), IFREMER, Lab Sci Environm Marin LEMAR, IUEM, UBO,CNRS,IRD, Rue Dumont Urville,Technopole Brest Iroise, F-29280 Plouzane, France.
EM Malwenn.lassudrie@gmail.com
RI Hegaret, Helene/B-7206-2008;
OI Hegaret, Helene/0000-0003-4639-9013; Lassudrie,
Malwenn/0000-0002-7004-926X; Fabioux, Caroline/0000-0002-9436-5128
FU Universite de Bretagne Occidentale; NOAA Fisheries Service Aquaculture
Program; "Laboratoire d'Excellence" LabexMER [ANR-10-LABX-19]; French
government under the program "Investissements d'Avenir"
FX This work was supported by Universite de Bretagne Occidentale, the NOAA
Fisheries Service Aquaculture Program, and from "Laboratoire
d'Excellence" LabexMER (ANR-10-LABX-19), which was co-funded by a grant
from the French government under the program "Investissements d'Avenir".
Authors are grateful to Eve Galimany, Barry Smith, Yaqin Li, Christophe
Lambert, Nelly Le Goic, Anne-Laure Cassone and Marc Long for technical
assistance and advice, to Milford laboratory staff for their
participation in dissections, to Joseph DeCrescenzo for help with the
RFTM assay and to Sebastion Herve for graphical abstract realization.
Authors are also grateful to the anonymous reviewers who helped improve
the manuscript.
NR 97
TC 6
Z9 6
U1 4
U2 27
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-2011
EI 1096-0805
J9 J INVERTEBR PATHOL
JI J. Invertebr. Pathol.
PD MAR
PY 2015
VL 126
BP 51
EP 63
DI 10.1016/j.jip.2015.01.011
PG 13
WC Zoology
SC Zoology
GA CF6NL
UT WOS:000352673300007
PM 25660636
ER
PT J
AU Maslar, JE
Hoang, J
Kimes, WA
Sperling, BA
AF Maslar, James E.
Hoang, John
Kimes, William A.
Sperling, Brent A.
TI Measurements of Metal Alkylamide Density During Atomic Layer Deposition
Using a Mid-Infrared Light-Emitting Diode (LED) Source
SO APPLIED SPECTROSCOPY
LA English
DT Article
DE Atomic layer deposition; ALD; Infrared absorption; Light emitting diode;
LED; Metal alkylamide; Nondispersive infrared gas analyzer; NDIR;
Tetrakis(dimethylamido) titanium; TDMAT
ID CHEMICAL-VAPOR-DEPOSITION; GAS-PHASE; MU-M; INFRARED-SPECTROSCOPY;
TETRAKIS(DIMETHYLAMIDO)TITANIUM; TEMPERATURE; OPTOPAIRS; AMMONIA; TIN
AB A nondispersive infrared (NDIR) gas analyzer that utilizes a mid-infrared light emitting diode (LED) source was demonstrated for monitoring the metal alkylamide compound tetrakis(dimethylamido) titanium (TDMAT), Ti[N(CH3)(2)](4). This NDIR gas analyzer was based on direct absorption measurement of TDMAT vapor in the C-H stretching spectral region, a spectral region accessed using a LED with a nominal emission center wavelength of 3.65 mu m. The sensitivity of this technique to TDMAT was determined by comparing the absorbance measured using this technique to the TDMAT density as determined using in situ Fourier transform IR (FT-IR) spectroscopy. Fourier transform IA spectroscopy was employed because this technique could be used to (1) quantify TDMAT density in the presence of a carrier gas (the presence of which precludes the use of a capacitance manometer to establish TDMAT density) and (2) distinguish between TDMAT and other gas-phase species containing IR-active C-H stretching modes (allowing separation of the signal from the LED-based optical system into fractions due to TDMAT and other species, when necessary). During TDMAT-only delivery, i.e., in the absence of co-reactants and deposition products, TDMAT minimum detectable molecular densities as low as approximate to 4 x 10(12) cm(-3) were demonstrated, with short measurement times and appropriate signal averaging. Reactions involving TDMAT often result in the evolution of the reaction product dimethylamine (DMA), both as a thermal decomposition product in a TDMAT ampoule and as a deposition reaction product in the deposition chamber. Hence, the presence of DMA represents a significant potential interference for this technique, and therefore, the sensitivity of this technique to DMA was also determined by measuring DMA absorbance as a function of pressure. The ratio of the TDMAT sensitivity to the DMA sensitivity was determined to be To further examine the selectivity of this technique, measurements were also performed during atomic layer deposition (ALD) of titanium dioxide using TDMAT and water. During ALD, potential interferences were expected from the evolution of DMA due to deposition reactions and the deposition on the windows of species containing IR-active C-H stretching modes. It was found that the interfering effects of the evolution of DMA and deposition of species on the windows corresponded to a maximum of only of the total observed TDMAT density. However, this level of interference likely is relatively low compared to a typical chemical vapor deposition process in which co-reactants are introduced into the chamber at the same time.
C1 [Maslar, James E.; Hoang, John; Kimes, William A.; Sperling, Brent A.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
RP Maslar, JE (reprint author), NIST, Mat Measurement Lab, 100 Bur Dr,Stop 8320, Gaithersburg, MD 20899 USA.
EM jmaslar@nist.gov
NR 29
TC 0
Z9 0
U1 3
U2 19
PU SOC APPLIED SPECTROSCOPY
PI FREDERICK
PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA
SN 0003-7028
EI 1943-3530
J9 APPL SPECTROSC
JI Appl. Spectrosc.
PD MAR
PY 2015
VL 69
IS 3
BP 332
EP 341
DI 10.1366/14-07695
PG 10
WC Instruments & Instrumentation; Spectroscopy
SC Instruments & Instrumentation; Spectroscopy
GA CE6XT
UT WOS:000351982200004
PM 25664995
ER
PT J
AU Kendall, NW
McMillan, JR
Sloat, MR
Buehrens, TW
Quinn, TP
Pess, GR
Kuzishchin, KV
McClure, MM
Zabel, RW
AF Kendall, Neala W.
McMillan, John R.
Sloat, Matthew R.
Buehrens, Thomas W.
Quinn, Thomas P.
Pess, George R.
Kuzishchin, Kirill V.
McClure, Michelle M.
Zabel, Richard W.
TI Anadromy and residency in steelhead and rainbow trout (Oncorhynchus
mykiss): a review of the processes and patterns
SO CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES
LA English
DT Review
ID LIFE-HISTORY VARIATION; MALE ATLANTIC SALMON; CALIFORNIA CENTRAL COAST;
RIVER HYDROPOWER SYSTEM; FRESH-WATER RESIDENT; COLUMBIA RIVER; CHINOOK
SALMON; BROWN TROUT; POPULATION-STRUCTURE; JUVENILE SALMONIDS
AB Oncorhynchus mykiss form partially migratory populations with anadromous fish that undergo marine migrations and residents that complete their life cycle in fresh water. Many populations' anadromous components are threatened or endangered, prompting interest in understanding ecological and evolutionary processes underlying anadromy and residency. In this paper, we synthesize information to better understand genetic and environmental influences on O. mykiss life histories, identify critical knowledge gaps, and suggest next steps. Anadromy and residency appear to reflect interactions among genetics, individual condition, and environmental influences. First, an increasing body of literature suggests that anadromous and resident individuals differ in the expression of genes related to growth, smoltification, and metabolism. Second, the literature supports the conditional strategy theory, where individuals adopt a life history pattern based on their conditional status relative to genetic thresholds along with ultimate effects of size and age at maturation and iteroparity. However, except for a generally positive association between residency and high lipid content plus a large attainable size in fresh water, the effects of body size and growth are inconsistent. Thus, individuals can exhibit plasticity in variable environments. Finally, patterns in anadromy and residency among and within populations suggested a wide range of possible environmental influences at different life stages, from freshwater temperature to marine survival. Although we document a number of interesting correlations, direct tests of mechanisms are scarce and little data exist on the extent of residency and anadromy. Consequently, we identified as many data gaps as conclusions, leaving ample room for future research.
C1 [Kendall, Neala W.; McMillan, John R.; Pess, George R.; McClure, Michelle M.; Zabel, Richard W.] NOAA, NW Fisheries Sci Ctr, Seattle, WA 98112 USA.
[Sloat, Matthew R.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA.
[Buehrens, Thomas W.] Washington Dept Fish & Wildlife, Fish Program, Div Sci, Vancouver, WA 98661 USA.
[Quinn, Thomas P.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA.
[Kuzishchin, Kirill V.] Moscow MV Lomonosov State Univ, Moscow 119899, Russia.
RP Kendall, NW (reprint author), Washington Dept Fish & Wildlife, Fish Program, Div Sci, 1111 Washington St SE, Olympia, WA 98501 USA.
EM neala.kendall@dfw.wa.gov
RI Zabel, Richard/F-7277-2015; McClure, Michelle/O-7853-2015
OI Zabel, Richard/0000-0003-2315-0629; McClure,
Michelle/0000-0003-4791-8719
FU National Research Council; NOAA
FX We gratefully acknowledge the National Research Council for postdoctoral
research funding (for N. Kendall) and NOAA (for J. McMillan) for
supporting this research. Discussions with Haley Ohms were insightful.
Alexander Stefankiv created Fig. 6. Jim Myers, Barry Berejikian, and two
anonymous reviewers provided very helpful comments on this manuscript.
NR 204
TC 20
Z9 20
U1 32
U2 118
PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
PI OTTAWA
PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA
SN 0706-652X
EI 1205-7533
J9 CAN J FISH AQUAT SCI
JI Can. J. Fish. Aquat. Sci.
PD MAR
PY 2015
VL 72
IS 3
BP 319
EP 342
DI 10.1139/cjfas-2014-0192
PG 24
WC Fisheries; Marine & Freshwater Biology
SC Fisheries; Marine & Freshwater Biology
GA CE4AV
UT WOS:000351773700001
ER
PT J
AU Liermann, MC
Rawding, D
Pess, GR
Glaser, B
AF Liermann, Martin C.
Rawding, Dan
Pess, George R.
Glaser, Bryce
TI The spatial distribution of salmon and steelhead redds and optimal
sampling design
SO CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES
LA English
DT Article
ID ONCORHYNCHUS-TSHAWYTSCHA; STRATIFIED RANDOM; CUBE METHOD; TROUT;
RESOURCES; INTERVALS; HABITAT; COUNTS; INDEX
AB Redd surveys are used extensively to estimate spawner population size for Pacific salmon (Onchorynchus spp.). Because redds tend to be spatially aggregated, estimates of total redds based on subsamples of the potential spawning grounds can be uncertain unless the spatial structure is accounted for. Here we use known redd locations for three populations over several years to compare five different probability sampling designs through simulation. The coefficient of variation (CV) for estimates based on simple random sampling was high, with values well over 15% when sampling a third of the reaches. Moving to a spatially balanced sampling design (generalized random tessellation stratified; GRTS) produced improvements in two of the three watersheds (16%-22% reduction in CV). Estimates based on a stratified GRTS design and a GRTS design that included a census of all reaches close to the peak count had higher accuracy, with an approximate CV of one-half to one-third of GRTS alone. We show how these improvements are predicted by theory and under which conditions the different approaches are likely to perform well.
C1 [Liermann, Martin C.; Pess, George R.] NOAA, Fish Ecol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA.
[Rawding, Dan; Glaser, Bryce] Washington Dept Fish & Wildlife, Olympia, WA 98501 USA.
RP Liermann, MC (reprint author), NOAA, Fish Ecol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA.
EM martin.liermann@noaa.gov
FU Pacific Coast Salmon Recovery Fund; Pacific Salmon Commission's Letter
of Agreement (Chinook Technical Committee); Southern Boundary Fund;
NOAA-Fisheries Mitchell Act; Washington State General Fund; Bonneville
Power Administration through the Pacific Northwest Aquatic Monitoring
Partnership
FX We thank the many technicians and biologists that collected the redd
data and Steve VanderPloeg for providing substantial GIS assistance.
Constructive reviews of the manuscript by John McMillan, Eric Buhl, and
three anonymous reviewers, as well as helpful comments from Alistair
Coulthard, led to substantial improvements in the manuscript. Funding
support for this project was provided by Pacific Coast Salmon Recovery
Fund, Pacific Salmon Commission's Letter of Agreement (Chinook Technical
Committee) and Southern Boundary Fund, NOAA-Fisheries Mitchell Act, the
Washington State General Fund, and the Bonneville Power Administration
through the Pacific Northwest Aquatic Monitoring Partnership.
NR 39
TC 0
Z9 0
U1 5
U2 16
PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
PI OTTAWA
PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA
SN 0706-652X
EI 1205-7533
J9 CAN J FISH AQUAT SCI
JI Can. J. Fish. Aquat. Sci.
PD MAR
PY 2015
VL 72
IS 3
BP 434
EP 446
DI 10.1139/cjfas-2014-0181
PG 13
WC Fisheries; Marine & Freshwater Biology
SC Fisheries; Marine & Freshwater Biology
GA CE4AV
UT WOS:000351773700010
ER
PT J
AU Roni, P
Beechie, T
Pess, G
Hanson, K
AF Roni, Philip
Beechie, Tim
Pess, George
Hanson, Karrie
TI Wood placement in river restoration: fact, fiction, and future direction
SO CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES
LA English
DT Article
ID JUVENILE COHO SALMON; TROUT ONCORHYNCHUS-CLARKI; MOUNTAIN DRAINAGE
BASINS; WINTER REARING HABITAT; IN-STREAM STRUCTURES; OLD-GROWTH;
WASHINGTON STREAMS; CHANNEL MORPHOLOGY; HEADWATER STREAMS;
PACIFIC-NORTHWEST
AB Despite decades of research on wood in rivers, the addition of wood as a river restoration technique remains controversial. We reviewed the literature on natural and placed wood to shed light on areas of continued debate. Research on river ecology demonstrates that large woody debris has always been a natural part of most rivers systems. Although a few studies have reported high structural failure rates (>50%) of placed instream wood structures, most studies have shown relatively low failure rates (<20%) and that placed wood remains stable for several years, though long-term evaluations of placed wood are rare. The vast majority of studies on wood placement have reported improvements in physical habitat (e.g., increased pool frequency, cover, habitat diversity). Studies that have not reported improvements in physical habitat often found that watershed processes (e.g., sediment, hydrology, water quality) had not been addressed. Finally, most evaluations of fish response to wood placement have shown positive responses for salmonids, though few studies have looked at long-term watershed-scale responses or studied a wide range of species.
C1 [Roni, Philip; Beechie, Tim; Pess, George; Hanson, Karrie] NOAA, Fish Ecol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA.
RP Roni, P (reprint author), NOAA, Fish Ecol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd E, Seattle, WA 98112 USA.
EM phil.roni@noaa.gov
NR 169
TC 9
Z9 9
U1 16
U2 67
PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
PI OTTAWA
PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA
SN 0706-652X
EI 1205-7533
J9 CAN J FISH AQUAT SCI
JI Can. J. Fish. Aquat. Sci.
PD MAR
PY 2015
VL 72
IS 3
BP 466
EP 478
DI 10.1139/cjfas-2014-0344
PG 13
WC Fisheries; Marine & Freshwater Biology
SC Fisheries; Marine & Freshwater Biology
GA CE4AV
UT WOS:000351773700013
ER
PT J
AU Harrison, DE
Chiodi, AM
AF Harrison, D. E.
Chiodi, Andrew M.
TI Multi-decadal variability and trends in the El Nino-Southern Oscillation
and tropical Pacific fisheries implications
SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY
LA English
DT Article
DE ENSO; Decadal; Multi-decadal; Variability; Trend; Statistical
significance
ID CLIMATE-CHANGE; SURFACE-TEMPERATURE; OCEAN VARIABILITY; ENSO; PATTERNS;
TUNA; FISH; POPULATIONS; FLUCTUATION; IMPACTS
AB Extremes of the El Nino-Southern Oscillation (ENSO) are known to have various socio-economic impacts, including effects on several Pacific fisheries. The 137-year-long record of Darwin sea-level pressure offers a uniquely long-term perspective on ENSO and provides important insight into various aspects of interannual to century-scale variability that affects these fisheries. One particular issue of interest is whether there is a centennial-scale (or longer) trend that can be expected to alter the future distributions of these fisheries. Since most tropical Pacific fishery records are no longer than a few decades, another issue is the extent to which trends over these recent decades are a good basis for detecting the presence of long-term (e.g., centennial-scale) deterministic changes, and perhaps thereby projecting future conditions. We find that the full 137-yr trend cannot be distinguished from zero with 95% confidence, and also that the ENSO variance in recent decades is very similar to that of the early decades of the record, suggesting that ENSO has not fundamentally changed over the period of large increase in atmospheric CO2. However, the strong multi-decadal variability in ENSO is reflected in decades with quite different levels of ENSO effects on the ecosystem. Many multi-decadal subsets of the full record have statistically significant trends, using standard analysis techniques. These multi-decadal trends are not; however, representative of the record-length trend, nor are they a useful basis for projecting conditions in subsequent decades. Trend statistical significance is not a robust foundation for speculation about the future. We illustrate how the difficulties involved in determining whether a trend is statistically significant or not mean that, even after careful consideration, an unexpectedly large number of trends may reach standard statistical significance levels over the time spans for which many newer records are available, but still not continue into future decades or be indicative of deterministic changes to the system. Analysis of the Southern Oscillation Index, another common ENSO index, but one that has been directly measured for fewer years than has Darwin, yields similar results. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Harrison, D. E.; Chiodi, Andrew M.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
[Chiodi, Andrew M.] Univ Washington, Joint Inst Study Ocean & Atmosphere, Seattle, WA 98195 USA.
RP Harrison, DE (reprint author), NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA.
EM D.E.Harrison@noaa.gov
RI Harrison, Don/D-9582-2013; Chiodi, Andrew/Q-7818-2016
FU Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under
NOAA Cooperative Agreement [NA10OAR4320148]; Climate Observations
Division of the NOAA Climate Program Office; NOAA's Pacific Marine
Environmental Laboratory
FX This publication is [partially] funded by the Joint Institute for the
Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative
Agreement NA10OAR4320148, and by support from the Climate Observations
Division of the NOAA Climate Program Office as well as from NOAA's
Pacific Marine Environmental Laboratory. This is BSA Contribution no.
2067, and NOAA Pacific Marine Environmental Laboratory Contribution no.
3943. We thank Dr. Phil Jones for sharing data and helpful comment, Dr.
Nick Bond for helpful discussion, the anonymous reviewers for helpful
comments and S. Bigley for proof-reading the manuscript.
NR 57
TC 5
Z9 5
U1 2
U2 17
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0967-0645
EI 1879-0100
J9 DEEP-SEA RES PT II
JI Deep-Sea Res. Part II-Top. Stud. Oceanogr.
PD MAR
PY 2015
VL 113
SI SI
BP 9
EP 21
DI 10.1016/j.dsr2.2013.12.020
PG 13
WC Oceanography
SC Oceanography
GA CE6WK
UT WOS:000351978700002
ER
PT J
AU Willis-Norton, E
Hazen, EL
Fossette, S
Shillinger, G
Rykaczewski, RR
Foley, DG
Dunne, JP
Bograd, SJ
AF Willis-Norton, Ellen
Hazen, Elliott L.
Fossette, Sabrina
Shillinger, George
Rykaczewski, Ryan R.
Foley, David G.
Dunne, John P.
Bograd, Steven J.
TI Climate change impacts on leatherback turtle pelagic habitat in the
Southeast Pacific
SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY
LA English
DT Article
DE Climate changes; Migratory species; Aquatic reptiles; Pelagic
environment; Habitat selection
ID DERMOCHELYS-CORIACEA; SIMULATION CHARACTERISTICS; OCEAN CURRENTS; MARINE
TURTLES; SEA-TURTLES; MODELS; IDENTIFICATION; FORMULATION; ECOSYSTEMS;
EVOLUTION
AB Eastern Pacific populations of the leatherback turtle (Dermochelys coriacea) have declined by over 90% during the past three decades. The decline is primarily attributed to human pressures, including unsustainable egg harvest, development on nesting beaches, and by-catch mortality. In particular, the effects of climate change may impose additional stresses upon already threatened leatherback populations. This study analyzes how the pelagic habitat of Eastern Pacific leatherbacks may be affected by climate change over the next century. This population adheres to a persistent migration pattern; following nesting at Playa Grande, Costa Rica, individuals move rapidly through equatorial currents and into foraging habitat within the oligotrophic South Pacific Gyre. Forty-six nesting females were fitted with satellite tags. Based on the turtle positions, ten environmental variables were sampled along the tracks. Presence/absence habitat models were created to determine the oceanographic characteristics of the preferred turtle habitat Core pelagic habitat was characterized by relatively low sea surface temperatures and chlorophyll-a. Based on these habitat models, we predicted habitat change using output from the Geophysical Fluid Dynamics Laboratory prototype Earth System Model under the Special Report on Emissions Scenario A2 (business-as-usual). Although the model predicted both habitat losses and gains throughout the region, we estimated that overall the core pelagic habitat of the Eastern Pacific leatherback population will decline by approximately 15% within the next century. This habitat modification might increase pressure on a critically endangered population, possibly forcing distributional shifts, behavioral changes, or even extinction. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Willis-Norton, Ellen] 2010 NOAA Hollings Scholar, Washington, DC 20230 USA.
[Hazen, Elliott L.; Fossette, Sabrina; Foley, David G.; Bograd, Steven J.] NOAA, Southwest Fisheries Sci Ctr, Div Environm Res, Pacific Grove, CA 93950 USA.
[Hazen, Elliott L.; Foley, David G.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95060 USA.
[Shillinger, George] Tag A Giant, Pacific Grove, CA 93950 USA.
[Shillinger, George] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA.
[Rykaczewski, Ryan R.] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA.
[Dunne, John P.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
[Shillinger, George] Leatherback Trust, Ft Wayne, IN 46835 USA.
RP Willis-Norton, E (reprint author), 2010 NOAA Hollings Scholar, 14th St & Constitut Ave NW,Room 6863, Washington, DC 20230 USA.
EM ewillisn@wellesley.edu
RI Logger, Satellite/C-1379-2010; Rykaczewski, Ryan/A-8625-2016;
OI Rykaczewski, Ryan/0000-0001-8893-872X; Hazen,
Elliott/0000-0002-0412-7178
FU Chesapeake Biological Laboratory; TOPP collaborators; Geophysical Fluid
Dynamics Laboratory; Census of Marine and Life; NOAA's Hollings Scholar
program; Environmental Research Division; Office of Naval Research;
UNESCO World Heritage Program (via the United Nations Foundation and
Global Conservation Fund of Conservation International); Alfred P. Sloan
Foundation; Gordon and Betty Moore Foundation; Packard Foundation;
Lenfest Ocean Program; Cinco Hermanos Fund; Earthwatch Institute;
National Aeronautics and Space Administration (NASA); Goldring Marine
Biology Station; Parque Nacional Marino Las Baulas (PNMB)
FX The authors thank the Tagging of Pacific Pelagics personnel, including
Dr. Barbara Block and collaborators who assisted with the initial data
processing and analyses for the project. We also thank Helen Bailey at
the Chesapeake Biological Laboratory, TOPP collaborators, the
Geophysical Fluid Dynamics Laboratory, the Census of Marine and Life,
NOAA's Hollings Scholar program, and the Environmental Research Division
for their contributions and support. The satellite tracking research was
sponsored by the Tagging of Pacific Predators program of the Census of
Marine Life, and supported by the Office of Naval Research, the UNESCO
World Heritage Program (via the United Nations Foundation and Global
Conservation Fund of Conservation International), the Alfred P. Sloan
Foundation, the Gordon and Betty Moore Foundation, the Packard
Foundation, the Lenfest Ocean Program, the Cinco Hermanos Fund,
Earthwatch Institute, and the National Aeronautics and Space
Administration (NASA) through a grant provided by the Applied Sciences
Program in the Earth Science Division. The tracking research was
performed in accordance with the Stanford University Animal Care and Use
Committee. The authors also thank The Leatherback Trust, Earthwatch
Institute, and the Betz Chair of Environmental Science at Drexel
University for their assistance with this project. The Costa Rican
Ministry of Natural Resources and the Environment provided research
permits. We also thank G. Goldring, the Goldring Marine Biology Station
and the staff and volunteers at Parque Nacional Marino Las Baulas (PNMB)
for support at Playa Grande.
NR 58
TC 4
Z9 4
U1 11
U2 86
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0967-0645
EI 1879-0100
J9 DEEP-SEA RES PT II
JI Deep-Sea Res. Part II-Top. Stud. Oceanogr.
PD MAR
PY 2015
VL 113
SI SI
BP 260
EP 267
DI 10.1016/j.dsr2.2013.12.019
PG 8
WC Oceanography
SC Oceanography
GA CE6WK
UT WOS:000351978700021
ER
PT J
AU Gu, X
Cole, DR
Rother, G
Mildner, DFR
Brantley, SL
AF Gu, Xin
Cole, David R.
Rother, Gernot
Mildner, David F. R.
Brantley, Susan L.
TI Pores in Marcellus Shale: A Neutron Scattering and FIB-SEM Study
SO ENERGY & FUELS
LA English
DT Article
ID SMALL-ANGLE SCATTERING; GAS-ADSORPTION; SURFACE-AREA;
MULTIPLE-SCATTERING; SEDIMENTARY-ROCKS; SIZE DISTRIBUTION; OPALINUS
CLAY; BARNETT SHALE; ALBANY SHALE; POROSITY
AB The production of natural gas has become increasingly important in the United States because of the development of hydraulic fracturing techniques, which significantly increase the permeability and fracture network of black shales. The pore structure of shale is a controlling factor for hydrocarbon storage and gas migration. In this work, we investigated the porosity of the Union Springs (Shamokin) Member of the Marcellus Formation from a core drilled in Centre County, PA, USA, using ultrasmall-angle neutron scattering (USANS), small-angle neutron scattering (SANS), focused ion beam scanning electron microscopy (FIB-SEM), and nitrogen gas adsorption. The scattering of neutrons by Marcellus shale depends on the sample orientation: for thin sections cut in the plane of bedding, the scattering pattern is isotropic, while for thin sections cut perpendicular to the bedding, the scattering pattern is anisotropic. The FIB-SEM observations allow attribution of the anisotropic scattering patterns to elongated pores predominantly associated with clay. The apparent porosities calculated from scattering data from the bedding plane sections are lower than those calculated from sections cut perpendicular to the bedding. A preliminary method for estimating the total porosity from the measurements made on the two orientations is presented. This method is in good agreement with nitrogen adsorption for both porosity and specific surface area measurements. Neutron scattering combined with FIB-SEM reveals that the dominant nanosized pores in organic-poor, clay-rich shale samples are water-accessible sheetlike pores within clay aggregates. In contrast, bubblelike organophilic pores in kerogen dominate organic-rich samples. Developing a better understanding of the distribution of the water-accessible pores will promote more accurate models of watermineral interactions during hydrofracturing.
C1 [Gu, Xin; Brantley, Susan L.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA.
[Cole, David R.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Rother, Gernot] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Mildner, David F. R.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Brantley, Susan L.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA.
RP Gu, X (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16802 USA.
EM xug102@psu.edu; sxb7@psu.edu
RI Rother, Gernot/B-7281-2008
OI Rother, Gernot/0000-0003-4921-6294
FU Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory; NSF [OCE 11-40159]; DOE OBES [DE-FG02-OSER15675];
Oak Ridge National Laboratory [DE-AC05-00OR22725]; U.S. Department of
Energy; DOE Energy Frontier Research Center (EFRC) Nanoscale Control of
Geologic CO2 [698077]; NSF Dimensions: Division of Environmental Biology
[DEB-1342701]
FX We thank T. Clark and M. Yashinski at Material Characterization
Laboratory at the Pennsylvania State University for FIB-SEM. We thank
the Appalachian Basin Black Shales Group at the Pennsylvania State
University and the Pennsylvania Topographic and Geologic Survey for
providing shale samples. The SANS measurements at the National Institute
of Standards and Technology were supported in part by the National
Science Foundation under Agreement DMR-0944772. Research of X.G. and
G.R. was sponsored by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC,
for the U.S. Department of Energy. S.L.B. acknowledges NSF Grant OCE
11-40159 for support for working on Marcellus shale, DOE OBES Grant
DE-FG02-OSER15675 for work on porosity using neutron scattering, and Oak
Ridge National Laboratory (acting under Contract DE-AC05-00OR22725 with
the U.S. Department of Energy) for support for X.G. D.R.C. at OSU
received support from the DOE Energy Frontier Research Center (EFRC)
Nanoscale Control of Geologic CO2 through Grant 698077 (neutron
scattering experiments) and NSF Dimensions: Division of Environmental
Biology under grant DEB-1342701 (interpretation).
NR 67
TC 16
Z9 17
U1 12
U2 95
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
EI 1520-5029
J9 ENERG FUEL
JI Energy Fuels
PD MAR
PY 2015
VL 29
IS 3
BP 1295
EP 1308
DI 10.1021/acs.energyfuels.5b00033
PG 14
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA CE2NV
UT WOS:000351653200003
ER
PT J
AU Dittman, AH
Pearsons, TN
May, D
Couture, RB
Noakes, DLG
AF Dittman, Andrew H.
Pearsons, Todd N.
May, Darran
Couture, Ryan B.
Noakes, David L. G.
TI Imprinting of Hatchery-Reared Salmon to Targeted Spawning Locations: A
New Embryonic Imprinting Paradigm for Hatchery Programs
SO FISHERIES
LA English
DT Article
ID SPRING CHINOOK SALMON; ONCORHYNCHUS-KISUTCH; COHO SALMON; PACIFIC
SALMON; SENSITIVE PERIOD; HOMING MIGRATION; ATLANTIC SALMON;
SOCKEYE-SALMON; YAKIMA RIVER; SNAKE RIVER
C1 [Dittman, Andrew H.] NOAA, Environm & Fisheries Sci, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA.
[Pearsons, Todd N.] Grant Cty Publ Util Dist, Ephrata, WA USA.
[May, Darran] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA.
[Couture, Ryan B.; Noakes, David L. G.] Oregon State Univ, Oregon Hatchery Res Ctr, Dept Fisheries & Wildlife, Alsea, OR USA.
[Couture, Ryan B.; Noakes, David L. G.] Oregon Dept Fish & Wildlife, Alsea, OR USA.
RP Dittman, AH (reprint author), NOAA, Environm & Fisheries Sci, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA.
EM andy.dittman@noaa.gov
FU Grant County Public Utility District; Oregon Hatchery Research Center;
NOAA Fisheries
FX We thank Grant County Public Utility District, the Oregon Hatchery
Research Center, and NOAA Fisheries for funding support.
NR 42
TC 6
Z9 7
U1 3
U2 20
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0363-2415
EI 1548-8446
J9 FISHERIES
JI Fisheries
PD MAR
PY 2015
VL 40
IS 3
BP 114
EP 123
PG 10
WC Fisheries
SC Fisheries
GA CE7MC
UT WOS:000352023900010
ER
PT J
AU Moore, SK
Bill, BD
Hay, LR
Emenegger, J
Eldred, KC
Greengrove, CL
Masura, JE
Anderson, DM
AF Moore, Stephanie K.
Bill, Brian D.
Hay, Levi R.
Emenegger, Jennifer
Eldred, Kiara C.
Greengrove, Cheryl L.
Masura, Julie E.
Anderson, Donald M.
TI Factors regulating excystment of Alexandrium in Puget Sound, WA, USA
SO HARMFUL ALGAE
LA English
DT Article
DE Alexandrium; Puget Sound; Excystment; Cysts; Harmful algal bloom; Red
tide
ID GONYAULAX-TAMARENSIS; COMPLEX DINOPHYCEAE; RESTING CYSTS; GERMINATION;
CATENELLA; SEDIMENTS; TEMPERATURE; WASHINGTON; DORMANCY; DARKNESS
AB Factors regulating excystment of a toxic dinoflagellate in the genus Alexandrium were investigated in cysts from Puget Sound, Washington State, USA. Experiments were carried out in the laboratory using cysts collected from benthic seedbeds to determine if excystment is controlled by internal or environmental factors. The results suggest that the timing of germination is not tightly controlled by an endogenous clock, though there is a suggestion of a cyclical pattern. This was explored using cysts that had been stored under cold (4 degrees C), anoxic conditions in the dark and then incubated for 6 weeks at constant favorable environmental conditions. Excystment occurred during all months of the year, with variable excystment success ranging from 31-90%. When cysts were isolated directly from freshly collected sediments every month and incubated at the in situ bottom water temperature, a seasonal pattern in excystment was observed that was independent of temperature. This pattern may be consistent with secondary dormancy, an externally modulated pattern that prevents excystment during periods that are not favorable for sustained vegetative growth. However, observation over more annual cycles is required and the duration of the mandatory dormancy period of these cysts must be determined before the seasonality of germination can be fully characterized in Alexandrium from Puget Sound. Both temperature and light were found to be important environmental factors regulating excystment, with the highest rates of excystment observed for the warmest temperature treatment (20 degrees C) and in the light. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Moore, Stephanie K.] Univ Corp Atmospher Res, Joint Off Sci Support, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr,NOAA, Seattle, WA 98112 USA.
[Bill, Brian D.] NOAA, Environm & Fisheries Sci Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA.
[Hay, Levi R.; Emenegger, Jennifer; Eldred, Kiara C.] Univ Washigton, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, NOAA, Seattle, WA 98112 USA.
[Greengrove, Cheryl L.; Masura, Julie E.] Univ Washington Tacoma, Tacoma, WA 98402 USA.
[Anderson, Donald M.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
RP Moore, SK (reprint author), Univ Corp Atmospher Res, Joint Off Sci Support, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr,NOAA, 2725 Montlake Blvd E, Seattle, WA 98112 USA.
EM stephanie.moore@noaa.gov
FU NOAA ECOHAB [NA10NOS4780158]; Woods Hole Oceanographic Institution
[NA10NOS4780159]; Washington Sea Grant, University of Washington
[NA10OAR4170057, R/OCEH-9]; NOAA ECOHAB through the Woods Hole Center
for Oceans and Human Health, National Science Foundation Grant
[OCE-1314642]; National Institute of Environmental Health Sciences Grant
[1-P01-ES021923-01]
FX The authors thank the Captain and crew of the R/V Clifford A. Barnes; D.
Kulis, B. Keafer and J. Kleindinst at Woods Hole Oceanographic
Institution; V. Trainer at the National Oceanic and Atmospheric
Administration (NOAA) Northwest Fisheries Science Center; and K.
Rickerson from the Sound Toxins program. This research was supported in
part by NOAA ECOHAB funding to the NOAA Northwest Fisheries Science
Center, University of Washington (NA10NOS4780158) and Woods Hole
Oceanographic Institution (NA10NOS4780159); and a grant from Washington
Sea Grant, University of Washington, pursuant to NOAA Award No.
NA10OAR4170057, Project R/OCEH-9, to the University of Washington,
Tacoma. The views expressed herein are those of the authors and do not
necessarily reflect the views of NOAA or any of its sub-agencies.
Support for D. M. Anderson was provided by NOAA ECOHAB through the Woods
Hole Center for Oceans and Human Health, National Science Foundation
Grant OCE-1314642 and National Institute of Environmental Health
Sciences Grant 1-P01-ES021923-01. This is ECOHAB contribution number
793.[SS]
NR 40
TC 2
Z9 3
U1 1
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1568-9883
EI 1878-1470
J9 HARMFUL ALGAE
JI Harmful Algae
PD MAR
PY 2015
VL 43
BP 103
EP 110
DI 10.1016/j.hal.2015.01.005
PG 8
WC Marine & Freshwater Biology
SC Marine & Freshwater Biology
GA CE6SQ
UT WOS:000351968900010
PM 26109923
ER
PT J
AU Stone, RP
Masuda, MM
Karinen, JF
AF Stone, Robert P.
Masuda, Michele M.
Karinen, John F.
TI Assessing the ecological importance of red tree coral thickets in the
eastern Gulf of Alaska
SO ICES JOURNAL OF MARINE SCIENCE
LA English
DT Article
DE cold-water corals; correlation; emergent epifauna; fishing disturbance;
gorgonians; Gulf of Alaska; HAPC; logistic regression; longlining; odds
ratio; Primnoa; sponges
ID HABITAT; ASSOCIATIONS; DISTURBANCE
AB Red tree corals (Primnoa pacifica), the largest structure-forming gorgonians in the North Pacific Ocean, form dense thickets in some areas. These thickets are a dominant benthic habitat feature in the Gulf of Alaska (GOA), yet little is known about the ecosystems they support. In 2005, we used a submersible to study the ecology of thickets inside or near five small areas of the eastern GOA later designated in 2006 as habitat areas of particular concern (HAPCs)aEuro center dot areas closed to all bottom contact fishing. We show that red tree corals are keystone species in habitats where they form thickets (mean density 0.52 corals m(-2))-the densest and largest thickets documented anywhere. Measured sponge densities (2.51 sponges m(-2)) were also among the highest documented anywhere. The corals and sponges in the study areas provide essential fish habitat for some fish species, and we show with logistic regression models modified with a scaled binomial variance that bedrock, while important habitat for some fish, is even more important when paired with corals and sponges. Red tree corals were not equally distributed with regard to habitat characteristics, and we show that their presence was correlated with bedrock substrate, moderate to high seabed roughness, and slope > 10A degrees. Most corals and sponges are vulnerable to disturbance from longlining, the principal bottom contact fishing in this region, but the larger corals and sponges are the most vulnerable. We observed evidence of infrequent recruitment events and a strong pulse of predation, apparently from fishing gear-induced trauma, that could exacerbate slow recovery of red tree corals from disturbance. Some red tree coral thickets are provided protection within designated HAPCs and some are not. Modifications to longline gear and an expanded network of HAPCs could help preserve these keystone species and the ecosystems they support.
C1 [Stone, Robert P.; Masuda, Michele M.; Karinen, John F.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,TSMRI, Juneau, AK 99801 USA.
RP Stone, RP (reprint author), NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,TSMRI, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA.
EM bob.stone@noaa.gov
FU Habitat Conservation Division of NOAA's Alaska Regional Office
FX We thank Stephen Cairns, Alberto Lindner, Helmut Lehnert, Henry Reiswig,
James McLean, Christopher Mah, and Terry Gosliner for taxonomic
expertise, Delta Oceanographics, and the captain and crew of the RV
Velero IV for their assistance and support. The field project was funded
by the Habitat Conservation Division of NOAA's Alaska Regional Office.
The findings and conclusions in this manuscript are those of the authors
and do not necessarily represent the views of the National Marine
Fisheries Service.
NR 36
TC 2
Z9 2
U1 3
U2 7
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1054-3139
EI 1095-9289
J9 ICES J MAR SCI
JI ICES J. Mar. Sci.
PD MAR-APR
PY 2015
VL 72
IS 3
BP 900
EP 915
DI 10.1093/icesjms/fsu190
PG 16
WC Fisheries; Marine & Freshwater Biology; Oceanography
SC Fisheries; Marine & Freshwater Biology; Oceanography
GA CE4YW
UT WOS:000351837500015
ER
PT J
AU Cortes, E
Brooks, EN
Shertzer, KW
AF Cortes, Enric
Brooks, Elizabeth N.
Shertzer, Kyle W.
TI Risk assessment of cartilaginous fish populations
SO ICES JOURNAL OF MARINE SCIENCE
LA English
DT Article
DE chondrichthyans; demography; risk assessment; stock assessment;
uncertainty
ID FISHERIES STOCK ASSESSMENT; WESTERN NORTH-ATLANTIC; GULF-OF-MEXICO;
EXTINCTION RISK; MARINE FISHES; SHARK POPULATIONS; DEMOGRAPHIC-ANALYSIS;
PELAGIC SHARKS; INTRINSIC RATE; SANDBAR SHARK
AB We review three broad categories of risk assessment methodology used for cartilaginous fish: productivity-susceptibility analysis (PSA), demographic methods, and quantitative stock assessments. PSA is generally a semi-quantitative approach useful as an exploratory or triage tool that can be used to prioritize research, group species with similar vulnerability or risk, and provide qualitative management advice. Demographic methods are typically used in the conservation arena and provide quantitative population metrics that are used to quantify extinction risk and identify vulnerable life stages. Stock assessments provide quantitative estimates of population status and the associated risk of exceeding biological reference points, such as maximum sustainable yield. We then describe six types of uncertainty (process, observation, model, estimation, implementation, and institutional) that affect the risk assessment process, identify which of the three risk assessment methods can accommodate each type of uncertainty, and provide examples mostly for sharks drawn from our experience in the United States. We also review the spectrum of stock assessment methods used mainly for sharks in the United States, and present a case study where multiple methods were applied to the same species (dusky shark, Carcharinus obscurus) to illustrate differing degrees of model complexity and type of uncertainty considered. Finally, we address the common and problematic case of data-poor bycatch species. Our main recommendation for future work is to use Management Strategy Evaluation or similar simulation approaches to explore the effect of different sources of uncertainty, identify the most critical data to satisfy predetermined management objectives, and develop harvest control rules for cartilaginous fish. We also propose to assess the performance of data-poor and -rich methods through stepwise model construction.
C1 [Cortes, Enric] NOAA, Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Panama City, FL 32408 USA.
[Brooks, Elizabeth N.] NOAA, Northeast Fisheries Sci, Natl Marine Fisheries Serv, Woods Hole, MA 02543 USA.
[Shertzer, Kyle W.] NOAA, Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Beaufort, NC 28516 USA.
RP Cortes, E (reprint author), NOAA, Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, 3500 Delwood Beach Rd, Panama City, FL 32408 USA.
EM enric.cortes@noaa.gov
RI Cortes, Enric/H-2700-2013
NR 104
TC 1
Z9 1
U1 4
U2 32
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1054-3139
EI 1095-9289
J9 ICES J MAR SCI
JI ICES J. Mar. Sci.
PD MAR-APR
PY 2015
VL 72
IS 3
BP 1057
EP 1068
DI 10.1093/icesjms/fsu157
PG 12
WC Fisheries; Marine & Freshwater Biology; Oceanography
SC Fisheries; Marine & Freshwater Biology; Oceanography
GA CE4YW
UT WOS:000351837500027
ER
PT J
AU Delgado, JP
AF Delgado, James P.
TI Between the Devil and the Deep: Meeting Challenges in the Public
Interpretation of Maritime Cultural Heritage
SO JOURNAL OF ANTHROPOLOGICAL RESEARCH
LA English
DT Book Review
C1 [Delgado, James P.] NOAA, Washington, DC 20230 USA.
RP Delgado, JP (reprint author), NOAA, Washington, DC 20230 USA.
NR 1
TC 0
Z9 0
U1 1
U2 2
PU UNIV NEW MEXICO, DEPT ANTHROPOL
PI ALBUQUERQUE
PA MSC01 1040, ANTHROPOLOGY 1, UNIV NEW MEXICO, ALBUQUERQUE, NM 87131 USA
SN 0091-7710
EI 2153-3806
J9 J ANTHROPOL RES
JI J. Anthropol. Res.
PD SPR
PY 2015
VL 71
IS 1
BP 107
EP 108
PG 2
WC Anthropology
SC Anthropology
GA CE4DV
UT WOS:000351782200012
ER
PT J
AU Yashayaev, I
Seidov, D
Demirov, E
AF Yashayaev, Igor
Seidov, Dan
Demirov, Entcho
TI A new collective view of oceanography of the Arctic and North Atlantic
basins
SO PROGRESS IN OCEANOGRAPHY
LA English
DT Review
ID STOCHASTIC CLIMATE MODELS; PAST 4 DECADES; LABRADOR SEA; OCEAN;
VARIABILITY; WATER; OSCILLATION; CIRCULATION; SYSTEM; FLUX
AB We review some historical aspects of the major observational programs in the North Atlantic and adjacent regions that contributed to establishing and maintaining the global ocean climate monitoring network. The paper also presents the oceanic perspectives of climate change and touches the important issues of ocean climate variability on time scales from years to decades. Some elements of the improved understanding of the causes and mechanisms of variability in the subpolar North Atlantic and adjacent seas are discussed in detail. The sophistication of current oceanographic analysis, especially in connection with the most recent technological breakthroughs - notably the launch of the global array of profiling Argo floats - allows us to approach new challenges in ocean research. We demonstrate how the ocean-climate changes in the subpolar basins and polar seas correlate with variations in the major climate indices such as the North Atlantic Oscillation and Atlantic Multidecadal Oscillation, and discuss possible connections between the unprecedented changes in the Arctic and Greenland ice-melt rates observed over the past decade and variability of hydrographic conditions in the Labrador Sea. Furthermore, a synthesis of shipboard and Argo measurements in the Labrador Sea reveals the effects of the regional climate trends such as freshening of the upper layer - possible causes of which are also discussed - on the winter convection in the Labrador Sea including its strength, duration and spatial extent. These changes could have a profound impact on the regional and planetary climates. A section with the highlights of all papers comprising the Special Issue concludes the Preface. Crown Copyright (C) 2014 Published by Elsevier Ltd. All rights reserved.
C1 [Yashayaev, Igor] Fisheries & Oceans Canada, Bedford Inst Oceanog, Ocean & Ecosyst Sci Div, Oceanog & Climate Sect, Dartmouth, NS B2Y 4A2, Canada.
[Seidov, Dan] NOAA, Natl Oceanog Data Ctr, Silver Spring, MD USA.
[Demirov, Entcho] Mem Univ Newfoundland, Dept Phys & Phys Oceanog, St John, NF A1B 3X7, Canada.
RP Yashayaev, I (reprint author), Fisheries & Oceans Canada, Bedford Inst Oceanog, Ocean & Ecosyst Sci Div, Oceanog & Climate Sect, 1 Challenger Dr,POB 1006, Dartmouth, NS B2Y 4A2, Canada.
NR 71
TC 9
Z9 9
U1 6
U2 31
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0079-6611
J9 PROG OCEANOGR
JI Prog. Oceanogr.
PD MAR
PY 2015
VL 132
SI SI
BP 1
EP 21
DI 10.1016/j.pocean.2014.12.012
PG 21
WC Oceanography
SC Oceanography
GA CE7RE
UT WOS:000352038700001
ER
PT J
AU Yashayaev, I
Seidov, D
AF Yashayaev, Igor
Seidov, Dan
TI The role of the Atlantic Water in multidecadal ocean variability in the
Nordic and Barents Seas
SO PROGRESS IN OCEANOGRAPHY
LA English
DT Review
ID NORTHERN NORTH-ATLANTIC; NORWEGIAN-SEA; ARCTIC-OCEAN;
SURFACE-TEMPERATURE; THERMOHALINE CIRCULATION; CLIMATE VARIABILITY;
OSCILLATION; SALINITY; SYSTEM; EXCHANGES
AB The focus of this work is on the temporal and spatial variability of the Atlantic Water (AW). We analyze the existing historic hydrographic data from the World Ocean Database to document the long-term variability of the AW throughflow across the Norwegian Sea to the western Barents Sea. Interannual-to-multidecadal variability of water temperature, salinity and density are analyzed along six composite sections crossing the AW flow and coastal currents at six selected locations. The stations are lined up from southwest to northeast - from the northern North Sea (69 degrees N) throughout the Norwegian Sea to the Kola Section in the Barents Sea (33 degrees 30'E). The changing volume and characteristics of the AW throughflow dominate the hydrographic variability on decadal and longer time scales in the studied area. We examine the role of fluctuations of the volume of inflow versus the variable local factors, such as the air-sea interaction and mixing with the fresh coastal and cold Arctic waters, in controlling the long-term regional variability. It is shown that the volume of the AW, passing through the area and affecting the position of the outer edge of the warm and saline core, correlates well with temperature and salinity averaged over the central portions of the studied sections. The coastal flow (mostly associated with the Norwegian Coastal Current flowing over the continental shelf) is largely controlled by seasonal local heat and freshwater impacts. Temperature records at all six lines show a warming trend superimposed on a series of relatively warm and cold periods, which in most cases follow, with a delay of four to five years, the periods of relatively low and high North Atlantic Oscillation (NAO), and the periods of relatively high and low Atlantic Multidecadal Oscillation (AMO), respectively. In general, there is a relatively high correlation between the year-to-year changes of the NAO and AMO indices, which is to some extent reflected in the (delayed) AW temperature fluctuations. It takes about two years for freshening and salinification events and a much shorter time (of about a year or less) for cooling and warming episodes to propagate or spread across the region. This significant difference in the propagation rates of salinity and temperature anomalies is explained by the leading role of horizontal advection in the propagation of salinity anomalies, whereas temperature is also controlled by the competing air-sea interaction along the AW throughflow. Therefore, although a water parcel moves within the flow as a whole, the temperature, salinity and density anomalies split and propagate separately, with the temperature and density signals leading relative to the salinity signal. A new hydrographic index, coastal-to-offshore density step, is introduced to capture variability in the strength of the AW volume transport. This index shows the same cycles of variability as observed in temperature, NAO and AMO but without an obvious trend. Crown Copyright (C) 2014 Published by Elsevier Ltd. All rights reserved.
C1 [Yashayaev, Igor] Fisheries & Oceans Canada, Bedford Inst Oceanog, Ocean & Ecosyst Sci Div, Oceanog & Climate Sect, Dartmouth, NS B2Y 4A2, Canada.
[Seidov, Dan] NOAA, Natl Oceanog Data Ctr, Silver Spring, MD USA.
RP Yashayaev, I (reprint author), Fisheries & Oceans Canada, Bedford Inst Oceanog, Ocean & Ecosyst Sci Div, Oceanog & Climate Sect, 1 Challenger Dr,POB 1006, Dartmouth, NS B2Y 4A2, Canada.
FU Bedford Institute of Oceanography (BIO), Fisheries and Oceans Canada;
NOAA Climate Program Office
FX The authors were supported by the Bedford Institute of Oceanography
(BIO), Fisheries and Oceans Canada, and partially by the NOAA Climate
Program Office.
NR 96
TC 13
Z9 13
U1 1
U2 25
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0079-6611
J9 PROG OCEANOGR
JI Prog. Oceanogr.
PD MAR
PY 2015
VL 132
SI SI
BP 68
EP 127
DI 10.1016/j.pocean.2014.11.009
PG 60
WC Oceanography
SC Oceanography
GA CE7RE
UT WOS:000352038700003
ER
PT J
AU Seidov, D
Antonov, JI
Arzayus, KM
Baranova, OK
Biddle, M
Boyer, TP
Johnson, DR
Mishonov, AV
Paver, C
Zweng, MM
AF Seidov, D.
Antonov, J. I.
Arzayus, K. M.
Baranova, O. K.
Biddle, M.
Boyer, T. P.
Johnson, D. R.
Mishonov, A. V.
Paver, C.
Zweng, M. M.
TI Oceanography north of 60 degrees N from World Ocean Database
SO PROGRESS IN OCEANOGRAPHY
LA English
DT Review
ID ARCTIC SEA-ICE; EAST GREENLAND CURRENT; MERIDIONAL OVERTURNING
CIRCULATION; ATLANTIC THERMOHALINE CIRCULATION; FRESH-WATER CONTENT;
SURFACE-TEMPERATURE; CLIMATE VARIABILITY; NORDIC SEAS; BARENTS SEA;
DEEP-WATER
AB The National Oceanographic Data Center (NODC) has produced high-resolution regional ocean climatologies that reveal much greater detail than previously available in selected regions. A pilot study based on the NODC Arctic Regional Climatology (ARC) was carried out to track multidecadal ocean climate variability of the oceans and seas north of 60 degrees N (referred to as Northern Waters). The structure and data coverage for the Northern Waters provided by this climatology are discussed. Multidecadal variability of the Northern Waters is analyzed with one- and quarter-degree resolutions. Our analysis indicates that although the Northern Waters are warming as a whole, the overall climatic trend and spatial distribution of warming and cooling areas are rather intricate and patchy, with some areas even having intermittent cooling episodes. Complex relations of the upper ocean warming and two major climate indices the Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation (NAO) - are discussed based on new ocean heat content calculations for the Greenland-Norwegian-Iceland Seas (GINS) and Arctic Ocean. Preliminary estimates suggest that multidecadal variability in the Northern Waters is more closely correlated with the AMO than the NAO, especially in the GINS. Published by Elsevier Ltd.
C1 [Seidov, D.; Antonov, J. I.; Arzayus, K. M.; Baranova, O. K.; Biddle, M.; Boyer, T. P.; Johnson, D. R.; Mishonov, A. V.; Paver, C.; Zweng, M. M.] NOAA, Natl Oceanog Data Ctr, Silver Spring, MD 20910 USA.
[Antonov, J. I.] Natl Oceanog Data Ctr, Silver Spring, MD USA.
[Biddle, M.; Mishonov, A. V.] Univ Maryland, College Pk, MD 20742 USA.
RP Seidov, D (reprint author), NOAA, Natl Oceanog Data Ctr, Silver Spring, MD 20910 USA.
EM dan.seidov@noaa.gov
FU NOAA Climate Program Office
FX This work was partially supported by the NOAA Climate Program Office. We
thank the scientists, technicians, data center staff, and data managers
for their contributions of data to the IOC/IODE and ICSU/World Data
System and to the NODC Ocean Archive System, which has allowed compiling
World Ocean Database and providing the foundation for this work. We are
very grateful to three anonymous reviewers for their numerous, detailed,
constructive and helpful comments and suggestions, which were critical
for improving the revised manuscript. We also thank our colleagues at
the NODC for many years of data processing and constructing the World
Ocean Database and World Ocean Atlas, which made this work possible. We
thank Sydney Levitus (University of Maryland) for his valuable input
that helped to improve the manuscript and Charles Sun (NODC) for
reviewing this manuscript and providing very useful comments.
NR 154
TC 6
Z9 6
U1 2
U2 27
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0079-6611
J9 PROG OCEANOGR
JI Prog. Oceanogr.
PD MAR
PY 2015
VL 132
SI SI
BP 153
EP 173
DI 10.1016/j.pocean.2014.02.003
PG 21
WC Oceanography
SC Oceanography
GA CE7RE
UT WOS:000352038700005
ER
PT J
AU Dusek, G
Fanelli, P
Paternostro, C
AF Dusek, Gregory
Fanelli, Paul
Paternostro, Christopher
TI NOAA High-Frequency Radar Surface Currents Web Product New NOAA Product
Aims to Expand the HF Radar User Base
SO SEA TECHNOLOGY
LA English
DT Article
C1 [Dusek, Gregory] NOAA, NOS Ctr Operat Oceanog Prod & Serv CO OPS, Silver Spring, MD 20910 USA.
[Dusek, Gregory; Fanelli, Paul; Paternostro, Christopher] NOAA, HF Radar Surface Currents Web Prod, Silver Spring, MD USA.
[Fanelli, Paul] CO OPS, Silver Spring, MD USA.
[Fanelli, Paul] Storm QuickLook Team, Silver Spring, MD USA.
[Paternostro, Christopher] Coastal & Estuarine Circulat Anal Team, Silver Spring, MD USA.
[Paternostro, Christopher] Applicat & Anal Team, Taejon, South Korea.
[Paternostro, Christopher] COASTAL, Blaine, WA USA.
[Paternostro, Christopher] CO OPS, Climate Program, Silver Spring, MD USA.
RP Dusek, G (reprint author), NOAA, NOS Ctr Operat Oceanog Prod & Serv CO OPS, Silver Spring, MD 20910 USA.
FU U.S. IOOS
FX The authors would like to acknowledge the work of the technical team who
lead product development, including Dave Xia and Zhong Li, and to
acknowledge the support from U.S. IOOS, especially Dr. Jack Harlan. We
would also like to thank the regional observing associations and the HF
radar operators who make this product possible. In particular, we would
like to acknowledge the HF radar technical teams at Old Dominion
University, San Francisco State University, Rutgers University and
University of California, San Diego.
NR 0
TC 0
Z9 0
U1 1
U2 1
PU COMPASS PUBLICATIONS, INC
PI ARLINGTON
PA 1501 WILSON BLVD., STE 1001, ARLINGTON, VA 22209-2403 USA
SN 0093-3651
J9 SEA TECHNOL
JI Sea Technol.
PD MAR
PY 2015
VL 56
IS 3
BP 35
EP 38
PG 4
WC Engineering, Ocean
SC Engineering
GA CE8VV
UT WOS:000352123100008
ER
PT J
AU Ngan, F
Cohen, M
Luke, W
Ren, X
Draxler, R
AF Ngan, Fong
Cohen, Mark
Luke, Winston
Ren, Xinrong
Draxler, Roland
TI Meteorological Modeling Using the WRF-ARW Model for Grand Bay Intensive
Studies of Atmospheric Mercury
SO ATMOSPHERE
LA English
DT Article
ID LAND-SURFACE MODEL; AIR-QUALITY; HORIZONTAL TRANSPORT; DATA
ASSIMILATION; PART I; DISPERSION; PARAMETERIZATIONS; SIMULATIONS;
REANALYSIS; TEXAS
AB Measurements at the Grand Bay National Estuarine Research Reserve support a range of research activities aimed at improving the understanding of the atmospheric fate and transport of mercury. Routine monitoring was enhanced by two intensive measurement periods conducted at the site in summer 2010 and spring 2011. Detailed meteorological data are required to properly represent the weather conditions, to determine the transport and dispersion of plumes and to understand the wet and dry deposition of mercury. To describe the mesoscale features that might influence future plume calculations for mercury episodes during the Grand Bay Intensive campaigns, fine-resolution meteorological simulations using the Weather Research and Forecasting (WRF) model were conducted with various initialization and nudging configurations. The WRF simulations with nudging generated reasonable results in comparison with conventional observations in the region and measurements obtained at the Grand Bay site, including surface and sounding data. The grid nudging, together with observational nudging, had a positive effect on wind prediction. However, the nudging of mass fields (temperature and moisture) led to overestimates of precipitation, which may introduce significant inaccuracies if the data were to be used for subsequent atmospheric mercury modeling. The regional flow prediction was also influenced by the reanalysis data used to initialize the WRF simulations. Even with observational nudging, the summer case simulation results in the fine resolution domain inherited features of the reanalysis data, resulting in different regional wind patterns. By contrast, the spring intensive period showed less influence from the reanalysis data.
C1 [Ngan, Fong; Cohen, Mark; Luke, Winston; Ren, Xinrong; Draxler, Roland] NOAA, Air Resources Lab, College Pk, MD 20740 USA.
[Ngan, Fong; Ren, Xinrong] Univ Maryland, Cooperat Inst Climate & Satellites, College Pk, MD 20740 USA.
RP Ngan, F (reprint author), NOAA, Air Resources Lab, 5830 Univ Res Court, College Pk, MD 20740 USA.
EM Fantine.Ngan@noaa.gov; Mark.Cohen@noaa.gov; Winston.Luke@noaa.gov;
Xinrong.Ren@noaa.gov; Roland.Draxler@noaa.gov
RI Ngan, Fong/G-1324-2012; Cohen, Mark/P-6936-2015; Luke,
Winston/D-1594-2016; Ren, Xinrong/E-7838-2015
OI Ngan, Fong/0000-0002-7263-7727; Cohen, Mark/0000-0003-3183-2558; Luke,
Winston/0000-0002-1993-2241; Ren, Xinrong/0000-0001-9974-1666
NR 43
TC 0
Z9 0
U1 1
U2 15
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2073-4433
J9 ATMOSPHERE-BASEL
JI Atmosphere
PD MAR
PY 2015
VL 6
IS 3
BP 209
EP 233
DI 10.3390/atmos6030209
PG 25
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE6JD
UT WOS:000351941800001
ER
PT J
AU Komoroske, LM
Hameed, SO
Szoboszlai, AI
Newsom, AJ
Williams, SL
AF Komoroske, Lisa M.
Hameed, Sarah O.
Szoboszlai, Amber I.
Newsom, Amanda J.
Williams, Susan L.
TI A Scientist's Guide to Achieving Broader Impacts through K-12 STEM
Collaboration
SO BIOSCIENCE
LA English
DT Article
DE broader impacts; K-12 STEM education; inquiry-based learning; scientific
literacy
ID SCIENCE-EDUCATION; STUDENTS; UNIVERSITY; GK-12
AB The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students' capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K-12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists' research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach.
C1 [Komoroske, Lisa M.] NOAA, Southwest Fisheries Sci Ctr, Washington, DC 20230 USA.
[Hameed, Sarah O.] Univ Calif Davis, Davis Bodega Marine Lab, Grad Grp Ecol, Davis, CA USA.
[Szoboszlai, Amber I.] Farallon Inst Adv Ecosyst Res, Petaluma, CA USA.
[Newsom, Amanda J.] Washington Dept Fish & Game, Washington, DC USA.
[Williams, Susan L.] Univ Calif Davis, CAMEOS, Bodega Marine Lab, Davis, CA 95616 USA.
[Williams, Susan L.] Univ Calif Davis, Bodega Marine Lab, Dept Ecol & Evolut, Davis, CA USA.
RP Komoroske, LM (reprint author), NOAA, Southwest Fisheries Sci Ctr, Washington, DC 20230 USA.
EM lmkomoroske@ucdavis.edu
FU NSF GK-12 Fellowship Program under Division of Graduate Education
[0841297]; Bertram Ludascher and California Sea Grant Delta Science
Doctoral Fellowship [R/SF-56]
FX This work was supported by the NSF GK-12 Fellowship Program under
Division of Graduate Education grant no. 0841297 to SLW and Bertram
Ludascher and California Sea Grant Delta Science Doctoral Fellowship no.
R/SF-56 to LMK.
NR 39
TC 1
Z9 1
U1 5
U2 24
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0006-3568
EI 1525-3244
J9 BIOSCIENCE
JI Bioscience
PD MAR
PY 2015
VL 65
IS 3
BP 313
EP 322
DI 10.1093/biosci/biu222
PG 10
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA CC9RM
UT WOS:000350708300014
ER
PT J
AU Lee, JY
Shin, SJ
Lee, YT
Libes, D
AF Lee, Ju Yeon
Shin, Seung-Jun
Lee, Y. Tina
Libes, Donald
TI Toward development of a testbed for sustainable manufacturing
SO CONCURRENT ENGINEERING-RESEARCH AND APPLICATIONS
LA English
DT Article
DE testbed; testbed development; sustainability; sustainable manufacturing;
smart manufacturing
AB A growing number of manufacturing companies are treating sustainability as a strategic objective that will increase both their global competitiveness and their market share. To implement this objective, these companies must first assess, and then evaluate, their current sustainability performance. Assessments and evaluations are carried out by choosing among a variety of existing sustainability metrics, assessment tools, and related standards. To help companies make the best choice, the National Institute of Standards and Technology is establishing a Smart Manufacturing Testbed, with an initial emphasis on sustainable manufacturing. The sustainable manufacturing testbed will provide (1) the infrastructure to demonstrate, test, and validate assessment methods and tools; (2) the ability to test conformance to current and future assessment-related standards; (3) the capability needed by the manufacturing industries to perform sustainability assessments; and (4) a repository for storing sustainability data related to products, resources, and processes from case studies describing real manufacturing scenarios. This article summarizes testbed requirements and functions, proposes an architecture that meets those requirements and implements those functions, and introduces a prototype system that enables companies to use the testbed.
C1 [Lee, Ju Yeon; Lee, Y. Tina; Libes, Donald] NIST, Gaithersburg, MD 20899 USA.
[Shin, Seung-Jun] NIST, Life Cycle Engn Grp, Gaithersburg, MD 20899 USA.
RP Lee, JY (reprint author), Korea Inst Ind Technol, 143 Hanggaulro, Ansan 426910, Gyeonggi Do, South Korea.
EM ljy0613@kitech.re.kr
FU Sustainable Manufacturing (SM) Program at the National Institute of
Standards and Technology
FX This article is funded by the Sustainable Manufacturing (SM) Program at
the National Institute of Standards and Technology.
NR 23
TC 1
Z9 1
U1 2
U2 6
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1063-293X
EI 1531-2003
J9 CONCURRENT ENG-RES A
JI Concurrent Eng.-Res. Appl.
PD MAR
PY 2015
VL 23
IS 1
BP 64
EP 73
DI 10.1177/1063293X14559527
PG 10
WC Computer Science, Interdisciplinary Applications; Engineering,
Manufacturing; Operations Research & Management Science
SC Computer Science; Engineering; Operations Research & Management Science
GA CD6ZF
UT WOS:000351239100005
ER
PT J
AU Ogle, SM
Davis, K
Lauvaux, T
Schuh, A
Cooley, D
West, TO
Heath, LS
Miles, NL
Richardson, S
Breidt, FJ
Smith, JE
McCarty, JL
Gurney, KR
Tans, P
Denning, AS
AF Ogle, Stephen M.
Davis, Kenneth
Lauvaux, Thomas
Schuh, Andrew
Cooley, Dan
West, Tristram O.
Heath, Linda S.
Miles, Natasha L.
Richardson, Scott
Breidt, F. Jay
Smith, James E.
McCarty, Jessica L.
Gurney, Kevin R.
Tans, Pieter
Denning, A. Scott
TI An approach for verifying biogenic greenhouse gas emissions inventories
with atmospheric CO2 concentration data
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE greenhouse gas emissions inventory; atmospheric inversion modeling;
emissions verification; carbon cycle
ID UNITED-STATES; CARBON-DIOXIDE; FLUXES; SINKS; LAND; INVERSIONS;
EXCHANGE; MODELS; BUDGET; SEQUESTRATION
AB Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country's contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO2 concentrations and inverse modeling to verify nationally-reported biogenic CO2 emissions. The biogenic CO2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of -408 +/- 136 TgCO(2) for the entire study region, which was not statistically different from the biogenic flux of -478 +/- 146 TgCO(2) that was estimated using the atmospheric CO2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest Cstock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC.
C1 [Ogle, Stephen M.; Schuh, Andrew] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA.
[Ogle, Stephen M.] Colorado State Univ, Dept Ecosyst Sci & Sustainabil, Ft Collins, CO 80523 USA.
[Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L.; Richardson, Scott] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA.
[Schuh, Andrew] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA.
[Cooley, Dan; Breidt, F. Jay] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA.
[West, Tristram O.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Heath, Linda S.; Smith, James E.] USDA, Forest Serv, No Res Stn, Forest Sci Lab, Durham, NH 03824 USA.
[McCarty, Jessica L.] Michigan Tech Res Inst, Ann Arbor, MI 48105 USA.
[Gurney, Kevin R.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA.
[Tans, Pieter] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO 80305 USA.
[Denning, A. Scott] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
RP Ogle, SM (reprint author), Colorado State Univ, Nat Resource Ecol Lab, Campus Delivery 1499, Ft Collins, CO 80523 USA.
EM stephen.ogle@colostate.edu
OI Ogle, Stephen/0000-0003-1899-7446
FU National Aeronautics and Space Administration (NASA), Terrestrial
Ecology Program [NNX08AK08G, NNH12AU35I]; NASA; US Department of Energy;
National Oceanic and Atmospheric Administration; US Department of
Agriculture
FX This synthesis and analysis was supported by a grant from the National
Aeronautics and Space Administration (NASA), Terrestrial Ecology Program
(NNX08AK08G to Colorado State University and NNH12AU35I to Department of
Energy). The Mid-Continent study was supported by multiple agencies in
the US government through the North American Carbon Program,
particularly NASA, US Department of Energy, National Oceanic and
Atmospheric Administration and US Department of Agriculture. Inventory
and inversion results are archived in the NASA Distributed Active
Archive Center at Oak Ridge National Laboratory.
NR 67
TC 2
Z9 2
U1 3
U2 35
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD MAR
PY 2015
VL 10
IS 3
AR 034012
DI 10.1088/1748-9326/10/3/034012
PG 11
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA CD9KB
UT WOS:000351416100014
ER
PT J
AU Jin, XZ
Yu, LS
Jackson, DL
Wick, GA
AF Jin, Xiangze
Yu, Lisan
Jackson, Darren L.
Wick, Gary A.
TI An Improved Near-Surface Specific Humidity and Air Temperature
Climatology for the SSM/I Satellite Period
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
ID LATENT-HEAT FLUX; SEA-SURFACE; BULK PARAMETERIZATION; SAMPLING ERRORS;
GLOBAL OCEANS; WATER-VAPOR; GULF-STREAM; PART I; RETRIEVAL; SYSTEM
AB A near-surface specific humidity (Qa) and air temperature (Ta) climatology on daily and 0.25 degrees grids was constructed by the objectively analyzed air-sea fluxes (OAFlux) project by objectively merging two recent satellite-derived high-resolution analyses, the OAFlux existing 1 degrees analysis, and atmospheric reanalyses. The two satellite products include the multi-instrument microwave regression (MIMR) Qa and Ta analysis and the Goddard Satellite-Based Surface Turbulent Fluxes, version 3 (GSSTF3), Qa analysis. This study assesses the degree of improvement made by OAFlux using buoy time series measurements at 137 locations and a global empirical orthogonal function (EOF) analysis. There are a total of 130 855 collocated daily values for Qa and 283 012 collocated daily values for Ta in the buoy evaluation. It is found that OAFlux Qa has a mean difference close to 0 and a root-mean-square (RMS) difference of 0.73 g kg(-1), and Ta has a mean difference of -0.03 degrees C and an RMS difference of 0.45 degrees C. OAFlux shows no major systematic bias with respect to buoy measurements over all buoy locations except for the vicinity of the Gulf Stream boundary current, where the RMS difference exceeds 1.8 degrees C in Ta and 1.2 g kg(-1) in Qa. The buoy evaluation indicates that OAFlux represents an improvement over MIMR and GSSTF3. The global EOF-based intercomparison analysis indicates that OAFlux has a similar spatial-temporal variability pattern with that of three atmospheric reanalyses including MERRA, NCEP-1, and ERA-Interim, but that it differs from GSSTF3 and the Climate Forecast System Reanalysis (CFSR).
C1 [Jin, Xiangze; Yu, Lisan] Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA.
[Jackson, Darren L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Jackson, Darren L.; Wick, Gary A.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
RP Jin, XZ (reprint author), Woods Hole Oceanog Inst, Mail Stop 21,266 Woods Hole Rd, Woods Hole, MA 02543 USA.
EM xjin@whoi.edu
RI Jackson, Darren/D-5506-2015
OI Jackson, Darren/0000-0001-5211-7866
FU NOAA Ocean Climate Observation (OCO) program [NA09OAR4320129]
FX This study was supported by the NOAA Ocean Climate Observation (OCO)
program under Grant NA09OAR4320129. The OAFlux 1 degrees analysis is
available from the project website (http://oaflux.whoi.edu/). The MIMR
near-surface air temperature and specific humidity are available from
the NOAA Earth System Research Laboratory (ftp://ftp1.esrl.noaa.gov).
The GSSTF3 specific humidity data were obtained from NASA
(ftp://measures.gsfc.nasa.gov/data/s4pa/GSSTF/GSSTF.3/). The WHOI and
SOFS buoy measurements were downloaded (http://uop.whoi.edu/projects/),
as were the NDBC buoy measurements (http://www.ndbc.noaa.gov/) and the
TAO/TRITON, PIRATA and RAMA data (http://www.pmel.noaa.gov/tao). KEO,
PAPA, and ARC data were obtained from the NOAA Pacific Marine
Environmental Laboratory. The ERA-Interim, CFSR, and NCEP reanalyses
were downloaded from the NCAR Research Data Archive
(http://rda.ucar.edu). MERRA data were downloaded from the Global
Modeling and Assimilation Office (GMAO) and the GES DISC
(ftp://goldsmr2.sci.gsfc.nasa.gov).
NR 44
TC 6
Z9 6
U1 3
U2 9
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD MAR
PY 2015
VL 32
IS 3
BP 412
EP 433
DI 10.1175/JTECH-D-14-00080.1
PG 22
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA CD6WI
UT WOS:000351230500002
ER
PT J
AU Ma, ZZ
Riishojgaard, LP
Masutani, M
Woollen, JS
Emmitt, GD
AF Ma, Zaizhong
Riishojgaard, Lars Peter
Masutani, Michiko
Woollen, John S.
Emmitt, George D.
TI Impact of Different Satellite Wind Lidar Telescope Configurations on
NCEP GFS Forecast Skill in Observing System Simulation Experiments
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
ID ATMOSPHERIC DYNAMICS MISSION; COHERENT DOPPLER LIDAR; DATA ASSIMILATION;
ADM-AEOLUS; SPACE
AB The Global Wind Observing Sounder (GWOS) concept, which has been developed as a hypothetical space-based hybrid wind lidar system by NASA in response to the 2007 National Research Council (NRC) decadal survey, is expected to provide global wind profile observations with high vertical resolution, precision, and accuracy when realized. The assimilation of Doppler wind lidar (DWL) observations anticipated from the GWOS is being conducted as a series of observing system simulation experiments (OSSEs) at the Joint Center for Satellite Data Assimilation (JCSDA). A companion paper (Riishojgaard et al.) describes the simulation of this lidar wind data and evaluates the impact on global numerical weather prediction (NWP) of the baseline GWOS using a four-telescope configuration to provide independent line-of-sight wind speeds, while this paper sets out to assess the NWP impact of GWOS equipped with alternative paired configurations of telescopes. The National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) analysis system and the Global Forecast System(GFS) were used, at a resolution of T382 with 64 layers, as the assimilation system and the forecast model, respectively, in these lidar OSSEs. A set of 45-day assimilation and forecast experiments from 2 July to 15 August 2005 was set up and executed.
In this OSSE study, a control simulation utilizing all of the data types assimilated in the operational GSI/GFS system was compared to three OSSE simulations that added lidar wind data from the different configurations of telescopes (one-, two-, and four-look configurations). First, the root-mean-square error (RMSE) of wind analysis is compared against the nature run. A significant reduction of the stratospheric RMSE of wind analyses is found for all latitudes when lidar wind profiles are used in the assimilation system. The forecast impacts of lidar data on the wind and mass forecasts are also presented. In addition, the anomaly correlations (AC) of geopotential height forecasts at 500 hPa were evaluated to compare the control and different GWOS telescope configuration experiments. The results show that the assimilation of lidar data from the GWOS (one, two, or four looks) can improve the NCEP GFS wind and mass field forecasts. The addition of the simulated lidar wind observations leads to a statistically significant increase in AC scores.
C1 [Ma, Zaizhong; Masutani, Michiko] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Ma, Zaizhong; Riishojgaard, Lars Peter; Masutani, Michiko] Joint Ctr Satellite Data Assimilat, College Pk, MD 20740 USA.
[Riishojgaard, Lars Peter] World Meteorol Org, Joint Observing & Informat Syst Dept, Geneva, Switzerland.
[Masutani, Michiko; Woollen, John S.] NOAA, NWS, NCEP, EMC, College Pk, MD USA.
[Emmitt, George D.] Simpson Weather Associates, Charlottesville, VA USA.
RP Ma, ZZ (reprint author), Joint Ctr Satellite Data Assimilat, 5830 Univ Res Court, College Pk, MD 20740 USA.
EM zaizhong.ma@noaa.gov
FU NASA through ROSES [NNX08AQ44G]
FX Support for this work was provided by NASA (R. Kakar) through ROSES
(Grant NNX08AQ44G). Computational resources for the experiments were
made available by NOAA/NCEP. The T511NR was produced by Dr. Erik
Andersson of ECMWF. The initial simulation of GOES radiance data was
conducted by Tong Zhu of NESDIS. We acknowledge Fanglin Yang and James
G. Yoe of NECP/EMC for their thoughtful comments.
NR 25
TC 4
Z9 4
U1 2
U2 11
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD MAR
PY 2015
VL 32
IS 3
BP 478
EP 495
DI 10.1175/JTECH-D-14-00057.1
PG 18
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA CD6WI
UT WOS:000351230500006
ER
PT J
AU Jehl, JR
Henry, AE
Swanson, DL
AF Jehl, Joseph R., Jr.
Henry, Annette E.
Swanson, David L.
TI Ratios, adaptations, and the differential metabolic capability of avian
flight muscles
SO JOURNAL OF AVIAN BIOLOGY
LA English
DT Article
ID SEASONAL PHENOTYPIC FLEXIBILITY; GREBE PODICEPS NIGRICOLLIS; DISTANCE
MIGRATORY FLIGHT; PASSERINE BIRDS; EARED GREBES; THERMOGENIC CAPACITY;
PECTORALIS-MUSCLE; BODY-COMPOSITION; SIZE; MYOSTATIN
AB The eared grebe Podiceps nigricollis shows seasonal variation in the relative size of the major flight muscles that lift and lower the wing: respectively, supracoracoideus (s) and pectoralis (p). S/p ratios are low (approximate to 0.07-0.12) when grebes are in flying condition, higher (approximate to 0.11-0.15) when staging and flightless, and extreme (to 0.29) when starving. Shifts were driven by changes in the protein content in the pectoralis; intramuscular fat had little effect. S/p ratios also vary seasonally in the red knot Calidris canutus and are higher in birds newly arrived in breeding areas than at other times. If that increase was an adaptive response to promote wing-lifting in association with various breeding behaviors as suggested, one would expect it to result from an absolute increase in the post-arrival size of the supracoracoideus, which was not observed. Instead, we propose that it is unrelated to enhancing the upstroke but results from a decrease in the size of the pectoralis, which is a consequence of the greater rate at which this muscle is catabolized in times of exertion and stress, as at the end of a long migration or during starvation. Fuller data on the size, morphology and physiology of individual muscles at various stages of the annual cycle and migration will help to clarify how ratio changes are achieved, and evaluate potential adaptive significance.
C1 [Jehl, Joseph R., Jr.] US Natl Museum Nat Hist, Div Birds, Washington, DC 20013 USA.
[Henry, Annette E.] SW Fisheries Sci Ctr, La Jolla, CA 93027 USA.
[Swanson, David L.] Univ S Dakota, Dept Biol, Vermillion, SD 57069 USA.
RP Jehl, JR (reprint author), US Natl Museum Nat Hist, Div Birds, NHB E-607,MRC 116,POB 37012, Washington, DC 20013 USA.
EM grebe5k@cs.com
FU National Geographic Society [7408-03, 7609-04]; U. S. Fish and Wildlife
Service; U. S. National Science Foundation [IOS-1021218]
FX Differential change in breast muscles was anticipated by R. W. Storer,
who in 1981 encouraged JRJ (1988: 28) to gather information on eared
grebes. M. S. Foster, B. K. Schmidt, P. Iovine, A. K. Miles, J. Lutz, N.
Darnall, J. O'Neill, H. I. Ellis, and K. Day helped in obtaining
specimens, sharing laboratory facilities and manuscript preparation. M.
Jakubasz (Nutrition Laboratory, National Zoological Park, Washington,
DC) and H. I. Ellis (Univ. of San Diego) helped with fat extractions. B.
G. Murray, Jr and W. Perrin commented on the manuscript. Field work was
supported, in part, by the Sierra Nevada Aquatic Research Laboratory and
the Los Angeles Dept of Water and Power. Financial support came from the
National Geographic Society (grants 7408-03, 7609-04) and the U. S. Fish
and Wildlife Service. DLS was supported by U. S. National Science
Foundation grant IOS-1021218. This research was part of a study
extending over several decades, which could not have been completed
without the tireless contributions of Suzanne I. Bond (deceased). We
thank the reviewers and editors for their thoughtful and incisive
suggestions.
NR 33
TC 1
Z9 1
U1 9
U2 50
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0908-8857
EI 1600-048X
J9 J AVIAN BIOL
JI J. Avian Biol.
PD MAR
PY 2015
VL 46
IS 2
BP 119
EP 124
DI 10.1111/jav.00506
PG 6
WC Ornithology
SC Zoology
GA CD8OX
UT WOS:000351356000001
ER
PT J
AU Hunter, TS
Clites, AH
Campbell, KB
Gronewold, AD
AF Hunter, Timothy S.
Clites, Anne H.
Campbell, Kent B.
Gronewold, Andrew D.
TI Development and application of a North American Great Lakes
hydrometeorological database - Part I: Precipitation, evaporation,
runoff, and air temperature
SO JOURNAL OF GREAT LAKES RESEARCH
LA English
DT Article
DE Hydrological data; Precipitation; Temperature; Evaporation; Great Lakes;
Database
ID CLIMATE-CHANGE SCENARIOS; EARTHS LARGEST LAKES; 1997-1998 EL-NINO; WATER
LEVELS; ICE COVER; MODEL; BASIN; SUPERIOR; VARIABILITY; RIVER
AB Starting in 1983, the National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL) has been developing and maintaining a historical time series of North American Great Lakes basin-scale monthly hydrometeorological data. This collection of data sets, which we hereafter refer to as the NOAA-GLERL monthly hydrometeorological database (GLM-HMD), is, to our knowledge, the first (and perhaps still the only) to assimilate hydrometeorological measurements into model simulations for each of the major components of the water budget across the entirety (i.e., both United States and Canadian portions) of the Great Lakes basin for a period of record dating back to the early and mid 1900s. Here, we describe the development of data sets in the first (GLM-HMD-I) of two subsets of the GLM-HMD including basin-scale estimates of over-lake and over-land precipitation and air temperature, runoff, and over-lake evaporation. Our synthesis of the GLM-HMD-I includes a summary of the monitoring network associated with each variable and an indication of how each monitoring network has changed overtime. We conclude with two representative applications of the GLM-HMD aimed at advancing understanding of seasonal and long-term changes in Great Lakes regional meteorology and climatology. These two examples implicitly reflect the historical utility of the GLM-HMD in numerous previous studies, and explicitly demonstrate its potential utility in ongoing and future regional hydrological science and climate change research. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.
C1 [Hunter, Timothy S.; Clites, Anne H.; Campbell, Kent B.; Gronewold, Andrew D.] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48108 USA.
[Campbell, Kent B.] Univ Michigan, Cooperat Inst Limnol & Ecosyst Res, Ann Arbor, MI 48109 USA.
RP Gronewold, AD (reprint author), NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48108 USA.
EM drew.gronewold@noaa.gov
OI Clites, Anne/0000-0002-2385-3802; Hunter, Timothy/0000-0003-1423-6770;
Campbell, Kent/0000-0001-9200-5711; Gronewold,
Andrew/0000-0002-3576-2529
FU IJC; NOAA; USACE; Great Lakes Restoration Initiative
FX Funding for this research was provided by the IJC, NOAA, USACE, and the
Great Lakes Restoration Initiative (administered by USEPA). The authors
are thankful to Steve Constant, Lauren Fry, Frank Quinn, Cathy Darnell,
John Bratton, and Brent Lofgren for providing valuable comments that
improved the clarity of the manuscript. This is NOAA-GLERL contribution
number 1740.
NR 74
TC 4
Z9 4
U1 0
U2 11
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0380-1330
J9 J GREAT LAKES RES
JI J. Gt. Lakes Res.
PD MAR
PY 2015
VL 41
IS 1
BP 65
EP 77
DI 10.1016/j.jglr.2014.12.006
PG 13
WC Environmental Sciences; Limnology; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA CE2NA
UT WOS:000351651100007
ER
PT J
AU Langseth, BJ
Cottrill, A
AF Langseth, Brian J.
Cottrill, Adam
TI Influence of fishing practices on lake trout bycatch in the Canadian
lake-whitefish commercial fishery in Lake Huron
SO JOURNAL OF GREAT LAKES RESEARCH
LA English
DT Article
DE Bycatch; Lake trout rehabilitation; Catch standardization; Great Lakes
ID MIXED-EFFECTS MODELS; GREAT-LAKES; SALVELINUS-NAMAYCUSH; CATCH;
ABUNDANCE; STANDARDIZATION; INDEXES; SELECTION; MICHIGAN; SUPERIOR
AB Rehabilitation of lake trout (Salvelinus namaycush) populations is a priority for fisheries management in the upper Laurentian Great Lakes. In Lake Huron, lake trout are frequently caught as bycatch in the commercial fishery for lake whitefish (Coregonus clupeaformis). Given the frequency of lake trout capture and the importance of limiting mortality for achieving rehabilitation goals, understanding factors that affect lake trout bycatch is valuable. We used catch and effort data from commercial logbooks and onboard observer reports to assess potential effects of factors in the operation of the lake whitefish fishery on lake trout bycatch and to develop standardized indices of lake trout abundance. Factors considered in our analysis were season, mesh size, region, and license holder, which were recorded in both datasets, and set type and depth, which were only recorded in the observer dataset In general, we found that environmental factors affected whether lake trout bycatch occurred, but that if bycatch occurred, factors related to the fishing gear affected its magnitude. Although we observed seasonal interactions with depth and mesh size, the probability of bycatch was lowest in shallow waters, and the magnitude of bycatch was lowest in shallow waters, alternative set types, and larger mesh sizes. Standardized indices of lake trout abundance from both datasets gave comparable estimates of relative trends; an increase in abundance up to 2004-2005 followed by a decline. Our findings show utility for the use of the observer dataset from the lake whitefish fishery as part of lake trout management in Lake Huron. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.
C1 [Langseth, Brian J.] Michigan State Univ, Quantitat Fisheries Ctr, E Lansing, MI 48824 USA.
[Langseth, Brian J.] NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Beaufort Lab, Beaufort, NC 28516 USA.
[Cottrill, Adam] Minist Nat Resources & Forestry, Upper Great Lakes Management Unit, Owen Sound, ON N4K 2Z1, Canada.
RP Langseth, BJ (reprint author), NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Inouye Reg Ctr, 1845 Wasp Blvd Bldg 176, Honolulu, HI 96818 USA.
EM brian.langseth@noaa.gov
NR 47
TC 0
Z9 0
U1 3
U2 16
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0380-1330
J9 J GREAT LAKES RES
JI J. Gt. Lakes Res.
PD MAR
PY 2015
VL 41
IS 1
BP 280
EP 291
DI 10.1016/j.jglr.2014.12.014
PG 12
WC Environmental Sciences; Limnology; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA CE2NA
UT WOS:000351651100028
ER
PT J
AU Suzuki, Y
Hayashi, M
Tanabe, N
Yasukawa, T
Hirano, Y
Takagi, S
Chow, LC
Suzuki, N
Ogiso, B
AF Suzuki, Yusuke
Hayashi, Makoto
Tanabe, Natsuko
Yasukawa, Takuya
Hirano, Yoriyuki
Takagi, Shozo
Chow, Laurence C.
Suzuki, Naoto
Ogiso, Bunnai
TI Effect of a novel fluorapatite-forming calcium phosphate cement with
calcium silicate on osteoblasts in comparison with mineral trioxide
aggregate
SO JOURNAL OF ORAL SCIENCE
LA English
DT Article
DE calcium phosphate cement; fluorapatite; calcium silicate; cell
proliferation; alkaline phosphatase activity; osteoblast
ID ROOT-CANAL SEALERS; DENTAL-PULP CELLS; IN-VITRO; BONE-FORMATION;
FIBROBLASTS; MECHANISM; SURFACES; APATITE
AB We compared the effects of treatment with fluorapatite-forming calcium phosphate cement (FA-forming CPC) containing tricalcium silicate (TCS) and those of mineral trioxide aggregate (MTA), the gold standard endodontic cement, on cultured osteoblast-like cells (ROS 17/2.8 cells; ROS cells). The FA-forming CPC powder consisted of 61.29% CaHPO4, 32.26% CaCO3, and 6.45% NaF. One part TCS was combined with nine parts FA-forming CPC powder to make FA-forming CPC with TCS. A 1.5-M phosphate solution was mixed as a cement liquid with a powder/liquid ratio of 2.22. Cell culture was carried out using cell culture inserts, whereby each test material was put on a porous membrane insert in the cell culture plate. Proliferation, morphologic changes, and alkaline phosphatase activity in ROS cells were measured in the presence of FA-forming CPC with TCS and MTA and compared. The logarithmic growth phase and cellular morphologic changes in ROS cells were identical in all experimental groups. Additionally, no significant difference in alkaline phosphatase activity was noted in ROS cells exposed to FA-forming CPC with TCS and those exposed to MTA. In conclusion, FA-forming CPC with TCS has characteristics identical to those of MTA under the present experimental conditions and may thus be useful for endodontic applications.
C1 [Suzuki, Yusuke; Yasukawa, Takuya; Hirano, Yoriyuki] Nihon Univ, Grad Sch Dent, Div Appl Oral Sci, Tokyo, Japan.
[Hayashi, Makoto; Ogiso, Bunnai] Nihon Univ, Sch Dent, Dept Endodont, Tokyo, Japan.
[Tanabe, Natsuko; Suzuki, Naoto] Nihon Univ, Sch Dent, Dept Biochem, Tokyo, Japan.
[Takagi, Shozo; Chow, Laurence C.] NIST, American Dent Assoc Fdn, Dr Anthony Volpe Res Ctr, Gaithersburg, MD 20899 USA.
RP Hayashi, M (reprint author), Nihon Univ, Sch Dent, Dept Endodont, Chiyoda Ku, 1-8-13 Kanda Surugadai, Tokyo, Japan.
EM hayashi.makoto53@nihon-u.ac.jp
FU Japan Society for the Promotion of Science [26462898]; Dental Research
Center, Nihon University School of Dentistry
FX This research was financially supported in part by a Grant-in-Aid for
Scientific Research (C-#26462898) from the Japan Society for the
Promotion of Science (to M.H.) and grants from the Dental Research
Center, Nihon University School of Dentistry for 2012, 2013, and 2014.
NR 28
TC 0
Z9 0
U1 2
U2 17
PU NIHON UNIV, SCHOOL DENTISTRY
PI TOYKO
PA 1--13 KANDA-SURUGADAI, CHIYODA-KU, TOYKO, 101-8310, JAPAN
SN 1343-4934
EI 1880-4926
J9 J ORAL SCI
JI J. Oral Sci.
PD MAR
PY 2015
VL 57
IS 1
BP 25
EP 30
DI 10.2334/josnusd.57.25
PG 6
WC Dentistry, Oral Surgery & Medicine; Materials Science, Biomaterials
SC Dentistry, Oral Surgery & Medicine; Materials Science
GA CE2PQ
UT WOS:000351657900004
PM 25807905
ER
PT J
AU McClintock, BT
London, JM
Cameron, MF
Boveng, PL
AF McClintock, Brett T.
London, Joshua M.
Cameron, Michael F.
Boveng, Peter L.
TI Modelling animal movement using the Argos satellite telemetry location
error ellipse
SO METHODS IN ECOLOGY AND EVOLUTION
LA English
DT Article
DE animal location data; Erignathus barbatus; hierarchical model;
measurement error; Monachus schauinslandi; movement model; state-space
model; switching behaviour
ID WILDLIFE RESOURCE USE; FORAGING SUCCESS; PHOCA-VITULINA; RANDOM-WALKS;
SEALS; INFERENCE; ACCURACY; OCEAN
AB The Argos satellite telemetry system is popular for studying the movement and space use of marine animals. The life histories of marine mammals, in particular, result in a relatively large proportion of inaccurate locations, thus making analysis methods that do not account for location measurement error inappropriate for these data. Using a new Kalman filtering algorithm, Argos now provides locations and estimated error ellipses associated with each satellite fix, but to our knowledge, the location error ellipse has yet to be incorporated into analyses of animal movement or space use. We first present an observation model utilizing the Argos error ellipse and then demonstrate how this observation model can be combined with a simple three-dimensional movement model in a state-space formulation to infer activity budgets and movement characteristics from location and dive data of two species of seal, the bearded seal (Erignathus barbatus) and the Hawaiian monk seal (Monachus schauinslandi). These example data sets are of variable quality and represent species that differ in both space use and latitudinal range relative to the polar orbits of Argos satellites. We also compare the results from our error ellipse model with those from an approximate (isotropic) error circle model. We found the error circle to be a crude approximation of the actual anisotropic error ellipse for the higher quality bearded seal data, but inferences from the lower quality Hawaiian monk seal data were more robust to the choice of observation model. In both examples, we found the theoretical bivariate normal distribution corresponding to the error ellipse often failed to adequately explain the most extreme location outliers. In practice, we suspect the inferential consequences of using traditional isotropic location quality classes or other crude approximations in lieu of the error ellipse will be largely case-dependent. We support the Argos recommendation that practitioners wishing to more properly account for location measurement error utilize the error ellipse in analyses. However, the continued presence of outliers using the new algorithm suggests practitioners should consider using a fat-tailed distribution derived from the error ellipse (e.g. bivariate t-distribution) or filtering extreme outliers during data pre-processing.
C1 [McClintock, Brett T.; London, Joshua M.; Cameron, Michael F.; Boveng, Peter L.] NMFS, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, NOAA, Seattle, WA 98115 USA.
RP McClintock, BT (reprint author), NMFS, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115 USA.
EM brett.mcclintock@noaa.gov
OI London, Josh/0000-0002-3647-5046
NR 33
TC 6
Z9 6
U1 3
U2 28
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2041-210X
EI 2041-2096
J9 METHODS ECOL EVOL
JI Methods Ecol. Evol.
PD MAR
PY 2015
VL 6
IS 3
BP 266
EP 277
DI 10.1111/2041-210X.12311
PG 12
WC Ecology
SC Environmental Sciences & Ecology
GA CE2AF
UT WOS:000351613900003
ER
PT J
AU Lim, K
Ropp, C
Shapiro, B
Taylor, JM
Waks, E
AF Lim, Kangmook
Ropp, Chad
Shapiro, Benjamin
Taylor, Jacob M.
Waks, Edo
TI Scanning Localized Magnetic Fields in a Microfluidic Device with a
Single Nitrogen Vacancy Center
SO NANO LETTERS
LA English
DT Article
DE nitrogen vacancy (NV) color centers; diamond nanocrystal; electron spin
resonance (ESR); localized magnetometry; microfluidic device; magnetic
particles
ID AMBIENT CONDITIONS; ELECTRON-SPIN; DIAMOND SPINS; QUANTUM DOTS;
RESOLUTION; NANODIAMONDS; NANOPARTICLES; MANIPULATION; THERMOMETRY;
PRECISION
AB Nitrogen vacancy (NV) color centers in diamond enable local magnetic field sensing with high sensitivity by optical detection of electron spin resonance (ESR). The integration of this capability with microfluidic technology has a broad range of applications in chemical and biological sensing. We demonstrate a method to perform localized magnetometry in a microfluidic device with a 48 nm spatial precision. The device manipulates individual magnetic particles in three dimensions using a combination of flow control and magnetic actuation. We map out the local field distribution of the magnetic particle by manipulating it in the vicinity of a single NV center and optically detecting the induced Zeeman shift with a magnetic field sensitivity of 17.5 mu T Hz-1/2. Our results enable accurate nanoscale mapping of the magnetic field distribution of a broad range of target objects in a microfluidic device.
C1 [Lim, Kangmook; Ropp, Chad; Waks, Edo] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA.
[Lim, Kangmook; Ropp, Chad; Waks, Edo] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA.
[Lim, Kangmook; Taylor, Jacob M.; Waks, Edo] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA.
[Lim, Kangmook; Taylor, Jacob M.; Waks, Edo] NIST, College Pk, MD 20742 USA.
[Shapiro, Benjamin] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA.
[Shapiro, Benjamin] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA.
RP Waks, E (reprint author), Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA.
EM edowaks@umd.edu
RI Taylor, Jacob/B-7826-2011
OI Taylor, Jacob/0000-0003-0493-5594
FU Physics Frontier Center at the Joint Quantum Institute
FX The authors would like to acknowledge financial support from the Physics
Frontier Center at the Joint Quantum Institute.
NR 49
TC 3
Z9 3
U1 6
U2 54
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2015
VL 15
IS 3
BP 1481
EP 1486
DI 10.1021/nl503280u
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CD6GQ
UT WOS:000351188000005
PM 25654268
ER
PT J
AU Yan, LF
Jahangir, S
Wight, SA
Nikoobakht, B
Bhattacharya, P
Millunchick, JM
AF Yan, Lifan
Jahangir, Shafat
Wight, Scott A.
Nikoobakht, Babak
Bhattacharya, Pallab
Millunchick, Joanna M.
TI Structural and Optical Properties of Disc-in-Wire InGaN/GaN LEDs
SO NANO LETTERS
LA English
DT Article
DE InGaN; disc-in-wire nanowire; cathodoluminescence; LEDs
ID MOLECULAR-BEAM EPITAXY; LIGHT-EMITTING-DIODES; GAN; GROWTH; SI(111);
MORPHOLOGY; SUBSTRATE; NANOWIRES; SILICON; LAYERS
AB This study examines the role of the microstructure and optical properties of InGaN/GaN nanowire LED structures on Si(111) having different nanowire coverages. Cathodoluminescence (CL) measurements show that all samples exhibit broad emission around the intended energy, 1.95 eV (635 nm). While the absolute emission intensity is hard to compare for CL measurement, the bandgap emission (similar to 3.4 eV) coming from the GaN root is more pronounced as coverage of nanowires decreases, which has less coalescence formation. The width of the emission peak is likely due to variations in the morphology of the InGaN discs within the wires, as faceted layers with different thicknesses and quantum dots are observed by transmission electron microscopy. Nonepitaxial six-fold symmetric lateral branching, called nanocrowns, emanate from stacking faults within the active regions. These features likely reduce optical emission as a result of grain boundaries between the nanocrown and nanowire.
C1 [Yan, Lifan; Millunchick, Joanna M.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
[Jahangir, Shafat; Bhattacharya, Pallab] Univ Michigan, Ctr Photon & Multiscale Nanomat, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA.
[Wight, Scott A.; Nikoobakht, Babak] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA.
RP Millunchick, JM (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
EM joannamm@umich.edu
RI Nikoobakht, Babak/D-7562-2011
FU National Science Foundation Material Research Science and Engineering
Center program [DMR 112923]
FX This work was supported by the National Science Foundation Material
Research Science and Engineering Center program DMR 112923.
NR 25
TC 6
Z9 6
U1 6
U2 75
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2015
VL 15
IS 3
BP 1535
EP 1539
DI 10.1021/nl503826k
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CD6GQ
UT WOS:000351188000013
PM 25658444
ER
PT J
AU Gui, H
Streit, JK
Fagan, JA
Walker, ARH
Zhou, CW
Zheng, M
AF Gui, Hui
Streit, Jason K.
Fagan, Jeffrey A.
Walker, Angela R. Hight
Zhou, Chongwu
Zheng, Ming
TI Redox Sorting of Carbon Nanotubes
SO NANO LETTERS
LA English
DT Article
DE Redox; carbon nanotube separation; surfactant coating structure; aqueous
two-phase extraction
ID ELECTRONIC-STRUCTURE; BLOCK-COPOLYMERS; HIGH-YIELD; SEPARATION;
CHROMATOGRAPHY; SIZE
AB This work expands the redox chemistry of single-wall carbon nanotubes (SWCNTs) by investigating its role in a number of SWCNT sorting processes. Using a polyethylene glycol (PEG)/dextran (DX) aqueous two-phase system, we show that electron-transfer between redox molecules and SWCNTs triggers reorganization of the surfactant coating layer, leading to strong modulation of nanotube partition in the two phases. While the DX phase is thermodynamically more favored by an oxidized SWCNT mixture, the mildly reducing PEG phase is able to recover SWCNTs from oxidation and extract them successively from the DX phase. Remarkably, the extraction order follows SWCNT bandgap: semiconducting nanotubes of larger bandgap first, followed by semiconducting nanotubes of smaller bandgap, then nonarmchair metallic tubes of small but nonvanishing bandgap, and finally armchair metallic nanotubes of zero bandgap. Furthermore, we show that redox-induced surfactant reorganization is a common phenomenon, affecting nanotube buoyancy in a density gradient field, affinity to polymer matrices, and solubility in organic solvents. These findings establish redox modulation of surfactant coating structures as a general mechanism for tuning a diverse range of SWCNT sorting processes and demonstrate for the first time that armchair and nonarmchair metallic SWCNTs can be separated by their differential response to redox.
C1 [Gui, Hui] Univ So Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA.
[Zhou, Chongwu] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA.
[Streit, Jason K.; Fagan, Jeffrey A.; Zheng, Ming] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
[Walker, Angela R. Hight] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA.
RP Zhou, CW (reprint author), Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA.
EM chongwuz@usc.edu; ming.zheng@nist.gov
RI Zhou, Chongwu/F-7483-2010; Hight Walker, Angela/C-3373-2009;
OI Hight Walker, Angela/0000-0003-1385-0672; Fagan,
Jeffrey/0000-0003-1483-5554
FU AFOSR; National Research Council
FX This work is support in part by a grant from AFOSR. J.K.S. acknowledges
a National Research Council postdoctoral fellowship.
NR 22
TC 14
Z9 15
U1 4
U2 63
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2015
VL 15
IS 3
BP 1642
EP 1646
DI 10.1021/nl504189p
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CD6GQ
UT WOS:000351188000030
PM 25719939
ER
PT J
AU Hossaini, R
Chipperfield, MP
Montzka, SA
Rap, A
Dhomse, S
Feng, W
AF Hossaini, R.
Chipperfield, M. P.
Montzka, S. A.
Rap, A.
Dhomse, S.
Feng, W.
TI Efficiency of short-lived halogens at influencing climate through
depletion of stratospheric ozone
SO NATURE GEOSCIENCE
LA English
DT Article
ID BROMINE; TROPOSPHERE; EMISSIONS; IODINE; SUBSTANCES; TRENDS; IMPACT;
MODEL
AB Halogens released from long-lived anthropogenic substances, such as chlorofluorocarbons, are the principal cause of recent depletion of stratospheric ozone, a greenhouse gas(1-3). Recent observations show that very short-lived substances, with lifetimes generally under six months, are also an important source of stratospheric halogens(4,5). Short-lived bromine substances are produced naturally by seaweed and phytoplankton, whereas short-lived chlorine substances are primarily anthropogenic. Here we used a chemical transport model to quantify the depletion of ozone in the lower stratosphere from short-lived halogen substances, and a radiative transfer model to quantify the radiative effects of that ozone depletion. According to our simulations, ozone loss from short-lived substances had a radiative effect nearly half that from long-lived halocarbons in 2011 and, since pre-industrial times, has contributed a total of about -0.02 W m(-2) to global radiative forcing. We find natural short-lived bromine substances exert a 3.6 times larger ozone radiative effect than long-lived halocarbons, normalized by halogen content, and show atmospheric levels of dichloromethane, a short-lived chlorine substance not controlled by the Montreal Protocol, are rapidly increasing. We conclude that potential further significant increases in the atmospheric abundance of short-lived halogen substances, through changing natural processes(6-8) or continued anthropogenic emissions(9), could be important for future climate.
C1 [Hossaini, R.; Chipperfield, M. P.; Rap, A.; Dhomse, S.; Feng, W.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England.
[Montzka, S. A.] NOAA, Boulder, CO 80305 USA.
[Feng, W.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England.
RP Hossaini, R (reprint author), Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England.
EM r.hossaini@leeds.ac.uk
RI FENG, WUHU/B-8327-2008; Hossaini, Ryan/F-7134-2015; Chipperfield,
Martyn/H-6359-2013; Dhomse, Sandip/C-8198-2011; Rap,
Alexandru/G-7532-2016
OI FENG, WUHU/0000-0002-9907-9120; Montzka, Stephen/0000-0002-9396-0400;
Chipperfield, Martyn/0000-0002-6803-4149; Dhomse,
Sandip/0000-0003-3854-5383; Rap, Alexandru/0000-0002-2319-6769
FU NERC (TropHal project) [NE/J02449X/1]; NOAA's Climate Program Office
through Atmospheric, Chemistry, Carbon Cycle and Climate Program
FX We thank NERC for funding (TropHal project, NE/J02449X/1). Ground-based
observations of CH2Cl2 are supported in part by
NOAA's Climate Program Office through its Atmospheric, Chemistry, Carbon
Cycle and Climate Program. C. Siso, B. Hall, J. Elkins and B. Miller
provided assistance in making and standardizing these measurements.
NR 30
TC 25
Z9 25
U1 5
U2 44
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1752-0894
EI 1752-0908
J9 NAT GEOSCI
JI Nat. Geosci.
PD MAR
PY 2015
VL 8
IS 3
BP 186
EP 190
DI 10.1038/NGEO2363
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA CD0NL
UT WOS:000350770900014
ER
PT J
AU Gavrin, V
Cleveland, B
Danshin, S
Elliott, S
Gorbachev, V
Ibragimova, T
Kalikhov, A
Knodel, T
Kozlova, Y
Malyshkin, Y
Matveev, V
Mirmov, I
Nico, J
Robertson, RGH
Shikhin, A
Sinclair, D
Veretenkin, E
Wilkerson, J
AF Gavrin, V.
Cleveland, B.
Danshin, S.
Elliott, S.
Gorbachev, V.
Ibragimova, T.
Kalikhov, A.
Knodel, T.
Kozlova, Yu
Malyshkin, Yu
Matveev, V.
Mirmov, I.
Nico, J.
Robertson, R. G. H.
Shikhin, A.
Sinclair, D.
Veretenkin, E.
Wilkerson, J.
TI Current status of new SAGE project with Cr-51 neutrino source
SO PHYSICS OF PARTICLES AND NUCLEI
LA English
DT Article
ID GALLEX
AB A very short-baseline neutrino oscillation experiment with an intense Cr-51 neutrino source is currently under construction at the Baksan Neutrino Observatory of the Institute for Nuclear Research RAS (BNO). The experiment, which is based on the existing SAGE experiment, will use an upgraded Gallium-Germanium Neutrino Telescope (GGNT) and an artificial Cr-51 neutrino source with activity similar to 3 MCi to search for transitions of active neutrinos to sterile states with Delta m (2) similar to 1 eV(2). The neutrino source will be placed in the center of a liquid Ga metal target that is divided into two concentric zones, internal and external. The average path length of neutrinos in each zone will be the same and the neutrino capture rate will be measured separately in each zone. The oscillation signature, which comes from the ratio of events in the near and far gallium volumes, will be largely free of systematic errors, such as may occur from cross section and source strength uncertainties, and will provide a clean signal of electron neutrino disappearance into a sterile state at baselines of about 0.6 and 2.0 m. The sensitivity to the disappearance of electron neutrinos is expected to be a few percent. Construction of this set of new facilities, including a two-zone tank for irradiation of 50 tons of Ga metal with the intense Cr-51 source, as well as additional modules of the GGNT counting and extraction systems, is close to completion. To check the new facilities they will first be used for SAGE solar neutrino measurements.
C1 [Gavrin, V.; Danshin, S.; Gorbachev, V.; Ibragimova, T.; Kalikhov, A.; Knodel, T.; Kozlova, Yu; Malyshkin, Yu; Matveev, V.; Mirmov, I.; Shikhin, A.; Veretenkin, E.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Cleveland, B.] SNOLAB, Lively, ON P3Y 1N2, Canada.
[Elliott, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Matveev, V.] Joint Inst Nucl Res, Dubna 141980, Russia.
[Nico, J.] NIST, Gaithersburg, MD 20899 USA.
[Robertson, R. G. H.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA.
[Sinclair, D.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Wilkerson, J.] Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA.
RP Gavrin, V (reprint author), Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
EM gavrin@inr.ru
FU Program of Basic Research "Fundamental Properties of Matter and
Astrophysics" of the Presidium RAS; Russian Foundation for Basic
Research [11-02-00806-a, 11-02-12130-ofi-m-2011,
13-02-12075-ofi-m-2013]; Russian Federation [NS-871.2012.2]
FX This work was supported in part by the Program of Basic Research
"Fundamental Properties of Matter and Astrophysics" of the Presidium
RAS, by the Russian Foundation for Basic Research grants 11-02-00806-a,
11-02-12130-ofi-m-2011, 13-02-12075-ofi-m-2013 and by the grant of the
President of the Russian Federation NS-871.2012.2.
NR 26
TC 7
Z9 7
U1 0
U2 2
PU MAIK NAUKA/INTERPERIODICA/SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA
SN 1063-7796
EI 1531-8559
J9 PHYS PART NUCLEI+
JI Phys. Part. Nuclei
PD MAR
PY 2015
VL 46
IS 2
BP 131
EP 137
DI 10.1134/S1063779615020100
PG 7
WC Physics, Particles & Fields
SC Physics
GA CD7SR
UT WOS:000351292700002
ER
PT J
AU Allen, AD
Velez-Quinones, M
Eribo, BE
Morris, V
AF Allen, Adrian Douglas
Velez-Quinones, Maria
Eribo, Broderick E.
Morris, Vernon
TI MALDI-TOF MS as a supportive tool for the evaluation of bacterial
diversity in soils from Africa and the Americas
SO AEROBIOLOGIA
LA English
DT Article
DE Mass spectrometry; Aerobiology; Protein biomarkers; Saharan/sub-Saharan
soil and dust; Caribbean; Virulence factor; Endospore-forming bacteria
ID FLIGHT MASS-SPECTROMETRY; DESORPTION IONIZATION-TIME; DESERT DUST;
WEST-AFRICA; SPECIES IDENTIFICATION; RAPID IDENTIFICATION; GLOBAL
TRANSPORT; PARTICLE-SIZE; HUMAN HEALTH; AIR-QUALITY
AB Identification and characterization of viable culturable bacteria (VCB) associated with soils from Africa and the Americas are significant for environmental and battlefield security. Such analyses are scarce, and their evaluation using traditional microbiological methods does not fully elucidate the structure and chemotaxonomic characteristics of the microbial community. In this study, matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS), spectrometry in addition to 16S rRNA sequencing, and diversity indices were employed to characterize VCB and their associated biomarkers. Nineteen genera were identified across all sample locations, but only four (Bacillus, Brevibacillus, Paenibacillus, and Terribacillus) confirmed by ClustalW2 as being 98-99 % similar among locations. Further evaluation of soils showed bacterial diversity (H) of (1.0-8.4), evenness (E (H) ), (0.14-0.72), similarity (Sj), (0.0-0.38), and cfu/g soil (2.5 x 10(1)-2.2 x 10(7)). Analysis of representative bacteria using MALDI-TOF MS identified biomarkers for the genera Bacillus at m/z 6,778 (75 %), 9,437 (100 %); Brevibacillus, m/z 7,381 (86 %); Paenibacillus, 5,473 (63 %); and Terribacillus, 4,517, 6,532, 7,574 (67 %). Peptide mass fingerprinting of biomarkers identified partial peptide maps for several potential virulence factors such as hemagglutinin from a Brevibacillus spp. The data indicate an east (Sudan) to west (Jamaica; Mexico; Washington, DC; Baltimore) trend of potentially pathogenic endospore-forming bacteria.
C1 [Allen, Adrian Douglas] Howard Univ, Dept Comprehens Sci, Washington, DC 20059 USA.
[Allen, Adrian Douglas; Morris, Vernon] Howard Univ, NOAA, Ctr Atmospher Sci, Washington, DC 20001 USA.
[Velez-Quinones, Maria; Eribo, Broderick E.] Howard Univ, Grad Sch, Dept Biol, Washington, DC 20059 USA.
[Morris, Vernon] Howard Univ, Dept Chem, Washington, DC 20059 USA.
RP Allen, AD (reprint author), Howard Univ, Dept Comprehens Sci, 2441 Sixth St,NW Locke Hall,Room 260, Washington, DC 20059 USA.
EM adriandallen@yahoo.com; vmorris@howard.edu
FU National Oceanic and Atmospheric Administration, Educational Partnership
Program, US Department of Commerce [NA11SEC4810003]; National Oceanic
and Atmospheric Administration, Office of Education Educational
Partnership Program
FX This material is based upon (work) supported by the National Oceanic and
Atmospheric Administration, Educational Partnership Program, US
Department of Commerce, under Agreement No. NA11SEC4810003. This
publication was made possible by the National Oceanic and Atmospheric
Administration, Office of Education Educational Partnership Program
award. Its contents are solely the responsibility of the award recipient
and do not necessarily represent the official views of the US Department
of Commerce, National Oceanic and Atmospheric Administration. We would
also like to express sincere thanks to the Department of Biology and
Chemistry, Howard University for providing the facilities to enable this
research.
NR 46
TC 1
Z9 1
U1 0
U2 9
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0393-5965
EI 1573-3025
J9 AEROBIOLOGIA
JI Aerobiologia
PD MAR
PY 2015
VL 31
IS 1
BP 111
EP 126
DI 10.1007/s10453-014-9351-5
PG 16
WC Biology; Environmental Sciences
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology
GA CC7WY
UT WOS:000350580400011
ER
PT J
AU Schanfield, MS
Gettings, K
Podini, D
AF Schanfield, Moses S.
Gettings, Katherine
Podini, Daniele
TI Evidence for selection in human populations for Black/Dark Brown hair
color using Phenotype Informative Markers
SO AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY
LA English
DT Meeting Abstract
CT 84th Annual Meeting of the
American-Association-of-Physical-Anthropologists
CY MAR 25-28, 2015
CL St Louis, MO
SP Amer Assoc Phys Anthropologists
C1 [Schanfield, Moses S.; Gettings, Katherine; Podini, Daniele] George Washington Univ, Dept Forens Sci, Washington, DC 20052 USA.
[Schanfield, Moses S.] George Washington Univ, Dept Anthropol, Washington, DC 20052 USA.
[Gettings, Katherine] NIST, Biochem Sci Div, Gaithersburg, MD 20899 USA.
NR 0
TC 0
Z9 0
U1 1
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-9483
EI 1096-8644
J9 AM J PHYS ANTHROPOL
JI Am. J. Phys. Anthropol.
PD MAR
PY 2015
VL 156
SU 60
SI SI
BP 277
EP 277
PG 1
WC Anthropology; Evolutionary Biology
SC Anthropology; Evolutionary Biology
GA CC8CE
UT WOS:000350594902028
ER
PT J
AU Usselman, RJ
Qazi, S
Aggarwal, P
Eaton, SS
Eaton, GR
Russek, S
Douglas, T
AF Usselman, Robert J.
Qazi, Shefah
Aggarwal, Priyanka
Eaton, Sandra S.
Eaton, Gareth R.
Russek, Stephen
Douglas, Trevor
TI Gadolinium-Loaded Viral Capsids as Magnetic Resonance Imaging Contrast
Agents
SO APPLIED MAGNETIC RESONANCE
LA English
DT Article
ID MRI; RELAXIVITY; RELAXATION; NANOPARTICLES
AB Polymeric nanohybrid P22 virus capsids were used as templates for high density Gd3+ loading to explore magnetic field-dependent (0.5-7.0 T) proton relaxivity. The field-dependence of relaxivity by the spatially constrained Gd3+ in the capsids was similar when either the loading of the capsids or the concentration of capsids was varied. The ionic longitudinal relaxivity, r (1), decreased from 25-32 mM(-1) s(-1) at 0.5 T to 6-10 mM(-1) s(-1) at 7 T. The ionic transverse relaxivity, r (2), increased from 28-37 mM(-1) s(-1) at 0.5 T to 39-50 mM(-1) s(-1) at 7 T. The r (2)/r (1) ratio increased linearly with increasing magnetic field from about 1 at 0.5 T, which is typical of T (1) contrast agents, to 5-8 at 7 T, which is approaching the ratios for T (2) contrast agents. Increases in electron paramagnetic resonance line widths at 80 and 150 K and higher microwave powers required for signal saturation indicate enhanced Gd3+ electron spin relaxation rates for the Gd3+-loaded capsids than for low concentration Gd3+. The largest r (2)/r (1) at 7 T was for the highest cage loading, which suggests that Gd3+-Gd3+ interactions within the capsid enhance r (2) more than r (1).
C1 [Usselman, Robert J.; Russek, Stephen] NIST, Electromagnet Div, Boulder, CO 80305 USA.
[Qazi, Shefah] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA.
[Aggarwal, Priyanka; Eaton, Sandra S.; Eaton, Gareth R.] Univ Denver, Dept Chem & Biochem, Denver, CO 80208 USA.
[Douglas, Trevor] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA.
RP Usselman, RJ (reprint author), NIST, Electromagnet Div, Boulder, CO 80305 USA.
EM robert.usselman@gmail.com
RI Douglas, Trevor/F-2748-2011;
OI Eaton, Gareth R/0000-0001-7429-8469; Eaton, Sandra S/0000-0002-2731-7986
FU American Heart Association; National Institutes of Health, NIBIB
[R01-EB012027]; University of Denver; US government
FX This work was supported by an award from the American Heart Association
(SQ) and was supported in part by a grant from the National Institutes
of Health, NIBIB R01-EB012027 and by internal funding at the University
of Denver. This work was partially supported by the US government, not
protected by US copyright.
NR 25
TC 5
Z9 5
U1 2
U2 10
PU SPRINGER WIEN
PI WIEN
PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA
SN 0937-9347
EI 1613-7507
J9 APPL MAGN RESON
JI Appl. Magn. Reson.
PD MAR
PY 2015
VL 46
IS 3
BP 349
EP 355
DI 10.1007/s00723-014-0639-y
PG 7
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA CC3XJ
UT WOS:000350284300009
ER
PT J
AU Bai, XZ
Wang, J
Austin, J
Schwab, DJ
Assel, R
Clites, A
Bratton, JF
Colton, M
Lenters, J
Lofgren, B
Wohlleben, T
Helfrich, S
Vanderploeg, H
Luo, L
Leshkevich, G
AF Bai, Xuezhi
Wang, Jia
Austin, Jay
Schwab, David J.
Assel, Raymond
Clites, Anne
Bratton, John F.
Colton, Marie
Lenters, John
Lofgren, Brent
Wohlleben, Trudy
Helfrich, Sean
Vanderploeg, Henry
Luo, Lin
Leshkevich, George
TI A record-breaking low ice cover over the Great Lakes during winter
2011/2012: combined effects of a strong positive NAO and La Nina
SO CLIMATE DYNAMICS
LA English
DT Article
DE Great Lakes ice cover; Ice growth; Surface heat budget; NAO; La Nina;
ENSO
ID ATMOSPHERIC TELECONNECTION PATTERNS; NORTHERN-HEMISPHERE WINTER;
EL-NINO; CIRCULATION PATTERNS; ARCTIC OSCILLATION; WATER TEMPERATURE;
FLUX MEASUREMENTS; ANNULAR MODE; OCEAN; VARIABILITY
AB A record-breaking low ice cover occurred in the North American Great Lakes during winter 2011/2012, in conjunction with a strong positive Arctic Oscillation/ North Atlantic Oscillation (+AO/NAO) and a La Nina event. Large-scale atmosphere circulation in the Pacific/ North America (PNA) region reflected a combined signal of La Nina and +NAO. Surface heat flux analysis shows that sensible heat flux contributed most to the net surface heat flux anomaly. Surface air temperature is the dominant factor governing the interannual variability of Great Lakes ice cover. Neither La Nina nor +NAO alone can be responsible for the extreme warmth; the typical mid-latitude response to La Nina events is a negative PNA pattern, which does not have a significant impact on Great Lakes winter climate; the positive phase of NAO is usually associated with moderate warming. When the two occurred simultaneously, the combined effects of La Nina and +NAO resulted in a negative East Pacific pattern with a negative center over Alaska/Western Canada, a positive center in the eastern North Pacific (north of Hawaii), and an enhanced positive center over the eastern and southern United States. The overall pattern prohibited the movement of the Arctic air mass into mid-latitudes and enhanced southerly flow and warm advection from the Gulf of Mexico over the eastern United States and Great Lakes region, leading to the record-breaking low ice cover. It is another climatic pattern that can induce extreme warming in the Great Lakes region in addition to strong El Nino events. A very similar event occurred in the winter of 1999/2000. This extreme warm winter and spring in 2012 had significant impacts on the physical environment, as well as counterintuitive effects on phytoplankton abundance.
C1 [Bai, Xuezhi; Assel, Raymond; Luo, Lin] Univ Michigan, Cooperat Inst Limnol & Ecosyst Res, Ann Arbor, MI 48108 USA.
[Wang, Jia; Schwab, David J.; Clites, Anne; Bratton, John F.; Colton, Marie; Lofgren, Brent; Vanderploeg, Henry; Leshkevich, George] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48108 USA.
[Austin, Jay] Univ Minnesota Duluth, Large Lakes Observ, Duluth, MN 55812 USA.
[Lenters, John] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68583 USA.
[Wohlleben, Trudy] Environm Canada, Canadian Ice Serv, Ottawa, ON K1A 0H3, Canada.
[Helfrich, Sean] NOAA, Natl Ice Ctr, Washington, DC USA.
RP Wang, J (reprint author), NOAA, Great Lakes Environm Res Lab, 4840 S State Rd, Ann Arbor, MI 48108 USA.
EM jia.wang@noaa.gov
OI Bratton, John/0000-0003-0376-4981; Vanderploeg,
Henry/0000-0003-1358-8475; Lofgren, Brent/0000-0003-2189-0914; Wang,
Jia/0000-0003-4154-9721
FU NOAA/GLERL; EPA/NOAA Great Lakes Restoration Initiative; National
Science Foundation Geosciences directorate [0825633]
FX NCEP/NCAR reanalysis data were provided by the NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA, at http://www.cdc.noaa.gov/. This study was
supported by NOAA/GLERL and the EPA/NOAA Great Lakes Restoration
Initiative. We thank Cathy Darnell for her editorial assistance. In situ
Lake Superior observations were supported by the National Science
Foundation Geosciences directorate Grant 0825633. We thank Cathy Darnell
for her editorial assistance. We sincerely thank the two anonymous
reviewers for their constructive comments of the first draft, which
helped significantly improve the quality of the paper. This is GLERL
Contribution No. 1717.
NR 60
TC 5
Z9 5
U1 2
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0930-7575
EI 1432-0894
J9 CLIM DYNAM
JI Clim. Dyn.
PD MAR
PY 2015
VL 44
IS 5-6
BP 1187
EP 1213
DI 10.1007/s00382-014-2225-2
PG 27
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC4ZC
UT WOS:000350364500002
ER
PT J
AU Liu, W
Liu, ZY
Cheng, J
Hu, HB
AF Liu, Wei
Liu, Zhengyu
Cheng, Jun
Hu, Haibo
TI On the stability of the Atlantic meridional overturning circulation
during the last deglaciation
SO CLIMATE DYNAMICS
LA English
DT Article
DE AMOC; Stability indicator; Freshwater transport; Feedback; The last
deglaciation
ID OCEAN-ATMOSPHERE MODEL; MULTIPLE EQUILIBRIA REGIME; AIR-SEA
INTERACTIONS; PAST 20,000 YEARS; THERMOHALINE CIRCULATION; GLACIAL
MAXIMUM; SOUTH-ATLANTIC; CENTRAL GREENLAND; CLIMATE CHANGES; BERING
STRAIT
AB Using a generalized stability indicator L, we explore the stability of the Atlantic meridional overturning circulation (AMOC) during the last deglaciation based on a paleoclimate simulation. From the last glacial maximum, as forced by various external climate forcings, notably the meltwater forcing, the AMOC experiences a collapse and a subsequent rapid recovery in the early stage of deglaciation. This change of the AMOC induces an anomalous freshwater divergence and later convergence across the Atlantic and therefore leads to a positive L, suggesting a negative basin-scale salinity advection feedback and, in turn, a mono-stable deglacial AMOC. Further analyses show that most anomalous freshwater is induced by the AMOC via the southern boundary of the Atlantic at 34 degrees S where the freshwater transport (M-ovS) is about equally controlled by the upper branch of the AMOC and the upper ocean salinity along 34 degrees S. From 19 to 17 ka, as a result of multiple climate feedbacks associated with the AMOC change, the upper ocean at 34 degrees S is largely salinified, which helps to induce a switch in M-ovS, from import to export. Our study has important implications to the deglacial simulations by climate models. A decomposition of L shows that the AMOC stability is mostly determined by two terms, the salinity stratification at 34 degrees S and the change of stratification with the AMOC. Both terms appear positive in model. However, the former is likely to be distorted towards positive, as associated with a common bias existing over the South Atlantic in climate models. Therefore, the AMOC is potentially biased towards mono-stability in most paleoclimate simulations.
C1 [Liu, Wei] N Carolina State Univ, Cooperat Inst Climate & Satellites, Raleigh, NC 27695 USA.
[Liu, Wei] NOAA, Natl Climat Data Ctr, Asheville, NC USA.
[Liu, Wei] Univ Calif San Diego, Scripps Inst Oceanog, CASPO, La Jolla, CA 92093 USA.
[Liu, Zhengyu] Peking Univ, Lab Climate Ocean & Atmosphere Studies, Beijing 100871, Peoples R China.
[Liu, Zhengyu] Univ Wisconsin, Ctr Climat Res, Madison, WI USA.
[Cheng, Jun] Nanjing Univ Informat Sci & Technol, Sch Marine Sci, Minist Educ, Key Lab Meteorol Disaster, Nanjing, Jiangsu, Peoples R China.
[Hu, Haibo] Nanjing Univ, Sch Atmospher Sci, Nanjing 210008, Jiangsu, Peoples R China.
RP Liu, W (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, CASPO, La Jolla, CA 92093 USA.
EM wliu5wisc@gmail.com
FU NSF; DOE; NSFC [41,130,105, 41206024]; National Key Program for
Developing Basic Science [2010CB428504, 2012CB956002]
FX Wei Liu and Zhengyu Liu are supported by NSF, DOE and NSFC 41,130,105.
Jun Cheng is supported by NSFC 41206024. Haibo Hu is supported by the
National Key Program for Developing Basic Science (Grant Nos.
2010CB428504, 2012CB956002).
NR 75
TC 3
Z9 3
U1 1
U2 26
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0930-7575
EI 1432-0894
J9 CLIM DYNAM
JI Clim. Dyn.
PD MAR
PY 2015
VL 44
IS 5-6
BP 1257
EP 1275
DI 10.1007/s00382-014-2153-1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC4ZC
UT WOS:000350364500006
ER
PT J
AU Mariotti, A
Pan, YT
Zeng, N
Alessandri, A
AF Mariotti, Annarita
Pan, Yutong
Zeng, Ning
Alessandri, Andrea
TI Long-term climate change in the Mediterranean region in the midst of
decadal variability
SO CLIMATE DYNAMICS
LA English
DT Article
DE Climate change; Decadal climate variability; Mediterranean region; CMIP5
models
ID SEA; 20TH-CENTURY; TEMPERATURE; SURFACE; MODEL; PRECIPITATION;
OSCILLATION; PROJECTIONS; AEROSOLS; CYCLE
AB Long-term climate change and decadal variability in the Mediterranean region during 1860-2100 are investigated based on observational data and the newly available Coupled Model Intercomparison Project-Phase 5 (CMIP5) experiments. Observational records show that decadal variability and a general tendency for annual-mean conditions to be warmer and drier have characterized the Mediterranean during 1860-2005. Consistency with CMIP5 model simulations including greenhouse gases (GHG), as well as anthropogenic aerosols and natural forcings, suggest that forced changes have characterized aspects of Mediterranean climate during this period. Future GHG-forced change will take place in the midst of decadal variability, both internal and forced, as it has occurred in the past. However, future rates of forced warming and drying over the Mediterranean are projected to be higher than in the past century. The degree to which forced change and internal variability will matter depends on the climatic quantity being considered. For surface air temperature and Mediterranean Sea annual-mean evaporation and surface freshwater fluxes, variability and forced change have become comparable and the forced signal has already emerged from internal variability. For quantities with large internal variability and relatively small forced signal such as precipitation, forced change will emerge later on in the twenty-first century over selected regions and seasons. Regardless, the probability distribution of future precipitation anomalies is progressively shifting towards drier conditions. Overall, results highlight that both mean projected forced change and the variability that will accompany forced mean change should be considered in the development of future climate outlooks.
C1 [Mariotti, Annarita] NOAA, OAR Climate Program Off, Silver Spring, MD 20910 USA.
[Pan, Yutong; Zeng, Ning] Univ Maryland, College Pk, MD 20742 USA.
[Alessandri, Andrea] ENEA, Rome, Italy.
RP Mariotti, A (reprint author), NOAA, OAR Climate Program Off, 1315 EastWest HWY, Silver Spring, MD 20910 USA.
EM annarita.mariotti@noaa.gov
RI Zeng, Ning/A-3130-2008; Alessandri, Andrea/I-9077-2014
OI Zeng, Ning/0000-0002-7489-7629; Alessandri, Andrea/0000-0002-2153-7961
FU NOAA [NA10OAR4310208]
FX This manuscript has been greatly improved thanks to the careful review
and insightful comments of the anonymous reviewers that the authors
gratefully acknowledge. Research was partly supported by NOAA grant
NA10OAR4310208. This work is a contribution to the HyMeX programme
(http://www.hymex.org/). The authors wish to thank the modeling centers
that provided data for CMIP5 and PCMDI for making the data available.
The authors wish to thank Herve Douville for providing the CNRM land
data. All other data providers are thankfully acknowledged.
NR 50
TC 15
Z9 15
U1 2
U2 21
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0930-7575
EI 1432-0894
J9 CLIM DYNAM
JI Clim. Dyn.
PD MAR
PY 2015
VL 44
IS 5-6
BP 1437
EP 1456
DI 10.1007/s00382-015-2487-3
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC4ZC
UT WOS:000350364500016
ER
PT J
AU Yang, L
Du, Y
Wang, DX
Wang, CZ
Wang, X
AF Yang, Lei
Du, Yan
Wang, Dongxiao
Wang, Chunzai
Wang, Xin
TI Impact of intraseasonal oscillation on the tropical cyclone track in the
South China Sea
SO CLIMATE DYNAMICS
LA English
DT Article
DE The South China Sea; Tropical cyclone; Track; Steering flow;
Intraseasonal oscillation; ENSO
ID WESTERN NORTH PACIFIC; MADDEN-JULIAN OSCILLATION; SURROUNDING FLOW
RELATIONSHIPS; OUTGOING LONGWAVE RADIATION; EL-NINO; PART I; INTERANNUAL
VARIABILITY; TYPHOON TRACKS; OCEAN; ENSO
AB This study investigates the impact of the intraseasonal oscillation (ISO) on tropical cyclone (TC) tracks in the South China Sea (SCS) during 1970-2010. About one third of TCs in the SCS move eastward, while the other two thirds move westward. In the TC genesis peak seasons of June-October (JJASO), the westward moving TCs are controlled by the background TC steering flow of easterly, and the eastward moving TCs by the TC steering flow induced by the ISO. The outgoing longwave radiation and wind fields show that the eastward moving TCs were mostly along the main axis of strong TC steering flow anomaly of westerly associated with the ISO, while the westward moving TCs were only weakly associated with the ISO. An experiment performed with a simple two-level model further confirmed the result. The interannual variation of TC tracks in the SCS is also discussed. It is found that the steering flow anomalies in the SCS mostly favor eastward moving TCs in central Pacific (CP) El Nino and eastern Pacific (EP) El Nino years. However, the eastward flow anomalies are too weak to have strong influence on the majority of the TCs. During La Nina years, TCs in the SCS tend to move westward, possibly related to the westward steering flow anomalies.
C1 [Yang, Lei; Du, Yan; Wang, Dongxiao; Wang, Xin] Chinese Acad Sci, State Key Lab Trop Oceanog LTO, South China Sea Inst Oceanol, Guangzhou 510301, Guangdong, Peoples R China.
[Wang, Chunzai] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
RP Du, Y (reprint author), Chinese Acad Sci, State Key Lab Trop Oceanog LTO, South China Sea Inst Oceanol, 164 West Xingang Rd, Guangzhou 510301, Guangdong, Peoples R China.
EM duyan@scsio.ac.cn
RI Wang, Xin/B-4624-2012; Wang, Chunzai /C-9712-2009; DU, Yan/C-4496-2013;
WANG, DongXiao/B-4445-2012; yang, Lei/C-9880-2012
OI Wang, Chunzai /0000-0002-7611-0308;
FU National Basic Research Program of China [2011CB403504, 2012CB955603,
2010CB950302, 2013CB430301]; National Natural Science Foundation of
China [41376025]
FX The authors thank Dr. Shang-ping Xie for valuable discussions.
Suggestions by two anonymous reviewers significantly improved this
paper. This work was supported by the National Basic Research Program of
China (2011CB403504, 2012CB955603, 2010CB950302, 2013CB430301) and
National Natural Science Foundation of China (41376025).
NR 85
TC 8
Z9 9
U1 3
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0930-7575
EI 1432-0894
J9 CLIM DYNAM
JI Clim. Dyn.
PD MAR
PY 2015
VL 44
IS 5-6
BP 1505
EP 1519
DI 10.1007/s00382-014-2180-y
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC4ZC
UT WOS:000350364500020
ER
PT J
AU Smith, LA
Link, JS
Cadrin, SX
Palka, DL
AF Smith, Laurel A.
Link, Jason S.
Cadrin, Steven X.
Palka, Debra L.
TI Consumption by marine mammals on the Northeast US continental shelf
SO ECOLOGICAL APPLICATIONS
LA English
DT Article
DE Atlantic Ocean; commercial fisheries; competition; conservation;
consumption estimates; ecosystem modeling; energetics; marine mammal
diets; Northeast U; S; shelf; uncertainty estimation
ID SEALS HALICHOERUS-GRYPUS; CAPE FUR-SEAL; ST-LAWRENCE;
BALAENOPTERA-ACUTOROSTRATA; PHOCOENA-PHOCOENA; ATLANTIC COD;
ARCTOCEPHALUS PUSILLUS; FUTURE CONSUMPTION; FOOD-CONSUMPTION; HARBOR
PORPOISES
AB The economic and ecological impacts of fish consumption by marine mammals, the associated interactions with commercial fish stocks, and the forage demands of these marine mammal populations are largely unknown. Consumption estimates are often either data deficient or not fully evaluated in a rigorous, quantitative manner. Although consumption estimates exist for the Northeast United States (NEUS) Large Marine Ecosystem, there is considerable uncertainty in those estimates. We examined consumption estimates for 12 marine mammal species inhabiting the regional ecosystem. We used sensitivity analyses to examine metabolically driven daily individual consumption rates, resulting in a suite of feasible parameter-pair ranges for each of three taxonomic groups: mysticetes, odontocetes, and pinnipeds. We expanded daily individual consumption to annual consumption based on abundance estimates of marine mammals found on the NEUS continental shelf coupled with estimates of annual residence time for each species. To examine consumptive removals for specific prey, diet compositions were summarized into major prey categories, and predatory removals by marine mammal species as well as for total marine mammal consumption were estimated for each prey taxa. Bounds on consumption estimates for each marine mammal species were determined using Monte Carlo resampling simulations. Our results suggest that consumption for these 12 marine mammal species combined may be similar in magnitude to commercial fishery landings for small pelagic and groundfish prey groups. Consumption by marine mammals warrants consideration both as a source of mortality in assessments of prey stocks, and to determine marine mammal forage demands in ecosystem assessment models. The approach that we present represents a rigorous, quantitative method to scope the bounds of the biomass that marine mammals are expected to consume, and is appropriate for use in other ecosystems where the interaction between marine mammals and commercial fisheries is thought to be prominent.
C1 [Smith, Laurel A.; Link, Jason S.; Palka, Debra L.] NOAA, Northeast Fisheries Sci Ctr, Woods Hole, MA 02540 USA.
[Cadrin, Steven X.] Sch Marine Sci & Technol, Fairhaven, MA 02719 USA.
RP Smith, LA (reprint author), NOAA, Northeast Fisheries Sci Ctr, 166 Water St, Woods Hole, MA 02540 USA.
EM laurel.smith@noaa.gov
FU Marine Mammal Commission
FX We are grateful to Chris Legault, Bill Overholtz, Gordon Waring, Brian
Smith, Kevin Stokesbury, and Richard Connor for their input, expertise,
and methodological guidance. We would also like to thank Stephanie Wood
and Kristen Ampela for sharing their research findings on pinnipeds.
Funding for this study was provided by a grant from the Marine Mammal
Commission.
NR 83
TC 6
Z9 6
U1 3
U2 24
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1051-0761
EI 1939-5582
J9 ECOL APPL
JI Ecol. Appl.
PD MAR
PY 2015
VL 25
IS 2
BP 373
EP 389
DI 10.1890/13-1656.1
PG 17
WC Ecology; Environmental Sciences
SC Environmental Sciences & Ecology
GA CC7OA
UT WOS:000350556400006
PM 26263661
ER
PT J
AU Martin, SL
Stohs, SM
Moore, JE
AF Martin, Summer L.
Stohs, Stephen M.
Moore, Jeffrey E.
TI Bayesian inference and assessment for rare-event bycatch in marine
fisheries: a drift gillnet fishery case study
SO ECOLOGICAL APPLICATIONS
LA English
DT Article
DE Bayesian prediction; California drift gillnet fishery; endangered
species; fisheries bycatch; humpback whale; leatherback sea turtle;
marine megafauna; Markov chain Monte Carlo; model; protected species;
rare events
ID BINOMIAL REGRESSION-MODEL; INFLATED COUNT MODELS; STOCK ASSESSMENT;
SEA-TURTLE; LONGLINE FISHERY; SEABIRD BYCATCH; PHOCOENA-SINUS;
MANAGEMENT; CONSERVATION; MORTALITY
AB Fisheries bycatch is a global threat to marine megafauna. Environmental laws require bycatch assessment for protected species, but this is difficult when bycatch is rare. Low bycatch rates, combined with low observer coverage, may lead to biased, imprecise estimates when using standard ratio estimators. Bayesian model-based approaches incorporate uncertainty, produce less volatile estimates, and enable probabilistic evaluation of estimates relative to management thresholds. Here, we demonstrate a pragmatic decision-making process that uses Bayesian model-based inferences to estimate the probability of exceeding management thresholds for bycatch in fisheries with <100% observer coverage. Using the California drift gillnet fishery as a case study, we (1) model rates of rare-event bycatch and mortality using Bayesian Markov chain Monte Carlo estimation methods and 20 years of observer data; (2) predict unobserved counts of bycatch and mortality; (3) infer expected annual mortality; (4) determine probabilities of mortality exceeding regulatory thresholds; and (5) classify the fishery as having low, medium, or high bycatch impact using those probabilities. We focused on leatherback sea turtles (Dermochelys coriacea) and humpback whales (Megaptera novaeangliae). Candidate models included Poisson or zero-inflated Poisson likelihood, fishing effort, and a bycatch rate that varied with area, time, or regulatory regime. Regulatory regime had the strongest effect on leatherback bycatch, with the highest levels occurring prior to a regulatory change. Area had the strongest effect on humpback bycatch. Cumulative bycatch estimates for the 20-year period were 104-242 leatherbacks (52-153 deaths) and 6-50 humpbacks (0-21 deaths). The probability of exceeding a regulatory threshold under the U.S. Marine Mammal Protection Act (Potential Biological Removal, PBR) of 0.113 humpback deaths was 0.58, warranting a medium bycatch impact classification of the fishery. No PBR thresholds exist for leatherbacks, but the probability of exceeding an anticipated level of two deaths per year, stated as part of a U.S. Endangered Species Act assessment process, was 0.0007. The approach demonstrated here would allow managers to objectively and probabilistically classify fisheries with respect to bycatch impacts on species that have population-relevant mortality reference points, and declare with a stipulated level of certainty that bycatch did or did not exceed estimated upper bounds.
C1 [Martin, Summer L.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Martin, Summer L.; Stohs, Stephen M.; Moore, Jeffrey E.] NOAA, Southwest Fisheries Sci Ctr, NMFS, La Jolla, CA 92037 USA.
RP Martin, SL (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr Dept 0208, La Jolla, CA 92093 USA.
EM s2martin@ucsd.edu
FU Lenfest Ocean Program
FX We thank Lisa T. Ballance, Paul K. Dayton, Stuart A. Sandin, Theodore
Groves, and Jordan Schafer for constructive reviews and comments on
earlier versions of this manuscript. We thank the NMFS West Coast
Regional Office Observer Program and the California Department of Fish
and Wildlife for their efforts in collecting these data and making them
available for use. This work has been supported in part by the Lenfest
Ocean Program.
NR 57
TC 3
Z9 3
U1 0
U2 26
PU ECOLOGICAL SOC AMER
PI WASHINGTON
PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA
SN 1051-0761
EI 1939-5582
J9 ECOL APPL
JI Ecol. Appl.
PD MAR
PY 2015
VL 25
IS 2
BP 416
EP 429
DI 10.1890/14-0059.1
PG 14
WC Ecology; Environmental Sciences
SC Environmental Sciences & Ecology
GA CC7OA
UT WOS:000350556400009
PM 26263664
ER
PT J
AU Anderson, SC
Moore, JW
McClure, MM
Dulvy, NK
Cooper, AB
AF Anderson, Sean C.
Moore, Jonathan W.
McClure, Michelle M.
Dulvy, Nicholas K.
Cooper, Andrew B.
TI Portfolio conservation of metapopulations under climate change
SO ECOLOGICAL APPLICATIONS
LA English
DT Article
DE biocomplexity; diversity-stability ecosystem-based management;
Oncorhynchus spp; Pacific salmon; portfolio effect; prioritization;
range contraction; response diversity; risk assessment; stochastic
simulation
ID PACIFIC SALMON; SOCKEYE-SALMON; ANADROMOUS SALMONIDS; RESPONSE
DIVERSITY; BIODIVERSITY; POPULATION; MANAGEMENT; RESILIENCE; STABILITY;
FISHES
AB Climate change is likely to lead to increasing population variability and extinction risk. Theoretically, greater population diversity should buffer against rising climate variability, and this theory is often invoked as a reason for greater conservation. However, this has rarely been quantified. Here we show how a portfolio approach to managing population diversity can inform metapopulation conservation priorities in a changing world. We develop a salmon metapopulation model in which productivity is driven by spatially distributed thermal tolerance and patterns of short- and long-term climate change. We then implement spatial conservation scenarios that control population carrying capacities and evaluate the metapopulation portfolios as a financial manager might: along axes of conservation risk and return. We show that preserving a diversity of thermal tolerances minimizes risk, given environmental stochasticity, and ensures persistence, given long-term environmental change. When the thermal tolerances of populations are unknown, doubling the number of populations conserved may nearly halve expected metapopulation variability. However, this reduction in variability can come at the expense of long-term persistence if climate change increasingly restricts available habitat, forcing ecological managers to balance society's desire for short-term stability and long-term viability. Our findings suggest the importance of conserving the processes that promote thermal-tolerance diversity, such as genetic diversity, habitat heterogeneity, and natural disturbance regimes, and demonstrate that diverse natural portfolios may be critical for metapopulation conservation in the face of increasing climate variability and change.
C1 [Anderson, Sean C.; Moore, Jonathan W.; Dulvy, Nicholas K.] Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada.
[Moore, Jonathan W.; Cooper, Andrew B.] Simon Fraser Univ, Sch Resource & Environm Management, Burnaby, BC V5A 1S6, Canada.
[McClure, Michelle M.] NOAA, Fishery Resource Anal & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA.
RP Anderson, SC (reprint author), Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada.
EM sean_anderson@sfu.ca
RI McClure, Michelle/O-7853-2015
OI McClure, Michelle/0000-0003-4791-8719
FU Simon Fraser University; NSERC; Canada Research Chairs Program; Liber
Ero Chair of Coastal Science and Management; Fulbright Canada; Garfield
Weston Foundation/B.C. Packers Ltd. Graduate Fellowship in Marine
Sciences
FX We thank T. A. Branch, J. D. Yeakel, S. M. O'Regan, S. A. Pardo, L. N.
K. Davidson, and C. C. Phillis for helpful discussions and comments on
earlier drafts. We thank D. J. Isaak, and an anonymous reviewer for
suggestions that greatly improved the manuscript. We are particularly
grateful to D. J. Isaak for suggesting and carefully outlining the
declining stream flow scenario. Funding was provided by Simon Fraser
University, NSERC (ABC, NKD, SCA), the Canada Research Chairs Program
(NKD), the Liber Ero Chair of Coastal Science and Management (JWM),
Fulbright Canada (SCA), and a Garfield Weston Foundation/B.C. Packers
Ltd. Graduate Fellowship in Marine Sciences (SCA).
NR 64
TC 10
Z9 10
U1 9
U2 60
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1051-0761
EI 1939-5582
J9 ECOL APPL
JI Ecol. Appl.
PD MAR
PY 2015
VL 25
IS 2
BP 559
EP 572
DI 10.1890/14-0266.1
PG 14
WC Ecology; Environmental Sciences
SC Environmental Sciences & Ecology
GA CC7OA
UT WOS:000350556400020
PM 26263675
ER
PT J
AU Hill, SA
Ming, Y
Held, IM
AF Hill, Spencer A.
Ming, Yi
Held, Isaac M.
TI Mechanisms of Forced Tropical Meridional Energy Flux Change
SO JOURNAL OF CLIMATE
LA English
DT Article
ID GENERAL-CIRCULATION MODEL; CLIMATE-CHANGE; PART I; IDEALIZED GCM; MEAN
RESPONSE; PRECIPITATION; ATMOSPHERE; OCEAN; TRANSPORT; TEMPERATURE
AB Anthropogenically forced changes to the mean and spatial pattern of sea surface temperatures (SSTs) alter tropical atmospheric meridional energy transport throughout the seasonal cycle in total, its partitioning between the Hadley cells and eddies and, for the Hadley cells, the relative roles of the mass flux and the gross moist stability (GMS). The authors investigate this behavior using an atmospheric general circulation model forced with SST anomalies caused by either historical greenhouse gas or aerosol forcing, dividing the SST anomalies into two components: the tropical mean SST anomaly applied uniformly and the full SST anomalies minus the tropical mean.
For greenhouse gases, the polar-amplified SST spatial pattern partially negates enhanced eddy pole-ward energy transport driven by mean warming. Both SST components weaken winter Hadley cell circulation and alter GMS. The Northern Hemisphere focused aerosol cooling induces northward energy flux anomalies in the deep tropics, which manifest partially via strengthened northern and weakened southern Hadley cell overturning. Aerosol-induced GMS changes also contribute to the northward energy fluxes. A simple thermodynamic scaling qualitatively captures these changes, although it performs less well for the greenhouse gas simulations. The scaling provides an explanation for the tight correlation demonstrated in previous studies between shifts in the intertropical convergence zone and cross-equatorial energy fluxes.
C1 [Hill, Spencer A.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA.
[Ming, Yi; Held, Isaac M.] NOAA Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
RP Hill, SA (reprint author), NOAA Geophys Fluid Dynam Lab, 201 Forrestal Rd, Princeton, NJ 08540 USA.
EM spencerh@princeton.edu
RI Ming, Yi/F-3023-2012;
OI Hill, Spencer/0000-0001-8672-0671
FU Department of Defense National Defense Science and Engineering Graduate
Fellowship; NOAA/Princeton University Cooperative Institute for Climate
Science
FX We thank Leo Donner, Gabriel Lau, Tim Merlis, Dargan Frierson, Aaron
Donohoe, Gabe Vecchi, Jonathan Mitchell, and J. David Neelin for
insightful comments. Steve Garner and Mike Winton provided thoughtful
reviews of an earlier draft, and comments from three anonymous reviewers
greatly improved the paper. S.A.H. was funded first by the
NOAA/Princeton University Cooperative Institute for Climate Science and
later by the Department of Defense National Defense Science and
Engineering Graduate Fellowship.
NR 48
TC 15
Z9 15
U1 1
U2 12
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD MAR 1
PY 2015
VL 28
IS 5
BP 1725
EP 1742
DI 10.1175/JCLI-D-14-00165.1
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CD1MP
UT WOS:000350839300001
ER
PT J
AU Jia, LW
Yang, XS
Vecchi, GA
Gudgel, RG
Delworth, TL
Rosati, A
Stern, WF
Wittenberg, AT
Krishnamurthy, L
Zhang, SQ
Msadek, R
Kapnick, S
Underwood, S
Zeng, FR
Anderson, WG
Balaji, V
Dixon, K
AF Jia, Liwei
Yang, Xiaosong
Vecchi, Gabriel A.
Gudgel, Richard G.
Delworth, Thomas L.
Rosati, Anthony
Stern, William F.
Wittenberg, Andrew T.
Krishnamurthy, Lakshmi
Zhang, Shaoqing
Msadek, Rym
Kapnick, Sarah
Underwood, Seth
Zeng, Fanrong
Anderson, Whit G.
Balaji, Venkatramani
Dixon, Keith
TI Improved Seasonal Prediction of Temperature and Precipitation over Land
in a High-Resolution GFDL Climate Model
SO JOURNAL OF CLIMATE
LA English
DT Article
ID SURFACE-TEMPERATURE; DATA ASSIMILATION; FORECAST SKILL; PROJECT ATHENA;
SEA-ICE; PART I; PREDICTABILITY; INITIALIZATION; SIMULATIONS; ATLANTIC
AB This study demonstrates skillful seasonal prediction of 2-m air temperature and precipitation over land in a new high-resolution climate model developed by the Geophysical Fluid Dynamics Laboratory and explores the possible sources of the skill. The authors employ a statistical optimization approach to identify the most predictable components of seasonal mean temperature and precipitation over land and demonstrate the predictive skill of these components. First, the improved skill of the high-resolution model over the previous lower-resolution model in seasonal prediction of the Nino-3.4 index and other aspects of interest is shown. Then, the skill of temperature and precipitation in the high-resolution model for boreal winter and summer is measured, and the sources of the skill are diagnosed. Last, predictions are reconstructed using a few of the most predictable components to yield more skillful predictions than the raw model predictions. Over three decades of hindcasts, the two most predictable components of temperature are characterized by a component that is likely due to changes in external radiative forcing in boreal winter and summer and an ENSO-related pattern in boreal winter. The most predictable components of precipitation in both seasons are very likely ENSO-related. These components of temperature and precipitation can be predicted with significant correlation skill at least 9 months in advance. The reconstructed predictions using only the first few predictable components from the model show considerably better skill relative to observations than raw model predictions. This study shows that the use of refined statistical analysis and a high-resolution dynamical model leads to significant skill in seasonal predictions of 2-m air temperature and precipitation over land.
C1 [Jia, Liwei; Yang, Xiaosong; Rosati, Anthony; Krishnamurthy, Lakshmi; Msadek, Rym] Univ Corp Atmospher Res, Boulder, CO USA.
[Jia, Liwei; Yang, Xiaosong; Vecchi, Gabriel A.; Gudgel, Richard G.; Delworth, Thomas L.; Stern, William F.; Wittenberg, Andrew T.; Krishnamurthy, Lakshmi; Zhang, Shaoqing; Msadek, Rym; Kapnick, Sarah; Underwood, Seth; Zeng, Fanrong; Anderson, Whit G.; Balaji, Venkatramani; Dixon, Keith] NOAA Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
[Kapnick, Sarah; Balaji, Venkatramani] Princeton Univ, Princeton, NJ 08544 USA.
[Underwood, Seth] Dynam Res Corp, Andover, MA USA.
RP Jia, LW (reprint author), NOAA Geophys Fluid Dynam Lab, 201 Forrestal Rd, Princeton, NJ 08540 USA.
EM liwei.jia@noaa.gov
RI Vecchi, Gabriel/A-2413-2008; Yang, Xiaosong/C-7260-2009; Wittenberg,
Andrew/G-9619-2013; Kapnick, Sarah/C-5209-2014; Dixon,
Keith/L-7120-2015; Krishnamurthy, Lakshmi/L-7440-2015; Jia,
Liwei/O-3938-2014; Delworth, Thomas/C-5191-2014
OI Vecchi, Gabriel/0000-0002-5085-224X; Yang, Xiaosong/0000-0003-3154-605X;
Wittenberg, Andrew/0000-0003-1680-8963; Kapnick,
Sarah/0000-0003-0979-3070; Dixon, Keith/0000-0003-3044-326X; Jia,
Liwei/0000-0003-0869-1531;
FU Visiting Scientist Program at the National Oceanic and Atmospheric
Administration's Geophysical Fluid Dynamics Laboratory; National Oceanic
and Atmospheric Administration's Climate Program Office
FX We thank Thomas Knutson and Charles Stock for helpful reviews of an
earlier draft. We also thank Timothy DelSole and three anonymous
reviewers for insightful comments that helped to improve this
manuscript. This research was supported by the Visiting Scientist
Program at the National Oceanic and Atmospheric Administration's
Geophysical Fluid Dynamics Laboratory administered by the University
Corporation for Atmospheric Research and the National Oceanic and
Atmospheric Administration's Climate Program Office.
NR 39
TC 41
Z9 41
U1 1
U2 19
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD MAR 1
PY 2015
VL 28
IS 5
BP 2044
EP 2062
DI 10.1175/JCLI-D-14-00112.1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CD1MP
UT WOS:000350839300017
ER
PT J
AU Perlwitz, J
Hoerling, M
Dole, R
AF Perlwitz, Judith
Hoerling, Martin
Dole, Randall
TI Arctic Tropospheric Warming: Causes and Linkages to Lower Latitudes
SO JOURNAL OF CLIMATE
LA English
DT Article
ID SEA-ICE; REANALYSIS PROJECT; VERTICAL STRUCTURE; AMPLIFICATION;
TEMPERATURE
AB Arctic temperatures have risen dramatically relative to those of lower latitudes in recent decades, with a common supposition being that sea ice declines are primarily responsible for amplified Arctic tropospheric warming. This conjecture is central to a hypothesis in which Arctic sea ice loss forms the beginning link of a causal chain that includes weaker westerlies in midlatitudes, more persistent and amplified midlatitude waves, and more extreme weather. Through model experimentation, the first step in this chain is examined by quantifying contributions of various physical factors to October-December (OND) mean Arctic tropospheric warming since 1979. The results indicate that the main factors responsible for Arctic tropospheric warming are recent decadal fluctuations and long-term changes in sea surface temperatures (SSTs), both located outside the Arctic. Arctic sea ice decline is the largest contributor to near-surface Arctic temperature increases, but it accounts for only about 20% of the magnitude of 1000-500-hPa warming. These findings thus disconfirm the hypothesis that deep tropospheric warming in the Arctic during OND has resulted substantially from sea ice loss. Contributions of the same factors to recent midlatitude climate trends are then examined. It is found that pronounced circulation changes over the North Atlantic and North Pacific result mainly from recent decadal ocean fluctuations and internal atmospheric variability, while the effects of sea ice declines are very small. Therefore, a hypothesized causal chain of hemisphere-wide connections originating from Arctic sea ice loss is not supported.
C1 [Perlwitz, Judith] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Perlwitz, Judith; Hoerling, Martin; Dole, Randall] NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO USA.
RP Perlwitz, J (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, 216 UCB, Boulder, CO 80309 USA.
EM judith.perlwitz@noaa.gov
RI Perlwitz, Judith/B-7201-2008
OI Perlwitz, Judith/0000-0003-4061-2442
FU NOAA Climate Program Office
FX The NOAA Climate Program Office supported this research. The authors
thank their colleagues Xiaowei Quan, Philip Pegion, Taiyi Xu, and David
Allured for carrying out the model experiments, Don Murray for putting
the data into the NOAA FACTs data repository for public availability,
and Jon Eischeid for his overall assistance on the observational data.
We thank Dr. James Screen and two anonymous reviewers for their
thoughtful input, which considerably improved the paper.
NR 38
TC 25
Z9 26
U1 6
U2 19
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD MAR
PY 2015
VL 28
IS 6
BP 2154
EP 2167
DI 10.1175/JCLI-D-14-00095.1
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CD3MV
UT WOS:000350983700004
ER
PT J
AU Melet, A
Hallberg, R
Adcroft, A
Nikurashin, M
Legg, S
AF Melet, Angelique
Hallberg, Robert
Adcroft, Alistair
Nikurashin, Maxim
Legg, Sonya
TI Energy Flux into Internal Lee Waves: Sensitivity to Future Climate
Changes Using Linear Theory and a Climate Model
SO JOURNAL OF CLIMATE
LA English
DT Article
ID SOUTHERN-OCEAN; DEEP-OCEAN; OVERTURNING CIRCULATION; POTENTIAL
VORTICITY; GENERAL-CIRCULATION; PART I; DRIVEN; TOPOGRAPHY; EDDIES;
PARAMETERIZATION
AB Internal lee waves generated by geostrophic flows over rough topography are thought to be a significant energy sink for eddies and energy source for deep ocean mixing. The sensitivity of the energy flux into lee waves from preindustrial, present, and possible future climate conditions is explored in this study using linear theory. The bottom stratification and geostrophic velocity fields needed for the calculation of the energy flux into lee waves are provided by Geophysical Fluid Dynamics Laboratory's global coupled ocean-ice-atmosphere model, CM2G. The unresolved mesoscale eddy energy is parameterized as a function of the large-scale available potential energy. Simulations using historical and representative concentration pathway ( RCP) scenarios were performed over the 1861-2200 period. The diagnostics herein suggest a decrease of the global energy flux into lee waves on the order of 20% from preindustrial to future climate conditions under the RCP8.5 scenario. In the Southern Ocean, the energy flux into lee waves exhibits a clear annual cycle with maximum values in austral winter. The long-term decrease of the global energy flux into lee waves and the annual cycle of the energy flux in the Southern Ocean are mostly due to changes in bottom velocity.
C1 [Melet, Angelique] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA.
[Melet, Angelique] Univ Toulouse 3, CNRS, IRD, CNES,LEGOS,UMR5566, F-31062 Toulouse, France.
[Hallberg, Robert] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Adcroft, Alistair; Legg, Sonya] Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08544 USA.
[Nikurashin, Maxim] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia.
[Nikurashin, Maxim] ARC Ctr Excellence Climate Syst Sci, Hobart, Tas, Australia.
RP Melet, A (reprint author), Geophys Fluid Dynam Lab, 201 Forrestal Rd, Princeton, NJ 08540 USA.
EM angelique.melet@noaa.gov
RI Adcroft, Alistair/E-5949-2010; Legg, Sonya/E-5995-2010
OI Adcroft, Alistair/0000-0001-9413-1017;
FU National Science Foundation [OCE-0968721]; National Oceanic and
Atmospheric Administration, U.S. Department of Commerce [NA08OAR4320752]
FX The authors thank Malte Jansen and John Dunne for helpful discussions
and John Krasting for his help in setting up the simulations. We also
thank three anonymous reviewers for thoughtful comments on this
manuscript. This work is a component of the internal wave driven mixing
Climate Process Team funded by the National Science Foundation Grant
OCE-0968721 and the National Oceanic and Atmospheric Administration,
U.S. Department of Commerce, Award NA08OAR4320752. The statements,
findings, conclusions, and recommendations are those of the authors and
do not necessarily reflect the views of the National Oceanic and
Atmospheric Administration, or the U.S. Department of Commerce.
NR 68
TC 4
Z9 4
U1 0
U2 11
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD MAR
PY 2015
VL 28
IS 6
BP 2365
EP 2384
DI 10.1175/JCLI-D-14-00432.1
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CD3MV
UT WOS:000350983700016
ER
PT J
AU Zhang, Y
Seo, DJ
Habib, E
McCollum, J
AF Zhang, Yu
Seo, Dong-Jun
Habib, Emad
McCollum, Jeffrey
TI Differences in scale-dependent, climatological variation of mean areal
precipitation based on satellite and radar-gauge observations
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Satellite; Precipitation; Variability; Error
ID REAL-TIME ESTIMATION; RAIN-GAUGE; FRACTIONAL COVERAGE; UNITED-STATES;
ANALYSIS TMPA; RESOLUTION; PRODUCTS; MODEL; VARIABILITY; ALGORITHMS
AB This study compares the scale-dependent variation in hourly Mean Areal Precipitation (MAP) derived from a satellite (S) and a radar-gauge (R) Quantitative Precipitation Estimate (QPE), and seeks to explain the S-R differences on the basis of errors in the satellite QPE. This study employs an analytical framework to estimate the coefficient of variation (CV) of MAP for window sizes ranging from 4 km to 512 km, using the rainfall fields of the CPC MORPHing (CMORPH) satellite QPE and a radar-gauge Multisensor QPE (MQPE) over five domains centered in Texas, Oklahoma and New Mexico. CV values based on the analytical framework are first corroborated using empirical estimates. Then, S-R differences in CV are analyzed to determine the contributions of the S-R differences from empirical fractional coverage (FC) and spatial correlograms. Subsequently, sensitivity analyses are performed to isolate the impacts of false detections and long-term, magnitude-dependent bias in CMORPH on the inaccuracies in FC and correlograms. The results are stratified by domain and season (winter and summer) to highlight the impacts of differential accuracy of CMORPH under diverse rainfall regimes. Our analyses reveal that CMORPH-based CV tends to plateau at larger window sizes (referred to as critical window size, or CWS), and is broadly higher in magnitude. The mechanisms underlying the CV differences, however, differ between winter and summer. Over the winter, CMORPH suffers from severe underdetection, which yields suppressed FC across window sizes. This underestimation of FC, together with the lack of resolution of internal rainfall structure by CMORPH, leads to an magnification of both CWS and the magnitude of CV. By contrast, over the summer, widespread false detections in CMORPH lead to inflated FC, which tends to suppress CWS but this effect is outweighed by the opposing impacts of inflated outer and inner scales (i.e., distance parameters of indicator and conditional correlograms). Moreover, it is found that introducing false detection to MQPE via a simple expansion scheme is effective in increasing the FC and inner scale in tandem, and that histogram differences are a rather minor contributor to the S-R difference in inner scale. The implications of the findings for disaggregating climate model projection and data fusion are discussed. Published by Elsevier B.V.
C1 [Zhang, Yu] NOAA Natl Weather Serv, Off Hydrol Dev, Silver Spring, MD 20910 USA.
[Seo, Dong-Jun] Univ Texas Arlington, Arlington, TX 76019 USA.
[Habib, Emad] Univ Louisiana, Lafayette, IA USA.
[McCollum, Jeffrey] Ctr Property Risk Solut, Div Res, FM Global, Norwood, MA USA.
RP Zhang, Y (reprint author), NOAA Natl Weather Serv, Off Hydrol Dev, Silver Spring, MD 20910 USA.
EM yu.zhang@noaa.gov
FU NOAA US Weather Research Program through the Global Precipitation
Measurement (GPM)
FX This work was in part supported by the NOAA US Weather Research Program
through the Global Precipitation Measurement (GPM) effort. The work has
benefited from discussions with Andy Wood at NCAR, Rob Cifelli at NOAA
ESRL, and David Kitzmiller at OHD. We would also like to thank Pingping
Xie and Shaorong Wu at NCEP for providing the CMORPH data and related
documentations, and Ms. Alexis Cooley for proofreading the manuscript.
NR 42
TC 0
Z9 0
U1 2
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD MAR
PY 2015
VL 522
BP 35
EP 48
DI 10.1016/j.jhydrol.2014.11.077
PG 14
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA CD2OZ
UT WOS:000350920200003
ER
PT J
AU Lima, CHR
Lail, U
Troy, TJ
Devineni, N
AF Lima, Carlos H. R.
Lail, Upmanu
Troy, Tara J.
Devineni, Naresh
TI A climate informed model for nonstationary flood risk prediction:
Application to Negro River at Manaus, Amazonia
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Floods; ENSO; Nonstationarity; Risk; Statistical model
ID FREQUENCY-ANALYSIS; CHANGING CLIMATE; EXTREME EVENTS; SUMMER MONSOON;
TIME-SERIES; DISCHARGE; DESIGN; BRAZIL; SCALE; COAST
AB Historically, flood risk management and flood frequency modeling have been based on assumption of stationarity, i.e., flood probabilities are invariant across years. However, it is now recognized that in many places, extreme floods are associated with specific climate states which may recur with non-uniform probability across years. Conditional on knowledge of the operating climate regime, the probability of a flood of a certain magnitude can be higher or lower in a given year. Here we explore nonstationary flood risk for the streamflow series of the Negro River at the city of Manaus in Brazil by investigating climate teleconnections associated with the interannual variability of the peak flows. We evaluate attributes and the fit of a generalized extreme value (GEV) distribution with nonstationary parameters to the annual peak series of the Negro River stages. The annual peak flood occurs between May and July and its magnitude depends on the Negro River stage at the beginning of the year and on the previous December sea surface temperature (SST) of a region in the tropical Pacific Ocean. A statistically significant monotonic trend is also observed in the peak level series. The indexing of the parameters of a GEV distribution to the NINO3 index and to the observed river stage at the beginning of the year reveals a changing flood hazard for the city, with the joint occurrence of high values associated with La Nina conditions in the previous December and-high river stages in January preceding the flood season. The proposed model is shown to be useful for quantifying the changing flood hazard several months in advance for Manaus, thus providing an early flood alert system for the city and may be an important tool for the dynamic flood risk management for the region. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Lima, Carlos H. R.] Univ Brasilia, Civil & Environm Engn, Brasilia, DF, Brazil.
[Lail, Upmanu] Columbia Univ, Columbia Water Ctr, Earth & Environm Engn, New York, NY USA.
[Troy, Tara J.] Lehigh Univ, Civil & Environm Engn, Bethlehem, PA 18015 USA.
[Devineni, Naresh] CUNY, NOAA, Cooperat Remote Sensing Sci & Technol Ctr, Dept Civil Engn, New York, NY 10021 USA.
RP Lima, CHR (reprint author), Univ Brasilia, Civil & Environm Engn, Brasilia, DF, Brazil.
EM chrlima@unb.br; ula2@columbia.edu; tara.troy@lehigh.edu;
ndevineni@ccny.cuny.edu
RI Lall, Upmanu/B-7992-2009;
OI Lall, Upmanu/0000-0003-0529-8128; Troy, Tara/0000-0001-5366-0633
FU AIG Insurance; IPA from the US Army Corps of Engineers
FX We thank ANA and IRI for providing the hydroclimate datasets. This work
was partially funding by AIG Insurance. Upmanu Lall's contribution was
also supported by an IPA from the US Army Corps of Engineers.
NR 61
TC 8
Z9 10
U1 3
U2 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD MAR
PY 2015
VL 522
BP 594
EP 602
DI 10.1016/j.jhydrol.2015.01.009
PG 9
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA CD2OZ
UT WOS:000350920200049
ER
PT J
AU Burks, B
Hamstad, MA
AF Burks, Brian
Hamstad, M. A.
TI An Experimental-numerical Investigation of the Face-to-face Sensor
Characterization Technique
SO MATERIALS EVALUATION
LA English
DT Article
DE ASTM E 976; acoustic emission; sensor calibration; multi-physics
simulation; stress wave propagation
ID TRANSDUCER
AB The face-to-face acoustic emission sensor response characterization technique has been widely used as an alternative to other calibration procedures (for example, absolute calibration, secondary calibration, reciprocity, and so on) because of its simplistic procedure. The results of the acoustic emission sensor response characterization are reported on a dB scale (referenced to 1 V/mu bar) as a function of frequency. This type of result has migrated to several ASTM International documents; for example, the requirement for the acoustic emission sensor sensitivity in ASTM E 1419 states, "Sensitivity shall be greater than -77 dBV (referred to 1 V/mu bar, determined by face-to-face ultrasonic examination) within the frequency range of intended use." This work investigates the output of the driving transducer used in the face-to-face characterization procedure via the means of a transfer block experiment. Experimental measurements were made of the absolute surface displacement of a transfer block caused by a driving transducer as a function of frequency. The experimental results, coupled with validated multi-physics transient dynamic finite element simulations of the propagating stress waves, show that the driving transducer's output (pressure) has a strong dependence on frequency. Furthermore, it is shown that the frequency dependence changes when a driving transducer with an altered center frequency is used. Thus, providing a sensor characterization result versus frequency on a dB scale referenced to 1 V/mu bar is shown to be arbitrary. If the true transient pressure output (as a function of frequency) from the driving transducer when coupled to a solid material could be measured, then a more relevant characterization might be obtained. To overcome this inconsistency, and provide a means of producing equivalent characterization curves among all acoustic emission sensors, a possible normalization approach is considered.
C1 [Burks, Brian; Hamstad, M. A.] NIST, Mat Measurement Lab, Boulder, CO 80305 USA.
[Hamstad, M. A.] Univ Denver, Dept Mech & Mat Engn, Denver, CO 80208 USA.
RP Burks, B (reprint author), NIST, Mat Measurement Lab, 325 Broadway,Mailstop 647, Boulder, CO 80305 USA.
FU National Science Foundation [OCI-1053575]
FX This work used the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation grant number
OCI-1053575. Also, Brian Burks acknowledges the National Research
Council Research Associateship Awarded to him for his time at the
National Institute of Standards and Technology (NIST) in Boulder,
Colorado.
NR 20
TC 1
Z9 1
U1 0
U2 28
PU AMER SOC NONDESTRUCTIVE TEST
PI COLUMBUS
PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA
SN 0025-5327
J9 MATER EVAL
JI Mater. Eval.
PD MAR
PY 2015
VL 73
IS 3
BP 414
EP 423
PG 10
WC Materials Science, Characterization & Testing
SC Materials Science
GA CD1NU
UT WOS:000350842400005
ER
PT J
AU Ekstrom, JA
Suatoni, L
Cooley, SR
Pendleton, LH
Waldbusser, GG
Cinner, JE
Ritter, J
Langdon, C
van Hooidonk, R
Gledhill, D
Wellman, K
Beck, MW
Brander, LM
Rittschof, D
Doherty, C
Edwards, PET
Portela, R
AF Ekstrom, Julia A.
Suatoni, Lisa
Cooley, Sarah R.
Pendleton, Linwood H.
Waldbusser, George G.
Cinner, Josh E.
Ritter, Jessica
Langdon, Chris
van Hooidonk, Ruben
Gledhill, Dwight
Wellman, Katharine
Beck, Michael W.
Brander, Luke M.
Rittschof, Dan
Doherty, Carolyn
Edwards, Peter E. T.
Portela, Rosimeiry
TI Vulnerability and adaptation of US shellfisheries to ocean acidification
SO NATURE CLIMATE CHANGE
LA English
DT Article
ID CALIFORNIA CURRENT SYSTEM; CLIMATE-CHANGE; IMPACTS; COASTAL;
INFORMATION; KNOWLEDGE; FRAMEWORK; SCIENCE; OYSTER; PH
AB Ocean acidification is a global, long-term problem whose ultimate solution requires carbon dioxide reduction at a scope and scale that will take decades to accomplish successfully. Until that is achieved, feasible and locally relevant adaptation and mitigation measures are needed. To help to prioritize societal responses to ocean acidification, we present a spatially explicit, multi-disciplinary vulnerability analysis of coastal human communities in the United States. We focus our analysis on shelled mollusc harvests, which are likely to be harmed by ocean acidification. Our results highlight US regions most vulnerable to ocean acidification (and why), important knowledge and information gaps, and opportunities to adapt through local actions. The research illustrates the benefits of integrating natural and social sciences to identify actions and other opportunities while policy, stakeholders and scientists are still in relatively early stages of developing research plans and responses to ocean acidification.
C1 [Ekstrom, Julia A.] Nat Resources Def Council, San Francisco, CA 94104 USA.
[Suatoni, Lisa] Nat Resources Def Council, New York, NY 10011 USA.
[Cooley, Sarah R.] Ocean Conservancy, Washington, DC 20036 USA.
[Pendleton, Linwood H.] Duke Univ, Nicholas Inst, Durham, NC 27708 USA.
[Pendleton, Linwood H.] Univ Brest, OSU IUEM, AMURE, UMR M101, Brest, France.
[Waldbusser, George G.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA.
[Cinner, Josh E.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia.
[Ritter, Jessica; Rittschof, Dan; Doherty, Carolyn] Duke Univ, Duke Marine Lab, Beaufort, NC 28516 USA.
[Langdon, Chris] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Dept Marine Biol & Ecol, Miami, FL 33149 USA.
[van Hooidonk, Ruben] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
[Gledhill, Dwight] NOAA, Ocean Acidificat Program, Silver Spring, MD 20910 USA.
[Wellman, Katharine] Northern Econ, Seattle, WA 98107 USA.
[Beck, Michael W.] Nature Conservancy, Santa Cruz, CA 95060 USA.
[Brander, Luke M.] Vrije Univ Amsterdam, Inst Environm Studies, NL-1081 HV Amsterdam, Netherlands.
[Edwards, Peter E. T.] NOAA, Coral Reef Conservat Program, Natl Ocean Serv, Off Coastal Management, Silver Spring, MD 20910 USA.
[Edwards, Peter E. T.] IM Syst Grp Inc, Rockville, MD 20852 USA.
[Portela, Rosimeiry] Conservat Int, Arlington, VA 22202 USA.
RP Ekstrom, JA (reprint author), Univ Calif Davis, Policy Inst Energy Environm & Econ, 1605 Tilia St 100, Davis, CA 95616 USA.
EM jaekstrom@gmail.com
RI van Hooidonk, Ruben/F-7395-2010;
OI van Hooidonk, Ruben/0000-0002-3804-1233; Cinner,
Joshua/0000-0003-2675-9317; Waldbusser, George/0000-0002-8334-580X
FU National Socio-Environmental Synthesis Center (SESYNC) under National
Science Foundation [DBI-1052875]
FX This work was supported by the National Socio-Environmental Synthesis
Center (SESYNC) under funding received from the National Science
Foundation DBI-1052875. Support for R.v.H. to generate model projections
was provided by NOAA's Coral Reef Conservation Program. We thank the
institutions and individuals that provided data (see Supplementary
Information for full details), and W. McClintock and his laboratory for
use of SeaSketch.org to enable collaborative discussions of spatial data
and analysis. We are grateful for the contributions and advice provided
by E. Jewett and throughout the project.
NR 56
TC 30
Z9 30
U1 15
U2 96
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
EI 1758-6798
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD MAR
PY 2015
VL 5
IS 3
BP 207
EP 214
DI 10.1038/NCLIMATE2508
PG 8
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA CC4MP
UT WOS:000350327800014
ER
PT J
AU Richmond, L
Kotowicz, D
Hospital, J
AF Richmond, Laurie
Kotowicz, Dawn
Hospital, Justin
TI Monitoring socioeconomic impacts of Hawai'i's 2010 bigeye tuna closure:
Complexities of local management in a global fishery
SO OCEAN & COASTAL MANAGEMENT
LA English
DT Article
DE Socioeconomic monitoring; Fishing community; Social impact assessment;
Bigeye tuna; Hawai'i; Western Central Pacific Fisheries; Commission
ID JOB-SATISFACTION; FISHING COMMUNITIES; PROTECTED AREAS; POLICY;
RESOURCE; REGULATIONS; INNOVATION; COLLAPSE; BEHAVIOR; SYSTEMS
AB This paper presents the results of a study to monitor the socioeconomic impacts of the first extended closure of the western and central Pacific Ocean (WCPO) bigeye tuna (bigeye) fishery to US longliners from the state of Hawai`i. We applied qualitative and quantitative approaches to examine how diverse members of Hawai'i's bigeye fishery community, including fishermen, a large fish auction, dealers, processors, retailers, consumers, and support industries, perceived and were affected by the constraints of the 40-day closure of the WCPO bigeye fishery at the end of 2010. Our analysis found that there was reduced supply and reduced quality of bigeye landed along with increased prices for bigeye during the closure period. In addition, Hawaii longliners were forced to travel longer distances to fish during the closure. These factors contributed to increased stress and in some cases lost revenue for a variety of individuals and businesses connected to the fishery. We also found that different stakeholder groups responded to the closure in different ways and fish dealers were among those most affected by the closure. However, overall impacts to the bigeye community were not as severe as what had been anticipated at the outset. Several mitigating factors meant this was not a true closure, as US boats could continue to fish for bigeye in the Eastern Pacific Ocean and foreign and dual permitted vessels could still fish in the WCPO. longline fleet has since benefited from US legislation and federal rules that have prevented any subsequent closures of the fishery. While this relief from closures could stall short term socioeconomic impacts to Hawaii bigeye community, some worry that it could set back global efforts towards sustainable management of the fishery. This study highlights the challenges and equity considerations inherent in efforts to achieve meaningful conservation benefits from localized management actions within a global fishery. It also demonstrates the importance of interdisciplinary socioeconomic monitoring to examine how global fisheries policies scale down to individual fishing communities. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Richmond, Laurie] Humboldt State Univ, Dept Environm Sci & Management, Arcata, CA 95521 USA.
[Kotowicz, Dawn; Hospital, Justin] NOAA Fisheries Pacific Isl Fisheries Sci Ctr, Socioecon Program, Honolulu, HI USA.
[Kotowicz, Dawn] Univ Hawaii, JIMAR, Honolulu, HI 96822 USA.
RP Richmond, L (reprint author), Humboldt State Univ, Dept Environm Sci & Management, 1 Harpst St, Arcata, CA 95521 USA.
EM laurie.richmond@humboldt.edu
FU Joint Institute for Marine and Atmospheric Research (JIMAR)
FX Funding for this research was provided by the Joint Institute for Marine
and Atmospheric Research (JIMAR), University of Hawai`i, the National
Marine Fisheries Service (NMFS), Pacific Islands Fisheries Science
Center (PIFSC), NMFS Office of Science and Technology Community Data
Collection Funds, and University of Hawai'i Pelagic Fisheries Research
Program. The results, conclusions, views and opinions expressed herein
are those of the author(s) and do not necessarily reflect those of the
Department of Commerce, NOAA, or the National Marine Fisheries Service.
Human subjects research activities were approved under University of
Hawai`i Committee on Human Studies #18268. The authors would like to
thank Tom Graham, Stewart Allen, Samuel Pooley, and Brooks Takenaka for
their thoughtful reviews of this manuscript. We would like to thank
Kimberly Lowe, David Hamm, and WPacFIN for providing us with up-to-date
fishery statistics. We offer many thanks to Russell Ito and Walter
Machado for introducing us to members of the fishing community and
providing us with important insights. Most of all, we are extremely
grateful to the numerous dealers, fishermen, retailers, restaurateurs,
and policy-makers who donated their time to help explain the fishery
system and provide thoughtful comments about the implications of the
closure.
NR 65
TC 0
Z9 0
U1 2
U2 11
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0964-5691
EI 1873-524X
J9 OCEAN COAST MANAGE
JI Ocean Coastal Manage.
PD MAR
PY 2015
VL 106
BP 87
EP 96
DI 10.1016/j.ocecoaman.2015.01.015
PG 10
WC Oceanography; Water Resources
SC Oceanography; Water Resources
GA CC7FT
UT WOS:000350533800009
ER
PT J
AU Wei, Y
Fritz, HM
Titov, VV
Uslu, B
Chamberlin, C
Kalligeris, N
AF Wei, Yong
Fritz, Hermann M.
Titov, Vasily V.
Uslu, Burak
Chamberlin, Chris
Kalligeris, Nikos
TI Source Models and Near-Field Impact of the 1 April 2007 Solomon Islands
Tsunami
SO PURE AND APPLIED GEOPHYSICS
LA English
DT Article; Proceedings Paper
CT 26th International Tsunami Symposium
CY SEP 25-27, 2013
CL Gocek, TURKEY
DE Solomon islands; tsunamis; tsunameter; inversion; near-field; tsunami
height; South Pacific
ID REAL-TIME TSUNAMI; PLATE BOUNDARIES; JOINT INVERSION; WAVE-FORMS;
EARTHQUAKE; PROPAGATION; RUPTURE; RUNUP
AB Within weeks of the Solomon Islands earthquake of 1 April 2007, international tsunami survey teams discovered important biomarkers of crust rupture and tsunami heights along the islands' coastlines. Deep-ocean tsunameters recorded the tsunami waves of this event, enabling a real-time inversion of the tsunami source and model evaluation of near-field tsunami impact. The survey measurements provide valuable datasets for further confirmation of the tsunami source of the 1 April 2007 Solomon earthquake. These survey results also aided investigation of the correlation between sources determined by use of tsunameter records and those derived from seismometer records or crust-rupture measurements. In this study, to assess the near-field tsunami impact, we developed tsunami inundation models for the Solomon Islands, including tsunami waveforms, co-seismic land-level changes, and tsunami height distributions on individual islands. Compared with seismic-derived tsunami sources, modeling results based on the tsunameter-derived tsunami sources were a good match with field survey measurements. These results highlight the accuracy and efficiency of the tsunameter-derived tsunami source in modeling the near-field tsunami impact along a complex archipelago. We show that the source models, although derived by use of different methods, are all suited to initiation of inundation models developed for Solomon Islands. As these source models become available in real time or near real time, they can be implemented immediately in the inundation models to provide rapid guidance on tsunami hazard assessment, focused search and rescue operations, and post-event recovery and reconstruction.
C1 [Wei, Yong; Titov, Vasily V.] NOAA, Ctr Tsunami Res, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
[Wei, Yong; Chamberlin, Chris] Univ Washington, JISAO, Coll Environm, Seattle, WA 98105 USA.
[Fritz, Hermann M.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA.
[Uslu, Burak] OMC Int, Abbotsford, Vic 3067, Australia.
[Kalligeris, Nikos] Univ So Calif, Dept Civil & Environm Engn, Los Angeles, CA 90089 USA.
RP Wei, Y (reprint author), NOAA, Ctr Tsunami Res, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA.
EM Yong.Wei@noaa.gov
RI Fritz, Hermann/H-5618-2013; Wei, Yong/I-3462-2015;
OI Fritz, Hermann/0000-0002-6798-5401; Wei, Yong/0000-0002-6908-1342;
Titov, Vasily/0000-0002-1630-3829
FU Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under
NOAA [NA17RJ1232]; National Science Foundation through the NSF
SGER-award [CMMI-0646278]; UNESCO Intergovernmental Oceanographic
Commission award [IOC-4500034222]
FX The work reported in this publication was partially funded by the Joint
Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA
cooperative agreement no. NA17RJ1232, JISAO contribution number 1804,
and PMEL contribution number 3510. The survey work was supported by the
National Science Foundation through the NSF SGER-award CMMI-0646278 and
UNESCO Intergovernmental Oceanographic Commission award IOC-4500034222
to H. Fritz. We thank two anonymous reviewers for their helpful
comments. We are also grateful for Sandra Bigley for her thorough
editing of this manuscript.
NR 59
TC 3
Z9 3
U1 3
U2 11
PU SPRINGER BASEL AG
PI BASEL
PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND
SN 0033-4553
EI 1420-9136
J9 PURE APPL GEOPHYS
JI Pure Appl. Geophys.
PD MAR
PY 2015
VL 172
IS 3-4
BP 657
EP 682
DI 10.1007/s00024-014-1013-6
PG 26
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CD2HG
UT WOS:000350895700004
ER
PT J
AU Gica, E
Titov, VV
Moore, C
Wei, Y
AF Gica, Edison
Titov, Vasily V.
Moore, Christopher
Wei, Yong
TI Tsunami Simulation Using Sources Inferred from Various Measurement Data:
Implications for the Model Forecast
SO PURE AND APPLIED GEOPHYSICS
LA English
DT Article; Proceedings Paper
CT 26th International Tsunami Symposium
CY SEP 25-27, 2013
CL Gocek, TURKEY
DE DART inversion; Finite Fault Model; GPS solution; Tsunami forecast
ID EARTHQUAKE; RUNUP
AB Model forecast applications use various models of tsunami sources inferred from different measurement data. Even the same type of observation data can produce substantially different tsunami source models during a real-time forecast when more data are obtained during the real-time analysis. Improved tsunami observations enable investigation of the influence of such model source variability on the final forecast using different source data sets of several events. The 2010 Maule, Chile and 2011 Tohoku, Japan tsunamis were two recent events that provide ample observations throughout the Pacific and were, thus, used here to study the sensitivity of different model inputs for forecasting. The sources for these events were derived using the following three different methods: (1) real time or post event inversion of tsunameter water level data; (2) prediction of sea floor deformations via analysis of seismic wave forms and application of a finite fault model; and (3) prediction of sea floor deformation using real-time GPS data. For the March 11, 2011 Tohoku tsunami, two examples of each method are used, while for the February 27, 2010 Maule event, only one tsunameter inversion and one finite fault model method were used due to a much more limited data set. Observed data from the Deep-ocean Assessment and Reporting for Tsunamis (DART) network, Japan GPS buoys, and select tide gauges across the Pacific were compared with forecasts to assess the sensitivity of these three methods using root-mean-square error analysis. We divided the analysis by the type of data and the distance from the source. This sensitivity analysis showed that increasing the resolution of a tsunami source model does not necessarily improve tsunami forecast quality, even in the near-field. Instead, the findings suggest that when forecasting coastal impact, defining the overall energy characteristic of a tsunami source may be more important than refining small source details. Source models based on direct tsunami observations are better at reproducing a tsunami signal: this finding is not very surprising but has implications for tsunami forecasting and warning operations.
C1 [Gica, Edison; Wei, Yong] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98105 USA.
[Gica, Edison; Titov, Vasily V.; Moore, Christopher; Wei, Yong] NOAA, Ctr Tsunami Res, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
RP Gica, E (reprint author), Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98105 USA.
EM edison.gica@noaa.gov
RI Wei, Yong/I-3462-2015;
OI Wei, Yong/0000-0002-6908-1342; Titov, Vasily/0000-0002-1630-3829
FU Joint Institute for the Study of Atmosphere and Ocean (JISAO) at the
University of Washington under NOAA Cooperative [NA17RJ1232]
FX This publication is [partially] funded by the Joint Institute for the
Study of Atmosphere and Ocean (JISAO) at the University of Washington
under NOAA Cooperative Agreement No. NA17RJ1232, Contribution No. 1812.
This is Contribution No. 3531 from the NOAA/Pacific Marine Environmental
Laboratory.
NR 26
TC 2
Z9 2
U1 1
U2 4
PU SPRINGER BASEL AG
PI BASEL
PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND
SN 0033-4553
EI 1420-9136
J9 PURE APPL GEOPHYS
JI Pure Appl. Geophys.
PD MAR
PY 2015
VL 172
IS 3-4
BP 773
EP 789
DI 10.1007/s00024-014-0979-4
PG 17
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CD2HG
UT WOS:000350895700010
ER
PT J
AU Beck, SE
Wright, HB
Hargy, TM
Larason, TC
Linden, KG
AF Beck, Sara E.
Wright, Harold B.
Hargy, Thomas M.
Larason, Thomas C.
Linden, Karl G.
TI Action spectra for validation of pathogen disinfection in
medium-pressure ultraviolet (UV) systems
SO WATER RESEARCH
LA English
DT Article
DE Inactivation; Phage; Surrogate; Water treatment; Polychromatic
ID CRYPTOSPORIDIUM-PARVUM OOCYSTS; BACILLUS-SUBTILIS; DNA-DAMAGE;
INACTIVATION; WATER; LIGHT; ADENOVIRUSES; SPORES; SENSITIVITY;
IRRADIATION
AB Ultraviolet (UV) reactors used for disinfecting water and wastewater must be validated and monitored over time. The validation process requires understanding the photochemical properties of the pathogens of concern and the challenge microorganisms used to represent them. Specifically for polychromatic UV systems, the organisms' dose responses to UV light and their sensitivity across the UV spectrum must be known. This research measured the UV spectral sensitivity, called action spectra, of Cryptosporidium parvum, and MS2, T1UV, Q Beta, T7, and T7m Coliphages, as well as Bacillus pumilus spores. A tunable laser from the National Institute of Standards and Technology was used to isolate single UV wavelengths at 10 nm intervals between 210 and 290 nm. Above 240 nm, all bacteria and viruses tested exhibited a relative peak sensitivity between 260 and 270 nm. Of the coliphage, MS2 exhibited the highest relative sensitivity below 240 nm, relative to its sensitivity at 254 nm, followed by Q Beta, T1UV, T7m and T7 coliphage. B. pumilus spores were more sensitive to UV light at 220 nm than any of the coliphage. These spectra are required for calculating action spectra correction factors for medium pressure UV system validation, for matching appropriate challenge microorganisms to pathogens, and for improving UV dose monitoring. Additionally, understanding the dose response of these organisms at multiple wavelengths can improve polychromatic UV dose calculations and enable prediction of pathogen inactivation from wavelength-specific disinfection technologies such as UV light emitting diodes (LEDs). (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Beck, Sara E.; Linden, Karl G.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA.
[Wright, Harold B.] Carollo Engineers, Boise, ID 83713 USA.
[Hargy, Thomas M.] Corona Environm Consulting, Fairfax, VT 05454 USA.
[Larason, Thomas C.] NIST, Gaithersburg, MD 20899 USA.
RP Linden, KG (reprint author), Univ Colorado, Dept Civil Environm & Architectural Engn, UCB 428, Boulder, CO 80309 USA.
EM karl.linden@colorado.edu
OI Linden, Karl G./0000-0003-4301-7227
FU Water Research Foundation [4376]; Los Angeles Department of Water and
Power; Aquionics; Calgon Carbon Corporation; Atlantium Technologies; ITT
Wedeco; ETS; Trojan Technologies; Tetra Tech Clancy Environmental
Consultants; Hydroqual/HDR; CDM, Black Veatch; CH2M Hill; Metropolitan
Water District of Southern California; NY State Department of Health; CA
DHS; WA DOH; U.S. Environmental Protection Agency
FX This research was funded by the Water Research Foundation Project 4376
and several organizations that provided cash or in-kind contributions
including: Los Angeles Department of Water and Power, Aquionics, Calgon
Carbon Corporation, Atlantium Technologies, ITT Wedeco, ETS, Trojan
Technologies, Tetra Tech Clancy Environmental Consultants,
Hydroqual/HDR, CDM, Black & Veatch, CH2M Hill, Metropolitan Water
District of Southern California, NY State Department of Health, CA DHS,
WA DOH, and U.S. Environmental Protection Agency.
NR 37
TC 12
Z9 12
U1 4
U2 36
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0043-1354
J9 WATER RES
JI Water Res.
PD MAR 1
PY 2015
VL 70
BP 27
EP 37
DI 10.1016/j.watres.2014.11.028
PG 11
WC Engineering, Environmental; Environmental Sciences; Water Resources
SC Engineering; Environmental Sciences & Ecology; Water Resources
GA CC6XX
UT WOS:000350513400003
PM 25506761
ER
PT J
AU Dawson, MN
Cieciel, K
Decker, MB
Hays, GC
Lucas, CH
Pitt, KA
AF Dawson, Michael N.
Cieciel, Kristin
Decker, Mary Beth
Hays, Graeme C.
Lucas, Cathy H.
Pitt, Kylie A.
TI Population-level perspectives on global change: genetic and demographic
analyses indicate various scales, timing, and causes of scyphozoan
jellyfish blooms
SO BIOLOGICAL INVASIONS
LA English
DT Article; Proceedings Paper
CT Workshop on Molecular Tools for Monitoring Marine Invasive Species
CY SEP 12-14, 2012
CL Lecce, ITALY
DE Climate; Discomedusae; Dispersal; Environmental change; Plankton;
Scyphozoa
ID CATOSTYLUS-MOSAICUS SCYPHOZOA; SCYPHOMEDUSA AURELIA-AURITA; EASTERN
BERING-SEA; CLIMATE-CHANGE; MOLECULAR EVIDENCE; GELATINOUS ZOOPLANKTON;
SEXUAL REPRODUCTION; MARINE ECOSYSTEMS; CTENOPHORE BLOOMS; RHIZOSTOMEAE
AB Whether a perceived increase in the abundance of jellyfishes is related to changing marine environments has been considered primarily using large-scale analyses of multi-species assemblages. Yet jellyfish blooms-rapid increases in the biomass of pelagic coelenterate species-are single-species demographic events. Using published and new genetic analyses and population surveys, we investigate whether there may be a critical knowledge gap between the scales of recent analyses and the scales of natural phenomena. We find that scyphomedusae may show population genetic structure over scales of tens to hundreds of kilometers, that environments vary regionally and locally, and that populations of medusae can display uncorrelated dynamics on these scales. These findings suggest genetic differences between populations and/or environmental differences between sites are important determinants of population dynamics in these jellyfishes. Moreover, the local abundance of medusae may be most strongly correlated with preceding rather than current local environmental conditions, indicating there is a cumulative time-course to the formation of 'blooms'. Broad-scale macro-ecological analyses will need to build from coordinated, long-term, fine-grained studies to synthesize, rather than mask, population-level phenomena in larger-scale analyses.
C1 [Dawson, Michael N.] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA.
[Cieciel, Kristin] Alaska Fisheries Sci Ctr, Auke Bay Labs, NOAA Fisheries, Juneau, AK 99801 USA.
[Decker, Mary Beth] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA.
[Hays, Graeme C.] Deakin Univ, Sch Life & Environm Sci, Warrnambool, Vic 3280, Australia.
[Hays, Graeme C.] Swansea Univ, Dept Biosci, Swansea SA2 8PP, W Glam, Wales.
[Lucas, Cathy H.] Univ Southampton, Natl Oceanog Ctr, Ocean & Earth Sci, Southampton SO14 3ZH, Hants, England.
[Pitt, Kylie A.] Griffith Univ, Australian Rivers Inst, Gold Coast, Qld 4111, Australia.
[Pitt, Kylie A.] Griffith Univ, Griffith Sch Environm, Gold Coast, Qld 4111, Australia.
RP Dawson, MN (reprint author), Univ Calif, Sch Nat Sci, 5200 North Lake Rd, Merced, CA 95343 USA.
EM mdawson@ucmerced.edu
RI Pitt, Kylie/N-7421-2014;
OI Pitt, Kylie/0000-0002-2292-2052; Dawson, Michael/0000-0001-7927-8395
FU National Science Foundation [DEB-07-17071]; European Community
FX We thank Keith M. Bayha and Sarah Abboud who sequenced Aurelia aurita
and Chrysaora melanaster, and Coral Reef Research Foundation who
conducted the surveys of Mastigias papua and collected matching
environmental data in Palau. We also thank the scientific staff from the
BASIS project and the fishing crews of the F/V Sea Storm and F/V
Northwest Explorer F/V Epic Explorer, R/V Oscar Dyson, and F/V Bristol
Explorer for their considerable efforts and technical assistance in all
aspects of the field surveys, without whose help the Bering Sea work
would have been impossible. Two anonymous reviewers helpfully critiqued
an earlier version of the paper allowing us to refine its message. This
research was supported in part by National Science Foundation Grant no.
DEB-07-17071 and presented as a work-in-progress at the MOLTOOLS
workshop held in Lecce in September 2012; support for participation by
MND in the MOLTOOLS workshop was provided by the European Community's
Seventh Framework Programme (FP7/2011-2015) for the project Vectors of
Change in Oceans and Seas Marine Life, Impact on Economic Sectors
(VECTORS). Use of trade names does not imply endorsement by the National
Marine Fisheries service, NOAA.
NR 86
TC 5
Z9 5
U1 10
U2 67
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1387-3547
EI 1573-1464
J9 BIOL INVASIONS
JI Biol. Invasions
PD MAR
PY 2015
VL 17
IS 3
SI SI
BP 851
EP 867
DI 10.1007/s10530-014-0732-z
PG 17
WC Biodiversity Conservation; Ecology
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA CC9GI
UT WOS:000350675900004
ER
PT J
AU Cha, Y
Stow, CA
AF Cha, YoonKyung
Stow, Craig A.
TI Mining web-based data to assess public response to environmental events
SO ENVIRONMENTAL POLLUTION
LA English
DT Editorial Material
DE Twitter; Google trends; Social media; Web search trends; Data mining;
Algal blooms; Public perception and interest
ID ECOLOGY; BLOOMS
AB We explore how the analysis of web-based data, such as Twitter and Google Trends, can be used to assess the social relevance of an environmental accident. The concept and methods are applied in the shutdown of drinking water supply at the city of Toledo, Ohio, USA. Toledo's notice, which persisted from August 1 to 4, 2014, is a high-profile event that directly influenced approximately half a million people and received wide recognition. The notice was given when excessive levels of microcystin, a byproduct of cyanobacteria blooms, were discovered at the drinking water treatment plant on Lake Erie. Twitter mining results illustrated an instant response to the Toledo incident, the associated collective knowledge, and public perception. The results from Google Trends, on the other hand, revealed how the Toledo event raised public attention on the associated environmental issue, harmful algal blooms, in a long-term context. Thus, when jointly applied, Twitter and Google Trend analysis results offer complementary perspectives. Web content aggregated through mining approaches provides a social standpoint, such as public perception and interest, and offers context for establishing and evaluating environmental management policies. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Cha, YoonKyung] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48108 USA.
[Stow, Craig A.] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48108 USA.
RP Cha, Y (reprint author), Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48108 USA.
EM ykcha@umich.edu
NR 9
TC 9
Z9 9
U1 2
U2 58
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0269-7491
EI 1873-6424
J9 ENVIRON POLLUT
JI Environ. Pollut.
PD MAR
PY 2015
VL 198
BP 97
EP 99
DI 10.1016/j.envpol.2014.12.027
PG 3
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA CC2RF
UT WOS:000350191600013
PM 25577650
ER
PT J
AU Overholt, KJ
Ezekoye, OA
AF Overholt, Kristopher J.
Ezekoye, Ofodike A.
TI Quantitative Testing of Fire Scenario Hypotheses: A Bayesian Inference
Approach
SO FIRE TECHNOLOGY
LA English
DT Article
DE Fire investigation; Hypothesis testing; Bayesian inference; Uncertainty
quantification
ID PYROLYSIS; PYTHON; MODELS
AB Fire models are routinely used to evaluate life safety aspects of building design projects and are being used more often in fire and arson investigations as well as reconstructions of firefighter line-of-duty deaths and injuries. A fire within a compartment effectively leaves behind a record of fire activity and history (i.e., fire signatures). Fire and arson investigators can utilize these fire signatures in the determination of cause and origin during fire reconstruction exercises. Researchers conducting fire experiments can utilize this record of fire activity to better understand the underlying physics. In all of these applications, the heat release rate and location of a fire are important parameters that govern the evolution of thermal conditions within a fire compartment. These input parameters can be a large source of uncertainty in fire models, especially in scenarios in which experimental data or detailed information on fire behavior are not available. A methodology is sought to estimate the amount of certainty (or degree of belief) in the input parameters for hypothesized scenarios. To address this issue, an inversion framework was applied to scenarios that have relevance in fire scene reconstructions. Rather than using point estimates of input parameters, a statistical inversion framework based on the Bayesian inference approach was used to calculate probability distributions of input parameters. These probability distributions contain uncertainty information about the input parameters and can be propagated through fire models to obtain uncertainty information about predicted quantities of interest. The Bayesian inference approach was applied to various fire problems using different models: empirical correlations, zone models, and computational fluid dynamics fire models. Example applications include the estimation of steady-state fire sizes in a compartment and the location of a fire.
C1 [Overholt, Kristopher J.] NIST, Gaithersburg, MD 20899 USA.
[Ezekoye, Ofodike A.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA.
RP Ezekoye, OA (reprint author), Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA.
EM dezekoye@mail.utexas.edu
NR 38
TC 2
Z9 2
U1 0
U2 10
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0015-2684
EI 1572-8099
J9 FIRE TECHNOL
JI Fire Technol.
PD MAR
PY 2015
VL 51
IS 2
BP 335
EP 367
DI 10.1007/s10694-013-0384-z
PG 33
WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary
SC Engineering; Materials Science
GA CC4WR
UT WOS:000350356300009
ER
PT J
AU Keller, AA
Ciannelli, L
Wakefield, WW
Simon, V
Barth, JA
Pierce, SD
AF Keller, Aimee A.
Ciannelli, Lorenzo
Wakefield, W. Waldo
Simon, Victor
Barth, John A.
Pierce, Stephen D.
TI Occurrence of demersal fishes in relation to near-bottom oxygen levels
within the California Current large marine ecosystem
SO FISHERIES OCEANOGRAPHY
LA English
DT Article
DE bottom dissolved oxygen; demersal fish catch; Dover sole; greenstriped
rockfish; Northeast Pacific; petrale sole; probability of occurrence;
species richness; spotted ratfish
ID MINIMUM ZONE; NORTHEAST PACIFIC; DECLINING OXYGEN; HYPOXIA; WASHINGTON;
TRAWL; SLOPE; SHELF; WATER; VARIABILITY
AB Various ocean-climate models driven by increased greenhouse gases and higher temperatures predict a decline in oceanic dissolved oxygen (DO) as a result of greater stratification, reduced ventilation below the thermocline, and decreased solubility at higher temperatures. Since spreading of low oxygen waters is underway and predicted to increase, understanding impacts on higher trophic levels is essential. Within the California Current System, shoaling of the oxygen minimum zone (OMZ) is expected to produce complex changes. Onshore movement of the OMZ could lead to habitat compression for species with higher oxygen requirements while allowing expansion of species tolerant of low bottom DO. As part of annual groundfish surveys, we sampled catch across a range of conditions from the upper to the lower limit of the OMZ and shoreward across the continental shelf of the US west coast. DO ranged from 0.02 to 4.25mLL(-1) with 642 stations (of 1020 sampled) experiencing hypoxic conditions in 2008-2010. Catch and species richness exhibited significant and positive relationships with near-bottom oxygen concentration. The probability of occurrence was estimated for four species (spotted ratfish, petrale sole, greenstriped rockfish and Dover sole) using a binomial Generalized Additive Model. The models for each species included terms for position, day of the year, salinity, near-bottom temperature and the interaction term between depth and near-bottom DO. Spotted ratfish and petrale sole were sensitive to changes in near-bottom oxygen, while greenstriped rockfish and Dover sole show no changes in probability of occurrence in relation to changes in oxygen concentration.
C1 [Keller, Aimee A.; Simon, Victor] NOAA, Fishery Resource Anal & Monitoring Div, NW Fisheries Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA.
[Ciannelli, Lorenzo; Barth, John A.; Pierce, Stephen D.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci CEOAS, Corvallis, OR 97331 USA.
[Wakefield, W. Waldo] NOAA, Fishery Resource Anal & Monitoring Div, NW Fisheries Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA.
RP Keller, AA (reprint author), NOAA, Fishery Resource Anal & Monitoring Div, NW Fisheries Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA.
EM Aimee.Keller@noaa.gov
FU West Coast & Polar Regions Undersea Research Center of NOAA's Office of
Ocean Exploration and Research; NSF-SEES-RCN [1140207]
FX We thank the NWFSC bottom trawl survey group (Keith Bosley, John
Buchanan, Mark Bradburn, Doug Draper, Melissa Head, John Harms, Dan
Kamikawa, and Vanessa Tuttle), associated participants, and Beth
Horness. Funding was provided from the West Coast & Polar Regions
Undersea Research Center of NOAA's Office of Ocean Exploration and
Research and from NSF-SEES-RCN grant number: 1140207.
NR 53
TC 6
Z9 6
U1 6
U2 25
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1054-6006
EI 1365-2419
J9 FISH OCEANOGR
JI Fish Oceanogr.
PD MAR
PY 2015
VL 24
IS 2
BP 162
EP 176
DI 10.1111/fog.12100
PG 15
WC Fisheries; Oceanography
SC Fisheries; Oceanography
GA CC7KE
UT WOS:000350545400005
ER
PT J
AU Ryan, JT
Zou, JB
Southwick, R
Campbell, JP
Cheung, KP
Oates, AS
Huang, R
AF Ryan, Jason Thomas
Zou, Jibin
Southwick, Richard, III
Campbell, Jason Paul
Cheung, Kin P.
Oates, Anthony S.
Huang, Ru
TI Frequency-Modulated Charge Pumping With Extremely High Gate Leakage
SO IEEE TRANSACTIONS ON ELECTRON DEVICES
LA English
DT Article
DE Charge pumping (CP); defects; leakage current
ID MOS-TRANSISTORS; DISTRIBUTIONS; COMPONENT; MOSFETS
AB Charge pumping (CP) has proved itself to be one of the most utilitarian methods to quantify defects in MOS devices. In the presence of low-to-moderate gate leakage, CP quantification is most often implemented via a series of measurements at multiple frequencies. However, this approach is ill-equipped to handle excessive leakage currents common in advanced technologies. In this paper, we transform multifrequency CP from a quasi-dc measurement into a true ac measurement. This ac detection scheme, called frequency-modulated CP, is far better equipped to deal with high levels of leakage currents and thereby extends the usefulness of CP to current and future device technologies where excessive leakage is the norm. Additionally, we show that multifrequency CP has a long overlooked error that becomes significant in high-leakage situations. We discuss the origins of this error in detail and outline mitigation methodologies. Finally, we explore timing and voltage limitations of waveform generators and how these experimental boundary conditions impact on both frequency-dependent and FMCP.
C1 [Ryan, Jason Thomas; Campbell, Jason Paul; Cheung, Kin P.] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA.
[Zou, Jibin; Huang, Ru] Peking Univ, Dept Microelect, Beijing 100871, Peoples R China.
[Southwick, Richard, III] IBM Res, Albany, NY 12233 USA.
[Oates, Anthony S.] Taiwan Semicond Mfg Corp, Hsinchu 30844, Taiwan.
RP Ryan, JT (reprint author), NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA.
EM jason.ryan@nist.gov; zoujibin@gmail.com; rgsouthwick@gmail.com;
jason.campbell@nist.gov; kin.cheung@nist.gov; aoates@tsmc.com;
ruhuang@pku.edu.cn
NR 19
TC 2
Z9 2
U1 3
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9383
EI 1557-9646
J9 IEEE T ELECTRON DEV
JI IEEE Trans. Electron Devices
PD MAR
PY 2015
VL 62
IS 3
BP 769
EP 775
DI 10.1109/TED.2015.2395956
PG 7
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA CC4OF
UT WOS:000350332000012
ER
PT J
AU Zhang, X
Lee, X
Griffis, TJ
Andrews, AE
Baker, JM
Erickson, MD
Hu, N
Xiao, W
AF Zhang, Xin
Lee, Xuhui
Griffis, Timothy J.
Andrews, Arlyn E.
Baker, John M.
Erickson, Matt D.
Hu, Ning
Xiao, Wei
TI Quantifying nitrous oxide fluxes on multiple spatial scales in the Upper
Midwest, USA
SO INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
LA English
DT Article
DE Nitrous oxide; Corn; Soybean; Agriculture; Land surface flux
ID SOIL-PLANT SYSTEMS; N2O EMISSIONS; AGRICULTURAL FIELDS; SOYBEAN
RESPONSE; EDDY COVARIANCE; MAIZE; YIELD; TILLAGE; LEAVES; WHEAT
AB This study seeks to quantify the roles of soybean and corn plants and the cropland ecosystem in the regional N2O budget of the Upper Midwest, USA. The N2O flux was measured at three scales (plant, the soil-plant ecosystem, and region) using newly designed steady-state flow-through plant chambers, a flux-gradient micrometeorological tower, and continuous tall-tower observatories. Results indicate that the following. (1) N2O fluxes from unfertilized soybean (0.03 +/- 0.05 nmol m(-2) s(-1)) and fertilized corn plants (-0.01 +/- 0.04 nmol m(-2) s(-1)) were about one magnitude lower than N2O emissions from the soil-plant ecosystem (0.26 nmol m(-2) s(-1) for soybean and 0.95 nmol m(-2) s(-1) for corn), confirming that cropland N2O emissions were mainly from the soil. (2) Fertilization increased the corn plant flux for a short period (about 20 days), and late-season fertilization dramatically increased the soybean plant emissions. (3) The direct N2O emission from cropland accounted for less than 20 % of the regional flux, suggesting a significant influence by other sources and indirect emissions, in the regional N2O budget.
C1 [Zhang, Xin; Lee, Xuhui] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA.
[Griffis, Timothy J.; Erickson, Matt D.] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA.
[Andrews, Arlyn E.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Baker, John M.] ARS, USDA, St Paul, MN USA.
[Hu, Ning; Xiao, Wei] Nanjing Univ Informat Sci & Technol, Yale NUIST Ctr Atmospher Environm, Nanjing, Jiangsu, Peoples R China.
RP Zhang, X (reprint author), Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Princeton, NJ 08544 USA.
EM zhangxin.yale@gmail.com
RI Griffis, Timothy/A-5707-2011; Andrews, Arlyn/K-3427-2012; Xiao,
Wei/G-6586-2012; Zhang, Xin/K-8264-2016
OI Xiao, Wei/0000-0002-9199-2177; Zhang, Xin/0000-0003-1619-1537
FU Ministry of Education of China (PCSIRT); Rice Family Foundation; Yale
Center for Environmental Law & Policy Research Prize Fellowship; Yale
Institute for Biospheric Studies; USDA [NIFA/2010-65112-20528]; NOAA's
Climate Program Office; NOAA
FX We would like to thank the University of Minnesota UMore Park for use of
the facilities. Funding was provided by the Ministry of Education of
China (grant PCSIRT), the Rice Family Foundation, the Yale Center for
Environmental Law & Policy Research Prize Fellowship, the Yale Institute
for Biospheric Studies, and USDA NIFA/2010-65112-20528. Measurements at
the WBI tower were funded by NOAA's Climate Program Office and are part
of NOAA's contributions to the North American Carbon Program. We thank
Professor Charles Stanier from the University of Iowa and his students
for supporting the NOAA PFP measurements at the WBI tower.
NR 69
TC 13
Z9 15
U1 13
U2 49
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0020-7128
EI 1432-1254
J9 INT J BIOMETEOROL
JI Int. J. Biometeorol.
PD MAR
PY 2015
VL 59
IS 3
BP 299
EP 310
DI 10.1007/s00484-014-0842-4
PG 12
WC Biophysics; Environmental Sciences; Meteorology & Atmospheric Sciences;
Physiology
SC Biophysics; Environmental Sciences & Ecology; Meteorology & Atmospheric
Sciences; Physiology
GA CB9RF
UT WOS:000349969100005
PM 24879356
ER
PT J
AU Slotwinski, JA
Garboczi, EJ
AF Slotwinski, John A.
Garboczi, Edward J.
TI Metrology Needs for Metal Additive Manufacturing Powders
SO JOM
LA English
DT Article
AB Additive manufacturing (AM) processes can produce highly complex and customized parts without the need for dedicated tooling and can produce parts directly from the part design information. These types of processes are poised to revolutionize the manufacturing industry, yet several challenges are currently preventing more widespread adoption of AM technologies. Among these challenges are metrology issues associated with the measurement and characterization of the metal powders used for AM systems. This article will describe the technical challenges and needs for characterizing metal AM powders, recent research efforts to address those needs, and current work to standardize characterization methods in ASTM and ISO, such as the recently released ASTM F3049, Standard Guide for Characterizing Properties of Metal Powders Used for Additive Manufacturing Processes.
C1 [Slotwinski, John A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Garboczi, Edward J.] NIST, Appl Chem & Mat Div, Boulder, CO USA.
RP Slotwinski, JA (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
EM john.slotwinski@jhuapl.edu
NR 23
TC 7
Z9 7
U1 2
U2 23
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD MAR
PY 2015
VL 67
IS 3
BP 538
EP 543
DI 10.1007/s11837-014-1290-7
PG 6
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA CC3ID
UT WOS:000350239400008
ER
PT J
AU Hechenbleikner, E
Makary, M
Samarov, D
Leung, C
Miller, JD
Deutschendorf, A
Brotman, DJ
Holland, DE
Bowles, KH
Wick, EC
AF Hechenbleikner, Elizabeth
Makary, Martin
Samarov, Daniel
Leung, Curtis
Miller, Jason D.
Deutschendorf, Amy
Brotman, Daniel J.
Holland, Diane E.
Bowles, Kathryn H.
Wick, Elizabeth C.
TI Decision support tool use in colorectal surgery: what is the role?
SO JOURNAL OF SURGICAL RESEARCH
LA English
DT Article
DE Decision support tools; Colorectal surgery; Readmissions
ID HOSPITAL READMISSION; RANDOMIZED-TRIAL; HEART-FAILURE; SURGICAL CARE;
RISK; PROGRAM; QUALITY; REGULARIZATION; INTERVENTION; RATES
AB Background: Decision support tools prioritizing transitional care can help decrease medical readmissions but little evidence exists within surgical specialties.
Materials and methods: This study evaluated the use of early screen for discharge planning and discharge decision support system screening tools or selective multidisciplinary clinical evaluation for targeting post-acute care interventions among higher risk colorectal surgery patients based on 30-d readmission status. Patients with positive screening tool scores underwent standard discharge planning education and evaluation during index operation hospitalization and were referred for targeted post-acute interventions; patients with negative screening tool scores were further clinically evaluated for selective referral for post-acute interventions.
Results: We identified 300 colorectal surgery patients; 30.3% (n = 91) of patients had a positive screening score (early screen for discharge planning and/or discharge decision support system). Positive screening scores did not correlate with hospital readmission (35% of readmitted patients versus 29% of non-readmitted had a positive screen; P = 0.424). After negative screening scores, selective referral based on clinical assessment for postdischarge interventions helped to concentrate resources in patients who were later readmitted. Index hospitalization complications were significantly associated with positive screening tool scores whereas postdischarge complications were most predictive of readmission.
Conclusions: Among colorectal surgery patients, selective clinical referrals appeared to be the best method for targeting post-acute interventions in patients at higher risk for readmission. Future research should focus on improving existing processes of care to reduce postoperative complications and constructing better tools to assess individual patients' needs for targeted interventions in the post-acute setting. (C) 2015 Elsevier Inc. All rights reserved.
C1 [Hechenbleikner, Elizabeth; Makary, Martin; Wick, Elizabeth C.] Johns Hopkins Univ Hosp, Dept Surg, Baltimore, MD 21287 USA.
[Samarov, Daniel] NIST, Stat Engn Div, Informat Technol Lab, Gaithersburg, MD 20899 USA.
[Leung, Curtis; Miller, Jason D.; Deutschendorf, Amy] Johns Hopkins Hlth Syst, Dept Utilizat & Clin Resource Management, Baltimore, MD USA.
[Brotman, Daniel J.] Johns Hopkins Univ Hosp, Div Gen Internal Med, Baltimore, MD 21287 USA.
[Holland, Diane E.] Mayo Clin, Div Nursing Res, Rochester, MN USA.
[Bowles, Kathryn H.] Univ Penn, Sch Nursing, Philadelphia, PA 19104 USA.
RP Hechenbleikner, E (reprint author), Johns Hopkins Univ, Sch Med, Dept Surg, Blalock Room 658,600 N Wolfe St, Baltimore, MD 21287 USA.
EM ewick1@jhmi.edu
FU Centers for Medicare and Medicaid Services and Center for Medicare and
Medicaid Innovation [CMS-1C1-12-0001]
FX The project described was supported by funding opportunity number
CMS-1C1-12-0001 from Centers for Medicare and Medicaid Services and
Center for Medicare and Medicaid Innovation. Its contents are solely the
responsibility of the authors and do not necessarily represent the
official views of the Department of Health and Human Services or any of
its agencies.
NR 26
TC 2
Z9 2
U1 2
U2 3
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4804
EI 1095-8673
J9 J SURG RES
JI J. Surg. Res.
PD MAR
PY 2015
VL 194
IS 1
BP 69
EP 76
DI 10.1016/j.jss.2014.09.011
PG 8
WC Surgery
SC Surgery
GA CC5FH
UT WOS:000350384000010
PM 25439506
ER
PT J
AU Jiang, JH
Su, H
Zhai, CX
Shen, TJ
Wu, TW
Zhang, J
Cole, JNS
von Salzen, K
Donner, LJ
Seman, C
Del Genio, A
Nazarenko, LS
Dufresne, JL
Watanabe, M
Morcrette, C
Koshiro, T
Kawai, H
Gettelman, A
Millan, L
Read, WG
Livesey, NJ
Kasai, Y
Shiotani, M
AF Jiang, Jonathan H.
Su, Hui
Zhai, Chengxing
Shen, T. Janice
Wu, Tongwen
Zhang, Jie
Cole, Jason N. S.
von Salzen, Knut
Donner, Leo J.
Seman, Charles
Del Genio, Anthony
Nazarenko, Larissa S.
Dufresne, Jean-Louis
Watanabe, Masahiro
Morcrette, Cyril
Koshiro, Tsuyoshi
Kawai, Hideaki
Gettelman, Andrew
Millan, Luis
Read, William G.
Livesey, Nathaniel J.
Kasai, Yasko
Shiotani, Masato
TI Evaluating the Diurnal Cycle of Upper-Tropospheric Ice Clouds in Climate
Models Using SMILES Observations
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID GENERAL-CIRCULATION MODEL; TROPICAL OCEANIC CONVECTION; SYSTEM MODEL;
CUMULUS CONVECTION; ATMOSPHERE MODEL; UNITED-STATES; WATER-VAPOR;
PRECIPITATION; SCHEME; CMIP5
AB Upper-tropospheric ice cloud measurements from the Superconducting Submillimeter Limb Emission Sounder (SMILES) on the International Space Station (ISS) are used to study the diurnal cycle of upper-tropospheric ice cloud in the tropics and midlatitudes (40 degrees S-40 degrees N) and to quantitatively evaluate ice cloud diurnal variability simulated by 10 climatemodels. Over land, the SMILES-observed diurnal cycle has a maximum around 1800 local solar time (LST), while the model-simulated diurnal cycles have phases differing from the observed cycle by -4 to 12 h. Over ocean, the observations show much smaller diurnal cycle amplitudes than over land with a peak at 1200 LST, while the modeled diurnal cycle phases are widely distributed throughout the 24-h period. Most models show smaller diurnal cycle amplitudes over ocean than over land, which is in agreement with the observations. However, there is a large spread of modeled diurnal cycle amplitudes ranging from 20% to more than 300% of the observed over both land and ocean. Empirical orthogonal function (EOF) analysis on the observed and model-simulated variations of ice clouds finds that the first EOF modes over land from both observation and model simulations explain more than 70% of the ice cloud diurnal variations and they have similar spatial and temporal patterns. Over ocean, the first EOF from observation explains 26.4% of the variance, while the first EOF from most models explains more than 70%. The modeled spatial and temporal patterns of the leading EOFs over ocean show large differences from observations, indicating that the physical mechanisms governing the diurnal cycle of oceanic ice clouds are more complicated and not well simulated by the current climate models.
C1 [Jiang, Jonathan H.; Su, Hui; Zhai, Chengxing; Shen, T. Janice; Millan, Luis; Read, William G.; Livesey, Nathaniel J.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Wu, Tongwen; Zhang, Jie] China Meteorol Adm, Beijing Climate Ctr, Beijing, Peoples R China.
[Cole, Jason N. S.; von Salzen, Knut] Environm Canada, Canadian Ctr Climate Modeling & Anal, Victoria, BC, Canada.
[Donner, Leo J.; Seman, Charles] Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Del Genio, Anthony; Nazarenko, Larissa S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Dufresne, Jean-Louis] Inst Pierre Simon Laplace, Lab Meteorol Dynam, Paris, France.
[Watanabe, Masahiro] Univ Tokyo, Atmosphere & Ocean Res Inst, Model Interdisciplinary Res Climate, Kashiwa, Chiba, Japan.
[Morcrette, Cyril] Met Off Hadley Ctr, Exeter, Devon, England.
[Koshiro, Tsuyoshi; Kawai, Hideaki] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan.
[Gettelman, Andrew] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Kasai, Yasko] Natl Inst Informat & Commun Technol, Tokyo, Japan.
[Shiotani, Masato] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto, Japan.
RP Jiang, JH (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91011 USA.
EM jonathan.h.jiang@jpl.nasa.gov
RI Dufresne, Jean-Louis/I-5616-2015; Millan, Luis/J-2759-2015; Koshiro,
Tsuyoshi/O-7183-2016; Morcrette, Cyril/H-7282-2012
OI Dufresne, Jean-Louis/0000-0003-4764-9600; Koshiro,
Tsuyoshi/0000-0003-2971-7446; Cole, Jason/0000-0003-0450-2748;
Morcrette, Cyril/0000-0002-4240-8472
FU NASA [ROSES08-USPI, ROSES12-MAP, ROSES13-NDOA]; NASA; BCC; CCCma; GFDL;
GISS; IPSL; MIROC; MOHC; MRI; NCAR; MERRA
FX The authors appreciate the funding support by the NASA ROSES08-USPI,
ROSES12-MAP, and ROSES13-NDOA programs. This work was performed at the
NASA-sponsored Jet Propulsion Laboratory, California Institute of
Technology. We are also very thankful for the support from climate
modeling centers across the globe, including BCC, CCCma, GFDL, GISS,
IPSL, MIROC, MOHC, MRI, NCAR, and MERRA.
NR 98
TC 8
Z9 8
U1 3
U2 21
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
EI 1520-0469
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD MAR
PY 2015
VL 72
IS 3
BP 1022
EP 1044
DI 10.1175/JAS-D-14-0124.1
PG 23
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC4OQ
UT WOS:000350333100004
ER
PT J
AU Garboczi, EJ
Kushch, VI
AF Garboczi, E. J.
Kushch, V. I.
TI Computing elastic moduli on 3-D X-ray computed tomography image stacks
SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
LA English
DT Article
DE Composite; Analytical solutions; Boundary conditions; X-ray computed
tomography; Elastic moduli
ID FIBER-REINFORCED COMPOSITE; HASHIN-SHTRIKMAN BOUNDS; POROUS MATERIALS;
LATTICE SUMS; WIDE-RANGE; PARTICLES; MODEL; RECONSTRUCTION;
CONDUCTIVITY; POLYCRYSTALS
AB A numerical task of current interest is to compute the effective elastic properties of a random composite material by operating on a 3D digital image of its microstructure obtained via X-ray computed tomography (Cr). The 3-D image is usually sub-sampled since an X-ray CT image is typically of order 1000(3) voxels or larger, which is considered to be a very large finite element problem. Two main questions for the validity of any such study are then: can the sub-sample size be made sufficiently large to capture enough of the important details of the random microstructure so that the computed moduli can be thought of as accurate, and what boundary conditions should be chosen for these sub-samples? This paper contributes to the answer of both questions by studying a simulated X-ray CT cylindrical microstructure with three phases, cut from a random model system with known elastic properties. A new hybrid numerical method is introduced, which makes use of finite element solutions coupled with exact solutions for elastic moduli of square arrays of parallel cylindrical fibers. The new method allows, in principle, all of the microstructural data to be used when the X-ray CT image is in the form of a cylinder, which is often the case. Appendix A describes a similar algorithm for spherical sub-samples, which may be of use when examining the mechanical properties of particles. Cubic sub-samples are also taken from this simulated X-ray CT structure to investigate the effect of two different kinds of boundary conditions: forced periodic and fixed displacements. It is found that using forced periodic displacements on the non-geometrically periodic cubic sub-samples always gave more accurate results than using fixed displacements, although with about the same precision. The larger the cubic sub-sample, the more accurate and precise was the elastic computation, and using the complete cylindrical sample with the new method gave still more accurate and precise results. Fortran 90 programs for the analytical solutions are made available on-line, along with the parallel finite element codes used. Published by Elsevier Ltd.
C1 [Garboczi, E. J.] NIST, Mat & Struct Syst Div, Gaithersburg, MD 20899 USA.
[Kushch, V. I.] Natl Acad Sci Ukraine, Inst Superhard Mat, UA-04074 Kiev, Ukraine.
RP Garboczi, EJ (reprint author), NIST, Mat & Struct Syst Div, Gaithersburg, MD 20899 USA.
EM edward.garbocz@nist.gov
FU USG; NIST Sustainable Engineered Materials program
FX We would to thank F. Sabina for preliminary discussions about the
cylinder-box problem, A. Sangani for putting the two co-authors in touch
with each other, C.L. Lin for useful conversations about this method and
about aspects of X-ray CT, N. Kumar, D. Song, and C. Chan for suggesting
looking at real microstructures taken from X-ray CT images, and USG and
the NIST Sustainable Engineered Materials program for partial funding of
this work.
NR 37
TC 10
Z9 10
U1 1
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-5096
EI 1873-4782
J9 J MECH PHYS SOLIDS
JI J. Mech. Phys. Solids
PD MAR
PY 2015
VL 76
BP 84
EP 97
DI 10.1016/j.jmps.2014.12.003
PG 14
WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed
Matter
SC Materials Science; Mechanics; Physics
GA CC7GI
UT WOS:000350535300005
ER
PT J
AU Taszarek, M
Brooks, HE
AF Taszarek, Mateusz
Brooks, Harold E.
TI Tornado Climatology of Poland
SO MONTHLY WEATHER REVIEW
LA English
DT Article
DE Europe; Tornadoes; Climatology; Annual variations
ID UNITED-STATES; PARAMETERS; WATERSPOUTS; SUPERCELL; CLASSIFICATION;
THUNDERSTORMS; ENVIRONMENTS; PREDICTION; DATABASE
AB Very few studies on the occurrence of tornadoes in Poland have been performed and, therefore, their temporal and spatial variability have not been well understood. This article describes an updated climatology of tornadoes in Poland and the major problems related to the database. In this study, the results of an investigation of tornado occurrence in a 100-yr historical record (1899-1998) and a more recent 15-yr observational dataset (1999-2013) are presented. A total of 269 tornado cases derived from the European Severe Weather Database are used in the analysis. The cases are divided according to their strength on the F scale with weak tornadoes (unrated/F0/F1; 169 cases), significant tornadoes (F2/F3/F4; 66 cases), and waterspouts (34 cases). The tornado season extends from May to September (84% of all cases) with the seasonal peak for tornadoes occurring over land in July (23% of all land cases) and waterspouts in August (50% of all waterspouts). On average 8-14 tornadoes (including 2-3 waterspouts) with 2 strong tornadoes occur each year and 1 violent one occurs every 12-19 years. The maximum daily probability for weak and significant tornadoes occurs between 1500 and 1800 UTC while it occurs between 0900 and 1200 UTC for waterspouts. Tornadoes over land are most likely to occur in the south-central part of the country known as the Polish Tornado Alley. Cases of strong, and even violent, tornadoes that caused deaths indicate that the possibility of a large-fatality tornado in Poland cannot be ignored.
C1 [Taszarek, Mateusz] Adam Mickiewicz Univ, Inst Phys Geog & Environm Planning, Dept Climatol, PL-61680 Poznan, Poland.
[Brooks, Harold E.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA.
RP Taszarek, M (reprint author), Adam Mickiewicz Univ, Inst Phys Geog & Environm Planning, Dept Climatol, St Dziegielowa 27, PL-61680 Poznan, Poland.
EM mateusz.taszarek@amu.edu.pl
NR 77
TC 4
Z9 4
U1 2
U2 25
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD MAR
PY 2015
VL 143
IS 3
BP 702
EP 717
DI 10.1175/MWR-D-14-00185.1
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC6OB
UT WOS:000350483700002
ER
PT J
AU Moore, BJ
Mahoney, KM
Sukovich, EM
Cifelli, R
Hamill, TM
AF Moore, Benjamin J.
Mahoney, Kelly M.
Sukovich, Ellen M.
Cifelli, Robert
Hamill, Thomas M.
TI Climatology and Environmental Characteristics of Extreme Precipitation
Events in the Southeastern United States
SO MONTHLY WEATHER REVIEW
LA English
DT Article
DE Extreme events; Precipitation; Synoptic-scale processes; Storm
environments; Forecast verification; skill
ID MESOSCALE CONVECTIVE SYSTEMS; ATLANTIC HURRICANE SEASON; PREDECESSOR
RAIN EVENTS; TROPICAL CYCLONES; WARM-SEASON; ATMOSPHERIC RIVERS; HEAVY
RAINFALL; EXTRATROPICAL CYCLONES; HOURLY PRECIPITATION; INERTIAL
INSTABILITY
AB This paper documents the characteristics of extreme precipitation events (EPEs) in the southeastern United States (SEUS) during 2002-11. The EPEs are identified by applying an object-based method to 24-h precipitation analyses from the NCEP stage-IV dataset. It is found that EPEs affected the SEUS in all months and occurred most frequently in the western portion of the SEUS during the cool season and in the eastern portion during the warm season. The EPEs associated with tropical cyclones, although less common, tended to be larger in size, more intense, and longer lived than nontropical EPEs. Nontropical EPEs in the warm season, relative to those in the cool season, tended to be smaller in size and typically involved more moist, conditionally unstable conditions but weaker dynamical influences. Synoptic-scale composites are constructed for nontropical EPEs stratified by the magnitude of vertically integrated water vapor transport (IVT) to examine distinct scenarios for the occurrence of EPEs. The composite results indicate that strong IVT EPEs occur within high-amplitude flow patterns involving strong transport of moist, conditionally unstable air within the warm sector of a cyclone, whereas weak IVT EPEs occur within low-amplitude flow patterns featuring weak transport but very moist and conditionally unstable conditions. Finally, verification of deterministic precipitation forecasts from a reforecast dataset based on the NCEP Global Ensemble Forecast System reveals that weak-IVT EPEs were characteristically associated with lower forecast skill than strong-IVT EPEs. Based on these results, it is suggested that further research should be conducted to investigate the forecast challenges associated with EPEs in the SEUS.
C1 [Moore, Benjamin J.; Mahoney, Kelly M.; Sukovich, Ellen M.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Moore, Benjamin J.; Mahoney, Kelly M.; Sukovich, Ellen M.; Cifelli, Robert; Hamill, Thomas M.] NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO USA.
RP Moore, BJ (reprint author), SUNY Albany, Dept Atmospher & Environm Sci, 1400 Washington Ave, Albany, NY 12208 USA.
EM bjmoore@albany.edu
FU NOAA HMT program - U.S. Weather Research Program
FX This work was supported by the NOAA HMT program, which is funded through
NOAA's U.S. Weather Research Program, administered by the Office of
Weather and Air Quality. We thank Stephan Pfahl (ETH Zurich) and two
anonymous reviewers, whose comments and suggestions helped to improve
this manuscript.
NR 79
TC 6
Z9 6
U1 7
U2 21
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD MAR
PY 2015
VL 143
IS 3
BP 718
EP 741
DI 10.1175/MWR-D-14-00065.1
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC6OB
UT WOS:000350483700003
ER
PT J
AU Fierro, AO
Clark, AJ
Mansell, ER
MacGorman, DR
Dembek, SR
Ziegler, CL
AF Fierro, Alexandre O.
Clark, Adam J.
Mansell, Edward R.
MacGorman, Donald R.
Dembek, Scott R.
Ziegler, Conrad L.
TI Impact of Storm-Scale Lightning Data Assimilation on WRF-ARW
Precipitation Forecasts during the 2013 Warm Season over the Contiguous
United States
SO MONTHLY WEATHER REVIEW
LA English
DT Article
DE Lightning; Cloud microphysics; Cloud resolving models; Data
assimilation; Model evaluation; performance; Numerical weather
prediction; forecasting
ID ENSEMBLE KALMAN FILTER; MESOSCALE CONVECTIVE COMPLEXES; PART I; SPRING
EXPERIMENT; WEATHER RESEARCH; NEXT-GENERATION; WINTER STORM; RADAR DATA;
ETA-MODEL; SYSTEM
AB This work evaluates the performance of a recently developed cloud-scale lightning data assimilation technique implemented within the Weather Research and Forecasting Model running at convection-allowing scales (4-km grid spacing). Data provided by the Earth Networks Total Lightning Network for the contiguous United States (CONUS) were assimilated in real time over 67 days spanning the 2013 warm season (May-July). The lightning data were assimilated during the first 2 h of simulations each day. Bias-corrected, neighborhood-based, equitable threat scores (BC-ETSs) were the chief metric used to quantify the skill of the forecasts utilizing this assimilation scheme. Owing to inferior observational data quality over mountainous terrain, this evaluation focused on the eastern two-thirds of the United States.During the first 3 h following the assimilation (i.e., 3-h forecasts), all the simulations suffered from a high wet bias in forecasted accumulated precipitation (APCP), particularly for the lightning assimilation run (LIGHT). Forecasts produced by LIGHT, however, had a noticeable, statistically significant ( = 0.05) improvement over those by the control run (CTRL) up to 6 h into the forecast with BC-ETS differences often exceeding 0.4. This improvement was seen independently of the APCP threshold (ranging from 2.5 to 50 mm) and the neighborhood radius (ranging from 0 to 40 km) selected. Past 6 h of the forecast, the APCP fields from LIGHT progressively converged to that of CTRL probably due to the longer-term evolution being bounded by the large-scale model environment. Thus, this computationally inexpensive lightning assimilation scheme shows considerable promise for routinely improving short-term (6 h) forecasts of high-impact weather by convection-allowing forecast models.
C1 [Fierro, Alexandre O.; Clark, Adam J.; Dembek, Scott R.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA.
[Fierro, Alexandre O.; Clark, Adam J.] NOAA, OAR, Natl Severe Storms Lab, Norman, OK USA.
[Mansell, Edward R.; MacGorman, Donald R.; Ziegler, Conrad L.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA.
RP Fierro, AO (reprint author), Natl Weather Ctr, CIMMS, Suite 2100,120 David L Boren Blvd, Norman, OK 73072 USA.
EM alex.fierro@noaa.gov
RI Fierro, Alexandre/C-4733-2014;
OI Fierro, Alexandre/0000-0002-4859-1255; MacGorman,
Donald/0000-0002-2395-8196
FU NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of
Oklahoma Cooperative Agreement [NA11OAR4320072]; U.S. Department of
Commerce; National Oceanic and Atmospheric Administration of the U.S.
Department of Commerce [NOAA-NESDIS-OAR-NA08OAR4320904,
NOAA-OAR-CIPO-2014-2003893]
FX The authors thank Bill Callahan, Benny Chukrun, Stan Heckman, and Jim
Anderson from Earth Networks for providing the total lightning data.
Thanks also goes out to Brett Morrow and Steve Fletcher at NSSL for
providing critical IT support toward the completion of the real-time
simulations and the subsequent analysis of the data. The Earth Networks
lightning data were interpolated onto the local domain in real time
using software developed by Dr. Lakshmanan Valliappa. Funding was
provided by the NOAA/Office of Oceanic and Atmospheric Research under
NOAA-University of Oklahoma Cooperative Agreement NA11OAR4320072, U.S.
Department of Commerce. This work was further supported by the National
Oceanic and Atmospheric Administration of the U.S. Department of
Commerce under Grant NOAA-NESDIS-OAR-NA08OAR4320904 and Grant
NOAA-OAR-CIPO-2014-2003893. Auxiliary computer resources were provided
by the Oklahoma Supercomputing Center for Education and Research (OSCER)
hosted at the University of Oklahoma. Last, the authors also would like
to express their gratitude to Jack Kain, three anonymous reviewers, and
the editor of Monthly Weather Review, Altug Aksoy, for providing
valuable comments that helped improve the quality of this manuscript.
NR 80
TC 3
Z9 3
U1 2
U2 17
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD MAR
PY 2015
VL 143
IS 3
BP 757
EP 777
DI 10.1175/MWR-D-14-00183.1
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC6OB
UT WOS:000350483700005
ER
PT J
AU Fu, XH
Wang, WQ
Lee, JY
Wang, B
Kikuchi, K
Xu, JW
Li, J
Weaver, S
AF Fu, Xiouhua
Wang, Wanqiu
Lee, June-Yi
Wang, Bin
Kikuchi, Kazuyoshi
Xu, Jingwei
Li, Juan
Weaver, Scott
TI Distinctive Roles of Air-Sea Coupling on Different MJO Events: A New
Perspective Revealed from the DYNAMO/CINDY Field Campaign
SO MONTHLY WEATHER REVIEW
LA English
DT Review
DE Atmosphere-ocean interaction; Madden-Julian oscillation; Numerical
weather prediction; forecasting; Intraseasonal variability
ID MADDEN-JULIAN OSCILLATION; TROPICAL INTRASEASONAL OSCILLATION;
ATMOSPHERE RESPONSE EXPERIMENT; WESTERN EQUATORIAL PACIFIC;
GENERAL-CIRCULATION MODEL; ASIAN SUMMER MONSOON; TOGA COARE IOP; SURFACE
TEMPERATURE; EASTWARD PROPAGATION; CLIMATE MODELS
AB Previous observational analysis and modeling studies indicate that air-sea coupling plays an essential role in improving MJO simulations and extending MJO forecasting skills. However, whether the SST feedback plays an indispensable role for the existence of the MJO remains controversial, and the precise physical processes through which the SST feedback may lead to better MJO simulations and forecasts remain elusive.The DYNAMO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY) field campaign recently completed over the Indian Ocean reveals a new perspective and provides better data to improve understanding of the MJO. It is found that among the five MJO events that occurred during the DYNAMO/CINDY field campaign, only two MJO events (the November and March ones) have robust SST anomalies associated with them. For the other three MJO events (the October, December, and January ones), no coherent SST anomalies are observed. This observational scenario suggests that the roles of air-sea coupling on the MJO vary greatly from event to event.To elucidate the varying roles of air-sea coupling on different MJO events, a suite of hindcast experiments was conducted with a particular focus on the October and November MJO events. The numerical results confirm that the October MJO is largely controlled by atmospheric internal dynamics, while the November MJO is strongly coupled with underlying ocean. For the November MJO event, the positive SST anomalies significantly improve MJO forecasting by enhancing the response of a Kelvin-Rossby wave couplet, which prolongs the feedback between convection and large-scale circulations, and thus favors the development of stratiform rainfall, in turn, facilitating the production of eddy available potential energy and significantly amplifying the intensity of the model November MJO.
C1 [Fu, Xiouhua; Lee, June-Yi; Wang, Bin; Kikuchi, Kazuyoshi; Li, Juan] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Int Pacific Res Ctr, Honolulu, HI 96822 USA.
[Fu, Xiouhua; Xu, Jingwei] Nanjing Univ Informat Sci & Technol, Earth Syst Modelling Ctr, Nanjing, Jiangsu, Peoples R China.
[Wang, Wanqiu; Weaver, Scott] NOAA, Climate Predict Ctr, NWS, NCEP, College Pk, MD USA.
[Lee, June-Yi] Pusan Natl Univ, Pusan 609735, South Korea.
RP Fu, XH (reprint author), Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Int Pacific Res Ctr, 1680 East West Rd,POST Bldg 409D, Honolulu, HI 96822 USA.
EM xfu@hawaii.edu
FU NOAA [NA11OAR4310096, NA10OAR4310247]; NSF [AGS-1005599]; Japan Agency
for Marine-Earth Science and Technology (JAMSTEC); NOAA through the
IPRC; APEC Climate Center [MEST 2011-0021927, GYHY201206016,
NSFC41005057]
FX This work was sponsored by NOAA Grants NA11OAR4310096 and
NA10OAR4310247, NSF Grant AGS-1005599, and by the Japan Agency for
Marine-Earth Science and Technology (JAMSTEC) and NOAA through their
supports of the IPRC. Additional supports are from APEC Climate Center,
GRL Grant MEST 2011-0021927, CMA Project GYHY201206016, and
NSFC41005057.
NR 120
TC 9
Z9 9
U1 1
U2 12
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD MAR
PY 2015
VL 143
IS 3
BP 794
EP 812
DI 10.1175/MWR-D-14-00221.1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC6OB
UT WOS:000350483700007
ER
PT J
AU Hazelton, AT
Rogers, R
Hart, RE
AF Hazelton, Andrew T.
Rogers, Robert
Hart, Robert E.
TI Shear-Relative Asymmetries in Tropical Cyclone Eyewall Slope
SO MONTHLY WEATHER REVIEW
LA English
DT Article
DE Tropical cyclones; Hurricanes; typhoons
ID VERTICAL WIND SHEAR; INNER-CORE; PART II; DOPPLER RADAR; ENVIRONMENTAL
SHEAR; STORM MOTION; WARM-CORE; HURRICANE; EVOLUTION; INTENSITY
AB Recent studies have analyzed the azimuthal mean slope of the tropical cyclone (TC) eyewall. This study looks at the shear-relative azimuthal variability of different metrics of eyewall slope: the 20-dBZ surface, the radius of maximum wind (RMW), and an angular momentum (M) surface passing through the RMW. The data used are Doppler radar composites from the NOAA Hurricane Research Division (HRD). This study examines 34 TCs, with intensities ranging from 3 to 75 m s(-1) and shear magnitudes ranging from 0 to 10 m s(-1). Calculation of the mean slope in each quadrant for all cases shows that RMW slope has the strongest asymmetry, with downshear slope larger than upshear in 62% of cases. Slopes of momentum surfaces and dBZ surfaces are also greater downshear in some cases (65% for M and 47% for dBZ), but there is more variance than in the RMW slope. The azimuthal phase of maximum slope occurs most often downshear, particularly downshear left, consistent with the depiction of a mean vortex tilt approximately 10 degrees left of shear. Filtering the cases into high and low shear illustrates that the tendency for greater slope downshear is magnified for high-shear cases. In addition, although the dBZ slope shows less shear-relative signal overall, the difference between the dBZ slope and momentum slope is an important factor in distinguishing between strengthening and weakening or steady TCs. Intensifying TCs tend to have dBZ surfaces that are more upright than M surfaces. Further investigation of these results will help to illustrate the ways in which vertical shear can play a role in altering the structure of the TC core region.
C1 [Hazelton, Andrew T.; Hart, Robert E.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA.
[Rogers, Robert] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA.
RP Hazelton, AT (reprint author), Florida State Univ, Dept Earth Ocean & Atmospher Sci, 404 Love Bldg, Tallahassee, FL 32306 USA.
EM ath09c@my.fsu.edu
RI Rogers, Robert/I-4428-2013
FU FSU Legacy Fellowship
FX The authors thank the scientists and flight crews of NOAA-42 and NOAA-43
for their efforts to collect valuable data, including the radar data
used in this study. John Gamache's three-dimensional Doppler analysis
technique was invaluable for constructing the merged analyses used in
this study. The authors thank Eric Uhlhorn, Paul Reasor, and Frank Marks
for helpful discussions. The comments of two anonymous reviewers led to
significant improvements in the analysis and discussions from an earlier
version of the manuscript. The lead author was partially supported by
the FSU Legacy Fellowship.
NR 49
TC 4
Z9 4
U1 0
U2 2
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD MAR
PY 2015
VL 143
IS 3
BP 883
EP 903
DI 10.1175/MWR-D-14-00122.1
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC6OB
UT WOS:000350483700013
ER
PT J
AU Cione, JJ
AF Cione, Joseph J.
TI The Relative Roles of the Ocean and Atmosphere as Revealed by Buoy
Air-Sea Observations in Hurricanes
SO MONTHLY WEATHER REVIEW
LA English
DT Article
DE Sea surface temperature; Surface layer; Tropical cyclones; Air-sea
interaction; Thermodynamics; Model evaluation; performance
ID MIXED-LAYER RESPONSE; SURFACE TEMPERATURE; INTENSITY CHANGE; MESOSCALE;
FEATURES; IMPACT; EDDY; OPAL
AB Results from this multihurricane study suggest that the criticality of the oft-cited 26 degrees C hurricane threshold linked to hurricane maintenance may be more closely associated with atmospheric thermodynamic conditions within the inner core than previously believed. In all cases, a positive sea-air contrast was observed within the storm inner core (i.e., surface ocean temperature greater than surface air temperature), despite the fact that 6% of the hurricanes exhibited sea surface temperatures (SSTs) less than the 26 degrees C. For the storms sampled in this study, inner-core surface dewpoint temperatures never exceeded 26.5 degrees C. This finding may provide an alternate explanation as to the criticality of the 26 degrees C threshold since SSTs above 26 degrees C would, in almost all instances, be associated with a positive enthalpy flux condition. Analyses from this study also illustrate that high wind SSTs fluctuate as a function of storm latitude, while inner-core near-surface dewpoint temperatures are much less sensitive to this parameter. As a result, and assuming all other factors to be equal, low-latitude hurricanes would, on average, be expected to experience surface moisture fluxes similar to 1/3 greater than storms located farther to the north. For systems sampled within the deep tropics, inner-core SST was found to fluctuate much less than surface dewpoint temperature, suggesting that the atmosphere, not the ocean, is more likely to influence the key thermodynamic parameter controlling surface moisture flux for this subset of hurricanes.
C1 [Cione, Joseph J.] NOAA, AOML, Hurricane Res Div, Miami, FL 33176 USA.
RP Cione, JJ (reprint author), NOAA, Hurricane Res Div, 4301 Rickenbacker Causeway, Miami, FL 33176 USA.
EM joe.cione@noaa.gov
RI CIONE, JOSEPH/B-2973-2014
OI CIONE, JOSEPH/0000-0002-2011-887X
NR 34
TC 3
Z9 3
U1 3
U2 9
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD MAR
PY 2015
VL 143
IS 3
BP 904
EP 913
DI 10.1175/MWR-D-13-00380.1
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC6OB
UT WOS:000350483700014
ER
PT J
AU Zhang, DL
Zhu, L
Zhang, XJ
Tallapragada, V
AF Zhang, Da-Lin
Zhu, Lin
Zhang, Xuejin
Tallapragada, Vijay
TI Sensitivity of Idealized Hurricane Intensity and Structures under
Varying Background Flows and Initial Vortex Intensities to Different
Vertical Resolutions in HWRF
SO MONTHLY WEATHER REVIEW
LA English
DT Article
DE Convection; Wind shear; Tropical cyclones; Cloud resolving models;
Mesoscale models; Optimization
ID PART I; RAPID INTENSIFICATION; HORIZONTAL RESOLUTION; SIMULATED
HURRICANE; TROPICAL CYCLONES; ANDREW 1992; WIND SHEAR; MODEL; EVOLUTION;
PARAMETERIZATION
AB A series of 5-day numerical simulations of idealized hurricane vortices under the influence of different background flows is performed by varying vertical grid resolution (VGR) in different portions of the atmosphere with the operational version of the Hurricane Weather Research and Forecasting Model in order to study the sensitivity of hurricane intensity forecasts to different distributions of VGR. Increasing VGR from 21 to 43 levels produces stronger hurricanes, whereas increasing it further to 64 levels does not intensify the storms further, but intensity fluctuations are much reduced. Moreover, increasing the lower-level VGRs generates stronger storms, but the opposite is true for increased upper-level VGRs. On average, adding mean flow increases intensity fluctuations and variability (between the strongest and weakest hurricanes), whereas adding vertical wind shear (VWS) delays hurricane intensification and then causes more rapid growth in intensity variability. The stronger the VWS, the larger intensity variability and bifurcation rate occur at later stages. These intensity differences are found to be closely related to inner-core structural changes, and they are attributable to how much latent heat could be released in higher-VGR layers, followed by how much moisture content in nearby layers is converged. Hurricane intensity with higher VGRs is shown to be much less sensitive to varying background flows, and stronger hurricane vortices at the model initial time are less sensitive to the vertical distribution of VGR; the opposite is true for relatively uniform VGRs or weaker hurricane vortices. Results reveal that higher VGRs with a near-parabolic or shape tend to produce smoother intensity variations and more typical inner-core structures.
C1 [Zhang, Da-Lin; Zhu, Lin] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.
[Zhang, Da-Lin; Zhu, Lin] Univ Maryland, Ctr Sci Computat & Math Modeling, College Pk, MD 20742 USA.
[Zhang, Xuejin] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL USA.
[Zhang, Xuejin] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
[Tallapragada, Vijay] NOAA, NCEP, Environm Modeling Ctr, College Pk, MD USA.
RP Zhang, DL (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, 2419 CSS Bldg, College Pk, MD 20742 USA.
EM dalin@atmos.umd.edu
RI Zhang, Da-Lin/F-2634-2010; Zhang, Xuejin/B-3085-2014
OI Zhang, Da-Lin/0000-0003-1725-283X; Zhang, Xuejin/0000-0003-2630-534X
FU NOAA's Hurricane Forecast Improvement Project (HFIP) [NA12NWS4680008,
NA12NWS4680007]; NASA [NNX12AJ78G]; ONR [N000141410143]
FX This work was supported by NOAA's Hurricane Forecast Improvement Project
(HFIP) through Grants NA12NWS4680008 and NA12NWS4680007, NASA Grant
NNX12AJ78G, and ONR Grant N000141410143. All the model integrations were
conducted on NOAA's Jet computing system.
NR 40
TC 1
Z9 1
U1 0
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD MAR
PY 2015
VL 143
IS 3
BP 914
EP 932
DI 10.1175/MWR-D-14-00102.1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC6OB
UT WOS:000350483700015
ER
PT J
AU Feldmann, K
Scheuerer, M
Thorarinsdottir, TL
AF Feldmann, Kira
Scheuerer, Michael
Thorarinsdottir, Thordis L.
TI Spatial Postprocessing of Ensemble Forecasts for Temperature Using
Nonhomogeneous Gaussian Regression
SO MONTHLY WEATHER REVIEW
LA English
DT Article
DE Ensembles; Probability forecasts; models; distribution; Statistical
forecasting; Model output statistics
ID MODEL OUTPUT STATISTICS; PROBABILISTIC FORECASTS; CALIBRATION;
REFORECASTS; SIMULATION; PREDICTION; MINIMUM
AB Statistical postprocessing techniques are commonly used to improve the skill of ensembles from numerical weather forecasts. This paper considers spatial extensions of the well-established nonhomogeneous Gaussian regression (NGR) postprocessing technique for surface temperature and a recent modification thereof in which the local climatology is included in the regression model to permit locally adaptive postprocessing. In a comparative study employing 21-h forecasts from the Consortium for Small Scale Modelling ensemble predictive system over Germany (COSMO-DE), two approaches for modeling spatial forecast error correlations are considered: a parametric Gaussian random field model and the ensemble copula coupling (ECC) approach, which utilizes the spatial rank correlation structure of the raw ensemble. Additionally, the NGR methods are compared to both univariate and spatial versions of the ensemble Bayesian model averaging (BMA) postprocessing technique.
C1 [Feldmann, Kira] Heidelberg Inst Theoret Studies, D-69118 Heidelberg, Germany.
[Scheuerer, Michael] NOAA, Boulder, CO USA.
[Thorarinsdottir, Thordis L.] Norwegian Comp Ctr, Oslo, Norway.
RP Feldmann, K (reprint author), Heidelberg Inst Theoret Studies, Schlosswolfsbrunnenweg 35, D-69118 Heidelberg, Germany.
EM kira.feldmann@h-its.org
RI Scheuerer, Michael/D-5472-2015
OI Scheuerer, Michael/0000-0003-4540-9478
FU German Federal Ministry of Education and Research; Statistics for
Innovation, sfi2 in Oslo, Norway
FX The authors thank Tilmann Gneiting for sharing his thoughts and
expertise. This work was funded by the German Federal Ministry of
Education and Research, within the framework of the extramural research
program of Deutscher Wetterdienst and by Statistics for Innovation,
sfi2 in Oslo, Norway.
NR 52
TC 11
Z9 11
U1 0
U2 11
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD MAR
PY 2015
VL 143
IS 3
BP 955
EP 971
DI 10.1175/MWR-D-14-00210.1
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC6OB
UT WOS:000350483700017
ER
PT J
AU Lu, XF
Wang, NZ
Wu, H
Wu, YP
Zhao, D
Zeng, XZ
Luo, XG
Wu, T
Bao, W
Zhang, GH
Huang, FQ
Huang, QZ
Chen, XH
AF Lu, X. F.
Wang, N. Z.
Wu, H.
Wu, Y. P.
Zhao, D.
Zeng, X. Z.
Luo, X. G.
Wu, T.
Bao, W.
Zhang, G. H.
Huang, F. Q.
Huang, Q. Z.
Chen, X. H.
TI Coexistence of superconductivity and antiferromagnetism in
(Li0.8Fe0.2)OHFeSe
SO NATURE MATERIALS
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; PHASE-SEPARATION; FESE;
A(X)FE(2)SE(2); DIAGRAM; FILMS
AB Iron selenide superconductors exhibit a number of unique characteristics that are helpful for understanding the mechanism of superconductivity in high-T-c iron-based superconductors more generally. However, in the case of A(x)Fe(2)Se(2) (A = K, Rb, Cs), the presence of an intergrown antiferromagnetic insulating phase makes the study of the underlying physics problematic. Moreover, FeSe-based systems intercalated with alkali metal ions, NH3 molecules or organic molecules are extremely sensitive to air, which prevents the further investigation of their physical properties. It is therefore desirable to find a stable and easily accessible FeSe-based superconductor to study its physical properties in detail. Here, we report the synthesis of an air-stable material, (Li0.8Fe0.2) OHFeSe, which remains superconducting at temperatures up to similar to 40 K, by means of a novel hydrothermal method. The crystal structure is unambiguously determined by a combination of X-ray and neutron powder diffraction and nuclear magnetic resonance. Moreover, antiferromagnetic order is shown to coexist with superconductivity. This synthetic route opens a path for exploring superconductivity in other related systems, and confirms the appeal of iron selenides as a platform for understanding superconductivity in iron pnictides more broadly.
C1 [Lu, X. F.; Wang, N. Z.; Wu, Y. P.; Zhao, D.; Zeng, X. Z.; Luo, X. G.; Wu, T.; Chen, X. H.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China.
[Lu, X. F.; Wang, N. Z.; Wu, Y. P.; Zhao, D.; Zeng, X. Z.; Luo, X. G.; Wu, T.; Chen, X. H.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China.
[Lu, X. F.; Wang, N. Z.; Wu, Y. P.; Zhao, D.; Zeng, X. Z.; Luo, X. G.; Wu, T.; Chen, X. H.] Univ Sci & Technol China, Chinese Acad Sci, Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China.
[Wu, H.; Huang, Q. Z.] NIST, Ctr Neutron Res, Gaithersburg, MD 20878 USA.
[Wu, H.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Luo, X. G.; Wu, T.; Chen, X. H.] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
[Bao, W.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China.
[Zhang, G. H.; Huang, F. Q.] Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 200050, Peoples R China.
[Zhang, G. H.; Huang, F. Q.] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China.
[Zhang, G. H.; Huang, F. Q.] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China.
RP Chen, XH (reprint author), Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China.
EM chenxh@ustc.edu.cn
RI Wu, Hui/C-6505-2008; Bao, Wei/E-9988-2011
OI Wu, Hui/0000-0003-0296-5204; Bao, Wei/0000-0002-2105-461X
FU National Natural Science Foundation of China (NSFC); 'Strategic Priority
Research Program (B)' of the Chinese Academy of Sciences; National Basic
Research Program of China (973 Program)
FX We would like to thank Z. Sun for discussions and Z. Qi for his help on
infrared reflectance spectroscopy measurements. This work is supported
by the National Natural Science Foundation of China (NSFC), the
'Strategic Priority Research Program (B)' of the Chinese Academy of
Sciences, and the National Basic Research Program of China (973
Program). (Certain commercial suppliers are identified in this paper to
foster understanding. Such identification does not imply recommendation
or endorsement by the NIST).
NR 28
TC 64
Z9 65
U1 34
U2 237
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
EI 1476-4660
J9 NAT MATER
JI Nat. Mater.
PD MAR
PY 2015
VL 14
IS 3
BP 325
EP 329
DI 10.1038/NMAT4155
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA CC1WP
UT WOS:000350136400021
PM 25502096
ER
PT J
AU Force, MP
Santora, JA
Reiss, CS
Loeb, VJ
AF Force, Michael P.
Santora, Jarrod A.
Reiss, Christian S.
Loeb, Valerie J.
TI Seabird species assemblages reflect hydrographic and biogeographic zones
within Drake Passage
SO POLAR BIOLOGY
LA English
DT Article
DE Assemblages; Hydrographic fronts; Gradient; Polar Front; Seabird
community; Spatial ecology
ID ANTARCTIC CIRCUMPOLAR CURRENT; KRILL EUPHAUSIA-SUPERBA; SOUTHERN-OCEAN;
COMMUNITY STRUCTURE; VARIABILITY; SEA; FRONTS; POLAR; PACIFIC; AMERICA
AB Drake Passage, extending from the southern tip of South America to the northern Antarctic Peninsula, is a dynamic oceanographic region with well-defined habitats delineated by the three strong frontal jets of the Antarctic Circumpolar Current (ACC). Here, we describe seabird species distribution patterns across Drake Passage and test the hypothesis that species assemblages broadly reflect physical characteristics of the hydrographic fronts. Strip-transect seabird surveys were conducted between Tierra del Fuego and the South Shetland Islands (700 km track line) during January-March (austral summer) over 14 years (48 crossings). Locations of the latitudinally variable fronts were assessed using in situ shipboard data on sea surface temperature and salinity; areas of high variance were used to indicate frontal features. We quantified five distinct species assemblages that correspond to biogeographic regions and relate to the positions of the Sub-Antarctic Front, Polar Front and ACC Southern Front. Dense seabird concentrations coincided with regions characterized by highly variable sea surface temperature and salinity, suggesting that associated species assemblages reflect the mesoscale hydrographic surface as indicated by sea surface conditions.
C1 [Force, Michael P.; Reiss, Christian S.] NOAA, Antarctic Ecosyst Res Div, SW Fisheries Sci Ctr, La Jolla, CA 92037 USA.
[Santora, Jarrod A.] Univ Calif Santa Cruz, Ctr Stock Assessment Res, Santa Cruz, CA 95060 USA.
[Loeb, Valerie J.] Moss Landing Marine Labs, Moss Landing, CA 95039 USA.
RP Santora, JA (reprint author), Univ Calif Santa Cruz, Ctr Stock Assessment Res, 110 Shaffer Rd, Santa Cruz, CA 95060 USA.
EM jsantora@ucsc.edu
FU NOAA [JG133F09SE4078]; NSF [1347911]; Southwest Fisheries Science
Center; University of California, Santa Cruz
FX We thank the captains, crews, colleagues and multitudes of shipboard
assistants over the years who helped develop the long-term AMLR data
set. We thank also AMLR Program Director George Watters for facilitating
the current collaborative effort. We are grateful to Roger Hewitt, whose
long-term vision and enthusiastic support were invaluable during the
early years of data collection. We appreciate the feedback from two
anonymous reviewers which helped improve this paper. Support for MPF was
provided by NOAA contract no JG133F09SE4078. J.A. Santora and V.J. Loeb
were supported by NSF award no 1347911. The views expressed herein are
those of the authors and do not necessarily reflect the views of NOAA or
any of its subagencies. This work was partially supported by the Center
for Stock Assessment Research, a partnership between the Southwest
Fisheries Science Center and the University of California, Santa Cruz.
NR 36
TC 0
Z9 0
U1 2
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0722-4060
EI 1432-2056
J9 POLAR BIOL
JI Polar Biol.
PD MAR
PY 2015
VL 38
IS 3
BP 381
EP 392
DI 10.1007/s00300-014-1594-7
PG 12
WC Biodiversity Conservation; Ecology
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA CC0QJ
UT WOS:000350040500009
ER
PT J
AU Johnson, A
Harrison, M
AF Johnson, Ashanti
Harrison, Melanie
TI The Increasing Problem of Nutrient Runoff on the Coast
SO AMERICAN SCIENTIST
LA English
DT Editorial Material
ID MARINE ECOSYSTEMS; EUTROPHICATION
C1 [Johnson, Ashanti] Univ Texas Arlington, Arlington, TX 76019 USA.
[Harrison, Melanie] NOAA, NMFS, Silver Spring, MD USA.
RP Johnson, A (reprint author), Univ Texas Arlington, Arlington, TX 76019 USA.
EM melanie.okoro@noaa.gov
NR 7
TC 3
Z9 3
U1 0
U2 13
PU SIGMA XI-SCI RES SOC
PI RES TRIANGLE PK
PA PO BOX 13975, RES TRIANGLE PK, NC 27709 USA
SN 0003-0996
EI 1545-2786
J9 AM SCI
JI Am. Scientist
PD MAR-APR
PY 2015
VL 103
IS 2
BP 98
EP 101
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CC0GM
UT WOS:000350013800012
ER
PT J
AU Schneider, BI
AF Schneider, Barry I.
TI The Impact of Heterogeneous Computer Architectures on Computational
Physics INTRODUCTION
SO COMPUTING IN SCIENCE & ENGINEERING
LA English
DT Editorial Material
C1 NIST, Gaithersburg, MD 20899 USA.
RP Schneider, BI (reprint author), NIST, Gaithersburg, MD 20899 USA.
EM bis@nist.gov
NR 0
TC 1
Z9 1
U1 1
U2 2
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1521-9615
EI 1558-366X
J9 COMPUT SCI ENG
JI Comput. Sci. Eng.
PD MAR-APR
PY 2015
VL 17
IS 2
BP 9
EP 13
PG 5
WC Computer Science, Interdisciplinary Applications
SC Computer Science
GA CC0GV
UT WOS:000350014700002
ER
PT J
AU Stebbings, R
Wang, L
Sutherland, J
Kammel, M
Gaigalas, AK
John, M
Roemer, B
Kuhne, M
Schneider, RJ
Braun, M
Engel, A
Dikshit, DK
Abbasi, F
Marti, GE
Paola Sassi, M
Revel, L
Kim, SK
Baradez, MO
Lekishvili, T
Marshall, D
Whitby, L
Jing, W
Ost, V
Vonsky, M
Neukammer, J
AF Stebbings, Richard
Wang, Lili
Sutherland, Janet
Kammel, Martin
Gaigalas, Adolfas K.
John, Manuela
Roemer, Bodo
Kuhne, Maren
Schneider, Rudolf J.
Braun, Michael
Engel, Andrea
Dikshit, Dinesh K.
Abbasi, Fatima
Marti, Gerald E.
Paola Sassi, Maria
Revel, Laura
Kim, Sook-Kyung
Baradez, Marc-Olivier
Lekishvili, Tamara
Marshall, Damian
Whitby, Liam
Jing, Wang
Ost, Volker
Vonsky, Maxim
Neukammer, Joerg
TI Quantification of Cells with Specific Phenotypes I: Determination of
CD4+Cell Count Per Microliter in Reconstituted Lyophilized Human PBMC
Prelabeled with Anti-CD4 FITC Antibody
SO CYTOMETRY PART A
LA English
DT Article
DE CD4+cell counting; relative concentration measurement; lyophilized
cells; flow cytometry; standard measurement procedure; measurement of
uncertainty; human immunodeficiency virus-1; acquired immunodeficiency
syndrome; reference material
ID HUMAN-IMMUNODEFICIENCY-VIRUS; FLOW-CYTOMETRY; ANTIRETROVIRAL THERAPY;
QUALITY ASSESSMENT; HIV-INFECTION; ENUMERATION; LYMPHOCYTE;
STANDARDIZATION; GUIDELINES; ACCURATE
AB A surface-labeled lyophilized lymphocyte (sLL) preparation has been developed using human peripheral blood mononuclear cells prelabeled with a fluorescein isothiocyanate conjugated anti-CD4 monoclonal antibody. The sLL preparation is intended to be used as a reference material for CD4+ cell counting including the development of higher order reference measurement procedures and has been evaluated in the pilot study CCQM-P102. This study was conducted across 16 laboratories from eight countries to assess the ability of participants to quantify the CD4+ cell count of this reference material and to document cross-laboratory variability plus associated measurement uncertainties. Twelve different flow cytometer platforms were evaluated using a standard protocol that included calibration beads used to obtain quantitative measurements of CD4+ T cell counts. There was good overall cross-platform and counting method agreement with a grand mean of the laboratory calculated means of (301.7 +/- 4.9) L-1 CD4+ cells. Excluding outliers, greater than 90% of participant data agreed within +/- 15%. A major contribution to variation of sLL CD4+ cell counts was tube to tube variation of the calibration beads, amounting to an uncertainty of 3.6%. Variation due to preparative steps equated to an uncertainty of 2.6%. There was no reduction in variability when data files were centrally reanalyzed. Remaining variation was attributed to instrument specific differences. CD4+ cell counts obtained in CCQM-P102 are in excellent agreement and show the robustness of both the measurements and the data analysis and hence the suitability of sLL as a reference material for interlaboratory comparisons and external quality assessment. (c) 2015 The Authors. Published by Wiley Periodicals, Inc.
C1 [Stebbings, Richard; Sutherland, Janet] NIBSC, Biotherapeut Grp, Potters Bar EN6 3QG, Herts, England.
[Wang, Lili; Gaigalas, Adolfas K.] NIST, Biosyst & Biomat Div, Gaithersburg, MD 20899 USA.
[Kammel, Martin; John, Manuela; Neukammer, Joerg] PTB, Div Med Phys & Metrol Informat Technol, D-10587 Berlin, Germany.
[Roemer, Bodo] Abbott GmbH & Co KG, D-65205 Wiesbaden, Germany.
[Kuhne, Maren; Schneider, Rudolf J.] BAM Fed Inst Mat Res & Testing, Dept Analyt Chem, D-12489 Berlin, Germany.
[Braun, Michael] Beckman Coulter GmbH, D-47807 Krefeld, Germany.
[Engel, Andrea] Becton Dickinson GmbH, D-69126 Heidelberg, Germany.
[Dikshit, Dinesh K.] CSIR Cent Drug Res Inst CDRI, Med & Proc Chem Div, Lucknow 226001, Uttar Pradesh, India.
[Abbasi, Fatima; Marti, Gerald E.] US FDA, CDRH, Bethesda, MD 20993 USA.
[Paola Sassi, Maria; Revel, Laura] Ist Nazl Ric Metrol INRIM, I-10135 Turin, Italy.
[Kim, Sook-Kyung] Korea Res Inst Stand & Sci KRISS, Taejon 305340, South Korea.
[Baradez, Marc-Olivier; Lekishvili, Tamara; Marshall, Damian] LGC Ltd, Sci & Innovat, Teddington TW11 0LY, Middx, England.
[Whitby, Liam] UK Natl External Qual Assessment Serv UK NEQAS Le, Sheffield S10 2QD, S Yorkshire, England.
[Jing, Wang] NIM, Div Med & Biol Measurement, Beijing, Peoples R China.
[Ost, Volker] Partec GmbH, D-48161 Munster, Germany.
[Vonsky, Maxim] DI Mendeleev Inst Metrol VNIIM, Dept State Stand Field Phys Chem Measurements, St Petersburg 190005, Russia.
[Vonsky, Maxim] Russian Acad Sci, Inst Cytol, St Petersburg 194064, Russia.
RP Stebbings, R (reprint author), MedImmune Ltd, Aaron Klug Bldg,Granta Pk, Cambridge CB21 6GH, England.
EM Stebbingsr@medimmune.com
RI Schneider, Rudolf J./A-3771-2009; Stebbings, Richard/E-2117-2013;
OI Schneider, Rudolf J./0000-0003-2228-1248; Stebbings,
Richard/0000-0001-9628-2708; Vonsky, Maxim/0000-0003-4061-7411
NR 36
TC 2
Z9 2
U1 2
U2 6
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1552-4922
EI 1552-4930
J9 CYTOM PART A
JI Cytom. Part A
PD MAR
PY 2015
VL 87A
IS 3
BP 244
EP 253
DI 10.1002/cyto.a.22614
PG 10
WC Biochemical Research Methods; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA CB9WJ
UT WOS:000349984200007
PM 25655255
ER
PT J
AU Wang, L
Stebbings, R
Gaigalas, AK
Sutherland, J
Kammel, M
John, M
Roemer, B
Kuhne, M
Schneider, RJ
Braun, M
Engel, A
Dikshit, D
Abbasi, F
Marti, GE
Sassi, M
Revel, L
Kim, SK
Baradez, M
Lekishvili, T
Marshall, D
Whitby, L
Jing, W
Ost, V
Vonsky, M
Neukammer, J
AF Wang, L.
Stebbings, R.
Gaigalas, A. K.
Sutherland, J.
Kammel, M.
John, M.
Roemer, B.
Kuhne, M.
Schneider, R. J.
Braun, M.
Engel, A.
Dikshit, D.
Abbasi, F.
Marti, G. E.
Sassi, M.
Revel, L.
Kim, S. K.
Baradez, M.
Lekishvili, T.
Marshall, D.
Whitby, L.
Jing, W.
Ost, V.
Vonsky, M.
Neukammer, J.
TI Quantification of Cells with Specific Phenotypes II: Determination of
CD4 Expression Level on Reconstituted Lyophilized Human PBMC Labelled
with Anti-CD4 FITC Antibody
SO CYTOMETRY PART A
LA English
DT Article
DE surface labelled lyophilized PBMC; CD4 expression level; FITC;
equivalent fluorescein fluorophore (EFF); quantitative flow cytometry;
calibration; standard measurement procedure; measurement uncertainty;
reference cell material
ID ASSAYS PRACTICE GUIDELINES; MULTICOLOR FLOW-CYTOMETRY; LYMPHOCYTES;
DENSITY; IMMUNODEFICIENCY; STANDARDIZATION; FLUOROPHORES; VARIABILITY;
CALIBRATION; VALIDATION
AB This report focuses on the characterization of CD4 expression level in terms of equivalent number of reference fluorophores (ERF). Twelve different flow cytometer platforms across sixteen laboratories were utilized in this study. As a first step the participants were asked to calibrate the fluorescein isothiocyanate (FITC) channel of each flow cytometer using commercially available calibration standard consisting of five populations of microspheres. Each population had an assigned value of equivalent fluorescein fluorophores (EFF denotes a special case of the generic term ERF with FITC as the reference fluorophore). The EFF values were assigned at the National Institute of Standards and Technology (NIST). A surface-labelled lyophilized cell preparation was provided by the National Institute of Biological Standards and Control (NIBSC), using human peripheral blood mononuclear cells (PBMC) pre-labeled with a FITC conjugated anti-CD4 monoclonal antibody. Three PBMC sample vials, provided to each participant, were used for the CD4 expression analysis. The PBMC are purported to have a fixed number of surface CD4 receptors. On the basis of the microsphere calibration, the EFF value of the PBMC samples was measured to characterize the population average CD4 expression level of the PBMC preparations. Both the results of data analysis performed by each participant and the results of centralized analysis of all participants' raw data are reported. Centralized analysis gave a mean EFF value of 22,300 and an uncertainty of 750, corresponding to 3.3% (level of confidence 68%) of the mean EFF value. The next step will entail the measurement of the ERF values of the lyophilized PBMC stained with labels for other fluorescence channels. The ultimate goal is to show that lyophilized PBMC is a suitable biological reference cell material for multicolor flow cytometry and that it can be used to present multicolor flow cytometry measurements in terms of ABC (antibodies bound per cell) units. (c) 2015 International Society for Advancement of Cytometry
C1 [Wang, L.; Gaigalas, A. K.] NIST, Biosyst & Biomat Div, Gaithersburg, MD 20899 USA.
[Stebbings, R.; Sutherland, J.] NIBSC, Biotherapeut Grp, Potters Bar EN6 3QG, Herts, England.
[Kammel, M.; John, M.; Neukammer, J.] PTB, Div Med Phys & Metrol Informat Technol, D-10587 Berlin, Germany.
[Roemer, B.] Abbott GmbH & Co KG, Ludwigshafen, Germany.
[Kuhne, M.; Schneider, R. J.] BAM Fed Inst Mat Res & Testing, Dept Analyt Chem, D-12489 Berlin, Germany.
[Braun, M.] Beckman Coulter GmbH, D-47807 Krefeld, Germany.
[Engel, A.] Becton Dickinson, D-69126 Heidelberg, Germany.
[Dikshit, D.] CDRI, Med & Proc Chem Div, Lucknow 226001, Uttar Pradesh, India.
[Abbasi, F.; Marti, G. E.] US FDA, CDRH, Bethesda, MD 20892 USA.
[Sassi, M.; Revel, L.] INRIM Ist Nazl Ric Metrol, I-10135 Turin, Italy.
[Kim, S. K.] KRISS, Taejon 305340, South Korea.
[Baradez, M.; Lekishvili, T.; Marshall, D.] LGC Ltd, Sci & Innovat, Teddington TW11 0LY, Middx, England.
[Whitby, L.] UK NEQAS UK Natl External Qual Assessment Serv, Sheffield S10 2QD, S Yorkshire, England.
[Jing, W.] NIM, Div Med & Biol Measurement, Beijing, Peoples R China.
[Ost, V.] Partec GmbH, D-48161 Munster, Germany.
[Vonsky, M.] VNIIM DI Mendeleev Inst Metrol, Dept State Stand Field Phys Chem Measurements, St Petersburg 190005, Russia.
[Vonsky, M.] Russian Acad Sci, Inst Cytol, St Petersburg 194064, Russia.
RP Wang, L (reprint author), NIST, 100 Bur Dr,Stop 8312, Gaithersburg, MD 20899 USA.
EM lili.wang@nist.gov
RI Schneider, Rudolf J./A-3771-2009; Stebbings, Richard/E-2117-2013;
OI Schneider, Rudolf J./0000-0003-2228-1248; Stebbings,
Richard/0000-0001-9628-2708; Vonsky, Maxim/0000-0003-4061-7411
NR 29
TC 2
Z9 2
U1 2
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1552-4922
EI 1552-4930
J9 CYTOM PART A
JI Cytom. Part A
PD MAR
PY 2015
VL 87A
IS 3
BP 254
EP 261
DI 10.1002/cyto.a.22634
PG 8
WC Biochemical Research Methods; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA CB9WJ
UT WOS:000349984200008
PM 25655377
ER
PT J
AU Jeong, Y
Gnaupel-Herold, T
Barlat, F
Iadicola, M
Creuziger, A
Lee, MG
AF Jeong, Youngung
Gnaeupel-Herold, Thomas
Barlat, Frederic
Iadicola, Mark
Creuziger, Adam
Lee, Myoung-Gyu
TI Evaluation of biaxial flow stress based on elasto-viscoplastic
self-consistent analysis of X-ray diffraction measurements
SO INTERNATIONAL JOURNAL OF PLASTICITY
LA English
DT Article
DE Microstructures; Constitutive behaviour; Crystal plasticity;
Elastic-viscoplastic material; X-ray diffraction
ID ALUMINUM-ALLOY SHEETS; PLASTIC-DEFORMATION; INTERGRANULAR STRAINS;
ROOM-TEMPERATURE; FCC POLYCRYSTALS; STAINLESS-STEEL; YIELD FUNCTION;
METAL; LIMIT; MODEL
AB Biaxial flow behavior of an interstitial free steel sample was investigated with two experimental methods: (1) Marciniak punch test with in situ X-ray diffraction for stress analysis; (2) hydraulic bulge test. The stress analysis based on X-ray diffraction using (211) lattice planes was accompanied by the use of stress factors and intergranular (IG) strains. Stress factors and IG strains were experimentally obtained ex situ on samples after prescribed equi-biaxial deformations. An elasto-viscoplastic self-consistent (EVPSC) crystal plasticity model was used to predict the stress factors and the IG strains. The model predictions of the stress factors were in good agreement with the experiments. However, the predictions of IG strains were in poor agreement with their experimental counterparts. As a result, the flow stress solely based on the computationally predicted stress factors and IG strains was unrealistic. The input of the experimental stress factors and IG strains for stress analysis improved the agreement with a reference flow curve obtained by a hydraulic bulge tester. The resulting flow curves based on X-ray diffraction were in good agreement with that of the bulge test up to an effective strain of 0.3. However, an unrealistic softening was observed in larger deformations regardless of whether the stress factor used were experimentally measured or determined from EVPSC calculations. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Jeong, Youngung; Barlat, Frederic] POSTECH, Grad Inst Ferrous Technol, Pohang Si, Gyeongsangbuk D, South Korea.
[Jeong, Youngung; Iadicola, Mark; Creuziger, Adam] NIST, Mat Sci & Engn Div, Gaithersburg, MD USA.
[Gnaeupel-Herold, Thomas] NIST, Ctr Neutron Res, Gaithersburg, MD USA.
[Lee, Myoung-Gyu] Korea Univ, Dept Mat Sci & Engn, Seoul, South Korea.
RP Lee, MG (reprint author), Korea Univ, Dept Mat Sci & Engn, Seoul, South Korea.
EM youngung.jeong@nist.gov; thomas.gnaeupel-herold@nist.gov;
f.barlat@postech.ac.kr; mark.iadicola@nist.gov; adam.creuziger@nist.gov;
myounggyu.lee@gmail.com
RI Jeong, Youngung/H-3732-2016;
OI Jeong, Youngung/0000-0001-6496-8115; Barlat,
Frederic/0000-0002-4463-3454
FU POSCO; National Research Foundation of Korea (NRF) Grant - Korea
government (MSIP) [2012R1A5A1048294]
FX Youngung Jeong acknowledges that a part of this work was conducted
during his stay at Los Alamos National Laboratory (LANL) hosted by Dr.
Carlos Tome. This work was supported by POSCO and by the National
Research Foundation of Korea (NRF) Grant funded by the Korea government
(MSIP) (No. 2012R1A5A1048294). Dr. Huamiao Wang in LANL kindly provided
the original code of the EVPSC model. The X-ray diffraction experiments
with Marciniak tooling was due to Youngung Jeong's stay in National
Institute of Standards and Technology (NIST), which was sponsored by Dr.
Timothy Foecke. Assistance performing the Marciniak test by Mr. David
Pitchure and Hyukjong Bong are kindly acknowledged. Also, assistance on
the bulge test analysis by Dr. Jin Kim and Ms. Jeong Yeon Lee are kindly
acknowledged.
NR 57
TC 7
Z9 7
U1 1
U2 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0749-6419
EI 1879-2154
J9 INT J PLASTICITY
JI Int. J. Plast.
PD MAR
PY 2015
VL 66
SI SI
BP 103
EP 118
DI 10.1016/j.ijplas.2014.06.009
PG 16
WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics
SC Engineering; Materials Science; Mechanics
GA CB8KW
UT WOS:000349879500007
ER
PT J
AU Long, WC
Van Sant, SB
Haaga, JA
AF Long, William Christopher
Van Sant, Scott B.
Haaga, John A.
TI Habitat, predation, growth, and coexistence: Could interactions between
juvenile red and blue king crabs limit blue king crab productivity?
SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY
LA English
DT Article
DE Blue king crab; Coexistence; Habitat; Intra-guild interactions;
Predation; Red king crab
ID PARALITHODES-CAMTSCHATICUS TILESIUS; BENTHIC PHASE RED; NATIVE MUD
SNAILS; COMPETITIVE DISPLACEMENT; CHESAPEAKE BAY; SUBSTRATE PREFERENCE;
FUNCTIONAL-RESPONSES; STOCK ENHANCEMENT; PREY; CANNIBALISM
AB Since the 1970s, dominance of the shallow water Pribilof Islands king crab populations has shifted from blue king crab (Paralithodes platypus) to red king crab (Paralithodes canuschaticus), potentially influenced by interactions at the juvenile stage. In laboratory experiments, we determined whether habitat and temperature could mediate competitive and predatory interactions between juveniles of both species. We examined how density and predator presence affect habitat choice by red and blue king crabs. Further experiments determined how temperature and habitat affect predation by year-1 red king crab on year-0 blue king crab. Finally, long-term interaction experiments examined how habitat and density affected growth, survival, and intra-guild interactions between red and blue king crab. Red king crabs had a greater affinity for complex habitat than blue king crabs and the presence of predators increased preference for complex habitat for both species. Predation on year-0 blue king crabs by year-1 red king crabs was lower in complex habitats and at colder temperatures. When reared alone, red king crab survival was higher at low densities and in complex habitats. When reared with blue king crab, survival of red king crab was higher in complex habitats and in the presence of blue king crab. Blue king crab survival was substantially lower in the presence of red king crabs regardless of habitat. In both rearing experiments, differences in changes in crab size appeared to be driven by mortality rates and size-selective predation. This demonstrates that interactions between juvenile red and blue king crabs are primarily driven by intra-guild predation and not competition for resources. These results, suggest that juvenile red king crabs have an advantage over blue king crabs which could lower productivity of the Pribilof Islands blue king crab stock since the former became dominant in that system. Published by Elsevier B.V.
C1 [Long, William Christopher; Van Sant, Scott B.; Haaga, John A.] NOAA, Kodiak Lab,Natl Marine Fisheries Serv, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, Kodiak, AK 99615 USA.
[Van Sant, Scott B.] NOAA, Dept Marine Fisheries, NMFS NC, Southeast Fisheries Sci Ctr, Wilmington, NC 28405 USA.
RP Long, WC (reprint author), NOAA, Kodiak Lab,Natl Marine Fisheries Serv, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, 301 Res Ct, Kodiak, AK 99615 USA.
EM chris.long@noaa.gov
RI Long, William/C-7074-2009
OI Long, William/0000-0002-7095-1245
NR 60
TC 3
Z9 3
U1 4
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0981
EI 1879-1697
J9 J EXP MAR BIOL ECOL
JI J. Exp. Mar. Biol. Ecol.
PD MAR
PY 2015
VL 464
BP 58
EP 67
DI 10.1016/j.jembe.2014.12.011
PG 10
WC Ecology; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA CB6IK
UT WOS:000349730500008
ER
PT J
AU Bentz, DP
Snyder, KA
Ahmed, A
AF Bentz, Dale P.
Snyder, Kenneth A.
Ahmed, Amzaray
TI Anticipating the Setting Time of High-Volume Fly Ash Concretes Using
Electrical Measurements: Feasibility Studies Using Pastes
SO JOURNAL OF MATERIALS IN CIVIL ENGINEERING
LA English
DT Article
DE Fly ash; Hydration; Concrete; Mixtures; Electrical properties; Heat
release; High-volume fly ash; Hydration; Initial setting; Resistance
ID ULTRASONIC MEASUREMENTS; FRESH CONCRETE; CEMENT RATIO; MIXTURES
AB One common concern limiting the proliferation of high-volume fly ash (HVFA) concrete mixtures is the significant delay in setting that is sometimes encountered in field concrete mixtures. While several methods to mitigate the delayed setting times of HVFA mixtures have been demonstrated, a related issue is the prediction of setting times in field mixtures, so that construction operations including finishing and curing can be anticipated and properly scheduled. This paper presents a feasibility study evaluating the employment of simple electrical measurements to predict the setting time of paste mixtures on which concurrent Vicat needle penetration testing was performed. Electrical, setting, and accompanying calorimetry tests are conducted at three different temperatures, each under quasi-isothermal conditions to minimize the confounding influence of temperature variation on the obtained results. Electrical resistance (or heat flow) measurements can be used to adequately predict a mixture's initial setting time for a wide variety of binary and ternary powder blends, prepared at a constant water volume fraction. However, a simple parametric study in 100% ordinary portland cement pastes in which water content (water-to-cement ratio) is varied indicates that the relation between resistance trends and subsequent setting times is strongly dependent on the water content, as is also the case for the thermal measurements. This suggests that employment of this approach for field mixtures may require predetermination of the resistance-setting time relationship for each mixture of interest (e.g.,calibration) or at least that the on-site water content of the concrete mixture be assessed and verified by a separate measurement.
C1 [Bentz, Dale P.; Snyder, Kenneth A.; Ahmed, Amzaray] NIST, Engn Lab, Gaithersburg, MD 20899 USA.
RP Bentz, DP (reprint author), NIST, Engn Lab, 100 Bur Dr,Stop 8615, Gaithersburg, MD 20899 USA.
EM dale.bentz@nist.gov; kenneth.snyder@nist.gov; amzaray.ahmed@nist.gov
NR 19
TC 0
Z9 0
U1 1
U2 9
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0899-1561
EI 1943-5533
J9 J MATER CIVIL ENG
JI J. Mater. Civ. Eng.
PD MAR
PY 2015
VL 27
IS 3
AR 04014129
DI 10.1061/(ASCE)MT.1943-5533.0001065
PG 6
WC Construction & Building Technology; Engineering, Civil; Materials
Science, Multidisciplinary
SC Construction & Building Technology; Engineering; Materials Science
GA CB7YJ
UT WOS:000349844500013
ER
PT J
AU Cavicchi, RE
Carrier, MJ
Cohen, JB
Boger, S
Montgomery, CB
Hu, ZS
Ripple, DC
AF Cavicchi, Richard E.
Carrier, Michael J.
Cohen, Joshua B.
Boger, Shir
Montgomery, Christopher B.
Hu, Zhishang
Ripple, Dean C.
TI Particle Shape Effects on Subvisible Particle Sizing Measurements
SO JOURNAL OF PHARMACEUTICAL SCIENCES
LA English
DT Article
DE electrical sensing zone; flow imaging; image analysis; light
obscuration; light scattering (static); microscopy; particle sizing;
physical characterization
ID PROTEIN SOLUTIONS
AB Particle analysis tools for the subvisible (<100 m) size range, such as light obscuration, flow imaging (FI), and electrical sensing zone (ESZ), often produce results that do not agree with one another, despite their general agreement when characterizing polystyrene latex spheres of different sizes. To include the effect of shape in comparison studies, we have used the methods of photolithography to create rods and disks. Although the rods are highly monodisperse, the instruments produce broadened peaks and report mean size parameters that are different for different instruments. We have fabricated a microfluidic device that simultaneously performs ESZ and FI measurements on each particle to elucidate the causes of discrepancies and broadening. Alignment of the rods with flow causes an oversizing by FI and undersizing by ESZ. FI also oversizes rods because of the incorrect edge definition that results from diffraction and imperfect focus. We present an improved correction algorithm for this effect that reduces discrepancies for rod-shaped particles. Tumbling of particles is observed in the microfluidic ESZ/FI and results in particle oversizing and breadth of size distribution for the monodisperse rods. (c) 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:971-987, 2015
C1 [Cavicchi, Richard E.; Carrier, Michael J.; Cohen, Joshua B.; Boger, Shir; Montgomery, Christopher B.; Ripple, Dean C.] NIST, Bioproc Measurements Grp, Gaithersburg, MD 20899 USA.
[Hu, Zhishang] Chinese Acad Sci, Inst Biophys, Ctr Computat & Syst Biol, Beijing 100080, Peoples R China.
RP Cavicchi, RE (reprint author), NIST, Bioproc Measurements Grp, Gaithersburg, MD 20899 USA.
EM rcavicchi@nist.gov
NR 20
TC 2
Z9 2
U1 0
U2 14
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-3549
EI 1520-6017
J9 J PHARM SCI-US
JI J. Pharm. Sci.
PD MAR
PY 2015
VL 104
IS 3
BP 971
EP 987
DI 10.1002/jps.24263
PG 17
WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology &
Pharmacy
SC Pharmacology & Pharmacy; Chemistry
GA CB7BS
UT WOS:000349781700021
PM 25446188
ER
PT J
AU Hibbard, M
Senkyr, L
Webb, M
AF Hibbard, Michael
Senkyr, Lauren
Webb, Mark
TI Multifunctional Rural Regional Development: Evidence from the John Day
Watershed in Oregon
SO JOURNAL OF PLANNING EDUCATION AND RESEARCH
LA English
DT Article
DE rural regional development; multifunctionality; natural resource
management; mobilized communities
ID PLACE MEANINGS; MANAGEMENT; COMMUNITY; AUSTRALIA; FOREST; CONSERVATION;
PERCEPTIONS; ENVIRONMENT; TRANSITION; GEOGRAPHY
AB A new approach to rural regional development planning seems to be emerging. Substantively, it combines socioeconomic development with a conservation and restoration approach to environmental planning and natural resource management. With respect to process, it moves from more rational-comprehensive, top-down approaches toward decentralized, bottom-up strategies. This paper reports a key case from the American West. We begin by reviewing the evolution and current state of rural regional development planning. Next we describe the case study area, the planning situation, and our research methods. Then we report landowners' and resource managers' perceptions of the emerging approach and their implications.
C1 [Hibbard, Michael] Univ Oregon, Dept Planning Publ Policy & Management, Eugene, OR 97403 USA.
[Senkyr, Lauren] ERT Inc, Portland, OR USA.
[Senkyr, Lauren] NOAA, Restorat Ctr, Portland, OR USA.
RP Hibbard, M (reprint author), 1209 Univ Oregon, Univ Oregon, Dept Planning Publ Policy & Management, Eugene, OR 97403 USA.
EM mhibbard@uoregon.edu
FU Middle Fork John Day River Intensively Monitored Watershed Working
Group; Oregon Watershed Enhancement Board; NOAA Fisheries
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: We would
like to thank the Middle Fork John Day River Intensively Monitored
Watershed Working Group, Oregon Watershed Enhancement Board, and NOAA
Fisheries for funding, supporting, and helping to develop the
socioeconomic monitoring effort that motivated this research.
NR 61
TC 2
Z9 2
U1 7
U2 9
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0739-456X
EI 1552-6577
J9 J PLAN EDUC RES
JI J. Plan. Educ. Res.
PD MAR
PY 2015
VL 35
IS 1
BP 51
EP 62
DI 10.1177/0739456X14560572
PG 12
WC Planning & Development; Urban Studies
SC Public Administration; Urban Studies
GA CB9YD
UT WOS:000349989500004
ER
PT J
AU Yeo, DH
Potra, FA
AF Yeo, DongHun
Potra, Florian A.
TI Sustainable Design of Reinforced Concrete Structures through CO2
Emission Optimization
SO JOURNAL OF STRUCTURAL ENGINEERING
LA English
DT Article
DE Carbon emissions; Cost optimization; CO2 footprint optimization;
Greenhouse gas emissions; Reinforced concrete; Optimization; Special
design issues
ID EMBODIED ENERGY; LIFE-CYCLE; BUILDINGS
AB Efforts are being made to achieve more efficient operation of buildings, with the goal of reducing the construction industry's contribution to energy consumption and greenhouse gas emissions. That contribution also includes the energy embodied in structures; that is, the energy consumed in the processes of extracting, manufacturing, transporting, and installing construction materials (including recycled materials) and elements. In particular, in spite of the use of additives such as fly ash, reinforced concrete (RC) structures, which are large consumers of cement, are responsible for a sizable proportion of worldwide carbon emissions. These emissions can be reduced significantly through the more efficient use of both concrete and steel that can be achieved by optimization. Modern optimization tools are now available that make it possible to perform large volumes of calculations efficiently that are applicable to a wide variety of structural engineering problems. This study presents an optimization approach developed with a view to allowing decision makers to balance sustainability and economic objectives. To illustrate this approach, an RC frame under gravity and lateral loads is considered in this paper. It was found that, depending upon the parameter values used in the calculations, the design optimized with respect to the CO2 footprint yields a CO2 footprint that is lower (by 5% to 10%) than the design optimized with respect to cost. The reduction can be smaller for low-rise structures and other structures with predominantly tension-controlled members. However, for structures whose members predominantly experience large compressive forces, such as high-rise buildings, the reduction may be more significant. This also may be true of certain prestressed and poststressed concrete members. Additional research aimed at ascertaining the extent to which this is the case is warranted.
C1 [Yeo, DongHun] NIST, Engn Lab, Gaithersburg, MD 20899 USA.
[Potra, Florian A.] NIST, Informat Technol Lab, Gaithersburg, MD 20899 USA.
RP Yeo, DH (reprint author), NIST, Engn Lab, Gaithersburg, MD 20899 USA.
EM donghun.yeo@nist.gov
NR 22
TC 5
Z9 5
U1 7
U2 32
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0733-9445
EI 1943-541X
J9 J STRUCT ENG
JI J. Struct. Eng.
PD MAR
PY 2015
VL 141
IS 3
SI SI
AR B4014002
DI 10.1061/(ASCE)ST.1943-541X.0000888
PG 7
WC Construction & Building Technology; Engineering, Civil
SC Construction & Building Technology; Engineering
GA CB7YO
UT WOS:000349845000001
ER
PT J
AU Saylor, R
Myles, L
Sibble, D
Caldwell, J
Xing, J
AF Saylor, Rick
Myles, LaToya
Sibble, Daryl
Caldwell, Jason
Xing, Jia
TI Recent trends in gas-phase ammonia and PM2.5 ammonium in the Southeast
United States
SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION
LA English
DT Article
ID ORGANIC AEROSOL FORMATION; PARTICULATE MATTER MASS; ATMOSPHERIC AMMONIA;
NITROGEN DEPOSITION; REACTIVE NITROGEN; CHARACTERIZATION SEARCH;
AIR-POLLUTION; TRACE GASES; EMISSIONS; FINE
AB Ammonia measurements from the Southeastern Aerosol Research and Characterization (SEARCH) study network were analyzed for trends over 9 yr (2004-2012) of observations. Total ammonia concentrations, defined as the sum of gas-phase ammonia and fine particle ammonium, were found to be decreasing by 1-4% yr(-1) and were qualitatively consistent with ammonia emission estimates for the SEARCH states of Alabama, Georgia, Mississippi, and Florida. On the other hand, gas-phase ammonia mixing ratios were found to be slightly rising or steady over the region, leading to the observation that the gas-phase fraction of total ammonia has steadily increased over 2004-2012 as a result of declining emissions of the strong acid precursor species sulfur dioxide (SO2) and nitrogen oxides (NOx) and consequent reduced partitioning of ammonia to the fine particle phase. Because gas-phase ammonia is removed from the atmosphere more rapidly than fine particle ammonium, an increase in the gas-phase fraction of total ammonia may result in shifted deposition patterns as more ammonia is deposited closer to sources rather than transported downwind in fine particles. Additional long-term measurements and modeling studies are needed to determine if similar transitions of total ammonia to the gas phase are occurring outside of the Southeast and to assess if these changes are impacting plants and ecosystems near major ammonia sources. Unusually high ammonia concentrations observed in 2007 in the SEARCH measurements are hypothesized to be linked to emissions from wildfires that were much more prevalent across the Southeast during that year due to elevated temperatures and widespread drought. Although wildfires are currently estimated to be a relatively small fraction (3-10%) of total ammonia emissions in the Southeast, the projected increased incidence of wildfires in this region as a result of global climate change may lead to this source's increased importance over the rest of the 21st century.Implications:Ammonia concentrations from the Southeastern Aerosol Research and Characterization study (SEARCH) network are analyzed over the 9-yr period 2004-2012. Total ammonia (gaseous ammonia + PM2.5 ammonium) concentrations declined at a rate of 1-4% yr(-1), consistent with U.S. Environmental Protection Agency (EPA) emission estimates for the Southeast United States, but the fraction of ammonia in the gas phase has risen steadily (+1-3% yr(-1)) over the time period. Declining emissions of SO2 and NOx resulting from imposed air quality regulations have resulted in decreased atmospheric strong acids and less ammonia partitioning to the particle phase, which may impact the amount and overall pattern of ammonia deposition.
C1 [Saylor, Rick; Myles, LaToya; Sibble, Daryl; Caldwell, Jason] NOAA, Atmospher Turbulence & Diffus Div, Air Resources Lab, Oak Ridge, TN 37830 USA.
[Sibble, Daryl; Caldwell, Jason] Florida A&M Univ, NOAA, Environm Cooperat Sci Ctr, Sch Environm, Tallahassee, FL 32307 USA.
[Xing, Jia] US EPA, Atmospher Modeling & Anal Div, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA.
RP Saylor, R (reprint author), NOAA, Atmospher Turbulence & Diffus Div, Air Resources Lab, Oak Ridge, TN 37830 USA.
EM rick.saylor@noaa.gov
RI Myles, LaToya/Q-2470-2015
FU U.S. Weather Research Program within the NOAA/OAR Office of Weather and
Air Quality
FX One of the authors (R.S.) received support from the U.S. Weather
Research Program within the NOAA/OAR Office of Weather and Air Quality
in the performance of this work.
NR 53
TC 9
Z9 9
U1 10
U2 78
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1096-2247
EI 2162-2906
J9 J AIR WASTE MANAGE
JI J. Air Waste Manage. Assoc.
PD MAR
PY 2015
VL 65
IS 3
BP 347
EP 357
DI 10.1080/10962247.2014.992554
PG 11
WC Engineering, Environmental; Environmental Sciences; Meteorology &
Atmospheric Sciences
SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric
Sciences
GA CC1XN
UT WOS:000350138800012
PM 25947130
ER
PT J
AU Holmberg, RJ
Tlusty, MF
Futoma, E
Kaufman, L
Morris, JA
Rhyne, AL
AF Holmberg, Robert J.
Tlusty, Michael F.
Futoma, Elizabeth
Kaufman, Les
Morris, James A.
Rhyne, Andrew L.
TI The 800-Pound Grouper in the Room: Asymptotic Body Size and Invasiveness
of Marine Aquarium Fishes
SO MARINE POLICY
LA English
DT Article
DE Invasive species; Marine aquarium fish trade; Nonindigenous species;
Online vendors; Propagule pressure; Risk assessment
ID EVERGLADES NATIONAL-PARK; ECONOMIC COSTS; UNITED-STATES; TRADE; WATER;
INVASIONS; PATHWAY; ESTABLISHMENT; OPPORTUNITIES; FLORIDA
AB The global trade in aquatic wildlife destined for home aquaria not only has the potential to be a positive force for conservation, but also has a number of potential risks. The greatest and most documented risk is the potential to translocate species that will become invasive in a new habitat. Although propagule pressure can influence species invasiveness, a high percentage of documented marine aquarium fish that are invasive in the US are uncommon in the trade. Here, the covariation of size with species invasiveness was assessed using a web scraper to collect size, price, life history characteristics, and behavior data from five intemet retail stores for 775 species of fish. Fish that routinely exceed 100 cm in total length are traded, nevertheless are typically sold at sizes much smaller than their theoretical maximum. No economic benefit from the sale of species that will outgrow tanks and have a high risk of being released was found. Large fish, including groupers that can achieve weights of 800 pounds, will continue to enter the trade because the growth of aquaculture for commercial food markets is making it easier to acquire these species that also have appealing small life stages, making it easier and less expensive to bring these species into the aquarium trade. The entire trade should consider taking concerted action to limit the trade in fish that are likely to become invasive. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Holmberg, Robert J.; Futoma, Elizabeth; Rhyne, Andrew L.] Roger Williams Univ, Dept Biol & Marine Biol, Bristol, RI 02809 USA.
[Holmberg, Robert J.] Univ Massachusetts, Sch Environm, Boston, MA 02125 USA.
[Tlusty, Michael F.; Kaufman, Les; Rhyne, Andrew L.] New England Aquarium, John H Prescott Marine Lab, Boston, MA 02110 USA.
[Kaufman, Les] Boston Univ, Marine Program, Dept Biol, Boston, MA 02215 USA.
[Kaufman, Les] Conservat Int, Arlington, VA 22202 USA.
[Morris, James A.] NOAA, Natl Ocean Serv, Natl Ctr Coastal Ocean Sci, Beaufort, NC 28516 USA.
RP Rhyne, AL (reprint author), Roger Williams Univ, Dept Biol & Marine Biol, 1 Old Ferry Rd, Bristol, RI 02809 USA.
EM arhyne@rwu.edu
OI Rhyne, Andrew/0000-0001-7252-3431
FU National Oceanic and Atmospheric Administration (NOAA) Coral Reef
Conservation Program; National Fish and Wildlife Foundation
FX The authors are grateful to the National Oceanic and Atmospheric
Administration (NOAA) Coral Reef Conservation Program and the National
Fish and Wildlife Foundation for funding, and to Robyn Hannigan and Dave
Cerino for reviewing the manuscript.
NR 37
TC 2
Z9 2
U1 3
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0308-597X
EI 1872-9460
J9 MAR POLICY
JI Mar. Pol.
PD MAR
PY 2015
VL 53
BP 7
EP 12
DI 10.1016/j.marpol.2014.10.024
PG 6
WC Environmental Studies; International Relations
SC Environmental Sciences & Ecology; International Relations
GA CB6KX
UT WOS:000349737000003
ER
PT J
AU Frisch, LC
Mathis, JT
Kettle, NP
Trainor, SF
AF Frisch, L. C.
Mathis, J. T.
Kettle, N. P.
Trainor, S. F.
TI Gauging perceptions of ocean acidification in Alaska
SO MARINE POLICY
LA English
DT Article
DE Ocean acidification; Public understanding; Risk perception; Alaska
fisheries
ID GLOBAL CLIMATE-CHANGE; UNITED-STATES; ANTHROPOGENIC CO2; PUBLIC
PERCEPTION; SCIENCE LITERACY; PEOPLE KNOW; BERING-SEA; KNOWLEDGE;
IMPACT; RISK
AB While ocean acidification (OA) poses a significant threat to ocean-related ecosystems and communities reliant on marine fisheries, aquaculture, and coral reef systems, limited public understanding and awareness can prevent coastal regions from being able to adequately assess the need for OA adaptation or mitigation. This study assessed public understanding of OA and how social and demographic factors influence the public's concern for OA. The analysis was based on 311 questionnaires from full-time Alaska residents. The results showed that most Alaskans self-reported to have a basic awareness of OA, and subsequently were able to recognize that CO2 emissions related to human activity are the dominant driver of changing ocean conditions. However, there was a low recognition of how natural variability in the marine environment affects OA, and most respondents were not very confident in their understanding of OA-related science. Moreover, even though many communities in Alaska are reliant on commercial and subsistence fishing activities, the respondents had a low awareness of fisheries-related OA risk. Given the ongoing debate associated with climate change research, evaluating CO2 mitigation efforts through the perspective of OA could give individuals an unbiased way to assess the pros and cons of more intensive efforts to curb CO2 emissions. Furthermore, using OA communication to enhance the understanding of how natural variability influences OA around the state and the potential economic implications for Alaska fisheries would help residents and stakeholders make informed decisions when considering fisheries management plans, food security, and job diversity as OA intensifies. Solidifying the understanding that any reduction in pH and intensification of OA can have implications for marine species that are irreversible on human timescales will reinforce not only that OA is an immediate concern, but also the importance of taking action now. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
C1 [Frisch, L. C.] Univ Alaska Fairbanks, Ocean Acidificat Res Ctr, Fairbanks, AK 99775 USA.
[Mathis, J. T.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
[Kettle, N. P.; Trainor, S. F.] Univ Alaska Fairbanks, Alaska Ctr Climate Assessment & Policy, Fairbanks, AK 99709 USA.
RP Frisch, LC (reprint author), Univ Alaska Fairbanks, Ocean Acidificat Res Ctr, 245 ONeill BLDG, Fairbanks, AK 99775 USA.
EM Icfrisch@alaska.edu
FU National Oceanic and Atmospheric Administration under Climate Program
Office Grant [NA11OAR4310141]; Alaska Center for Climate Assessment and
Policy at the University of Alaska Fairbanks; NOAA Ocean Acidification
Program
FX This work was supported in part by the National Oceanic and Atmospheric
Administration under Climate Program Office Grant NA11OAR4310141 with
the Alaska Center for Climate Assessment and Policy at the University of
Alaska Fairbanks and the NOAA Ocean Acidification Program. We would like
to thank all of the Alaskans who took the time to complete our survey
and provide critical data for this research as well as our colleagues at
the UAF Ocean Acidification Research Center for their support. Finally,
we would like to thank Jennifer Phillips, Gautam Sethi, and Jennifer
Bennett for their help with this project.
NR 77
TC 4
Z9 4
U1 6
U2 54
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0308-597X
EI 1872-9460
J9 MAR POLICY
JI Mar. Pol.
PD MAR
PY 2015
VL 53
BP 101
EP 110
DI 10.1016/j.marpol.2014.11.022
PG 10
WC Environmental Studies; International Relations
SC Environmental Sciences & Ecology; International Relations
GA CB6KX
UT WOS:000349737000013
ER
PT J
AU Torres, H
Muller-Karger, F
Keys, D
Thornton, H
Luther, M
Alsharif, K
AF Torres, H.
Muller-Karger, F.
Keys, D.
Thornton, H.
Luther, M.
Alsharif, K.
TI Whither the US National Ocean Policy Implementation Plan?
SO MARINE POLICY
LA English
DT Article
DE Ocean; Policy; Coastal; Marine; Implementation plan; United States
AB The need for a statutory framework to manage valuable marine resources in the United States is highlighted by problems such as fragmented ocean governance and increasing conflict over the use of ocean spaces. On July 19, 2010 President Obama signed Executive Order 13547 to create a National Ocean Policy (NOP) for the United States. A subsequent Implementation Plan, released in 2013, set up hundreds of actions to be accomplished between 2013 and 2025 to address economic, community, scientific and other issues. Progress implementing the NOP appears to have stalled. The purpose of this paper is to give an overview of the NOP and its Implementation Plan, and then discuss what needs to be done to bring the vision it set forth to fruition. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Torres, H.; Alsharif, K.] Univ S Florida, Sch Geosci, Tampa, FL USA.
[Muller-Karger, F.; Luther, M.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA.
[Keys, D.] NOAA, Southeast Reg Off, Natl Marine Fisheries Serv, St Petersburg, FL USA.
[Thornton, H.] Univ S Florida, Dept Biol, St Petersburg, FL 33701 USA.
RP Torres, H (reprint author), 4202 E Fowler Ave,NES 107, Tampa, FL 33620 USA.
EM hrtorres@mail.usf.edu; carib@usf.edu; david.keys@noaa.gov;
heather28@mail.usf.edu; mluther@usf.edu; kalshari@usf.edu
NR 16
TC 2
Z9 2
U1 0
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0308-597X
EI 1872-9460
J9 MAR POLICY
JI Mar. Pol.
PD MAR
PY 2015
VL 53
BP 198
EP 212
DI 10.1016/j.marpol.2014.11.013
PG 15
WC Environmental Studies; International Relations
SC Environmental Sciences & Ecology; International Relations
GA CB6KX
UT WOS:000349737000024
ER
PT J
AU Ford, MJ
Murdoch, A
Hughes, M
AF Ford, Michael J.
Murdoch, Andrew
Hughes, Michael
TI Using parentage analysis to estimate rates of straying and homing in
Chinook salmon (Oncorhynchus tshawytscha)
SO MOLECULAR ECOLOGY
LA English
DT Article
DE hatchery; homing; parentage; salmon; straying; Wenatchee River
ID EFFECTIVE POPULATION-SIZE; SPAWNING SITE SELECTION; LINKAGE
DISEQUILIBRIUM; LOCAL ADAPTATION; ATLANTIC SALMON; COLUMBIA-RIVER;
REPRODUCTIVE SUCCESS; PATERNITY ANALYSIS; MOLECULAR MARKERS;
BRITISH-COLUMBIA
AB We used parentage analysis based on microsatellite genotypes to measure rates of homing and straying of Chinook salmon (Oncorhynchus tshawytscha) among five major spawning tributaries within the Wenatchee River, Washington. On the basis of analysis of 2248 natural-origin and 11594 hatchery-origin fish, we estimated that the rate of homing to natal tributaries by natural-origin fish ranged from 0% to 99% depending on the tributary. Hatchery-origin fish released in one of the five tributaries homed to that tributary at a far lower rate than the natural-origin fish (71% compared to 96%). For hatchery-released fish, stray rates based on parentage analysis were consistent with rates estimated using physical tag recoveries. Stray rates among major spawning tributaries were generally higher than stray rates of tagged fish to areas outside of the Wenatchee River watershed. Within the Wenatchee watershed, rates of straying by natural-origin fish were significantly affected by spawning tributary and by parental origin: progeny of naturally spawning hatchery-produced fish strayed at significantly higher rates than progeny whose parents were themselves of natural origin. Notably, none of the 170 offspring that were products of mating by two natural-origin fish strayed from their natal tributary. Indirect estimates of gene flow based on F-ST statistics were correlated with but higher than the estimates from the parentage data. Tributary-specific estimates of effective population size were also correlated with the number of spawners in each tributary.
C1 [Ford, Michael J.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA.
[Murdoch, Andrew; Hughes, Michael] Washington Dept Fish & Wildlife, Wenatchee, WA 98801 USA.
RP Ford, MJ (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, 2725 Montlake Blvd E, Seattle, WA 98112 USA.
EM mike.ford@noaa.gov
FU Bonneville Power Administration [2003-039]; Chelan and Grant County
Public Utility Districts
FX This study was funded in part by under a contract from the Bonneville
Power Administration (project 2003-039) and Chelan and Grant County
Public Utility Districts. Michael Hanson and three anonymous reviewers
provided helpful comments on an earlier version of the manuscript.
NR 81
TC 4
Z9 5
U1 4
U2 42
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0962-1083
EI 1365-294X
J9 MOL ECOL
JI Mol. Ecol.
PD MAR
PY 2015
VL 24
IS 5
BP 1109
EP 1121
DI 10.1111/mec.13091
PG 13
WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology
SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology;
Evolutionary Biology
GA CC3KH
UT WOS:000350246500012
PM 25626589
ER
PT J
AU Moser, ML
Jackson, AD
Lucas, MC
Mueller, RP
AF Moser, Mary L.
Jackson, Aaron D.
Lucas, Martyn C.
Mueller, Robert P.
TI Behavior and potential threats to survival of migrating lamprey
ammocoetes and macrophthalmia
SO REVIEWS IN FISH BIOLOGY AND FISHERIES
LA English
DT Review
DE Petromyzontiformes; Transformers; Passage; Metamorphosis;
Macrophthalmia; Ammocoetes
ID JUVENILE PACIFIC LAMPREY; SWIMMING PERFORMANCE; LAMPETRA-TRIDENTATA;
RIVER; FISH; LARVAL; ECOLOGY
AB Upon metamorphosis, anadromous juvenile lamprey (macrophthalmia) exhibit distinct migration behaviors that take them from larval rearing habitats in streams to the open ocean. While poorly studied, lamprey larvae (ammocoetes) also engage in downstream movement to some degree. Like migrating salmon smolts, lamprey macrophthalmia undergo behavioral changes associated with a highly synchronized metamorphosis. Unlike salmon smolts, the timing of juvenile migration in lamprey is protracted and poorly documented. Lamprey macrophthalmia and ammocoetes are not strong swimmers, attaining maximum individual speeds of less than 1 m s(-1), and sustained speeds of less than 0.5 m s(-1). They are chiefly nocturnal and distribute throughout the water column, but appear to concentrate near the bottom in the thalweg of deep rivers. At dams and irrigation diversions, macrophthalmia can become impinged on screens or entrained in irrigation canals, suffer increased predation, and experience physical injury that may result in direct or delayed mortality. The very structures designed to protect migrating juvenile salmonids can be harmful to juvenile lamprey. Yet at turbine intakes and spillways, lampreys, which have no swim bladder, can withstand changes in pressure and shear stress large enough to injure or kill most teleosts. Lamprey populations are in decline in many parts of the world, with some species designated as species of concern for conservation that merit legally mandated protections. Hence, provisions for safe passage of juvenile lamprey are being considered at dams and water diversions in North America and Europe.
C1 [Moser, Mary L.] NOAA Fisheries, NW Fisheries Sci Ctr, Seattle, WA 98112 USA.
[Jackson, Aaron D.] Confederated Tribes Umatilla Indian Reservat, Dept Nat Resources, Pendleton, OR 97801 USA.
[Lucas, Martyn C.] Univ Durham, Sch Biol & Biomed Sci, Durham DH1 3LE, England.
[Mueller, Robert P.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Moser, ML (reprint author), NOAA Fisheries, NW Fisheries Sci Ctr, 2725 Montlake Blvd, Seattle, WA 98112 USA.
EM mary.moser@noaa.gov
FU U.S. Army Corps of Engineers; Bonneville Power Administration
FX This review benefitted from help and data provided by the following
researchers: M. Docker, M. Gessel, M. Hayes, J. Jolley, P. Kemp, R.
Lampman, R. Mensik, M. Mesa, I. Russon, J. Simonson, B. Spurgeon, S.
Tackley, B. Trealoar, A. Vowles, J. Weaskus, L. Weitcamp, and J. Wolf.
Anonymous reviewers provided valuable comments on an early draft that
were incorporated into this version. This work was funded in part by the
U.S. Army Corps of Engineers, and the Bonneville Power Administration.
NR 54
TC 5
Z9 6
U1 46
U2 135
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0960-3166
EI 1573-5184
J9 REV FISH BIOL FISHER
JI Rev. Fish. Biol. Fish.
PD MAR
PY 2015
VL 25
IS 1
BP 103
EP 116
DI 10.1007/s11160-014-9372-8
PG 14
WC Fisheries; Marine & Freshwater Biology
SC Fisheries; Marine & Freshwater Biology
GA CB6WH
UT WOS:000349767000006
ER
PT J
AU Quinones, RM
Grantham, TE
Harvey, BN
Kiernan, JD
Klasson, M
Wintzer, AP
Moyle, PB
AF Quinones, Rebecca M.
Grantham, Theodore E.
Harvey, Brett N.
Kiernan, Joseph D.
Klasson, Mick
Wintzer, Alpa P.
Moyle, Peter B.
TI Dam removal and anadromous salmonid (Oncorhynchus spp.) conservation in
California
SO REVIEWS IN FISH BIOLOGY AND FISHERIES
LA English
DT Article
DE Dam effects; Pacific salmon; Steelhead; Climate change; Klamath River;
Mediterranean environments
ID JUVENILE CHINOOK SALMON; NATURAL FLOW REGIME; WILD COHO SALMON; ELWHA
RIVER; PACIFIC SALMON; COLUMBIA RIVER; FINE SEDIMENT; FRESH-WATER;
POTENTIAL RESPONSES; SACRAMENTO RIVER
AB Dam removal is often proposed for restoration of anadromous salmonid populations, which are in serious decline in California. However, the benefits of dam removal vary due to differences in affected populations and potential for environmental impacts. Here, we develop an assessment method to examine the relationship between dam removal and salmonid conservation, focusing on dams that act as complete migration barriers. Specifically, we (1) review the effects of dams on anadromous salmonids, (2) describe factors specific to dam removal in California, (3) propose a method to evaluate dam removal effects on salmonids, (4) apply this method to evaluate 24 dams, and (5) discuss potential effects of removing four dams on the Klamath River. Our flexible rating system can rapidly assess the likely effects of dam removal, as a first step in the prioritization of multiple dam removals. We rated eight dams proposed for removal and compared them with another 16 dams, which are not candidates for removal. Twelve of the 24 dams evaluated had scores that indicated at least a moderate benefit to salmonids following removal. In particular, scores indicated that removal of the four dams on the Klamath River is warranted for salmonid conservation. Ultimately, all dams will be abandoned, removed, or rebuilt even if the timespan is hundreds of years. Thus, periodic evaluation of the environmental benefits of dam removal is needed using criteria such as those presented in this paper.
C1 [Quinones, Rebecca M.; Grantham, Theodore E.; Wintzer, Alpa P.; Moyle, Peter B.] Univ Calif Davis, Ctr Watershed Sci, Davis, CA 95616 USA.
[Harvey, Brett N.] Calif Dept Water Resources, West Sacramento, CA 95691 USA.
[Kiernan, Joseph D.] NOAA, SW Fisheries Sci Ctr, La Jolla, CA 92037 USA.
RP Quinones, RM (reprint author), Univ Calif Davis, Ctr Watershed Sci, 1 Shields Ave, Davis, CA 95616 USA.
EM rmquinones@ucdavis.edu
FU California Landscape Conservation Cooperative
FX This work was partially funded by the California Landscape Conservation
Cooperative.
NR 150
TC 3
Z9 3
U1 16
U2 109
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0960-3166
EI 1573-5184
J9 REV FISH BIOL FISHER
JI Rev. Fish. Biol. Fish.
PD MAR
PY 2015
VL 25
IS 1
BP 195
EP 215
DI 10.1007/s11160-014-9359-5
PG 21
WC Fisheries; Marine & Freshwater Biology
SC Fisheries; Marine & Freshwater Biology
GA CB6WH
UT WOS:000349767000011
ER
PT J
AU Borrero-Lopez, O
Pajares, A
Constantino, PJ
Lawn, BR
AF Borrero-Lopez, Oscar
Pajares, Antonia
Constantino, Paul J.
Lawn, Brian R.
TI Mechanics of microwear traces in tooth enamel
SO ACTA BIOMATERIALIA
LA English
DT Article
DE Enamel microwear; Contact mechanics; Microplasticity; Microfracture;
Diet
ID DENTAL MICROWEAR; INDENTATION FRACTURE; MAMMALS; WEAR; DIET; TEETH;
MORPHOLOGY; INDICATOR; TOUGHNESS; PRIMATES
AB It is hypothesized that microwear traces in natural tooth enamel can be simulated and quantified using microindentation mechanics. Microcontacts associated with particulates in the oral wear medium are modeled as sharp indenters with fixed semi-apical angle. Distinction is made between markings from static contacts (pits) and translational contacts (scratches). Relations for the forces required to produce contacts of given dimensions are derived, with particle angularity and compliance specifically taken into account so as to distinguish between different abrasives in food sources. Images of patterns made on human enamel with sharp indenters in axial and sliding loading are correlated with theoretical predictions. Special attention is given to threshold conditions for transition from a microplasticity to a microcracking mode, corresponding to mild and severe wear domains. It is demonstrated that the typical microwear trace is generated at loads on the order of 1 N - i.e. much less than the forces exerted in normal biting attesting to the susceptibility of teeth to wear in everyday mastication, especially in diets with sharp, hard and large inclusive intrinsic or extraneous particulates. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
C1 [Borrero-Lopez, Oscar; Pajares, Antonia] Univ Extremadura, Dept Ingn Mecan Energet & Mat, Badajoz 06006, Spain.
[Constantino, Paul J.; Lawn, Brian R.] St Michaels Coll, Dept Biol, Colchester, VT 05439 USA.
[Lawn, Brian R.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
RP Lawn, BR (reprint author), NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
EM brianlawn@gmail.com
RI Pajares, Antonia/I-3881-2015
OI Pajares, Antonia/0000-0002-1086-7586
FU US National Science Foundation [1118385]; NIST funding
FX We wish to thank David and Oscar Maestre for kindly providing dental
samples from their clinic (Maxilodental Maestre, Badajoz, Spain), Maria
Carbajo (Facility of Analysis and Characterization of Solids and
Surfaces, UEx, Badajoz, Spain) for the SEM images in Fig. 4, and Centro
Tecnologico Industrial de Extremadura (CETIEX, Badajoz, Spain) for use
of their profilometer. Robert Cook (NIST) provided useful comments on
the paper. This study was supported in part by the US National Science
Foundation (Grant # 1118385) and from NIST funding (administered via
Dakota Consulting Inc.).
NR 47
TC 5
Z9 5
U1 2
U2 20
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1742-7061
EI 1878-7568
J9 ACTA BIOMATER
JI Acta Biomater.
PD MAR 1
PY 2015
VL 14
BP 146
EP 153
DI 10.1016/j.actbio.2014.11.047
PG 8
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA CB6JR
UT WOS:000349733800015
PM 25484336
ER
PT J
AU McBride, RS
Somarakis, S
Fitzhugh, GR
Albert, A
Yaragina, NA
Wuenschel, MJ
Alonso-Fernandez, A
Basilone, G
AF McBride, Richard S.
Somarakis, Stylianos
Fitzhugh, Gary R.
Albert, Anu
Yaragina, Nathalia A.
Wuenschel, Mark J.
Alonso-Fernandez, Alexandre
Basilone, Gualtiero
TI Energy acquisition and allocation to egg production in relation to fish
reproductive strategies
SO FISH AND FISHERIES
LA English
DT Article
DE Allocation of surplus energy; capital breeding; income breeding;
lifetime fecundity; oogenesis; reproductive strategy; reproductive
tactic
ID COD GADUS-MORHUA; HERRING CLUPEA-HARENGUS; TROUT SALMO-TRUTTA; ANCHOVY
ANCHOA-MITCHILLI; SHAD ALOSA-SAPIDISSIMA; NORTH-SEA PLAICE;
PSEUDOPLEURONECTES-AMERICANUS WALBAUM; HADDOCK MELANOGRAMMUS-AEGLEFINUS;
FEMALE 3-SPINED STICKLEBACKS; GUPPIES POECILIA-RETICULATA
AB Oogenesis in fishes follows a universal plan; yet, due to differences in the synchrony and rate of egg development, spawning frequency varies from daily to once in a lifetime. Some species spawn and feed in separate areas, during different seasons, by storing energy and drawing on it later for reproduction (i.e. capital breeding). Other species spawn using energy acquired locally, throughout a prolonged spawning season, allocating energy directly to reproduction (i.e. income breeding). Capital breeders tend to ovulate all at once and are more likely to be distributed at boreal latitudes. Income breeding allows small fish to overcome allometric constraints on egg production. Income breeders can recover more quickly when good-feeding conditions are re-established, which is a benefit to adults regarding bet-hedging spawning strategies. Many species exhibit mixed capital- and income-breeding patterns. An individual's position along this capital-income continuum may shift with ontogeny or in relation to environmental conditions, so breeding patterns are a conditional reproductive strategy. Poor-feeding environments can lead to delayed maturation, skipped spawning, fewer spawning events per season or fewer eggs produced per event. In a few cases, variations in feeding environments appear to affect recruitment variability. These flexible processes of energy acquisition and allocation allow females to prioritize their own condition over their propagules' condition at any given spawning opportunity, thereby investing energy cautiously to maximize lifetime reproductive value. These findings have implications for temporal and spatial sampling designs, for measurement and interpretation of fecundity, and for interpreting fishery and ecosystem assessments.
C1 [McBride, Richard S.; Wuenschel, Mark J.] Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Woods Hole, MA 02543 USA.
[Somarakis, Stylianos] Hellen Ctr Marine Res, Iraklion 71003, Crete, Greece.
[Fitzhugh, Gary R.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Panama City, FL 32408 USA.
[Albert, Anu] Univ Tartu, Estonian Marine Inst, EE-51014 Tartu, Estonia.
[Yaragina, Nathalia A.] Polar Res Inst Marine Fisheries & Oceanog, Murmansk 183038, Russia.
[Alonso-Fernandez, Alexandre] CSIC, IIM, Vigo 36208, Pontevedra, Spain.
[Basilone, Gualtiero] CNR, Ist Ambiente Marino Costiero UOS Mazara CNR IAMC, I-91026 Mazara Del Vallo, TP, Italy.
RP McBride, RS (reprint author), Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, 166 Water St, Woods Hole, MA 02543 USA.
EM richard.mcbride@noaa.gov
RI McBride, Richard/C-2818-2012; Alonso-Fernandez, Alexandre/C-9916-2012;
Basilone, Gualtiero/D-2896-2017
OI Alonso-Fernandez, Alexandre/0000-0002-0793-2738; Basilone,
Gualtiero/0000-0002-5732-5055
FU EU COST Action Fish Reproduction and Fisheries (FRESH) [FA0601]; US
National Marine Fisheries Service
FX This research was produced as part of activities by the Northwest
Atlantic Fisheries Organization's Working Group on Reproductive
Potential. Funding to participate was provided by the EU COST Action
(FA0601) Fish Reproduction and Fisheries (FRESH) and the US National
Marine Fisheries Service. Reviews of select species were provided by K.
Able, M. Allen, K. Oliveira and N. Pankhurst. S. McBride, C. Chambers
and two anonymous reviewers provided comments on an earlier draft. G.
Kraus shared updated and unpublished data for Fig. 5a. We thank all of
the above.
NR 313
TC 53
Z9 53
U1 10
U2 100
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1467-2960
EI 1467-2979
J9 FISH FISH
JI Fish. Fish.
PD MAR
PY 2015
VL 16
IS 1
BP 23
EP 57
DI 10.1111/faf.12043
PG 35
WC Fisheries
SC Fisheries
GA CB4RW
UT WOS:000349616600002
ER
PT J
AU Godin, OA
AF Godin, Oleg A.
TI Finite-amplitude acoustic-gravity waves: exact solutions
SO JOURNAL OF FLUID MECHANICS
LA English
DT Article
DE compressible flows; general fluid mechanics; waves/free-surface flows
ID EDGE WAVES; WATER-WAVES; GEOPHYSICAL WAVES; STRATIFIED FLUID; SLOPING
BEACH; VORTICITY; FLOWS; SOUND; FIELD; GAS
AB We consider strongly nonlinear waves in fluids in a uniform gravity field, and demonstrate that an incompressible wave motion, in which pressure remains constant in each fluid parcel, is supported by compressible fluids with free and rigid boundaries. We present exact analytic solutions of nonlinear hydrodynamics equations which describe the incompressible wave motion. The solutions provide an extension of the Gerstner wave in an incompressible fluid with a free boundary to waves in compressible three-dimensionally inhomogeneous moving fluids such as oceans and planetary atmospheres.
C1 [Godin, Oleg A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Godin, Oleg A.] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO 80305 USA.
RP Godin, OA (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
EM oleg.godin@noaa.gov
RI Godin, Oleg/E-6554-2011
OI Godin, Oleg/0000-0003-4599-2149
FU Office of Naval Research [N00014-13-1-0348]
FX Stimulating discussions with M. Charnotskii and I. M. Fuks are
gratefully acknowledged. I am indebted to O. Buhler and two anonymous
reviewers for valuable suggestions and helpful criticism of an early
version of the paper. This research has been supported in part by the
Office of Naval Research, grant N00014-13-1-0348.
NR 49
TC 3
Z9 3
U1 3
U2 13
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-1120
EI 1469-7645
J9 J FLUID MECH
JI J. Fluid Mech.
PD MAR
PY 2015
VL 767
BP 52
EP 64
DI 10.1017/jfm.2015.40
PG 13
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA CB5SW
UT WOS:000349688900006
ER
PT J
AU Coakley, KJ
Imtiaz, A
Wallis, TM
Weber, JC
Berweger, S
Kabos, P
AF Coakley, K. J.
Imtiaz, A.
Wallis, T. M.
Weber, J. C.
Berweger, S.
Kabos, P.
TI Adaptive and robust statistical methods for processing near-field
scanning microwave microscopy images
SO ULTRAMICROSCOPY
LA English
DT Article
DE Adaptive weights smoothing; Atomic force microscopy; Denoising; Ferrite
materials; Gwyddion; GaN nanowire; Leveling; Micro-capacitance
calibration image; Near field scanning probe microwave microscopy; Local
regression and likelihood; Robust statistical methods; Scan artifacts;
Statistical image processing
ID LOCALLY WEIGHTED REGRESSION; ATOMIC-FORCE MICROSCOPY; EVANESCENT
MICROWAVES; LIKELIHOOD ESTIMATION; OPTICAL MICROSCOPE; DESIGN; CELLS;
SPECTROSCOPY; DEFECTS
AB Near field scanning microwave microscopy offers groat potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave vertical bar S-11 vertical bar images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.
C1 [Coakley, K. J.; Imtiaz, A.; Wallis, T. M.; Weber, J. C.; Berweger, S.; Kabos, P.] NIST, Boulder, CO 80305 USA.
[Weber, J. C.] Univ Colorado, Boulder, CO 80309 USA.
RP Coakley, KJ (reprint author), NIST, Boulder, CO 80305 USA.
NR 60
TC 1
Z9 1
U1 4
U2 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3991
EI 1879-2723
J9 ULTRAMICROSCOPY
JI Ultramicroscopy
PD MAR
PY 2015
VL 150
BP 1
EP 9
DI 10.1016/j.ultramic.2014.11.014
PG 9
WC Microscopy
SC Microscopy
GA CB5NJ
UT WOS:000349674100001
PM 25463325
ER
PT J
AU Picher, M
Mazzucco, S
Blankenship, S
Sharma, R
AF Picher, Matthieu
Mazzucco, Stefano
Blankenship, Steve
Sharma, Renu
TI Vibrational and optical spectroscopies integrated with environmental
transmission electron microscopy
SO ULTRAMICROSCOPY
LA English
DT Article
DE Environmental scanning transmission electron miaoscopy; Raman
spectroscopy; Cathodoluminescence; TEM sample temperature measurement
ID IN-SITU TEM; RAMAN-SPECTROSCOPY; CARBON NANOTUBES; SILICON;
CATHODOLUMINESCENCE
AB Here, we presera a measuremera plalform for collecling mulliple types of spectroscopy data during high resolution environmental transmission electron microscopy observations of dynamic processes. Such coupled measurements are made possible by a broadband, high-efficiency, free-space optical system. The critical element of the system is a parabolic mirror, inserted using an independent hollow rod and placed below the sample holder which can focus a light on the sample and/or collect the optical response. We demonstrate the versatility of this optical setup by using it to combine in situ atomic-scale electron microscopy observations with Raman spectroscopy. The Raman data is also used to measure the local temperature of the observed sample area. Other applications include, but are not limited to cathodo-and photoluminescence spectroscopy, and use of he laser as a local, high-rate healing source. Published by Elsevier B.V.
C1 [Picher, Matthieu; Mazzucco, Stefano; Blankenship, Steve; Sharma, Renu] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA.
[Picher, Matthieu; Mazzucco, Stefano] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20740 USA.
RP Sharma, R (reprint author), NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA.
EM renu.sharma@nist.gov
NR 29
TC 10
Z9 10
U1 2
U2 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3991
EI 1879-2723
J9 ULTRAMICROSCOPY
JI Ultramicroscopy
PD MAR
PY 2015
VL 150
BP 10
EP 15
DI 10.1016/j.ultramic.2014.11.023
PG 6
WC Microscopy
SC Microscopy
GA CB5NJ
UT WOS:000349674100002
PM 25490533
ER
PT J
AU Hicks, BB
Pendergrass, WR
Vogel, CA
Keener, RN
Leyton, SM
AF Hicks, Bruce B.
Pendergrass, W. R., III
Vogel, C. A.
Keener, R. N., Jr.
Leyton, S. M.
TI On the Micrometeorology of the Southern Great Plains. 2: Turbulence
Statistics
SO BOUNDARY-LAYER METEOROLOGY
LA English
DT Article
DE Free convection; Surface boundary layer; Turbulence kinetic energy;
Turbulence statistics
ID LOW-LEVEL JET; BOUNDARY-LAYER; FOOTPRINT
AB Fast-response micrometeorological data obtained from an instrumented 32-m tower at an arid site near Ocotillo, Texas are used to examine the daily time evolution of the lower atmosphere. Correlation coefficients between turbulence properties (fast response wind-speed components and temperature) confirm that over this sparsely vegetated site the effects of convection are observed soon after sunrise, well ahead of the morning transition from stable to unstable stratification. Details of this kind are obscured when results are considered as functions of conventional stability parameters, since such standard analytical methods combine features of the morning and evening transitions into a single presentation. Partial correlation coefficients and semi-partials indicate that the local turbulent kinetic energy is mainly associated with local fluxes of heat and momentum near neutral and in most stable conditions, but decreases substantially during the times of strongest instability (possibly reflecting the scatter introduced by sampling infrequent convective episodes using a single tower). For many of the variables considered here, the standard deviations are about the same as the linear averages, indicating that the distributions are close to log-normal. The present data indicate that if the intent is to address some specific situation then 10 % error bounds on turbulence quantities (e.g. fluxes) correspond to averaging over a distance scale of the order of 10 km and a time scale of about 3 h. As the distance and time scales become smaller, the uncertainties due to factors external to the local surface increase.
C1 [Hicks, Bruce B.] MetCorps, Norris, TN 37828 USA.
[Pendergrass, W. R., III; Vogel, C. A.] NOAA ARL ATDD, Oak Ridge, TN 37831 USA.
[Vogel, C. A.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
[Keener, R. N., Jr.; Leyton, S. M.] Duke Energy, Charlotte, NC 28202 USA.
RP Hicks, BB (reprint author), MetCorps, POB 1510, Norris, TN 37828 USA.
EM hicks.metcorps@gmail.com
RI Pendergrass, William/C-9073-2016
NR 14
TC 0
Z9 0
U1 2
U2 9
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0006-8314
EI 1573-1472
J9 BOUND-LAY METEOROL
JI Bound.-Layer Meteor.
PD MAR
PY 2015
VL 154
IS 3
BP 351
EP 366
DI 10.1007/s10546-014-9981-8
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB1DT
UT WOS:000349367700002
ER
PT J
AU Cassiani, M
Stohl, A
Brioude, J
AF Cassiani, Massimo
Stohl, Andreas
Brioude, Jerome
TI Lagrangian Stochastic Modelling of Dispersion in the Convective Boundary
Layer with Skewed Turbulence Conditions and a Vertical Density Gradient:
Formulation and Implementation in the FLEXPART Model
SO BOUNDARY-LAYER METEOROLOGY
LA English
DT Article
DE Air density gradient; Convective boundary layer; Drift coefficient;
Lagrangian stochastic model; Particle dispersion model; Velocity
skewness; Well-mixed condition
ID INHOMOGENEOUS TURBULENCE; TRAJECTORIES; SIMULATION; DIFFUSION; CANOPIES;
FIELD
AB A correction for the vertical gradient of air density has been incorporated into a skewed probability density function formulation for turbulence in the convective boundary layer. The related drift term for Lagrangian stochastic dispersion modelling has been derived based on the well-mixed condition. Furthermore, the formulation has been extended to include unsteady turbulence statistics and the related additional component of the drift term obtained. These formulations are an extension of the drift formulation reported by Luhar et al. (Atmos Environ 30:1407-1418, 1996) following the well-mixed condition proposed by Thomson (J Fluid Mech 180:529-556, 1987). Comprehensive tests were carried out to validate the formulations including consistency between forward and backward simulations and preservation of a well-mixed state with unsteady conditions. The stationary state CBL drift term with density correction was incorporated into the FLEXPART and FLEXPART-WRF Lagrangian models, and included the use of an ad hoc transition function that modulates the third moment of the vertical velocity based on stability parameters. Due to the current implementation of the FLEXPART models, only a steady-state horizontally homogeneous drift term could be included. To avoid numerical instability, in the presence of non-stationary and horizontally inhomogeneous conditions, a re-initialization procedure for particle velocity was used. The criteria for re-initialization and resulting errors were assessed for the case of non-stationary conditions by comparing a reference numerical solution in simplified unsteady conditions, obtained using the non-stationary drift term, and a solution based on the steady drift with re-initialization. Two examples of "real-world" numerical simulations were performed under different convective conditions to demonstrate the effect of the vertical gradient in density on the particle dispersion in the CBL.
C1 [Cassiani, Massimo; Stohl, Andreas] Norwegian Inst Air Res, NILU, Kjeller, Norway.
[Brioude, Jerome] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Brioude, Jerome] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA.
[Brioude, Jerome] Univ La Reunion, CNRS, Lab Atmosphere & Cyclones, Meteo France,UMR8105, St Denis, Reunion.
RP Cassiani, M (reprint author), Norwegian Inst Air Res, NILU, Kjeller, Norway.
EM mc@nilu.no
RI Stohl, Andreas/A-7535-2008; Brioude, Jerome/E-4629-2011; Manager, CSD
Publications/B-2789-2015
OI Stohl, Andreas/0000-0002-2524-5755;
FU Research Council of Norway through the EarthClim [207711/E10]
FX This research was partially supported by the Research Council of Norway
through the EarthClim (207711/E10) project.
NR 38
TC 3
Z9 3
U1 4
U2 20
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0006-8314
EI 1573-1472
J9 BOUND-LAY METEOROL
JI Bound.-Layer Meteor.
PD MAR
PY 2015
VL 154
IS 3
BP 367
EP 390
DI 10.1007/s10546-014-9976-5
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB1DT
UT WOS:000349367700003
ER
PT J
AU Clapham, PJ
Zerbini, AN
AF Clapham, Phillip J.
Zerbini, Alexandre N.
TI Are social aggregation and temporary immigration driving high rates of
increase in some Southern Hemisphere humpback whale populations?
SO MARINE BIOLOGY
LA English
DT Article
ID MEGAPTERA-NOVAEANGLIAE; BREEDING GROUNDS; HAWAIIAN WATERS; ABUNDANCE;
PHOTOIDENTIFICATION; MOVEMENTS; ISLANDS; OCEANIA; EASTERN
AB Humpback whales (Megaptera novaeangliae) in the Southern Hemisphere were heavily exploited by commercial whaling. Today, their recovery is variable: Humpbacks remain surprisingly scarce in some formerly populous areas (e.g., New Zealand, Fiji), while in other regions (such as eastern Australia), they appear to be rebounding at or even above the maximum plausible rate of annual increase. Here, we propose that this phenomenon cannot be explained solely in demographic terms. Through simulation, we test the hypothesis that reported high rates of increase represent a combination of true intrinsic growth rates and temporary immigration, driven by a strong tendency to aggregate for mating. We introduce the idea that overexploitation diminished density at major breeding grounds such that these were no longer viable; then, during subsequent population recovery, a critical mass was attained in certain areas which drew in whales that formerly bred elsewhere. The simulations show that, to maintain high increase rates, the contribution to that rate by temporary immigration from a second, "source" population would have to represent a larger and larger proportion of the source stock and would require relatively high (but quite plausible) intrinsic rates of increase for each population. In the modeling scenarios, the demand for immigrants would eventually exceed the supply and exhaust the source population, but the simulations demonstrated that high increase rates can be sustained over periods of more than 20 years. This hypothesis, if correct, would not only explain excessively high rates of increase in current "hotspots" such as eastern Australia, but also imply that formerly important areas (e.g., Fiji) host few whales today not necessarily because of a failure to recover, but because the species' mating system leads the whales concerned to migrate to higher-density breeding grounds elsewhere. Overall, we caution that assessments of depleted animal populations that do not consider the social behavior of a species are missing a potentially vital component of the picture.
C1 [Clapham, Phillip J.; Zerbini, Alexandre N.] NOAA Fisheries, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA.
[Clapham, Phillip J.] South Pacific Whale Res Consortium, Avarua, Rarotonga, Cook Islands.
[Zerbini, Alexandre N.] Cascadia Res Collect, Olympia, WA 98501 USA.
RP Clapham, PJ (reprint author), NOAA Fisheries, Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA.
EM phillip.clapham@noaa.gov
RI Zerbini, Alexandre/G-4138-2012
NR 42
TC 7
Z9 7
U1 2
U2 44
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0025-3162
EI 1432-1793
J9 MAR BIOL
JI Mar. Biol.
PD MAR
PY 2015
VL 162
IS 3
BP 625
EP 634
DI 10.1007/s00227-015-2610-3
PG 10
WC Marine & Freshwater Biology
SC Marine & Freshwater Biology
GA CB1GI
UT WOS:000349374800011
ER
PT J
AU Glass, JR
Kruse, GH
Miller, SA
AF Glass, Jessica R.
Kruse, Gordon H.
Miller, Scott A.
TI Socioeconomic considerations of the commercial weathervane scallop
fishery off Alaska using SWOT analysis
SO OCEAN & COASTAL MANAGEMENT
LA English
DT Article
DE weathervane scallops; bycatch; SWOT analysis; Alaska; fishery
stakeholders
ID MANAGEMENT; ACIDIFICATION; STAKEHOLDERS; COOPERATIVES; COMMUNITIES;
AQUACULTURE; EASTERN; OCEAN; GULF
AB We conducted a socioeconomic assessment of the commercial weathervane scallop (Patinopecten caurinus) fishery off Alaska. The research was structured within the framework of an SWOT (strengths, weaknesses, opportunities, threats) analysis, a strategy commonly used to analyze the internal (strengths, weaknesses) and external (opportunities, threats) components of an industry. Specifically, we focused on five categories: social, technological, economic, environmental, and regulatory. Semistructured interviews were conducted with 27 participants who had detailed knowledge of the fishery, including industry members, fishery managers, biologists, and members of coastal communities who interact with the fishery. We addressed topics such as attitudes of the Alaskan public towards scallop dredging, impacts of the scallop industry on Alaskan coastal communities, market influences of U.S. east coast and imported scallops, changes in the management of the fishery, and a number of environmental considerations. Several unifying opinions emerged from this study, including a lack of awareness of the fishery in many Alaskan communities and fears about rising fuel costs and diminishing harvest levels. Whereas the data-poor status of the stock appears to be the fishery's biggest weakness, the greatest strengths come in the form of conservative management, industry self-regulation, and the small footprint of the fishery. Impending threats include stock decline, unknown long-term detrimental effects of dredging, and changes in the management and structure of the fishery with the sunset of the State of Alaska's limited entry permit program. Most participants consider the fishery to be managed sustainably, although lack of data on scallop recruitment and abundance is a large concern. This analysis provides relevant information to both fishery managers and scallop industry members to contribute to the environmental, economic, and social sustainability of the scallop fishery. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
C1 [Glass, Jessica R.; Kruse, Gordon H.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA.
[Miller, Scott A.] Natl Marine Fisheries Serv, Alaska Reg Off, Juneau, AK 99802 USA.
RP Glass, JR (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, POB 208106, New Haven, CT 06520 USA.
EM jessica.glass@yale.edu
OI Glass, Jessica/0000-0002-9843-1786
FU National Science Foundation Marine Ecosystem Sustainability in the
Arctic and Subarctic (MESAS) IGERT [DGE-0801720]; National Science
Foundation Graduate Research Fellowship Program; Northern Gulf of Alaska
Applied Research Award; H. Richard Carlson Fellowship; North Pacific
Research Board (NPRB) [519]; University of Alaska Coastal Marine
Institute; US Department of the Interior, Bureau of Ocean Energy
Management (BOEM), Environmental Studies Program, Washington, D.C.
[M13AC00004]
FX We thank Dr. Stephen Jewett and Dr. Franz Mueter for their helpful
reviews and suggestions. This study was carried out with approval of the
University of Alaska Fairbanks Institutional Review Board (IRB#
474118-1). This project was supported by the National Science Foundation
Marine Ecosystem Sustainability in the Arctic and Subarctic (MESAS)
IGERT (Award DGE-0801720), the National Science Foundation Graduate
Research Fellowship Program, the Northern Gulf of Alaska Applied
Research Award, the H. Richard Carlson Fellowship, the North Pacific
Research Board (NPRB publication no. 519), and the University of Alaska
Coastal Marine Institute with funding from the US Department of the
Interior, Bureau of Ocean Energy Management (BOEM), Environmental
Studies Program, Washington, D.C., Cooperative Agreement Award No.
M13AC00004. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the
opinions or policies of the U.S. Government. Mention of trade names or
commercial products does not constitute their endorsement by the U.S.
Government.
NR 59
TC 3
Z9 3
U1 5
U2 28
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0964-5691
EI 1873-524X
J9 OCEAN COAST MANAGE
JI Ocean Coastal Manage.
PD MAR
PY 2015
VL 105
BP 154
EP 165
DI 10.1016/j.ocecoaman.2015.01.005
PG 12
WC Oceanography; Water Resources
SC Oceanography; Water Resources
GA CB1ZS
UT WOS:000349427100016
ER
PT J
AU Bateni, SM
Mortazavi-Naeini, M
Ataie-Ashtiani, B
Jeng, DS
Khanbilvardi, R
AF Bateni, S. M.
Mortazavi-Naeini, M.
Ataie-Ashtiani, B.
Jeng, D. S.
Khanbilvardi, R.
TI Evaluation of methods for estimating aquifer hydraulic parameters
SO APPLIED SOFT COMPUTING
LA English
DT Article
DE Aquifer hydraulic parameters; Ant Colony Optimization (ACO); Genetic
Algorithm (GA); Nonlinear programming (NLP); Pumping test
ID ANT COLONY OPTIMIZATION; UNCONFINED GROUNDWATER-FLOW; PUMPING TEST DATA;
RESERVOIR OPERATION; GENETIC ALGORITHM; LEAKY AQUIFERS; MANAGEMENT;
AGRICULTURE; NETWORKS; SYSTEM
AB An accurate estimation of aquifer hydraulic parameters is required for groundwater modeling and proper management of vital groundwater resources. In situ measurements of aquifer hydraulic parameters are expensive and difficult. Traditionally, these parameters have been estimated by graphical methods that are approximate and time-consuming. As a result, nonlinear programming (NLP) techniques have been used extensively to estimate them. Despite the outperformance of NLP approaches over graphical methods, they tend to converge to local minima and typically suffer from a convergence problem. In this study, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) methods are used to identify hydraulic parameters (i.e., storage coefficient, hydraulic conductivity, transmissivity, specific yield, and leakage factor) of three types of aquifers namely, confined, unconfined, and leaky from real time-drawdown pumping test data. The performance of GA and ACO is also compared with that of graphical and NLP techniques. The results show that both GA and ACO are efficient, robust, and reliable for estimating various aquifer hydraulic parameters from the time-drawdown data and perform better than the graphical and NLP techniques. The outcomes also indicate that the accuracy of GA and ACO is comparable. Comparing the running time of various utilized methods illustrates that ACO converges to the optimal solution faster than other techniques, while the graphical method has the highest running time. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Jeng, D. S.] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Jiangsu, Peoples R China.
[Bateni, S. M.] Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI 96822 USA.
[Bateni, S. M.] Univ Hawaii Manoa, Water Resources Res Ctr, Honolulu, HI 96822 USA.
[Mortazavi-Naeini, M.] Univ Newcastle, Dept Civil Surveying & Environm Engn, Callaghan, NSW 2308, Australia.
[Ataie-Ashtiani, B.] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran.
[Jeng, D. S.] Griffith Univ, Griffith Sch Engn, Nathan, Qld 4222, Australia.
[Khanbilvardi, R.] CUNY, NOAA Cooperat Remote Sensing Sci & Technol Ctr NO, New York, NY USA.
RP Jeng, DS (reprint author), Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Jiangsu, Peoples R China.
EM d.jeng@griffith.edu.au
OI Ataie-Ashtiani, Behzad/0000-0002-1339-3734
NR 57
TC 2
Z9 3
U1 1
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1568-4946
EI 1872-9681
J9 APPL SOFT COMPUT
JI Appl. Soft. Comput.
PD MAR
PY 2015
VL 28
BP 541
EP 549
DI 10.1016/j.asoc.2014.12.022
PG 9
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
SC Computer Science
GA AZ8GF
UT WOS:000348452500051
ER
PT J
AU Simonsen, KA
Cowan, JH
Boswell, KM
AF Simonsen, Kirsten A.
Cowan, James H., Jr.
Boswell, Kevin M.
TI Habitat differences in the feeding ecology of red snapper (Lutjanus
campechanus, Poey 1860): a comparison between artificial and natural
reefs in the northern Gulf of Mexico
SO ENVIRONMENTAL BIOLOGY OF FISHES
LA English
DT Article
DE Red snapper; Trophic ecology; Natural reef; Artificial reef; Gulf of
Mexico
ID STABLE-ISOTOPE ANALYSES; GUT-CONTENT; PETROLEUM PLATFORMS; NORTHEASTERN
GULF; FISH COMMUNITY; GROWTH-RATES; NICHE WIDTH; PATTERNS; ALABAMA; PREY
AB Red snapper (Lutjanus campechanus, Poey 1860) support a valuable commercial and recreational fishery in the northern Gulf of Mexico; however there is much debate as to the role of habitat, particularly reef structures, in the feeding ecology of this species. Furthermore, little information is available from fish collected on large natural reefs, such as those on the continental shelf edge, thought to be the historical center of abundance. Previous research indicates that little nutrition is derived directly from artificial reefs; rather the majority of prey comes from surrounding soft bottom habitat. The goal of this study was to determine if there are differences in the feeding ecology of red snapper between standing oil and gas platforms, toppled platforms designated as artificial reefs, and natural reefs on the continental shelf edge, using a combination of gut content and stable isotope analyses. Results indicate that fish dominated diets at all three sites, but that differences exist in the contribution of major prey items by percentage dry weight among habitats. Red snapper collected from standing platforms consumed primarily fish, squid, and shrimp, while greater amounts of crabs, shrimp, and other crustaceans were consumed at toppled platforms. On the natural reefs, diets varied the most, consisting of both fish and crustaceans. Stable isotope analyses suggest fish collected over the standing platforms are more enriched in delta(15) N, indicating feeding at a higher trophic level than the other habitats. No differences were observed in mean values of delta C-13 or delta S-34, indicating consistency in basal resources among habitats.
C1 [Simonsen, Kirsten A.; Cowan, James H., Jr.] Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA.
[Boswell, Kevin M.] Florida Int Univ, Dept Biol Sci, Marine Sci Program, North Miami, FL 33181 USA.
RP Simonsen, KA (reprint author), NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Resource Assessment & Conservat Engn Div, 7600 Sand Point Way NE, Seattle, WA 98115 USA.
EM kirsten.simonsen@noaa.gov
RI boswell, kevin/B-6380-2016
OI boswell, kevin/0000-0002-2037-1541
FU Louisiana Department of Wildlife and Fisheries; NOAA Marine Fisheries
Initiative (MARFIN); Louisiana Sea Grant
FX We would like to thank C. Saari, D. Kulaw, S. Daigle, M. Zapp Sluis, M.
Campbell, P. Pascal, M. Grippo, G. Harwell, and J. Saari for assistance
in the field and laboratory. We would also like to thank the crew of the
M/V Jambon Researcher for sampling assistance. Early versions of this
manuscript benefitted from comments by D. Nieland, C. Saari, M. Zapp
Sluis and three anonymous reviewers. Funding for this research was
provided by the Louisiana Department of Wildlife and Fisheries, NOAA
Marine Fisheries Initiative (MARFIN) and the Louisiana Sea Grant.
NR 56
TC 2
Z9 2
U1 5
U2 51
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0378-1909
EI 1573-5133
J9 ENVIRON BIOL FISH
JI Environ. Biol. Fishes
PD MAR
PY 2015
VL 98
IS 3
BP 811
EP 824
DI 10.1007/s10641-014-0317-9
PG 14
WC Ecology; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA CA6NA
UT WOS:000349029800006
ER
PT J
AU Sippel, T
Eveson, JP
Galuardi, B
Lam, C
Hoyle, S
Maunder, M
Kleiber, P
Carvalho, F
Tsontos, V
Teo, SLH
Aires-da-Silva, A
Nicol, S
AF Sippel, Tim
Eveson, J. Paige
Galuardi, Benjamin
Lam, Chi
Hoyle, Simon
Maunder, Mark
Kleiber, Pierre
Carvalho, Felipe
Tsontos, Vardis
Teo, Steven L. H.
Aires-da-Silva, Alexandre
Nicol, Simon
TI Using movement data from electronic tags in fisheries stock assessment:
A review of models, technology and experimental design
SO FISHERIES RESEARCH
LA English
DT Article
DE Spatial stock assessment; Fish movement; Electronic tags; Experimental
design
ID ATLANTIC BLUEFIN TUNA; SATELLITE ARCHIVAL TAGS; CENTRAL PACIFIC-OCEAN;
CATCH-AT-AGE; TAGGING DATA; MORTALITY-RATES; HORIZONTAL MOVEMENTS;
POPULATION-STRUCTURE; KATSUWONUS-PELAMIS; THUNNUS-ALBACARES
AB Tag-recapture data have long been important data sources for fisheries management, with the capacity to inform abundance, mortality, growth and movement within stock assessments. Historically, this role has been fulfilled with low-tech conventional tags, but the relatively recent and rapid development of electronic tags has dramatically increased the potential to collect more high quality data. Stock assessment models have also been evolving in power and complexity recently, with the ability to integrate multiple data sources into unified spatially explicit frameworks. However, electronic tag technologies and stock assessment models have developed largely independently, and frameworks for incorporating these valuable data in contemporary stock assessments are nascent, at best. Movement dynamics of large pelagic species have been problematic to resolve in modern assessments, and electronic tags offer new opportunities to resolve some of these issues. Pragmatic ways of modeling movement are often not obvious, and basic research into discrete and continuous processes, for example, is ongoing. Experimental design of electronic tagging research has been driven mostly by ecological and biological questions, rather than optimized for stock assessment, and this is probably a complicating factor in integration of the data into assessment models. A holistic overview of the current state of assessment models, electronic tag technologies, and experimental design is provided here, with the aim to provide insight into how stock assessment and electronic tagging research can be conducted most effectively together. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Sippel, Tim; Teo, Steven L. H.] Southwest Fisheries Sci Ctr, NOAA Fisheries, La Jolla, CA 92037 USA.
[Eveson, J. Paige] CSIRO Marine & Atmospher Res, Hobart, Tas, Australia.
[Galuardi, Benjamin; Lam, Chi] UMass Amherst, Large Pelag Res Ctr, Gloucester, MA 01930 USA.
[Hoyle, Simon; Nicol, Simon] Secretariat Pacific Community, Noumea 98848, New Caledonia.
[Maunder, Mark; Aires-da-Silva, Alexandre] Inter Amer Trop Tuna Commiss, Santa Clara, CA 92037 USA.
[Kleiber, Pierre] NOAA, Pacific Islands Fisheries Sci Ctr, Honolulu, HI 96822 USA.
[Carvalho, Felipe] Univ Florida, Program Fisheries & Aquat Sci, Gainesville, FL 32653 USA.
[Tsontos, Vardis] NASA, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Sippel, T (reprint author), Southwest Fisheries Sci Ctr, NOAA Fisheries, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA.
EM tim.sippel@noaa.gov
FU Pelagic Fisheries Research Program at the University of Hawaii through
the project titled "Integrating Electronic and Conventional Tagging Data
into Modern Stock Assessment Models" [661550]
FX This paper is a culmination of a scientific meeting held during October
2011 in La Jolla, CA, which was funded by the Pelagic Fisheries Research
Program at the University of Hawaii through the project titled
"Integrating Electronic and Conventional Tagging Data into Modern Stock
Assessment Models" (Project Number 661550). Attendees at the workshop
included Mark Maunder, Alex Aires Da Silva, Michael Hinton, Rick Deriso,
Steve Teo, Suzanne Kohin, Tim Sippel, Ian Taylor, Pierre Kleiber, Simon
Nicol, Simon Hoyle, Karine Briand, Tim Lam, Ben Galuardi, Francois
Royer, Eunjung Kim, Irina Senina, Felipe Carvalho, Juan Valero, Yukio
Takeuchi, Shiga Iwata and Mark Fitchett. Thanks to the Inter American
Tropical Tuna Commission for convening the meeting, to Jeff Laake, Kevin
Hill, Guest Editor Hilario Murua and two anonymous reviewers for their
helpful reviews of this manuscript.
NR 106
TC 10
Z9 10
U1 3
U2 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0165-7836
EI 1872-6763
J9 FISH RES
JI Fish Res.
PD MAR
PY 2015
VL 163
SI SI
BP 152
EP 160
DI 10.1016/j.fishres.2014.04.006
PG 9
WC Fisheries
SC Fisheries
GA CA5TS
UT WOS:000348971300014
ER
PT J
AU Chalfoun, J
Majurski, M
Bhadriraju, K
Lund, S
Bajcsy, P
Brady, M
AF Chalfoun, J.
Majurski, M.
Bhadriraju, K.
Lund, S.
Bajcsy, P.
Brady, M.
TI Background intensity correction for terabyte-sized time-lapse images
SO JOURNAL OF MICROSCOPY
LA English
DT Article
DE Background modelling; fluorescent image correction; image mosaic; large
field of view
ID EMBRYONIC STEM-CELLS; CALIBRATION
AB Several computational challenges associated with large-scale background image correction of terabyte-sized fluorescent images are discussed and analysed in this paper. Dark current, flat-field and background correction models are applied over a mosaic of hundreds of spatially overlapping fields of view (FOVs) taken over the course of several days, during which the background diminishes as cell colonies grow. The motivation of our work comes from the need to quantify the dynamics of OCT-4 gene expression via a fluorescent reporter in human stem cell colonies. Our approach to background correction is formulated as an optimization problem over two image partitioning schemes and four analytical correction models. The optimization objective function is evaluated in terms of (1) the minimum root mean square (RMS) error remaining after image correction, (2) the maximum signal-to-noise ratio (SNR) reached after downsampling and (3) the minimum execution time. Based on the analyses with measured dark current noise and flat-field images, the most optimal GFP background correction is obtained by using a data partition based on forming a set of submosaic images with a polynomial surface background model. The resulting image after correction is characterized by an RMS of about 8, and an SNR value of a 4 x 4 downsampling above 5 by Rose criterion. The new technique generates an image with half RMS value and double SNR value when compared to an approach that assumes constant background throughout the mosaic. We show that the background noise in terabyte-sized fluorescent image mosaics can be corrected computationally with the optimized triplet (data partition, model, SNR driven downsampling) such that the total RMS value from background noise does not exceed the magnitude of the measured dark current noise. In this case, the dark current noise serves as a benchmark for the lowest noise level that an imaging system can achieve. In comparison to previous work, the past fluorescent image background correction methods have been designed for single FOV and have not been applied to terabyte-sized images with large mosaic FOVs, low SNR and diminishing access to background information over time as cell colonies span entirely multiple FOVs. The code is available as open-source from the following link .
Lay Description In this paper we present background intensity correction for terabyte-sized time-lapse fluorescent images. The motivation of our work comes from the need to quantify the dynamics of OCT-4 gene expression via a fluorescent reporter in human stem cell colonies. The challenges lie in correcting time-lapse fluorescent images of individual size about 462 Megapixels that have been assembled from hundreds of spatially overlapping smaller fields of view (FOVs) taken over the course of several days. Furthermore, the background diminishes as cell colonies grow over time as observed during the acquisition of three time-lapse replicates equal about 2.6 terabytes. Our approach to background correction is formulated as an optimization problem where the objective function is evaluated in terms of (1) the remaining error after image correction, (2) the maximum Signal-to-Noise Ratio (SNR) reached after binning the image, and (3) the minimum execution time. The new technique generates an image with half Root-Mean-Square (RMS) value and double SNR value when compared to a typical approach that assumes constant background throughout the mosaic. We show that the background noise after correction does not exceed the magnitude of the measured dark current noise. In this case, the dark current noise serves as a benchmark for the lowest noise level that an imaging system can achieve.
C1 [Chalfoun, J.; Majurski, M.; Lund, S.; Bajcsy, P.; Brady, M.] NIST, Informat Technol Lab, Gaithersburg, MD 20899 USA.
[Bhadriraju, K.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
RP Bajcsy, P (reprint author), NIST, Informat Technol Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA.
EM peter.bajcsy@nist.gov
FU NIST
FX This work has been supported by NIST. We would like to acknowledge the
team members of the computational science in biological metrology
project at NIST for providing invaluable inputs to our work.
NR 17
TC 4
Z9 4
U1 1
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-2720
EI 1365-2818
J9 J MICROSC-OXFORD
JI J. Microsc..
PD MAR
PY 2015
VL 257
IS 3
BP 226
EP 237
DI 10.1111/jmi.12205
PG 12
WC Microscopy
SC Microscopy
GA CA2AN
UT WOS:000348711500007
PM 25623496
ER
PT J
AU Young, K
Koch, J
Yasuoka, S
Shen, H
Bendersky, LA
AF Young, K.
Koch, J.
Yasuoka, S.
Shen, H.
Bendersky, L. A.
TI Mn in misch-metal based superlattice metal hydride alloy - Part 2 Ni/MH
battery performance and failure mechanism
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Hydrogen absorbing materials; Transition metal alloys; Metal hydride
electrode; Nickel metal hydride battery
ID A(2)B(7) ALLOYS; ELECTROCHEMICAL PROPERTIES; STORAGE PROPERTIES;
NICKEL-HYDROXIDE; SELF-DISCHARGE; SURFACE; AB(5); AB(2); AL
AB The performance and failure mode of Ni/MH batteries made from a series of Mn-modified A(2)B(7) super-lattice and a commercially available AB(5) metal hydride alloys were studied and reported. Cells with the Mn-free A(2)B(7) alloy generally show improved low-temperature, higher peak power, and similar charge-retention behavior over those with a conventional AB(5) alloy. As Mn-additive amount increased, cell voltage and high-rate capacity improved, low temperature, charge retention, and cycle life first improved, but then deteriorated, and peak power and high temperature voltage stand deteriorated. Analysis of battery performance test results show the use of a superlattice alloy containing 2.3% Mn as the best overall alloy composition. Failure analysis of the highly cycled AB(5) alloy containing cells indicate a balanced degradation in negative, positive, separator, and a moderate loss of electrolyte. Same analysis on cells containing the various superlattice alloys suffered from a high degree of pulverization and oxidation of its negative electrode (with the 9.3% Mn content experiencing the worst amount of pulverization/oxidation) and a high degree of electrolyte loss. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Young, K.; Koch, J.; Shen, H.] BASF Ovon, Rochester, MI 48309 USA.
[Yasuoka, S.] FDK Twicell Co Ltd, Takasaki, Gunma 3700071, Japan.
[Shen, H.; Bendersky, L. A.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
RP Young, K (reprint author), BASF Ovon, 2983 Waterview Dr,Hills, Rochester, MI 48309 USA.
EM kwo.young@basf.com
FU ARPA-E under the robust affordable next generation EV-storage (RANGE)
program [DE-AR0000386]
FX Part of this work (NIST portion) is financially supported by ARPA-E
under the robust affordable next generation EV-storage (RANGE) program
(DE-AR0000386).
NR 26
TC 7
Z9 7
U1 2
U2 39
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD MAR 1
PY 2015
VL 277
BP 433
EP 442
DI 10.1016/j.jpowsour.2014.10.092
PG 10
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA CA5OF
UT WOS:000348957000051
ER
PT J
AU Harter, TS
Morrison, PR
Mandelman, JW
Rummer, JL
Farrell, AP
Brill, RW
Brauner, CJ
AF Harter, T. S.
Morrison, P. R.
Mandelman, J. W.
Rummer, J. L.
Farrell, A. P.
Brill, R. W.
Brauner, C. J.
TI Validation of the i-STAT system for the analysis of blood gases and
acid-base status in juvenile sandbar shark (Carcharhinus plumbeus)
SO CONSERVATION PHYSIOLOGY
LA English
DT Article
DE Carbon dioxide tension; elasmobranch; oxygen tension; pH; portable
clinical analyser
ID DOGFISH SQUALUS-ACANTHIAS; SCYLIORHINUS-STELLARIS; EXHAUSTING ACTIVITY;
LONGLINE CAPTURE; ELASMOBRANCH; ANALYZER; EXERCISE; PARAMETERS;
PHYSIOLOGY; MORTALITY
AB Accurate measurements of blood gases and acid-base status require an array of sophisticated laboratory equipment that is typically not available during field research; such is the case for many studies on the stress physiology, ecology and conservation of elasmobranch fish species. Consequently, researchers have adopted portable clinical analysers that were developed for the analysis of human blood characteristics, but often without thoroughly validating these systems for their use on fish. The aim of our study was to test the suitability of the i-STAT system, the most commonly used portable clinical analyser in studies on fish, for analysing blood gases and acid-base status in elasmobranchs, over a broad range of conditions and using the sandbar shark (Carcharhinus plumbeus) as a model organism. Our results indicate that the i-STAT system can generate useful measurements of whole blood pH, and the use of appropriate correction factors may increase the accuracy of results. The i-STAT system was, however, unable to generate reliable results for measurements of partial pressure of oxygen (PO2) and the derived parameter of haemoglobin O-2 saturation. This is probably due to the effect of a closed-system temperature change on PO2 within the i-STAT cartridge and the fact that the temperature correction algorithms used by i-STAT assume a human temperature dependency of haemoglobin-O-2 binding; in many ectotherms, this assumption will lead to equivocal i-STAT PO2 results. The in vivo partial pressure of CO2 (PCO2) in resting sandbar sharks is probably below the detection limit for PCO2 in the i-STAT system, and the measurement of higher PCO2 tensions was associated with a large measurement error. In agreement with previous work, our results indicate that the i-STAT system can generate useful data on whole blood pH in fishes, but not blood gases.
C1 [Harter, T. S.; Morrison, P. R.; Farrell, A. P.; Brauner, C. J.] Univ British Columbia, Dept Zool, 6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada.
[Mandelman, J. W.] New England Aquarium, John H Prescott Marine Lab, Boston, MA 02110 USA.
[Rummer, J. L.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia.
[Farrell, A. P.] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada.
[Brill, R. W.] James J Howard Marine Sci Lab, Northeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Highlands, NJ 07732 USA.
RP Harter, TS (reprint author), Univ British Columbia, Dept Zool, 6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada.
EM harter@zoology.ubc.ca
OI Morrison, Phillip/0000-0001-9470-4540
FU Natural Sciences and Engineering Research Council (NSERC) of Canada
Discovery Grant; NSERC Accelerator Supplement
FX This study was supported by a Natural Sciences and Engineering Research
Council (NSERC) of Canada Discovery Grant to C.J.B. and A.P.F. and an
NSERC Accelerator Supplement to C.J.B. A.P.F. holds a Canada Research
Chair. This is contribution number 3433 from the Virginia Institute of
Marine Science, College of William & Mary. Funding for some of the study
supplies, including cartridges, was provided by an anonymous donor
supporting J.W.M.'s work.
NR 28
TC 4
Z9 4
U1 5
U2 9
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 2051-1434
J9 CONSERV PHYSIOL
JI Conserv. Physiol.
PD MAR 1
PY 2015
VL 3
AR cov002
DI 10.1093/conphys/cov002
PG 10
WC Biodiversity Conservation; Ecology; Environmental Sciences; Physiology
SC Biodiversity & Conservation; Environmental Sciences & Ecology;
Physiology
GA DK8RB
UT WOS:000375194900001
PM 27293687
ER
PT J
AU Robinson, PH
Kussmaul, MG
Stoddard, CM
Rudyak, I
Kuersten, A
AF Robinson, Paul H.
Kussmaul, Matthew G.
Stoddard, Camber M.
Rudyak, Ilya
Kuersten, Andreas
TI THE AMERICAN CRIMINAL CODE: GENERAL DEFENSES
SO JOURNAL OF LEGAL ANALYSIS
LA English
DT Article
AB There are fifty-two bodies of criminal law in the USA. Each stakes out often diverse positions on a range of issues. This article defines the "American rule" for each of the issues relating to general defenses, a first contribution toward creating an "American Criminal Code".
The article is the result of a several-year research project examining every issue relating to justification, excuse, and nonexculpatory defenses. It determines the majority American position among the fifty-two jurisdictions, and formulates statutory language for each defense that reflects that majority rule. The article also compares and contrasts the majority position to significant minority positions, to the Model Penal Code, and to the National Commission's proposed code.
Using these results, in focusing on the most controversial justification defense, Defense of Persons, the article then compares patterns among the states on legal issues with a wide range of other variables-such as state population, racial characteristics, violent crime rates, and gun ownership-highlighting many interesting correlations. Applying this kind of doctrinal correlation analysis to all of the project's existing data would be a major undertaking. The goal here is to show how such analysis can be done, and how interesting the revealed patterns can be.
C1 [Robinson, Paul H.; Rudyak, Ilya] Univ Penn, Sch Law, 3501 Sansom St, Philadelphia, PA 19104 USA.
[Stoddard, Camber M.] White & Case LLP, Los Angeles, CA USA.
[Kuersten, Andreas] NOAA, Off Gen Counsel, Silver Spring, MD 20910 USA.
RP Robinson, PH (reprint author), Univ Penn, Sch Law, 3501 Sansom St, Philadelphia, PA 19104 USA.
EM phr@law.upenn.edu
NR 7
TC 1
Z9 1
U1 1
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1946-5319
EI 2161-7201
J9 J LEGAL ANAL
JI J. Leg. Anal.
PD SPR
PY 2015
VL 7
IS 1
BP 37
EP 150
DI 10.1093/jla/lav001
PG 113
WC Law
SC Government & Law
GA DD4KR
UT WOS:000369892200002
ER
PT J
AU Wong-Ng, W
Kaduk, JA
Siderius, DW
Allen, AL
Espinal, L
Boyerinas, BM
Levin, I
Suchomel, MR
Ilavsky, J
Li, L
Williamson, I
Cockayne, E
Wu, H
AF Wong-Ng, W.
Kaduk, J. A.
Siderius, D. W.
Allen, A. L.
Espinal, L.
Boyerinas, B. M.
Levin, I.
Suchomel, M. R.
Ilavsky, J.
Li, L.
Williamson, I.
Cockayne, E.
Wu, H.
TI Reference diffraction patterns, microstructure, and pore-size
distribution for the copper (II) benzene-1,3,5-tricarboxylate metal
organic framework (Cu-BTC) compounds
SO POWDER DIFFRACTION
LA English
DT Article
DE metal organic framework (MOF); Cu-BTC; X-ray powder patterns;
microstructure; poresize distribution
ID ADVANCED PHOTON SOURCE; AUGMENTED-WAVE METHOD; SYNCHROTRON X-RAY; POWDER
DIFFRACTION; MOLECULAR-SIEVE; SURFACE-AREAS; SCATTERING; CO2;
ADSORPTION; SYSTEM
AB Cu-paddle-wheel-based Cu-3(BTC)(2) (nicknamed Cu-BTC, where BTC equivalent to benzene 1,3,5-tricarboxylate) is a metal organic framework (MOF) compound that adopts a zeolite-like topology. We have determined the pore-size distribution using the Gelb and Gubbins technique, the microstructure using small-angle neutron scattering and (ultra) small-angle X-ray scattering (USAXS\SAXS) techniques, and X-ray powder diffraction reference patterns for both dehydrated d-Cu-BTC [Cu-3(C9H3O6)(2)] and hydrated h-Cu-BTC [Cu-3(C9H3O6)(2)(H2O)(6.96)] using the Rietveld refinement technique. Both samples were confirmed to be cubic Fm (3) over bar m (no. 225), with lattice parameters of a = 26.279 19(3) angstrom, V = 18 148.31(6) angstrom(3) for d-Cu-BTC, and a = 26.3103(11) angstrom, and V= 18 213(2) angstrom(3) for h-Cu-BTC. The structure of d-Cu-BTC contains three main pores of which the diameters are approximately, in decreasing order, 12.6, 10.6, and 5.0 angstrom. The free volume for d-Cu-BTC is approximately (71.85 +/- 0.05)% of the total volume and is reduced to approximately (61.33 +/- 0.03)% for the h-Cu-BTC structure. The d-Cu-BTC phase undergoes microstructural changes when exposed to moisture in air. The reference X-ray powder patterns for these two materials have been determined for inclusion in the Powder Diffraction File. (C) 2014 International Centre for Diffraction Data.
C1 [Wong-Ng, W.; Siderius, D. W.; Allen, A. L.; Espinal, L.; Boyerinas, B. M.; Levin, I.; Cockayne, E.; Wu, H.] NIST, Gaithersburg, MD 20899 USA.
[Kaduk, J. A.] IIT, Chicago, IL 60616 USA.
[Suchomel, M. R.; Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Li, L.; Williamson, I.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA.
[Wu, H.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
RP Wong-Ng, W (reprint author), NIST, Gaithersburg, MD 20899 USA.
EM winnie.wong-ng@nist.gov
RI Wu, Hui/C-6505-2008; Ilavsky, Jan/D-4521-2013;
OI Wu, Hui/0000-0003-0296-5204; Ilavsky, Jan/0000-0003-1982-8900; SUCHOMEL,
Matthew/0000-0002-9500-5079
FU National Science Foundation [DMR-0944772]; National Science
Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; ICDD
FX This work utilized facilities supported in part by the National Science
Foundation under Agreement No. DMR-0944772. ChemMatCARS Sector 15 is
principally supported by the National Science Foundation/Department of
Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon
Source was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. Partial financial support from ICDD through the
Grants-in-Aid program is also acknowledged.
NR 39
TC 6
Z9 6
U1 8
U2 27
PU J C P D S-INT CENTRE DIFFRACTION DATA
PI NEWTOWN SQ
PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA
SN 0885-7156
EI 1945-7413
J9 POWDER DIFFR
JI Powder Diffr.
PD MAR
PY 2015
VL 30
IS 1
BP 2
EP 13
DI 10.1017/S0885715614001195
PG 12
WC Materials Science, Characterization & Testing
SC Materials Science
GA DE7ZJ
UT WOS:000370855300002
ER
PT J
AU Jones, CM
Driggers, WB
AF Jones, Christian M.
Driggers, William B., III
TI Clarification on the Fecundity of Rhinoptera bonasus (Mitchill)
SO SOUTHEASTERN NATURALIST
LA English
DT Article
ID CHESAPEAKE BAY; COWNOSE RAY; REPRODUCTIVE-BIOLOGY
AB Accurate fecundity estimates are necessary for the proper assessment of fish stocks. Despite all recent investigations of the reproductive biology of Rhinoptera bonasus (Cownose Ray) indicating a maximum fecundity of 2 embryos per brood, maximum fecundity estimates of 6 per brood persist. All reports of 6 embryos per brood seem to stem from a single account. It is the purpose of this paper to present evidence indicating that the report of 6 embryos is based upon a misidentification in the field, and that maximum fecundity estimates for the Cownose Ray are therefore up to six-fold higher than actually observed.
C1 [Jones, Christian M.; Driggers, William B., III] Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Mississippi Labs, PO Drawer 1207, Pascagoula, MS 39567 USA.
RP Jones, CM (reprint author), Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Mississippi Labs, PO Drawer 1207, Pascagoula, MS 39567 USA.
EM christian.jones@noaa.gov
NR 18
TC 0
Z9 0
U1 1
U2 3
PU HUMBOLDT FIELD RESEARCH INST
PI STEUBEN
PA PO BOX 9, STEUBEN, ME 04680-0009 USA
SN 1528-7092
EI 1938-5412
J9 SOUTHEAST NAT
JI Southeast. Nat.
PD MAR
PY 2015
VL 14
IS 1
BP N16
EP N20
DI 10.1656/058.014.0113
PG 5
WC Biodiversity Conservation; Ecology
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA DE8NJ
UT WOS:000370892400020
ER
PT J
AU Gillett, DJ
Weisberg, SB
Grayson, T
Hamilton, A
Hansen, V
Leppo, EW
Pelletier, MC
Borja, A
Cadien, D
Dauer, D
Diaz, R
Dutch, M
Hyland, JL
Kellogg, M
Larsen, PF
Levinton, JS
Llanso, R
Lovell, LL
Montagna, PA
Pasko, D
Phillips, CA
Rakocinski, C
Ranasinghe, JA
Sanger, DM
Teixeira, H
Van Dolah, RF
Velarde, RG
Welch, KI
AF Gillett, David J.
Weisberg, Stephan B.
Grayson, Treda
Hamilton, Anna
Hansen, Virginia
Leppo, Erik W.
Pelletier, Marguerite C.
Borja, Angel
Cadien, Donald
Dauer, Daniel
Diaz, Robert
Dutch, Margaret
Hyland, Jeffrey L.
Kellogg, Michael
Larsen, Peter F.
Levinton, Jeffrey S.
Llanso, Roberto
Lovell, Lawrence L.
Montagna, Paul A.
Pasko, Dean
Phillips, Charles A.
Rakocinski, Chet
Ranasinghe, J. Ananda
Sanger, Denise M.
Teixeira, Heliana
Van Dolah, Robert F.
Velarde, Ronald G.
Welch, Kathy I.
TI Effect of ecological group classification schemes on performance of the
AMBI benthic index in US coastal waters
SO ECOLOGICAL INDICATORS
LA English
DT Article
DE Macrobenthos; Assessment index; Tolerance values; Best professional
judgement; Biogeographic variation
ID MARINE-BIOTIC-INDEX; MID-ATLANTIC REGION; INFAUNAL COMMUNITIES; HABITAT
QUALITY; UNITED-STATES; ESTUARINE; INTEGRITY; SEDIMENTS; STRESS
AB The AZTI Marine Biotic Index (AMBI) requires less geographically-specific calibration than other benthic indices, but has not performed as well in US coastal waters as it has in the European waters for which it was originally developed. Here we examine the extent of improvement in index performance when the Ecological Group (EG) classifications on which AMBI is based are derived using local expertise. Twenty-three US benthic experts developed EG scores for each of three regions in the United States, as well as for the US as a whole. Index performance was then compared using: (1) EG scores specific to a region, (2) national EG scores, (3) national EG scores supplemented with standard international EG scores for taxa that the US experts were not able to make assignments, and (4) standard international EG scores. Performance of each scheme was evaluated by diagnosis of condition at pre-defined good/bad sites, concordance with existing local benthic indices, and independence from natural environmental gradients. The AMBI performed best when using the national EG assignments augmented with standard international EG values. The AMBI using this hybrid EG scheme performed well in differentiating apriori good and bad sites (>80% correct classification rate) and AMBI scores were both concordant and correlated (r(s) = 0.4-0.7) with those of existing local indices. Nearly all of the results suggest that assigning the EG values in the framework of local biogeographic conditions produced a better-performing version of AMBI. The improved index performance, however, was tempered with apparent biases in score distribution. The AMBI, regardless of EG scheme, tended to compress ratings away from the extremes and toward the moderate condition and there was a bias with salinity, where high quality sites received increasingly poorer condition scores with decreasing salinity. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Gillett, David J.; Weisberg, Stephan B.; Ranasinghe, J. Ananda] Southern Calif Coastal Water Res Project, Costa Mesa, CA 92648 USA.
[Grayson, Treda] United States Environm Protect Agcy, Off Water, Washington, DC USA.
[Hamilton, Anna; Leppo, Erik W.] Tetra Tech, Owings Mills, MD 21117 USA.
[Hansen, Virginia] US EPA, Gulf Ecol Div, Gulf Breeze, FL 32561 USA.
[Pelletier, Marguerite C.] US EPA, Atlant Ecol Div, Narragansett, RI 02882 USA.
[Borja, Angel] AZTI Tecnalia Marine Res Div, Pasaia 20110, Spain.
[Cadien, Donald; Lovell, Lawrence L.] Sanitat Dist Angeles Cty, Ocean Monitoring Res Grp Cty, Carson, CA 90745 USA.
[Dauer, Daniel] Old Dominion Univ, Dept Biol Sci, Norfolk, VA 23529 USA.
[Diaz, Robert] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA.
[Dutch, Margaret; Welch, Kathy I.] Washington State Dept Ecol, Olympia, WA 98504 USA.
[Hyland, Jeffrey L.] NOAA, Natl Ocean Serv, Ctr Coastal Environm Hlth & Biomol Res, Charleston, SC 29412 USA.
[Kellogg, Michael] San Francisco Publ Util Commiss, Oceanside Biol Lab, San Francisco, CA 94132 USA.
[Larsen, Peter F.] Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA.
[Levinton, Jeffrey S.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA.
[Llanso, Roberto] ESA, Versar Inc, Columbia, MD 21045 USA.
[Montagna, Paul A.] Texas A&M Univ, Harte Res Inst, Corpus Christi, TX 78412 USA.
[Pasko, Dean] Orange Cty Sanitat Dist, Fountain Valley, CA 92708 USA.
[Phillips, Charles A.] Dancing Coyote Environm, Aliso Viejo, CA 92656 USA.
[Rakocinski, Chet] Univ So Mississippi, Gulf Coast Res Lab, Ocean Springs, MS 39564 USA.
[Sanger, Denise M.; Van Dolah, Robert F.] Marine Resources Res Inst, South Carolina Dept Nat Resources, Charleston, SC 29422 USA.
[Teixeira, Heliana] IES, JRC, European Commiss, Water Resources Unit, I-21027 Ispra, VA, Italy.
[Velarde, Ronald G.] Marine Biol Lab, San Diego, CA 92708 USA.
RP Gillett, DJ (reprint author), Southern Calif Coastal Water Res Project, 3535 Harbor Blvd,Suite 110, Costa Mesa, CA 92648 USA.
EM davidg@sccwrp.org
RI Weisberg, Stephen/B-2477-2008; Teixeira, Heliana/O-5082-2014
OI Weisberg, Stephen/0000-0002-0655-9425; Teixeira,
Heliana/0000-0001-8525-9967
FU California State Water Board; US EPA Office of Water
FX This work was supported in part with funds from Michael Gjerde and the
California State Water Board to the Southern California Coastal Water
Research Project and from the US EPA Office of Water.
NR 46
TC 10
Z9 10
U1 1
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1470-160X
EI 1872-7034
J9 ECOL INDIC
JI Ecol. Indic.
PD MAR
PY 2015
VL 50
BP 99
EP 107
DI 10.1016/j.ecolind.2014.11.005
PG 9
WC Biodiversity Conservation; Environmental Sciences
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA AZ5MO
UT WOS:000348265200011
ER
PT J
AU Saylor, DM
Soneson, JE
Kleinedler, JJ
Homer, M
Warren, JA
AF Saylor, David M.
Soneson, Joshua E.
Kleinedler, James J.
Homer, Marc
Warren, James A.
TI A structure-sensitive continuum model of arterial drug deposition
SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
LA English
DT Article
DE Diffusion; Model; Microstructure; Controlled release; Laminate; Stent
ID ELUTING STENTS; PACLITAXEL; PHARMACOKINETICS; DIFFUSION; MICROSTRUCTURE;
TRANSPORT; COATINGS; DELIVERY; BINDING; BALLOON
AB The successful function of drug-eluting devices used in the treatment of atherosclerosis relies on the concentration and retention of the drug in the vessel wall. While drug deposition necessarily depends on the underlying tissue structure, conventional models do not account for the intrinsic structural complexity of arterial tissue and its impact on deposition. By employing only average bulk material properties, the capability to predict the potential for local toxicity or therapeutic failure is limited. To address these limitations, we have developed a model that accounts explicitly for variations in the tissue structure. The approach uses a laminate approximation of the underlying microscopic structure to specify an expression for the continuous spatial dependence of the effective macroscopic material properties. Based on this continuum description, we derive an analytic expression for drug uptake into arterial tissue under typical ex vivo experimental conditions. This expression is used to extract relevant material properties for paclitaxel in bovine arteries based on available literature data. The best fit parameters are then used as the basis for numerical simulations of long-term deposition behavior from a stent with a pure paclitaxel coating. The results of these simulations are quantitatively consistent with previously reported in vivo observations. We also demonstrate that significant errors can arise in both the interpretation of experimental data and the prediction of drug deposition when structural heterogeneities are ignored. Establishing a robust deposition model can ultimately reduce empiricism in the design of drug-eluting devices, providing a facile means to guide the development and refinement of these technologies. Published by Elsevier Ltd.
C1 [Saylor, David M.; Soneson, Joshua E.; Kleinedler, James J.] Ctr Devices & Radiol Hlth, FDA, Silver Spring, MD 20993 USA.
[Homer, Marc] ANSYS Inc, Evanston, IL 60201 USA.
[Warren, James A.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA.
RP Saylor, DM (reprint author), Ctr Devices & Radiol Hlth, FDA, Silver Spring, MD 20993 USA.
EM david.saylor@fda.hhs.gov
NR 35
TC 3
Z9 3
U1 1
U2 11
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0017-9310
EI 1879-2189
J9 INT J HEAT MASS TRAN
JI Int. J. Heat Mass Transf.
PD MAR
PY 2015
VL 82
BP 468
EP 478
DI 10.1016/j.ijheatmasstransfer.2014.10.059
PG 11
WC Thermodynamics; Engineering, Mechanical; Mechanics
SC Thermodynamics; Engineering; Mechanics
GA CA5OI
UT WOS:000348957300044
ER
PT J
AU Kim, JH
Heckert, NA
Mates, SP
Seppala, JE
McDonough, WG
Davis, CS
Rice, KD
Holmes, GA
AF Kim, Jae Hyun
Heckert, N. Alan
Mates, Steven P.
Seppala, Jonathan E.
McDonough, Walter G.
Davis, Chelsea S.
Rice, Kirk D.
Holmes, Gale A.
TI Effect of fiber gripping method on the single fiber tensile test: II.
Comparison of fiber gripping materials and loading rates
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID HIGH-STRAIN-RATES; STATISTICAL-ANALYSIS; STRENGTH; DEFORMATION;
COMPOSITES; FRACTURE; POLYMER
AB Single poly(p-phenylene terephthalamide) (PPTA) fiber tensile tests were carried out under quasi-static and high strain rate loading conditions using poly(methyl methacrylate) and rubber grips to investigate effects of grip materials and loading rates on fiber tensile properties. Differences in ultimate tensile strengths, failure strains, and moduli of PPTA fibers obtained by two different grip materials were insignificant. On the other hand, the fiber tensile properties showed significantly rate-dependent behaviors, which were graphically confirmed by kernel density plots as a non-parametric statistical analysis. Strength models considering three aspects (stochastic, fracture mechanics, and polymer chain domain behaviors) were also shown to link the loading rate effect in relation to fracture mechanisms.
C1 [Kim, Jae Hyun; Mates, Steven P.; Seppala, Jonathan E.; McDonough, Walter G.; Davis, Chelsea S.; Holmes, Gale A.] NIST, Mat Sci & Engn Div MS 8541, Gaithersburg, MD 20899 USA.
[Heckert, N. Alan] NIST, Stat Engn Div MS 8980, Gaithersburg, MD 20899 USA.
[Rice, Kirk D.] NIST, Mat Measurement Sci Div MS 8102, Gaithersburg, MD 20899 USA.
RP McDonough, WG (reprint author), NIST, Mat Sci & Engn Div MS 8541, Gaithersburg, MD 20899 USA.
EM walter.mcdonough@nist.gov
NR 31
TC 1
Z9 1
U1 5
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2461
EI 1573-4803
J9 J MATER SCI
JI J. Mater. Sci.
PD MAR
PY 2015
VL 50
IS 5
BP 2049
EP 2060
DI 10.1007/s10853-014-8736-8
PG 12
WC Materials Science, Multidisciplinary
SC Materials Science
GA AY6SS
UT WOS:000347696500004
ER
PT J
AU Zheng, J
Li, J
Schmit, TJ
Li, JL
Liu, ZQ
AF Zheng Jing
Li, Jun
Schmit, Timothy J.
Li, Jinlong
Liu, Zhiquan
TI The impact of AIRS atmospheric temperature and moisture profiles on
hurricane forecasts: Ike (2008) and Irene (2011)
SO ADVANCES IN ATMOSPHERIC SCIENCES
LA English
DT Article
DE AIRS; data assimilation; temperature profile; moisture profile;
hurricane forecast; WRF; 3DVAR
ID MICROWAVE SCANNING RADIOMETER; INFRARED SOUNDER TEMPERATURE; DATA
ASSIMILATION; SATELLITE MEASUREMENTS; RAPID INTENSIFICATION; RETRIEVAL
ALGORITHM; ANALYSIS SYSTEM; VALIDATION; CLOUD; PARAMETERS
AB Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data, especially over the oceans where conventional data are sparse. In this study, two types of AIRS-retrieved temperature and moisture profiles, the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product, were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011). The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis, especially between 200 hPa and 700 hPa. The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa, where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals. The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere. A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene. The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment. In terms of total precipitable water and rainfall forecasts, the hurricane moisture environment was found to be affected by the AIRS sounding assimilation. Meanwhile, improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.
C1 [Zheng Jing; Li, Jun; Li, Jinlong] Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, Madison, WI 53706 USA.
[Zheng Jing] China Meteorol Adm, Natl Satellite Meteorol Ctr, Beijing 100081, Peoples R China.
[Schmit, Timothy J.] NESDIS NOAA, Adv Satellite Prod Branch, Ctr Satellite Applicat & Res, Madison, WI 53706 USA.
[Liu, Zhiquan] Natl Ctr Atmospher Res, Boulder, CO 80305 USA.
RP Zheng, J (reprint author), Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, Madison, WI 53706 USA.
EM zhengjing@cma.gov.cn
RI Li, Jun/H-3579-2015; Schmit, Timothy/F-5624-2010
OI Li, Jun/0000-0001-5504-9627;
FU National Natural Science Foundation of China [41305089]; National
Oceanic and Atmospheric Administration [NA10NES4400013]; Public
Industry-specific Fund for Meteorology [GYHY201406011]
FX The authors appreciate all the helpful comments from the reviewers. In
terms of model support, we would like to thank the WRF model and WRFDA
teams. For AIRS data support, we would like to thank UW/CIMSS and the
AIRS Science team. We also thank the European Center for Medium Range
Forecasting group and the National Centers for Environmental Prediction
for providing data used in this study. This work was supported by the
National Natural Science Foundation of China (Grant No. 41305089), the
National Oceanic and Atmospheric Administration (Grant No.
NA10NES4400013), and the Public Industry-specific Fund for Meteorology
(Grant No. GYHY201406011). The views, opinions, and findings contained
in this publication are those of the authors and should not be construed
as an official government position, policy, or decision.
NR 62
TC 6
Z9 6
U1 1
U2 13
PU SCIENCE PRESS
PI BEIJING
PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA
SN 0256-1530
EI 1861-9533
J9 ADV ATMOS SCI
JI Adv. Atmos. Sci.
PD MAR
PY 2015
VL 32
IS 3
BP 319
EP 335
DI 10.1007/s00376-014-3162-z
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AY0KO
UT WOS:000347285700004
ER
PT J
AU Hagwood, C
AF Hagwood, Charles
TI Reconstruction of conditional expectations from product moments with
applications
SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
LA English
DT Article
DE Moment problem; Characterization; Conditional expectation; Vandermonde;
Product moments
ID VANDERMONDE SYSTEMS; MAXIMUM-ENTROPY; DISTRIBUTIONS; INDETERMINATE
AB In this paper, it is shown under conditions associated with the moment problem that a sequence of product moments uniquely determines a conditional expectation of two random variables. Then, a numerical procedure is derived to reconstruct a conditional expectation in terms of a sequence of its product moments. Published by Elsevier B.V.
C1 NIST, Stat Engn Div, Gaithersburg, MD 20016 USA.
RP Hagwood, C (reprint author), NIST, Stat Engn Div, Gaithersburg, MD 20016 USA.
EM hagwood@nist.gov
NR 42
TC 1
Z9 1
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0377-0427
EI 1879-1778
J9 J COMPUT APPL MATH
JI J. Comput. Appl. Math.
PD MAR 1
PY 2015
VL 276
BP 129
EP 142
DI 10.1016/j.cam.2014.08.018
PG 14
WC Mathematics, Applied
SC Mathematics
GA AU2XX
UT WOS:000345478900009
ER
PT J
AU Olsen, N
Hulot, G
Lesur, V
Finlay, CC
Beggan, C
Chulliat, A
Sabaka, TJ
Floberghagen, R
Friis-Christensen, E
Haagmans, R
Kotsiaros, S
Luhr, H
Toffner-Clausen, L
Vigneron, P
AF Olsen, Nils
Hulot, Gauthier
Lesur, Vincent
Finlay, Christopher C.
Beggan, Ciaran
Chulliat, Arnaud
Sabaka, Terence J.
Floberghagen, Rune
Friis-Christensen, Eigil
Haagmans, Roger
Kotsiaros, Stavros
Luehr, Hermann
Toffner-Clausen, Lars
Vigneron, Pierre
TI The Swarm Initial Field Model for the 2014 geomagnetic field
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID EARTHS MAGNETIC-FIELD; CONSTELLATION; SCARF; CORE
AB Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.
C1 [Olsen, Nils; Finlay, Christopher C.; Friis-Christensen, Eigil; Kotsiaros, Stavros; Toffner-Clausen, Lars] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Hulot, Gauthier; Vigneron, Pierre] Univ Paris Diderot, Sorbonne Paris Cite, Inst Phys Globe Paris, Equipe Geomagnetisme,UMR CNRS INSU 7154, Paris, France.
[Lesur, Vincent; Luehr, Hermann] Deutsch GeoForschungsZentrum, Helmholtz Zentrum Potsdam, Potsdam, Germany.
[Beggan, Ciaran] British Geol Survey, Edinburgh, Midlothian, Scotland.
[Chulliat, Arnaud] NOAA, Natl Geophys Data Ctr, Boulder, CO USA.
[Sabaka, Terence J.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Branch, Greenbelt, MD 20771 USA.
[Floberghagen, Rune] ESRIN, Directorate Earth Observat Programmes, Frascati, Italy.
[Haagmans, Roger] ESA ESTEC, Noordwijk, Netherlands.
RP Olsen, N (reprint author), Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
EM nio@space.dtu.dk
RI Hulot, Gauthier/A-5627-2011; Chulliat, Arnaud/A-5747-2011; Olsen,
Nils/H-1822-2011; Finlay, Christopher/B-5062-2014; Lesur,
Vincent/H-1031-2012;
OI Chulliat, Arnaud/0000-0001-7414-9631; Olsen, Nils/0000-0003-1132-6113;
Finlay, Christopher/0000-0002-4592-2290; Lesur,
Vincent/0000-0003-2568-320X; Toffner-Clausen, Lars/0000-0003-4314-3776
FU European Space Agency (ESA) through ESRIN [4000109587/13/I-NB]
FX We would like to thank the European Space Agency (ESA) for providing
prompt access to the Swarm L1b data, and for support through ESRIN
contract 4000109587/13/I-NB "SWARM ESL". Swarm Level 1b data are
available from ESA at http://earth.esa.int/swarm.
NR 23
TC 14
Z9 15
U1 3
U2 20
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 28
PY 2015
VL 42
IS 4
BP 1092
EP 1098
DI 10.1002/2014GL062659
PG 7
WC Geosciences, Multidisciplinary
SC Geology
GA CE5DY
UT WOS:000351851900017
ER
PT J
AU Foltz, GR
Balaguru, K
Leung, LR
AF Foltz, Gregory R.
Balaguru, Karthik
Leung, L. Ruby
TI A reassessment of the integrated impact of tropical cyclones on surface
chlorophyll in the western subtropical North Atlantic
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID HURRICANE FELIX; SARGASSO SEA; TEMPERATURE; VARIABILITY; ANOMALIES;
OCEANS
AB The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998-2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally averaged (June-November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.
C1 [Foltz, Gregory R.] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
[Balaguru, Karthik] Pacific NW Natl Lab, Marine Sci Lab, Seattle, WA USA.
[Leung, L. Ruby] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
RP Foltz, GR (reprint author), NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
EM gregory.foltz@noaa.gov
RI Foltz, Gregory/B-8710-2011
OI Foltz, Gregory/0000-0003-0050-042X
FU U.S. Department of Energy (DOE) Office of Science Biological and
Environmental Research as part of the Regional and Global Climate
Modeling program; DOE [DE-AC05-76RL01830]
FX G.F. was supported by base funds to NOAA/AOML. K.B. and L.R.L. were
supported by the U.S. Department of Energy (DOE) Office of Science
Biological and Environmental Research as part of the Regional and Global
Climate Modeling program. The Pacific Northwest National Laboratory is
operated for DOE by Battelle Memorial Institute under contract
DE-AC05-76RL01830. We thank two anonymous reviewers for their helpful
suggestions. All data used to produce the results of this paper are
freely available from the URLs supplied in section 2.
NR 21
TC 6
Z9 7
U1 2
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 28
PY 2015
VL 42
IS 4
BP 1158
EP 1164
DI 10.1002/2015GL063222
PG 7
WC Geosciences, Multidisciplinary
SC Geology
GA CE5DY
UT WOS:000351851900025
ER
PT J
AU Johnson-Wilke, RL
Wilke, RHT
Yeager, CB
Tinberg, DS
Reaney, IM
Levin, I
Fong, DD
Trolier-McKinstry, S
AF Johnson-Wilke, R. L.
Wilke, R. H. T.
Yeager, C. B.
Tinberg, D. S.
Reaney, I. M.
Levin, I.
Fong, D. D.
Trolier-McKinstry, S.
TI Phase transitions and octahedral rotations in epitaxial Ag(TaxNb1-x)O-3
thin films under tensile strain
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID MULTIFUNCTIONAL MATERIALS; PEROVSKITES; FERROELECTRICITY; DIFFRACTION;
BIFEO3; AGNBO3; TILTS
AB Epitaxial Ag(Ta0.5Nb0.5)O-3 (ATN) films under tensile strain were deposited on (Ba0.4Sr0.6)TiO3/LaAlO3 (001)(p) and KTaO3 (001) substrates. These films exhibited a domain structure with the c-axis aligned primarily along the in-plane direction in contrast with the poly-domain nature of bulk ATN ceramics or relaxed films. While the generic phase transition sequence of the tensile films was qualitatively similar to bulk, the tetragonal and orthorhombic phase field regions expanded by similar to 270 degrees C in ATN/(Ba0.4Sr0.6)TiO3/LaAlO3. Furthermore, the films were found to be in the M-3 (complex octahedral tilting with disordered Nb/Ta displacements) phase at room temperature with either significantly reduced tilt angles or a suppression of the long range order of the complex tilt as compared to bulk materials. It was observed that the octahedral tilt domains were oriented with the complex tilt axes lying in the plane of the film due to the tensile strain. This work demonstrates that tensile strain can be used to strain-engineer materials with complex tilt systems and thereby modify functional properties. (C) 2015 AIP Publishing LLC.
C1 [Johnson-Wilke, R. L.; Wilke, R. H. T.; Yeager, C. B.; Tinberg, D. S.; Trolier-McKinstry, S.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
[Johnson-Wilke, R. L.; Wilke, R. H. T.; Yeager, C. B.; Tinberg, D. S.; Trolier-McKinstry, S.] Penn State Univ, Mat Sci & Engn Dept, University Pk, PA 16802 USA.
[Reaney, I. M.] Univ Sheffield, Dept Engn Mat, Sheffield S1 3JD, S Yorkshire, England.
[Levin, I.] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA.
[Fong, D. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Johnson-Wilke, RL (reprint author), Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
OI Trolier-McKinstry, Susan/0000-0002-7267-9281
FU National Science Foundation [DMR-0602770, DMR-0820404, DMR-0908718];
U.S. Department of Energy (DOE), Office of Science, Basic Energy
Sciences (BES), Materials Sciences and Engineering Division; DOE-BES
[DE-AC02-06CH11357]
FX Financial support for this work was provided by the National Science
Foundation (DMR-0602770, DMR-0820404, and DMR-0908718). Work at Argonne
National Laboratory was supported by the U.S. Department of Energy
(DOE), Office of Science, Basic Energy Sciences (BES), Materials
Sciences and Engineering Division. Use of the Advanced Photon Source was
supported by DOE-BES, under Contract No. DE-AC02-06CH11357, The authors
would also like to thank Jenia Karapetrova and Pete Baldo for their help
at bcamline 33-BM at the Advanced Photon Source.
NR 35
TC 1
Z9 1
U1 5
U2 28
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 28
PY 2015
VL 117
IS 8
AR 085309
DI 10.1063/1.4913283
PG 7
WC Physics, Applied
SC Physics
GA CD5MR
UT WOS:000351132500067
ER
PT J
AU Zhang, H
Yang, Y
Douglas, JF
AF Zhang, Hao
Yang, Ying
Douglas, Jack F.
TI Influence of string-like cooperative atomic motion on surface diffusion
in the (110) interfacial region of crystalline Ni
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; ENERGY ELECTRON-DIFFRACTION;
GRAIN-BOUNDARY MIGRATION; SELF-DIFFUSION; STOCHASTIC RESONANCE; COLORED
NOISE; COLLOIDAL CRYSTALS; MEAN DISPLACEMENT; EQUILIBRIUM SHAPE;
HIGH-TEMPERATURES
AB Although we often think about crystalline materials in terms of highly organized arrays of atoms, molecules, or even colloidal particles, many of the important properties of this diverse class of materials relating to their catalytic behavior, thermodynamic stability, and mechanical properties derive from the dynamics and thermodynamics of their interfacial regions, which we find they have a dynamics more like glass-forming (GF) liquids than crystals at elevated temperatures. This is a general problem arising in any attempt to model the properties of naturally occurring crystalline materials since many aspects of the dynamics of glass-forming liquids remain mysterious. We examine the nature of this phenomenon in the "simple" case of the (110) interface of crystalline Ni, based on a standard embedded-atom model potential, and we then quantify the collective dynamics in this interfacial region using newly developed methods for characterizing the cooperative dynamics of glass-forming liquids. As in our former studies of the interfacial dynamics of grain-boundaries and the interfacial dynamics of crystalline Ni nanoparticles (NPs), we find that the interface of bulk crystalline Ni exhibits all the characteristics of glass-forming materials, even at temperatures well below the equilibrium crystal melting temperature, T-m. This perspective offers a new approach to modeling and engineering the properties of crystalline materials. (C) 2015 AIP Publishing LLC.
C1 [Zhang, Hao; Yang, Ying] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada.
[Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
RP Zhang, H (reprint author), Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada.
EM hao.zhang@ualberta.ca; jack.douglas@nist.gov
RI Zhang, Hao/A-3272-2008
FU Natural Sciences and Engineering Research Council of Canada; NIH [1 R01
EB006398-01A1]
FX H.Z. and Y.Y. gratefully acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada under the Discovery Grant.
J.F.D. acknowledges support of this work under the NIH Grant No. 1 R01
EB006398-01A1.
NR 113
TC 2
Z9 2
U1 1
U2 16
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 28
PY 2015
VL 142
IS 8
AR 084704
DI 10.1063/1.4908136
PG 14
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA CC7LC
UT WOS:000350548000044
PM 25725748
ER
PT J
AU Xia, YL
Peter-Lidard, CD
Huang, MY
Wei, HL
Ek, M
AF Xia, Youlong
Peter-Lidard, Christa D.
Huang, Maoyi
Wei, Helin
Ek, Mike
TI Improved NLDAS-2 Noah-simulated hydrometeorological products with an
interim run
SO HYDROLOGICAL PROCESSES
LA English
DT Article
DE NLDAS-2; Noah land surface model; hydrometeorological products; snow
hydrology
ID DATA ASSIMILATION SYSTEM; MESOSCALE ETA-MODEL; LAND-SURFACE; OKLAHOMA
MESONET; EVAPOTRANSPIRATION; EVAPORATION; MOISTURE; GCIP
AB In North American Land Data Assimilation System Phase 2 (NLDAS-2) Noah simulation, the NLDAS team introduced an intermediate 'fix' to constrain the surface exchange coefficient when the atmospheric boundary layer is stable. In the current NLDAS-2 Noah version, this fix is used for all stable cases including snow-free grid cells. In this study, we simply apply this fix to the grid cells in which both stable atmospheric boundary layer and snow exist simultaneously, excluding the snow-free grid cells as we recognize that the fix in NLDAS-2 is too strong. We conduct a 31-year (1979-2009) NLDAS-2 Noah interim (Noah-I) run and use observed streamflow, evapotranspiration, land surface temperature, soil temperature, and ground heat flux to evaluate the results, including comparisons with the original NLDAS-2 Noah run. The results show that Noah-I has the same performance as NLDAS-2 Noah for snow water equivalent; however, Noah-I significantly improved the simulation of other hydrometeorological products as noted earlier when compared with NLDAS-2 Noah and the observations. This simple modification is being included in the next Noah version used in NLDAS. The hydrometeorological products from the improved NLDAS-2 Noah-I are being staged on the National Centers for Environmental Prediction public server. Copyright (C) 2014 John Wiley & Sons, Ltd.
C1 [Xia, Youlong; Wei, Helin; Ek, Mike] NOAA, EMC, NCEP, College Pk, MD 20740 USA.
[Xia, Youlong; Wei, Helin] NOAA, IMSG, EMC, NCEP, College Pk, MD 20740 USA.
[Peter-Lidard, Christa D.] NASA, Hydrol Sci Lab, Goddard Fight Space Ctr, Green Belt, MD USA.
[Huang, Maoyi] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Xia, YL (reprint author), NOAA, IMSG, EMC, NCEP, College Pk, MD 20740 USA.
EM youlong.xia@noaa.gov
RI Huang, Maoyi/I-8599-2012
OI Huang, Maoyi/0000-0001-9154-9485
FU NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and
Projections (MAPP) programme; Department of Energy (DOE)'s Atmospheric
System Research (ASR) programme
FX Y. X. and C. P. L. were supported by NOAA Climate Program Office (CPO)
Modeling, Analysis, Predictions and Projections (MAPP) programme. M. H.
is supported by Department of Energy (DOE)'s Atmospheric System Research
(ASR) programme. In addition, the authors thank two anonymous reviewers
whose comments greatly improved the quality of this manuscript.
NR 35
TC 8
Z9 8
U1 0
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0885-6087
EI 1099-1085
J9 HYDROL PROCESS
JI Hydrol. Process.
PD FEB 28
PY 2015
VL 29
IS 5
BP 780
EP 792
DI 10.1002/hyp.10190
PG 13
WC Water Resources
SC Water Resources
GA CC7LF
UT WOS:000350548300010
ER
PT J
AU Gibson, QD
Wu, H
Liang, T
Ali, MN
Ong, NP
Huang, Q
Cava, RJ
AF Gibson, Q. D.
Wu, H.
Liang, T.
Ali, M. N.
Ong, N. P.
Huang, Q.
Cava, R. J.
TI Magnetic and electronic properties of CaMn2Bi2: A possible hybridization
gap semiconductor
SO PHYSICAL REVIEW B
LA English
DT Article
ID SUPERCONDUCTIVITY; FESI
AB We report the magnetic and electronic properties of CaMn2Bi2, which has a structure based on a triangular bilayer of Mn, rather than the ThCr2Si2 structure commonly encountered for 122 compounds in intermetallic systems. CaMn2Bi2 has an antiferromagnetic ground state, with a T-N of 150 K, and for a 250 K temperature range above TN does not exhibit Curie-Weiss behavior, indicating the presence of strong magnetic correlations at high temperatures. Resistivity measurements show that CaMn2Bi2 exhibits semiconducting properties at low temperatures, with an energy gap of only 62 meV, indicating it to be a very narrow band gap semiconductor. The electronic structure of CaMn2Bi2, examined via ab-initio electronic structure calculations, indicates that Mn 3d orbital hybridization is essential for the formation of the band gap, suggesting that CaMn2Bi2 may be a hybridization-gap semiconductor.
C1 [Gibson, Q. D.; Ali, M. N.; Ong, N. P.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
[Wu, H.; Huang, Q.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Wu, H.; Liang, T.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
RP Gibson, QD (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
RI Wu, Hui/C-6505-2008
OI Wu, Hui/0000-0003-0296-5204
FU SPAWAR [NN6601-11-1-4110]; AFOSR MURI [FA9550-09-1-0953]; Army Research
Office (ARO) [W911NF-11-1-0379]; National Science Foundation [DMR
0819860]; Japan Student Services Organization
FX Q.D.G, M.N.A., and R.J.C. acknowledge support from SPAWAR Grant No.
(NN6601-11-1-4110) and the AFOSR MURI Grant No. (FA9550-09-1-0953)
N.P.O. and T.L. are supported by the Army Research Office (ARO
W911NF-11-1-0379) and the National Science Foundation (Grant No. DMR
0819860). T.L. acknowledges scholarship support from the Japan Student
Services Organization. We acknowledge helpful discussions with M.K.
Fuccillo and N. Haldolarachchige.
NR 21
TC 2
Z9 2
U1 2
U2 31
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 27
PY 2015
VL 91
IS 8
AR 085128
DI 10.1103/PhysRevB.91.085128
PG 8
WC Physics, Condensed Matter
SC Physics
GA CC4JH
UT WOS:000350319200009
ER
PT J
AU Albrecht, KF
Martin-Rodero, A
Schachenmayer, J
Muhlbacher, L
AF Albrecht, K. F.
Martin-Rodero, A.
Schachenmayer, J.
Muehlbacher, L.
TI Local density of states on a vibrational quantum dot out of equilibrium
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR JUNCTIONS; COULOMB-BLOCKADE; MODEL; TRANSPORT; CONDUCTANCE;
TRANSISTORS; POLARON; SYSTEMS
AB We calculate the nonequilibrium local density of states on a vibrational quantum dot coupled to two electrodes at T = 0 using a numerically exact diagrammatic Monte Carlo method. Our focus is on the interplay between the electron-phonon interaction strength and the bias voltage. We find that the spectral density exhibits a significant voltage dependence if the voltage window includes one or more phonon sidebands. A comparison with well-established approximate approaches indicates that this effect could be attributed to the nonequilibrium distribution of the phonons. Moreover, we discuss the long transient dynamics caused by the electron-phonon coupling.
C1 [Albrecht, K. F.; Muehlbacher, L.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany.
[Martin-Rodero, A.] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain.
[Schachenmayer, J.] Univ Colorado, JILA, NIST, UCB 440, Boulder, CO 80309 USA.
RP Albrecht, KF (reprint author), Univ Freiburg, Inst Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany.
OI SCHACHENMAYER, JOHANNES/0000-0001-9420-5768
FU Spanish Mineco [FIS2011-26516]; NSF [PIF-1211914, PFC-1125844]
FX The authors would like to thank R. C. Monreal, A. Levy Yeyati, R. Seoane
Souto, and A. Komnik for many fruitful discussions. K.F.A. acknowledges
the computing time at the bwGRID and Juropa in Julich. This work was
financially supported by Spanish Mineco through Grant No. FIS2011-26516,
and by the NSF (Grants No. PIF-1211914 and No. PFC-1125844).
NR 67
TC 3
Z9 3
U1 2
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 27
PY 2015
VL 91
IS 6
AR 064305
DI 10.1103/PhysRevB.91.064305
PG 9
WC Physics, Condensed Matter
SC Physics
GA CC4IP
UT WOS:000350317300011
ER
PT J
AU Dun, ZL
Ma, J
Cao, HB
Qiu, Y
Copley, JRD
Hong, T
Matsuda, M
Cheng, JG
Lee, M
Choi, ES
Johnston, S
Zhou, HD
AF Dun, Z. L.
Ma, J.
Cao, H. B.
Qiu, Y.
Copley, J. R. D.
Hong, T.
Matsuda, M.
Cheng, J. G.
Lee, M.
Choi, E. S.
Johnston, S.
Zhou, H. D.
TI Competition between the inter- and intra-sublattice interactions in
Yb2V2O7
SO PHYSICAL REVIEW B
LA English
DT Article
ID SPIN-LIQUID STATE; CRYSTAL-FIELD; YB2TI2O7; EXCITATIONS; FERROMAGNET;
TRANSITION; ICE
AB We studied the magnetic properties of single-crystal Yb2V2O7 using dc and ac susceptibility measurements, elastic and inelastic neutron-scattering measurements, and linear spin-wave theory. The experimental data show a ferromagnetic ordering of V4+ ions at 70 K, a short-range ordering of Yb3+ ions below 40 K, and finally a long-range noncollinear ordering of Yb3+ ions below 15 K. With external magnetic field oriented along the [111] axis, the Yb sublattice experiences a spin flop transition related to the "three-inone-out" spin structure. By modeling the spin-wave excitations, we extract the Hamiltonian parameters. Our results confirm that although the extra inter-sublattice Yb-V interactions dramatically increase the Yb ordering temperature to 15 K, the intra-sublattice Yb-Yb interactions, based on the pyrochlore lattice, still stabilize the Yb ions' noncollinear spin structure and spin flop transition.
C1 [Dun, Z. L.; Johnston, S.; Zhou, H. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Ma, J.; Cao, H. B.; Hong, T.; Matsuda, M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37381 USA.
[Qiu, Y.; Copley, J. R. D.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Cheng, J. G.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.
[Cheng, J. G.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Lee, M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Lee, M.; Choi, E. S.; Zhou, H. D.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
[Johnston, S.] Univ Tennessee, Joint Inst Adv Mat, Knoxville, TN 37996 USA.
RP Dun, ZL (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RI Hong, Tao/F-8166-2010; Ma, Jie/C-1637-2013; Cao, Huibo/A-6835-2016;
Matsuda, Masaaki/A-6902-2016; Cheng, Jinguang/A-8342-2012; Lee,
Minseong/D-5371-2016; Dun, Zhiling/F-5617-2016; Johnston,
Steven/J-7777-2016; Zhou, Haidong/O-4373-2016
OI Hong, Tao/0000-0002-0161-8588; Cao, Huibo/0000-0002-5970-4980; Matsuda,
Masaaki/0000-0003-2209-9526; Dun, Zhiling/0000-0001-6653-3051;
FU National Science Foundation of China [11304371]; State of Florida;
Department of Energy; NHMFL User Collaboration Support Grant; Scientific
User Facilities Division, Office of Basic Energy Sciences, U.S.
Department of Energy; [NSF-DMR-1350002]; [NSF-DMR-0944772];
[NSF-DMR-1157490]
FX The authors thank L. Balents, M. Gingras, J. Quilliam, K. Ross, and L.
Savary for useful discussions and exchanges. Z.L.D. and H.D.Z.
acknowledge the support of NSF-DMR-1350002. J.G.C. is supported by the
National Science Foundation of China (Grant No. 11304371). The work at
NIST is supported in part by NSF-DMR-0944772. The work at NHMFL is
supported by NSF-DMR-1157490, the State of Florida, the Department of
Energy, and by the additional funding from NHMFL User Collaboration
Support Grant. The work at ORNL High Flux Isotope Reactor was sponsored
by the Scientific User Facilities Division, Office of Basic Energy
Sciences, U.S. Department of Energy.
NR 41
TC 0
Z9 0
U1 8
U2 37
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 27
PY 2015
VL 91
IS 6
AR 064425
DI 10.1103/PhysRevB.91.064425
PG 7
WC Physics, Condensed Matter
SC Physics
GA CC4IP
UT WOS:000350317300015
ER
PT J
AU Guo, F
Belova, LM
McMichael, RD
AF Guo, Feng
Belova, Lyubov M.
McMichael, Robert D.
TI Nonlinear ferromagnetic resonance shift in submicron Permalloy ellipses
SO PHYSICAL REVIEW B
LA English
DT Article
ID OSCILLATOR; MODES
AB We report a systematic study of nonlinearity in the ferromagnetic resonance of a series of submicron Permalloy ellipses with varying aspect ratios. At high excitation powers, the resonances are found to shift to higher or lower applied field. We focus here on the sign of the shift and its dependence on the applied field and shape-induced anisotropy of the ellipses. Using ferromagnetic resonance force microscopy, we find that the measured nonlinear coefficient changes sign as a function of anisotropy field and applied field in qualitative agreement with a macrospin analysis. This macrospin analysis also points to origins of the nonlinearity in a combination of hard-axis in-plane anisotropy and precession ellipticity. In comparison of the macrospin predictions with both experimental and micromagnetic modeling results, we measure/model values of the nonlinear coefficient that are more positive than predicted by the macrospin model. The results are useful in understanding nonlinear physics in nanomagnets and applications of spin-torque oscillators.
C1 [Guo, Feng; McMichael, Robert D.] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA.
[Guo, Feng] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA.
[Belova, Lyubov M.] Royal Inst Technol, Dept Mat Sci & Engn, S-10044 Stockholm, Sweden.
RP Guo, F (reprint author), NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA.
EM feng.guo@cornell.edu; robert.mcmichael@nist.gov
OI McMichael, Robert/0000-0002-1372-664X
FU University of Maryland [70NANB10H193]; National Institute of Standards
and Technology Center for Nanoscale Science and Technology, through the
University of Maryland [70NANB10H193]; Swedish Research Council; Carl
Trygger Foundation for Scientific Research
FX We thank G. de Loubens and O. Klein for useful discussions. Dr. Guo
acknowledges support under the Cooperative Research Agreement between
the University of Maryland and the National Institute of Standards and
Technology Center for Nanoscale Science and Technology, Award
70NANB10H193, through the University of Maryland. Dr. Belova
acknowledges support from the Swedish Research Council and the Carl
Trygger Foundation for Scientific Research.
NR 26
TC 4
Z9 4
U1 0
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 27
PY 2015
VL 91
IS 6
AR 064426
DI 10.1103/PhysRevB.91.064426
PG 6
WC Physics, Condensed Matter
SC Physics
GA CC4IP
UT WOS:000350317300016
ER
PT J
AU Zhao, MH
Ming, B
Kim, JW
Gibbons, LJ
Gu, XH
Nguyen, T
Park, C
Lillehei, PT
Villarrubia, JS
Vladar, AE
Liddle, JA
AF Zhao, Minhua
Ming, Bin
Kim, Jae-Woo
Gibbons, Luke J.
Gu, Xiaohong
Nguyen, Tinh
Park, Cheol
Lillehei, Peter T.
Villarrubia, J. S.
Vladar, Andras E.
Liddle, J. Alexander
TI New insights into subsurface imaging of carbon nanotubes in polymer
composites via scanning electron microscopy
SO NANOTECHNOLOGY
LA English
DT Article
DE scanning electron microscopy; subsurface imaging; carbon nanotube
polymer composites
ID STATIC CAPACITANCE CONTRAST; INSULATORS; MECHANISM; NANOCOMPOSITES;
DISPERSION; FILMS; BEAM; TOOL; SEM
AB Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.
C1 [Zhao, Minhua; Liddle, J. Alexander] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA.
[Ming, Bin; Villarrubia, J. S.; Vladar, Andras E.] NIST, Phys Measurement Lab, Gaithersburg, MD 20899 USA.
[Gu, Xiaohong; Nguyen, Tinh] NIST, Engn Lab, Gaithersburg, MD 20899 USA.
[Kim, Jae-Woo; Park, Cheol; Lillehei, Peter T.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Park, Cheol] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA USA.
[Gibbons, Luke J.] Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA.
[Zhao, Minhua] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
RP Zhao, MH (reprint author), NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA.
EM minhua.zhao@nist.gov; james.liddle@nist.gov
RI Kim, Jae-Woo/A-8314-2008; Liddle, James/A-4867-2013
OI Liddle, James/0000-0002-2508-7910
FU National Science Foundation [CMMI-0928839]; University of Maryland; NIST
FX The work of Dr Minhua Zhao was supported by NIST-ARRA senior fellowship
award in measurement science and technology and Cooperative Research
Program in Nanoscience and Technology between the University of Maryland
and NIST. Luke Gibbons and Cheol Park acknowledge support by National
Science Foundation CMMI-0928839 in part.
NR 37
TC 4
Z9 4
U1 4
U2 43
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
EI 1361-6528
J9 NANOTECHNOLOGY
JI Nanotechnology
PD FEB 27
PY 2015
VL 26
IS 8
AR 085703
DI 10.1088/0957-4484/26/8/085703
PG 12
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA CA9LH
UT WOS:000349244600020
PM 25649345
ER
PT J
AU Konold, PE
Jimenez, R
AF Konold, Patrick E.
Jimenez, Ralph
TI Excited State Electronic Landscape of mPlum Revealed by Two-Dimensional
Double Quantum Coherence Spectroscopy
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID RED-FLUORESCENT PROTEINS; CIS-TRANS ISOMERIZATION; STOKES SHIFT;
CHROMOPHORE; DYNAMICS; FLEXIBILITY; MECHANISM; EVOLUTION; VARIANTS;
INSIGHT
AB Red fluorescent proteins (RFPs) are widely used probes for monitoring subcellular processes with extremely high spatial and temporal precision. In this work, we employed spectrally resolved transient absorption (SRTA) and two-dimensional double quantum coherence (2D2Q) spectroscopy to investigate the excited state electronic structure of mPlum, a well-known RFP. The SRTA spectra reveal the presence of excited state absorption features at both the low- and high-energy sides of the dominant ground state bleach contribution. The 2D2Q spectra measured at several excitation wavelengths reveal a peak pattern consistent with the presence of more than three electronic states (i.e., ground, excited, and doubly excited). Numerical modeling of this response suggests that the features are consistent with a 1-1-2 electronic structure. The two closely spaced (similar to 1500 cm(-1)) levels in the double quantum manifold appear at opposite anharmonicities relative to twice the energy of the lowest energy transition. These observations explain the excited state absorption contributions observed in spectrally resolved transient grating and transient absorption measurements and demonstrate the utility of multidimensional spectroscopy in unraveling congested spectra relative to conventional one-dimensional methods.
C1 [Konold, Patrick E.; Jimenez, Ralph] Univ Colorado, JILA, Boulder, CO 80309 USA.
[Konold, Patrick E.; Jimenez, Ralph] NIST, Boulder, CO 80309 USA.
[Konold, Patrick E.; Jimenez, Ralph] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
RP Jimenez, R (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA.
FU NSF Physics Frontier Center at JILA
FX This work was supported by the NSF Physics Frontier Center at JILA. R.J.
is a staff member in the Quantum Physics Division of the National
Institute of Science and Technology (NIST). Certain commercial
equipment, instruments, or materials are identified in this paper in
order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by
the NIST, nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.
NR 45
TC 4
Z9 4
U1 1
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD FEB 26
PY 2015
VL 119
IS 8
BP 3414
EP 3422
DI 10.1021/jp5119772
PG 9
WC Chemistry, Physical
SC Chemistry
GA CC4NB
UT WOS:000350329000009
PM 25635507
ER
PT J
AU Wen, JJ
Tian, W
Garlea, VO
Koohpayeh, SM
McQueen, TM
Li, HF
Yan, JQ
Rodriguez-Rivera, JA
Vaknin, D
Broholm, CL
AF Wen, J. -J.
Tian, W.
Garlea, V. O.
Koohpayeh, S. M.
McQueen, T. M.
Li, H. -F.
Yan, J. -Q.
Rodriguez-Rivera, J. A.
Vaknin, D.
Broholm, C. L.
TI Disorder from order among anisotropic next-nearest-neighbor Ising spin
chains in SrHo2O4
SO PHYSICAL REVIEW B
LA English
DT Article
ID FRUSTRATED MAGNET; LATTICE
AB We describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Neel (up arrow down arrow up arrow down arrow) and double-Neel (up arrow up arrow down arrow down arrow) ground states, respectively. Below T-N = 0.68(2) K, the Neel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Neel chains so they remain in a disordered incommensurate state for T below T-S = 0.52(2) K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasi-d-dimensional spin system can preclude order in d + 1 dimensions.
C1 [Wen, J. -J.; Koohpayeh, S. M.; McQueen, T. M.; Broholm, C. L.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA.
[Wen, J. -J.; Koohpayeh, S. M.; McQueen, T. M.; Broholm, C. L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Tian, W.; Garlea, V. O.; Broholm, C. L.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[McQueen, T. M.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA.
[McQueen, T. M.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA.
[Li, H. -F.] Forschungszentrum Julich, Outstn Inst Laue Langevin, JCNS, F-38042 Grenoble 9, France.
[Li, H. -F.] Rhein Westfal TH Aachen, Inst Kristallog, D-52056 Aachen, Germany.
[Yan, J. -Q.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Rodriguez-Rivera, J. A.; Broholm, C. L.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Rodriguez-Rivera, J. A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Vaknin, D.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Vaknin, D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Wen, JJ (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
RI Garlea, Vasile/A-4994-2016; Vaknin, David/B-3302-2009; Tian,
Wei/C-8604-2013; Rodriguez-Rivera, Jose/A-4872-2013; Wen,
Jiajia/C-5370-2013
OI Garlea, Vasile/0000-0002-5322-7271; Vaknin, David/0000-0002-0899-9248;
Tian, Wei/0000-0001-7735-3187; Rodriguez-Rivera,
Jose/0000-0002-8633-8314; Wen, Jiajia/0000-0002-1651-3578
FU US Department of Energy, office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-FG02-08ER46544]; US National
Science Foundation [DMR-0944772]; Scientific User Facilities Division,
Office of Basic Energy Sciences, US Department of Energy; US Department
of Energy [DE-AC02-07CH11358]
FX We thank O. Tchernyshyov, J. Zang, and Y. Wan for discussion. Work at
IQM was supported by the US Department of Energy, office of Basic Energy
Sciences, Division of Materials Sciences and Engineering under Grant No.
DE-FG02-08ER46544. This work utilized facilities supported in part by
the US National Science Foundation under Agreement No. DMR-0944772.
Research conducted at ORNL's High Flux Isotope Reactor was sponsored by
the Scientific User Facilities Division, Office of Basic Energy
Sciences, US Department of Energy. Ames Laboratory is operated for the
US Department of Energy by Iowa State University under Contract No.
DE-AC02-07CH11358.
NR 25
TC 4
Z9 4
U1 4
U2 34
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 26
PY 2015
VL 91
IS 5
AR 054424
DI 10.1103/PhysRevB.91.054424
PG 9
WC Physics, Condensed Matter
SC Physics
GA CC2XB
UT WOS:000350207200005
ER
PT J
AU Xu, ZJ
Schneeloch, JA
Zhong, RD
Rodriguez-Rivera, JA
Harriger, LW
Birgeneau, RJ
Gu, GD
Tranquada, JM
Xu, GY
AF Xu, Zhijun
Schneeloch, J. A.
Zhong, R. D.
Rodriguez-Rivera, J. A.
Harriger, L. W.
Birgeneau, R. J.
Gu, G. D.
Tranquada, J. M.
Xu, Guangyong
TI Low-energy phonons and superconductivity in Sn0.8In0.2Te
SO PHYSICAL REVIEW B
LA English
DT Article
ID TOPOLOGICAL INSULATORS; NEUTRON-SCATTERING; SNTE; NB3SN; GAP
AB We present neutron scattering measurements on low-energy phonons from a superconducting (T-c = 2.7 K) Sn0.8In0.2Te single-crystal sample. The longitudinal acoustic phonon mode and one transverse acoustic branch have been mapped out around the (002) Bragg peak for temperatures of 1.7 and 4.2 K. We observe a substantial energy width of the transverse phonons at energies comparable to twice the superconducting gap; however, there is no change in this width between the superconducting and normal states, and the precise origin of this energy width anomaly is not entirely clear. We also confirm that the compound is well ordered, with no indications of structural instability.
C1 [Xu, Zhijun; Schneeloch, J. A.; Zhong, R. D.; Gu, G. D.; Tranquada, J. M.; Xu, Guangyong] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Xu, Zhijun; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Xu, Zhijun; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Schneeloch, J. A.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA.
[Zhong, R. D.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.
[Rodriguez-Rivera, J. A.; Harriger, L. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Rodriguez-Rivera, J. A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
RP Xu, ZJ (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RI Tranquada, John/A-9832-2009; xu, zhijun/A-3264-2013; Zhong,
Ruidan/D-5296-2013; Xu, Guangyong/A-8707-2010; Rodriguez-Rivera,
Jose/A-4872-2013
OI Tranquada, John/0000-0003-4984-8857; xu, zhijun/0000-0001-7486-2015;
Zhong, Ruidan/0000-0003-1652-9454; Xu, Guangyong/0000-0003-1441-8275;
Rodriguez-Rivera, Jose/0000-0002-8633-8314
FU Center for Emergent Superconductivity; Office of Basic Energy Science of
the Department of Energy; Office of Basic Energy Sciences (BES),
Division of Materials Science and Engineering, U.S. Department of Energy
(DOE) [DE-AC02-98CH10886, DE-AC02-05CH1123]; National Science Foundation
[DMR-0944772]
FX J.A.S. and R.Z. are supported by the Center for Emergent
Superconductivity, an Energy Frontier Research Consortium supported by
the Office of Basic Energy Science of the Department of Energy. The work
at Brookhaven National Laboratory and Lawrence Berkeley National
Laboratory was supported by the Office of Basic Energy Sciences (BES),
Division of Materials Science and Engineering, U.S. Department of Energy
(DOE), under Contracts No. DE-AC02-98CH10886 and No. DE-AC02-05CH1123,
respectively. This work utilized facilities supported in part by the
National Science Foundation under Agreement No. DMR-0944772.
NR 39
TC 0
Z9 0
U1 2
U2 22
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 26
PY 2015
VL 91
IS 5
AR 054522
DI 10.1103/PhysRevB.91.054522
PG 5
WC Physics, Condensed Matter
SC Physics
GA CC2XB
UT WOS:000350207200010
ER
PT J
AU Das, P
Kanchanavatee, N
Helton, JS
Huang, K
Baumbach, RE
Bauer, ED
White, BD
Burnett, VW
Maple, MB
Lynn, JW
Janoschek, M
AF Das, Pinaki
Kanchanavatee, N.
Helton, J. S.
Huang, K.
Baumbach, R. E.
Bauer, E. D.
White, B. D.
Burnett, V. W.
Maple, M. B.
Lynn, J. W.
Janoschek, M.
TI Chemical pressure tuning of URu2Si2 via isoelectronic substitution of Ru
with Fe
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRON SUPERCONDUCTOR URU2SI2; HIDDEN-ORDER TRANSITION; FERMION SYSTEM
URU2SI2; COMPOUND URU2SI2; MAGNETIC EXCITATIONS; SURFACE; TEMPERATURE;
RESISTIVITY; ENTROPY; LATTICE
AB We have used specific heat and neutron diffraction measurements on single crystals of URu2-xFexSi2 for Fe concentrations x <= 0.7 to establish that chemical substitution of Ru with Fe acts as "chemical pressure" P-ch as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 ( 2011)] based on bulk measurements on polycrystalline samples. Notably, neutron diffraction reveals a sharp increase of the uranium magnetic moment at x = 0.1, reminiscent of the behavior at the "hidden order" to large-moment-antiferromagnetic phase transition observed at a pressure Px approximate to 0.5-0.7 GP(a) in URu2Si2. Using the unit-cell volume determined from our measurements and an isothermal compressibility kappa(T) = 5.2 x 10(-3) GPa(-1) for URu2Si2, we determine the chemical pressure Pch in URu2-xFexSi2 as a function of x. The resulting temperature (T)-chemical pressure ( P-ch) phase diagram for URu2-xFexSi2 is in agreement with the established temperature (T)-external pressure (P) phase diagram of URu2Si2.
C1 [Das, Pinaki; Baumbach, R. E.; Bauer, E. D.; Janoschek, M.] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM 87545 USA.
[Kanchanavatee, N.; White, B. D.; Burnett, V. W.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Kanchanavatee, N.; Huang, K.; White, B. D.; Burnett, V. W.; Maple, M. B.] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA.
[Helton, J. S.] US Naval Acad, Dept Phys, Annapolis, MD 21402 USA.
[Helton, J. S.; Lynn, J. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Huang, K.; Maple, M. B.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Baumbach, R. E.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
RP Janoschek, M (reprint author), Los Alamos Natl Lab, MPA CMMS, POB 1663, Los Alamos, NM 87545 USA.
EM mjanoschek@lanl.gov
RI Das, Pinaki/C-2877-2012; Janoschek, Marc/M-8871-2015;
OI Janoschek, Marc/0000-0002-2943-0173; Bauer, Eric/0000-0003-0017-1937
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-FG02-04ER46105]; National Science
Foundation [DMR-0802478]
FX The research at UCSD was supported by the U.S. Department of Energy,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering under Grant No. DE-FG02-04ER46105 (sample synthesis) and the
National Science Foundation under Grant No. DMR-0802478 (sample
characterization). Work at Los Alamos National Laboratory (LANL) was
performed under the auspices of the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering.
The identification of any commercial product or trade name does not
imply endorsement or recommendation by NIST. We thank William Ratcliff
and Yang Zhao for technical support during the experiments.
NR 47
TC 11
Z9 11
U1 4
U2 31
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 26
PY 2015
VL 91
IS 8
AR 085122
DI 10.1103/PhysRevB.91.085122
PG 6
WC Physics, Condensed Matter
SC Physics
GA CC2XI
UT WOS:000350207900001
ER
PT J
AU Kang, JW
Diky, V
Frenkel, M
AF Kang, Jeong Won
Diky, Vladimir
Frenkel, Michael
TI New modified UNIFAC parameters using critically evaluated phase
equilibrium data
SO FLUID PHASE EQUILIBRIA
LA English
DT Article
DE NIST-modified UNIFAC; Consistency test; Quality assessment; Regression
analysis
ID THERMODATA ENGINE TDE; VAPOR-LIQUID-EQUILIBRIA; SOFTWARE IMPLEMENTATION;
BINARY-MIXTURES; EXCESS-ENTHALPIES; CARBON-TETRACHLORIDE; QUALITY
ASSESSMENT; PROPIONIC-ACID; ACETIC-ACID; MODEL
AB New modified UNIFAC property prediction model parameters are reported for 89 main groups and 984 group-group interactions using critically evaluated phase equilibrium data including vapor-liquid equilibrium (VLE), liquid-liquid equilibrium (LLE), solid-liquid equilibrium (SLE), excess enthalpy (HE), infinite dilution activity coefficient (AINF) and excess heat capacity (CPE) data. The new algorithmic framework for quality assessment of phase equilibrium data is applied for qualifying the consistency of data and screening out possible erroneous data. Substantial improvement over previous versions of UNIFAC is observed due to inclusion of experimental data from recent publications and proper weighting based on a quality assessment procedure. The systems requiring further verification of phase equilibrium data were identified where insufficient number of experimental data points is available or where existing data are conflicting. Published by Elsevier B.V.
C1 [Kang, Jeong Won] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea.
[Diky, Vladimir; Frenkel, Michael] NIST, Appl Chem & Mat Div, Boulder, CO 80305 USA.
RP Frenkel, M (reprint author), NIST, Appl Chem & Mat Div, Boulder, CO 80305 USA.
EM frenkel@boulder.nist.gov
RI Kang, Jeongwon/F-7010-2013
OI Kang, Jeongwon/0000-0002-5161-1122
NR 52
TC 7
Z9 7
U1 2
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-3812
EI 1879-0224
J9 FLUID PHASE EQUILIBR
JI Fluid Phase Equilib.
PD FEB 25
PY 2015
VL 388
BP 128
EP 141
DI 10.1016/j.fluid.2014.12.042
PG 14
WC Thermodynamics; Chemistry, Physical; Engineering, Chemical
SC Thermodynamics; Chemistry; Engineering
GA CB8KP
UT WOS:000349878800019
ER
PT J
AU Schachenmayer, J
Pikovski, A
Rey, AM
AF Schachenmayer, J.
Pikovski, A.
Rey, A. M.
TI Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a
Discrete Phase Space
SO PHYSICAL REVIEW X
LA English
DT Article
ID STATISTICAL-MECHANICS; RANGE INTERACTIONS; ENTANGLEMENT; REPRESENTATION;
PROPAGATION; SIMULATIONS; DIAMOND; SYSTEMS; STATES; GASES
AB Interacting spin systems are of fundamental relevance in different areas of physics, as well as in quantum information science and biology. These spin models represent the simplest, yet not fully understood, manifestation of quantum many-body systems. An important outstanding problem is the efficient numerical computation of dynamics in large spin systems. Here, we propose a new semiclassical method to study many-body spin dynamics in generic spin lattice models. The method is based on a discrete Monte Carlo sampling in phase space in the framework of the so-called truncated Wigner approximation. Comparisons with analytical and numerically exact calculations demonstrate the power of the technique. They show that it correctly reproduces the dynamics of one- and two-point correlations and spin squeezing at short times, thus capturing entanglement. Our results open the possibility to study the quantum dynamics accessible to recent experiments in regimes where other numerical methods are inapplicable.
C1 [Schachenmayer, J.] Univ Colorado, NIST, JILA, Boulder, CO 80309 USA.
Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
RP Schachenmayer, J (reprint author), Univ Colorado, NIST, JILA, 440 UCB, Boulder, CO 80309 USA.
OI SCHACHENMAYER, JOHANNES/0000-0001-9420-5768; Pikovski,
Alexander/0000-0003-3452-194X
FU ARO, AFOSR, AFOSR-MURI [JILA-NSF-PFC-1125844, NSF-PIF-1211914]; NSF
[CNS-0821794]; NCAR; CU Boulder/Denver
FX We appreciate useful discussions with K. R. A. Hazzard, A. Polkovnikov,
and B. Zhu. This work has been financially supported by
JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.
Computations utilized the Janus supercomputer, supported by NSF
(CNS-0821794), NCAR, and CU Boulder/Denver.
NR 49
TC 9
Z9 9
U1 1
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2160-3308
J9 PHYS REV X
JI Phys. Rev. X
PD FEB 25
PY 2015
VL 5
IS 1
AR 011022
DI 10.1103/PhysRevX.5.011022
PG 10
WC Physics, Multidisciplinary
SC Physics
GA CC4KZ
UT WOS:000350323600002
ER
PT J
AU Awartani, O
Kudenov, MW
Kline, RJ
O'Connor, BT
AF Awartani, Omar
Kudenov, Michael W.
Kline, R. Joseph
O'Connor, Brendan T.
TI In-Plane Alignment in Organic Solar Cells to Probe the Morphological
Dependence of Charge Recombination
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
ID POLYMER PHOTOVOLTAIC CELLS; THIN-FILMS; TRANSPORT; ABSORPTION;
POLYTHIOPHENE; INTERFERENCE; GENERATION; BLENDS
AB Bulk heterojunction (BHJ) organic solar cells are fabricated with the polymer semiconductor aligned in the plane of the film to probe charge recombination losses associated with aggregates characterized by varying degrees of local order. 100% uniaxial strain is applied on ductile poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) BHJ films and characterize the resulting morphology with ultraviolet-visible absorption spectroscopy and grazing incidence X-ray diffraction. It is found that the strained films result in strong alignment of the highly ordered polymer aggregates. Polymer aggregates with lower order and amorphous regions also align but with a much broader orientation distribution. The solar cells are then tested under linearly polarized light where the light is selectively absorbed by the appropriately oriented polymer, while maintaining a common local environment for the sweep out of photogenerated charge carriers. Results show that charge collection losses associated with a disordered BHJ film are circumvented, and the internal quantum efficiency is independent of P3HT local aggregate order near the heterojunction interface. Uniquely, this experimental approach allows for selective excitation of distinct morphological features of a conjugated polymer within a single BHJ film, providing insight into the morphological origin of recombination losses.
C1 [Awartani, Omar; O'Connor, Brendan T.] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA.
[Kudenov, Michael W.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA.
[Kline, R. Joseph] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
RP Awartani, O (reprint author), N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA.
EM brendan_oconnor@ncsu.edu
RI Kline, Regis/B-8557-2008
FU National Science Foundation [1200340]
FX This research work was supported by the National Science Foundation
(Award No. 1200340). Portions of this research were carried out at the
Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC
National Accelerator Laboratory, and an Office of Science User Facility
operated for the U.S. Department of Energy Office of Science by Stanford
University. The authors thank Michael F. Toney for assistance with the
X-ray diffractions measurements.
NR 34
TC 4
Z9 4
U1 1
U2 22
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1616-301X
EI 1616-3028
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD FEB 25
PY 2015
VL 25
IS 8
BP 1296
EP 1303
DI 10.1002/adfm.201403377
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CB7OO
UT WOS:000349817200015
ER
PT J
AU Reynaud, Y
Millet, J
Couvin, D
Rastogi, N
Brown, C
Couppie, P
Legrand, E
AF Reynaud, Yann
Millet, Julie
Couvin, David
Rastogi, Nalin
Brown, Christopher
Couppie, Pierre
Legrand, Eric
TI Heterogeneity among Mycobacterium ulcerans from French Guiana Revealed
by Multilocus Variable Number Tandem Repeat Analysis (MLVA)
SO PLOS ONE
LA English
DT Article
ID BURULI ULCER; ENVIRONMENTAL-SAMPLES; CAUSATIVE AGENT; MYCOLACTONE;
EVOLUTION; SEQUENCE; IDENTIFICATION; MACROLIDE; MARINUM; IS2404
AB Buruli ulcer is an emerging and neglected tropical disease caused by Mycobacterium ulcerans. Few cases have been reported so far in the Americas. With 250 cases reported since 1969, French Guiana is the only Buruli ulcer endemic area in the continent. Thus far, no genetic diversity studies of strains of M. ulcerans from French Guiana have been reported. Our goal in the present study was to examine the genetic diversity of M. ulcerans strains in this region by using the Multilocus Variable Number Tandem Repeat Analysis (MLVA) approach. A total of 23 DNA samples were purified from ulcer biopsies or derived from pure cultures. MVLA was used in the study of six previously-described Variable Number of Tandem Repeat (VNTR) markers. A total of three allelic combinations were characterized in our study: genotype I which has been described previously, genotype III which is very similar to genotype I, and genotype II which has distinctly different characteristics in comparison with the other two genotypes. This high degree of genetic diversity appears to be uncommon for M. ulcerans. Further research based on complete genome sequencing of strains belonging to genotypes I and II is in progress and should lead soon to a better understanding of genetic specificities of M. ulcerans strains from French Guiana.
C1 [Reynaud, Yann; Legrand, Eric] Inst Pasteur, Cayenne, French Guiana.
[Millet, Julie; Couvin, David; Rastogi, Nalin] Inst Pasteur Guadeloupe, Pointe A Pitre, Guadeloupe.
[Brown, Christopher] NOAA, Milford, CT USA.
[Couppie, Pierre] Ctr Hosp Andre Rosemon, Cayenne, French Guiana.
RP Reynaud, Y (reprint author), Inst Pasteur, Cayenne, French Guiana.
EM yreynaud@pasteur-guadeloupe.fr; Eric.legrand@pasteur.fr
OI Legrand, Eric/0000-0003-4725-0712; Couppie, Pierre/0000-0002-4213-2867;
Rastogi, Nalin/0000-0002-7199-7747
FU European Commission [REGPOT-CT-2011-285837-STRONGER]; Agence Nationale
de la Recherche, LabEx CEBA [ANR-10-LABX-25-01]
FX Sponsored by the European Commission. URL: www.cordis.europa.eu/fp7/.
Grant number: REGPOT-CT-2011-285837-STRONGER. Received by YR and EL.
Sponsored by the Agence Nationale de la Recherche, LabEx CEBA. URL:
www.labex-ceba.fr. Grant number: ANR-10-LABX-25-01). Received by YR and
EL. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
NR 22
TC 0
Z9 0
U1 0
U2 1
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 23
PY 2015
VL 10
IS 2
AR e0118597
DI 10.1371/journal.pone.0118597
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CC9BI
UT WOS:000350662100193
PM 25706942
ER
PT J
AU Boettiger, C
Mangel, M
Munch, S
AF Boettiger, Carl
Mangel, Marc
Munch, Stephan
TI Avoiding tipping points in fisheries management through Gaussian process
dynamic programming
SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
LA English
DT Article
DE Bayesian; structural uncertainty; non-parametric optimal control;
decision theory; Gaussian processes; fisheries management
ID BAYESIAN-APPROACH; UNCERTAINTY; MODELS; RESOURCE; SHIFTS; STOCKS
AB Model uncertainty and limited data are fundamental challenges to robust management of human intervention in a natural system. These challenges are acutely highlighted by concerns that many ecological systems may contain tipping points, such as Allee population sizes. Before a collapse, we do not know where the tipping points lie, if they exist at all. Hence, we know neither a complete model of the system dynamics nor do we have access to data in some large region of state space where such a tipping point might exist. We illustrate how a Bayesian non-parametric approach using a Gaussian process (GP) prior provides a flexible representation of this inherent uncertainty. We embed GPs in a stochastic dynamic programming framework in order to make robust management predictions with both model uncertainty and limited data. We use simulations to evaluate this approach as compared with the standard approach of using model selection to choose from a set of candidate models. We find that model selection erroneously favours models without tipping points, leading to harvest policies that guarantee extinction. The Gaussian process dynamic programming (GPDP) performs nearly as well as the true model and significantly outperforms standard approaches. We illustrate this using examples of simulated single-species dynamics, where the standard model selection approach should be most effective and find that it still fails to account for uncertainty appropriately and leads to population crashes, while management based on the GPDP does not, as it does not underestimate the uncertainty outside of the observed data.
C1 [Boettiger, Carl; Mangel, Marc] Univ Calif Santa Cruz, Dept Appl Math & Stat, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA.
[Munch, Stephan] NOAA, Southwest Fisheries Sci Ctr, Santa Cruz, CA 95060 USA.
RP Boettiger, C (reprint author), Univ Calif Santa Cruz, Dept Appl Math & Stat, Ctr Stock Assessment Res, Mail Stop SOE-2, Santa Cruz, CA 95064 USA.
EM cboettig@gmail.com
FU NOAA-IAM grant; NSF [EF-0924195, DBI-1306697]
FX This work was partially supported by NOAA-IAM grant to S.M. and Alec
McCall and administered through the Center for Stock Assessment
Research, a partnership between the University of California Santa Cruz
and the Fisheries Ecology Division, Southwest Fisheries Science Center,
Santa Cruz, CA and by NSF grant EF-0924195 to M.M. and NSF grant
DBI-1306697 to C.B.
NR 47
TC 4
Z9 4
U1 2
U2 10
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 0962-8452
EI 1471-2954
J9 P ROY SOC B-BIOL SCI
JI Proc. R. Soc. B-Biol. Sci.
PD FEB 22
PY 2015
VL 282
IS 1801
AR UNSP 20141631
DI 10.1098/rspb.2014.1631
PG 9
WC Biology; Ecology; Evolutionary Biology
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Evolutionary Biology
GA CC1BU
UT WOS:000350077000015
PM 25567644
ER
PT J
AU Baynes, FN
Quinlan, F
Fortier, TM
Zhou, Q
Beling, A
Campbell, JC
Diddams, SA
AF Baynes, Fred N.
Quinlan, Franklyn
Fortier, Tara M.
Zhou, Qiugui
Beling, Andreas
Campbell, Joe C.
Diddams, Scott A.
TI Attosecond timing in optical-to-electrical conversion
SO OPTICA
LA English
DT Article
ID PHOTONIC MICROWAVE GENERATION; FEMTOSECOND SYNCHRONIZATION; 10(-18)
LEVEL; PULSE TRAINS; 1/F NOISE; SIGNALS; OSCILLATORS; PHOTODIODES;
SUPPRESSION; LASERS
AB The most frequency-stable sources of electromagnetic radiation are produced optically, and optical frequency combs provide the means for high-fidelity frequency transfer across hundreds of terahertz and into the microwave domain. A critical step in this photonic-based synthesis of microwave signals is the opticalto-electrical conversion process. Here, we show that attosecond (as) timing stability can be preserved across the opto-electronic interface of a photodiode, despite an intrinsic temporal response that is more than six orders of magnitude slower. The excess timing noise in the photodetection of a periodic train of ultrashort optical pulses behaves as flicker noise (1/f) with amplitude of 4 as/root Hz at 1 Hz offset. The corresponding fractional frequency fluctuations are 1.4 x 10(-17) at 1 s and 5.5 x 10(-20) at 1000 s. These results demonstrate that direct photodetection, as part of frequency-comb-based microwave synthesis, can support the timing performance of the best optical frequency standards, and thereby opens the possibility for generating microwave signals with significantly better stability than any existing source. (C) 2015 Optical Society of America
C1 [Baynes, Fred N.; Quinlan, Franklyn; Fortier, Tara M.; Diddams, Scott A.] Natl Inst Stand & Technol, Time & Frequency Div, Boulder, CO 80305 USA.
[Zhou, Qiugui; Beling, Andreas; Campbell, Joe C.] Univ Virginia, Dept Comp & Elect Engn, Charlottesville, VA 22904 USA.
RP Baynes, FN (reprint author), Natl Inst Stand & Technol, Time & Frequency Div, Boulder, CO 80305 USA.
EM frederick.baynes@nist.gov; franklyn.quinlan@nist.gov
FU Defense Advanced Research Projects Agency (DARPA); National Institute of
Standards and Technology (NIST)
FX Defense Advanced Research Projects Agency (DARPA) (PULSE); National
Institute of Standards and Technology (NIST).
NR 39
TC 4
Z9 4
U1 4
U2 11
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 2334-2536
J9 OPTICA
JI Optica
PD FEB 20
PY 2015
VL 2
IS 2
BP 141
EP 146
DI 10.1364/OPTICA.2.000141
PG 6
WC Optics
SC Optics
GA CI6KC
UT WOS:000354866800011
ER
PT J
AU Lubow, SH
Martin, RG
Nixon, C
AF Lubow, Stephen H.
Martin, Rebecca G.
Nixon, Chris
TI TIDAL TORQUES ON MISALIGNED DISKS IN BINARY SYSTEMS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; binaries: general; black hole physics;
hydrodynamics
ID X-RAY BINARIES; WARPED ACCRETION DISCS; RESONANCES; EXCITATION;
LINDBLAD; DYNAMICS; MODEL
AB We extend previous studies of the tidal truncation of coplanar disks in binary systems to the more general case of noncoplanar disks. As in the prograde coplanar case, Lindblad resonances play a key role in tidal truncation. We analyze the tidal torque acting on a misaligned nearly circular disk in a circular orbit binary system. We concentrate on the 2: 1 inner Lindblad resonance associated with the m = 2 tidal forcing (for azimuthal wavenumber m) that plays a major role in the usual coplanar case. We determine the inclination dependence of this torque, which is approximately cos(8) (i/2) for misalignment angle i. Compared to the prograde coplanar case (i = 0), this torque decreases by a factor of about 2 for i = pi/6 and by a factor of about 20 for i = pi/2. The Lindblad torque decreases to zero for a tilt angle of pi (counter-rotation), consistent with previous investigations. The effects of higher order resonances associated with m > 2 tidal forcing may contribute somewhat, but are much more limited than in the i = 0 case. These results suggest that misaligned disks in binary systems can be significantly extended compared to their coplanar counterparts. In cases where a disk is sufficiently inclined and viscous, it can overrun all Lindblad resonances and overflow the Roche lobe of the disk central object.
C1 [Lubow, Stephen H.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Martin, Rebecca G.; Nixon, Chris] Univ Colorado, JILA, Boulder, CO 80309 USA.
[Martin, Rebecca G.; Nixon, Chris] NIST, Boulder, CO 80309 USA.
RP Lubow, SH (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
EM lubow@stsci.edu
OI Nixon, Christopher/0000-0002-2137-4146
FU NASA [NNX11AK61G, PF2-130098]; California Institute of Technology
(Caltech) - NASA through the Sagan Fellowship Program
FX S.H.L. acknowledges support from NASA grant NNX11AK61G. C.J.N.
acknowledges support provided by NASA through the Einstein Fellowship
Program, grant PF2-130098. R.G.M.'s support was provided under contract
with the California Institute of Technology (Caltech) funded by NASA
through the Sagan Fellowship Program. We thank the referee for
suggesting improvements in the description of the results.
NR 26
TC 11
Z9 11
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2015
VL 800
IS 2
AR 96
DI 10.1088/0004-637X/800/2/96
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB7CA
UT WOS:000349782500019
ER
PT J
AU Han, J
McBean, C
Wang, L
Jaye, C
Liu, HQ
Fischer, DA
Wong, SS
AF Han, Jinkyu
McBean, Coray
Wang, Lei
Jaye, Cherno
Liu, Haiqing
Fischer, Daniel A.
Wong, Stanislaus S.
TI Synthesis of Compositionally Defined Single-Crystalline Eu3+-Activated
Molybdate Tungstate Solid-Solution Composite Nanowires and Observation
of Charge Transfer in a Novel Class of 1D Ca MoO4-CaWO4:Eu3+-0D CdS/CdSe
QD Nanoscale Heterostructures
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID X-RAY-ABSORPTION; LIGHT-EMITTING DIODES; CDSE QUANTUM DOTS; CARBON
NANOTUBE; SEMICONDUCTOR NANOCRYSTALS; PHOTOVOLTAIC DEVICES;
ELECTRONIC-STRUCTURE; CO-PHTHALOCYANINE; RED PHOSPHORS; LUMINESCENCE
AB As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu3+-activated alkaline-earth metal tungstate/molybdate solid-solution composite CaW1-xMoxO4 (0 <= "x" <= 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW1-xMoxO4:Eu3+ (0 <= "x" <= 1) solid-solution composite nanowires increase with increasing Mo component ("x"). We note a clear dependence of luminescence output upon nanowire chemical composition with our 1D CaW1-xMoxO4:Eu3+ (0 <= "x" <= 1) evincing the highest photoluminescence (PL) output at "x" = 0.8, among samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4:Eu3+ ("x" = 0.8)-0D QD composite nanoscale heterostructures. Our results show that CaW1-xMoxO4:Eu3+ ("x" = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaWO4-CaMoO4:Eu3+ nanowires. The observed PL quenching is especially pronounced in CaW1-xMoxO4:Eu3+ ("x" = 0.8)-0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The differences in optical behavior between 1D Eu3+ activated tungstate and molybdate solid-solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that the PL quenching can be attributed to a photoinduced electron transfer process from CaW1-xMoxO4:Eu3+ ("x" = 0.8) to both CdSe and CdS QDs, an assertion supported by complementary near edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements.
C1 [Han, Jinkyu; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[McBean, Coray; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Jaye, Cherno; Fischer, Daniel A.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20889 USA.
RP Wong, SS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Bldg 480, Upton, NY 11973 USA.
EM sswong@bnl.gov
FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886]
FX Research was supported by the U.S. Department of Energy, Basic Energy
Sciences, Materials Sciences and Engineering Division. Experiments were
performed in part at the Center for Functional Nanomaterials located at
Brookhaven National Laboratory, which is supported by the U.S.
Department of Energy under contract number DE-AC02-98CH10886. NEXAFS
measurements were collected at the U7A NIST/DOW beamline, located at the
National Synchrotron Light Source (NSLS) at Brookhaven National
Laboratory (BNL), which is also supported by the U.S. Department of
Energy under contract number DE-AC02-98CH10886.
NR 76
TC 4
Z9 4
U1 3
U2 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 19
PY 2015
VL 119
IS 7
BP 3826
EP 3842
DI 10.1021/jp512490d
PG 17
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA CB9HK
UT WOS:000349942400044
ER
PT J
AU Sagi, Y
Drake, TE
Paudel, R
Chapurin, R
Jin, DS
AF Sagi, Yoav
Drake, Tara E.
Paudel, Rabin
Chapurin, Roman
Jin, Deborah S.
TI Breakdown of the Fermi Liquid Description for Strongly Interacting
Fermions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GAS; TEMPERATURE; CROSSOVER; SUPERCONDUCTORS; STATE; BCS
AB The nature of the normal state of an ultracold Fermi gas in the BCS-BEC crossover regime is an intriguing and controversial topic. While the many-body ground state remains a condensate of paired fermions, the normal state must evolve from a Fermi liquid to a Bose gas of molecules as a function of the interaction strength. How this occurs is still largely unknown. We explore this question with measurements of the distribution of single- particle energies and momenta in a nearly homogeneous gas above T-c. The data fit well to a function that includes a narrow, positively dispersing peak that corresponds to quasiparticles and an "incoherent background" that can accommodate broad, asymmetric line shapes. We find that the quasiparticle's spectral weight vanishes abruptly as the strength of interactions is modified, which signals the breakdown of a Fermi liquid description. Such a sharp feature is surprising in a crossover.
C1 [Jin, Deborah S.] NIST, JILA, Boulder, CO 80309 USA.
Univ Colorado, Boulder, CO 80309 USA.
Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
RP Jin, DS (reprint author), NIST, JILA, Boulder, CO 80309 USA.
EM jin@jilau1.colorado.edu
OI Sagi, Yoav/0000-0002-3897-1393
FU National Science Foundation [1125844]; National Institute of Standards
and Technology
FX This work was supported by the National Science Foundation under Grant
No. 1125844 and by the National Institute of Standards and Technology.
Y. S. and T. E. D. contributed equally to this work.
NR 43
TC 12
Z9 12
U1 2
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 19
PY 2015
VL 114
IS 7
AR 075301
DI 10.1103/PhysRevLett.114.075301
PG 5
WC Physics, Multidisciplinary
SC Physics
GA CC3UF
UT WOS:000350274900008
PM 25763961
ER
PT J
AU Yun, J
Camell, DG
Novotny, DR
Koepke, GH
Guerrieri, JR
AF Yun, Jaehoon
Camell, Dennis G.
Novotny, David R.
Koepke, Galen H.
Guerrieri, Jeffrey R.
TI Differential site attenuation without using free space antenna factor
SO ELECTRONICS LETTERS
LA English
DT Article
AB Differential site attenuation (DSA) to verify the performance of electromagnetic compatibility (EMC) facilities, open area test site and semi-anechoic chamber, without using a calibrated free space antenna factor (AFFS) is proposed. In the evaluation of EMC facilities, the AFFS is one of the main uncertainty contributions. The measured results are reported and compared with the current site attenuations. It is shown that the proposed DSA has good discrimination capability in verifying the performance of EMC facilities.
C1 [Yun, Jaehoon] ETRI, Radio Sci Sect, Taejon 305350, South Korea.
[Camell, Dennis G.; Novotny, David R.; Koepke, Galen H.; Guerrieri, Jeffrey R.] NIST, Electromagnet Div, Boulder, CO 80305 USA.
RP Yun, J (reprint author), ETRI, Radio Sci Sect, Taejon 305350, South Korea.
EM jhyun@etri.re.kr
FU Guest Research Program of NIST; ICT R&D Program of MSIP/IITP
FX This work was supported by Guest Research Program of NIST and ICT R&D
Program of MSIP/IITP [Development of RF Energy Transmission under 100 W
and Harvesting Technology].
NR 8
TC 0
Z9 0
U1 0
U2 5
PU INST ENGINEERING TECHNOLOGY-IET
PI HERTFORD
PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND
SN 0013-5194
EI 1350-911X
J9 ELECTRON LETT
JI Electron. Lett.
PD FEB 19
PY 2015
VL 51
IS 4
BP 310
EP U100
DI 10.1049/el.2014.3360
PG 2
WC Engineering, Electrical & Electronic
SC Engineering
GA CB5YC
UT WOS:000349702900007
ER
PT J
AU Gassman, NR
Coskun, E
Stefanick, DF
Horton, JK
Jaruga, P
Dizdaroglu, M
Wilson, SH
AF Gassman, Natalie R.
Coskun, Erdem
Stefanick, Donna F.
Horton, Julie K.
Jaruga, Pawel
Dizdaroglu, Miral
Wilson, Samuel H.
TI Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in
Mouse Fibroblasts
SO PLOS ONE
LA English
DT Article
ID BASE-EXCISION-REPAIR; BREAST-CANCER; GLYCOSYLASE; EXPOSURE; ENZYME;
NEIL1; IDENTIFICATION; GENOTOXICITY; EXPRESSION; RESPONSES
AB Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.
C1 [Gassman, Natalie R.; Stefanick, Donna F.; Horton, Julie K.; Wilson, Samuel H.] NIEHS, Genom Integr & Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA.
[Coskun, Erdem; Jaruga, Pawel; Dizdaroglu, Miral] NIST, Biomol Measurement Div, Gaithersburg, MD 20899 USA.
[Coskun, Erdem] Gazi Univ, Fac Pharm, Ankara, Turkey.
RP Wilson, SH (reprint author), NIEHS, Genom Integr & Struct Biol Lab, NIH, 111 TW Alexander Dr, Res Triangle Pk, NC 27709 USA.
EM wilson5@niehs.nih.gov
RI Jaruga, Pawel/M-4378-2015;
OI Gassman, Natalie/0000-0002-8488-2332
FU Intramural Research Program of the National Institutes of Health,
National Institute of Environmental Health Sciences [Z01-ES050158,
Z01-ES050159]; [1K99ES023813-01]
FX This research was supported by Research Project Numbers Z01-ES050158 and
Z01-ES050159 in the Intramural Research Program of the National
Institutes of Health, National Institute of Environmental Health
Sciences. NRG is funded by 1K99ES023813-01. The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the manuscript. Certain commercial equipment or materials
are identified in this paper in order to specify adequately the
experimental procedure. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified
are necessarily the best available for the purpose.
NR 41
TC 4
Z9 4
U1 4
U2 21
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 18
PY 2015
VL 10
IS 2
AR e0118819
DI 10.1371/journal.pone.0118819
PG 14
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CC0WZ
UT WOS:000350061500131
PM 25693136
ER
PT J
AU Nadermann, NK
Chan, EP
Stafford, CM
AF Nadermann, Nichole K.
Chan, Edwin P.
Stafford, Christopher M.
TI Bilayer Mass Transport Model for Determining Swelling and Diffusion in
Coated, Ultrathin Membranes
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE bilayer mass transport; desalination; diffusion; polyamide
ID REVERSE-OSMOSIS MEMBRANES; THIN POLYMER-FILMS; WATER DESALINATION
MEMBRANES; QUARTZ-CRYSTAL MICROBALANCE; MOISTURE ABSORPTION; ATR-FTIR;
LAYER; PERMEABILITY; SUBSTRATE; SPECTROSCOPY
AB Water transport and swelling properties of an ultrathin, selective polyamide layer with a hydrophilic polymer coating, i.e., a polymer bilayer, are studied using quartz crystal microbalance with dissipation (QCM-D). Specifically, QCM-D is used to measure the dynamic and equilibrium change in mass in a series of differential sorption experiments to determine the dependence of the apparent diffusion coefficient and equilibrium swelling of the bilayer as a function of the water vapor activity. To determine transport properties specific to the polyamide layer, sorption kinetics of the bilayer was modeled with a bilayer mass transport model. The swelling and water diffusion coefficients are interpreted according to the PainterShenoy polymer network swelling model and the solution-diffusion model, respectively.
C1 [Nadermann, Nichole K.; Chan, Edwin P.; Stafford, Christopher M.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
RP Chan, EP (reprint author), NIST, Mat Sci & Engn Div, 100 Bur Dr,MS 8542, Gaithersburg, MD 20899 USA.
EM edwin.chan@nist.gov; chris.stafford@nist.gov
FU NIST/National Research Council Postdoctoral Fellowship Program
FX The authors would like to thank Dow Filmtec (Edina, MN) for kindly
providing the commercial RO membrane studied in this work. Additionally,
the authors thank Steven D. Hudson for training and assistance in
collecting TEM images of the SWHR TFC membrane. We thank Eric M. Davis
for his assistance in PM-IRRAS data collection and interpretation of the
bilayer chemical composition. N.K.N. acknowledges the NIST/National
Research Council Postdoctoral Fellowship Program for funding. This
article, a contribution of the National Institute of Standards and
Technology, is not subject to US copyright. Certain equipment and
instruments or materials are identified in the paper to adequately
specify the experimental details. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply the materials are necessarily the best
available for the purpose.
NR 57
TC 1
Z9 1
U1 10
U2 39
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD FEB 18
PY 2015
VL 7
IS 6
BP 3492
EP 3502
DI 10.1021/am507091s
PG 11
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA CB7KV
UT WOS:000349806800007
PM 25597964
ER
PT J
AU Gaigalas, G
Rynkun, P
Fischer, CF
AF Gaigalas, Gediminas
Rynkun, Pavel
Fischer, Charlotte Froese
TI Lifetimes of 4p(5)4d levels in highly ionized atoms
SO PHYSICAL REVIEW A
LA English
DT Article
ID I ISOELECTRONIC SEQUENCE; BEAM ION-TRAP; SPECTRA; PACKAGE; TRANSITION;
TUNGSTEN; LINES; EUV; KR
AB Energy levels, lifetimes, and wave function compositions have been computed for all atomic states of the 4p(6) and 4p(5)4d configurations using the multiconfiguration Dirac-Hartree-Fock method. Calculations were done by parity and the configuration state function expansions were obtained by allowing single and double substitutions from the the 4p(6) and 4p(5)4d single references with orbitals in an orbital set that was extended to n = 7 and all possible angular symmetries. Lifetimes are computed from E1, E2, and M1 transitions between these levels. Energy levels and transition energies (or wavelengths) are compared with other theory and experiment, when available. Transition data for the 4p(6) (1)S0 - 4p(5) 4d J = 1 transitions are investigated in detail with respect to convergence of transition energies and the length and velocity forms of the line strengths. By classifying the upper states by J, parity (pi), and position, the compositions of the states with the same three quantum number change smoothly as a function of the nuclear charge Z and transition energies and transition matrix elements can be approximated by polynomial expressions in Z. A zero in the transition matrix element for the S-1(0) - P-3(1)o transition leads to a long lifetime at Z approximate to 58.
C1 [Gaigalas, Gediminas; Rynkun, Pavel] Vilnius State Univ, Inst Theoret Phys & Astron, LT-01108 Vilnius, Lithuania.
[Fischer, Charlotte Froese] NIST, Gaithersburg, MD 20899 USA.
RP Rynkun, P (reprint author), Vilnius State Univ, Inst Theoret Phys & Astron, A Gostauto 12, LT-01108 Vilnius, Lithuania.
EM pavel.rynkun@tfai.vu.lt
NR 24
TC 1
Z9 1
U1 2
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9926
EI 2469-9934
J9 PHYS REV A
JI Phys. Rev. A
PD FEB 17
PY 2015
VL 91
IS 2
AR 022509
DI 10.1103/PhysRevA.91.022509
PG 10
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA CF1IP
UT WOS:000352298700016
ER
PT J
AU Large, SI
Fay, G
Friedland, KD
Link, JS
AF Large, Scott I.
Fay, Gavin
Friedland, Kevin D.
Link, Jason S.
TI Critical points in ecosystem responses to fishing and environmental
pressures
SO MARINE ECOLOGY PROGRESS SERIES
LA English
DT Article
DE Reference points; Ecosystem-based fisheries management; EBFM;
Thresholds; GAM; Dynamic factor analysis; DynFA
ID GENERALIZED ADDITIVE-MODELS; ECOLOGICAL THRESHOLDS; FISHERIES
MANAGEMENT; NORTH-ATLANTIC; TIME-SERIES; SURFACE-TEMPERATURE; REGRESSION
SPLINES; CONTINENTAL-SHELF; REGIME SHIFTS; RIVER FLOWS
AB Ecosystem dynamics are often influenced by both environmental and anthropogenic pressures. Increased demand for living marine resources has resulted in global declines of targeted species, which are often managed under a single-species paradigm that does not fully incorporate ecosystem considerations such as ecological interactions or environmental factors. Ecosystem-based fisheries management (EBFM) is a more holistic approach that concurrently addresses human, ecological, and environmental factors influencing living marine resources and evaluates these considerations collectively on a system level. For EBFM, reference points associated with management action need to be quantified. Methods have been developed to assign decision criteria to ecological indicators' response to human-use pressures, yet few efforts have established decision criteria in response to the combined influence of human-use and environmental pressures. We translated ecological indicator response into a surface dependent on both fishing and environmental pressures. Using generalized additive models, we empirically determined critical points at which a small change in fishing and environmental pressure results in an abrupt change in ecosystem status. For the Northeast United States Shelf Large Marine Ecosystem, we identified critical points in ecological indicators that represent system production, size distribution, community structure, and ecosystem functioning. Our findings highlight the need to include both anthropogenic and environmental pressures for delineation of ecosystem decision criteria.
C1 [Large, Scott I.; Fay, Gavin; Link, Jason S.] NOAA Fisheries, Woods Hole, MA 02543 USA.
[Friedland, Kevin D.] NOAA, Natl Marine Fisheries Serv, Narragansett, RI 02882 USA.
RP Large, SI (reprint author), Int Council Explorat Sea, DK-1553 Copenhagen V, Denmark.
EM largesi@gmail.com
FU NOAA NMFS Fisheries and the Environment (FATE) grant
FX This work was supported by a NOAA NMFS Fisheries and the Environment
(FATE) grant. We thank all those who participated in the NEFSC bottom
trawl survey and have maintained this database. We thank B. Wells, J.
Samhouri, and 2 anonymous reviewers for their thoughtful comments on
earlier versions of this work.
NR 69
TC 2
Z9 2
U1 1
U2 35
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 0171-8630
EI 1616-1599
J9 MAR ECOL PROG SER
JI Mar. Ecol.-Prog. Ser.
PD FEB 17
PY 2015
VL 521
BP 1
EP 17
DI 10.3354/meps11165
PG 17
WC Ecology; Marine & Freshwater Biology; Oceanography
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Oceanography
GA CC0AF
UT WOS:000349996200001
ER
PT J
AU Manzello, DP
Enochs, IC
Kolodziej, G
Carlton, R
AF Manzello, Derek P.
Enochs, Ian C.
Kolodziej, Graham
Carlton, Renee
TI Recent decade of growth and calcification of Orbicella faveolata in the
Florida Keys: an inshore-offshore comparison
SO MARINE ECOLOGY PROGRESS SERIES
LA English
DT Article
DE Florida Reef Tract; Coral bleaching; Thermal stress; Cheeca Rocks;
Orbicella (Montastraea) annularis species complex
ID CORAL MONTASTRAEA-ANNULARIS; REEF-CORAL; SKELETAL EXTENSION;
MARINE-SANCTUARY; BLEACHED CORALS; VIRGIN-ISLANDS; ST-CROIX; PACIFIC;
DENSITY; TRACT
AB Coral reefs along the Florida Keys portion of the Florida Reef Tract (FRT) have undergone a dramatic decline since the 1980s. Since the 1997-1998 El Nino event, coral cover on offshore reefs of the FRT has been <= 5% and continues to decline. Mortality of the framework-constructing coral in the Orbicella (formerly Montastraea) annularis species complex has driven this recent loss in overall coral cover. One exception to this decline occurred on the inshore patch reefs of the Florida Keys, where coral cover has remained relatively high. We examined the growth and calcification of Orbicella faveolata, an ecologically important subspecies of the O. annularis complex, at both an inshore and an offshore reef site representing this dichotomy of present-day coral cover. The period examined (2004 to 2013) encompasses the Caribbean-wide 2005 mass coral bleaching, the 2009-2010 catastrophic cold-water bleaching, and a warm-water bleaching event in 2011. Extension and calcification rates were higher inshore every year from 2004 to 2013 except when there were thermal stress events that solely impacted inshore reefs (as in 2009-2010 and 2011). Inshore growth rates recovered quickly from cold and warm-water stress. These higher calcification rates and their quick recovery after thermal stress are likely important factors in the persistence of high coral cover inshore.
C1 [Manzello, Derek P.; Enochs, Ian C.; Kolodziej, Graham; Carlton, Renee] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
[Enochs, Ian C.; Kolodziej, Graham; Carlton, Renee] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA.
RP Manzello, DP (reprint author), NOAA, Atlantic Oceanog & Meteorol Lab, 4301 Rickenbacker Cswy, Miami, FL 33149 USA.
EM derek.manzello@noaa.gov
RI Kolodziej, Graham/A-3034-2017; Manzello, Derek/A-8661-2014; Enochs,
Ian/B-8051-2014
OI Kolodziej, Graham/0000-0001-5483-8923; Manzello,
Derek/0000-0002-0720-3041; Enochs, Ian/0000-0002-8867-0361
FU NOAA's Coral Reef Conservation Program; Ocean Acidification Program
FX The authors are indebted to NOAA's Coral Reef Conservation Program and
Ocean Acidification Program for supporting this work. We thank the
Florida Keys National Marine Sanctuary for allowing this work to take
place (Permits #FKNMS-2008-091 and #FKNMS-2011-049). M. Doig provided
assistance with coring. Joanne Delaney, in particular, was incredibly
helpful with permitting. We thank 3 anonymous reviewers and topic editor
P. J. Edmunds for comments that substantially improved the manuscript.
The manuscript contents are solely the opinions of the authors and do
not constitute a statement of policy, decision, or position on behalf of
NOAA or the US Government.
NR 48
TC 4
Z9 4
U1 3
U2 33
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 0171-8630
EI 1616-1599
J9 MAR ECOL PROG SER
JI Mar. Ecol.-Prog. Ser.
PD FEB 17
PY 2015
VL 521
BP 81
EP 89
DI 10.3354/meps11085
PG 9
WC Ecology; Marine & Freshwater Biology; Oceanography
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Oceanography
GA CC0AF
UT WOS:000349996200006
ER
PT J
AU Papastamatiou, YP
Meyer, CG
Kosaki, RK
Wallsgrove, NJ
Popp, BN
AF Papastamatiou, Yannis P.
Meyer, Carl G.
Kosaki, Randall K.
Wallsgrove, Natalie J.
Popp, Brian N.
TI Movements and foraging of predators associated with mesophotic coral
reefs and their potential for linking ecological habitats
SO MARINE ECOLOGY PROGRESS SERIES
LA English
DT Article
DE Acoustic telemetry; Galapagos sharks; Giant trevally; Network analysis;
Amino acids; Stable isotopes; Trophic ecology
ID DIEL VERTICAL MIGRATION; CARCHARHINUS GALAPAGENSIS;
NEGAPRION-BREVIROSTRIS; HAWAIIAN-ISLANDS; TROPHIC ECOLOGY;
STABLE-ISOTOPES; SPHYRNA-LEWINI; AMINO-ACIDS; FOOD-WEB; SHARK
AB Marine predators will often perform diel and seasonal movements associated with specific habitats. In tropical areas, mesophotic coral reefs may be an important habitat type for many predators, but their use of these areas has rarely been investigated. We used results of acoustic telemetry and stable isotope analyses to investigate the diel and seasonal movements of Galapagos sharks Carcharhinus galapagensis and giant trevally Caranx ignobilis captured from a mesophotic reef (depth: 50 to 70 m) at an uninhabited Pacific atoll. All predators associated with mesophotic reefs performed horizontal and vertical movements over seasonal and diel time frames. Galapagos sharks performed reverse diel vertical movements, diving deeper during the night than during the day, while giant trevally displayed a mix, with some individuals performing regular diel movements (deep during the day, shallow at night) and others performing reverse vertical diel movements. Trevally used very shallow water during the summer spawning periods. The isotopic compositions of predators suggest they primarily forage in shallow reefs, although approximately 35% of resources came from mesophotic reefs. Similar to their variability in vertical movement strategies, giant trevally occupied a wide range of trophic positions, potentially due to individual specialization in diet and high levels of intra- specific competition. Mesophotic reefs may provide some prey to upper level predators but also serve as a refuge habitat. The frequent movements between habitats suggest that marine predators may function as significant transporters of nutrients, particularly from shallow to mesophotic reefs.
C1 [Papastamatiou, Yannis P.] Univ St Andrews, Sch Biol, Scottish Oceans Inst, St Andrews KY16 8LB, Fife, Scotland.
[Papastamatiou, Yannis P.] Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611 USA.
[Meyer, Carl G.] Univ Hawaii Manoa, Hawaii Inst Marine Biol, Kaneohe, HI 96744 USA.
[Kosaki, Randall K.] NOAA NOS Papahanaumokuakea Marine Natl Monument, Honolulu, HI 96818 USA.
[Wallsgrove, Natalie J.; Popp, Brian N.] Univ Hawaii Manoa, Dept Geol & Geophys, Honolulu, HI 96822 USA.
RP Papastamatiou, YP (reprint author), Univ St Andrews, Sch Biol, Scottish Oceans Inst, St Andrews KY16 8LB, Fife, Scotland.
EM ypapastamatiou@gmail.com
OI Popp, Brian/0000-0001-7021-5478
FU University of Florida Animal Care Protocol [201105813]; National
Geographic Committee for Research Exploration [8951-11]; National
Science Foundation [OCE-1041329]; Scottish Funding Council [HR09011]
FX We thank the crew of the NOAA research vessel 'Hi'ialakai' for
supporting all field work in the NWHI. For assistance and support with
technical diving, we also thank K. Gleason, G. McFall, J. Leonard, B.
Hauk, K. Lopes, and J. Copus. Assistance with predator tagging/fish
collecting was also provided by C. Clark, R. Pyle, J. Anderson, and D.
Wagner. We thank D. Bradley for help with statistical analysis, and D.
Jacoby for discussions regarding network analysis. Research was
conducted under the University of Florida Animal Care Protocol #
201105813. Funding was provided by the National Geographic Committee for
Research & Exploration (grant # 8951-11) and by the National Science
Foundation grant OCE-1041329 (to B.N.P. and Jeffrey C. Drazen). Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. This work received funding
from the MASTS (The Marine Alliance for Science and Technology for
Scotland) pooling initiative and their support is gratefully
acknowledged. MASTS is funded by the Scottish Funding Council (grant
reference HR09011) and contributing institutions. This is SOEST
contribution number 9238.
NR 50
TC 13
Z9 13
U1 13
U2 55
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 0171-8630
EI 1616-1599
J9 MAR ECOL PROG SER
JI Mar. Ecol.-Prog. Ser.
PD FEB 17
PY 2015
VL 521
BP 155
EP 170
DI 10.3354/meps11110
PG 16
WC Ecology; Marine & Freshwater Biology; Oceanography
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Oceanography
GA CC0AF
UT WOS:000349996200012
ER
PT J
AU Botta, S
Albuquerque, C
Hohn, AA
da Silva, VMF
Santos, MCO
Meirelles, C
Barbosa, L
Di Beneditto, APM
Ramos, RMA
Bertozzi, C
Cremer, MJ
Franco-Trecu, V
Miekeley, N
Secchi, ER
AF Botta, S.
Albuquerque, C.
Hohn, A. A.
da Silva, V. M. F.
Santos, M. C. O.
Meirelles, C.
Barbosa, L.
Di Beneditto, A. P. M.
Ramos, R. M. A.
Bertozzi, C.
Cremer, M. J.
Franco-Trecu, V.
Miekeley, N.
Secchi, E. R.
TI Ba/Ca ratios in teeth reveal habitat use patterns of dolphins
SO MARINE ECOLOGY PROGRESS SERIES
LA English
DT Article
DE Barium; Strontium; Laser ablation ICP-MS; Habitat use; Odontocetes
ID PONTOPORIA-BLAINVILLEI CETACEA; SOTALIA-GUIANENSIS CETACEA; FRANCISCANA
DOLPHIN; OTOLITH CHEMISTRY; SOUTHWESTERN CAPE; ESTUARINE SYSTEM;
SOUTHERN BRAZIL; TRACE-METALS; MARINE FISH; BARIUM
AB Teeth and otoliths are metabolically inert structures that preserve a chronology of chemical variations that may be related to the environmental histories experienced by each organism. Because of the natural decrease of barium (Ba) and increase of strontium (Sr) bioavailability in water with increasing salinity, these elements may be especially useful to track habitat use in aquatic organisms. Therefore, we tested whether the Ba/Ca and Sr/Ca ratios in the teeth of dolphins represent a salinity gradient. The main aim was to determine whether these elements can be used as a natural tag for different aquatic environments. Teeth from 2 freshwater dolphins (Inia geoffrensis and Sotalia fluviatilis) and 2 marine species (S. guianensis and Pontoporia blainvillei) from Brazil and Uruguay were analyzed using a Laser Ablation Inductively Coupled Plasma-Mass Spectrometer. Intensity ratios of Ba-138/Ca-43 and Sr-86/Ca-43 were measured along a line that covered all growth increments in the dentin from the second year of life onwards. Teeth from the freshwater species had mean Ba/Ca values tenfold higher than marine dolphins, confirming the inverse relationship between salinity (and thus ambient Ba/Ca) and elemental ratios in teeth. Furthermore, Ba/Ca ratios could also differentiate dolphins from lower-salinity estuarine areas from those in areas with minimal freshwater discharge. No significant differences were found for Sr/Ca values. Results presented encouraging indications for the application of this technique as a potential new tool for studying habitat use in aquatic mammals.
C1 [Botta, S.; Secchi, E. R.] Univ Fed Rio Grande, Inst Oceanog, Lab Ecol & Conservacao Megafauna Marinha EcoMega, BR-96203900 Rio Grande, RS, Brazil.
[Albuquerque, C.] Univ Fed Rio Grande do Norte, Dept Oceanog & Limnol, BR-59014100 Natal, RN, Brazil.
[Hohn, A. A.] NOAA, Natl Marine Fisheries Serv, Beaufort, NC 28516 USA.
[da Silva, V. M. F.] Inst Nacl de Pesquisas da Amazonia, Lab Mamiferos Aquat, BR-69011790 Manaus, Amazonas, Brazil.
[Santos, M. C. O.] Univ Sao Paulo, Dept Oceanog Biol, Inst Oceanog, BR-05508120 Sao Paulo, SP, Brazil.
[Meirelles, C.] SESC, Assoc Pesquisa & Preservacao Ecossistemas Aquat A, BR-61627010 Caucaia, CE, Brazil.
[Barbosa, L.] Org Consciencia Ambiental ORCA, BR-29101315 Vila Velha, ES, Brazil.
[Di Beneditto, A. P. M.] Univ Estadual Norte Fluminense, CBB LCA, BR-28013602 Campos Dos Goytacazes, RJ, Brazil.
[Ramos, R. M. A.] Everest Tecnol Serv Ltda, BR-29045970 Vitoria, ES, Brazil.
[Bertozzi, C.] Ctr Univ Monte Serrat, Projeto BioPesca, BR-11015530 Santos, SP, Brazil.
[Cremer, M. J.] Univ Regiao Joinville, Dept Ciencias Biol, BR-89219710 Joinville, SC, Brazil.
[Franco-Trecu, V.] Fac Ciencias, Proyecto Franciscana, Secc Etol, Montevideo 11400, Uruguay.
[Miekeley, N.] Pontificia Univ Catolica Rio de Janeiro, Dept Quim, BR-22453900 Rio De Janeiro, RJ, Brazil.
RP Botta, S (reprint author), Univ Fed Rio Grande, Inst Oceanog, Lab Ecol & Conservacao Megafauna Marinha EcoMega, BR-96203900 Rio Grande, RS, Brazil.
EM silbotta@gmail.com
RI Bertozzi, Carolina/D-9456-2015; Di Beneditto, Ana Paula/L-9347-2013;
Santos, Marcos/F-3588-2012; Secchi, Eduardo/D-5038-2013; Hohn,
Aleta/G-2888-2011
OI Di Beneditto, Ana Paula/0000-0002-4248-9380; Santos,
Marcos/0000-0002-6642-2658; Secchi, Eduardo/0000-0001-9087-9909; Hohn,
Aleta/0000-0002-9992-7062
FU Yaqu Pacha Foundation; Society for Marine Mammalogy; Cetacean Society
International; 'Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico - CNPq' (Brazil) [PQ 307843/2011-4, PDE 229334/2013-0, PQ
308331/2010-9, PQ 300241/2009-7]; 'Fundacao de Amparo a Pesquisa do
Estado do Rio de Janeiro - FAPERJ' (Brazil) [E-26/102.915/2011]
FX We are indebted to all researchers and volunteers from the LTMM-IO-FURG,
especially Lilia Fidelix and Bruna Paro for helping to process samples
for chemical analyses. We thank Dr. Elton Colares and Antonio Gomes Jr
for providing South American river otter samples. Special thanks go to
the Yaqu Pacha Foundation, The Society for Marine Mammalogy and Cetacean
Society International for the financial support of this project. The
'Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq'
(Brazil) provided scholarships to E.R.S. (PQ 307843/2011-4 and PDE
229334/2013-0), M.C.O.S. (PQ 308331/2010-9) and A.P.M.D.B. (PQ
300241/2009-7) and 'Fundacao de Amparo a Pesquisa do Estado do Rio de
Janeiro - FAPERJ' (Brazil) provided scholarships to A.P.M.D.B.
(E-26/102.915/2011). S.B. and C.A. are currently postdoctoral fellows
(CAPES-PNPD Institucional 2931/2011 and PNPD 02907/09-7, respectively).
This article is part of S.B.'s PhD thesis in Biological Oceanography
(Graduation Course in Biological Oceanography - IO - FURG, RS, Brazil)
under the supervision of E.R.S. and A.A.H. and is a contribution of the
research groups 'Ecologia e Conservacao da Megafauna
Marinha-EcoMega/CNPq' and 'Grupo de Analises de Isotopos Estaveis em
Ambientes Aquaticos (GAIA-FURG)'.
NR 90
TC 0
Z9 0
U1 4
U2 18
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 0171-8630
EI 1616-1599
J9 MAR ECOL PROG SER
JI Mar. Ecol.-Prog. Ser.
PD FEB 17
PY 2015
VL 521
BP 249
EP 263
DI 10.3354/meps11158
PG 15
WC Ecology; Marine & Freshwater Biology; Oceanography
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Oceanography
GA CC0AF
UT WOS:000349996200018
ER
PT J
AU Alken, P
Maus, S
Chulliat, A
Vigneron, P
Sirol, O
Hulot, G
AF Alken, P.
Maus, S.
Chulliat, A.
Vigneron, P.
Sirol, O.
Hulot, G.
TI Swarm equatorial electric field chain: First results
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Swarm; ionosphere; electrojet; electric field; EEF
ID MAGNETIC-FIELD; IONOSPHERE; ELECTRODYNAMICS
AB The eastward equatorial electric field (EEF) in the E region ionosphere drives many important phenomena at low latitudes. We developed a method of estimating the EEF from magnetometer measurements of near-polar orbiting satellites as they cross the magnetic equator, by recovering a clean signal of the equatorial electrojet current and modeling the observed current to determine the electric field present during the satellite pass. This algorithm is now implemented as an official Level-2 Swarm product. Here we present first results of EEF estimates from nearly a year of Swarm data. We find excellent agreement with independent measurements from the ground-based coherent scatter radar at Jicamarca, Peru, as well as horizontal field measurements from the West African Magnetometer Network magnetic observatory chain. We also calculate longitudinal gradients of EEF measurements made by the A and C lower satellite pair and find gradients up to about 0.05 mV/m/deg with significant longitudinal variability.
C1 [Alken, P.; Maus, S.; Chulliat, A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Alken, P.; Maus, S.; Chulliat, A.] NOAA, Natl Geophys Data Ctr, Boulder, CO 80303 USA.
[Vigneron, P.; Sirol, O.; Hulot, G.] Univ Paris Diderot, Sorbonne Paris Cite, Inst Phys Globe Paris, Equipe Geomagnetisme,UMR 7154,CNRS INSU, Paris, France.
RP Alken, P (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
EM alken@colorado.edu
RI Hulot, Gauthier/A-5627-2011; Chulliat, Arnaud/A-5747-2011
OI Chulliat, Arnaud/0000-0001-7414-9631
FU Centre National d'Etudes Spatiales (CNES); European Space Agency (ESA)
through ESRIN [4000109587/13/I-NB]; CNES; NASA [NNX13AL20G]
FX The authors gratefully acknowledge support from the Centre National
d'Etudes Spatiales (CNES) within the context of the "Travaux
preparatoires et exploitation de la mission SWARM" project, and from the
European Space Agency (ESA) through ESRIN contract 4000109587/13/I-NB
"SWARM ESL." The WAMNET magnetometer network is funded by CNES and is
maintained by the Institut de Physique du Globe de Paris (IPGP), and the
data are available at http://www.bcmt.fr/wamnetdata.html. The Jicamarca
Radio Observatory is a facility of the Instituto Geofisico del Peru
operated with support from the NSF through Cornell University. JULIA
data are available at http://jro.igp.gob.pe/madrigal. Swarm Level-1b
data are available from ESA at
https://earth.esa.int/web/guest/swarm/data-access. The Swarm Level-2 EEF
data will be made available shortly by ESA and can be made available
upon request by the authors. The operational support of the CHAMP
mission by the German Aerospace Center (DLR) is gratefully acknowledged,
and CHAMP data can be downloaded from http://isdc.gfz-potsdam.de. S.M.
was supported by NASA grant NNX13AL20G. This is IPGP contribution 3597.
NR 26
TC 3
Z9 3
U1 1
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2015
VL 42
IS 3
BP 673
EP 680
DI 10.1002/2014GL062658
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA CD8OT
UT WOS:000351355600001
ER
PT J
AU Fong, WC
Chu, XZ
Lu, X
Chen, C
Fuller-Rowell, TJ
Codrescu, M
Richmond, AD
AF Fong, Weichun
Chu, Xinzhao
Lu, Xian
Chen, Cao
Fuller-Rowell, Timothy J.
Codrescu, Mihail
Richmond, Arthur D.
TI Lidar and CTIPe model studies of the fast amplitude growth with altitude
of the diurnal temperature "tides" in the Antarctic winter lower
thermosphere and dependence on geomagnetic activity
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE adiabatic effects; Hall ion drag; diurnal temperature tides; CTIPe
model; Antarctic lower thermosphere; lidar observations
ID LATENT-HEAT RELEASE; UPPER-ATMOSPHERE; PREDICTIONS
AB Four years of lidar observations at McMurdo reveal that the fast amplitude growth with altitude of diurnal temperature tides from 100 to 110km during Antarctic winters, exceeding that of the freely propagating tides from the lower atmosphere, increases in strength with the Kp magnetic activity index. Simulations with the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model reproduce the lidar observations and exhibit concentric ring structures of diurnal amplitudes encircling the south geomagnetic pole and overlapping the auroral zone. These findings point to a magnetospheric source origin. Mechanistic studies using CTIPe show that the adiabatic cooling/heating associated with Hall ion drag is the dominant source of this feature, while Joule heating is a minor contributor due to the counteraction by Joule-heating-induced adiabatic cooling. The sum of total dynamical effects and Joule heating explains similar to 80% of the diurnal amplitudes. Auroral particle heating, lower atmosphere tides, and direct solar heating have minor contributions.
C1 [Fong, Weichun; Chu, Xinzhao; Lu, Xian; Chen, Cao; Fuller-Rowell, Timothy J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Fong, Weichun; Chu, Xinzhao; Chen, Cao] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA.
[Fuller-Rowell, Timothy J.; Codrescu, Mihail] NOAA, Space Weather Predict Ctr, Boulder, CO USA.
[Richmond, Arthur D.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA.
RP Chu, XZ (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
EM Weichun.Fong@Colorado.EDU; Xinzhao.Chu@Colorado.EDU
RI Chu, Xinzhao/I-5670-2015; Chen, Cao /D-9851-2016; Lu, Xian/A-2980-2015
OI Chu, Xinzhao/0000-0001-6147-1963; Chen, Cao /0000-0002-7780-2787; Lu,
Xian/0000-0002-2535-8151
FU National Science Foundation (NSF) [ANT-0839091, PLR-1246405,
CNS-0821794]; NSF CEDAR [AGS-1343106]; NASA [NNX13AD64G, NNX14AE08G];
National Science Foundation; University of Colorado (CU) Boulder; CU
Denver and NCAR
FX We sincerely acknowledge Zhibin Yu and Brendan R. Roberts for their
superb lidar work during 2011 and 2012 Antarctic winters at McMurdo. We
are also grateful to Wentao Huang, Zhangjun Wang, John A. Smith, Jian
Zhao, Chester S. Gardner, and Richard Dean for their contributions to
the McMurdo lidar campaign and to Vladimir Papitashvili for the valuable
discussion. We thank Mariangel Fedrizzi for providing CTIPe model input
data. We thank the staff of United States Antarctic Program, McMurdo
station, Antarctica New Zealand, and Scott Base for their support. This
project was supported by the National Science Foundation (NSF) grants
ANT-0839091 and PLR-1246405. Xian Lu's research was partially supported
by NSF CEDAR grant AGS-1343106 and A. Richmond's by NASA grants
NNX13AD64G and NNX14AE08G. The National Center for Atmospheric Research
(NCAR) is sponsored by the National Science Foundation. The Janus
supercomputer utilized in this work was supported by NSF (award
CNS-0821794), University of Colorado (CU) Boulder, and CU Denver and
NCAR. The Janus supercomputer is operated by CU Boulder. The data used
in this work are available upon request.
NR 22
TC 3
Z9 3
U1 0
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2015
VL 42
IS 3
BP 697
EP 704
DI 10.1002/2014GL062784
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA CD8OT
UT WOS:000351355600004
ER
PT J
AU Lin, P
Ming, Y
Ramaswamy, V
AF Lin, Pu
Ming, Yi
Ramaswamy, V.
TI Tropical climate change control of the lower stratospheric circulation
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE stratospheric circulation; climate change; natural variability
ID BREWER-DOBSON CIRCULATION; EL-NINO; WATER-VAPOR; MODELS; OZONE;
OSCILLATION; VARIABILITY; ERA
AB The behavior of the Brewer-Dobson circulation is investigated using a suite of global climate model simulations with different forcing agents, in conjunction with observation-based analysis. We find that the variations in the Brewer-Dobson circulation are strongly correlated with those in the tropical mean surface temperature through changes in the upper tropospheric temperature and zonal winds. This correlation is seen on both interannual and multidecadal time scales, and holds for natural and forced variations alike. The circulation change is relatively insensitive to the spatial pattern of the forcings. Consistent changes in the Brewer-Dobson circulation with respect to those in the tropical mean surface temperature prevail across time scales and forcings, and constitute an important attribution element of the atmospheric adjustment to global climate change.
C1 [Lin, Pu] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA.
[Ming, Yi; Ramaswamy, V.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA.
RP Lin, P (reprint author), Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA.
EM pulin@princeton.edu
RI Lin, Pu/D-4393-2014; Ming, Yi/F-3023-2012
OI Lin, Pu/0000-0003-2577-6094;
FU National Oceanic and Atmospheric Administration, U.S. Department of
Commerce [NA08OAR4320752]
FX The model simulation used in this paper is available at NOAA/GFDL's data
portal. European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA4-Interim data used in this study have been obtained from the ECMWF
data server. We thank Isaac Held and R. John Wilson for reviewing an
earlier version of this manuscript. This paper was prepared by Pu Lin
under award NA08OAR4320752 from the National Oceanic and Atmospheric
Administration, U.S. Department of Commerce. The statements, findings,
conclusions, and recommendations are those of the author(s) and do not
necessarily reflect the views of the National Oceanic and Atmospheric
Administration, or the U.S. Department of Commerce.
NR 48
TC 2
Z9 2
U1 0
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2015
VL 42
IS 3
BP 941
EP 948
DI 10.1002/2014GL062823
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA CD8OT
UT WOS:000351355600034
ER
PT J
AU Saide, PE
Spak, SN
Pierce, RB
Otkin, JA
Schaack, TK
Heidinger, AK
da Silva, AM
Kacenelenbogen, M
Redemann, J
Carmichael, GR
AF Saide, P. E.
Spak, S. N.
Pierce, R. B.
Otkin, J. A.
Schaack, T. K.
Heidinger, A. K.
da Silva, A. M.
Kacenelenbogen, M.
Redemann, J.
Carmichael, G. R.
TI Central American biomass burning smoke can increase tornado severity in
the US
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE aerosol-cloud radiation interactions; severe weather prediction; AOD
data assimilation; WRF-Chem; GSI; smoke
ID RAPID UPDATE CYCLE; BLACK CARBON; ASSIMILATION SYSTEM; CLOUD
MICROPHYSICS; HAILSTORMS REST; AEROSOL IMPACTS; PRECIPITATION; MODEL;
SUPERCELL; ACTIVATION
AB Tornadoes in the Southeast and central U.S. are episodically accompanied by smoke from biomass burning in central America. Analysis of the 27 April 2011 historical tornado outbreak shows that adding smoke to an environment already conducive to severe thunderstorm development can increase the likelihood of significant tornado occurrence. Numerical experiments indicate that the presence of smoke during this event leads to optical thickening of shallow clouds while soot within the smoke enhances the capping inversion through radiation absorption. The smoke effects are consistent with measurements of clouds and radiation before and during the outbreak. These effects result in lower cloud bases and stronger low-level wind shear in the warm sector of the extratropical cyclone generating the outbreak, two indicators of higher probability of tornadogenesis and tornado intensity and longevity. These mechanisms may contribute to tornado modulation by aerosols, highlighting the need to consider aerosol feedbacks in numerical severe weather forecasting.
C1 [Saide, P. E.; Spak, S. N.; Carmichael, G. R.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA.
[Pierce, R. B.; Heidinger, A. K.] NOAA, Satellite & Informat Serv NESDIS, Ctr Satellite Applicat & Res, Madison, WI USA.
[Otkin, J. A.; Schaack, T. K.] Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, Madison, WI USA.
[da Silva, A. M.] NASA, Goddard Space Flight Ctr, Global Modeling & Data Assimilat Off, Greenbelt, MD 20771 USA.
[Kacenelenbogen, M.] NASA, Ames Res Ctr, BAER Inst, Moffett Field, CA 94035 USA.
[Redemann, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Saide, PE (reprint author), Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA.
EM pablo-saide@uiowa.edu; gcarmich@engineering.uiowa.edu
RI Spak, Scott/B-7331-2008; Otkin, Jason/D-1737-2012; Pierce, Robert
Bradley/F-5609-2010; Heidinger, Andrew/F-5591-2010
OI Spak, Scott/0000-0002-8545-1411; Otkin, Jason/0000-0003-4034-7845;
Pierce, Robert Bradley/0000-0002-2767-1643; Heidinger,
Andrew/0000-0001-7631-109X
FU NASA [NNX08AL05G, NNX11AI52G]; EPA [83503701]; National Center for
Research Resources (NCRR) [UL1RR024979]; National Institutes of Health
(NIH); Fulbright-CONICYT scholarship [15093810]; NOAA CIMSS under GOES-R
Risk Reduction [NA10NES4400013]; GOES-R Algorithm Working Group program
FX We thank Robert Rabin, Jack Kain, and multiple anonymous reviewers for
their comments that helped improve the study. We also thank Bill Gibson,
Alan Weidemann, and their staff for establishing and maintaining the
WaveCIS AERONET site used in this investigation. CALIPSO and MODIS data
were obtained from the NASA Langley Research Center Atmospheric Science
Data Center. This work was carried out with the aid of NASA grants
NNX08AL05G and NNX11AI52G, EPA grant 83503701, grant UL1RR024979 from
the National Center for Research Resources (NCRR), a part of the
National Institutes of Health (NIH), and Fulbright-CONICYT scholarship
15093810. J.A.O. was supported by NOAA CIMSS grant NA10NES4400013 under
the GOES-R Risk Reduction and GOES-R Algorithm Working Group programs.
The views, opinions, and findings contained in this report are those of
the author(s) and should not be construed as an official National
Oceanic and Atmospheric Administration, U.S. Government, and other
funding institutions position, policy, or decision. Contact P.E. Saide
(pablo-saide@uiowa.edu) or G.R. Carmichael
(gregory-carmichael@uiowa.edu) for data and code requests.
NR 66
TC 10
Z9 10
U1 7
U2 38
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2015
VL 42
IS 3
BP 956
EP 965
DI 10.1002/2014GL062826
PG 10
WC Geosciences, Multidisciplinary
SC Geology
GA CD8OT
UT WOS:000351355600036
ER
PT J
AU Hubmayr, J
Beall, J
Becker, D
Cho, HM
Devlin, M
Dober, B
Groppi, C
Hilton, GC
Irwin, KD
Li, D
Mauskopf, P
Pappas, DP
Van Lanen, J
Vissers, MR
Wang, Y
Wei, LF
Gao, J
AF Hubmayr, J.
Beall, J.
Becker, D.
Cho, H-M
Devlin, M.
Dober, B.
Groppi, C.
Hilton, G. C.
Irwin, K. D.
Li, D.
Mauskopf, P.
Pappas, D. P.
Van Lanen, J.
Vissers, M. R.
Wang, Y.
Wei, L. F.
Gao, J.
TI Photon-noise limited sensitivity in titanium nitride kinetic inductance
detectors
SO APPLIED PHYSICS LETTERS
LA English
DT Article
AB We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4 K. Micro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250 mu m. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is >0.5 pW, corresponding to noise equivalent powers > 3 x 10(-17)W/root Hz. This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths. (C) 2015 AIP Publishing LLC.
C1 [Hubmayr, J.; Beall, J.; Becker, D.; Cho, H-M; Hilton, G. C.; Li, D.; Pappas, D. P.; Van Lanen, J.; Vissers, M. R.; Wang, Y.; Gao, J.] NIST, Boulder, CO 80305 USA.
[Devlin, M.; Dober, B.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Groppi, C.; Mauskopf, P.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA.
[Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Wang, Y.; Wei, L. F.] Southwest Jiaotong Univ, Quantum Optoelect Lab, Chengdu, Peoples R China.
RP Hubmayr, J (reprint author), NIST, 325 Broadway, Boulder, CO 80305 USA.
EM hubmayr@nist.gov
FU NASA [NNX13AE50G S04]; DARPA; NASA Earth and Space Science Fellowship
FX This work was supported in part by NASA through Grant No. NNX13AE50G
S04. TiN materials research was supported in part by DARPA. Brad Dober
is supported by the NASA Earth and Space Science Fellowship. The authors
would like to thank Edward Wollack and Lev Ioffe for useful discussions.
NR 27
TC 15
Z9 15
U1 3
U2 26
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 16
PY 2015
VL 106
IS 7
AR 073505
DI 10.1063/1.4913418
PG 4
WC Physics, Applied
SC Physics
GA CC3EE
UT WOS:000350227300048
ER
PT J
AU Boylan, P
Wang, JH
Cohn, SA
Fetzer, E
Maddy, ES
Wong, S
AF Boylan, Patrick
Wang, Junhong
Cohn, Stephen A.
Fetzer, Eric
Maddy, Eric S.
Wong, Sun
TI Validation of AIRS version 6 temperature profiles and surface-based
inversions over Antarctica using Concordiasi dropsonde data
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE surface-based inversions; AIRS; antarctica; dropsonde; temperature
inversions; condordiasi
ID SOUTH-POLE; MASS-BALANCE; PRODUCTS; CLIMATE; ICE; GREENLAND; STRENGTH;
PLATEAU; SOUNDER; CLOUDS
AB During the 2010 Concordiasi field experiment, 635 dropsondes were released from the lower stratosphere providing in situ atmospheric profiles from the release height (similar to 60hPa) to the surface over Antarctica. They provide a unique data set of high vertical resolution temperature profiles over the entire Antarctic continent and surrounding ocean. This study uses temperature profiles and derived surface-based inversion (SBI) properties from the sonde data set to evaluate Atmospheric Infrared Sounder (AIRS) versions 5 (v5) and 6 (v6) temperature profiles. A total of 1486 matched pairs of profiles are available for analysis. The AIRS averaging kernel, representing the AIRS measurement sensitivity, is applied to the dropsonde profiles. The AIRS data are compared to kernel-averaged dropsonde profiles and found, on average, to have a small cold bias (similar to 0.5 degrees C) (for v6) in the troposphere. AIRS v6 is improved over v5 with both profile-averaged bias and root-mean-square errors reduced by over 25%. Compared to the kernel-averaged dropsonde profiles, AIRS v6 accurately detects the existence of SBIs in 79% of the profiles and agrees on the inversion depth 79% of the time. AIRS correctly identifies SBIs in 59% of cases when compared to the full-resolution sonde. AIRS systematically underestimates the SBI intensity. This is due to warmer reported AIRS surface air temperatures (T-a) than T-a measured with the dropsonde. Replacement of AIRS T-a with that measured by the dropsonde improves the agreement in both SBI detection and intensity. If AIRS T-a could be improved, AIRS has the potential to be a stand-alone SBI detection tool over Antarctica.
C1 [Boylan, Patrick; Cohn, Stephen A.] Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO 80307 USA.
[Wang, Junhong] SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA.
[Fetzer, Eric; Wong, Sun] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Maddy, Eric S.] Riverside Technol Inc, NOAA, NESDIS, JCSDA, College Pk, MD USA.
RP Boylan, P (reprint author), Natl Ctr Atmospher Res, Earth Observing Lab, POB 3000, Boulder, CO 80307 USA.
EM boylan@ucar.edu
RI Maddy, Eric/G-3683-2010
OI Maddy, Eric/0000-0003-1151-339X
FU NSF [ANT-0733007]; National Science Foundation
FX This project is supported by NSF project ANT-0733007. The National
Center for Atmospheric Research is sponsored by the National Science
Foundation. We would like to thank Minghui Diao, Jordan Powers, and
Andrew Gettelman for their insightful comments. The dropsonde data are
available at https://www.eol.ucar.edu/field_projects/concordiasi. The
AIRS data products are available at
http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product-V6. Any
opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the
views of the National Science Foundation.
NR 54
TC 5
Z9 5
U1 2
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 16
PY 2015
VL 120
IS 3
BP 992
EP 1007
DI 10.1002/2014JD022551
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7KT
UT WOS:000350547000008
ER
PT J
AU Perring, AE
Schwarz, JP
Baumgardner, D
Hernandez, MT
Spracklen, DV
Heald, CL
Gao, RS
Kok, G
McMeeking, GR
McQuaid, JB
Fahey, DW
AF Perring, A. E.
Schwarz, J. P.
Baumgardner, D.
Hernandez, M. T.
Spracklen, D. V.
Heald, C. L.
Gao, R. S.
Kok, G.
McMeeking, G. R.
McQuaid, J. B.
Fahey, D. W.
TI Airborne observations of regional variation in fluorescent aerosol
across the United States
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE bioaerosol; fluorescent aerosol; PBAP; biological particles; IN; CCN
ID PRIMARY BIOLOGICAL AEROSOL; HIGH-ELEVATION SITE; ICE NUCLEATION;
DIFFERENT ECOSYSTEMS; SIZE DISTRIBUTIONS; GLOBAL ATMOSPHERE; FUNGAL
SPORES; CLIMATE MODEL; MINERAL DUST; UV-APS
AB Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wideband of longitude across the continental U.S. between Florida and California and between 28 and 37N latitudes. Sampling occurred from near the surface to 1000m above the ground. A Wideband Integrated Bioaerosol Sensor (WIBS-4) measured average concentrations of supermicron fluorescent particles aloft (1 mu m to 10 mu m), revealing number concentrations ranging from 2.10.8 to 8.72.2x10(4) particles m(-3) and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol. Fluorescent aerosol detected in the east is largely consistent with mold spores observed in a laboratory setting, while a shift to larger sizes associated with different fluorescent patterns is observed in the west. Fluorescent bioaerosol loadings in the desert west were as high as those near the Gulf of Mexico, suggesting that bioaerosol is a substantial component of supermicron aerosol both in humid and arid environments. The observations are compared to model fungal and bacterial loading predictions, and good agreement in both particle size and concentrations is observed in the east. In the west, the model underestimated observed concentrations by a factor between 2 and 4 and the prescribed particle sizes are smaller than the observed fluorescent aerosol. A classification scheme for use with WIBS data is also presented.
C1 [Perring, A. E.; Schwarz, J. P.; Gao, R. S.; Fahey, D. W.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA.
[Perring, A. E.; Schwarz, J. P.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Baumgardner, D.; Kok, G.; McMeeking, G. R.] Droplet Measurement Technol, Boulder, CO USA.
[Hernandez, M. T.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA.
[Spracklen, D. V.; McQuaid, J. B.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England.
[Heald, C. L.] MIT, Dept Civil & Environm Engn, Boston, MA USA.
RP Perring, AE (reprint author), NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA.
EM Anne.Perring@noaa.gov
RI Gao, Ru-Shan/H-7455-2013; Perring, Anne/G-4597-2013; Fahey,
David/G-4499-2013; Spracklen, Dominick/B-4890-2014; schwarz,
joshua/G-4556-2013; Manager, CSD Publications/B-2789-2015
OI Perring, Anne/0000-0003-2231-7503; Fahey, David/0000-0003-1720-0634;
schwarz, joshua/0000-0002-9123-2223;
FU NOAA Atmospheric Composition and Climate Program; NOAA Health of the
Atmosphere Program; U.S. National Science Foundation [AGS-1238109];
National Environment Research Council [NE/G015015/1]
FX The flights presented here were made possible by the British
Broadcasting Corporation. Data archive is managed by Droplet Measurement
Technologies and is available upon request via
Gavin@DropletMeasurement.com. A.E.P., J.P.S., R.S.G., and D.W.F.
received support from the NOAA Atmospheric Composition and Climate
Program and the NOAA Health of the Atmosphere Program. C.L.H. was
supported by the U.S. National Science Foundation (AGS-1238109) and
D.V.S. was supported by the National Environment Research Council
(NE/G015015/1).
NR 54
TC 12
Z9 12
U1 3
U2 50
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 16
PY 2015
VL 120
IS 3
BP 1153
EP 1170
DI 10.1002/2014JD022495
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7KT
UT WOS:000350547000017
ER
PT J
AU Fisher, R
O'Leary, RA
Low-Choy, S
Mengersen, K
Knowlton, N
Brainard, RE
Caley, MJ
AF Fisher, Rebecca
O'Leary, Rebecca A.
Low-Choy, Samantha
Mengersen, Kerrie
Knowlton, Nancy
Brainard, Russell E.
Caley, M. Julian
TI Species Richness on Coral Reefs and the Pursuit of Convergent Global
Estimates
SO CURRENT BIOLOGY
LA English
DT Article
ID EXPERT KNOWLEDGE; DIVERSITY; ELICITATION; MODELS; BIODIVERSITY;
ECOSYSTEMS; MAGNITUDE; NUMBER; RATES
AB Global species richness, whether estimated by taxon, habitat, or ecosystem, is a key biodiversity metric. Yet, despite the global importance of biodiversity and increasing threats to it (e.g., [1-4]), we are no better able to estimate global species richness now than we were six decades ago [5]. Estimates of global species richness remain highly uncertain and are often logically inconsistent [5]. They are also difficult to validate because estimation of global species richness requires extrapolation beyond the number of species known [6-13]. Given that somewhere between 3% and >96% of species on Earth may remain undiscovered [4], depending on the methods used and the taxa considered, such extrapolations, especially from small percentages of known species, are likely to be highly uncertain [13, 14]. An alternative approach is to estimate all species, the known and unknown, directly. Using expert taxonomic knowledge of the species already described and named, those already discovered but not yet described and named, and those still awaiting discovery, we estimate there to be 830,000 (95% credible limits: 550,0001,330,000) multi-cellular species on coral reefs worldwide, excluding fungi. Uncertainty surrounding this estimate and its components were often strongly skewed toward larger values, indicating that many more species on coral reefs is more plausible than many fewer. The uncertainties revealed here should guide future research toward achieving convergence in global species richness estimates for coral reefs and other ecosystems via adaptive learning protocols whereby such estimates can be tested and improved, and their uncertainties reduced, as new knowledge is acquired.
C1 [Fisher, Rebecca; O'Leary, Rebecca A.] UWA Oceans Inst, Australian Inst Marine Sci, Crawley, WA 6009, Australia.
[Low-Choy, Samantha; Mengersen, Kerrie] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia.
[Knowlton, Nancy] Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, Washington, DC 20013 USA.
[Brainard, Russell E.] NOAA, Coral Reef Ecosyst Div, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96818 USA.
[Caley, M. Julian] Australian Inst Marine Sci, Townsville, Qld 4810, Australia.
RP Caley, MJ (reprint author), Australian Inst Marine Sci, PMB 3, Townsville, Qld 4810, Australia.
EM j.caley@aims.gov.au
OI Mengersen, Kerrie/0000-0001-8625-9168; Caley,
Julian/0000-0001-5739-749X; Fisher, Rebecca/0000-0001-5148-6731
FU BHP Billiton through CReefs Australia (CReefs, Census of Marine Life);
Cooperative Research Centre for National Plant Biosecurity
FX This work was funded by BHP Billiton through CReefs Australia (CReefs,
Census of Marine Life). We thank the Cooperative Research Centre for
National Plant Biosecurity for supporting contribution by S.L.-C. We are
very grateful to the many taxonomists who agreed to be elicited and
donated their time so generously: R. Adlard, S. Ahyong, P. Alderslade,
A. Anker, C. Arango, I. Beveridge, M. Blazewicz, P. Bock, P. Bouchet, A.
Bruce, N. Bruce, C. Bryce, M. Bryce, L. Cannon, M. Capa, T. Cribb, P.
Davie, M. Ekins, D. Fautin, J. Fromont, C. Glasby, F. Gurgel, S. de
Grave, J. Healy, M. Hodda, A. Hoggett, D. Hoese, J. Hooper, A. Hosie, L.
Hughes, J. Huisman, C. Aguilar Hurtado, P. Hutchings, V. Ivanenko, I.
Karanovic, R. Lasley, J. Lowry, A. Maiorova, I. Marin, P. Mather, T.
Miller, A. Miskelly, C. Meyer, P. Ng, M. Norman, T. O'Hara, J. Otto, G.
Paulay, W. Ponder, G. Poore, J. Reimer, B. Richer de Forges, B. Russell,
K. Sanders, P. Sutcliffe, J. Taylor, K. Tilbrook, C. Wallace, C. Watson,
J. Watson, R. Willan, and R. Wilson. Thanks also to A. Hamilton, M.
Costello, and N. Stork for helping us improve this manuscript.
NR 40
TC 17
Z9 18
U1 8
U2 47
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0960-9822
EI 1879-0445
J9 CURR BIOL
JI Curr. Biol.
PD FEB 16
PY 2015
VL 25
IS 4
BP 500
EP 505
DI 10.1016/j.cub.2014.12.022
PG 6
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA CB1GT
UT WOS:000349375900028
PM 25639239
ER
PT J
AU Croxton, AN
Wikfors, GH
Schulterbrandt-Gragg, RD
AF Croxton, April N.
Wikfors, Gary H.
Schulterbrandt-Gragg, Richard D., III
TI The use of flow cytometric applications to measure the effects of PAHs
on growth, membrane integrity, and relative lipid content of the benthic
diatom, Nitzschia brevirostris
SO MARINE POLLUTION BULLETIN
LA English
DT Article
DE Oil pollution; Fluorescent probes; Membrane permeability;
Microphytobenthos; Algal cellular physiology; Rapid method
ID OYSTERS CRASSOSTREA-VIRGINICA; SEDIMENTS PASS FOURCHON; HYDROCARBON
CONTAMINATION; TOXICITY TESTS; SINGLE-CELL; MICROALGAE;
MICROPHYTOBENTHOS; PHYTOPLANKTON; INHIBITION; ABUNDANCE
AB This laboratory study measured the direct effects of three polycyclic aromatic hydrocarbon (PAN) compounds (naphthalene, pyrene, and benzo(a)pyrene) upon cell growth, membrane integrity, and BODIPY-stained lipid fluorescence intensity of the benthic diatom Nitzschia brevirostris using flow cytometry as an analysis tool. Previous field and laboratory studies have reported reductions in algal populations following PAM exposure, but specific, functional responses of the microalgae to these pollutants could not be revealed by cell numbers alone. Using flow-cytometric measurements, we confirmed that maximal cell densities in PAM-exposed diatom cultures were significantly lower compared to controls; however, we also discovered increases in lipids and cells with compromised membranes in PM-exposed cultures. These results highlight new tools for measuring the direct effects of organic pollutants upon the physiology of taxa comprising microphytobenthic communities important in estuarine food webs. Published by Elsevier Ltd.
C1 [Croxton, April N.; Wikfors, Gary H.] NOAA, Northeast Fisheries Sci Ctr, NMFS, Milford, CT 06460 USA.
[Croxton, April N.; Schulterbrandt-Gragg, Richard D., III] Florida A&M Univ, Sch Environm, Tallahassee, FL 32307 USA.
RP Croxton, AN (reprint author), NOAA, Northeast Fisheries Sci Ctr, NMFS, 212 Rogers Ave, Milford, CT 06460 USA.
EM april.croxton@noaa.gov
FU Northeast Fisheries Science Center, Milford Laboratory
FX This work was performed under appointment to the National Oceanic and
Atmospheric Administration, Education Partnership Program with Minority
Serving Institutions, Graduate Sciences Program. Additional funding was
provided by the Northeast Fisheries Science Center, Milford Laboratory.
The authors would like to thank Jennifer Alix for her technical
assistance.
NR 46
TC 1
Z9 1
U1 5
U2 52
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0025-326X
EI 1879-3363
J9 MAR POLLUT BULL
JI Mar. Pollut. Bull.
PD FEB 15
PY 2015
VL 91
IS 1
BP 160
EP 165
DI 10.1016/j.marpolbul.2014.12.010
PG 6
WC Environmental Sciences; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA CC1CV
UT WOS:000350079700033
PM 25554237
ER
PT J
AU Rose, JM
Bricker, SB
Ferreira, JG
AF Rose, Julie M.
Bricker, Suzanne B.
Ferreira, Joao G.
TI Comparative analysis of modeled nitrogen removal by shellfish farms
SO MARINE POLLUTION BULLETIN
LA English
DT Article
DE Shellfish aquaculture; Nutrient bioextraction; Eutrophication; Water
quality
ID MARINE-ENVIRONMENT; BIVALVE SHELLFISH; WATER-QUALITY; MANAGEMENT;
PHYTOPLANKTON; AQUACULTURE; EUTROPHICATION; PRODUCTIVITY; PERFORMANCE;
MITIGATION
AB The use of shellfish aquaculture for nutrient removal and reduction of coastal eutrophication has been proposed. Published literature has indicated that nitrogen contained in harvested shellfish can be accurately estimated from shell length:nitrogen content ratios. The range of nitrogen that could be removed by a typical farm in a specific estuarine or coastal setting is also of interest to regulators and planners. Farm Aquaculture Resource Management (FARM) model outputs of nitrogen removal at the shellfish farm scale have been summarized here, from 14 locations in 9 countries across 4 continents. Modeled nitrogen removal ranged from 105 lbs acre(-1) year(-1) (12 g m(-2) year(-1)) to 1356 lbs acre(-1) year(-1) (152 g m(-2) year(-1)). Mean nitrogen removal was 520 lbs acre(-1) year (58 g m(-2) year(-1)). These model results are site-specific in nature, but compare favorably to reported nitrogen removal effectiveness of agricultural best management practices and stormwater control measures. Published by Elsevier Ltd.
C1 [Rose, Julie M.] NOAA Fisheries, Northeast Fisheries Sci Ctr, Milford Lab, Milford, CT 06460 USA.
[Bricker, Suzanne B.] NOAA Natl Ctr Coastal Ocean Sci, Ctr Coastal Monitoring & Assessment, Silver Spring, MD 20910 USA.
[Ferreira, Joao G.] Univ Nova Lisboa, IMAR, Ctr Modelacao Ecol, Dept Ciencias & Engn Ambiente,Fac Ciencias & Tecn, P-2829516 Monte De Caparica, Portugal.
RP Rose, JM (reprint author), NOAA Fisheries, Northeast Fisheries Sci Ctr, Milford Lab, 212 Rogers Ave, Milford, CT 06460 USA.
EM julie.rose@noaa.gov; Suzanne.bricker@noaa.gov; joao@hoomi.com
FU USEPA Regional Ecosystem Services Research Program [DW-13-92331301-0];
NOAA Fisheries Office of Aquaculture
FX Funding for this work was provided by USEPA Regional Ecosystem Services
Research Program number DW-13-92331301-0. The authors would like to
acknowledge Kurt Stephenson for assistance, Mark Tedesco for thoughtful
comments on the manuscript, and NOAA Fisheries Office of Aquaculture for
their support of this work.
NR 49
TC 4
Z9 4
U1 4
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0025-326X
EI 1879-3363
J9 MAR POLLUT BULL
JI Mar. Pollut. Bull.
PD FEB 15
PY 2015
VL 91
IS 1
BP 185
EP 190
DI 10.1016/j.marpolbul.2014.12.006
PG 6
WC Environmental Sciences; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA CC1CV
UT WOS:000350079700037
PM 25534625
ER
PT J
AU Iverson, RM
George, DL
Allstadt, K
Reid, ME
Collins, BD
Vallance, JW
Schilling, SP
Godt, JW
Cannon, CM
Magirl, CS
Baum, RL
Coe, JA
Schulz, WH
Bower, JB
AF Iverson, R. M.
George, D. L.
Allstadt, K.
Reid, M. E.
Collins, B. D.
Vallance, J. W.
Schilling, S. P.
Godt, J. W.
Cannon, C. M.
Magirl, C. S.
Baum, R. L.
Coe, J. A.
Schulz, W. H.
Bower, J. B.
TI Landslide mobility and hazards: implications of the 2014 Oso disaster
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE landslide; debris avalanche; mobility; liquefaction; numerical modeling;
hazards
ID MOUNT-ST-HELENS; DEBRIS FLOWS; WASHINGTON; AVALANCHE; DYNAMICS
AB Landslides reflect landscape instability that evolves over meteorological and geological timescales, and they also pose threats to people, property, and the environment. The severity of these threats depends largely on landslide speed and travel distance, which are collectively described as landslide "mobility". To investigate causes and effects of mobility, we focus on a disastrous landslide that occurred on 22 March 2014 near Oso, Washington, USA, following a long period of abnormally wet weather. The landslide's impacts were severe because its mobility exceeded that of prior historical landslides at the site, and also exceeded that of comparable landslides elsewhere. The similar to 8 x 10(6) m(3) landslide originated on a gently sloping (<20 degrees) riverside bluff only 180 m high, yet it traveled across the entire similar to 1 km breadth of the adjacent floodplain and spread laterally a similar distance. Seismological evidence indicates that highspeed, flowing motion of the landslide began after about 50 s of preliminary slope movement, and observational evidence supports the hypothesis that the high mobility of the landslide resulted from liquefaction of water-saturated sediment at its base. Numerical simulation of the event using a newly developed model indicates that liquefaction and high mobility can be attributed to compression- and/or shear-induced sediment contraction that was strongly dependent on initial conditions. An alternative numerical simulation indicates that the landslide would have been far less mobile if its initial porosity and water content had been only slightly lower. Sensitive dependence of landslide mobility on initial conditions has broad implications for assessment of landslide hazards. Published by Elsevier B.V.
C1 [Iverson, R. M.; George, D. L.; Vallance, J. W.; Schilling, S. P.] US Geol Survey, Vancouver, WA 98683 USA.
[Allstadt, K.] Univ Washington, Seattle, WA 98195 USA.
[Reid, M. E.; Collins, B. D.] US Geol Survey, Menlo Pk, CA 94025 USA.
[Godt, J. W.; Baum, R. L.; Coe, J. A.; Schulz, W. H.] US Geol Survey, Denver, CO 80225 USA.
[Cannon, C. M.] US Geol Survey, Portland, OR USA.
[Magirl, C. S.] US Geol Survey, Tacoma, WA USA.
[Bower, J. B.] NOAA, Natl Weather Serv, Seattle, WA USA.
RP Iverson, RM (reprint author), US Geol Survey, 1300 SE Cardinal Ct, Vancouver, WA 98683 USA.
EM riverson@usgs.gov; dgeorge@usgs.gov; kallstadt@usgs.gov; mreid@usgs.gov;
bcollins@usgs.gov; vallance@usgs.gov; sschilli@usgs.gov; jgodt@usgs.gov;
ccannon@usgs.gov; magirl@usgs.gov; baum@usgs.gov; jcoe@usgs.gov;
wschulz@usgs.gov; brentbower@noaa.gov
OI Magirl, Christopher/0000-0002-9922-6549; Baum, Rex/0000-0001-5337-1970;
Coe, Jeffrey/0000-0002-0842-9608
NR 51
TC 28
Z9 28
U1 11
U2 66
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
EI 1385-013X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD FEB 15
PY 2015
VL 412
BP 197
EP 208
DI 10.1016/j.epsl.2014.12.020
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CB1YW
UT WOS:000349424900021
ER
PT J
AU Desai, AR
Xu, K
Tian, H
Weishampel, P
Thom, J
Baumann, D
Andrews, AE
Cook, BD
King, JY
Kolka, R
AF Desai, Ankur R.
Xu, Ke
Tian, Hanqin
Weishampel, Peter
Thom, Jonathan
Baumann, Dan
Andrews, Arlyn E.
Cook, Bruce D.
King, Jennifer Y.
Kolka, Randall
TI Landscape-level terrestrial methane flux observed from a very tall tower
SO AGRICULTURAL AND FOREST METEOROLOGY
LA English
DT Article
DE Methane; Eddy covariance; Regional flux; Land-atmosphere
ID CARBON-DIOXIDE FLUXES; PROCESS-BASED MODEL; EDDY-COVARIANCE; NATURAL
WETLANDS; CLIMATE-CHANGE; TUNDRA ECOSYSTEM; INTEGRATED MODEL;
UNITED-STATES; NORTH-AMERICA; UPPER MIDWEST
AB Simulating the magnitude and variability of terrestrial methane sources and sinks poses a challenge to ecosystem models because the biophysical and biogeochemical processes that lead to methane emissions from terrestrial and freshwater ecosystems are, by their nature, episodic and spatially disjunct. As a consequence, model predictions of regional methane emissions based on field campaigns from short eddy covariance towers or static chambers have large uncertainties, because measurements focused on a particular known source of methane emission will be biased compared to regional estimates with regards to magnitude, spatial scale, or frequency of these emissions. Given the relatively large importance of predicting future terrestrial methane fluxes for constraining future atmospheric methane growth rates, a clear need exists to reduce spatiotemporal uncertainties. In 2010, an Ameriflux tower (US-PFa) near Park Falls, WI, USA, was instrumented with closed-path methane flux measurements at 122 m above ground in a mixed wetland-upland landscape representative of the Great Lakes region. Two years of flux observations revealed an average annual methane (CH4) efflux of 785 +/- 75 mg C-CH4 m(-2) yr(-1), compared to a mean CO2 sink of -80g C-CO2 m(-2) yr(-1), a ratio of 1% in magnitude on a mole basis. Interannual variability in methane flux was 30% of the mean flux and driven by suppression of methane emissions during dry conditions in late summer 2012. Though relatively small, the magnitude of the methane source from the very tall tower measurements was mostly within the range previously measured using static chambers at nearby wetlands, but larger than a simple scaling of those fluxes to the tower footprint. Seasonal patterns in methane fluxes were similar to those simulated in the Dynamic Land Ecosystem Model (DLEM), but magnitude depends on model parameterization and input data, especially regarding wetland extent. The model was unable to simulate short-term (sub-weekly) variability. Temperature was found to be a stronger driver of regional CH4 flux than moisture availability or net ecosystem production at the daily to monthly scale. Taken together, these results emphasize the multi-timescale dependence of drivers of regional methane flux and the importance of long, continuous time series for their characterization. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Desai, Ankur R.; Xu, Ke; Thom, Jonathan] Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA.
[Tian, Hanqin] Auburn Univ, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA.
[Weishampel, Peter] Natl Ecol Observ Network Inc, Great Lakes Domain, Land O Lakes, WI USA.
[Baumann, Dan] US Geol Survey, Wisconsin Water Sci Ctr, Rhinelander, WI USA.
[Andrews, Arlyn E.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Cook, Bruce D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[King, Jennifer Y.] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA.
[Kolka, Randall] US Forest Serv, USDA, No Res Stn, Grand Rapids, MI USA.
RP Desai, AR (reprint author), Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA.
EM desai@aos.wisc.edu
RI Andrews, Arlyn/K-3427-2012; Desai, Ankur/A-5899-2008; King, Jennifer
Y./I-5986-2015; Tian, Hanqin/A-6484-2012
OI Desai, Ankur/0000-0002-5226-6041; King, Jennifer Y./0000-0003-3433-5952;
Tian, Hanqin/0000-0002-1806-4091
FU National Science Foundation (NSF) biology directorate [DEB-0845166,
DBI-1062204]; NASA NACP Project [NNG05GD51G]; USDA Forest Service
Northern Global Change program; NOAA
FX This work was supported by National Science Foundation (NSF) biology
directorate grants DEB-0845166 and DBI-1062204. We also acknowledge the
contributions of R. Strand and J. Ayers at State of Wisconsin
Educational Communications Board, K. Davis at The Pennsylvania State
University, and P. Bolstad at the University of Minnesota. Static
chamber measurements were supported by NASA NACP Project # NNG05GD51G
and the USDA Forest Service Northern Global Change program. Jonathan
Kofler and Jonathan Williams were funded by NOAA to provide site and
CO2 and CH4 profile instrument support. This
project contributes to the North American Carbon Program. Any use of
trade, firm, or product names is for descriptive purposes only and does
not imply endorsement by the U.S. Government.
NR 114
TC 6
Z9 6
U1 5
U2 53
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-1923
EI 1873-2240
J9 AGR FOREST METEOROL
JI Agric. For. Meteorol.
PD FEB 15
PY 2015
VL 201
BP 61
EP 75
DI 10.1016/j.agrformet.2014.10.017
PG 15
WC Agronomy; Forestry; Meteorology & Atmospheric Sciences
SC Agriculture; Forestry; Meteorology & Atmospheric Sciences
GA AY9IN
UT WOS:000347863900007
ER
PT J
AU Provenzano, V
Shull, RD
Kletetschka, G
Stutzman, PE
AF Provenzano, V.
Shull, R. D.
Kletetschka, G.
Stutzman, P. E.
TI Gd90Co2.5Fe7.5 alloy displaying enhanced magnetocaloric properties
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Magnetocaloric properties; Bulk gadolinium; Gadolinium-based alloy;
Magnetic refrigeration; Magnetic hysteresis; Refrigeration capacity
ID MAGNETIC-PROPERTIES; CURIE-TEMPERATURE; IRON-GADOLINIUM; GD; COBALT;
SYSTEM; FIELD
AB We report on the discovery of a new Gd90Co2.5Fe7.5 alloy exhibiting superior magnetocaloric properties compared to those of gadolinium. We present magnetically-derived entropy change, Delta S-M, computed from magnetic data, and thermally-derived temperature change, Delta T-ad, obtained from direct thermal measurements together with their respective MCE peaks for the alloy and gadolinium. The MCE peaks of the alloy are taller and broader than the corresponding MCE peaks of gadolinium. Correspondingly, the refrigeration capacity (RC) values of the alloy computed from magnetic and thermal MCEs for field changes, Delta H, of 400 kA/m (0.5 T) and 800 kA/m (1 T) are about 20% larger than those of gadolinium. Two possible mechanisms are proposed to account for the improved magnetocaloric properties of gadolinium alloyed with small amounts of Co and Fe, thereby pointing out a different methodology to use in the search for improved low field magnetic refrigerants. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Provenzano, V.; Shull, R. D.] NIST, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA.
[Kletetschka, G.] Charles Univ Prague, Fac Sci, Prague 12843, Czech Republic.
[Kletetschka, G.] Acad Sci Czech Republic, Inst Geol, Vvi, Prague 16500, Czech Republic.
[Stutzman, P. E.] NIST, Mat & Struct Syst Div, Gaithersburg, MD 20899 USA.
RP Provenzano, V (reprint author), NIST, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA.
EM virgil12@nist.gov; robert.shull@nist.gov; kletetschka@gmail.com;
paul.stutzman@nist.gov
RI Kletetschka, Gunther/C-9996-2011
OI Kletetschka, Gunther/0000-0002-0645-9037
NR 30
TC 0
Z9 0
U1 3
U2 43
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
EI 1873-4669
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD FEB 15
PY 2015
VL 622
BP 1061
EP 1067
DI 10.1016/j.jallcom.2014.10.169
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA AU6ZE
UT WOS:000345749500164
ER
PT J
AU Davis, S
Borchers, JA
Maranville, BB
Adenwalla, S
AF Davis, S.
Borchers, J. A.
Maranville, B. B.
Adenwalla, S.
TI Fast strain wave induced magnetization changes in long cobalt bars:
Domain motion versus coherent rotation
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID EDGE ROUGHNESS; FERROMAGNETIC-FILMS; SURFACE-WAVES; THIN-FILMS;
ATTENUATION; REVERSAL; PULSES
AB A high frequency (88 MHz) traveling strain wave on a piezoelectric substrate is shown to change the magnetization direction in 40 mu m wide Co bars with an aspect ratio of 10(3). The rapidly alternating strain wave rotates the magnetization away from the long axis into the short axis direction, via magnetoelastic coupling. Strain-induced magnetization changes have previously been demonstrated in ferroelectric/ferromagnetic heterostructures, with excellent fidelity between the ferromagnet and the ferroelectric domains, but these experiments were limited to essentially dc frequencies. Both magneto-optical Kerr effect and polarized neutron reflectivity confirm that the traveling strain wave does rotate the magnetization away from the long axis direction and both yield quantitatively similar values for the rotated magnetization. An investigation of the behavior of short axis magnetization with increasing strain wave amplitude on a series of samples with variable edge roughness suggests that the magnetization reorientation that is seen proceeds solely via coherent rotation. Polarized neutron reflectivity data provide direct experimental evidence for this model. This is consistent with expectations that domain wall motion cannot track the rapidly varying strain. (C) 2015 AIP Publishing LLC.
C1 [Davis, S.; Adenwalla, S.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA.
[Davis, S.; Adenwalla, S.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA.
[Borchers, J. A.; Maranville, B. B.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
RP Adenwalla, S (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA.
EM sadenwalla1@unl.edu
OI Maranville, Brian/0000-0002-6105-8789
FU National Science Foundation [NSF MRSEC-0820521]
FX This work was supported by the National Science Foundation under grant
NSF MRSEC-0820521.
NR 29
TC 3
Z9 3
U1 2
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 14
PY 2015
VL 117
IS 6
AR 063904
DI 10.1063/1.4907580
PG 10
WC Physics, Applied
SC Physics
GA CB7ZA
UT WOS:000349846300017
ER
PT J
AU Kirby, BJ
Greene, PK
Maranville, BB
Davies, JE
Liu, K
AF Kirby, B. J.
Greene, P. K.
Maranville, B. B.
Davies, J. E.
Liu, Kai
TI Effective anisotropy gradient in pressure graded [Co/Pd] multilayers
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID NEUTRON-SCATTERING; COMPOSITE MEDIA; OPTIMIZATION
AB We have used polarized neutron reflectometry to show that controlled variation of growth pressure during deposition of Co/Pd multilayers can be used to achieve a significant vertical gradient in the effective anisotropy. This gradient is strongly dependent on deposition order (low to high pressure or vice versa), and is accompanied by a corresponding gradient in saturation magnetization. These results demonstrate pressure-grading as an attractively simple technique for tailoring the anisotropy profile of magnetic media. (C) 2015 AIP Publishing LLC.
C1 [Kirby, B. J.; Maranville, B. B.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Greene, P. K.; Liu, Kai] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Davies, J. E.] NVE Corp, Adv Technol Grp, Minneapolis, MN 55344 USA.
RP Kirby, BJ (reprint author), NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
EM bkirby@nist.gov
RI Liu, Kai/B-1163-2008;
OI Liu, Kai/0000-0001-9413-6782; Maranville, Brian/0000-0002-6105-8789
FU NSF Materials World Network program [DMR-1008791]
FX Support from the NSF Materials World Network program (DMR-1008791) is
gratefully acknowledged. We are extremely grateful to M. R. Fitzsimmons
of Los Alamos National Laboratory for assistance with Asterix, as well
Randy K. Dumas of Gothenburg University and P. A. Kienzle of NIST for
valuable discussions regarding model fitting.
NR 27
TC 1
Z9 1
U1 2
U2 12
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 14
PY 2015
VL 117
IS 6
AR 063905
DI 10.1063/1.4908140
PG 4
WC Physics, Applied
SC Physics
GA CB7ZA
UT WOS:000349846300018
ER
PT J
AU Gerbig, YB
Michaels, CA
Cook, RF
AF Gerbig, Yvonne B.
Michaels, Chris A.
Cook, Robert F.
TI In situ observation of the spatial distribution of crystalline phases
during pressure-induced transformations of indented silicon thin films
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
DE Raman spectroscopy; nanoindentation; phase transformation
ID TRANSMISSION ELECTRON-MICROSCOPY; RAMAN-SCATTERING; SPHERICAL
INDENTATION; METASTABLE PHASES; MONOCRYSTALLINE SILICON; MECHANICAL
DEFORMATION; AMORPHOUS-SILICON; AB-INITIO; NANOINDENTATION; RESISTANCE
AB Indentation-induced phase transformation processes were studied by in situ Raman imaging of the deformed contact region of silicon thin films, using a Raman spectroscopy-enhanced instrumented indentation technique (IIT). In situ Raman imaging was used to study the generation and evolution of the phase transformation of silicon while performing an IIT experiment analyzed to determine the average contact pressure and indentation strain. This is, to our knowledge, the first sequence of Raman images documenting the evolution of the strain fields and changes in the phase distributions of a material while conducting an indentation experiment. The reported in situ experiments provide insights into the transformation processes in silicon during indentation, confirming, and providing the experimental evidence for, some of the previous assumptions made on this subject. The developed Raman spectroscopy-enhanced IIT has shown its potential in advancing the understanding of deformation mechanisms and will provide a very useful tool in validating and refining contact models and related simulation studies.
C1 [Gerbig, Yvonne B.; Michaels, Chris A.; Cook, Robert F.] NIST, Mat Measurement Sci Div, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
RP Gerbig, YB (reprint author), NIST, Mat Measurement Sci Div, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
EM yvonne.gerbig@nist.gov
NR 62
TC 8
Z9 8
U1 4
U2 25
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0884-2914
EI 2044-5326
J9 J MATER RES
JI J. Mater. Res.
PD FEB 14
PY 2015
VL 30
IS 3
BP 390
EP 406
DI 10.1557/jmr.2014.316
PG 17
WC Materials Science, Multidisciplinary
SC Materials Science
GA CB9TO
UT WOS:000349976100008
ER
PT J
AU Jentschura, UD
AF Jentschura, U. D.
TI Gravitational correction to vacuum polarization
SO PHYSICAL REVIEW A
LA English
DT Article
ID GENERAL-RELATIVITY; EQUIVALENCE PRINCIPLE; FOURTH TEST; GAMMA; DECAY
AB We consider the gravitational correction to (electronic) vacuum polarization in the presence of a gravitational background field. The Dirac propagators for the virtual fermions are modified to include the leading gravitational correction (potential term) which corresponds to a coordinate-dependent fermion mass. The mass term is assumed to be uniform over a length scale commensurate with the virtual electron-positron pair. The on-mass shell renormalization condition ensures that the gravitational correction vanishes on the mass shell of the photon, i.e., the speed of light is unaffected by the quantum field theoretical loop correction, in full agreement with the equivalence principle. Nontrivial corrections are obtained for off-shell, virtual photons. We compare our findings to other works on generalized Lorentz transformations and combined quantum-electrodynamic gravitational corrections to the speed of light which have recently appeared in the literature.
C1 [Jentschura, U. D.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA.
[Jentschura, U. D.] Natl Inst Stand & Technol, Div Phys, Gaithersburg, MD 20899 USA.
RP Jentschura, UD (reprint author), Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA.
FU National Science Foundation [PHY-1068547, PHY-1403973]
FX The author acknowledges helpful conversations with Prof. P. J. Mohr and
thank A. Migdall for directing our attention to the phenomenological
consequences of the paper by J. D. Franson [7]. This research has been
supported by the National Science Foundation (Grants No. PHY-1068547 and
No. PHY-1403973).
NR 47
TC 0
Z9 0
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
EI 1094-1622
J9 PHYS REV A
JI Phys. Rev. A
PD FEB 13
PY 2015
VL 91
IS 2
AR 022112
DI 10.1103/PhysRevA.91.022112
PG 8
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA CD6LG
UT WOS:000351200000003
ER
PT J
AU Fortsch, M
Schunk, G
Furst, JU
Strekalov, D
Gerrits, T
Stevens, MJ
Sedlmeir, F
Schwefel, HGL
Nam, SW
Leuchs, G
Marquardt, C
AF Foertsch, Michael
Schunk, Gerhard
Fuerst, Josef U.
Strekalov, Dmitry
Gerrits, Thomas
Stevens, Martin J.
Sedlmeir, Florian
Schwefel, Harald G. L.
Nam, Sae Woo
Leuchs, Gerd
Marquardt, Christoph
TI Highly efficient generation of single-mode photon pairs from a
crystalline whispering-gallery-mode resonator source
SO PHYSICAL REVIEW A
LA English
DT Article
ID QUANTUM COMMUNICATION; NARROW-BAND; VIOLATION; DEVICE; STATE
AB We report a highly efficient source of narrow-band photon pairs based on parametric down-conversion in a crystalline-whispering-gallery-mode resonator. Remarkably, each photon of a pair is detected in a single spatial and temporal mode, as witnessed by Glauber's autocorrelation function. We explore the phase-matching conditions in spherical geometries, and determine the requirements for single-mode operation. Understanding these conditions has allowed us to experimentally demonstrate a single-mode pair-detection efficiency of 1.13 x 10(6) pairs/s per mW pump power per 26.8 MHz bandwidth.
C1 [Foertsch, Michael; Schunk, Gerhard; Fuerst, Josef U.; Strekalov, Dmitry; Sedlmeir, Florian; Schwefel, Harald G. L.; Leuchs, Gerd; Marquardt, Christoph] Max Planck Inst Sci Light, D-91058 Erlangen, Germany.
[Foertsch, Michael; Schunk, Gerhard; Fuerst, Josef U.; Sedlmeir, Florian; Schwefel, Harald G. L.; Leuchs, Gerd; Marquardt, Christoph] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany.
[Foertsch, Michael; Schunk, Gerhard; Sedlmeir, Florian] Sch Adv Opt Technol, D-91052 Erlangen, Germany.
[Gerrits, Thomas; Stevens, Martin J.; Nam, Sae Woo] NIST, Boulder, CO 80305 USA.
RP Fortsch, M (reprint author), Max Planck Inst Sci Light, Gunther Scharowsky Str 1,Bau 24, D-91058 Erlangen, Germany.
RI Marquardt, Christoph/E-5332-2011; Leuchs, Gerd/G-6178-2012;
OI Marquardt, Christoph/0000-0002-5045-513X; Leuchs,
Gerd/0000-0003-1967-2766; Schwefel, Harald G. L. /0000-0002-4304-6469
FU BMBF grant QuORep
FX We gratefully acknowledge the discussions with Ulrich Vogl, and the
support from BMBF grant QuORep.
NR 41
TC 15
Z9 15
U1 1
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
EI 1094-1622
J9 PHYS REV A
JI Phys. Rev. A
PD FEB 11
PY 2015
VL 91
IS 2
AR 023812
DI 10.1103/PhysRevA.91.023812
PG 5
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA CB8UX
UT WOS:000349908100009
ER
PT J
AU Zhao, YY
Hu, FX
Bao, LF
Wang, J
Wu, H
Huang, QZ
Wu, RR
Liu, Y
Shen, FR
Kuang, H
Zhang, M
Zuo, WL
Zheng, XQ
Sun, JR
Shen, BG
AF Zhao, Ying-Ying
Hu, Feng-Xia
Bao, Li-Fu
Wang, Jing
Wu, Hui
Huang, Qing-Zhen
Wu, Rong-Rong
Liu, Yao
Shen, Fei-Ran
Kuang, Hao
Zhang, Ming
Zuo, Wen-Liang
Zheng, Xin-Qi
Sun, Ji-Rong
Shen, Bao-Gen
TI Giant Negative Thermal Expansion in Bonded MnCoGe-Based Compounds with
Ni2In-Type Hexagonal Structure
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID NITRIDE
AB MnCoGe-based compounds undergo a giant negative thermal expansion (NTE) during the martensitic structural transition from Ni2In-type hexagonal to TiNiSi-type orthorhombic structure. High-resolution neutron diffraction experiments revealed that the expansion of unit cell volume can be as large as Delta V/V similar to 3.9%. The optimized compositions with concurrent magnetic and structural transitions have been studied for magnetocaloric effect. However, these materials have not been considered as NTE materials partially due to the limited temperature window of phase transition. The as-prepared MnCoGe-based compounds are quite brittle and naturally collapse into powders. By using a few percents (3-4%) of epoxy to bond the powders, we introduced residual stress in the bonded samples and thus realized the broadening of structural transition by utilizing the specific characteristics of lattice softening enforced by the stress. As a result, giant NTE (not only the linear NTE coefficient a but also the operation-temperature window) has been achieved. For example, the average as much as -51.5 X 10(-6)/K with an operating temperature window as wide as 210 K from 122 to 332 K has been observed in a bonded MnCo0.98Cr0.02Ge compound. Moreover, in the region between 250 and 305 K near room temperature, the a value (-119 X 10(-6)/K) remains nearly independent of temperature. Such an excellent performance exceeds that of most other materials reported previously, suggesting it can potentially be used as a NTE material, particularly for compensating the materials with large positive thermal expansions.
C1 [Zhao, Ying-Ying; Hu, Feng-Xia; Bao, Li-Fu; Wang, Jing; Wu, Rong-Rong; Liu, Yao; Shen, Fei-Ran; Kuang, Hao; Zhang, Ming; Zuo, Wen-Liang; Zheng, Xin-Qi; Sun, Ji-Rong; Shen, Bao-Gen] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.
[Zhao, Ying-Ying; Hu, Feng-Xia; Bao, Li-Fu; Wang, Jing; Wu, Rong-Rong; Liu, Yao; Shen, Fei-Ran; Kuang, Hao; Zhang, Ming; Zuo, Wen-Liang; Zheng, Xin-Qi; Sun, Ji-Rong; Shen, Bao-Gen] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China.
[Wu, Hui; Huang, Qing-Zhen] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Wu, Hui] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
RP Hu, FX (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.
EM fxhu@iphy.ac.cn; wangjing@iphy.ac.cn
RI Wu, Hui/C-6505-2008
OI Wu, Hui/0000-0003-0296-5204
FU National Basic Research Program of China (973 program) [2014CB643702,
2012CB933000]; National Natural Sciences Foundation of China [51271196,
11274357, 11174345]; Beijing Natural Science Foundation [2152034];
Chinese Academy of Sciences
FX This work was supported by the National Basic Research Program of China
(973 program, grant nos. 2014CB643702, 2012CB933000), the National
Natural Sciences Foundation of China (grant nos. 51271196, 11274357,
11174345), the Beijing Natural Science Foundation (grant no. 2152034),
and the Key Research Program of the Chinese Academy of Sciences.
NR 18
TC 25
Z9 25
U1 22
U2 124
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 11
PY 2015
VL 137
IS 5
BP 1746
EP 1749
DI 10.1021/ja510693a
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA CB4CM
UT WOS:000349575800007
PM 25629796
ER
PT J
AU Venn-Watson, S
Garrison, L
Litz, J
Fougeres, E
Mase, B
Rappucci, G
Stratton, E
Carmichael, R
Odell, D
Shannon, D
Shippee, S
Smith, S
Staggs, L
Tumlin, M
Whitehead, H
Rowles, T
AF Venn-Watson, Stephanie
Garrison, Lance
Litz, Jenny
Fougeres, Erin
Mase, Blair
Rappucci, Gina
Stratton, Elizabeth
Carmichael, Ruth
Odell, Daniel
Shannon, Delphine
Shippee, Steve
Smith, Suzanne
Staggs, Lydia
Tumlin, Mandy
Whitehead, Heidi
Rowles, Teri
TI Demographic Clusters Identified within the Northern Gulf of Mexico
Common Bottlenose Dolphin (Tursiops truncates) Unusual Mortality Event:
January 2010-June 2013
SO PLOS ONE
LA English
DT Article
ID PRINCE-WILLIAM-SOUND; VALDEZ OIL-SPILL; INFECTION; GROWTH; ALASKA; AGE
AB 1 National Marine Mammal Foundation, San Diego, California, United States of America, 2 National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, United States of America, 3 National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, Florida, United States of America, 4 NOAA Affiliate, Southeast Fisheries Science Center, Miami, Florida, United States of America, 5 Dauphin Island Sea Lab and University of South Alabama, Dauphin Island, Alabama, United States of America, 6 Hubbs- SeaWorld Research Institute, Melbourne Beach, Florida, United States of America, 7 Institute for Marine Mammal Studies, Gulfport, Mississippi, United States of America, 8 Emerald Coast Wildlife Refuge, Fort Walton Beach, Florida, United States of America, 9 Marine Wildlife Response, Esther, Florida, United States of America, 10 Audubon Aquarium of the Americas, New Orleans, Louisiana, United States of America, 11 Gulf World Marine Park, Panama City Beach, Florida, United States of America, 12 Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana, United States of America, 13 Texas Marine Mammal Stranding Network, Galveston, Texas, United States of America, 14 National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland, United States of America
C1 [Venn-Watson, Stephanie] Natl Marine Mammal Fdn, San Diego, CA 92106 USA.
[Garrison, Lance; Litz, Jenny; Mase, Blair] Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Miami, FL USA.
[Fougeres, Erin] Southeast Reg Off, Natl Marine Fisheries Serv, St Petersburg, FL USA.
[Rappucci, Gina; Stratton, Elizabeth] NOAA Affiliate, Southeast Fisheries Sci Ctr, Miami, FL USA.
[Carmichael, Ruth] Dauphin Isl Sea Lab, Dauphin Isl, AL USA.
[Carmichael, Ruth] Univ S Alabama, Dauphin Isl, AL USA.
[Odell, Daniel] Hubbs SeaWorld Res Inst, Melbourne Beach, FL USA.
[Shannon, Delphine] Inst Marine Mammal Studies, Gulfport, MS USA.
[Shippee, Steve] Emerald Coast Wildlife Refuge, Ft Walton Beach, FL USA.
[Shippee, Steve] Marine Wildlife Response, Esther, FL USA.
[Smith, Suzanne] Audubon Aquarium Amer, New Orleans, LA USA.
[Staggs, Lydia] Gulf World Marine Pk, Panama City Beach, FL USA.
[Tumlin, Mandy] Louisiana Dept Wildlife & Fisheries, Baton Rouge, LA USA.
[Whitehead, Heidi] Texas Marine Mammal Stranding Network, Galveston, TX USA.
[Rowles, Teri] Off Protected Resources, Natl Marine Fisheries Serv, Silver Spring, MD USA.
RP Venn-Watson, S (reprint author), Natl Marine Mammal Fdn, San Diego, CA 92106 USA.
EM stephanie.venn-watson@nmmf.org
FU National Oceanic and Atmospheric Administration
FX This study was funded by the National Oceanic and Atmospheric
Administration, in which represented co-authors from the National Marine
Fisheries Service participated in the study design, data collection and
analysis, and preparation of the manuscript.
NR 23
TC 9
Z9 10
U1 3
U2 54
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 11
PY 2015
VL 10
IS 2
AR e0117248
DI 10.1371/journal.pone.0117248
PG 13
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CB3RF
UT WOS:000349545300044
PM 25671657
ER
PT J
AU Ranzani, L
Aumentado, J
AF Ranzani, Leonardo
Aumentado, Jose
TI Graph-based analysis of nonreciprocity in coupled-mode systems
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
DE microwave devices; Josephson devices; optical devices; nonreciprocity
ID WAVE-GUIDE; QUANTUM; SCATTERING; PHOTONS; CIRCUIT; LIGHT
AB In this work we derive the general conditions for obtaining nonreciprocity in multi-mode parametrically-coupled systems. The results can be applied to a broad variety of optical, microwave, and hybrid systems including recent electro- and opto-mechanical devices. In deriving these results, we use a graph-based methodology to derive the scattering matrix. This approach naturally expresses the terms in the scattering coefficients as separate graphs corresponding to distinct coupling paths between modes such that it is evident that nonreciprocity arises as a consequence of multi-path interference and dissipation in key ancillary modes. These concepts facilitate the construction of new devices in which several other characteristics might also be simultaneously optimized. As an example, we synthesize a novel three-mode unilateral amplifier design by use of graphs. Finally, we analyze the isolation generated in a common parametric multi-mode system, the dc-SQUID.
C1 [Ranzani, Leonardo; Aumentado, Jose] NIST, Boulder, CO 80305 USA.
RP Aumentado, J (reprint author), NIST, Boulder, CO 80305 USA.
EM leonardo.ranzani@colorado.edu; jose.aumentado@nist.gov
RI Aumentado, Jose/C-2231-2009
OI Aumentado, Jose/0000-0001-5581-1466
NR 35
TC 12
Z9 12
U1 1
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 10
PY 2015
VL 17
AR 023024
DI 10.1088/1367-2630/17/2/023024
PG 14
WC Physics, Multidisciplinary
SC Physics
GA CF9EH
UT WOS:000352865200003
ER
PT J
AU Han, JK
McBean, C
Wang, L
Hoy, J
Jaye, C
Liu, HQ
Li, ZQ
Sfeir, MY
Fischer, DA
Taylor, GT
Misewich, JA
Wong, SS
AF Han, Jinkyu
McBean, Coray
Wang, Lei
Hoy, Jessica
Jaye, Cherno
Liu, Haiqing
Li, Zhuo-Qun
Sfeir, Matthew Y.
Fischer, Daniel A.
Taylor, Gordon T.
Misewich, James A.
Wong, Stanislaus S.
TI Probing Structure-Induced Optical Behavior in a New Class of
Self-Activated Luminescent OD/1D CaWO4 Metal Oxide-CdSe Nanocrystal
Composite Heterostructures
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID X-RAY-ABSORPTION; MULTIWALLED CARBON NANOTUBES; QUANTUM DOTS; CALCIUM
TUNGSTATE; SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; SCINTILLATING
CRYSTALS; CO-PHTHALOCYANINE; CHARGE-TRANSFER; RAMAN-SPECTRA
AB In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dots (QDs) coupled with (ii) both one- and zero-dimensional (1D and 0D) motifs of self-activated luminescent CaWO4 metal oxides. Specifically, similar to 4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring similar to 230 nm in diameter and similar to 3 mu m in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of similar to 80 nm) of CaWO4 through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementary electron microscopy and spectroscopy (i.e., IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO4 as compared with unbound CaWO4. We propose that a photoinduced electron transfer process occurs from CaWO4 to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO4 nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO4 within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of immobilized CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO4 itself.
C1 [Han, Jinkyu; Misewich, James A.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[McBean, Coray; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Hoy, Jessica; Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Jaye, Cherno; Fischer, Daniel A.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20889 USA.
[Li, Zhuo-Qun; Taylor, Gordon T.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA.
RP Wong, SS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Bldg 480, Upton, NY 11973 USA.
EM sswong@bnl.gov
FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886];
NSF-MRI [OCE-1336724]
FX This research (including support for J.K.H, C.M, L.W, J.H., H.L, M.Y.S.,
J.A.M., and S.S.W) was supported by the U.S. Department of Energy, Basic
Energy Sciences, Materials Sciences and Engineering Division.
Experiments were performed in part at the Center for Functional
Nanomaterials located at Brookhaven National Laboratory, which is
supported by the U.S. Department of Energy under contract number
DE-AC02-98CH10886. Raman data were collected on an instrument obtained
with an NSF-MRI grant OCE-1336724. We also acknowledge Dr. Dmytro
Nykypanchuk at Brookhaven National Laboratory for help with lifetime
measurements. NEXAFS measurements were collected at the U7A NIST/DOW
beamline, located at the National Synchrotron Light Source (NSLS) at
Brookhaven National Laboratory (BNL), which is supported by the U.S.
Department of Energy under contract number DE-AC02-98CH10886.
NR 88
TC 2
Z9 2
U1 5
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD FEB 10
PY 2015
VL 27
IS 3
BP 778
EP 792
DI 10.1021/cm503611q
PG 15
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA CB9EJ
UT WOS:000349934500015
ER
PT J
AU Sunday, DF
Kline, RJ
AF Sunday, Daniel F.
Kline, R. Joseph
TI Reducing Block Copolymer Interfacial Widths through Polymer Additives
SO MACROMOLECULES
LA English
DT Article
ID SELECTIVELY ASSOCIATING HOMOPOLYMER; SEQUENTIAL INFILTRATION SYNTHESIS;
NEUTRON REFLECTIVITY; IMMISCIBLE POLYMERS; DIBLOCK COPOLYMERS;
MOLECULAR-WEIGHT; PHASE-BEHAVIOR; COPOLYMER/HOMOPOLYMER BLENDS; DENSITY
MULTIPLICATION; MICROPHASE SEPARATION
AB There is a need to design new materials to achieve smaller pitches and reduced interfacial widths for block copolymer (BCP) lithography. One option is the use of blends, where the addition of a homopolymer which selectively associates to one of the blocks results in the increase in the FloryHuggins interaction parameter (?) between the two phases. In order to explore the effect of this approach on the interfacial width between BCP components, poly(vinylphenol) (PVPH) was added to polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). Multilayers of this blend were characterized using resonant soft X-ray reflectivity (RSoXR), a measurement that allows the contrast between PS, PMMA, and PVPH to be selectively tuned by varying the beam energy. RSoXR measurements confirmed that PVPH is uniformly distributed throughout the PMMA block. The interfacial width of the block was reduced by 20% upon the addition of a mass fraction of 8% PVPH. The interfacial width of homopolymer bilayers was also investigated in order to probe the same effect at higher PVPH concentrations. A blend of 70:30 PMMA:PVPH capped by a PS layer resulted in an interfacial width of 2.75 +/- 0.1 nm, a decrease of more than 50% compared to the two-component system.
C1 [Sunday, Daniel F.; Kline, R. Joseph] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA.
RP Sunday, DF (reprint author), NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA.
EM Daniel.sunday@nist.gov
RI Kline, Regis/B-8557-2008
FU Office of Science, Office of Basic Energy Sciences of the U.S.
Department of Energy [DE-AC02-05CH11231]; E.I. DuPont de Nemours Co.;
Dow Chemical Company; Northwestern University; U.S. DOE
[DE-AC02-06CH11357]
FX The Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract DE-AC02-05CH11231. We thank Eric Gullikson for
assistance at BL. 6.3.2. and Paul Kienzle for the work developing the
Refl1D software. Portions of this work were performed at the DuPont
Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5
of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont
de Nemours & Co., The Dow Chemical Company, and Northwestern University.
Use of the APS, an Office of Science User Facility operated for the U.S.
Department of Energy (DOE) Office of Science by Argonne National
Laboratory, was supported by the U.S. DOE under Contract
DE-AC02-06CH11357. We thank Steven Weigand and Denis Keane for
assistance at sector 5-ID-D.
NR 64
TC 12
Z9 12
U1 4
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD FEB 10
PY 2015
VL 48
IS 3
BP 679
EP 686
DI 10.1021/ma502015u
PG 8
WC Polymer Science
SC Polymer Science
GA CB4BV
UT WOS:000349574100026
ER
PT J
AU Ye, CH
Wiener, CG
Tyagi, M
Uhrig, D
Orski, SV
Soles, CL
Vogt, BD
Simmons, DS
AF Ye, Changhuai
Wiener, Clinton G.
Tyagi, Madhusudan
Uhrig, David
Orski, Sara V.
Soles, Christopher L.
Vogt, Bryan D.
Simmons, David S.
TI Understanding the Decreased Segmental Dynamics of Supported Thin Polymer
Films Reported by Incoherent Neutron Scattering
SO MACROMOLECULES
LA English
DT Article
ID GLASS-TRANSITION TEMPERATURE; GENERALIZED LOCALIZATION MODEL; ULTRATHIN
POLYSTYRENE FILMS; FORMING LIQUIDS; T-G; SURFACE-TENSION;
POSITRON-ANNIHILATION; STRUCTURAL RELAXATION; INTERFACIAL ENERGY;
CONFINEMENT
AB Incoherent neutron scattering (INS) has commonly reported a suppression of segmental dynamics for supported thin polymer films as thickness is decreased, which is counter to expectations based on other measurement techniques such as ellipsometry and fluorescence. Here INS is utilized to measure the dynamics of thin films of comb polystyrene (PS) from 50 to 525 K. There is a significant suppression in dynamics as determined from the similar to 5 ns DebyeWaller factor, < u(2)>, as measured via INS for films as thick as 213 nm, while there is no change in the glass transition temperature (T-g) as determined by ellipsometry for films as thin as 20 nm. This poor correlation between T-g from ellipsometry and dynamics as measured by is attributed to contamination of nanosecond by incipient relaxation processes, differences in sensitivity to the postulated dynamically dead layer near the substrate due to the relative weighting of the distribution of dynamics between the two techniques, differences in the time scales probed, and possible decoupling between fast and slow dynamics under nanoconfinement. These results suggest that branching of PS significantly increases the interactions with the substrate to suppress the dynamics. Both technique-specific sensitivity to time scales and its weighing of the average over the gradient in dynamic properties present at the interfaces are important to consider when qualitatively different phenomena are inferred from different measurements.
C1 [Ye, Changhuai; Wiener, Clinton G.; Vogt, Bryan D.; Simmons, David S.] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA.
[Tyagi, Madhusudan] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Orski, Sara V.; Soles, Christopher L.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
[Tyagi, Madhusudan] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Uhrig, David] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Simmons, DS (reprint author), Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA.
EM dsimmon@uakron.edu
RI Vogt, Bryan/H-1986-2012; Uhrig, David/A-7458-2016;
OI Vogt, Bryan/0000-0003-1916-7145; Uhrig, David/0000-0001-8447-6708;
Simmons, David/0000-0002-1436-9269
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy; National Science Foundation [DMR-0944772,
DMR1310433]
FX A portion of this research was conducted at the Center for Nanophase
Materials Sciences, which is sponsored at Oak Ridge National Laboratory
by the Scientific User Facilities Division, Office of Basic Energy
Sciences, U.S. Department of Energy. This work utilized facilities
supported in part by the National Science Foundation under Agreement No.
DMR-0944772. D.S.S. acknowledges support for this work by the National
Science Foundation under Grant No. DMR1310433. The identification of
commercial products does not imply endorsement by the National Institute
of Standards and Technology nor does it imply that these are the best
for the purpose.
NR 92
TC 15
Z9 15
U1 6
U2 55
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD FEB 10
PY 2015
VL 48
IS 3
BP 801
EP 808
DI 10.1021/ma501780g
PG 8
WC Polymer Science
SC Polymer Science
GA CB4BV
UT WOS:000349574100040
ER
PT J
AU Guttman, CM
Snyder, CR
Di Marzio, EA
AF Guttman, Charles M.
Snyder, Chad R.
Di Marzio, Edmund A.
TI A Simple Method for Complex Monomer Creation in the Matrix Method for
the Statistics and Thermodynamics of a Confined Polymer Chain
SO MACROMOLECULES
LA English
DT Article
ID CONJUGATED POLYMERS; ADSORPTION; CHROMATOGRAPHY; SURFACE; PHASE
AB We extend earlier work that gave exact results for the thermodynamics and size parameters of a confined polymer to the case where the monomers have complex structure. The only restriction on the complex monomers is that they be composed of a linear sequence of submonomers, each of which occupies one site on the lattice. The complex monomers can contain both rigid and flexible parts. For ease of understanding, we first treat a square (2-d) lattice. Then the cubic (3-d) lattice is treated. As before, the confining walls can be both chemically and physically rough, and the attraction energy of submonomers for the lattice sites can be different for each lattice site and importantly can be different for each submonomer. There is no restriction on the number of, or the linear sequencing of, the chemically different complex monomers that constitute a polymer chain. Our results have application to a confined polymer in solution as found in polymer chromatography as well as to adsorption/absorption of polymers onto/into nanoparticles. We demonstrate the ease of use and utility of the method by constructing a model of poly(p-phenylene), a semiconducting polymer, and demonstrate the transition from face-on to edge-on surface adsorption based upon the p-aromatic surface interaction, a phenomenon known to have impact on organic thin film transistor performance.
C1 [Guttman, Charles M.; Snyder, Chad R.; Di Marzio, Edmund A.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
[Di Marzio, Edmund A.] Biopoly Phase, Rockville, MD 20853 USA.
RP Snyder, CR (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
EM chad.snyder@nist.gov
RI Snyder, Chad/B-4957-2008
OI Snyder, Chad/0000-0002-2916-9809
NR 21
TC 0
Z9 0
U1 0
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD FEB 10
PY 2015
VL 48
IS 3
BP 863
EP 870
DI 10.1021/ma502066w
PG 8
WC Polymer Science
SC Polymer Science
GA CB4BV
UT WOS:000349574100045
ER
PT J
AU Yan, H
Wang, SQ
Billesbach, D
Oechel, W
Bohrer, G
Meyers, T
Martin, TA
Matamala, R
Phillips, RP
Rahman, F
Yu, Q
Shugart, HH
AF Yan, Hao
Wang, Shao-qiang
Billesbach, Dave
Oechel, Walter
Bohrer, Gil
Meyers, Tilden
Martin, Timothy A.
Matamala, Roser
Phillips, Richard P.
Rahman, Faiz
Yu, Qin
Shugart, Herman H.
TI Improved global simulations of gross primary product based on a new
definition of water stress factor and a separate treatment of C3 and C4
plants
SO ECOLOGICAL MODELLING
LA English
DT Article
DE Gross primary production; Eddy covariance; Carbon flux model; Light use
efficiency; MODIS
ID NET PRIMARY PRODUCTION; LEAF-AREA INDEX; DROUGHT-INDUCED REDUCTION;
CARBON-DIOXIDE EXCHANGE; PHOTOSYNTHETICALLY ACTIVE RADIATION; ENHANCED
VEGETATION INDEX; REMOTELY-SENSED DATA; USE EFFICIENCY MODEL; LIGHT USE
EFFICIENCY; ENERGY-EXCHANGE
AB Accurate simulation of terrestrial gross primary production (GPP), the largest global carbon flux, benefits our understanding of carbon cycle and its source of variation. This paper presents a novel light use efficiency-based GPP model called the terrestrial ecosystem carbon flux model (TEC) driven by MODIS FPAR and climate data coupled with a precipitation-driven evapotranspiration (E) model (Yan et al., 2012). TEC incorporated a new water stress factor, defined as the ratio of actual E to Priestley and Taylor (1972) potential evaporation (E-PT). A maximum light use efficiency (epsilon*) of 1.8 gCMJ(-1) and 2.76 gCMJ(-1) was applied to C3 and C4 ecosystems, respectively. An evaluation at 18 eddy covariance flux towers representing various ecosystem types under various climates indicates that the TEC model predicted monthly average GPP for all sites with overall statistics of r = 0.85, RMSE = 2.20 gC m(-2) day(-1), and bias = -0.05 gC m(-2) day(-1). For comparison the MODIS GPP products (MOD17A2) had overall statistics of r = 0.73, RMSE = 2.82 gC m(-2) day(-1), and bias = -0.31 gC m(-2) day(-1) for this same set of data. In this case, the TEC model performed better than MOD17A2 products, especially for C4 plants. We obtained an estimate of global mean annual GPP flux at 128.2 +/- 1.5 Pg Cyr(-1) from monthly MODIS FPAR and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA reanalysis data at a 1.0 degrees spatial resolution over 11 year period from 2000 to 2010. This falls in the range of published land GPP estimates that consider the effect of C4 and C3 species. The TEC model with its new definition of water stress factor and its parameterization of C4 and C3 plants should help better understand the coupled climate-carbon cycle processes. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Yan, Hao] China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R China.
[Wang, Shao-qiang] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China.
[Billesbach, Dave] Univ Nebraska, Dept Biol Syst Engn, Lincoln, NE 68583 USA.
[Oechel, Walter] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA.
[Bohrer, Gil] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA.
[Meyers, Tilden] NOAA, ARL, Atmospher Turbulence & Diffus Div, Oak Ridge, TN 37831 USA.
[Martin, Timothy A.] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA.
[Matamala, Roser] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Phillips, Richard P.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA.
[Rahman, Faiz] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA.
[Yu, Qin] George Washington Univ, Dept Geog, Washington, DC 20052 USA.
[Shugart, Herman H.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA.
RP Yan, H (reprint author), China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R China.
EM yanhaon@hotmail.com; sqwang@igsnrr.ac.cn; dbillesbach1@unl.edu;
oechel@sunstroke.sdsu.edu; bohrer.17@osu.edu; tilden.meyers@noaa.gov;
tamartin@ufl.edu; matamala@anl.gov; rpp6@indiana.edu;
farahman@indiana.edu; qy4a@virginia.edu; hhs@virginia.edu
RI Shugart, Herman/C-5156-2009; Meyers, Tilden/C-6633-2016;
OI Bohrer, Gil/0000-0002-9209-9540; Martin, Timothy/0000-0002-7872-4194
FU National Natural Science Foundation of China [41171284, 40801129];
Chinese Academy of Sciences [XDA05050602-1]; NASA Earth Science Division
[10-CARBON10-0068, Climate Change/09-IDS09-116]
FX We would like to thank the flux site investigators for providing their
data through AmeriFlux program for the development of TEC GPP model.
This work was supported by National Natural Science Foundation of China
(41171284, 40801129), Chinese Academy of Sciences (XDA05050602-1), and
partly funded by NASA Earth Science Division, as well as by the
following NASA grants to H.H. Shugart: 10-CARBON10-0068, and Climate
Change/09-IDS09-116. Finally the reviewers are thanked for the
constructive remarks and suggestions.
NR 115
TC 6
Z9 6
U1 5
U2 43
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3800
EI 1872-7026
J9 ECOL MODEL
JI Ecol. Model.
PD FEB 10
PY 2015
VL 297
BP 42
EP 59
DI 10.1016/j.ecolmodel.2014.11.002
PG 18
WC Ecology
SC Environmental Sciences & Ecology
GA CB1ZA
UT WOS:000349425300007
ER
PT J
AU King, DA
Bachelet, DM
Symstad, AJ
Ferschweiler, K
Hobbins, M
AF King, David A.
Bachelet, Dominique M.
Symstad, Amy J.
Ferschweiler, Ken
Hobbins, Michael
TI Estimation of potential evapotranspiration from extraterrestrial
radiation, air temperature and humidity to assess future climate change
effects on the vegetation of the Northern Great Plains, USA
SO ECOLOGICAL MODELLING
LA English
DT Article
DE Climate change; MCI; Great Plains USA; Potential evapotranspiration;
Vegetation dynamics
ID CONTERMINOUS UNITED-STATES; FOREST ECOSYSTEMS; SOLAR-RADIATION;
EXPANSION; DROUGHT; FIRE; PRECIPITATION; MODEL; PRODUCTIVITY;
EVAPORATION
AB The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and longwave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change. (C) 2014 Elsevier B.V. All rights reserved.
C1 [King, David A.; Bachelet, Dominique M.] Oregon State Univ, Corvallis, OR 97331 USA.
[Bachelet, Dominique M.; Ferschweiler, Ken] Conservat Biol Inst, Corvallis, OR 97333 USA.
[Symstad, Amy J.] US Geol Survey, Northern Prairie Wildlife Res Ctr, Hot Springs, SD 57747 USA.
[Hobbins, Michael] NOAA, ESRL, Natl Integrated Drought Informat Syst, Boulder, CO 80305 USA.
RP King, DA (reprint author), 845 SW 10th St, Corvallis, OR 97333 USA.
EM kingda@onid.oregonstate.edu
RI Hobbins, Mike/N-4630-2014
OI Hobbins, Mike/0000-0001-5789-5229
FU U.S. Department of Interior's North Central Climate Science Center
FX We thank Richard Waring, Joe Barsugli, Andrea Ray and David Turner for
helpful comments on the manuscript. Funding was provided by the U.S.
Department of Interior's North Central Climate Science Center.
NR 71
TC 7
Z9 7
U1 2
U2 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3800
EI 1872-7026
J9 ECOL MODEL
JI Ecol. Model.
PD FEB 10
PY 2015
VL 297
BP 86
EP 97
DI 10.1016/j.ecolmodel.2014.10.037
PG 12
WC Ecology
SC Environmental Sciences & Ecology
GA CB1ZA
UT WOS:000349425300011
ER
PT J
AU Schneeloch, JA
Xu, ZJ
Wen, JS
Gehring, PM
Stock, C
Matsuda, M
Winn, B
Gu, GD
Shapiro, SM
Birgeneau, RJ
Ushiyama, T
Yanagisawa, Y
Tomioka, Y
Ito, T
Xu, GY
AF Schneeloch, John A.
Xu, Zhijun
Wen, Jinsheng
Gehring, P. M.
Stock, C.
Matsuda, M.
Winn, B.
Gu, Genda
Shapiro, Stephen M.
Birgeneau, R. J.
Ushiyama, T.
Yanagisawa, Y.
Tomioka, Y.
Ito, T.
Xu, Guangyong
TI Neutron inelastic scattering measurements of low-energy phonons in the
multiferroic BiFeO3
SO PHYSICAL REVIEW B
LA English
DT Article
ID BISMUTH FERRITE; TEMPERATURE; CRYSTALS
AB We present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO3. The dispersions of the three acoustic phonon modes (LA along [100], TA(1) along [010], and TA(2) along [1 (1) over bar0]) and two low-energy optic phonon modes (LO and TO1) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature T-N = 640 K. This suggests that the magnetic order and low-energy lattice dynamics in this multiferroic material are coupled.
C1 [Schneeloch, John A.; Xu, Zhijun; Gu, Genda; Shapiro, Stephen M.; Xu, Guangyong] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Schneeloch, John A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Xu, Zhijun; Wen, Jinsheng; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Xu, Zhijun; Wen, Jinsheng; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Gehring, P. M.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Stock, C.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Matsuda, M.; Winn, B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[Ushiyama, T.; Yanagisawa, Y.; Tomioka, Y.; Ito, T.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058562, Japan.
RP Xu, GY (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
EM gxu@bnl.gov
RI Wen, Jinsheng/F-4209-2010; xu, zhijun/A-3264-2013; Winn,
Barry/A-5065-2016; Matsuda, Masaaki/A-6902-2016; Xu,
Guangyong/A-8707-2010;
OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015; Winn,
Barry/0000-0001-6383-4318; Matsuda, Masaaki/0000-0003-2209-9526; Xu,
Guangyong/0000-0003-1441-8275; Schneeloch, John/0000-0002-3577-9574;
Gehring, Peter/0000-0002-9236-2046
FU Office of Basic Energy Sciences, U.S. Department of Energy
[DE-AC02-98CH10886, DE-AC02-05CH11231]; Scientific User Facilities
Division, Office of Basic Energy Sciences, U.S. Department of Energy;
Carnegie Trust for the Universities of Scotland; Royal Society;
Mitsubishi Foundation
FX J.A.S., Z.J.X., G.D.G., S.M.S., and G.Y.X. acknowledge support by Office
of Basic Energy Sciences, U.S. Department of Energy under Contract No.
DE-AC02-98CH10886. J.W. and R.J.B. are also supported by the Office of
Basic Energy Sciences, U.S. Department of Energy through Contract No.
DE-AC02-05CH11231. This research at the Oak Ridge National Laboratory
Spallation Neutron Source was sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy. C.S. acknowledges the support of the Carnegie Trust for the
Universities of Scotland and the Royal Society. T.I. is partly supported
by the Mitsubishi Foundation.
NR 27
TC 3
Z9 3
U1 3
U2 36
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 10
PY 2015
VL 91
IS 6
AR 064301
DI 10.1103/PhysRevB.91.064301
PG 5
WC Physics, Condensed Matter
SC Physics
GA CB2TX
UT WOS:000349482300002
ER
PT J
AU Rice, KP
Russek, SE
Geiss, RH
Shaw, JM
Usselman, RJ
Evarts, ER
Silva, TJ
Nembach, HT
Arenholz, E
Idzerda, YU
AF Rice, Katherine P.
Russek, Stephen E.
Geiss, Roy H.
Shaw, Justin M.
Usselman, Robert J.
Evarts, Eric R.
Silva, Thomas J.
Nembach, Hans T.
Arenholz, Elke
Idzerda, Yves U.
TI Temperature-dependent structure of Tb-doped magnetite nanoparticles
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID AMORPHOUS THIN-FILMS; FERROMAGNETIC-RESONANCE; COMPLEX PERMEABILITY;
EARTH; MAGNETIZATION; ANISOTROPY; GARNET; SIZE
AB High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, alpha, is remarkably low for the Tb-doped nanoparticles, with alpha = 0.024 +/- 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures. (C) 2015 AIP Publishing LLC.
C1 [Rice, Katherine P.; Russek, Stephen E.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.] NIST, Boulder, CO 80305 USA.
[Geiss, Roy H.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Idzerda, Yves U.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA.
RP Russek, SE (reprint author), NIST, Boulder, CO 80305 USA.
EM stephen.russek@nist.gov
RI Shaw, Justin/C-1845-2008; Silva, Thomas/C-7605-2013
OI Shaw, Justin/0000-0003-2027-1521; Silva, Thomas/0000-0001-8164-9642
FU National Science Foundation [CBET-0709358]; DOE; NRC-RAP program
FX Y.U.I. acknowledges the support of the National Science Foundation under
grant CBET-0709358. The XMCD work at the Advanced Light Source is
supported by DOE. The authors thank Dr. Thompson Mefford and Dr. John
Ballato for helpful discussions. K.P.R. and E.R.E. acknowledge funding
support from the NRC-RAP program. We gratefully acknowledge the
assistance of the NIST Precision Imaging Facility.
NR 25
TC 2
Z9 2
U1 8
U2 35
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 9
PY 2015
VL 106
IS 6
AR 062409
DI 10.1063/1.4907332
PG 4
WC Physics, Applied
SC Physics
GA CB7YR
UT WOS:000349845300049
ER
PT J
AU Safronova, MS
Safronova, UI
Clark, CW
AF Safronova, M. S.
Safronova, U. I.
Clark, Charles W.
TI Correlation effects in La, Ce, and lanthanide ions
SO PHYSICAL REVIEW A
LA English
DT Article
ID RARE-EARTH REGION; ENERGY-LEVELS; SPECTRUM; CERIUM; ATOMS;
PHOTOABSORPTION; PERTURBATION; COLLAPSE
AB We carry out a comprehensive study of higher-order correlation effects to the excitation energies of La, La+, Ce, Ce+, Ce2+, and Ce3+. The calculations are carried out using two hybrid approaches that combine configuration interaction with second-order perturbation theory and the linearized coupled-cluster all-order method. Use of two approaches allows us to isolate the effects of third-and higher-order corrections for various configurations. We also study the contribution of higher partial waves and investigate methods to extrapolate the effect of omitted partial waves. The effects of the higher partial waves for the monovalent configuration of La2+ and Ce3+ are compared with analogous effects in multivalent configurations of La, La+, Ce, Ce+, and Ce2+. Tests of our extrapolation techniques are carried out for several Cd-like lanthanide ions. The results of the present studies are of particular interest to the development of high-precision methods for treatment of systems with partially filled nf shells that are of current experimental interest for a diverse set of applications.
C1 [Safronova, M. S.] Univ Delaware, Dept Phys & Astron, Sharp Lab 217, Newark, DE 19716 USA.
[Safronova, M. S.; Clark, Charles W.] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA.
[Safronova, M. S.; Clark, Charles W.] Univ Maryland, Gaithersburg, MD 20899 USA.
[Safronova, U. I.] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
RP Safronova, MS (reprint author), Univ Delaware, Dept Phys & Astron, Sharp Lab 217, Newark, DE 19716 USA.
FU US Department of Commerce, National Institute of Standards and
Technology; National Science Foundation under Physics Frontiers Center
Grant [PHY-0822671]
FX We thank S. Porsev and M. Kozlov for useful discussions. This research
was performed under the sponsorship of the US Department of Commerce,
National Institute of Standards and Technology, and was supported by the
National Science Foundation under Physics Frontiers Center Grant No.
PHY-0822671.
NR 60
TC 3
Z9 3
U1 4
U2 17
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
EI 1094-1622
J9 PHYS REV A
JI Phys. Rev. A
PD FEB 9
PY 2015
VL 91
IS 2
AR 022504
DI 10.1103/PhysRevA.91.022504
PG 9
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA CC2IW
UT WOS:000350169700003
ER
PT J
AU Pitkanen, L
Striegel, AM
AF Pitkaenen, Leena
Striegel, Andre M.
TI Polysaccharide characterization by hollow-fiber flow field-flow
fractionation with on-line multi-angle static light scattering and
differential refractometry
SO JOURNAL OF CHROMATOGRAPHY A
LA English
DT Article
DE Hollow-fiber flow field-flow fractionation; Polysaccharides; Dextran;
Pullulan; Arabinogalactan; Light scattering
ID SIZE-EXCLUSION CHROMATOGRAPHY; HYDRODYNAMIC CHROMATOGRAPHY; INDUCED
DEGRADATION; ON-COLUMN; MACROMOLECULES; POLYMERS; ARABINOGALACTANS;
ULTRAFILTRATION; SEPARATION; PULLULAN
AB Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, often-times due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (R-H) measurements from off-line quasi-elastic light scattering (QELS) and by R-H distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-a-vis experimentally determined data. Published by Elsevier B.V.
C1 [Pitkaenen, Leena; Striegel, Andre M.] NIST, Div Chem Sci, Gaithersburg, MD 20899 USA.
RP Striegel, AM (reprint author), NIST, Div Chem Sci, 100 Bur Dr,MS 8392, Gaithersburg, MD 20899 USA.
EM andre.striegel@nist.gov
FU Finnish Cultural Foundation through the Foundations' Post Doc Pool
FX The Finnish Cultural Foundation is acknowledged for financial support of
L.P. through the Foundations' Post Doc Pool. The authors would also like
to thank Paivi Tuomainen and Maija Tenkanen from the University of
Helsinki for providing dextran samples, and Christoph Johann from Wyatt
Europe and Superon GmbH for assistance with the ISIS software.
Commercial products are identified to specify adequately the
experimental procedure. Such identification does not imply endorsement
or recommendation by the National Institute of Standards and Technology,
nor does it imply that the materials identified are necessarily the best
available for the purpose.
NR 50
TC 2
Z9 2
U1 9
U2 56
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0021-9673
EI 1873-3778
J9 J CHROMATOGR A
JI J. Chromatogr. A
PD FEB 6
PY 2015
VL 1380
BP 146
EP 155
DI 10.1016/j.chroma.2014.12.070
PG 10
WC Biochemical Research Methods; Chemistry, Analytical
SC Biochemistry & Molecular Biology; Chemistry
GA CA4RW
UT WOS:000348893100018
PM 25578045
ER
PT J
AU Wall, ML
Maeda, K
Carr, LD
AF Wall, M. L.
Maeda, K.
Carr, Lincoln D.
TI Realizing unconventional quantum magnetism with symmetric top molecules
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
DE ultracold molecules; symmetric top; XYZ magnetism; quantum spin model;
methyl fluoride
ID POLAR-MOLECULES; OPTICAL LATTICES; DYNAMICS; PHYSICS; GASES; SPINS
AB We demonstrate that ultracold symmetric top molecules loaded into an optical lattice can realize highly tunable and unconventional models of quantum magnetism, such as an XYZ Heisenberg spin model. We show that anisotropic dipole-dipole interactions between molecules can lead to effective spin-spin interactions which exchange spin and orbital angular momentum. This exchange produces effective spin models which do not conserve magnetization and feature tunable degrees of spatial and spin-coupling anisotropy. In addition to deriving pure spin models when molecules are pinned in a deep optical lattice, we show that models of itinerant magnetism are possible when molecules can tunnel through the lattice. Additionally, we demonstrate rich tunability of effective model parameters using only a single microwave frequency, in contrast to proposals with (1)Sigma diatomic molecules, which often require many microwave frequencies. Our results are germane not only for experiments with polyatomic symmetric top molecules, such as methyl fluoride (CH3F), but also diatomic molecules with an effective symmetric top structure, such as the hydroxyl radical OH.
C1 [Wall, M. L.] Univ Colorado, NIST, Joint Inst Lab Astrophys, Boulder, CO 80309 USA.
[Wall, M. L.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
[Wall, M. L.; Maeda, K.; Carr, Lincoln D.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA.
RP Wall, ML (reprint author), Univ Colorado, NIST, Joint Inst Lab Astrophys, Boulder, CO 80309 USA.
EM mwall.physics@gmail.com
RI Carr, Lincoln/E-3819-2016
OI Carr, Lincoln/0000-0002-4848-7941
FU AFOSR [FA9550-11-1-0224, FA9550-13-1-0086]; ARO [61841PH];
ARO-DARPA-OLE; National Science Foundation [PHY-1207881, PHY-1067973,
PHY-0903457, PHY-1211914, PHY-1125844, PHY-1125915]; National Renewable
Energy Laboratories
FX We acknowledge useful conversations with Christina Kraus and Ryan
Mishmash during initial development and exploration of the ideas in this
work, and thank Kaden Hazzard and Ana Maria Rey for their comments on
the manuscript. This work was supported by the AFOSR under grants
FA9550-11-1-0224 and FA9550-13-1-0086, ARO grant number 61841PH,
ARO-DARPA-OLE, and the National Science Foundation under grants
PHY-1207881, PHY-1067973, PHY-0903457, PHY-1211914, PHY-1125844, and
PHY-1125915. We also acknowledge the Golden Energy Computing
Organization at the Colorado School of Mines for the use of resources
acquired with financial assistance from the National Science Foundation
and the National Renewable Energy Laboratories. We thank the KITP for
hospitality.
NR 50
TC 11
Z9 11
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 4
PY 2015
VL 17
AR 025001
DI 10.1088/1367-2630/17/2/025001
PG 13
WC Physics, Multidisciplinary
SC Physics
GA CF9EE
UT WOS:000352864900001
ER
PT J
AU Zhong, T
Zhou, HC
Horansky, RD
Lee, C
Verma, VB
Lita, AE
Restelli, A
Bienfang, JC
Mirin, RP
Gerrits, T
Nam, SW
Marsili, F
Shaw, MD
Zhang, ZS
Wang, LG
Englund, D
Wornell, GW
Shapiro, JH
Wong, FNC
AF Zhong, Tian
Zhou, Hongchao
Horansky, Robert D.
Lee, Catherine
Verma, Varun B.
Lita, Adriana E.
Restelli, Alessandro
Bienfang, Joshua C.
Mirin, Richard P.
Gerrits, Thomas
Nam, Sae Woo
Marsili, Francesco
Shaw, Matthew D.
Zhang, Zheshen
Wang, Ligong
Englund, Dirk
Wornell, Gregory W.
Shapiro, Jeffrey H.
Wong, Franco N. C.
TI Photon-efficient quantum key distribution using time-energy entanglement
with high-dimensional encoding
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
DE quantum cryptography; quantum communications; quantum entanglement
ID COMMUNICATION; STATES
AB Conventional quantumkey distribution (QKD) typically uses binary encoding based on photon polarization or time-bin degrees of freedomand achieves a key capacity of atmost one bit per photon. Under photon-starved conditions the rate of detection events ismuch lower than the photon generation rate, because of losses in long distance propagation and the relatively long recovery times of available singlephoton detectors. Multi-bit encoding in the photon arrival times can be beneficial in such photonstarved situations. Recent security proofs indicate high-dimensional encoding in the photon arrival times is robust and can be implemented to yield high secure throughput. In this work we demonstrate entanglement-basedQKDwith high-dimensional encodingwhose security against collectiveGaussian attacks is provided by a high-visibility Franson interferometer. We achieve unprecedented key capacity and throughput for an entanglement-basedQKDsystembecause of four principal factors: Franson interferometry that does not degrade with loss; error correction coding that can tolerate high error rates; optimized time-energy entanglement generation; and highly efficientWSi superconducting nanowire single-photon detectors. The secure key capacity yields asmuch as 8.7 bits per coincidence. When optimized for throughput we observe a secure key rate of 2.7 Mbit s(-1) after 20 kmfiber transmissionwith a key capacity of 6.9 bits per photon coincidence. Our results demonstrate a viable approach to high-rate QKDusing practical photonic entanglement and single-photon detection technologies.
C1 [Zhong, Tian; Zhou, Hongchao; Lee, Catherine; Zhang, Zheshen; Wang, Ligong; Englund, Dirk; Wornell, Gregory W.; Shapiro, Jeffrey H.; Wong, Franco N. C.] MIT, Elect Res Lab, Cambridge, MA 02139 USA.
[Horansky, Robert D.; Verma, Varun B.; Lita, Adriana E.; Mirin, Richard P.; Gerrits, Thomas; Nam, Sae Woo] Natl Inst Stand & Technol, Boulder, CO 80305 USA.
[Restelli, Alessandro; Bienfang, Joshua C.] Univ Maryland, Joint Quantum Inst, Gaithersburg, MD 20899 USA.
[Restelli, Alessandro; Bienfang, Joshua C.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA.
[Marsili, Francesco; Shaw, Matthew D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Zhong, T (reprint author), MIT, Elect Res Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM tzhong@mit.edu
RI Restelli, Alessandro/A-4897-2009;
OI Restelli, Alessandro/0000-0002-1289-3171; Mirin,
Richard/0000-0002-4472-4655
FU DARPA InPho program under Army Research Office [W911NF-10-1-0416];
National Aeronautics and Space Administration
FX The authors acknowledge technical discussions with Yuval Kochman. This
work was supported in part by the DARPA InPho program under Army
Research Office Grant No. W911NF-10-1-0416. Part of this work was
carried out at the Jet Propulsion Laboratory, under contract with the
National Aeronautics and Space Administration.
NR 32
TC 16
Z9 16
U1 1
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 4
PY 2015
VL 17
AR 022002
DI 10.1088/1367-2630/17/2/022002
PG 10
WC Physics, Multidisciplinary
SC Physics
GA CF9EC
UT WOS:000352864700001
ER
PT J
AU Richter, LJ
DeLongchamp, DM
Bokel, FA
Engmann, S
Chou, KW
Amassian, A
Schaible, E
Hexemer, A
AF Richter, Lee J.
DeLongchamp, Dean M.
Bokel, Felicia A.
Engmann, Sebastian
Chou, Kang Wei
Amassian, Aram
Schaible, Eric
Hexemer, Alexander
TI In Situ Morphology Studies of the Mechanism for Solution Additive
Effects on the Formation of Bulk Heterojunction Films
SO ADVANCED ENERGY MATERIALS
LA English
DT Article
ID ORGANIC SOLAR-CELLS; POLYMER/FULLERENE BLEND FILMS; POLYMER PHOTOVOLTAIC
CELLS; STRUCTURAL EVOLUTION; CHARGE-TRANSPORT; FULLERENE BLENDS;
POLY(3-HEXYLTHIOPHENE); MIXTURES; CRYSTALLIZATION; MISCIBILITY
AB The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3-hexylthiophene) and acceptor phenyl-C61-butyric acid methyl ester under the influence of two common additives, 1,8-octanedithiol and 1-chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre-crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM-induced vitrification. The glass transition effects vary system-to-system and may be correlated to the number and composition of phases present during drying.
C1 [Richter, Lee J.; DeLongchamp, Dean M.; Bokel, Felicia A.; Engmann, Sebastian] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
[Chou, Kang Wei; Amassian, Aram] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia.
[Schaible, Eric; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Richter, LJ (reprint author), NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA.
EM lee.richter@nist.gov; dean.delongchamp@nist.gov
RI Richter, Lee/N-7730-2016
OI Richter, Lee/0000-0002-9433-3724
FU Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX The authors wish to thank Jacquline Johnson and Edwin Chan for
assistance in the development of the remote dispense system. Beamline
7.3.3 of the Advanced Light Source is supported by the Director of the
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 45
TC 34
Z9 34
U1 12
U2 94
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD FEB 4
PY 2015
VL 5
IS 3
AR 1400975
DI 10.1002/aenm.201400975
PG 11
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CC7RH
UT WOS:000350565400004
ER
PT J
AU Rangasamy, E
Liu, ZC
Gobet, M
Pilar, K
Sahu, G
Zhou, W
Wu, H
Greenbaum, S
Liang, CD
AF Rangasamy, Ezhiylmurugan
Liu, Zengcai
Gobet, Mallory
Pilar, Kartik
Sahu, Gayatri
Zhou, Wei
Wu, Hui
Greenbaum, Steve
Liang, Chengdu
TI An Iodide-Based Li7P2S8I Superionic Conductor
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID GLASS-CERAMIC ELECTROLYTES; LITHIUM-ION BATTERIES; SOLID-STATE NMR;
OVERCHARGE REACTION; LI2S-P2S5 GLASSES; LI+ MOBILITY; LI6PS5X
AB In an example of stability from instability, a Li7P2S8I solid-state Li-ion conductor derived from beta-Li3PS4 and LiI demonstrates electrochemical stability up to 10 V vs Li/Li+. The oxidation instability of I is subverted via its incorporation into the coordinated structure. The inclusion of I also creates stability with the metallic Li anode while simultaneously enhancing the interfacial kinetics and ionic conductivity. Low-temperature membrane processability enables facile fabrication of dense membranes, making this conductor suitable for industrial adoption.
C1 [Rangasamy, Ezhiylmurugan; Liu, Zengcai; Sahu, Gayatri; Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Gobet, Mallory; Pilar, Kartik; Greenbaum, Steve] CUNY Hunter Coll, Dept Phys & Astron, New York, NY 10065 USA.
[Zhou, Wei; Wu, Hui] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Zhou, Wei; Wu, Hui] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
RP Liang, CD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM liangcn@ornl.gov
RI Wu, Hui/C-6505-2008; Zhou, Wei/C-6504-2008; Gobet, Mallory/I-2498-2013
OI Wu, Hui/0000-0003-0296-5204; Zhou, Wei/0000-0002-5461-3617; Gobet,
Mallory/0000-0001-9735-0741
FU Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences, U.S. Department of Energy (DOE); DOE BES Division of Materials
Chemistry [DE-SC0005029]; Oak Ridge National Laboratory by Division of
Scientific User Facilities, U.S. DOE
FX This work was sponsored by the Division of Materials Sciences and
Engineering, Office of Basic Energy Sciences, U.S. Department of Energy
(DOE). The NMR measurements were supported by the DOE BES Division of
Materials Chemistry under award DE-SC0005029.The synthesis and
characterization of materials were conducted at the Center for Nanophase
Materials Sciences, which is sponsored at Oak Ridge National Laboratory
by the Division of Scientific User Facilities, U.S. DOE.
NR 36
TC 33
Z9 33
U1 22
U2 181
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 4
PY 2015
VL 137
IS 4
BP 1384
EP 1387
DI 10.1021/ja508723m
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA CA8AJ
UT WOS:000349138600001
PM 25602621
ER
PT J
AU Zhang, Q
Fernandes, RM
Lamsal, J
Yan, JQ
Chi, SX
Tucker, GS
Pratt, DK
Lynn, JW
McCallum, RW
Canfield, PC
Lograsso, TA
Goldman, AI
Vaknin, D
McQueeney, RJ
AF Zhang, Qiang
Fernandes, Rafael M.
Lamsal, Jagat
Yan, Jiaqiang
Chi, Songxue
Tucker, Gregory S.
Pratt, Daniel K.
Lynn, Jeffrey W.
McCallum, R. W.
Canfield, Paul C.
Lograsso, Thomas A.
Goldman, Alan I.
Vaknin, David
McQueeney, Robert J.
TI Neutron-Scattering Measurements of Spin Excitations in LaFeAsO and
Ba(Fe0.953Co0.047)(2)As-2: Evidence for a Sharp Enhancement of Spin
Fluctuations by Nematic Order
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON ARSENIDE SUPERCONDUCTOR;
DETWINNED BA(FE1-XCOX)(2)AS-2; TRANSITION; STATE; ANISOTROPY; PNICTIDES;
BAFE2AS2
AB Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe0.953Co0.047)(2)As-2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T-S, sets in well above the stripe antiferromagnetic ordering at T-N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T-S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. Our findings can be consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.
C1 [Zhang, Qiang; Lamsal, Jagat; Tucker, Gregory S.; McCallum, R. W.; Lograsso, Thomas A.; Goldman, Alan I.; Vaknin, David; McQueeney, Robert J.] Ames Lab, Ames, IA 50011 USA.
[Zhang, Qiang; Lamsal, Jagat; Tucker, Gregory S.; Goldman, Alan I.; Vaknin, David; McQueeney, Robert J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Fernandes, Rafael M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Yan, Jiaqiang; Chi, Songxue; McQueeney, Robert J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Pratt, Daniel K.; Lynn, Jeffrey W.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[McCallum, R. W.; Lograsso, Thomas A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Zhang, Q (reprint author), Ames Lab, Ames, IA 50011 USA.
RI Zhang, Qiang/A-7901-2010; Fernandes, Rafael/E-9273-2010; Chi,
Songxue/A-6713-2013; Vaknin, David/B-3302-2009
OI Zhang, Qiang/0000-0003-0389-7039; McQueeney, Robert/0000-0003-0718-5602;
Chi, Songxue/0000-0002-3851-9153; Vaknin, David/0000-0002-0899-9248
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-07CH11358]; U.S. Department
of Energy [DE-SC0012336]; U.S. Department of Energy, Office of Basic
Energy Sciences, Scientific User Facilities Division; U.S. Department of
Commerce
FX Research at Ames Laboratory is supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering under Contract No. DE-AC02-07CH11358. R. M. F. is
supported by the U.S. Department of Energy under Award No. DE-SC0012336.
Use of the high flux isotope reactor at the Oak Ridge National
Laboratory was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Scientific User Facilities Division. The NIST
Center for Neutron Research is supported by the U.S. Department of
Commerce. We acknowledge Dan Parshall for his technical assistance in
measuring
Ba(Fe0.953Co0.047)2As2 at
the BT-7 triple-axis neutron spectrometer at the NIST Center for Neutron
Research.
NR 64
TC 14
Z9 14
U1 5
U2 31
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 4
PY 2015
VL 114
IS 5
AR 057001
DI 10.1103/PhysRevLett.114.057001
PG 6
WC Physics, Multidisciplinary
SC Physics
GA CA9MX
UT WOS:000349249500017
PM 25699463
ER
PT J
AU Moody, D
Peralta, R
Perlner, R
Regenscheid, A
Roginsky, A
Chen, L
AF Moody, Dustin
Peralta, Rene
Perlner, Ray
Regenscheid, Andrew
Roginsky, Allen
Chen, Lily
TI Report on Pairing-based Cryptography
SO JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND
TECHNOLOGY
LA English
DT Article
DE IBE; identity-based encryption; pairing-based cryptography; pairings
ID IDENTITY-BASED ENCRYPTION
AB This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies.
The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules.
Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.
C1 [Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily] NIST Informat Technol Lab, Comp Secur Div, Gaithersburg, MD 20899 USA.
[Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily] US Dept Commerce, Natl Inst Stand & Technol, Washington, DC 20230 USA.
RP Moody, D (reprint author), NIST Informat Technol Lab, Comp Secur Div, Gaithersburg, MD 20899 USA.
EM dustin.moody@nist.gov; rene.peralta@nist.gov; ray.perlner@nist.gov;
andrew.regenscheid@nist.gov; allen.roginsky@nist.gov; lily.chen@nist.gov
NR 18
TC 1
Z9 1
U1 0
U2 0
PU US GOVERNMENT PRINTING OFFICE
PI WASHINGTON
PA SUPERINTENDENT DOCUMENTS,, WASHINGTON, DC 20402-9325 USA
SN 1044-677X
J9 J RES NATL INST STAN
JI J. Res. Natl. Inst. Stand. Technol.
PD FEB 3
PY 2015
VL 120
BP 11
EP 27
DI 10.6028/jres.120.002
PG 17
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA CN8VU
UT WOS:000358724400001
PM 26958435
ER
PT J
AU Shaul, NJ
Dodder, NG
Aluwihare, LI
Mackintosh, SA
Maruya, KA
Chivers, SJ
Danil, K
Weller, DW
Hoh, E
AF Shaul, Nellie J.
Dodder, Nathan G.
Aluwihare, Lihini I.
Mackintosh, Susan A.
Maruya, Keith A.
Chivers, Susan J.
Danil, Kerri
Weller, David W.
Hoh, Eunha
TI Nontargeted Biomonitoring of Halogenated Organic Compounds in Two
Ecotypes of Bottlenose Dolphins (Tursiops truncatus) from the Southern
California Bight
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID POLYBROMINATED DIPHENYL ETHERS; LIONS ZALOPHUS-CALIFORNIANUS;
IONIZATION-MASS-SPECTROMETRY; DIMETHYL BIPYRROLES; NATURAL-PRODUCT;
POLYCHLORINATED TERPHENYLS; RISK-ASSESSMENT; MARINE MAMMALS; GC/ECNI-MS;
Q1
AB Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation.
C1 [Shaul, Nellie J.; Aluwihare, Lihini I.; Mackintosh, Susan A.; Hoh, Eunha] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Oceans & Human Hlth, La Jolla, CA 92037 USA.
[Shaul, Nellie J.; Aluwihare, Lihini I.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92037 USA.
[Dodder, Nathan G.; Maruya, Keith A.] Southern Calif Coastal Water Res Project Author, Costa Mesa, CA 92626 USA.
[Mackintosh, Susan A.; Hoh, Eunha] San Diego State Univ, Grad Sch Publ Hlth, San Diego, CA 92182 USA.
[Mackintosh, Susan A.] San Diego State Univ Res Fdn, San Diego, CA 92182 USA.
[Chivers, Susan J.; Danil, Kerri; Weller, David W.] NOAA, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, La Jolla, CA 92037 USA.
RP Hoh, E (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Ctr Oceans & Human Hlth, 9500 Gilman Dr, La Jolla, CA 92037 USA.
EM ehoh@mail.sdsu.edu
RI Dodder, Nathan/C-7971-2015
OI Dodder, Nathan/0000-0001-5913-1767
FU National Science Foundation [OCE-1313747]; National Institute of
Environmental Health Sciences [P01-ES021921]; California State
University Program for Education and Research in Biotechnology
(CSUPERB); California SeaGrant [R/CONT-210EPD, NA10OAR4170060]; Southern
California Coastal Water Research Project Authority
FX This research was funded by the National Science Foundation
(OCE-1313747) and National Institute of Environmental Health Sciences
(P01-ES021921) through the Oceans and Human Health Program, the
California State University Program for Education and Research in
Biotechnology (CSUPERB), California SeaGrant (R/CONT-210EPD,
NA10OAR4170060), and the member agencies of Southern California Coastal
Water Research Project Authority.
NR 79
TC 14
Z9 14
U1 6
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD FEB 3
PY 2015
VL 49
IS 3
BP 1328
EP 1338
DI 10.1021/es505156q
PG 11
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CA6XH
UT WOS:000349060300013
PM 25526519
ER
PT J
AU Sarangapani, PS
Hudson, SD
Jones, RL
Douglas, JF
Pathak, JA
AF Sarangapani, Prasad S.
Hudson, Steven D.
Jones, Ronald L.
Douglas, Jack F.
Pathak, Jai A.
TI Critical Examination of the Colloidal Particle Model of Globular
Proteins
SO BIOPHYSICAL JOURNAL
LA English
DT Article
ID BOVINE SERUM-ALBUMIN; SMALL-ANGLE NEUTRON; X-RAY-SCATTERING; DIRECTIONAL
ATTRACTIVE FORCES; MONOCLONAL-ANTIBODY SOLUTIONS; CONCENTRATED LYSOZYME
SOLUTIONS; CIRCULAR-DICHROISM SPECTRA; POLYELECTROLYTE SOLUTIONS;
CLUSTER FORMATION; AQUEOUS-SOLUTIONS
AB Recent studies of globular protein solutions have uniformly adopted a colloidal view of proteins as particles, a perspective that neglects the polymeric primary structure of these biological macromolecules, their intrinsic flexibility, and their ability to sample a large configurational space. While the colloidal perspective often serves as a useful idealization in many cases, the macromolecular identity of proteins must reveal itself under thermodynamic conditions in which the native state is no longer stable, such as denaturing solvents and high protein concentrations where macromolecules tend to have screened excluded volume, charge, and hydrodynamic interactions. Under extreme pH conditions, charge repulsion interactions within the protein chain can overcome the attractive hydrogen-bonding interactions, holding it in its native globular state. Conformational changes can therefore be expected to have great significance on the shear viscosity and other rheological properties of protein solutions. These changes are not envisioned in conventional colloidal protein models and we have initiated an investigation of the scattering and rheological properties of model proteins. We initiate this effort by considering bovine serum albumin because it is a globular protein whose solution properties have also been extensively investigated as a function of pH, temperature, ionic strength, and concentration. As we anticipated, near-ultraviolet circular dichroism measurements and intrinsic viscosity measurements clearly indicate that the bovine serum albumin tertiary structure changes as protein concentration and pH are varied. Our findings point to limited validity of the colloidal protein model and to the need for further consideration and quantification of the effects of conformational changes on protein solution viscosity, protein association, and the phase behavior. Small-angle Neutron Scattering measurements have allowed us to assess how these conformational changes influence protein size, shape, and interprotein interaction strength.
C1 [Sarangapani, Prasad S.; Pathak, Jai A.] MedImmune, Formulat Sci Dept, Gaithersburg, MD 20878 USA.
[Hudson, Steven D.; Jones, Ronald L.; Douglas, Jack F.] NIST, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA.
RP Pathak, JA (reprint author), MedImmune, Formulat Sci Dept, Gaithersburg, MD 20878 USA.
EM pathakj@medimmune.com
FU MedImmune Postdoctoral Program
FX P.S.S. thanks the MedImmune Postdoctoral Program for fellowship funding.
We thank Dr. Steven Bishop (MedImmune), Dr. Flaviu Gruia (MedImmune),
Arun Parupudi (MedImmune), Dr. Kalman Migler (National Institute of
Standards and Technology (NIST)), and Dr. Debra Audus (NIST) for helpful
discussions. We also thank Dr. Vivek Prabhu (NIST), Dr. Charlie Glinka
(NIST; retired), and Dr. Ralph Nossal (National Institutes of Health,
National Institute of Diabetes and Digestive and Kidney Diseases) for
helpful suggestions on a draft of this manuscript. We also thank the
three anonymous referees whose thorough reviews and constructive
comments have helped improve the quality of this manuscript.
NR 145
TC 20
Z9 20
U1 10
U2 44
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
EI 1542-0086
J9 BIOPHYS J
JI Biophys. J.
PD FEB 3
PY 2015
VL 108
IS 3
BP 724
EP 737
DI 10.1016/j.bpj.2014.11.3483
PG 14
WC Biophysics
SC Biophysics
GA CA2SU
UT WOS:000348758600031
PM 25650939
ER
PT J
AU Adam, TC
Burkepile, DE
Ruttenberg, BI
Paddack, MJ
AF Adam, Thomas C.
Burkepile, Deron E.
Ruttenberg, Benjamin I.
Paddack, Michelle J.
TI Herbivory and the resilience of Caribbean coral reefs: knowledge gaps
and implications for management
SO MARINE ECOLOGY PROGRESS SERIES
LA English
DT Review
DE Phase shift; Grazing impacts; Macroalgae; Parrotfish; Fishing; Diadema;
Climate change; Restoration
ID LONG-TERM DECLINE; DIADEMA-ANTILLARUM POPULATIONS; MEDIATED INDIRECT
INTERACTIONS; PARROTFISH SCARUS-VETULA; REGION-WIDE DECLINES;
SPARISOMA-VIRIDE; PHASE-SHIFTS; FISH COMMUNITIES; CLIMATE-CHANGE; OCEAN
ACIDIFICATION
AB Herbivory is a key process on coral reefs that can facilitate reef-building corals by excluding algae that otherwise negatively impact coral settlement, growth, and survivorship. Over the last several decades, coral cover on Caribbean reefs has declined precipitously. On many reefs, large structurally complex corals have been replaced by algae and other non-reef-building organisms, resulting in the collapse of physical structure and the loss of critical ecosystem services. The drivers of coral decline on Caribbean reefs are complex and vary among locations. On many reefs, populations of key herbivores have been greatly reduced by disease and over-fishing, and this has resulted in the proliferation of algae that hinder coral recovery following major disturbances. Yet, evidence that increases in herbivory can promote coral recovery on Caribbean reefs has been mixed. Here, we discuss key contingencies that will modify the relationships between herbivores, algae, and corals and identify critical knowledge gaps that limit our ability to predict when and where herbivores are most likely to facilitate coral persistence and recovery. Impacts of herbivores on coral reef ecosystems will vary greatly in space and time and will depend on herbivore diversity and species identity. While there are still a large number of knowledge gaps, we make several management recommendations based on our current understanding of the processes that structure reef ecosystems. Reversing the fate of Caribbean coral reefs will require the development of integrated management strategies that simultaneously address multiple stressors in addition to the impacts of fisheries on herbivore assemblages.
C1 [Adam, Thomas C.; Burkepile, Deron E.] Florida Int Univ, Dept Biol Sci, Marine Sci Program, North Miami, FL 33181 USA.
[Ruttenberg, Benjamin I.] NOAA Fisheries, Southeast Fisheries Sci Ctr, Miami, FL 33149 USA.
[Paddack, Michelle J.] Calif Polytech State Univ San Luis Obispo, Dept Biol Sci, San Luis Obispo, CA 93410 USA.
[Adam, Thomas C.] Santa Barbara City Coll, Dept Biol Sci, Santa Barbara, CA 93109 USA.
RP Adam, TC (reprint author), Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA.
EM thomas.adam@lifesci.ucsb.edu
RI Ruttenberg, Benjamin/D-2556-2012
FU NOAA's Coral Reef Conservation Program
FX This work was supported by a grant from NOAA's Coral Reef Conservation
Program to D.E.B. and B.I.R. We thank M. W. Miller, J. Schull, and 2
anonymous reviewers for helpful feedback on an earlier version of this
manuscript.
NR 210
TC 18
Z9 18
U1 15
U2 155
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 0171-8630
EI 1616-1599
J9 MAR ECOL PROG SER
JI Mar. Ecol.-Prog. Ser.
PD FEB 3
PY 2015
VL 520
BP 1
EP 20
DI 10.3354/meps11170
PG 20
WC Ecology; Marine & Freshwater Biology; Oceanography
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Oceanography
GA CB0GA
UT WOS:000349302600001
ER
PT J
AU Froehlich, HE
Hennessey, SM
Essington, TE
Beaudreau, AH
Levin, PS
AF Froehlich, Halley E.
Hennessey, Shannon M.
Essington, Timothy E.
Beaudreau, Anne H.
Levin, Phillip S.
TI Spatial and temporal variation in nearshore macrofaunal community
structure in a seasonally hypoxic estuary
SO MARINE ECOLOGY PROGRESS SERIES
LA English
DT Article
DE Hypoxia; Estuary; Nearshore community; Physiological tolerance; Hood
Canal
ID GULF-OF-MEXICO; SOLE PAROPHRYS-VETULUS; MUNIDA-QUADRISPINA BENEDICT;
MARINE BENTHIC COMMUNITIES; CRAB CANCER-MAGISTER; NEUSE RIVER ESTUARY;
CHESAPEAKE BAY; DUNGENESS CRAB; DEMERSAL FISH; BEHAVIORAL-RESPONSES
AB Low dissolved oxygen (DO), or hypoxia, has emerged as a key threat to marine and estuarine ecosystems worldwide. While deep, offshore severe hypoxia (<2 mg l(-1)) can cause mortality, the non-lethal impact of lower DO on the shallow nearshore (<= 30 m) community is not well understood, despite the importance of the habitat for numerous species. We evaluated the sublethal influence of hypoxia on the nearshore, subtidal community of Hood Canal, Washington, USA, a seasonally hypoxic estuary. We compared 2 regions (southern impacted and northern reference) by using underwater monitoring to record weekly videos of benthic mobile species at transects at 3 depths (10, 20, and 30 m). We found the community composition was significantly different between the 2 regions; the south was primarily composed of hypoxia-tolerant invertebrates and fewer fish species compared to the northern site. Relative to other predictors, DO performed moderately well in describing the occurrence of the most abundant species. Additionally, tolerant species displayed almost a 3-fold increase in presence below a mean (+/- SE) DO tolerance threshold of 3.77 +/- 0.27 mg l(-1), while more sensitive species declined. The magnitude in change towards more tolerant species was also greater in the south. Ultimately, comparing our findings to long-term DO trends in Hood Canal revealed the potential for a more persistent low DO state in the southern reaches. This study provides insight into the complex regional differences in community structure and potential sensitivity of nearshore communities to other perturbations in estuarine systems.
C1 [Froehlich, Halley E.; Hennessey, Shannon M.; Essington, Timothy E.; Beaudreau, Anne H.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98105 USA.
[Levin, Phillip S.] NOAA, NW Fisheries Sci Ctr, Seattle, WA 98112 USA.
RP Froehlich, HE (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98105 USA.
EM hefroehl@uw.edu
FU National Science Foundation through the Graduate Research Fellowship
Program [DGE-1256082]
FX Tremendous thanks to Nolan Grose and Frank Stevick for the copious
number of hours dedicated to data collection. Additionally, we are
forever in debted to Eric R. Nelson for his expertise in LabVIEW. The
manuscript was greatly improved by comments from Charles 'Si' Simenstad,
P. Sean McDonald, and the scientists of the Essington Lab. This research
was funded by Washington Sea Grant and the University of Washington,
School of Aquatic and Fishery Sciences. Partial funding of H.E.F. was
also provided by the National Science Foundation through the Graduate
Research Fellowship Program (DGE-1256082). Research was conducted in
accordance with institutional, state, national, and international
guidelines regarding the use of animals in research.
NR 83
TC 1
Z9 1
U1 1
U2 27
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 0171-8630
EI 1616-1599
J9 MAR ECOL PROG SER
JI Mar. Ecol.-Prog. Ser.
PD FEB 3
PY 2015
VL 520
BP 67
EP 83
DI 10.3354/meps11105
PG 17
WC Ecology; Marine & Freshwater Biology; Oceanography
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Oceanography
GA CB0GA
UT WOS:000349302600005
ER
PT J
AU Hart, CE
Blanco, GS
Coyne, MS
Delgado-Trejo, C
Godley, BJ
Jones, TT
Resendiz, A
Seminoff, JA
Witt, MJ
Nichols, WJ
AF Hart, Catherine E.
Blanco, Gabriela S.
Coyne, Michael S.
Delgado-Trejo, Carlos
Godley, Brendan J.
Jones, T. Todd
Resendiz, Antonio
Seminoff, Jeffrey A.
Witt, Matthew J.
Nichols, Wallace J.
TI Multinational Tagging Efforts Illustrate Regional Scale of Distribution
and Threats for East Pacific Green Turtles (Chelonia mydas agassizii)
SO PLOS ONE
LA English
DT Article
ID GULF-OF-CALIFORNIA; POST-NESTING MIGRATIONS; LEATHERBACK-SEA-TURTLES;
SATELLITE TRACKING; COSTA-RICA; DERMOCHELYS-CORIACEA; FORAGING AREA;
NATIONAL-PARK; PROTECTED AREAS; GLOBAL PATTERNS
AB To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacan (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacan to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale.
C1 [Hart, Catherine E.; Coyne, Michael S.; Godley, Brendan J.; Witt, Matthew J.] Univ Exeter, Ctr Ecol & Conservat, Penryn, Cornwall, England.
[Blanco, Gabriela S.] Drexel Univ, Dept Biol, Philadelphia, PA 19104 USA.
[Coyne, Michael S.] SEATURTLE Org, Durham, NC USA.
[Delgado-Trejo, Carlos] Univ Michoacana, Inst Invest Recursos Nat, Morelia, Michoacan, Mexico.
[Jones, T. Todd] NOAA Fisheries, Pacific Islands Fisheries Sci Ctr, Honolulu, HI USA.
[Resendiz, Antonio] Inst Nacl Ecol, Direcc Gen Vida Silvestre, Secretaria Medio Ambiente Recursos Natur, Ensenada, Baja California, Mexico.
[Seminoff, Jeffrey A.] NOAA, Southwest Fisheries Sci Ctr, La Jolla, CA USA.
[Nichols, Wallace J.] Calif Acad Sci, San Francisco, CA 94118 USA.
RP Nichols, WJ (reprint author), Calif Acad Sci, Golden Gate Pk, San Francisco, CA 94118 USA.
EM wallacejnichols@me.com
RI godley, brendan/A-6139-2009
OI godley, brendan/0000-0003-3845-0034
FU Earthwatch Institute; David and Lucile Packard Foundation; Wallace
Research Foundation; PADI Foundation; Arizona-Sonora Desert Museum;
Unversity of Exeter; European Social Fund; Consejo Nacional de Ciencia y
Tecnologia (iMexico); Fulbright Fellowship; Marshall Fellowship; Darwin
Initiative; Natural Environment Research Council
FX The work was supported by Earthwatch Institute, David and Lucile Packard
Foundation, Wallace Research Foundation, PADI Foundation and the
Arizona-Sonora Desert Museum. C. E. H. received a Masters degree bursary
from the Unversity of Exeter and the European Social Fund and would like
to thank Consejo Nacional de Ciencia y Tecnologia (iMexico) for support
through a PhD scholarship. W. J. N. was supported by a Fulbright
Fellowship and a Marshall Fellowship during the period field research in
Baja California was conducted. B. J. G. is supported by the Darwin
Initiative, European Social Fund and The Natural Environment Research
Council. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
NR 83
TC 2
Z9 2
U1 3
U2 44
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 3
PY 2015
VL 10
IS 2
AR e0116225
DI 10.1371/journal.pone.0116225
PG 17
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CA3QZ
UT WOS:000348822600023
PM 25646803
ER
PT J
AU Nguyen, TB
Crounse, JD
Teng, AP
Clair, JMS
Paulot, F
Wolfe, GM
Wennberg, PO
AF Nguyen, Tran B.
Crounse, John D.
Teng, Alex P.
Clair, Jason M. St.
Paulot, Fabien
Wolfe, Glenn M.
Wennberg, Paul O.
TI Rapid deposition of oxidized biogenic compounds to a temperate forest
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE biosphere-atmosphere exchange; isoprene; dry deposition; OVOCs; fluxes
ID SECONDARY ORGANIC AEROSOL; GASEOUS DRY DEPOSITION; HYDROGEN-PEROXIDE;
ISOPRENE EPOXYDIOLS; REACTIVE UPTAKE; DECIDUOUS FOREST; EDDY COVARIANCE;
ATMOSPHERIC DEPOSITION; NITROGEN DEPOSITION; FLUX MEASUREMENTS
AB We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (similar to 1 nmol m(-2).s(-1)). GEOS-Chem, a widely used atmospheric chemical transport model, currently under-estimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.
C1 [Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; Clair, Jason M. St.; Wennberg, Paul O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Wennberg, Paul O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA.
[Paulot, Fabien] Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
[Paulot, Fabien] Princeton Univ, Princeton, NJ 08544 USA.
[Wolfe, Glenn M.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA.
[Wolfe, Glenn M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA.
RP Wennberg, PO (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
EM tbn@caltech.edu; wennberg@caltech.edu
RI Wolfe, Glenn/D-5289-2011; Chem, GEOS/C-5595-2014; Crounse,
John/C-3700-2014;
OI Crounse, John/0000-0001-5443-729X; Teng, Alexander/0000-0002-6434-0501
FU National Science Foundation (NSF) [AGS-1240604, AGS-1331360]; Earth
Observing Laboratory at the National Center for Atmospheric Research;
Atmospheric Research and Analysis; Electric Power Research Institute
FX We thank the organizers and committee members of the SOAS campaign: A.
G. Carlton, A. H. Goldstein, J. L. Jimenez, R. W. Pinder, J. de Gouw, B.
J. Turpin, and A. B. Guenther. We acknowledge C. J. Groff at Purdue
University for his help with leaf area index measurements and tree
surveys. We thank D. J. Jacob and the Atmospheric Chemistry Modeling
Group at Harvard University for making GEOS-Chem available for this
work. Meteorological data used in the GEOS-Chem simulations were
provided by the Global Modeling and Assimilation Office at NASA Goddard
Space Flight Center. We acknowledge funding from the National Science
Foundation (NSF) under Grant AGS-1240604 and NSF Postdoctoral Research
Fellowship program Award AGS-1331360. Financial and logistical support
for SOAS was provided by the NSF, the Earth Observing Laboratory at the
National Center for Atmospheric Research (operated by NSF), the
personnel at Atmospheric Research and Analysis, and the Electric Power
Research Institute.
NR 94
TC 31
Z9 32
U1 15
U2 95
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 3
PY 2015
VL 112
IS 5
BP E392
EP E401
DI 10.1073/pnas.1418702112
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CA7HF
UT WOS:000349087700005
PM 25605913
ER
PT J
AU Li, J
Sinith, AE
Jiang, P
Stalick, JK
Sleight, AW
Subramanian, MA
AF Li, Jun
Sinith, Andrew E.
Jiang, Peng
Stalick, Judith K.
Sleight, Arthur W.
Subramanian, M. A.
TI True Composition and Structure of Hexagonal "YAIO(3)", Actually
Y3Al3O8CO3
SO INORGANIC CHEMISTRY
LA English
DT Article
ID CRYSTAL-STRUCTURE; PHASE; OXYCARBONATE; TRANSITION; YTTRIUM; INMNO3;
OXIDE; MG; EU; M'
AB The discovery of a brilliant-blue color upon the introduction of Mn3+ to the trigonal-bipyramidal (TBP) sites in YInO3 has led to a search for other hosts for Mn3+ in TBP coordination. An obvious choice would be YAlO3. This compound, which has only been prepared through a citrate precursor route, has long been considered isostructural with YInO3. However, Mn3+ substitutions into YAlO3 have failed to produce a product with the anticipated color. We find that the hexagonal structure for YAlO3 with Al in TBP coordination proposed in 1963 cannot be correct based on its unit cell dimensions and bond-valence sums. Our studies indicate instead that all, or nearly all, of the Al in this compound has a coordination number (CN) of 6. Upon heating in air, this compound transforms to YAlO3, with the perovskite structure liberating CO2. The compound long assumed to be a hexagonal form of YAlO3 is actually an oxycarbonate with the ideal composition Y3Al3O8CO3. The structure of this compound has been characterized by powder neutron and X-ray diffraction data obtained as a function of temperature, magic-angle-spinning 27Al NMR, Fourier transform infrared, and transmission electron microscopy. Refinement of neutron diffraction data indicates a composition of Y3Al3O8CO3. We find that the hexagonal structures of YGaO3 and YFeO3 from the citrate route are also stabilized by small amounts of carbonate. Surprisingly, Y3Al3O8CO3 forms a complete solid solution with YBO3 having tetrahedral borate groups. Other unlikely solid solutions were prepared in the YAlO3-YMnO3, YAlO3-YFeO3, YAlO3-YBO3, YBO3-YMnO3, YBO3-YFeO3, and YBO3-YGaO3 systems.
C1 [Li, Jun; Sinith, Andrew E.; Jiang, Peng; Sleight, Arthur W.; Subramanian, M. A.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA.
[Stalick, Judith K.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
RP Subramanian, MA (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA.
EM mas.subramanian@oregonstate.edu
FU NSF [DMR 0804167]
FX This work was supported by NSF Grant DMR 0804167. We thank Dr. Jerry Hu
for solid-state NMR measurements and acknowledge use of the facilities
of the UCSB Materials Research Laboratory. We acknowledge support of the
National Institute of Standards and Technology, U.S. Department of
Commerce, in providing the neutron research facilities used in this
work. The identification of any commercial product or tradename does not
imply endorsement or recommendation by the National Institute of
Standards and Technology.
NR 33
TC 4
Z9 4
U1 1
U2 55
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD FEB 2
PY 2015
VL 54
IS 3
BP 837
EP 844
DI 10.1021/ic502027k
PG 8
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA CA4PO
UT WOS:000348887400019
PM 25360864
ER
PT J
AU Zhang, ZJ
Jin, TT
Xu, MM
Huang, QZ
Li, MR
Zhao, JT
AF Zhang, Zhi-Jun
Jin, Teng-Teng
Xu, Meng-Meng
Huang, Qing-Zhen
Li, Man-Rong
Zhao, Jing-Tai
TI Low-Temperature Vaterite-Type LuBO3, a Vacancy-Stabilized Phase
Synthesized at High Temperature
SO INORGANIC CHEMISTRY
LA English
DT Article
ID SCINTILLATION PROPERTIES; LUMINESCENT PROPERTIES; CERIUM; TB;
TRANSITION; PHOSPHORS; EU3+; PR; SM; LN
AB Low-temperature vaterite-type LuBO3 (pi-LBO) was prepared by a solid-state reaction method at high temperature. The reasoning of the existence of vacancy-stabilized pi-LBO was investigated for the first time using neutron diffraction patterns, Fourier transform infrared (FT-IR) spectra, and high-resolution transmission electron microscopy. The results clearly demonstrated that the B and O vacancies in pi-LBO came into being during the heating process. The existence of an open B3O9 ring consisting of BO3 and BO4 units in pi-LBO due to the B and O vacancies was demonstrated by FT-IR. The vacuum ultraviolet-ultraviolet spectroscopic properties of pi-LBO were studied in detail. In addition, the luminescence mechanism of Ce3+ in pi-LBO was put forward and discussed with that of calcite-type LuBO3 (beta-LBO).
C1 [Zhang, Zhi-Jun; Zhao, Jing-Tai] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
[Jin, Teng-Teng] SGS CSTC Stand Tech Serv, Shanghai, Peoples R China.
[Xu, Meng-Meng] Chinese Acad Sci, Shanghai Inst Ceram, Key Lab Transparent Optofunct Inorgan Mat, Shanghai 200050, Peoples R China.
[Huang, Qing-Zhen] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Li, Man-Rong] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA.
RP Zhao, JT (reprint author), Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China.
EM jtzhao@shu.edu.cn
RI Li, Man-Rong/D-1697-2012
OI Li, Man-Rong/0000-0001-8424-9134
FU National Natural Science Foundation of China [11104298]; U1332202
Innovation program of Shanghai Institute of Ceramics [Y34ZC130G]; Open
Fund of Key Laboratory of Transparent Opto-functional Inorganic
Materials, Shanghai Institute of Ceramics of Chinese Academy of Sciences
FX This work was supported by the National Natural Science Foundation of
China under Grant 11104298, the U1332202 Innovation program of Shanghai
Institute of Ceramics under Grant Y34ZC130G, and the Open Fund of Key
Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai
Institute of Ceramics of Chinese Academy of Sciences. The authors thank
Professor David Walker at Columbia University, New York, NY, for his
help on the high-pressure work.
NR 23
TC 2
Z9 2
U1 6
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD FEB 2
PY 2015
VL 54
IS 3
BP 969
EP 975
DI 10.1021/ic502337x
PG 7
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA CA4PO
UT WOS:000348887400036
PM 25575213
ER
PT J
AU Fossette, S
Gleiss, AC
Chalumeau, J
Bastian, T
Armstrong, CD
Vandenabeele, S
Karpytchev, M
Hays, GC
AF Fossette, Sabrina
Gleiss, Adrian Christopher
Chalumeau, Julien
Bastian, Thomas
Armstrong, Claire Denise
Vandenabeele, Sylvie
Karpytchev, Mikhail
Hays, Graeme Clive
TI Current-Oriented Swimming by Jellyfish and Its Role in Bloom Maintenance
SO CURRENT BIOLOGY
LA English
DT Article
ID LOCAL RETENTION; SEA-TURTLES; BEHAVIOR; MIGRATION; FISHES; AGGREGATIONS;
NAVIGATION; COPEPOD; ORIENTATION; POPULATIONS
AB Cross-flows (winds or currents) affect animal movements [1-3]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [1]. Animals able to only weakly fly or swim will be the most impacted (e.g., [4]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [1, 2]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined in situ observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [5] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [6, 7]. It also contributes to improve predictions of jellyfish blooms' magnitude and movements in coastal waters.
C1 [Fossette, Sabrina; Gleiss, Adrian Christopher; Bastian, Thomas; Armstrong, Claire Denise; Vandenabeele, Sylvie; Hays, Graeme Clive] Swansea Univ, Coll Sci, Swansea Lab Anim Movement, Swansea SA2 8PP, W Glam, Wales.
[Chalumeau, Julien; Karpytchev, Mikhail] Univ La Rochelle, UFR Sci, LIENSs UMR 7266, F-17000 La Rochelle, France.
[Hays, Graeme Clive] Deakin Univ, Sch Life & Environm Sci, Ctr Integrat Ecol, Warrnambool, Vic 3280, Australia.
RP Fossette, S (reprint author), NOAA, Div Environm Res, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Monterey, CA 93940 USA.
EM sabrina.fossette@googlemail.com
RI Bastian, Thomas/G-3056-2010;
OI Bastian, Thomas/0000-0001-7133-1083; Gleiss, Adrian/0000-0002-9960-2858
FU Climate Change Consortium for Wales (C3W); Natural Environment Research
Council of the UK (NERC); Esmee Fairbairn Foundation; Charente-Maritime
General Council (France)
FX G.C.H. was supported by the Climate Change Consortium for Wales (C3W),
the Natural Environment Research Council of the UK (NERC), and the Esmee
Fairbairn Foundation. J.C. was supported through a PhD Fellowship from
the Charente-Maritime General Council (France).
NR 58
TC 19
Z9 19
U1 7
U2 62
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0960-9822
EI 1879-0445
J9 CURR BIOL
JI Curr. Biol.
PD FEB 2
PY 2015
VL 25
IS 3
BP 342
EP 347
DI 10.1016/j.cub.2014.11.050
PG 6
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA CA5SB
UT WOS:000348967000022
PM 25619761
ER
PT J
AU Kellar, NM
Catelani, KN
Robbins, MN
Trego, ML
Allen, CD
Danil, K
Chivers, SJ
AF Kellar, Nicholas M.
Catelani, Krista N.
Robbins, Michelle N.
Trego, Marisa L.
Allen, Camryn D.
Danil, Kerri
Chivers, Susan J.
TI Blubber Cortisol: A Potential Tool for Assessing Stress Response in
Free-Ranging Dolphins without Effects due to Sampling
SO PLOS ONE
LA English
DT Article
ID LIONS EUMETOPIAS-JUBATUS; TURSIOPS-TRUNCATUS; FECAL GLUCOCORTICOIDS;
THYROID-HORMONES; SEASONAL-CHANGES; BIOPSY SYSTEM; BLOOD-OXYGEN;
PREGNANCY; CAPTURE; WHALES
AB When paired with dart biopsying, quantifying cortisol in blubber tissue may provide an index of relative stress levels (i.e., activation of the hypothalamus-pituitary-adrenal axis) in free-ranging cetacean populations while minimizing the effects of the act of sampling. To validate this approach, cortisol was extracted from blubber samples collected from beach-stranded and bycaught short-beaked common dolphins using a modified blubber steroid isolation technique and measured via commercially available enzyme immunoassays. The measurements exhibited appropriate quality characteristics when analyzed via a bootstraped stepwise parallelism analysis (observed/expected = 1.03, 95%CI: 99.6-1.08) and showed no evidence of matrix interference with increasing sample size across typical biopsy tissue masses (75-150mg; r(2) = 0.012, p = 0.78, slope = 0.022ng(cortisol) (deviation)/ul(tissue) (extract added)). The relationships between blubber cortisol and eight potential cofactors namely, 1) fatality type (e.g., stranded or bycaught), 2) specimen condition (state of decomposition), 3) total body length, 4) sex, 5) sexual maturity state, 6) pregnancy status, 7) lactation state, and 8) adrenal mass, were assessed using a Bayesian generalized linear model averaging technique. Fatality type was the only factor correlated with blubber cortisol, and the magnitude of the effect size was substantial: beach-stranded individuals had on average 6.1-fold higher cortisol levels than those of bycaught individuals. Because of the difference in conditions surrounding these two fatality types, we interpret this relationship as evidence that blubber cortisol is indicative of stress response. We found no evidence of seasonal variation or a relationship between cortisol and the remaining cofactors.
C1 [Kellar, Nicholas M.; Catelani, Krista N.; Robbins, Michelle N.; Trego, Marisa L.; Allen, Camryn D.; Danil, Kerri; Chivers, Susan J.] Natl Marine Fisheries Serv, Natl Ocean & Atmospher Adm, Southwest Fisheries Sci Ctr, Protected Resources Div, La Jolla, CA 92038 USA.
[Catelani, Krista N.; Robbins, Michelle N.; Trego, Marisa L.] Ocean Associates Inc, Arlington, VA USA.
RP Kellar, NM (reprint author), Natl Marine Fisheries Serv, Natl Ocean & Atmospher Adm, Southwest Fisheries Sci Ctr, Protected Resources Div, La Jolla, CA 92038 USA.
EM Nick.Kellar@noaa.gov
FU Office of Naval Research [N0001411IP20080]; National Marine Fisheries
Service
FX The Office of Naval Research, award N0001411IP20080, was the primary
funding source for this research with additional support from the
National Marine Fisheries Service. The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 64
TC 6
Z9 6
U1 6
U2 43
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 2
PY 2015
VL 10
IS 2
AR e0115257
DI 10.1371/journal.pone.0115257
PG 16
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CA3QK
UT WOS:000348821200009
PM 25643144
ER
PT J
AU Tesfagiorgis, KB
Mahani, SE
Krakauer, NY
Norouzi, H
Khanbilvardi, R
AF Tesfagiorgis, Kibrewossen B.
Mahani, Shayesteh E.
Krakauer, Nir Y.
Norouzi, Hamidreza
Khanbilvardi, Reza
TI Evaluation of radar precipitation estimates near gap regions: a case
study in the Colorado River basin
SO REMOTE SENSING LETTERS
LA English
DT Article
ID COMPLEX TERRAIN; RAINFALL
AB Radar precipitation estimation is very useful for hydrological and climatological studies. However, radar precipitation has inherent difficulty in estimating precipitation in mountainous regions. In developed countries such as the United States where there are extensive precipitation radar networks, gaps in the radar precipitation field are usually due to radar beam blockage by mountains. The goal of this study is to evaluate the performance of a daily radar precipitation field (Stage-II) against rain gauge measurements near radar gap areas in the Colorado River basin of the United States (southwestern Colorado, southeastern Utah, northeastern Arizona and northwestern New Mexico). We evaluated daily precipitation data for the years spanning from 2007 to 2009. Statistical score skills including correlation and bias are used for evaluation. Compared to gauge measurements, Stage-II fails to capture the altitude dependence of precipitation in the region. Bias analysis shows that Stage-II underestimates precipitation at higher elevation. Seasonal evaluations of Stage-II indicate that it underestimates cold season precipitation in the study area. Overall, the results show that the error in Stage-II precipitation estimates made within 100km from the gap area, as measured against rain gauge measurements, is considerable, and caution is warranted for its use in hydrological and water management applications.
C1 [Tesfagiorgis, Kibrewossen B.] CUNY, Borough Manhattan Community Coll, Dept Sci, New York, NY 10017 USA.
[Mahani, Shayesteh E.; Krakauer, Nir Y.; Khanbilvardi, Reza] CUNY City Coll, NOAA CREST, New York, NY 10031 USA.
[Krakauer, Nir Y.; Khanbilvardi, Reza] CUNY City Coll, Dept Civil Engn, New York, NY 10031 USA.
[Norouzi, Hamidreza] CUNY, New York City Coll Technol, Brooklyn, NY 11210 USA.
RP Tesfagiorgis, KB (reprint author), CUNY, Borough Manhattan Community Coll, Dept Sci, New York, NY 10017 USA.
EM ktesfagiorgis@bmcc.cuny.edu
OI Norouzi, Hamid/0000-0003-0405-5108
NR 12
TC 0
Z9 0
U1 0
U2 1
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 2150-704X
EI 2150-7058
J9 REMOTE SENS LETT
JI Remote Sens. Lett.
PD FEB 1
PY 2015
VL 6
IS 2
BP 165
EP 174
DI 10.1080/2150704X.2015.1015655
PG 10
WC Remote Sensing; Imaging Science & Photographic Technology
SC Remote Sensing; Imaging Science & Photographic Technology
GA CJ0JF
UT WOS:000355160900008
ER
PT J
AU Shadwick, EH
Trull, TW
Tilbrook, B
Sutton, AJ
Schulz, E
Sabine, CL
AF Shadwick, E. H.
Trull, T. W.
Tilbrook, B.
Sutton, A. J.
Schulz, E.
Sabine, C. L.
TI Seasonality of biological and physical controls on surface ocean CO2
from hourly observations at the Southern Ocean Time Series site south of
Australia
SO GLOBAL BIOGEOCHEMICAL CYCLES
LA English
DT Article
ID POLAR FRONTAL ZONES; ANTARCTIC CIRCUMPOLAR CURRENT; NET COMMUNITY
PRODUCTION; ANTHROPOGENIC CO2; MIXED-LAYER; INORGANIC CARBON;
PACIFIC-OCEAN; GAS-EXCHANGE; BATS SITE; SEA
AB The Subantarctic Zone (SAZ), which covers the northern half of the Southern Ocean between the Subtropical and Subantarctic Fronts, is important for air-sea CO2 exchange, ventilation of the lower thermocline, and nutrient supply for global ocean productivity. Here we present the first high-resolution autonomous observations of mixed layer CO2 partial pressure (pCO(2)) and hydrographic properties covering a full annual cycle in the SAZ. The amplitude of the seasonal cycle in pCO(2) (similar to 60 mu atm), from near-atmospheric equilibrium in late winter to similar to 330 mu atm in midsummer, results from opposing physical and biological drivers. Decomposing these contributions demonstrates that the biological control on pCO(2) (up to 100 mu atm), is 4 times larger than the thermal component and driven by annual net community production of 2.45 +/- 1.47 mol C m(-2) yr(-1). After the summer biological pCO(2) depletion, the return to near-atmospheric equilibrium proceeds slowly, driven in part by autumn entrainment into a deepening mixed layer and achieving full equilibration in late winter and early spring as respiration and advection complete the annual cycle. The shutdown of winter convection and associated mixed layer shoaling proceeds intermittently, appearing to frustrate the initiation of production. Horizontal processes, identified from salinity anomalies, are associated with biological pCO(2) signatures but with differing impacts in winter (when they reflect far-field variations in dissolved inorganic carbon and/or biomass) and summer (when they suggest promotion of local production by the relief of silicic acid or iron limitation). These results provide clarity on SAZ seasonal carbon cycling and demonstrate that the magnitude of the seasonal pCO(2) cycle is twice as large as that in the subarctic high-nutrient, low-chlorophyll waters, which can inform the selection of optimal global models in this region.
C1 [Shadwick, E. H.; Trull, T. W.; Tilbrook, B.] Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia.
[Trull, T. W.; Tilbrook, B.] CSIRO Oceans & Atmosphere, Hobart, Tas, Australia.
[Sutton, A. J.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA.
[Sutton, A. J.; Sabine, C. L.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
[Schulz, E.] Bur Meteorol, Ctr Australian Weather & Climate Res, Melbourne, Australia.
RP Shadwick, EH (reprint author), Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA.
EM shadwick@vims.edu
RI Trull, Tom/B-7028-2014; Tilbrook, Bronte/A-1522-2012;
OI Tilbrook, Bronte/0000-0001-9385-3827; Sutton,
Adrienne/0000-0002-7414-7035
FU Australian Government's Cooperative Research Centres Program, through
the Antarctic Climate and Ecosystems Cooperative Research Centre (ACE
CRC); IMOS; ACE CRC; Australian Marine National Facility
FX This work was supported by the Australian Government's Cooperative
Research Centres Program, through the Antarctic Climate and Ecosystems
Cooperative Research Centre (ACE CRC). The SOTS moorings are supported
by IMOS, the ACE CRC, and the Australian Marine National Facility.
Mooring construction was carried out by Danny Mclaughlan, Jim La Duke,
and David Cherry (all CSIRO). Mark Rosenberg (ACE CRC) led the mooring
deployments and recoveries, with additional assistance by Stephen Bray
(ACE CRC). Peter Jansen (IMOS) carried out preparation, installation,
and data recovery from the CTD and temperature instruments.
Predeployment and postdeployment instrument calibrations were carried
out by Rob Key (CSIRO) for temperature and salinity. We thank Kate Berry
for TCO2 and TA analyses, Ben Weeding for mixed layer depth
computations, and Andrew Lenton for providing the CARS data. We are
grateful to Philip Boyd and Richard Matear for helpful discussions, and
to two anonymous reviewers for thoughtful suggestions. Ocean color and
sea surface temperature visualizations used in this study were produced
with the Giovanni online data system, developed and maintained by the
NASA GES DISC. The SOFS pCO2 data are archived at the Carbon
Dioxide Information Analysis Center
(http://cdiac.ornl.gov/oceans/ime_series_moorings.html), hydrographic
and meteorological data are archived at the Australian Integrated Marine
Observing Network portal (http://www.imos.org.au/sots.html). This paper
is contribution 3415 of the Virginia Institute of Marine Science,
College of William and Mary.
NR 71
TC 9
Z9 9
U1 8
U2 14
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0886-6236
EI 1944-9224
J9 GLOBAL BIOGEOCHEM CY
JI Glob. Biogeochem. Cycle
PD FEB
PY 2015
VL 29
IS 2
BP 223
EP 238
DI 10.1002/2014GB004906
PG 16
WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric
Sciences
GA CH9UF
UT WOS:000354381200008
ER
PT J
AU McNitt-Gray, MF
Kim, GH
Zhao, BS
Schwartz, LH
Clunie, D
Cohen, K
Petrick, N
Fenimore, C
Lu, ZQJ
Buckler, AJ
AF McNitt-Gray, Michael F.
Kim, Grace Hyun
Zhao, Binsheng
Schwartz, Lawrence H.
Clunie, David
Cohen, Kristin
Petrick, Nicholas
Fenimore, Charles
Lu, Z. Q. John
Buckler, Andrew J.
TI Determining the Variability of Lesion Size Measurements from CT Patient
Data Sets Acquired under "No Change" Conditions
SO TRANSLATIONAL ONCOLOGY
LA English
DT Article
ID LUNG-CANCER; TUMOR MEASUREMENTS; SOLID TUMORS; TRUTH DATA; THERAPY;
SEGMENTATION; EVALUATE; ERROR; SCANS
AB PURPOSE: To determine the variability of lesion size measurements in computed tomography data sets of patients imaged under a "no change" ("coffee break") condition and to determine the impact of two reading paradigms on measurement variability. METHOD AND MATERIALS: Using data sets from 32 non-small cell lung cancer patients scanned twice within 15 minutes ("no change"), measurements were performed by five radiologists in two phases: (1) independent reading of each computed tomography dataset (timepoint): (2) a locked, sequential reading of datasets. Readers performed measurements using several sizing methods, including one-dimensional (1D) longest in-slice dimension and 3D semi-automated segmented volume. Change in size was estimated by comparing measurements performed on both timepoints for the same lesion, for each reader and each measurement method. For each reading paradigm, results were pooled across lesions, across readers, and across both readers and lesions, for each measurement method. RESULTS: The mean percent difference (+/- SD) when pooled across both readers and lesions for 1D and 3D measurements extracted from contours was 2.8 +/- 22.2% and 23.4 +/- 105.0%, respectively, for the independent reads. For the locked, sequential reads, the mean percent differences (+/- SD) reduced to 2.52 +/- 14.2% and 7.4 +/- 44.2% for the 1D and 3D measurements, respectively. CONCLUSION: Even under a "no change" condition between scans, there is variation in lesion size measurements due to repeat scans and variations in reader, lesion, and measurement method. This variation is reduced when using a locked, sequential reading paradigm compared to an independent reading paradigm.
C1 [McNitt-Gray, Michael F.; Kim, Grace Hyun] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90024 USA.
[Zhao, Binsheng; Schwartz, Lawrence H.] Columbia Univ, Med Ctr, New York, NY USA.
[Clunie, David] Pixel Med Publishing LLC, Bangor, PA USA.
[Clunie, David] Core Lab Partners Inc, Princeton, NJ USA.
[Cohen, Kristin] Janssen Pharmaceut Res & Dev, Titusville, NJ USA.
[Cohen, Kristin] Core Lab Partners Inc, Titusville, NJ USA.
[Petrick, Nicholas] US FDA, Ctr Devices & Radiol Hlth, Silver Spring, MD USA.
[Fenimore, Charles] Image Qual Measurement Consultancy, Gaithersburg, MD USA.
[Lu, Z. Q. John] NIST, Gaithersburg, MD 20899 USA.
[Buckler, Andrew J.] Elucid Bioimaging Inc, Wenham, MA USA.
RP McNitt-Gray, MF (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, 924 Westwood Blvd,Suite 650, Los Angeles, CA 90024 USA.
EM mmcnittgray@mednet.ucla.edu
OI Buckler, Andrew/0000-0002-0786-4835; McNItt-Gray,
Michael/0000-0003-3004-4613
FU RSNA Quantitative Imaging Biomarker Alliance (QIBA) - National Institute
of Biomedical Imaging and BIoengineering American Recovery and
Reinvestment Act of funds
FX The authors acknowledge the efforts of several key contributors to this
work. CoreLab Partners, Inc conducted the reader study component of this
investigation. They provided the reading facility, review workstations,
software, and logistical support. CoreLab Partners radiologists also
participated as readers. Therefore, we acknowledge CoreLab Partners for
their support and specifically acknowledge CoreLab Partners radiologists
Kevin Byrne, Steven Kaplan, Julie Barudin, Joyce Sherman, Kathy Slazak,
George Edeburn, and J. Michael O'Neal for participating as readers in
this study. Finally, we acknowledge financial support from the RSNA
Quantitative Imaging Biomarker Alliance (QIBA) provided by National
Institute of Biomedical Imaging and BIoengineering American Recovery and
Reinvestment Act of 2009 funds. Certain commercial equipment,
instruments, software, or materials are identified in this paper to
foster understanding. Such identification does not imply recommendation
or endorsement by the National Institute of Standards and Technology nor
does it imply that the materials or equipment identified are necessarily
the best available for the purpose. Similarly, the mention of commercial
entities, or commercial products, their sources, or their use in
connection with materials reported herein is not to be construed as
either an actual or implied endorsement of such entities or products by
the Department of Health and Human Services or the United States Food
and Drug Administration.
NR 19
TC 6
Z9 6
U1 0
U2 2
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1944-7124
EI 1936-5233
J9 TRANSL ONCOL
JI Transl. Oncol.
PD FEB
PY 2015
VL 8
IS 1
BP 55
EP 64
DI 10.1016/j.tranon.2015.01.001
PG 10
WC Oncology
SC Oncology
GA CH9RE
UT WOS:000354372900008
PM 25749178
ER
PT J
AU Bousquet, O
Berne, A
Delanoe, J
Dufournet, Y
Gourley, JJ
Van-Baelen, J
Augros, C
Besson, L
Boudevillain, B
Caumont, O
Defer, E
Grazioli, J
Jorgensen, DJ
Kirstetter, PE
Ribaud, JF
Beck, J
Delrieu, G
Ducrocq, V
Scipion, D
Schwarzenboeck, A
Zwiebel, J
AF Bousquet, O.
Berne, A.
Delanoe, J.
Dufournet, Y.
Gourley, J. J.
Van-Baelen, J.
Augros, C.
Besson, L.
Boudevillain, B.
Caumont, O.
Defer, E.
Grazioli, J.
Jorgensen, D. J.
Kirstetter, P. -E.
Ribaud, J. -F.
Beck, J.
Delrieu, G.
Ducrocq, V.
Scipion, D.
Schwarzenboeck, A.
Zwiebel, J.
TI MULTIFREQUENCY RADAR OBSERVATIONS COLLECTED IN SOUTHERN FRANCE DURING
HYMEX-SOP1
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
ID ICE-CLOUD PROPERTIES; POLARIMETRIC RADAR; OROGRAPHIC PRECIPITATION;
REFRACTIVITY MEASUREMENT; ELECTRIFIED CLOUDS; DOPPLER RADAR; PART I;
REFLECTIVITY; IDENTIFICATION; IMPROVEMENT
C1 [Bousquet, O.] Lab Atmosphere & Cyclones, UMR 8105, F-97744 St Denis 9, France.
[Berne, A.; Grazioli, J.] Ecole Polytech Fed Lausanne, Environm Remote Sensing Lab, Lausanne, Switzerland.
[Delanoe, J.; Besson, L.] UMR 8190, LATMOS, Guyancourt, France.
[Dufournet, Y.] Delft Univ Technol, Delft, Netherlands.
[Gourley, J. J.; Jorgensen, D. J.; Kirstetter, P. -E.] NOAA, NSSL, Norman, OK USA.
[Van-Baelen, J.; Schwarzenboeck, A.; Zwiebel, J.] LaMP, UMR 6016, Clermont Ferrand, France.
[Augros, C.; Caumont, O.; Ribaud, J. -F.; Beck, J.; Ducrocq, V.] CNRM GAME, UMR 3589, Toulouse, France.
[Boudevillain, B.; Delrieu, G.] LTHE, UMR 5564, Grenoble, France.
[Defer, E.] LERMA, Paris, France.
[Scipion, D.] Inst Geofis Peru, Radio Observ Jicamarca, Lima, Peru.
RP Bousquet, O (reprint author), Lab Atmosphere & Cyclones, UMR 8105, 15 Ave Rene Cassin,CS 92003, F-97744 St Denis 9, France.
EM olivier.bousquet@meteo.fr
RI Kirstetter, Pierre/E-2305-2013; Gourley, Jonathan/C-7929-2016; Caumont,
Olivier/A-7453-2008;
OI Kirstetter, Pierre/0000-0002-7381-0229; Gourley,
Jonathan/0000-0001-7363-3755; Caumont, Olivier/0000-0002-6470-2023;
Scipion, Danny/0000-0002-6807-0238
FU CNRS; Meteo-France; CNES; IRSTEA; INRA; [ANR-2011-BS56-027 FLOODSCALE];
[ANR-11-BS56-0005 IODA-MED]
FX We wish to thank all the scientists who contributed to the realization
of the HyMeX radar component. A special mention is due to the members of
Meteo-France's operational observation division, who managed to provide
operational data to the HyMeX community-B. Fradon, H. Al-Sakka, A.-A.
Boumahmoud, J. Parent-du-Chatelet, and P. Tabary-and to scientists S.
Coquillat, M. Hagen, L. Labatut, Y Lemaitre, and Y. Pointin and to
students E. Fontaine, F. Pantillon, and T. Wisman, who participated in
field operations and preliminary data analysis. HyMeX SOP 1 was
supported by CNRS, Meteo-France, CNES, IRSTEA, and INRA through the
large interdisciplinary international program Mediterranean Integrated
Studies at Regional and Local Scales (MISTRALS), which is dedicated to
the understanding of the Mediterranean basin environmental process
(www.mistrals-home.org). The radar component of HyMeX SOP 1 was
sponsored by Grants ANR-2011-BS56-027 FLOODSCALE and ANR-11-BS56-0005
IODA-MED.
NR 47
TC 10
Z9 10
U1 1
U2 13
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD FEB
PY 2015
VL 96
IS 2
BP 267
EP 282
DI 10.1175/BAMS-D-13-00076.1
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CG5DA
UT WOS:000353310100008
ER
PT J
AU Yong, B
Liu, D
Gourley, JJ
Tian, YD
Huffman, GJ
Ren, LL
Hong, Y
AF Yong, Bin
Liu, Die
Gourley, Jonathan J.
Tian, Yudong
Huffman, George J.
Ren, Liliang
Hong, Yang
TI GLOBAL VIEW OF REAL-TIME TRMM MULTISATELLITE PRECIPITATION ANALYSIS
Implications for Its Successor Global Precipitation Measurement Mission
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
ID HYDROLOGIC PREDICTION; RAINFALL PRODUCTS; UNITED-STATES; ANALYSIS TMPA;
SATELLITE; BASINS; DATASETS; CYCLE
C1 [Yong, Bin; Liu, Die; Ren, Liliang] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China.
[Gourley, Jonathan J.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA.
[Tian, Yudong] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA.
[Tian, Yudong] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Huffman, George J.] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA.
[Hong, Yang] Univ Oklahoma, Adv Radar Res Ctr, Natl Weather Ctr, Norman, OK 73019 USA.
[Hong, Yang] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA.
RP Yong, B (reprint author), Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, 1 Xikang Rd, Nanjing 210098, Jiangsu, Peoples R China.
EM yongbin_hhu@126.com
RI Gourley, Jonathan/C-7929-2016; Huffman, George/F-4494-2014; Measurement,
Global/C-4698-2015; Hong, Yang/D-5132-2009; Yong, Bin/C-2257-2014
OI Gourley, Jonathan/0000-0001-7363-3755; Huffman,
George/0000-0003-3858-8308; Hong, Yang/0000-0001-8720-242X; Yong,
Bin/0000-0003-1466-2091
FU National Science Foundation of China [51379056]
FX This work was financially supported by National Science Foundation of
China (51379056). The TMPA data used in this study were provided by the
NASA Goddard Space Flight Center's Mesoscale Atmospheric Processes
Laboratory and PPS, which develop and compute the TMPA as a contribution
to TRMM. The authors thank three anonymous reviewers, who helped to
improve the earlier version of this paper.
NR 42
TC 32
Z9 33
U1 5
U2 32
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD FEB
PY 2015
VL 96
IS 2
BP 283
EP 296
DI 10.1175/BAMS-D-14-00017.1
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CG5DA
UT WOS:000353310100009
ER
PT J
AU Itano, WM
Bergquist, JC
Wineland, DJ
AF Itano, W. M.
Bergquist, J. C.
Wineland, D. J.
TI Early observations of macroscopic quantum jumps in single atoms
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
DE Paul trap; Quantum jumps; Quantum optics; History of science; Mercury;
Barium
ID LASER SPECTROSCOPY; FLUORESCENCE; ION; HG+
AB The observation of intermittent fluorescence of a single atomic ion, a phenomenon better known as 'macroscopic quantum jumps,' was an important early scientific application of the three-dimensional rf quadrupole (Paul) trap. The prediction of the phenomenon by Cook and Kimble grew out of a proposal by Dehmelt for a sensitive optical double-resonance technique, called 'electron shelving.' The existence of the quantum jumps was viewed with skepticism by some in the quantum optics community, perhaps due to the failure of some conventional calculations, for example the solutions to the optical Bloch equations, to predict them. Quantum jumps were observed nearly simultaneously by three different experimental groups, all with single, isolated ions in Paul traps. Some slightly earlier observations of excessive fluctuations in the laser-induced fluorescence of a single Hg+ ion by a group at the National Institute of Standards and Technology, viewed in retrospect, were due to quantum jumps. Similarly, sudden changes in the resonance fluorescence of trapped Ba+ ions observed by a group at the University of Hamburg were due to quantum jumps, although this was not understood at first. This shows how discoveries can be missed if unanticipated observations are ignored rather than investigated. A fourth experiment, performed not with a single, trapped ion, but with neutral atoms transiently observed in an atomic beam, and published at about the same time as the other experiments, has been almost totally neglected. Published by Elsevier B.V.
C1 [Itano, W. M.; Bergquist, J. C.; Wineland, D. J.] NIST, Boulder, CO 80305 USA.
RP Itano, WM (reprint author), NIST, 325 Broadway, Boulder, CO 80305 USA.
EM wayne.itano@nist.gov; james.bergquist@nist.gov; david.wineland@nist.gov
NR 26
TC 0
Z9 0
U1 3
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-3806
EI 1873-2798
J9 INT J MASS SPECTROM
JI Int. J. Mass Spectrom.
PD FEB 1
PY 2015
VL 377
SI SI
BP 403
EP 409
DI 10.1016/j.ijms.2014.07.005
PG 7
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA CG1BD
UT WOS:000353007100042
ER
PT J
AU Lyman, JM
Johnson, GC
AF Lyman, John M.
Johnson, Gregory C.
TI Anomalous eddy heat and freshwater transport in the Gulf of Alaska
SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
LA English
DT Article
ID NORTHEAST PACIFIC-OCEAN; ANTICYCLONIC EDDIES; HYDROGRAPHIC DATA; HAIDA
EDDIES; STREAM; DRIFTERS
AB Characteristics of eddies in the Gulf of Alaska are assessed from January 2003 through April 2012. Ensemble statistics for eddy subsurface water properties on isopycnals are computed using temperature and salinity profiles from Argo profiling floats located within eddies, which are identified in sea-surface height using objective techniques. Ninety cyclonic and 154 anticyclonic eddies are identified during this period. The anticyclonic eddies are strongly nonlinear and exhibit significant warm subsurface temperature anomalies and associated salty anomalies on isopycnals while no clear distinguishing subsurface anomalies on isopycnals are detected in association with the cyclonic eddies. Heat and freshwater fluxes for the eddies are estimated from integrations in depth coordinates. The anticyclonic eddies transport heat both westward off the continental shelf into the Subarctic Gyre and westward within the Alaskan Stream. However, they transport salt into the Subarctic Gyre and freshwater within the Alaskan Stream. In both pathways eddy heat and freshwater transport show possible year-to-year fluctuations, varying from 0 to 50.4 x 10(18) J a(-1) and -16.8 to +7.4 km(3) a(-1), respectively. The anticyclonic eddies are capped by relatively fresh water year-round.
C1 [Lyman, John M.] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA.
[Lyman, John M.; Johnson, Gregory C.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
RP Lyman, JM (reprint author), Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA.
EM John.Lyman@noaa.gov
RI Johnson, Gregory/I-6559-2012
OI Johnson, Gregory/0000-0002-8023-4020
FU EU [EVK2-CT2001-00117]; CNES; NOAA Climate Program Office; NOAA Office
of Oceanic and Atmospheric Research
FX Altimeter products used herein were produced by Ssalto/Duacs as part of
the Environment and Climate EU Enact project (EVK2-CT2001-00117) and
distributed by Aviso, with support from CNES. Float data were collected
and made freely available by Argo (a program of the Global Ocean
Observing System) and contributing national programs
(http://www.argo.net/). Comments from at least three anonymous reviewers
helped to improve the manuscript. JML and GCJ were supported by the NOAA
Climate Program Office and the NOAA Office of Oceanic and Atmospheric
Research. Pacific Marine Environmental Laboratory Contribution 4082.
Joint Institute for Marine and Atmospheric Research Contribution Number
13-388.
NR 37
TC 2
Z9 2
U1 1
U2 14
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9275
EI 2169-9291
J9 J GEOPHYS RES-OCEANS
JI J. Geophys. Res.-Oceans
PD FEB
PY 2015
VL 120
IS 2
BP 1397
EP 1408
DI 10.1002/2014JC010252
PG 12
WC Oceanography
SC Oceanography
GA CE9HM
UT WOS:000352154800049
ER
PT J
AU Hu, VC
Kuhn, DR
Ferraiolo, DF
AF Hu, Vincent C.
Kuhn, D. Richard
Ferraiolo, David F.
TI Attribute-Based Access Control
SO COMPUTER
LA English
DT Editorial Material
C1 [Hu, Vincent C.; Kuhn, D. Richard] NIST, Comp Secur Div, Gaithersburg, MD 20899 USA.
[Ferraiolo, David F.] NIST, Secure Syst & Applicat Grp, Comp Secur Div, Gaithersburg, MD 20899 USA.
RP Hu, VC (reprint author), NIST, Comp Secur Div, Gaithersburg, MD 20899 USA.
EM vhu@nist.gov; kuhn@nist.gov; dferraiolo@nist.gov
NR 4
TC 8
Z9 8
U1 1
U2 3
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 0018-9162
EI 1558-0814
J9 COMPUTER
JI Computer
PD FEB
PY 2015
VL 48
IS 2
BP 85
EP 88
PG 4
WC Computer Science, Hardware & Architecture; Computer Science, Software
Engineering
SC Computer Science
GA CE3UG
UT WOS:000351754100024
ER
PT J
AU Roa, L
Klimov, AB
Maldonado-Trapp, A
AF Roa, Luis
Klimov, A. B.
Maldonado-Trapp, A.
TI A measure for maximum similarity between outcome states
SO EPL
LA English
DT Article
ID QUANTUM DISCORD; ENTANGLEMENT; INFORMATION; FIDELITY; ENTROPY
AB We propose a measure to quantify correlations in a bipartite quantum system of two quibits by assessing the minimum difference between outcome states of a subsystem by performing a local measurement on the other subsystem. This maximum similarity measure is a monotone function of the concurrence for pure states of two qubits; for mixed states it accounts for entanglement, dissonance, and classical correlations. Besides, we found a closed formula for evaluating the similarity degree of an arbitrary mix state of two two-dimensional systems. Copyright (C) EPLA, 2015
C1 [Roa, Luis; Maldonado-Trapp, A.] Univ Concepcion, Dept Fis, Concepcion, Chile.
[Klimov, A. B.] Univ Guadalajara, Dept Fis, Guadalajara 44420, Jalisco, Mexico.
[Maldonado-Trapp, A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Maldonado-Trapp, A.] Univ Maryland, NIST, College Pk, MD 20742 USA.
RP Roa, L (reprint author), Univ Concepcion, Dept Fis, Casilla 160 C, Concepcion, Chile.
RI Roa, Luis/F-9884-2010; Klimov, Andrei/I-5785-2015; Maldonado Trapp,
Alejandra /H-5695-2013
OI Maldonado Trapp, Alejandra /0000-0003-2131-6090
FU FONDECyT [1120695]; CONACyT [106525]; CONICyT
FX The authors thank JEFFREY GROVER for valuable comments on the
manuscript. The author AM-T thanks CONICyT for support. This work was
supported by Grants: FONDECyT 1120695 and CONACyT 106525.
NR 56
TC 2
Z9 2
U1 1
U2 10
PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
PI MULHOUSE
PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE
SN 0295-5075
EI 1286-4854
J9 EPL-EUROPHYS LETT
JI EPL
PD FEB
PY 2015
VL 109
IS 4
AR 40001
DI 10.1209/0295-5075/109/40001
PG 5
WC Physics, Multidisciplinary
SC Physics
GA CE6NS
UT WOS:000351955600001
ER
PT J
AU Mancia, A
Abelli, L
Kucklick, JR
Rowles, TK
Wells, RS
Balmer, BC
Hohn, AA
Baatz, JE
Ryan, JC
AF Mancia, Annalaura
Abelli, Luigi
Kucklick, John R.
Rowles, Teresa K.
Wells, Randall S.
Balmer, Brian C.
Hohn, Aleta A.
Baatz, John E.
Ryan, James C.
TI Microarray applications to understand the impact of exposure to
environmental contaminants in wild dolphins (Tursiops truncatus)
SO MARINE GENOMICS
LA English
DT Article
DE Transcriptome; Common bottlenose dolphin; Polychlorinated biphenyls;
Ocean health
ID BOTTLE-NOSED DOLPHINS; POLYCHLORINATED BIPHENYL CONGENERS; PERSISTENT
ORGANIC POLLUTANTS; GULF-OF-MEXICO; GENE-EXPRESSION;
SPATIAL-DISTRIBUTION; THYROID-HORMONES; AROCLOR 1268; PCB; ATLANTIC
AB It is increasingly common to monitor the marine environment and establish geographic trends of environmental contamination by measuring contaminant levels in animals from higher trophic levels. The health of an ecosystem is largely reflected in the health of its inhabitants. As an apex predator, the common bottlenose dolphin (Tursiops truncatus) can reflect the health of near shore marine ecosystems, and reflect coastal threats that pose risk to human health, such as legacy contaminants or marine toxins, e.g. polychlorinated biphenyls (PCBs) and brevetoxins. Major advances in the understanding of dolphin biology and the unique adaptations of these animals in response to the marine environment are being made as a result of the development of celllines for use in in vitro experiments, the production of monoclonal antibodies to recognize dolphin proteins, the development of dolphin DNA microarrays to measure global gene expression and the sequencing of the dolphin genome. These advances may play a central role in understanding the complex and specialized biology of the dolphin with regard to how this species responds to an array of environmental insults.
This work presents the creation, characterization and application of a new molecular tool to better understand the complex and unique biology of the common bottlenose dolphin and its response to environmental stress and infection. A dolphin oligo microarray representing 24,418 unigene sequences was developed and used to analyze blood samples collected from 69 dolphins during capture-release health assessments at five geographic locations (Beaufort, NC, Sarasota Bay, FL, Saint Joseph Bay, FL Sapelo Island, GA and Brunswick, GA). The microarray was validated and tested for its ability to: I) distinguish male from female dolphins; 2) differentiate dolphins inhabiting different geographic locations (Atlantic coasts vs the Gulf of Mexico); and 3) study in detail dolphins resident in one site, the Georgia coast known to be heavily contaminated by Aroclor 1268, an uncommon polychlorinated (PCB) mixture. The microarray was able to distinguish dolphins by sex, geographic location, and corroborate previously published health irregularities for the Georgia dolphins. Genes involved in xenobiotic metabolism, development/differentiation and oncogenic pathways were found to be differentially expressed in GA dolphins. The report bridges the advancements in dolphin genome sequencing to the first step towards providing a cost-effective means to screen for indicators of chemical toxin exposure as well as disease status in top level predators. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Mancia, Annalaura; Abelli, Luigi] Univ Ferrara, Dept Life Sci & Biotechnol, I-44121 Ferrara, Italy.
[Mancia, Annalaura; Baatz, John E.] Med Univ S Carolina, Marine Biomed & Environm Sci Ctr, Hollings Marine Lab, Charleston, SC 29412 USA.
[Kucklick, John R.] NIST, Hollings Marine Lab, Charleston, SC 29412 USA.
[Rowles, Teresa K.] NOAA, Natl Marine Fisheries Serv, Off Protected Species, Silver Spring, MD 20910 USA.
[Wells, Randall S.] Chicago Zool Soc, Mote Marine Lab, Sarasota, FL 34236 USA.
[Balmer, Brian C.; Ryan, James C.] NOAA, Natl Ocean Serv, Hollings Marine Lab, Charleston, SC 29412 USA.
[Hohn, Aleta A.] NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Beaufort, NC 28516 USA.
RP Mancia, A (reprint author), Univ Ferrara, Via L Borsari 46, Ferrara, Italy.
EM annalaura.mancia@unife.it
RI ABELLI, LUIGI/B-1242-2013; Hohn, Aleta/G-2888-2011
OI ABELLI, LUIGI/0000-0002-0344-4841; Hohn, Aleta/0000-0002-9992-7062
NR 47
TC 2
Z9 2
U1 5
U2 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1874-7787
EI 1876-7478
J9 MAR GENOM
JI Mar. Genom.
PD FEB
PY 2015
VL 19
BP 47
EP 57
DI 10.1016/j.margen.2014.11.002
PG 11
WC Genetics & Heredity; Marine & Freshwater Biology
SC Genetics & Heredity; Marine & Freshwater Biology
GA CE2OT
UT WOS:000351655600011
PM 25479946
ER
PT J
AU Hsu, FC
Baugh, KE
Ghosh, T
Zhizhin, M
Elvidge, CD
AF Hsu, Feng-Chi
Baugh, Kimberly E.
Ghosh, Tilottama
Zhizhin, Mikhail
Elvidge, Christopher D.
TI DMSP-OLS Radiance Calibrated Nighttime Lights Time Series with
Intercalibration
SO REMOTE SENSING
LA English
DT Article
AB The Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) stable lights products are made using operational OLS data collected at high gain settings, resulting in sensor saturation on brightly lit areas, such as city centers. This has been a paramount shortcoming of the DMSP-OLS stable lights time series. This study outlines a methodology that greatly expands the dynamic range of the OLS data using observations made at different fixed-gain settings, and by incorporating the areas not affected by saturation from the stable lights product. The radiances for the fixed-gain data are computed based on each OLS sensor's pre-flight calibration. The result is a product known as the OLS radiance calibrated nighttime lights. A total of eight global datasets have been produced, representing years from 1996 to 2010. To further facilitate the usefulness of these data for time-series analyses, corrections have been made to counter the sensitivity differences of the sensors, and coefficients are provided to adjust the datasets to allow inter-comparison.
C1 [Hsu, Feng-Chi; Baugh, Kimberly E.; Ghosh, Tilottama; Zhizhin, Mikhail] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Elvidge, Christopher D.] NOAA, Natl Geophys Data Ctr, Boulder, CO 80305 USA.
RP Hsu, FC (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, 216 UCB, Boulder, CO 80309 USA.
EM feng.c.hsu@noaa.gov; kim.baugh@noaa.gov; tilottama.ghosh@noaa.gov;
mikhail.zhizhin@noaa.gov; chris.elvidge@noaa.gov
RI ZHIZHIN, Mikhail/B-9795-2014; Elvidge, Christopher/C-3012-2009
NR 15
TC 8
Z9 8
U1 4
U2 26
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2072-4292
J9 REMOTE SENS-BASEL
JI Remote Sens.
PD FEB
PY 2015
VL 7
IS 2
BP 1855
EP 1876
DI 10.3390/rs70201855
PG 22
WC Remote Sensing
SC Remote Sensing
GA CF0ZX
UT WOS:000352274400001
ER
PT J
AU Moustafa, H
Kenn, H
Sayrafian, K
Scanlon, W
Zhang, Y
AF Moustafa, Hassnaa
Kenn, Holger
Sayrafian, Kamran
Scanlon, William
Zhang, Yan
TI MOBILE WEARABLE COMMUNICATIONS
SO IEEE WIRELESS COMMUNICATIONS
LA English
DT Editorial Material
C1 [Kenn, Holger] Univ Saarland, Saarbrucken, Germany.
[Kenn, Holger] Jacobs Univ, Elect Engn & Comp Sci, Bremen, Germany.
[Kenn, Holger] Univ Bremen, TZI, D-28359 Bremen, Germany.
[Kenn, Holger] Microsoft Res ATL Europe Syst Level & Operating S, Atlanta, GA USA.
[Sayrafian, Kamran] NIST, Informat Technol Lab, Gaithersburg, MD USA.
[Scanlon, William] Univ Ulster, Coleraine BT52 1SA, Londonderry, North Ireland.
[Scanlon, William] Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland.
[Scanlon, William] ActivWireless Ltd, Belfast, Antrim, North Ireland.
[Zhang, Yan] Simula Res Lab, Lysaker, Norway.
[Zhang, Yan] Univ Oslo, Dept Informat, N-0316 Oslo, Norway.
EM hassnaa.moustafa@ieee.org; holger.Kenn@microsoft.com;
ksayrafian@nist.gov; w.scanlon@qub.ac.uk; yanzhang@simula.no
NR 0
TC 2
Z9 2
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1536-1284
EI 1558-0687
J9 IEEE WIREL COMMUN
JI IEEE Wirel. Commun.
PD FEB
PY 2015
VL 22
IS 1
BP 10
EP 11
PG 2
WC Computer Science, Hardware & Architecture; Computer Science, Information
Systems; Engineering, Electrical & Electronic; Telecommunications
SC Computer Science; Engineering; Telecommunications
GA CD8UT
UT WOS:000351372600003
ER
PT J
AU Saba, VS
Hyde, KJW
Rebuck, ND
Friedland, KD
Hare, JA
Kahru, M
Fogarty, MJ
AF Saba, Vincent S.
Hyde, Kimberly J. W.
Rebuck, Nathan D.
Friedland, Kevin D.
Hare, Jonathan A.
Kahru, Mati
Fogarty, Michael J.
TI Physical associations to spring phytoplankton biomass interannual
variability in the US Northeast Continental Shelf
SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
LA English
DT Article
DE Northwest Atlantic Shelf; phytoplankton biomass; chlorophyll a; Labrador
Slope Water; Atlantic Temperate Slope Water; winter winds
ID GEORGES BANK; MAINE REGION; GULF-STREAM; OCEAN; CHLOROPHYLL; ATLANTIC;
SLOPE; MODEL; SEA; NUTRIENTS
AB The continental shelf of the Northeast United States and Nova Scotia is a productive marine ecosystem that supports a robust biomass of living marine resources. Understanding marine ecosystem sensitivity to changes in the physical environment can start with the first-order response of phytoplankton (i.e., chlorophyll a), the base of the marine food web. However, the primary physical associations to the interannual variability of chlorophyll a in these waters are unclear. Here we used ocean color satellite measurements and identified the local and remote physical associations to interannual variability of spring surface chlorophyll a from 1998 to 2013. The highest interannual variability of chlorophyll a occurred in March and April on the northern flank of Georges Bank, the western Gulf of Maine, and Nantucket Shoals. Complex interactions between winter wind speed over the Shelf, local winter water levels, and the relative proportions of Atlantic versus Labrador Sea source waters entering the Gulf of Maine from the previous summer/fall were associated with the variability of March/April chlorophyll a in Georges Bank and the Gulf of Maine. Sea surface temperature and sea surface salinity were not robust correlates to spring chlorophyll a. Surface nitrate in the winter was not a robust correlate to chlorophyll a or the physical variables in every case suggesting that nitrate limitation may not be the primary constraint on the interannual variability of the spring bloom throughout all regions. Generalized linear models suggest that we can resolve 88% of March chlorophyll a interannual variability in Georges Bank using lagged physical data.
C1 [Saba, Vincent S.] NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
[Hyde, Kimberly J. W.; Rebuck, Nathan D.; Friedland, Kevin D.; Hare, Jonathan A.] NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Narragansett, RI 02882 USA.
[Kahru, Mati] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Fogarty, Michael J.] NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Woods Hole, MA 02543 USA.
RP Saba, VS (reprint author), NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Geophys Fluid Dynam Lab, Princeton Univ Forrestal Campus, Princeton, NJ 08540 USA.
EM Vincent.Saba@noaa.gov
NR 32
TC 2
Z9 2
U1 1
U2 18
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-8953
EI 2169-8961
J9 J GEOPHYS RES-BIOGEO
JI J. Geophys. Res.-Biogeosci.
PD FEB
PY 2015
VL 120
IS 2
BP 205
EP 220
DI 10.1002/2014JG002770
PG 16
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA CD9FI
UT WOS:000351402800001
ER
PT J
AU Molaro, JL
Byrne, S
Langer, SA
AF Molaro, Jamie L.
Byrne, Shane
Langer, Stephen A.
TI Grain-scale thermoelastic stresses and spatiotemporal temperature
gradients on airless bodies, implications for rock breakdown
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
DE stress; weathering; airless bodies; regolith processes; thermal fatigue
ID THERMAL-EXPANSION BEHAVIOR; NEAR-SURFACE TEMPERATURES; SUBCRITICAL
CRACK-GROWTH; HEAT-CAPACITY; BRITTLE-FRACTURE; WESTERLY GRANITE; IGNEOUS
ROCKS; UNIAXIAL COMPRESSION; MECHANICAL-BEHAVIOR; SEISMIC VELOCITIES
AB Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investigating microcrack propagation. Although these results provide very strong evidence for the significance of thermomechanical processes on airless bodies, more work is needed to quantify crack propagation and rock breakdown rates.
C1 [Molaro, Jamie L.; Byrne, Shane] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Langer, Stephen A.] NIST, Gaithersburg, MD 20899 USA.
RP Molaro, JL (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
EM jmolaro@gmail.com
RI Molaro, Jamie/C-6769-2014
OI Molaro, Jamie/0000-0002-5867-9410
FU NASA Earth and Space Science Fellowship; Planetary Geology and
Geophysics programs
FX Support for this work came from the NASA Earth and Space Science
Fellowship and the Planetary Geology and Geophysics programs.
Additionally, this work would not have been possible without free access
to OOF2 from the National Institute of Standards and Technology. We
thank the OOF developers, as well as those who reviewed this manuscript.
The data for this paper are available upon request by emailing the
corresponding author (jmolaro@gmail.com).
NR 116
TC 9
Z9 9
U1 2
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD FEB
PY 2015
VL 120
IS 2
BP 255
EP 277
DI 10.1002/2014JE004729
PG 23
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CD8RK
UT WOS:000351363300007
ER
PT J
AU Bleem, LE
Stalder, B
de Haan, T
Aird, KA
Allen, SW
Applegate, DE
Ashby, MLN
Bautz, M
Bayliss, M
Benson, BA
Bocquet, S
Brodwin, M
Carlstrom, JE
Chang, CL
Chiu, I
Cho, HM
Clocchiatti, A
Crawford, TM
Crites, AT
Desai, S
Dietrich, JP
Dobbs, MA
Foley, RJ
Forman, WR
George, EM
Gladders, MD
Gonzalez, AH
Halverson, NW
Hennig, C
Hoekstra, H
Holder, GP
Holzapfel, WL
Hrubes, JD
Jones, C
Keisler, R
Knox, L
Lee, AT
Leitch, EM
Liu, J
Lueker, M
Luong-Van, D
Mantz, A
Marrone, DP
McDonald, M
McMahon, JJ
Meyer, SS
Mocanu, L
Mohr, JJ
Murray, SS
Padin, S
Pryke, C
Reichardt, CL
Rest, A
Ruel, J
Ruhl, JE
Saliwanchik, BR
Saro, A
Sayre, JT
Schaffer, KK
Schrabback, T
Shirokoff, E
Song, J
Spieler, HG
Stanford, SA
Staniszewski, Z
Stark, AA
Story, KT
Stubbs, CW
Vanderlinde, K
Vieira, JD
Vikhlinin, A
Williamson, R
Zahn, O
Zenteno, A
AF Bleem, L. E.
Stalder, B.
de Haan, T.
Aird, K. A.
Allen, S. W.
Applegate, D. E.
Ashby, M. L. N.
Bautz, M.
Bayliss, M.
Benson, B. A.
Bocquet, S.
Brodwin, M.
Carlstrom, J. E.
Chang, C. L.
Chiu, I.
Cho, H. M.
Clocchiatti, A.
Crawford, T. M.
Crites, A. T.
Desai, S.
Dietrich, J. P.
Dobbs, M. A.
Foley, R. J.
Forman, W. R.
George, E. M.
Gladders, M. D.
Gonzalez, A. H.
Halverson, N. W.
Hennig, C.
Hoekstra, H.
Holder, G. P.
Holzapfel, W. L.
Hrubes, J. D.
Jones, C.
Keisler, R.
Knox, L.
Lee, A. T.
Leitch, E. M.
Liu, J.
Lueker, M.
Luong-Van, D.
Mantz, A.
Marrone, D. P.
McDonald, M.
McMahon, J. J.
Meyer, S. S.
Mocanu, L.
Mohr, J. J.
Murray, S. S.
Padin, S.
Pryke, C.
Reichardt, C. L.
Rest, A.
Ruel, J.
Ruhl, J. E.
Saliwanchik, B. R.
Saro, A.
Sayre, J. T.
Schaffer, K. K.
Schrabback, T.
Shirokoff, E.
Song, J.
Spieler, H. G.
Stanford, S. A.
Staniszewski, Z.
Stark, A. A.
Story, K. T.
Stubbs, C. W.
Vanderlinde, K.
Vieira, J. D.
Vikhlinin, A.
Williamson, R.
Zahn, O.
Zenteno, A.
TI GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE
2500-SQUARE-DEGREE SPT-SZ SURVEY
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE cosmology: observations; galaxies: clusters: individual; large-scale
structure of universe
ID SOUTH-POLE TELESCOPE; ALL-SKY SURVEY; SIMILAR-TO 1; BLANCO COSMOLOGY
SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; SHEAR-SELECTED CLUSTERS;
STAR-FORMING GALAXIES; FLUX-LIMITED SAMPLE; X-RAY OBSERVATIONS; 720
SQUARE DEGREES
AB We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg(2) of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg(2) SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of xi = 4.5 (5.0). Ground-and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the xi > 4.5 candidates and 387 (or 95%) of the xi > 5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z similar to 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M-500c(rho(crit)) similar to 3.5 x 10(14) M-circle dot h(70)(-1) 70, the median redshift is z(med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.
C1 [Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Mantz, A.; Meyer, S. S.; Mocanu, L.; Padin, S.; Schaffer, K. K.; Story, K. T.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Story, K. T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Stalder, B.; Ashby, M. L. N.; Bayliss, M.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[de Haan, T.; Dobbs, M. A.; Holder, G. P.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA.
[Allen, S. W.; Keisler, R.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.
[Allen, S. W.; Keisler, R.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Allen, S. W.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Applegate, D. E.; Schrabback, T.] Argelander Inst Astron, D-53121 Bonn, Germany.
[Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Bayliss, M.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Benson, B. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Benson, B. A.; Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Meyer, S. S.; Mocanu, L.; Padin, S.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Bocquet, S.; Chiu, I.; Desai, S.; Dietrich, J. P.; Hennig, C.; Liu, J.; Mohr, J. J.; Saro, A.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany.
[Bocquet, S.; Chiu, I.; Desai, S.; Dietrich, J. P.; Hennig, C.; Liu, J.; Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany.
[Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA.
[Carlstrom, J. E.; Chang, C. L.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Cho, H. M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA.
[Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrosif, Santiago, Chile.
[Crites, A. T.; Lueker, M.; Padin, S.; Shirokoff, E.; Staniszewski, Z.; Williamson, R.] CALTECH, Pasadena, CA 91125 USA.
[Dobbs, M. A.] Canadian Inst Adv Res, CIFAR Program Cosmol & Grav, Toronto, ON M5G 1Z8, Canada.
[Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[George, E. M.; Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
[Hoekstra, H.] Leiden Univ, Leiden Observ, NL-2333 CA Leiden, Netherlands.
[Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Lee, A. T.; Spieler, H. G.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA.
[Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia.
[Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA.
[Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA.
[Song, J.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea.
[Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA.
[Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Zahn, O.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA.
[Zahn, O.] Lawrence Berkeley Natl Labs, Lawrence, CA 94720 USA.
[Zenteno, A.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile.
RP Bleem, LE (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 South Cass Ave, Argonne, IL 60439 USA.
RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Stubbs,
Christopher/C-2829-2012;
OI Williamson, Ross/0000-0002-6945-2975; Stubbs,
Christopher/0000-0003-0347-1724; Marrone, Daniel/0000-0002-2367-1080;
CRAWFORD, THOMAS/0000-0001-9000-5013; Dietrich,
Jorg/0000-0002-8134-9591; Aird, Kenneth/0000-0003-1441-9518; Reichardt,
Christian/0000-0003-2226-9169; Forman, William/0000-0002-9478-1682;
Stark, Antony/0000-0002-2718-9996
FU National Science Foundation [PLR-1248097]; NSF Physics Frontier Center
[PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF
947]; NSF [AST-1009012, AST-1009649, MRI-0723073]; National Sciences and
Engineering Research Council of Canada; Canada Research Chairs program;
Canadian Institute for Advanced Research; U.S. Department of Energy
[DE-AC02-06CH11357]; United States Department of Energy
[De-AC02-07CH11359]; DFG Cluster of Excellence "Origin and Structure of
the Universe"; Transregio program "The Dark Universe" [TR33]; NASA
through a Hubble Fellowship - Space Telescope Science Institute
[HST-HF51308.01-A]; German Federal Ministry of Economics and Technology
(BMWi) through DLR [50 OR 1210]; Cerro Tololo Interamerican
Observatories [2005B- 0043, 2009B-0400, 2010A-0441, 2010B-0598]; VLT
programs [086.A-0741, 087.A-0843, 088.A-0796(A), 088.A- 0889(A,B,C),
286.A-5021]; Gemini programs [GS-2009B-Q-16, GS-2011A-C-3, GS-2011B-C-6,
GS-2012A-Q-4, GS-2012A-Q-37, GS-2012B-Q-29, GS-2012B-Q-59, GS-2013A-Q-5,
GS-2013A-Q-45, GS-2013B-Q-25, GS-2013B-Q-72]; NASA [NAS 5-26555]; NASA
through JPL/Caltech; Space Telescope Science Institute under U.S.
Government [NAG W-2166]; [12246]; [12477]; [13412]
FX The South Pole Telescope is supported by the National Science Foundation
through grant PLR-1248097. Partial support is also provided by the NSF
Physics Frontier Center grant PHY-1125897 to the Kavli Institute of
Cosmological Physics at the University of Chicago, the Kavli Foundation,
and the Gordon and Betty Moore Foundation grant GBMF 947. Galaxy cluster
research at Harvard is supported by NSF grant AST-1009012 and at SAO in
part by NSF grants AST-1009649 and MRI-0723073. The McGill group
acknowledges funding from the National Sciences and Engineering Research
Council of Canada, Canada Research Chairs program, and the Canadian
Institute for Advanced Research. Argonne National Laboratory's work was
supported under U.S. Department of Energy contract DE-AC02-06CH11357.
This work was partially completed at Fermilab, operated by Fermi
Research Alliance, LLC under contract no. De-AC02-07CH11359 with the
United States Department of Energy. The Munich group acknowledges
support from the DFG Cluster of Excellence "Origin and Structure of the
Universe" and the Transregio program TR33 "The Dark Universe." M.M.
acknowledges support by NASA through a Hubble Fellowship grant
HST-HF51308.01-A awarded by the Space Telescope Science Institute. T.S.
and D.A. acknowledge support from the German Federal Ministry of
Economics and Technology (BMWi) provided through DLR under project 50 OR
1210.; Optical imaging data from the Blanco 4 m at Cerro Tololo
Interamerican Observatories (programs 2005B- 0043, 2009B-0400,
2010A-0441, 2010B-0598) and spectroscopic observations from VLT programs
086.A-0741, 087.A-0843, 088.A-0796(A), 088.A- 0889(A,B,C), and
286.A-5021 and Gemini programs GS-2009B-Q-16, GS-2011A-C-3,
GS-2011B-C-6, GS-2012A-Q-4, GS-2012A-Q-37, GS-2012B-Q-29, GS-2012B-Q-59,
GS-2013A-Q-5, GS-2013A-Q-45, GS-2013B-Q-25 and GS-2013B-Q-72 were
included in this work. Additional data were obtained with the 6.5 m
Magellan Telescopes and the Swope Telescope, which are located at the
Las Campanas Observatory in Chile and the MPG/ESO 2.2 m and ESO NTT
located at La Silla Facility in Chile. This work is based in part on
observations made with the Spitzer Space Telescope (PIDs 60099, 70053,
80012 and 10101), which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. Support
for this work was provided by NASA through an award issued by
JPL/Caltech. This work is also partly based on observations made with
the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope
Science Institute, which is operated by the Association of Universities
for Research in Astronomy, Inc., under NASA contract NAS 5-26555; these
observations are associated with programs 12246, 12477, and 13412. The
Digitized Sky Surveys were produced at the Space Telescope Science
Institute under U.S. Government grant NAG W-2166. The images of these
surveys are based on photographic data obtained using the Oschin Schmidt
Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates
were processed into the present compressed digital form with the
permission of these institutions.
NR 158
TC 87
Z9 87
U1 2
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD FEB
PY 2015
VL 216
IS 2
AR 27
DI 10.1088/0067-0049/216/2/27
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CD2ID
UT WOS:000350899000006
ER
PT J
AU Bograd, SJ
Buil, MP
Di Lorenzo, E
Castro, CG
Schroeder, ID
Goericke, R
Anderson, CR
Benitez-Nelson, C
Whitney, FA
AF Bograd, Steven J.
Buil, Mercedes Pozo
Di Lorenzo, Emanuele
Castro, Carmen G.
Schroeder, Isaac D.
Goericke, Ralf
Anderson, Clarissa R.
Benitez-Nelson, Claudia
Whitney, Frank A.
TI Changes in source waters to the Southern California Bight
SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY
LA English
DT Article
DE California Current System; California Undercurrent; CalCOFI; Dissolved
oxygen; Inorganic nutrients; Water masses; Upwelling
ID SUB-ARCTIC PACIFIC; SANTA-BARBARA CHANNEL; LA-NINA CYCLE; CURRENT
SYSTEM; PSEUDO-NITZSCHIA; CLIMATE-CHANGE; OCEAN ACIDIFICATION; NORTH
PACIFIC; DOMOIC ACID; SEASONAL VARIABILITY
AB Historical hydrographic data (1984-2012) from the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program and global reanalysis products were used to quantify recent water mass variability off the coast of Southern California. Dissolved oxygen concentrations continued to decline within the lower pycnocline, concurrent with strong increases in nitrate and phosphate that have spatial patterns matching those of dissolved oxygen. Silicic acid also shows an increasing trend in the offshore portion of the region, but has strong and opposing trends in the upper (increasing) and lower-pycnocline (decreasing) within the Southern California Bight. The varying rates of change in the inorganic nutrients yield a more complex pattern of variability in the nutrient ratios, resulting in large decreases in the N:P and Si:N ratios within the Southern California Bight at depths that provide source waters for upwelling. Basin-scale reanalysis products are consistent with low-frequency water mass changes observed off Southern California and suggest that advection of modified source waters is the cause of the variability. The biogeochemical changes described here may have important impacts on the regional ecosystem, including a reduction of viable pelagic habitat and community reorganization. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
C1 [Bograd, Steven J.; Schroeder, Isaac D.] NOAA, Southwest Fisheries Sci Ctr, Div Environm Res, Pacific Grove, CA 93950 USA.
[Buil, Mercedes Pozo; Di Lorenzo, Emanuele] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Castro, Carmen G.] CSIC, Inst Invest Marinas, Vigo, Spain.
[Goericke, Ralf] Univ Calif San Diego, Scripps Inst Oceanog, Integrat Oceanog Div, La Jolla, CA 92093 USA.
[Anderson, Clarissa R.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA.
[Benitez-Nelson, Claudia] Univ S Carolina, Dept Earth & Ocean Sci, Columbia, SC 29208 USA.
[Benitez-Nelson, Claudia] Univ S Carolina, Marine Sci Program, Columbia, SC 29208 USA.
[Whitney, Frank A.] Fisheries & Oceans Canada, Inst Ocean Sci, Sidney, BC V8L 4B2, Canada.
RP Bograd, SJ (reprint author), NOAA, Southwest Fisheries Sci Ctr, Div Environm Res, 1352 Lighthouse Ave, Pacific Grove, CA 93950 USA.
EM steven.bograd@noaa.gov
RI Di Lorenzo, Emanuele/E-9107-2012;
OI Di Lorenzo, Emanuele/0000-0002-1935-7363; Castro, Carmen
G./0000-0001-7415-078X; Benitez-Nelson, Claudia/0000-0002-1004-5048
FU NSF [OCE-0417616]
FX We thank Xuemei Qiu for analysis and graphics assistance. We acknowledge
the quality and longevity of the CalCOFI program, and the many
scientists and seagoing staff who have contributed to the collection,
processing, and analysis of this excellent data set. We also acknowledge
the California Current Ecosystem Long-Term Ecosystem Research (CCE-LTER)
project, supported by a grant from NSF (OCE-0417616). The comments of
two anonymous reviewers improved the manuscript.
NR 82
TC 16
Z9 16
U1 4
U2 35
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0967-0645
EI 1879-0100
J9 DEEP-SEA RES PT II
JI Deep-Sea Res. Part II-Top. Stud. Oceanogr.
PD FEB
PY 2015
VL 112
SI SI
BP 42
EP 52
DI 10.1016/j.dsr2.2014.04.009
PG 11
WC Oceanography
SC Oceanography
GA CD2PO
UT WOS:000350921700005
ER
PT J
AU Goericke, R
Bograd, SJ
Grundle, DS
AF Goericke, Ralf
Bograd, Steven J.
Grundle, Damian S.
TI Denitrification and flushing of the Santa Barbara Basin bottom waters
SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY
LA English
DT Article
DE Santa Barbara Basin; Biogeochemistry; Bottom waters; Flushing; Oxygen;
Nitrate; Nitrite; Upwelling
ID CALIFORNIA CURRENT; CLIMATE-CHANGE; OCEAN; PACIFIC; SEDIMENTS; NITROGEN;
PHYTOPLANKTON; NITRIFICATION; RECORD; ZONES
AB The sediments of the Santa Barbara Basin (SBB) are an important paleoecological resource since their structure reflects the oxygenation of the bottom waters and the quality and quantity of the particulate matter which is sequestered to the bottom of the basin. These properties are controlled by regional atmospheric and oceanic climate. The California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has been monitoring the bottom waters of the SBB on a regular basis since 1986. Over the last decade, properties of SBB bottom waters have undergone dramatic changes: low concentrations of nitrate were observed more frequently and concentrations of nitrite, at times, reached values of 7 mu M, in contrast to maximum concentrations of 0.2 mu M observed during the earlier time period. Here we study the links between regional climate and conditions at the bottom of the SBB by relating recent changes in bottom water chemistry to local and regional forcing of the basin. Varying rates of primary production of the overlying water or rates of export production were not significantly related to the observed biogeochemical changes in the basin. Rather, the frequency or rate of flushing, as inferred from phosphate concentration changes at the bottom of the basin, and decreasing concentrations of oxygen in the waters outside the basins could be related to the observed changes. The episodic more than 10-fold increases of nitrite in the bottom waters likely represent a tipping point in the biogeochemical system driven by decreasing concentrations of oxygen in the bottom waters. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Goericke, Ralf] Univ Calif San Diego, Scripps Inst Oceanog, Integrat Oceanog Div, La Jolla, CA 92093 USA.
[Bograd, Steven J.] NOAA, Southwest Fisheries Sci Ctr, Div Environm Res, Pacific Grove, CA 93950 USA.
[Grundle, Damian S.] GEOMAR, Forschungsbereich Marine Biogeochem 2, D-24105 Kiel, Germany.
RP Goericke, R (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA.
EM rgoericke@ucsd.edu
FU CalCOFI program; CCE-LTER program; Deutsche Forschungsgemeinschaft (DFG)
[CP 1220]; SOPRAN III
FX The authors thank the captains, crews, and CalCOFI science parties for
collecting over decades data of extremely high quality and making these
freely available to the public. The manuscript benefitted greatly from
detailed and insightful comments by Patrick Rafter, two anonymous
reviewers and the editor Mark Ohman. Data collection and analysis was
supported by the CalCOFI and the CCE-LTER programs. DG was supported by
a Deutsche Forschungsgemeinschaft (DFG) funded Future Ocean Cluster
award (CP 1220) and by SOPRAN III. This is CCE-LTER contribution number
xxx.
NR 44
TC 2
Z9 2
U1 2
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0967-0645
EI 1879-0100
J9 DEEP-SEA RES PT II
JI Deep-Sea Res. Part II-Top. Stud. Oceanogr.
PD FEB
PY 2015
VL 112
SI SI
BP 53
EP 60
DI 10.1016/j.dsr2.2014.07.012
PG 8
WC Oceanography
SC Oceanography
GA CD2PO
UT WOS:000350921700006
ER
PT J
AU Bulygina, ON
Arzhanova, NM
Groisman, PY
AF Bulygina, Olga N.
Arzhanova, Natalia M.
Groisman, Pavel Ya
TI Icing conditions over Northern Eurasia in changing climate
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE icing and hoar frost events; long-term means; linear trend coefficient
ID VARIABILITY; PRECIPITATION; SEA
AB Icing conditions, particularly in combination with wind, affect greatly the operation of overhead communication and transmission lines causing serious failures, which result in tremendous economic damage. Icing formation is dangerous to agriculture, forestry, high seas fishery, for land and off coast man-made infrastructure. Quantitative icing characteristics such as weight, thickness, and duration are very important for the economy and human wellbeing when their maximum values exceed certain thresholds. Russian meteorological stations perform both visual and instrumental monitoring of icing deposits. Visual monitoring is ocular estimation of the type and intensity of icing and the date of ice appearance and disappearance. Instrumental monitoring is performed by ice accretion indicator that in addition to the type, intensity and duration of ice deposits reports also their weight and size. We used observations at 958 Russian stations for the period 1977-2013 to analyze changes in the ice formation frequency at individual meteorological stations and on the territory of quasi-homogeneous climatic regions in Russia. It was found that hoar frosts are observed in most parts of Russia, but icing only occurs in European Russia and the Far East. On the Arctic coast of Russia, this phenomenon can even be observed in summer months. Statistically significant decreasing trends in occurrence of icing and hoar frost events are found over most of Russia. An increasing trend in icing weights (IWs) was found in the Atlantic Arctic region in autumn. Statistically significant large negative trends in IWs were found in the Pacific Arctic in winter and spring.
C1 [Bulygina, Olga N.; Arzhanova, Natalia M.] All Russian Res Inst Hydrometeorol Informat, World Data Ctr, Obninsk, Russia.
[Groisman, Pavel Ya] NOAA, Univ Corp Atmospheric Res, Natl Climat Data Ctr, Asheville, NC USA.
[Bulygina, Olga N.; Groisman, Pavel Ya] Russian Acad Sci, PP Shirshov Inst Oceanol, Moscow, Russia.
RP Bulygina, ON (reprint author), All Russian Res Inst Hydrometeorol Informat, World Data Ctr, Obninsk, Russia.
EM bulygina@meteo.ru; ashatan84@mail.ru; Pasha.Groisman@noaa.gov
RI Bulygina, Olga/H-1251-2016
FU Graduate Student Program of the All-Russian Research Institute of
Hydrometeorological Information; Ministry of Education and Science of
the Russian Federation [14.B25.31.0026]; NOAA/NASA [NNX13AJ02G]
FX Arzhanova is supported by the Graduate Student Program of the
All-Russian Research Institute of Hydrometeorological Information. The
research of Bulygina and Groisman was supported by the Ministry of
Education and Science of the Russian Federation (grant 14.B25.31.0026).
Additionally, Groisman was partially supported by NOAA/NASA grant
NNX13AJ02G. The authors thank Ms Elena Svishcheva and Mr Richard Knight
for their assistance in preparing the English version of this paper.
NR 26
TC 4
Z9 4
U1 0
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD FEB
PY 2015
VL 10
IS 2
AR 025003
DI 10.1088/1748-9326/10/2/025003
PG 11
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA CC7UI
UT WOS:000350573500024
ER
PT J
AU Krakauer, NY
Devineni, N
AF Krakauer, Nir Y.
Devineni, Naresh
TI Up-to-date probabilistic temperature climatologies
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE nonstationarity; climate change; trend estimation; extreme events; heat
waves; extrapolation; probabilistic forecasting
ID CLIMATE NORMALS; FORECASTS; REGRESSION; EXTREMES; SCORE
AB With ongoing global warming, climatologies based on average past temperatures are increasingly recognized as imperfect guides for current conditions, yet there is no consensus on alternatives. Here, we compare several approaches to deriving updated expected values of monthly mean temperatures, including moving average, exponentially weighted moving average, and piecewise linear regression. We go beyond most previous work by presenting updated climate normals as probability distributions rather than only point estimates, enabling estimation of the changing likelihood of hot and cold extremes. We show that there is a trade-off between bias and variance in these approaches, but that bias can be mitigated by an additive correction based on a global average temperature series, which has much less interannual variability than a single-station series. Using thousands of monthly temperature time series from the Global Historical Climatology Network (GHCN), we find that the exponentially weighted moving average with a timescale of 15 years and global bias correction has good overall performance in hindcasting temperatures over the last 30 years (1984-2013) compared with the other methods tested. Our results suggest that over the last 30 years, the likelihood of extremely hot months (above the 99th percentile of the temperature probability distribution as of the early 1980s) has increased more than fourfold across the GHCN stations, whereas the likelihood of very cold months (under the 1st percentile) has decreased by over two-thirds.
C1 [Krakauer, Nir Y.] CUNY City Coll, Dept Civil Engn, New York, NY 10031 USA.
CUNY City Coll, NOAA, CREST, New York, NY 10031 USA.
RP Krakauer, NY (reprint author), CUNY City Coll, Dept Civil Engn, New York, NY 10031 USA.
EM nkrakauer@ccny.cuny.edu
FU NOAA [NA11SEC4810004, NA12OAR4310084]
FX The authors gratefully acknowledge support from NOAA under grants
NA11SEC4810004 and NA12OAR4310084. All statements made are the views of
the authors and not the opinions of the funding agency or the US
government.
NR 52
TC 2
Z9 2
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD FEB
PY 2015
VL 10
IS 2
AR 024014
DI 10.1088/1748-9326/10/2/024014
PG 11
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA CC7UI
UT WOS:000350573500016
ER
PT J
AU Jablonski, A
Powell, CJ
AF Jablonski, A.
Powell, C. J.
TI Effective attenuation lengths for photoelectrons emitted by high-energy
laboratory X-ray sources
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE X-ray photoelectron spectroscopy; Photoelectron elastic-scattering
effects; High energy laboratory X-ray sources; Effective attenuation
length
ID AUGER-ELECTRON-SPECTROSCOPY; ANGULAR-DISTRIBUTION PARAMETERS; DEPTH
DISTRIBUTION FUNCTION; MEAN ESCAPE DEPTH; RANGE 100-5000 EV;
ELASTIC-SCATTERING; CHANDRASEKHAR FUNCTION; INFORMATION DEPTH; RADIATION
SOURCES; SURFACE-ANALYSIS
AB We report calculations of effective attenuation lengths (EALs) for Si 2s(1/2), Cu 2p(3/2), Ag 3d(5/2), and Au 4f(7/2) photoelectrons excited by Mg K alpha, Al K alpha, Zr L alpha, and Ti K alpha X-rays, where the photoelectron energies ranged from 321 eV to 4.426 keV. These EALs, appropriate for determining overlayer-film thicknesses, were calculated from the transport-approximation formalism and from Monte Carlo simulations using photoionization cross sections from the dipole and non-dipole approximations. Satisfactory consistency was found between EALs determined from the TA formalism and from MC simulations, while differences between EALs for Au 4f(7/2) photoelectrons from the dipole and non-dipole approximations were between 1% (for Mg and Al K alpha X-rays) and 2.5% (for Ti K alpha X-rays) for photoelectron emission angles less than 50 degrees. As in past work for electron energies less than 2 key, we found a simple linear relation between the ratio of the average EAL (for emission angles less than 50 degrees) to the inelastic mean free path (IMFP) and the single-scattering albedo, a function of the IMFP and the transport mean free path. The root-mean-square difference between our average EALs and those from the linear expression was 1.44%. This expression should be useful in determinations of film thicknesses by XPS with unpolarized X-rays for photoelectron energies up to about 5 key. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Jablonski, A.] Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland.
[Powell, C. J.] Natl Inst Stand & Technol, Mat Measurement Sci Div, Gaithersburg, MA USA.
RP Jablonski, A (reprint author), Polish Acad Sci, Inst Phys Chem, Kasprzaka 44-52, PL-01224 Warsaw, Poland.
EM ajablonski@ichf.edu.pl
FU Research Project of the National Science Center in Poland
[DEC-2011/01/B/ST4/00959]
FX One of the authors (AJ) would like to acknowledge support by the
Research Project of the National Science Center in Poland, no.
DEC-2011/01/B/ST4/00959.
NR 53
TC 9
Z9 9
U1 1
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
EI 1873-2526
J9 J ELECTRON SPECTROSC
JI J. Electron Spectrosc. Relat. Phenom.
PD FEB
PY 2015
VL 199
BP 27
EP 37
DI 10.1016/j.elspec.2014.12.011
PG 11
WC Spectroscopy
SC Spectroscopy
GA CD1KR
UT WOS:000350834300004
ER
PT J
AU Capotondi, A
AF Capotondi, Antonietta
TI Extreme La Nina events to increase
SO NATURE CLIMATE CHANGE
LA English
DT Editorial Material
ID EL-NINO; CIRCULATION
C1 [Capotondi, Antonietta] Univ Colorado, Cooperat Inst Res Environm Studies, Boulder, CO 80305 USA.
[Capotondi, Antonietta] NOAA Earth Syst Res Lab, Div Phys Sci, Boulder, CO 80305 USA.
RP Capotondi, A (reprint author), Univ Colorado, Cooperat Inst Res Environm Studies, 325 Broadway, Boulder, CO 80305 USA.
EM antonietta.capotondi@noaa.gov
NR 10
TC 1
Z9 1
U1 3
U2 7
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
EI 1758-6798
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD FEB
PY 2015
VL 5
IS 2
BP 100
EP 101
PG 3
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA CC4MO
UT WOS:000350327700012
ER
PT J
AU Cai, WJ
Wang, GJ
Santoso, A
McPhaden, MJ
Wu, LX
Jin, FF
Timmermann, A
Collins, M
Vecchi, G
Lengaigne, M
England, MH
Dommenget, D
Takahashi, K
Guilyardi, E
AF Cai, Wenju
Wang, Guojian
Santoso, Agus
McPhaden, Michael J.
Wu, Lixin
Jin, Fei-Fei
Timmermann, Axel
Collins, Mat
Vecchi, Gabriel
Lengaigne, Matthieu
England, Matthew H.
Dommenget, Dietmar
Takahashi, Ken
Guilyardi, Eric
TI Increased frequency of extreme La Nina events under greenhouse warming
SO NATURE CLIMATE CHANGE
LA English
DT Article
ID EL-NINO; SOUTHERN-OSCILLATION; PACIFIC; VARIABILITY; PROJECTIONS;
BANGLADESH; IMPACTS; WEATHER; FLOODS; OCEAN
AB The El Nino/Southern Oscillation is Earth's most prominent source of interannual climate variability, alternating irregularly between El Nino and La Nina, and resulting in global disruption of weather patterns, ecosystems, fisheries and agriculture(1-5). The 1998-1999 extreme La Nina event that followed the 1997-1998 extreme El Nino event(6) switched extreme El Nino-induced severe droughts to devastating floods in western Pacific countries, and vice versa in the southwestern United States(4,7). During extreme La Nina events, cold sea surface conditions develop in the central Pacific(8,9), creating an enhanced temperature gradient from the Maritime continent to the central Pacific. Recent studies have revealed robust changes in El Nino characteristics in response to simulated future greenhouse warming(10-12), but how La Nina will change remains unclear. Here we present climate modelling evidence, from simulations conducted for the Coupled Model Intercomparison Project phase 5 (ref. 13), for a near doubling in the frequency of future extreme La Nina events, from one in every 23 years to one in every 13 years. This occurs because projected faster mean warming of the Maritime continent than the central Pacific, enhanced upper ocean vertical temperature gradients, and increased frequency of extreme El Nino events are conducive to development of the extreme La Nina events. Approximately 75% of the increase occurs in years following extreme El Nino events, thus projecting more frequent swings between opposite extremes from one year to the next.
C1 [Cai, Wenju; Wang, Guojian] CSIRO, Oceans & Atmosphere Flagship, Aspendale, Vic 3195, Australia.
[Cai, Wenju; Wang, Guojian; Wu, Lixin] Ocean Univ China, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Phys Oceanog Lab, Qingdao 266003, Peoples R China.
[Santoso, Agus; England, Matthew H.] Univ New S Wales, ARC, Ctr Excellence Climate Syst Sci, Sydney, NSW 2052, Australia.
[McPhaden, Michael J.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
[Jin, Fei-Fei] Univ Hawaii, SOEST, Dept Meteorol, Honolulu, HI 96822 USA.
[Timmermann, Axel] Univ Hawaii, SOEST, Dept Oceanog, IPRC, Honolulu, HI 96822 USA.
[Collins, Mat] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX1 3PB, Devon, England.
[Vecchi, Gabriel] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
[Lengaigne, Matthieu; Guilyardi, Eric] UPMC, IRD, CNRS, MNHN,LOCEAN, Paris 05, France.
[Dommenget, Dietmar] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia.
[Takahashi, Ken] Inst Geofis Peru, Lima 169, Peru.
[Guilyardi, Eric] Univ Reading, NCAS Climate, Reading RG6 6BB, Berks, England.
RP Cai, WJ (reprint author), CSIRO, Oceans & Atmosphere Flagship, Aspendale, Vic 3195, Australia.
EM wenju.cai@csiro.au
RI Vecchi, Gabriel/A-2413-2008; Guilyardi, Eric/D-4868-2011; Timmermann,
Axel /F-4977-2011; Collins, Matthew/F-8473-2011; Santoso,
Agus/J-7350-2012; Cai, Wenju/C-2864-2012; Dommenget,
Dietmar/B-9828-2011; Takahashi, Ken/G-5321-2010; McPhaden,
Michael/D-9799-2016;
OI Vecchi, Gabriel/0000-0002-5085-224X; Guilyardi,
Eric/0000-0002-2255-8625; Timmermann, Axel /0000-0003-0657-2969;
Collins, Matthew/0000-0003-3785-6008; Santoso, Agus/0000-0001-7749-8124;
Dommenget, Dietmar/0000-0002-5129-7719; Takahashi,
Ken/0000-0003-3670-2939; England, Matthew/0000-0001-9696-2930
FU Australian Climate Change Science Program; CSIRO Office of Chief
Executive Science Leader award; Australian Research Council; ARC
[DP120101442]; ARC Centre of Excellence for Climate System Science
[CE110001028]; NERC/MoES SAPRISE [NE/I022841/1]; NOAA
FX W.C. and G.W. are supported by the Australian Climate Change Science
Program and a CSIRO Office of Chief Executive Science Leader award. A.S.
and M.H.E. are supported by the Australian Research Council. D.D. is
supported by ARC project 'Beyond the linear dynamics of the El
Nino-Southern Oscillation' (DP120101442) and ARC Centre of Excellence
for Climate System Science (CE110001028). M.C. was supported by
NERC/MoES SAPRISE project (NE/I022841/1). M.J.M. was supported by NOAA,
and this is PMEL contribution number 4259.
NR 30
TC 70
Z9 71
U1 22
U2 105
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
EI 1758-6798
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD FEB
PY 2015
VL 5
IS 2
BP 132
EP 137
DI 10.1038/NCLIMATE2492
PG 6
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA CC4MO
UT WOS:000350327700022
ER
PT J
AU Parnell, SR
Washington, AL
Li, K
Yan, H
Stonaha, P
Li, F
Wang, T
Walsh, A
Chen, WC
Parnell, AJ
Fairclough, JPA
Baxter, DV
Snow, WM
Pynn, R
AF Parnell, S. R.
Washington, A. L.
Li, K.
Yan, H.
Stonaha, P.
Li, F.
Wang, T.
Walsh, A.
Chen, W. C.
Parnell, A. J.
Fairclough, J. P. A.
Baxter, D. V.
Snow, W. M.
Pynn, R.
TI Spin echo small angle neutron scattering using a continuously pumped
He-3 neutron polarisation analyser
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID STATE POLARIZING BENDER; 2ND TARGET STATION; COLD NEUTRONS; FILTER;
FLIPPER; REFLECTOMETRY; PERFORMANCE; INSTRUMENT; DEVICES; DESIGN
AB We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of He-3. We describe the performance of the analyser along with a study of the 3He polarisation stability and its implications for SESANS measurements. Scattering from silica Stober particles is investigated and agrees with samples run on similar instruments. (c) 2015 AIP Publishing LLC.
C1 [Parnell, S. R.; Washington, A. L.; Li, K.; Yan, H.; Stonaha, P.; Li, F.; Wang, T.; Baxter, D. V.; Snow, W. M.; Pynn, R.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA.
[Washington, A. L.; Fairclough, J. P. A.] Univ Sheffield, Dept Mech Engn, Sheffield S1 3DJ, S Yorkshire, England.
[Walsh, A.] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England.
[Chen, W. C.] NIST, Gaithersburg, MD 20899 USA.
[Chen, W. C.] Univ Maryland, College Pk, MD 20742 USA.
[Parnell, A. J.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England.
[Pynn, R.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.
RP Parnell, SR (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA.
RI Baxter, David /D-3769-2013; Parnell, Andrew/F-8969-2011; Fairclough,
Patrick/B-1419-2012;
OI Baxter, David /0000-0003-2812-0904; Parnell, Andrew/0000-0001-8606-8644;
Fairclough, Patrick/0000-0002-1675-5219; Washington,
Adam/0000-0002-3243-1556
FU Indiana University Center for Spacetime Symmetries; U.S. Department of
Energy, Office of Basic Energy Sciences [DE-FG02-09ER46279,
DE-FG02-03ER46093]; National Science Foundation [DMR-0220560,
DMR-0320627]; 21st Century Science and Technology fund of Indiana,
Indiana University; Department of Defence
FX The authors would like to thank Jeff Andersen of the NIST shop for
fabrication of the GE180 cell and Dr. W. A. Hamilton from Oak Ridge
National Laboratory for helpful comments in the preparation of this
manuscript. Also Dr. R. Dalgliesh from the ISIS pulsed neutron and muon
source for help with the comparison between Offspec and SESAME results.
W. M. Snow and H. Yan (now Chinese Academy of Engineering Physics)
acknowledge support from the Indiana University Center for Spacetime
Symmetries. This project was supported by the U.S. Department of Energy,
Office of Basic Energy Sciences Grant Nos. DE-FG02-09ER46279 and
DE-FG02-03ER46093. Construction of LENS was supported by the National
Science Foundation Grant Nos. DMR-0220560 and DMR-0320627, the 21st
Century Science and Technology fund of Indiana, Indiana University, and
the Department of Defence.
NR 49
TC 6
Z9 6
U1 4
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD FEB
PY 2015
VL 86
IS 2
AR 023902
DI 10.1063/1.4909544
PG 10
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA CC7MT
UT WOS:000350552700042
PM 25725858
ER
PT J
AU Gutierrez, E
Gonzalez, JE
Martilli, A
Bornstein, R
Arend, M
AF Gutierrez, Estatio
Gonzalez, Jorge E.
Martilli, Alberto
Bornstein, Robert
Arend, Mark
TI Simulations of a Heat-Wave Event in New York City Using a Multilayer
Urban Parameterization
SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY
LA English
DT Article
ID SURFACE EXCHANGE PARAMETERIZATION; MESOSCALE MODELS; SINGLE-LAYER;
ISLAND; TURBULENCE; SENSITIVITY; VALIDATION; IMPACT; SPACE; TIME
AB The Weather Research and Forecasting mesoscale model coupled to a multilayer urban canopy parameterization was used to evaluate the evolution of a 3-day heat wave in New York City, New York, during the summer of 2010. Results from three simulations with different degrees of urban modeling complexity and one with an absence of urban surfaces are compared with observations. To improve the city morphology representation, building information was assimilated and the land cover land-use classification was modified. The thermal and drag effects of buildings represented in the multilayer urban canopy model improve simulations over urban regions, giving better estimates of the surface temperature and wind speed. The accuracy of the simulation is further assessed against more simplified urban parameterizations models. The nighttime excessive cooling shown by the Building Energy Parameterization is compensated for when the Building Energy Model is activated. The turbulent kinetic energy is vertically distributed when using the multilayer scheme with a maximum at the average building height, whereas turbulence production is confined to a few meters above the surface when using the simplified scheme. Evidence for the existence of horizontal roll vortices is presented, and the impact that the horizontal resolution and the time step value have on their formation is assessed.
C1 [Gutierrez, Estatio; Gonzalez, Jorge E.] CUNY City Coll, Dept Mech Engn, New York, NY 10031 USA.
[Martilli, Alberto] Ctr Invest Energet Medioambient & Tecnolog, Madrid, Spain.
[Bornstein, Robert] San Jose State Univ, Dept Meteorol, San Jose, CA 95192 USA.
[Arend, Mark] CUNY City Coll, NOAA Cooperat Remote Sensing Sci & Technol Ctr, New York, NY 10031 USA.
RP Gutierrez, E (reprint author), CUNY City Coll, Dept Mech Engn, 260 Convent Ave,Apt 96, New York, NY 10031 USA.
EM estatio@yahoo.com
RI Martilli, Alberto/H-5426-2015
OI Martilli, Alberto/0000-0002-7795-5871
FU City University of New York High Performance Computing Center under
National Science Foundation (NSF) [CNS-0855217, CNS-0958379,
ACI-1126113]; NSF [IIP-1439606]
FX This research was supported, in part, by a grant of computer time from
the City University of New York High Performance Computing Center under
National Science Foundation (NSF) Grants CNS-0855217, CNS-0958379, and
ACI-1126113. Partial financial support was provided by NSF Grant
IIP-1439606. NCEP-NCAR reanalysis data were provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website
(http://www.esrl.noaa.gov/psd/).
NR 46
TC 10
Z9 10
U1 6
U2 14
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1558-8424
EI 1558-8432
J9 J APPL METEOROL CLIM
JI J. Appl. Meteorol. Climatol.
PD FEB
PY 2015
VL 54
IS 2
BP 283
EP 301
DI 10.1175/JAMC-D-14-0028.1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8IZ
UT WOS:000349873900003
ER
PT J
AU French, MM
Burgess, DW
Mansell, ER
Wicker, LJ
AF French, Michael M.
Burgess, Donald W.
Mansell, Edward R.
Wicker, Louis J.
TI Bulk Hook Echo Raindrop Sizes Retrieved Using Mobile, Polarimetric
Doppler Radar Observations
SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY
LA English
DT Article
ID 5 JUNE 2009; SEVERE CONVECTIVE STORMS; REAR-FLANK DOWNDRAFTS; X-BAND;
DUAL-POLARIZATION; DIFFERENTIAL REFLECTIVITY; WEATHER RADAR; PART II;
HIGH-RESOLUTION; GOSHEN COUNTY
AB Polarimetric radar observations obtained by the NOAA/National Severe Storms Laboratory mobile, X-band, dual-polarization radar (NOXP) are used to investigate "hook echo'' precipitation properties in several tornadic and nontornadic supercells. Hook echo drop size distributions (DSDs) were estimated using NOXP data obtained from 2009 to 2012, including during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). Differences between tornadic and nontornadic hook echo DSDs are explored, and comparisons are made with previous observations of estimated hook echo DSDs made from stationary S- and C-band Doppler radars. Tornadic hook echoes consistently contain radar gates that are characterized by small raindrops; nontornadic hook echoes are mixed between those that have some small-drop gates and those that have almost no small-drop gates. In addition, the spatial distribution of DSDs was estimated using the high-spatial-resolution data afforded by NOXP. A unique polarimetric signature, an area of relatively low values of differential radar reflectivity factor Z(DR) south and east of the tornado, is observed in many of the tornadic cases. Also, because most data were obtained using 2-min volumetric updates, the evolution of approximated hook echo precipitation properties was studied during parts of the life cycles of three tornadoes. In one case, there is a large decrease in the percentage of large-raindrop gates and an increase in the percentage of small-raindrop gates in the minutes leading up to tornado formation. The percentage of large-drop gates generally increases prior to and during tornado dissipation. Near-storm environmental data are used to put forth possible relationships between bulk hook echo DSDs and tornado production and life cycle.
C1 [French, Michael M.; Burgess, Donald W.; Mansell, Edward R.; Wicker, Louis J.] NOAA Natl Severe Storms Lab, Norman, OK 73072 USA.
[Burgess, Donald W.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA.
RP French, MM (reprint author), NOAA Natl Severe Storms Lab, Natl Weather Ctr, 120 David L Boren Blvd, Norman, OK 73072 USA.
EM michael.french@noaa.gov
FU National Science Foundation; NOAA/OAR under NOAA-University of Oklahoma
[NA11OAR4320072]
FX The authors appreciate helpful discussions with Joey Picca, Valery
Melnikov, Christopher Schwarz, and Jeffrey Snyder. The latter also
provided an attenuation-correction code. Howie Bluestein provided UMass
X-Pol data for comparison purposes. Sounding data were provided by
NCAR/EOL under sponsorship of the National Science Foundation. Thanks
are given also to Patrick Skinner for assistance with sounding data. We
are indebted to the VORTEX2 crews for their work in obtaining the radar
and sounding data used in this study. Constructive feedback on this
manuscript from Matthew Kumjian and two anonymous reviewers improved
several important points. Funding was provided by NOAA/OAR under
NOAA-University of Oklahoma Cooperative Agreement NA11OAR4320072, U.S.
Department of Commerce. This work was completed while the first author
was a National Research Council postdoctoral research associate at the
National Severe Storms Laboratory.
NR 65
TC 5
Z9 5
U1 0
U2 3
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1558-8424
EI 1558-8432
J9 J APPL METEOROL CLIM
JI J. Appl. Meteorol. Climatol.
PD FEB
PY 2015
VL 54
IS 2
BP 423
EP 450
DI 10.1175/JAMC-D-14-0171.1
PG 28
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8IZ
UT WOS:000349873900011
ER
PT J
AU Lakshmanan, V
Herzog, B
Kingfield, D
AF Lakshmanan, Valliappa
Herzog, Benjamin
Kingfield, Darrel
TI A Method for Extracting Postevent Storm Tracks
SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY
LA English
DT Article
ID MULTIPLE-HYPOTHESIS TRACKING; REAL-TIME; THUNDERSTORM ELECTRIFICATION;
NOWCASTING THUNDERSTORMS; LIGHTNING ACTIVITY; SEVERE WEATHER;
UNITED-STATES; RADAR; ALGORITHM; IDENTIFICATION
AB Although existing algorithms for storm tracking have been designed to operate in real time, they are also commonly used to do postevent data analysis and research. Real-time algorithms cannot use information on the subsequent positions of a storm because it is not available at the time that associations between frames are made, but postevent analysis is not similarly constrained. Therefore, it should be possible to obtain better tracks for postevent analysis than those that a real-time algorithm is capable of producing. In this paper, a statistical procedure for determining storm tracks from a set of identified storm cells over time is described. It is found that this procedure results in fewer, longer-lived tracks at the potential cost of a small increase in positional error.
C1 [Lakshmanan, Valliappa; Kingfield, Darrel] Univ Oklahoma, CIMMS, Norman, OK 73072 USA.
[Lakshmanan, Valliappa; Kingfield, Darrel] Natl Severe Storms Lab, Norman, OK 73069 USA.
[Herzog, Benjamin] Natl Weather Serv Forecast Off, Sullivan, WI USA.
RP Lakshmanan, V (reprint author), Univ Oklahoma, CIMMS, 120 David L Boren Blvd, Norman, OK 73072 USA.
EM lakshman@ou.edu
FU NOAA/Office of Oceanic and Atmospheric Research under NOAA-OU
[NA11OAR4320072]
FX Funding for the authors was provided by the NOAA/Office of Oceanic and
Atmospheric Research under NOAA-OU Cooperative Agreement NA11OAR4320072,
U.S. Department of Commerce. The technique described in this paper has
been implemented within the Warning Decision Support System-Integrated
Information (WDSS-II; Lakshmanan et al. 2007) as the tool w2besttrack.
NR 51
TC 0
Z9 0
U1 1
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1558-8424
EI 1558-8432
J9 J APPL METEOROL CLIM
JI J. Appl. Meteorol. Climatol.
PD FEB
PY 2015
VL 54
IS 2
BP 451
EP 462
DI 10.1175/JAMC-D-14-0132.1
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8IZ
UT WOS:000349873900012
ER
PT J
AU Naud, CM
Rangwala, I
Xu, M
Miller, JR
AF Naud, C. M.
Rangwala, I.
Xu, M.
Miller, J. R.
TI A Satellite View of the Radiative Impact of Clouds on Surface Downward
Fluxes in the Tibetan Plateau
SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY
LA English
DT Article
ID ENERGY SYSTEM CERES; SOLAR-RADIATION; CHINA; MODIS; PRODUCTS;
IRRADIANCES; VALIDATION; TRENDS
AB Using 13 yr of satellite observations for the Tibetan Plateau, the sensitivities (or partial derivatives) of daytime surface downward shortwave and longwave fluxes with respect to changes in cloud cover and cloud optical thickness are investigated and quantified. Coincident cloud and surface flux retrievals from the NASA Moderate Resolution Imaging Spectroradiometer and the Clouds and the Earth's Radiant Energy System, respectively, as well as ground-based observations at 11 stations across the plateau are used to examine the spatial and seasonal variability of this sensitivity over the entire plateau. The downward shortwave flux is found to be modulated primarily by changes in cloud cover, but changes in optical thickness also have an impact, as revealed by a multiple regression fit. The coefficient of determination of the regression increases by more than 15% when optical thickness is added. There is significant seasonal and regional variability in the cloud radiative impact. On average, at all stations, the sensitivity of surface shortwave flux to changes in cloud cover is about -0.5 +/- 0.1 W m(-2) %(-1) in winter according to both ground-based and satellite observations but in summer reaches -1.5 +/- 0.3 and -1.8 +/- 0.2 W m(-2) %(-1) according to ground-based and satellite observations, respectively. Cloud cover itself has little impact on the sensitivity when clouds are optically thin, but above an optical thickness of 12, sensitivities increase with both cloud cover and cloud optical thickness. The daytime longwave flux response to changes in cloud properties is also examined. The radiative impact of a decrease in cloud cover on the surface net flux can be offset or even canceled if cloud opacity increases by 5%-10%.
C1 [Naud, C. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
[Rangwala, I.] Univ Colorado, Boulder, CO 80309 USA.
[Rangwala, I.] NOAA, ESRL, Div Phys Sci, Boulder, CO USA.
[Xu, M.] Rutgers State Univ, Dept Ecol Evolut & Nat Resources, New Brunswick, NJ USA.
[Miller, J. R.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08903 USA.
RP Naud, CM (reprint author), 2880 Broadway, New York, NY 10025 USA.
EM cn2140@columbia.edu
FU National Science Foundation [1064281, 1064326]; New Jersey Agricultural
Experiment Station; USDA-National Institute for Food and Agriculture
[NJ32103]
FX The ground-based climate data were obtained from the China
Meteorological Administration. We thank Eric Sinsky for the quality
control of the data and reformatting of the files and Yonghua Chen for
translating the technical specifications of the Chinese pyranometers
DYF-4. The CERES data were obtained from the Atmospheric Science Data
Center at the NASA Langley Research Center. The MODIS daily cloud and
aerosol files were obtained from the Goddard Space Flight Center level 1
and Atmosphere Archive and Distribution System. The MODIS monthly snow
products were obtained from the National Snow and Ice Data Center. The
GTOPO30 digital elevation model data were obtained at the U.S.
Geological Survey website (https://lta.cr.usgs.gov/GTOPO30). This work
was funded by the National Science Foundation (Grants 1064281 and
1064326). JRM received support from the New Jersey Agricultural
Experiment Station and the USDA-National Institute for Food and
Agriculture, Hatch Project NJ32103. The authors thank Mark Miller and
three anonymous reviewers for their very helpful comments.
NR 45
TC 0
Z9 0
U1 3
U2 14
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1558-8424
EI 1558-8432
J9 J APPL METEOROL CLIM
JI J. Appl. Meteorol. Climatol.
PD FEB
PY 2015
VL 54
IS 2
BP 479
EP 493
DI 10.1175/JAMC-D-14-0183.1
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8IZ
UT WOS:000349873900014
ER
PT J
AU Goddard, PB
Yin, JJ
Griffies, SM
Zhang, SQ
AF Goddard, Paul B.
Yin, Jianjun
Griffies, Stephen M.
Zhang, Shaoqing
TI An extreme event of sea-level rise along the Northeast coast of North
America in 2009-2010
SO NATURE COMMUNICATIONS
LA English
DT Article
ID MERIDIONAL OVERTURNING CIRCULATION; US EAST-COAST; COUPLED CLIMATE
MODEL; SURFACE MASS-BALANCE; SIMULATION CHARACTERISTICS; DATA
ASSIMILATION; ATLANTIC COAST; UNITED-STATES; PART I; VARIABILITY
AB The coastal sea levels along the Northeast Coast of North America show significant year-to-year fluctuations in a general upward trend. The analysis of long-term tide gauge records identified an extreme sea-level rise (SLR) event during 2009-10. Within this 2-year period, the coastal sea level north of New York City jumped by 128 mm. This magnitude of interannual SLR is unprecedented (a 1-in-850 year event) during the entire history of the tide gauge records. Here we show that this extreme SLR event is a combined effect of two factors: an observed 30% downturn of the Atlantic meridional overturning circulation during 2009-10, and a significant negative North Atlantic Oscillation index. The extreme nature of the 2009-10 SLR event suggests that such a significant downturn of the Atlantic overturning circulation is very unusual. During the twenty-first century, climate models project an increase in magnitude and frequency of extreme interannual SLR events along this densely populated coast.
C1 [Goddard, Paul B.; Yin, Jianjun] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA.
[Griffies, Stephen M.; Zhang, Shaoqing] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
RP Yin, JJ (reprint author), Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA.
EM yin@email.arizona.edu
FU NOAA Climate Program Office [NA13OAR4310128]
FX We thank Drs R. Stouffer and M. Winton for constructive comments. We
thank Dr M. Winton for providing simulations of the ten GFDL models, and
many research centres for providing the observation and modelling data.
The work was supported by the NOAA Climate Program Office (grant number
NA13OAR4310128).
NR 49
TC 19
Z9 19
U1 3
U2 26
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD FEB
PY 2015
VL 6
AR 6346
DI 10.1038/ncomms7346
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CC4AI
UT WOS:000350292400004
PM 25710720
ER
PT J
AU Highnam, G
Wang, JJ
Kusler, D
Zook, J
Vijayan, V
Leibovich, N
Mittelman, D
AF Highnam, Gareth
Wang, Jason J.
Kusler, Dean
Zook, Justin
Vijayan, Vinaya
Leibovich, Nir
Mittelman, David
TI An analytical framework for optimizing variant discovery from personal
genomes
SO NATURE COMMUNICATIONS
LA English
DT Article
ID SEQUENCING PLATFORMS; GENETIC-VARIATION; READ ALIGNMENT; WHOLE-GENOME;
EXOME
AB The standardization and performance testing of analysis tools is a prerequisite to widespread adoption of genome-wide sequencing, particularly in the clinic. However, performance testing is currently complicated by the paucity of standards and comparison metrics, as well as by the heterogeneity in sequencing platforms, applications and protocols. Here we present the genome comparison and analytic testing (GCAT) platform to facilitate development of performance metrics and comparisons of analysis tools across these metrics. Performance is reported through interactive visualizations of benchmark and performance testing data, with support for data slicing and filtering. The platform is freely accessible at http://www.bioplanet.com/gcat.
C1 [Highnam, Gareth; Wang, Jason J.; Kusler, Dean; Leibovich, Nir; Mittelman, David] Gene Gene Ltd, Houston, TX 77008 USA.
[Zook, Justin] NIST, Biosyst & Biomat Div, Gaithersburg, MD 20899 USA.
[Vijayan, Vinaya; Mittelman, David] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA.
RP Mittelman, D (reprint author), Gene Gene Ltd, Houston, TX 77008 USA.
EM david.a.mittelman@gmail.com
NR 18
TC 17
Z9 17
U1 0
U2 9
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD FEB
PY 2015
VL 6
AR 6275
DI 10.1038/ncomms7275
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CC3ZH
UT WOS:000350289500006
PM 25711446
ER
PT J
AU Esteban, R
Aguirregabiria, G
Borisov, AG
Wang, YMM
Nordlander, P
Bryant, GW
Aizpurua, J
AF Esteban, Ruben
Aguirregabiria, Garikoitz
Borisov, Andrey G.
Wang, Yumin M.
Nordlander, Peter
Bryant, Garnett W.
Aizpurua, Javier
TI The Morphology of Narrow Gaps Modifies the Plasmonic Response
SO ACS PHOTONICS
LA English
DT Article
DE optical antennas; plasmonic gaps; cavity modes; antenna modes; quantum
effects; quantum corrected model; plasmonic resonances; phononic
resonances
ID ENHANCED RAMAN-SCATTERING; SURFACE-PHONON POLARITON; GOLD NANORODS;
NANOWIRE DIMERS; SILICON-CARBIDE; NANOPARTICLE DIMERS; INFRARED
PROPERTIES; QUANTUM PLASMONICS; OPTICAL-PROPERTIES; FIELD ENHANCEMENT
AB The optical response of a plasmonic gap-antenna is mainly determined by the Coulomb interaction of the two constituent arms of the antenna. Using rigorous calculations supported by simple analytical models, we observe how the morphology of a nanometric gap separating two metallic rods dramatically modifies the plasmonic response. In the case of rounded terminations at the gap, a conventional set of bonding modes is found that red-shifts strongly with decreasing separation. However, in the case of flat surfaces, a distinctly different situation is found with the appearance of two sets of modes: (i) strongly radiating longitudinal antenna plasmons (LAPs), which exhibit a red-shift that saturates for very narrow gaps, and (ii) transverse cavity plasmons (TCPs) confined to the gap, which are weakly radiative and strongly dependent on the separation distance between the two arms. The two sets of modes can be independently tuned, providing detailed control of both the near- and far-field response of the antenna. We illustrate these properties also with an application to larger infrared gap-antennas made of polar materials such as SiC. Finally we use the quantum corrected model (QCM) to show that the morphology of the gap has a dramatic influence on the plasmonic response also for subnanometer gaps. This effect can be crucial for the correct interpretation of charge transfer processes in metallic cavities where quantum effects such as electron tunneling are important.
C1 [Esteban, Ruben; Aguirregabiria, Garikoitz; Aizpurua, Javier] Univ Basque Country, Ctr Fis Mat, Ctr Mixto CSIC, Donostia San Sebastian 20018, Spain.
[Esteban, Ruben; Aguirregabiria, Garikoitz; Aizpurua, Javier] Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain.
[Borisov, Andrey G.] Univ Paris 11, UMR 8214, CNRS, Inst Sci Mol Orsay, F-91405 Orsay, France.
[Wang, Yumin M.; Nordlander, Peter] Rice Univ, Lab Nanophoton, Dept Elect & Comp Engn, MS378, Houston, TX 77005 USA.
[Bryant, Garnett W.] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA.
[Bryant, Garnett W.] NIST, Quantum Measurement Div, Gaithersburg, MD 20899 USA.
RP Esteban, R (reprint author), Univ Basque Country, Ctr Fis Mat, Ctr Mixto CSIC, Donostia San Sebastian 20018, Spain.
EM r.esteban@ehu.es; aizpurua@ehu.es
RI Aizpurua, Javier/E-6889-2014; Nordlander, Peter/A-2560-2008; Esteban,
Ruben/B-9669-2014; DONOSTIA INTERNATIONAL PHYSICS CTR.,
DIPC/C-3171-2014; CSIC-UPV/EHU, CFM/F-4867-2012
OI Aizpurua, Javier/0000-0002-1444-7589; Nordlander,
Peter/0000-0002-1633-2937;
FU Spanish Ministry of Economy and Competitiveness [FIS2013-41184-P];
Basque Government [ETORTEK2014-2015]; Gipuzkoako Foru Aldundia; Robert
A. Welch Foundation [C-1222]; Office of Naval Research
[N00014-10-1-0989]
FX We acknowledge useful discussions with Prof. Jean-Jacques Greffet, Prof.
P. Apell, Prof. J. J. Baumberg, and Dr. C. Tzerkezis. J.A. and RE.
acknowledge financial support from the Spanish Ministry of Economy and
Competitiveness (project FIS2013-41184-P) and from the Basque Government
(project ETORTEK2014-2015). RE. acknowledges support from the Fellows
Gipuzkoa Program of the Gipuzkoako Foru Aldundia. P.N. acknowledges
support from the Robert A. Welch Foundation under grant C-1222 and the
Office of Naval Research (N00014-10-1-0989).
NR 108
TC 29
Z9 29
U1 14
U2 95
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2330-4022
J9 ACS PHOTONICS
JI ACS Photonics
PD FEB
PY 2015
VL 2
IS 2
BP 295
EP 305
DI 10.1021/ph5004016
PG 11
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Optics; Physics, Applied; Physics, Condensed Matter
SC Science & Technology - Other Topics; Materials Science; Optics; Physics
GA CB7NP
UT WOS:000349814400017
ER
PT J
AU Ng, LC
Persily, AK
Emmerich, SJ
AF Ng, Lisa C.
Persily, Andrew K.
Emmerich, Steven J.
TI Improving infiltration modeling in commercial building energy models
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Airflow modeling; Commercial buildings; CONTAM; Energy modeling; Energy
Plus; Infiltration
ID AIR-PRESSURE CONDITIONS; FLOW MODELS
AB As building envelope performance and heating, ventilation, and air conditioning (HVAC) equipment efficiencies are increasingly improved to reduce building energy use, a greater percentage of the total energy loss of a building can occur through envelope leakage. Although the energy impacts of unintended infiltration on a building's energy use can be significant, current energy simulation software and design methods are generally not able to accurately account for envelope infiltration and the impacts of improved airtightness. New strategies to incorporate airflow calculations into building energy calculations are proposed, Which are based on relationships between infiltration rates calculated using multizone airflow models, building characteristics, including envelope airtightness, weather conditions, and HVAC system operation. The new strategies are more accurate than current approaches in energy simulation software and easier to apply than multizone airflow modeling. Published by Elsevier B.V.
C1 [Ng, Lisa C.] NIST, IAQ, Gaithersburg, MD 20899 USA.
Ventilat Grp, Gaithersburg, MD 20899 USA.
RP Ng, LC (reprint author), NIST, IAQ, 100 Bur Dr,MS8633, Gaithersburg, MD 20899 USA.
EM lisa.ng@nist.gov
NR 25
TC 2
Z9 2
U1 5
U2 13
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
EI 1872-6178
J9 ENERG BUILDINGS
JI Energy Build.
PD FEB 1
PY 2015
VL 88
BP 316
EP 323
DI 10.1016/j.enbuild.2014.11.078
PG 8
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
SC Construction & Building Technology; Energy & Fuels; Engineering
GA CB6JA
UT WOS:000349732100029
ER
PT J
AU Wang, YD
Yu, TY
AF Wang, Yadong
Yu, Tian-You
TI Novel Tornado Detection Using an Adaptive Neuro-Fuzzy System with S-Band
Polarimetric Weather Radar
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
ID MOBILE DOPPLER RADAR; SPECTRAL SIGNATURES; DUAL-POLARIZATION; X-BAND;
CLASSIFICATION; SUPERCELLS; RESOLUTION; INTENSITY; ALGORITHM
AB Tornado debris signatures (TDS) exhibited in polarimetric measurements have the potential to facilitate tornado detection. The upgrade of the network of S-band Weather Surveillance Radar-1988 Doppler (WSR-88D) to dual polarization was completed recently. Therefore, it is timely to develop a tornado detection algorithm that capitalizes on TDS and integrates with other existing signatures observed in the velocity (shear signature) and Doppler spectrum (spectral signature) fields. In this work, the analysis indicates that TDS are not always present with shear and spectral signatures. A neuro-fuzzy tornado detection algorithm (NFTDA) using the Sugeno fuzzy inference system is developed to consider the strength of different tornado signatures that are characterized by operationally available data of differential reflectivity, cross-correlation coefficient, velocity difference, and spectrum width with the goal of reliable and robust detection. The performance is further optimized using a training procedure based on a neural network. The performance of NFTDA is evaluated using polarimetric WSR-88D data from 17 tornadoes with enhanced Fujita (EF) scale ratings ranging from EF-0 to BF-4 and distance from 16 to 133 km to the radar. NFTDA performs well with the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) of 86%, 11%, and 78%, respectively. Moreover, a computationally efficient method is introduced to analyze the sensitivity of the tornado signatures. It is demonstrated that even though TDS play a less important role than the other two signatures, TDS can help improve the detection, especially during the later stage of a tornado, when the shear and spectral signatures become weaker.
C1 [Wang, Yadong] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA.
[Wang, Yadong] NOAA OAR Natl Severe Storms Lab, Norman, OK USA.
[Yu, Tian-You] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA.
[Yu, Tian-You] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA.
[Yu, Tian-You] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA.
RP Wang, YD (reprint author), CIMMS, 120 David L Boren Blvd, Norman, OK 73072 USA.
EM yadong.wang@noaa.gov
FU NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of
Oklahoma Cooperative Agreement, U.S. Department of Commerce
[NA11OAR4320072]; Toshiba, Japan
FX The authors thank Mr. Robb Lawson from the NWS WFO in Wichita, Kansas,
for providing the tornado damage path. Funding was partially provided by
NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of
Oklahoma Cooperative Agreement NA11OAR4320072, U.S. Department of
Commerce. This work is partially supported by Toshiba, Japan.
NR 32
TC 2
Z9 2
U1 3
U2 8
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD FEB
PY 2015
VL 32
IS 2
BP 195
EP 208
DI 10.1175/JTECH-D-14-00096.1
PG 14
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA CB6NE
UT WOS:000349742900002
ER
PT J
AU Melnikov, VM
Zrnic, DS
AF Melnikov, Valery M.
Zrnic, Dusan S.
TI On the Alternate Transmission Mode for Polarimetric Phased Array Weather
Radar
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
ID POLARIZATION DIVERSITY; SPECTRUM WIDTH; ERROR ANALYSIS; DOPPLER RADAR;
VARIABLES; WSR-88D
AB Pulse-to-pulse switching of polarizations (alternate transmission mode) is considered for polarimetric phased array radar (PAR). It is argued that the performance of the radar in terms of data quality should match or exceed the achieved standards of the Weather Surveillance Radar-1988 Doppler (WSR-88D). It turns out that the most stringent demand on the radar concerns the surveillance scan at the lowest elevations wherein the polarimetric variables are free of overlaid echoes, while ground clutter is significantly reduced. The scan uses a long pulse repetition time that has repercussion on the standard errors of the polarimetric variables and hence the choice of polarimetric mode. Herein the dwell time of this scan serves as a benchmark for comparisons of the accuracy of estimates. Because weather PAR should provide useful information at low signal-to-noise ratios (SNR) as low as those measured by the WSR-88D, the statistics of polarimetric variables, known at high SNR, is extended to low SNRs. It follows that the alternate mode would not match the performance of the simultaneous mode in the surveillance scans on the WSR-88D. Quasi-simultaneous transmission and reception of horizontally polarized and vertically polarized waves is discussed as a cost-effective alternative.
C1 [Melnikov, Valery M.] Univ Oklahoma, CIMMS, Norman, OK 73072 USA.
[Zrnic, Dusan S.] NOAA OAR Natl Severe Storms Lab, Norman, OK USA.
RP Melnikov, VM (reprint author), Univ Oklahoma, CIMMS, 120 David Boren Blvd,Room 4919, Norman, OK 73072 USA.
EM valery.melnikov@noaa.gov
FU NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of
Oklahoma Cooperative Agreement, U.S. Department of Commerce
[NA11OAR4320072]
FX We thank Dr. I. Ivic for the discussions and the anonymous reviewers for
their comments, which improved the paper. Funding was provided by
NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of
Oklahoma Cooperative Agreement NA11OAR4320072, U.S. Department of
Commerce.
NR 29
TC 0
Z9 0
U1 0
U2 1
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD FEB
PY 2015
VL 32
IS 2
BP 220
EP 233
DI 10.1175/JTECH-D-13-00176.1
PG 14
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA CB6NE
UT WOS:000349742900004
ER
PT J
AU Huang, BY
Wang, WQ
Liu, CY
Banzon, V
Zhang, HM
Lawrimore, J
AF Huang, Boyin
Wang, Wanqiu
Liu, Chunying
Banzon, Viva
Zhang, Huai-Min
Lawrimore, Jay
TI Bias Adjustment of AVHRR SST and Its Impacts on Two SST Analyses
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
ID SEA-SURFACE TEMPERATURE
AB Sea surface temperature (SST) observations from satellite-based Advanced Very High Resolution Radiometer (AVHRR) instrument exhibit biases. Adjustments necessary for removing the AVHRR biases have been studied by progressive experiments. These experiments show that the biases are sensitive to various parameters, including the length of the input data window, the base-function empirical orthogonal teleconnections (EOTs), the ship buoy SST adjustment, and a shift in grid system. The difference in bias adjustments due to these parameters can be as large as 0.3 degrees-0.5 degrees C in the tropical Pacific at the monthly time scale. The AVHRR bias adjustments were designed differently in the daily optimum interpolation SST (DOISST) and the Extended Reconstructed SST datasets that ingest AVHRR SSTs (ERSSTsat). The different AVHRR bias adjustments result in the differences in SST datasets in DOISST and ERSSTsat. Comparisons show that the SST difference between these two datasets results largely from the difference in the AVHRR bias adjustments and little from SST analysis methods in the Nifio-3.4 region, as well as in the global oceans. For example, the average difference of the Nifio-3.4 SSTs between DOISST and ERSSTsat is approximately 0.12 degrees C due to the bias adjustments and is about 0.01 degrees C due to the analysis methods. This study finds that the DOISST datasets can be improved by using the revised AVHRR bias adjustment of a wider input data window, updated EOTs, and a shifted grid system in DOISST. Improvements can also be made by including a ship buoy SST adjustment, a zonal SST adjustment, or revised EOTs without damping in the high latitudes in ERSSTsat.
C1 [Huang, Boyin; Banzon, Viva; Zhang, Huai-Min; Lawrimore, Jay] NOAA, Natl Climat Data Ctr, Asheville, NC USA.
[Wang, Wanqiu] NOAA, Climate Predict Ctr, College Pk, MD USA.
[Liu, Chunying] ERT Inc, Laurel, MD USA.
RP Huang, BY (reprint author), Natl Climat Ctr, 151 Patton Ave, Asheville, NC 28801 USA.
EM boyin.huang@noaa.gov
RI Banzon, Viva/D-5499-2014
NR 17
TC 2
Z9 2
U1 0
U2 4
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD FEB
PY 2015
VL 32
IS 2
BP 372
EP 387
DI 10.1175/JTECH-D-14-00121.1
PG 16
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA CB6NE
UT WOS:000349742900014
ER
PT J
AU Daloz, AS
Camargo, SJ
Kossin, JP
Emanuel, K
Horn, M
Jonas, JA
Kim, D
LaRow, T
Lim, YK
Patricola, CM
Roberts, M
Scoccimarro, E
Shaevitz, D
Vidale, PL
Wang, H
Wehner, M
Zhao, M
AF Daloz, Anne S.
Camargo, S. J.
Kossin, J. P.
Emanuel, K.
Horn, M.
Jonas, J. A.
Kim, D.
LaRow, T.
Lim, Y. -K.
Patricola, C. M.
Roberts, M.
Scoccimarro, E.
Shaevitz, D.
Vidale, P. L.
Wang, H.
Wehner, M.
Zhao, M.
TI Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic
Tropical Cyclone Tracks
SO JOURNAL OF CLIMATE
LA English
DT Article
ID GENERAL-CIRCULATION MODELS; GLOBAL ATMOSPHERIC MODEL; SEA-SURFACE
TEMPERATURE; AFRICAN EASTERLY WAVES; HIGH-RESOLUTION; CLIMATE MODELS;
CMIP5 MODELS; INTENSITY; FREQUENCY; GCM
AB A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1 degrees-0.25 degrees), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks' seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors' results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.
C1 [Daloz, Anne S.] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53704 USA.
[Camargo, S. J.; Kim, D.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
[Kossin, J. P.] NOAA Natl Climat Data Ctr, Asheville, NC USA.
[Emanuel, K.] MIT, Cambridge, MA 02139 USA.
[Horn, M.] Univ Melbourne, Sch Earth, Melbourne, Vic, Australia.
[Jonas, J. A.] Columbia Univ, Ctr Climate Syst, New York, NY USA.
[Jonas, J. A.; Lim, Y. -K.] NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA.
[Jonas, J. A.; Lim, Y. -K.] NASA Goddard Space Flight Ctr, Goddard Earth Sci Technol & Res IM Syst Grp, Greenbelt, MD USA.
[LaRow, T.] Florida State Univ, Tallahassee, FL 32306 USA.
[Patricola, C. M.] Texas A&M Univ, College Stn, TX USA.
[Roberts, M.] Met Off Hadley Ctr, Exeter, Devon, England.
[Scoccimarro, E.] Ist Nazl Geofis & Vulcanol, Bologna, Italy.
[Scoccimarro, E.] Ctr Euromediterraneo Cambiamenti Climat, Lecce, Italy.
[Shaevitz, D.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
[Vidale, P. L.] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci, Reading, Berks, England.
[Wang, H.] NOAA NWS NCEP Climate Predict Ctr, College Pk, MD USA.
[Wang, H.] Innovim LLC, Greenbelt, MD USA.
[Wehner, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Wehner, M.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Zhao, M.] NOAA Geophys Fluid Dynam Lab, Princeton, NJ USA.
RP Daloz, AS (reprint author), Univ Wisconsin, Space Sci & Engn Ctr, 1225 West Dayton St,11th Floor, Madison, WI 53704 USA.
EM adaloz@wisc.edu
RI Camargo, Suzana/C-6106-2009; Zhao, Ming/C-6928-2014; Kossin,
James/C-2022-2016; Patricola, Christina/L-9902-2016;
OI Camargo, Suzana/0000-0002-0802-5160; Kossin, James/0000-0003-0461-9794;
Patricola, Christina/0000-0002-3387-0307; Vidale, Pier
Luigi/0000-0002-1800-8460
FU NOAA [NA11OAR4310093]; NSF [AGS1143959]; NASA [NNX09AK34G]; Regional and
Global Climate Modeling Program of the Office of Biological and
Environmental Research in the Department of Energy Office of Science
[DE-AC02-05CH11231]
FX We acknowledge support from NOAA Grant NA11OAR4310093, NSF Grant
AGS1143959, and NASA Grant NNX09AK34G. The data were provided by the
U.S. CLIVAR Hurricane Working Group. We thank Naomi Henderson for her
support with the U.S. CLIVAR Hurricane Working Group dataset. Wehner was
supported by the Regional and Global Climate Modeling Program of the
Office of Biological and Environmental Research in the Department of
Energy Office of Science under Contract DE-AC02-05CH11231. CAM5
calculations were performed at the National Energy Research
Supercomputing Center (NERSC) at the Lawrence Berkeley National
Laboratory. We also would like to thank the three anonymous reviewers
for their helpful comments.
NR 89
TC 8
Z9 8
U1 2
U2 15
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD FEB
PY 2015
VL 28
IS 4
BP 1333
EP 1361
DI 10.1175/JCLI-D-13-00646.1
PG 29
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB5LX
UT WOS:000349670000001
ER
PT J
AU Hua, LJ
Yu, YQ
Sun, DZ
AF Hua, Lijuan
Yu, Yongqiang
Sun, De-Zheng
TI A Further Study of ENSO Rectification: Results from an OGCM with a
Seasonal Cycle
SO JOURNAL OF CLIMATE
LA English
DT Article
ID MIXED-LAYER MODEL; EL-NINO; TROPICAL PACIFIC; OCEAN MODEL; EQUATORIAL
PACIFIC; CLIMATE MODELS; COUPLED MODEL; SYSTEM MODEL; LA-NINA;
SIMULATION
AB The potential role that rectification of ENSO plays as a viable mechanism to generate climate anomalies on the decadal and longer time scales demands a thorough study of this process. In this paper, rectification of ENSO was studied using an ocean GCM that has a realistic seasonal cycle. In addition to conducting a pair of forced ocean GCM experiments with and without ENSO fluctuations, as done in a previous study, a forced experiment was also conducted with the sign of wind anomalies reversed, with the goal of clarifying the role of the asymmetry in the wind forcing and more generally to better understand the nonlinear dynamics responsible for the rectification. It is found that the rectification effect of ENSO is to cool the western Pacific warm pool and warm the eastern equatorial Pacific. Further, it is found that when the sign of the wind stress anomalies is reversed the impact of the rectification on the mean state remains almost unchanged. This lack of change is further explained by noting that the upper-ocean temperature and velocity anomalies (T', u', y', and w') are found to respond to the wind stress anomalies linearly, except for the strongest El Nino years. Thus, the correlation between T' and (u', y', w') [and thus the nonlinear dynamical heating (NDH)] remains the same when the sign of the wind stress anomalies is reversed. Indeed, the spatial patterns of NDH in all four seasons are found to resemble the rectified effect of ENSO in the mean temperature field in the respective seasons, indicating the critical role of NDH in the rectification.
C1 [Hua, Lijuan; Yu, Yongqiang] Chinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R China.
[Hua, Lijuan] Univ Chinese Acad Sci, Coll Earth Sci, Beijing, Peoples R China.
[Sun, De-Zheng] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Sun, De-Zheng] NOAA, ESRL, Boulder, CO USA.
RP Yu, YQ (reprint author), Chinese Acad Sci, LASG, Inst Atmospher Phys, 40 Hua Yan Li, Beijing 100029, Peoples R China.
EM yyq@lasg.iap.ac.cn
RI Yu, Yongqiang /K-7808-2012
OI Yu, Yongqiang /0000-0001-8596-3583
FU "Strategic Priority Research Program Climate Change: Carbon Budget and
Relevant Issues'' of the Chinese Academy of Sciences [XDA05110302];
National Key Program for Developing Basic Sciences Grant [2013CB956204];
U.S. NSF Climate and Large-Scale Dynamics Program [AGS 0852329]; NOAA
Climate Program Office: the Earth System Science (ESS) Program;
Modeling, Analysis, Predictions, and Projections (MAPP) Program
FX This study is jointly supported by the "Strategic Priority Research
Program Climate Change: Carbon Budget and Relevant Issues'' of the
Chinese Academy of Sciences (Grant XDA05110302) and the National Key
Program for Developing Basic Sciences Grant 2013CB956204. Sun was
supported under a grant from U.S. NSF Climate and Large-Scale Dynamics
Program (AGS 0852329) and by grants from the NOAA Climate Program
Office: the Earth System Science (ESS) Program and the Modeling,
Analysis, Predictions, and Projections (MAPP) Program.
NR 50
TC 3
Z9 3
U1 0
U2 11
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD FEB
PY 2015
VL 28
IS 4
BP 1362
EP 1382
DI 10.1175/JCLI-D-14-00404.1
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB5LX
UT WOS:000349670000002
ER
PT J
AU Chen, TC
Tsay, JD
Matsumoto, J
Alpert, J
AF Chen, Tsing-Chang
Tsay, Jenq-Dar
Matsumoto, Jun
Alpert, Jordan
TI Development and Formation Mechanism of the Southeast Asian Winter Heavy
Rainfall Events around the South China Sea. Part I: Formation and
Propagation of Cold Surge Vortex
SO JOURNAL OF CLIMATE
LA English
DT Article
ID GLOBAL FORECAST SYSTEM; CENTRAL VIETNAM; INTERANNUAL VARIATION; MONSOON;
PRECIPITATION; CONVECTION; MALAYSIA; PACIFIC; CLIMATE; DATASET
AB Examination of the development of cold season heavy rainfall/flood (HRF) events around the South China Sea (SCS) from their parent cold surge vortices (CSVs) shows three new development processes. First, the formation mechanism of the parent CSV of an HRF event [CSV(HRF)] has a preference as to geographic location, flow type of the cold surge inside the SCS, and time of day. The surface trough east of the Philippines, Taiwan, and southern Japan island chain in late fall and the near-equator trough across Borneo in winter facilitate the CSV(HRF) formation in two regions-the vicinity of the Philippines and Borneo. The formation of the Philippine (Borneo) CSV(HRF) occurs at 0600 UTC (0000 UTC) with involvement from the Philippine Sea (PHS)type (SCS type) of cold surge flow. Second, the flow type of the cold surge determines the CSV(HRF) propagation across the South China Sea. The PHS-type (SCS type) facilitates (hinders) the CSV(HRF) westward propagation. This occurs because the easterly (northerly) flow is greater than (less than) the northerly (easterly) flow at the maximum isotach location of the cold surge flow associated with CSV(HRF) and is centered east of the demarcation line for propagation. This flow-type contrast is substantiated by the vorticity budget analysis for CSV(HRF). The positive 925-hPa vorticity tendency is located west of (coincident with) the 925-hPa vorticity center for the PHS-type (SCS type) of cold surge. Third, the CSV(HRF) development into a HRF event is achieved through multiple interactions of former vortices with sequential cold surges across the South China Sea. The first two CSV(HRF) development processes are reported herein; the last process is presented in Part II.
C1 [Chen, Tsing-Chang; Tsay, Jenq-Dar] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA 50011 USA.
[Matsumoto, Jun] Tokyo Metropolitan Univ, Dept Geog, Tokyo 158, Japan.
[Matsumoto, Jun] JAMSTEC, Res Inst Global Change, Yokosuka, Kanagawa, Japan.
[Alpert, Jordan] NOAA, Environm Modeling Ctr, Natl Ctr Environm Predict, Ctr Weather & Climate Predict, College Pk, MD USA.
RP Chen, TC (reprint author), Iowa State Univ, Dept Geol & Atmospher Sci, Atmospher Sci Program, 3010 Agronomy Hall, Ames, IA 50011 USA.
EM tmchen@iastate.edu
RI Matsumoto, Jun/J-1665-2016
OI Matsumoto, Jun/0000-0003-1551-9326
FU Cheney Research Fund; NSF [ATM-0836220]; Japan Society for the Promotion
of Science [26220202]
FX The Cheney Research Fund and NSF Grant ATM-0836220 sponsored this study.
Jun Matsumoto's contribution to this study is supported by the
Grant-in-Aid for Scientific Research (26220202) from the Japan Society
for the Promotion of Science. Comments and suggestions offered by two
anonymous reviewers were very helpful in improving the presentation of
this study.
NR 32
TC 3
Z9 3
U1 1
U2 11
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD FEB
PY 2015
VL 28
IS 4
BP 1417
EP 1443
DI 10.1175/JCLI-D-14-00170.1
PG 27
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB5LX
UT WOS:000349670000005
ER
PT J
AU Scoulding, B
Chu, DZ
Ona, E
Fernandes, PG
AF Scoulding, Ben
Chu, Dezhang
Ona, Egil
Fernandes, Paul G.
TI Target strengths of two abundant mesopelagic fish species
SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
LA English
DT Article
ID LANTERNFISHES FAMILY MYCTOPHIDAE; DIEL VERTICAL MIGRATION; IN-SITU;
ACOUSTIC SCATTERING; SWIMBLADDER MORPHOLOGY; SOUND SCATTERING; WALLEYE
POLLOCK; BEHAVIOR; LENGTH; IDENTIFICATION
AB Mesopelagic fish of the Myctophidae and Sternoptychidae families dominate the biomass of the oceanic deep scattering layers and, therefore, have important ecological roles within these ecosystems. Interest in the commercial exploitation of these fish is growing, so the development of techniques for estimating their abundance, distribution and, ultimately, sustainable exploitation are essential. The acoustic backscattering characteristics for two size classes of Maurolicus muelleri and Benthosema glaciale are reported here based on swimbladder morphology derived from digitized soft x-ray images, and empirical (in situ) measurements of target strength (TS) derived from an acoustic survey in a Norwegian Sea. A backscattering model based on a gas-filled prolate spheroid was used to predict the theoretical TS for both species across a frequency range between 0 and 250 kHz. Sensitivity analyses of the TS model to the modeling parameters indicate that TS is rather sensitive to the viscosity, swimbladder volume ratio, and tilt, which can result in substantial changes to the TS. Theoretical TS predictions close to the resonance frequency were in good agreement (+/- 2 dB) with mean in situ TS derived from the areas acoustically surveyed that were spatially and temporally consistent with the trawl information for both species. (C) 2015 Acoustical Society of America.
C1 [Scoulding, Ben; Fernandes, Paul G.] Univ Aberdeen, Sch Biol Sci, Aberdeen AB24 2TZ, Scotland.
[Chu, Dezhang] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring, Seattle, WA 98112 USA.
[Ona, Egil] Inst Marine Res, N-5024 Bergen, Norway.
RP Scoulding, B (reprint author), Wageningen IMARES, POB 68, NL-1970 AB Ijmuiden, Netherlands.
EM ben.scoulding@wur.nl
FU research council of Norway [190318/S40]; Marine Alliance for Science and
Technology for Scotland (MASTS) pooling initiative; Scottish Funding
Council [HR09011]; Marine Scotland Science
FX This project was funded by the research council of Norway (Contract No.
190318/S40). Thanks to the crew of the MRV Haakon Mosby and the
technical staff at the Institute of Marine Research, Norway. This work
also received funding from the Marine Alliance for Science and
Technology for Scotland (MASTS) pooling initiative and their support is
gratefully acknowledged. MASTS is funded by the Scottish Funding Council
(Grant Reference No. HR09011) and contributing institutions. Thanks to
Marine Scotland Science for funding the collection of radiograph data.
Many thanks to Martin Downing at the Health Science Building of the
University of Aberdeen for his help with radiographing the specimens.
NR 58
TC 3
Z9 3
U1 2
U2 19
PU ACOUSTICAL SOC AMER AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0001-4966
EI 1520-8524
J9 J ACOUST SOC AM
JI J. Acoust. Soc. Am.
PD FEB
PY 2015
VL 137
IS 2
BP 989
EP 1000
DI 10.1121/1.4906177
PG 12
WC Acoustics; Audiology & Speech-Language Pathology
SC Acoustics; Audiology & Speech-Language Pathology
GA CC0KO
UT WOS:000350024600057
PM 25698030
ER
PT J
AU Bowles, AE
Grebner, DM
Musser, WB
Nash, JS
Crance, JL
AF Bowles, Ann E.
Grebner, Dawn M.
Musser, Whitney B.
Nash, Juliette S.
Crance, Jessica L.
TI Disproportionate emission of bubble streams with killer whale biphonic
calls: Perspectives on production and function
SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
LA English
DT Article
ID ORCINUS-ORCA
AB Stereotyped pulsed calls were attributed to 11 killer whales (Orcinus orca) with and without synchronous bubble streams in three datasets collected from two facilities from 1993 to 2012. Calls with and without synchronous bubble streams and divergent overlapping high frequency components ("biphonic" vs "monophonic") were compared. Subjects produced bubbles significantly more often when calls had divergent high frequency components. However, acoustic features in one biphonic call shared by five subjects provided little evidence for an acoustic effect of synchronous bubble flow. Disproportionate bubbling supported other evidence that biphonic calls form a distinct category, but suggested a function in short-range communication. (C) 2015 Acoustical Society of America
C1 [Bowles, Ann E.] Hubbs SeaWorld Res Inst, San Diego, CA 92109 USA.
[Musser, Whitney B.; Nash, Juliette S.] Univ San Diego, Dept Marine Sci & Environm Studies, San Diego, CA 92110 USA.
[Crance, Jessica L.] NOAA, Natl Marine Mammal Lab, Seattle, WA 98115 USA.
RP Bowles, AE (reprint author), Hubbs SeaWorld Res Inst, 2595 Ingraham St, San Diego, CA 92109 USA.
EM abowles@hswri.org; grebner@greeneridge.com;
whitney.musser@nmmpfoundation.org; dream.of.orcas@gmail.com;
Jessica.crance@noaa.gov
FU Hubbs-SeaWorld Research Institute (HSWRI); SeaWorld Entertainment;
Department of Marine Sciences and Environmental Sciences at the
University of San Diego (USD)
FX Animal Training Teams from SeaWorld San Diego and Orlando assisted with
data collection. Research was supported by the Hubbs-SeaWorld Research
Institute (HSWRI) and SeaWorld Entertainment. J.L.C. and W.B.M. were
supported by the Department of Marine Sciences and Environmental
Sciences at the University of San Diego (USD) and associated funds. M.
Slack (USD) quantified call features. Procedures were authorized by the
cooperating facilities and the HSWRI Institutional Animal Care and Use
Committee.
NR 9
TC 1
Z9 1
U1 0
U2 8
PU ACOUSTICAL SOC AMER AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0001-4966
EI 1520-8524
J9 J ACOUST SOC AM
JI J. Acoust. Soc. Am.
PD FEB
PY 2015
VL 137
IS 2
BP EL165
EP EL170
DI 10.1121/1.4905882
PG 6
WC Acoustics; Audiology & Speech-Language Pathology
SC Acoustics; Audiology & Speech-Language Pathology
GA CC0KO
UT WOS:000350024600006
PM 25698045
ER
PT J
AU Chronis, T
Carey, LD
Schultz, CJ
Schultz, EV
Calhoun, KM
Goodman, SJ
AF Chronis, T.
Carey, Lawrence D.
Schultz, Christopher J.
Schultz, Elise V.
Calhoun, Kristin M.
Goodman, Steven J.
TI Exploring Lightning Jump Characteristics
SO WEATHER AND FORECASTING
LA English
DT Article
DE Lightning
ID THUNDERSTORM ELECTRIFICATION; MAPPING ARRAY; SEVERE WEATHER; STORM;
ALGORITHM; PRECIPITATION; RADAR
AB This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate [i.e., lightning jump (LJ)]. An automated storm tracking method is used to identify storm clusters and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama, and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer and relate to higher maximum expected size of hail, vertical integrated liquid, and lightning flash rates (area normalized) than do the clusters without an LJ (LJ0). The respective mean radar-derived and lightning values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg m(-2) (18 kg m(-2)), and 0.05 flash min(-1) km(-2) (0.01 flash min(-1) km(-2)). Furthermore, the LJ1 clusters are also characterized by slower-decaying autocorrelation functions, a result that implies a less random behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending on the LJ strength (i.e., varying thresholds), these values typically range between 20 and 60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.
C1 [Chronis, T.; Schultz, Elise V.] Univ Alabama, Ctr Earth Syst Sci, Huntsville, AL 35805 USA.
[Carey, Lawrence D.; Schultz, Christopher J.] Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35805 USA.
[Schultz, Christopher J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Calhoun, Kristin M.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA.
[Calhoun, Kristin M.] Natl Severe Storms Lab, Norman, OK 73069 USA.
[Goodman, Steven J.] NOAA, Natl Environm Satellite Data & Informat Serv, Greenbelt, MD USA.
RP Chronis, T (reprint author), Univ Alabama, Ctr Earth Syst Sci, 320 Sparkman Dr, Huntsville, AL 35805 USA.
EM themis.chronis@nsstc.uah.edu
FU GOES-R System Program as part of the Proving Ground and Risk Reduction
programs; UAH Individual Investigator Distinguished Research awards;
NASA Pathways Intern Program
FX We acknowledge the support by the GOES-R System Program as part of the
Proving Ground and Risk Reduction programs. The first and second authors
also acknowledge the support by the UAH Individual Investigator
Distinguished Research awards for 2014. CJS would like to acknowledge
the NASA Pathways Intern Program, which provided the funding for support
of this work. Sincere thanks to 1) Geoffrey Stano and the NASA
Short-Term Prediction Research and Transition Center (SPoRT) for the NA
LMA, 2) Earth Networks for the ENTLN data, 3) Vaisala for the NLDN data,
4) Donald R. MacGorman for the Oklahoma LMA data, and 5) Monte Bateman
for the ENTLN processing. We would also like to extend our sincere
thanks to the three anonymous reviewers who helped us improve this
paper.
NR 47
TC 11
Z9 11
U1 1
U2 12
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0882-8156
EI 1520-0434
J9 WEATHER FORECAST
JI Weather Forecast.
PD FEB
PY 2015
VL 30
IS 1
BP 23
EP 37
DI 10.1175/WAF-D-14-00064.1
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8CU
UT WOS:000349856900003
ER
PT J
AU Miller, P
Ellis, AW
Keighton, S
AF Miller, Paul
Ellis, Andrew W.
Keighton, Stephen
TI A Preliminary Assessment of Using Spatiotemporal Lightning Patterns for
a Binary Classification of Thunderstorm Mode
SO WEATHER AND FORECASTING
LA English
DT Article
DE Lightning; Storm environments; Summer; warm season; Thunderstorms;
Geographic information systems (GIS)
ID SIMULATED CONVECTIVE STORMS; ANALYTIC HIERARCHY PROCESS;
CLUSTER-ANALYSIS; SEVERE WEATHER; UNITED-STATES; ENVIRONMENTS; SHEAR
AB This study provides a preliminary, regional assessment of the viability of using spatiotemporal lightning patterns to classify storms into single- versus multi- and supercell storm modes. Total lightning flashes (intracloud and cloud-to-ground flashes) occurring during the afternoon and evening of the period May-August 2012 within an area of the central Appalachian Mountains region were grouped based on their spatial and temporal characteristics using single-linkage clustering. The resulting discrete thunderstorm clusters were characterized in terms of duration, motion, areal extent, and shape. These values were used to formulate four individual attribute scores representing the similarity to the expected values for a typical single-cell thunderstorm. The four scores were then combined into a storm index (SI) using relative weights determined through the analytic hierarchy process (AHP) performed on input from operational forecasters. Of the study days, 89 (72.4%) possessed appreciable lightning, of which 36 (40%) possessed a defined minimum amount of lightning activity required for further analysis. These 36 storm days were divided into two tiers according to the distribution of median daily SI values. The tier containing the 24 storm days (66.7%) with the largest median SI values possessed statistically significant smaller values of 0-6-km wind shear [13.8 knots (kt; 1 kt = 0.51 m s(-1))] versus the 12 days in the lower tier of SI values (26.5 kt). This consistency between the total lightning-based classification scheme and increased vertical wind shear associated with lightning-defined multi- and supercells, also evident in synoptic atmospheric composites, lends credibility to the procedure.
C1 [Miller, Paul] Univ Georgia, Dept Geog, Athens, GA 30602 USA.
[Ellis, Andrew W.] Virginia Polytech Inst & State Univ, Dept Geog, Blacksburg, VA 24061 USA.
[Keighton, Stephen] NOAA, Natl Weather Serv Forecast Off, Blacksburg, VA USA.
RP Miller, P (reprint author), Univ Georgia, Dept Geog, Rm 304,210 Field St, Athens, GA 30602 USA.
EM paul.miller@uga.edu
FU COMET Program of the University Corporation for Atmospheric Research
(UCAR); National Oceanic and Atmospheric Administration's (NOAA)
National Weather Service (NWS) [Z13-99434]
FX This material was based upon work supported by the COMET Program of the
University Corporation for Atmospheric Research (UCAR) and the National
Oceanic and Atmospheric Administration's (NOAA) National Weather Service
(NWS) under Grant Z13-99434. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the COMET Program, UCAR, NOAA,
or the NWS. The authors thank M. Marston of the Department of Geography,
Virginia Tech, for help with data analysis, and the staff at Earth
Networks, Inc., for supplying the lightning data used in this project.
The authors also express their gratitude to the anonymous reviewers, who
helped substantially increase the strength and clarity of this text from
its original form.
NR 38
TC 3
Z9 3
U1 2
U2 9
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0882-8156
EI 1520-0434
J9 WEATHER FORECAST
JI Weather Forecast.
PD FEB
PY 2015
VL 30
IS 1
BP 38
EP 56
DI 10.1175/WAF-D-14-00024.1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8CU
UT WOS:000349856900004
ER
PT J
AU Heinselman, P
LaDue, D
Kingfield, DM
Hoffman, R
AF Heinselman, Pamela
LaDue, Daphne
Kingfield, Darrel M.
Hoffman, Robert
TI Tornado Warning Decisions Using Phased-Array Radar Data
SO WEATHER AND FORECASTING
LA English
DT Article
DE Radars; Radar observations; Operational forecasting; Experimental design
ID WEATHER RADAR; CONVECTIVE STORMS; DOPPLER RADAR; SYSTEM
AB The 2012 Phased Array Radar Innovative Sensing Experiment identified how rapidly scanned full-volumetric data captured known mesoscale processes and impacted tornado-warning lead time. Twelve forecasters from nine National Weather Service forecast offices used this rapid-scan phased-array radar (PAR) data to issue tornado warnings on two low-end tornadic and two nontornadic supercell cases. Verification of the tornadic cases revealed that forecasters' use of PAR data provided a median tornado-warning lead time (TLT) of 20 min. This 20-min TLT exceeded by 6.5 and 9 min, respectively, participants' forecast office and regions' median spring season, low-end TLTs (2008-13). Furthermore, polygon-based probability of detection ranged from 0.75 to 1.0 and probability of false alarm for all four cases ranged from 0.0 to 0.5. Similar performance was observed regardless of prior warning experience. Use of a cognitive task analysis method called the recent case walk-through showed that this performance was due to forecasters' use of rapid volumetric updates. Warning decisions were based upon the intensity, persistence, and important changes in features aloft that are precursors to tornadogenesis. Precursors that triggered forecasters' decisions to warn occurred within one or two typical Weather Surveillance Radar-1988 Doppler (WSR-88D) scans, indicating PAR's temporal sampling better matches the time scale at which these precursors evolve.
C1 [Heinselman, Pamela; Kingfield, Darrel M.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA.
[LaDue, Daphne] Univ Oklahoma, Ctr Anal & Predict Storms, Norman, OK 73019 USA.
[Kingfield, Darrel M.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA.
[Hoffman, Robert] Inst Human & Machine Cognit, Pensacola, FL USA.
RP Heinselman, P (reprint author), 120 David L Boren Blvd, Norman, OK 73072 USA.
EM pam.heinselman@noaa.gov
FU NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of
Oklahoma, U.S. Department of Commerce [NA11OAR4320072]
FX We thank the 12 NWS forecasters for their participation in this study;
the Southern and Central Region SSD chiefs, MICs, and SOOs for aiding
recruitment; and Les Lemon and Steve Martinaitis for their participation
in our experiment test run. Interactions with Brent W. MacAloney II and
Rick Smith about storm-based NWS verification aided our quantitative
analysis; thank you both! We thank Vicki Farmer for skillfully
reproducing forecasters' conceptual model drawings into
production-quality figures. We also thank the following colleagues for
their contributions to this research: Experimental Warning Program leads
Greg Stumpf, Travis Smith, and David Andra; A/V specialist James Murnan;
GIS expert Ami Arthur; WDSS-II expert Kiel Ortega; simulation expert
Dale Morris; and software experts Eddie Forren and Hoyt Burcham. Thanks
also to Jimmy Correia for helping with data collection, Jim LaDue for
preparing the weather briefings, and Harold Brooks for thought-provoking
discussions on this research. Finally, thanks to those who reviewed
earlier versions of this manuscript, including Katie Bowden, Rodger
Brown, Bill Bunting, Susan Cobb, Kurt Hondl, Charles Kuster, David
Priegnitz, and Lans Rothfusz, and to the three anonymous reviewers who
provided substantive comments that improved the paper. Funding was
provided by NOAA/Office of Oceanic and Atmospheric Research under
NOAA-University of Oklahoma Cooperative Agreement NA11OAR4320072, U.S.
Department of Commerce.
NR 36
TC 10
Z9 10
U1 1
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0882-8156
EI 1520-0434
J9 WEATHER FORECAST
JI Weather Forecast.
PD FEB
PY 2015
VL 30
IS 1
BP 57
EP 78
DI 10.1175/WAF-D-14-00042.1
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8CU
UT WOS:000349856900005
ER
PT J
AU Bluestein, HB
Snyder, JC
AF Bluestein, Howard B.
Snyder, Jeffrey C.
TI An Observational Study of the Effects of Dry Air Produced in Dissipating
Convective Storms on the Predictability of Severe Weather
SO WEATHER AND FORECASTING
LA English
DT Article
DE Gust fronts; Severe storms; Wind bursts; In situ atmospheric
observations; Radars; Radar observations; Mesoscale forecasting
ID THUNDERSTORM OUTFLOWS; OKLAHOMA MESONET; DOPPLER RADAR; SQUALL LINES;
REAR-INFLOW; MESOSCALE; FORECASTS; MODEL; PRECIPITATION; INITIATION
AB This paper documents features that led to major forecast errors on the 12-24-h time scale in the nature and location of severe weather in the southern plains on 30 May 2012. Evidence is presented that the forecast errors were the result of 1) dry air that originated in a region of dissipating, elevated convective storms, and which was advected in a narrow tongue into western Oklahoma, inhibiting convective initiation; 2) the development of a cyclone along the dryline in western Texas, to the east of which several supercells formed; 3) the upscale development of the supercells into a mesoscale convective system (MCS) at nightfall; and 4) the dissipation of an MCS that had formed along a cold front in southwestern Kansas and was propagating into northwestern Oklahoma, as it encountered dry, subsiding air underneath the stratiform precipitation region of the rear portion of the MCS farther south. There was a meridionally oriented swath of high winds in clear air, in between the two MCSs. This swath of high winds may have been associated with a bore triggered at night by the MCSs approaching from the north, as the MCS collapsed, producing a gust front that propagated through stable, low-level air. This case study illustrates how the predictability of severe weather in a region can be extremely sensitive to the details of where nearby convective storms form and how they evolve. It also highlights the likely importance of the accurate representation of cloud microphysics and dynamics in numerical forecast models on predictability.
C1 [Bluestein, Howard B.] Univ Oklahoma, Sch Meteorol, Norman, OK 73072 USA.
[Snyder, Jeffrey C.] Natl Severe Storms Lab, Radar Res & Dev Div, Norman, OK 73069 USA.
RP Bluestein, HB (reprint author), Univ Oklahoma, Sch Meteorol, Ste 5900,120 David L Boren Blvd, Norman, OK 73072 USA.
EM hblue@ou.edu
FU NSF [AGS-0934307, AGS-1262048, AGS-1237404]; National Research Council
FX This study was supported by NSF Grants AGS-0934307, AGS-1262048, and
AGS-1237404. This work was also supported by a National Research Council
postdoctoral research associateship awarded to the second author. Early
versions of this work were presented under the title "A butterfly flaps
its wings in Texas and tornadoes are not produced in Oklahoma."
Conversations with Adam Clark (NOAA/NSSL), Mike Coniglio (NOAA/NSSL),
and John Brown (NOAA/ESRL) were very useful at the beginning of this
study. Rita Roberts (NCAR) provided some helpful comments at a seminar
presentation and Rich Rotunno (NCAR), George Bryan (NCAR), and Morris
Weisman (NCAR) provided some references. Conversations with Lance Bosart
(University at Albany) were also very helpful. Doug Speheger (NWS,
Norman) provided warning information. Jana Houser (Ohio University)
provided assistance with RaXPol data collection. Conversations with
Kevin Haghi (OU) about bores were very helpful. Shawn Riley (OU)
provided assistance with data acquisition and display software.
NR 43
TC 0
Z9 0
U1 2
U2 9
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0882-8156
EI 1520-0434
J9 WEATHER FORECAST
JI Weather Forecast.
PD FEB
PY 2015
VL 30
IS 1
BP 79
EP 114
DI 10.1175/WAF-D-14-00065.1
PG 36
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8CU
UT WOS:000349856900006
ER
PT J
AU Tyner, B
Aiyyer, A
Blaes, J
Hawkins, DR
AF Tyner, Bryce
Aiyyer, Anantha
Blaes, Jonathan
Hawkins, Donald Reid
TI An Examination of Wind Decay, Sustained Wind Speed Forecasts, and Gust
Factors for Recent Tropical Cyclones in the Mid-Atlantic Region of the
United States
SO WEATHER AND FORECASTING
LA English
DT Article
DE Wind; Climatology; Hurricanes; typhoons; Forecast verification; skill;
Forecasting techniques; Operational forecasting
ID LANDFALL
AB In this study, several analyses were conducted that were aimed at improving sustained wind speed and gust forecasts for tropical cyclones (TCs) affecting coastal regions. An objective wind speed forecast analysis of recent TCs affecting the mid-Atlantic region was first conducted to set a benchmark for improvement. Forecasts from the National Digital Forecast Database were compared to observations and surface wind analyses in the region. The analysis suggests a general overprediction of sustained wind speeds, especially for areas affected by the strongest winds. Currently, National Weather Service Weather Forecast Offices use a software tool known as the Tropical Cyclone Forecast/Advisory (TCM) wind tool (TCMWindTool) to develop their wind forecast grids. The tool assumes linear decay in the sustained wind speeds when interpolating the National Hurricane Center 12-24-hourly TCM product to hourly grids. An analysis of postlandfall wind decay for recent TCs was conducted to evaluate this assumption. Results indicate that large errors in the forecasted wind speeds can emerge, especially for stronger storms. Finally, an analysis of gust factors for recent TCs affecting the region was conducted. Gust factors associated with weak sustained wind speeds are shown to be highly variable but average around 1.5. The gust factors decrease to values around 1.2 for wind speeds above 40 knots (kt; 1 kt = 0.51 m s(-1)) and are in general insensitive to the wind direction, suggesting local rather than upstream surface roughness largely dictates the gust factor at a given location. Forecasters are encouraged to increase land reduction factors used in the TCMWindTool and to modify gust factors to account for factors including the sustained wind speed and local surface roughness.
C1 [Tyner, Bryce; Aiyyer, Anantha] N Carolina State Univ, Raleigh, NC 27695 USA.
[Blaes, Jonathan] NOAA, NWS, Raleigh, NC USA.
[Hawkins, Donald Reid] NOAA, NWS, Wilmington, NC USA.
RP Tyner, B (reprint author), N Carolina State Univ, Dept Marine Earth & Atmospher Sci, 2800 Faucette Dr,Rm 1125 Jordan Hall, Raleigh, NC 27695 USA.
EM bptyner@ncsu.edu
OI Aiyyer, Anantha/0000-0002-9706-956X
FU CSTAR [NA10NWS4680007]
FX The authors wish to thank the members of the CSTAR TC Inland Winds group
for helpful comments and assistance throughout the course of this
project. This includes Gail Hartfield (NOAA/NWS Raleigh, North
Carolina), David Glenn and Carin Goodall (NOAA/NWS Newport, North
Carolina), Robert Bright and Frank Alsheimer (NOAA/NWS Charleston, South
Carolina), Carl Morgan (NOAA/NWS Wilmington, North Carolina), John
Billet (NOAA/NWS Wakefield, Virginia), and Dr. Michael Brennan
(NOAA/National Hurricane Center, Miami, Florida). The authors also
appreciate the prompt and useful feedback from Brian Miretzky
(NOAA/NWS). The paper greatly benefited from comments provided by three
anonymous reviewers. This research was supported by CSTAR Grant
NA10NWS4680007.
NR 30
TC 2
Z9 2
U1 2
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0882-8156
EI 1520-0434
J9 WEATHER FORECAST
JI Weather Forecast.
PD FEB
PY 2015
VL 30
IS 1
BP 153
EP 176
DI 10.1175/WAF-D-13-00125.1
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8CU
UT WOS:000349856900009
ER
PT J
AU Kossin, JP
AF Kossin, James P.
TI Hurricane Wind-Pressure Relationship and Eyewall Replacement Cycles
SO WEATHER AND FORECASTING
LA English
DT Article
DE Hurricanes; typhoons; Operational forecasting
ID TROPICAL CYCLONE; EYE; INTENSITY; DROPWINDSONDE
AB The relationship between minimum central surface pressure and the maximum sustained surface wind in tropical cyclones has been studied for many years, motivated by the fact that minimum pressure is generally easier to measure, but maximum wind is a much more relevant metric when considering tropical cyclone risk and potential impacts. It is well understood that tropical cyclone wind is closely related to the radial gradient of pressure through gradient or cyclostrophic balance assumptions, and not to a single point value of the minimum pressure near the storm center. But it is often the case that the maximum wind must be inferred from this single value. To accomplish this, a number of statistical relationships have been documented, such as those used in the Dvorak technique for estimating tropical cyclone intensity from satellite imagery. Here, the relationship between tropical cyclone maximum wind and minimum pressure is explored during eyewall replacement cycles (ERCs) that have been observed in North Atlantic hurricanes. It is shown that the wind-pressure relationship (WPR) can vary substantially during an ERC and generally moves away from the statistically fitted WPR used by the Dvorak technique in that basin. The changes in WPR during an ERC can be quite different depending on the intensity of the hurricane at the start of the ERC.
C1 [Kossin, James P.] NOAA, Natl Climat Data Ctr, Asheville, NC USA.
RP Kossin, JP (reprint author), NOAA, Cooperat Inst Meteorol Satellite Studies, 1225 W Dayton St, Madison, WI 53706 USA.
EM james.kossin@noaa.gov
RI Kossin, James/C-2022-2016
OI Kossin, James/0000-0003-0461-9794
FU NOAA Joint Hurricane Testbed project
FX Much of the early initial work that led to the creation of the data used
here was funded by the NOAA Joint Hurricane Testbed project.
NR 21
TC 3
Z9 3
U1 2
U2 8
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0882-8156
EI 1520-0434
J9 WEATHER FORECAST
JI Weather Forecast.
PD FEB
PY 2015
VL 30
IS 1
BP 177
EP 181
DI 10.1175/WAF-D-14-00121.1
PG 5
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB8CU
UT WOS:000349856900010
ER
PT J
AU Zou, XL
Weng, FZ
Tallapragada, V
Lin, L
Zhang, BL
Wu, CF
Qin, ZK
AF Zou Xiaolei
Weng Fuzhong
Tallapragada, Vijay
Lin Lin
Zhang Banglin
Wu Chenfeng
Qin Zhengkun
TI Satellite Data Assimilation of Upper-Level Sounding Channels in HWRF
with Two Different Model Tops
SO JOURNAL OF METEOROLOGICAL RESEARCH
LA English
DT Article
DE model top; data assimilation; satellite; hurricane
ID TROPICAL CYCLONE INTENSITY; VARIATIONAL STATISTICAL-ANALYSIS; WEATHER
PREDICTION MODELS; VERTICAL WIND SHEAR; RAPID INTENSIFICATION; ATLANTIC
HURRICANES; RADIATIVE-TRANSFER; RECURSIVE FILTERS; NUMERICAL ASPECTS;
EMISSIVITY MODEL
AB The Advanced Microwave Sounding Unit-A (AMSU-A) onboard the NOAA satellites NOAA-18 and NOAA-19 and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) MetOp-A, the hyperspectral Atmospheric Infrared Sounder (AIRS) onboard Aqua, the High resolution InfraRed Sounder (HIRS) onboard NOAA-19 and MetOp-A, and the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership (NPP) satellite provide upper-level sounding channels in tropical cyclone environments. Assimilation of these upper-level sounding channels data in the Hurricane Weather Research and Forecasting (HWRF) system with two different model tops is investigated for the tropical storms Debby and Beryl and hurricanes Sandy and Isaac that occurred in 2012. It is shown that the HWRF system with a higher model top allows more upper-level microwave and infrared sounding channels data to be assimilated into HWRF due to a more accurate upper-level background profile. The track and intensity forecasts produced by the HWRF data assimilation and forecast system with a higher model top are more accurate than those with a lower model top.
C1 [Zou Xiaolei] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA.
[Weng Fuzhong] NOAA, Ctr Satellite Applicat & Res, College Pk, MD 20740 USA.
[Tallapragada, Vijay; Zhang Banglin] NOAA, NCEP, Environm Modeling Ctr, College Pk, MD 20740 USA.
[Lin Lin] IM Syst Grp Inc, Rockville, MD 20850 USA.
[Wu Chenfeng] Xiamen Meteorol Bur, Xiamen 361012, Peoples R China.
[Qin Zhengkun] Nanjing Univ Informat Sci & Technol, Nanjing 210044, Jiangsu, Peoples R China.
RP Zou, XL (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA.
EM xzou1@umd.edu
RI Weng, Fuzhong/F-5633-2010
OI Weng, Fuzhong/0000-0003-0150-2179
FU NOAA Hurricane Forecast Improvement Program (HFIP); National Natural
Science Foundation of China [91337218]
FX Supported by the NOAA Hurricane Forecast Improvement Program (HFIP) and
National Natural Science Foundation of China (91337218).
NR 66
TC 3
Z9 3
U1 0
U2 10
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 2095-6037
EI 2198-0934
J9 J METEOROL RES-PRC
JI J. Meteorol. Res.
PD FEB
PY 2015
VL 29
IS 1
BP 1
EP 27
DI 10.1007/s13351-015-4108-9
PG 27
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB7TA
UT WOS:000349829500001
ER
PT J
AU Xu, DM
Huang, XY
Wang, HL
Mizzi, AP
Min, JZ
AF Xu Dongmei
Huang Xiang-Yu
Wang Hongli
Mizzi, Arthur P.
Min Jinzhong
TI Impact of Assimilating Radiances with the WRFDA ETKF/3DVAR Hybrid System
on Prediction of Two Typhoons in 2012
SO JOURNAL OF METEOROLOGICAL RESEARCH
LA English
DT Article
DE hybrid system; ETKF; ensemble spread; radiance data; typhoon tracks
ID ENSEMBLE KALMAN FILTER; NUMERICAL WEATHER PREDICTION; TROPICAL CYCLONES;
RADIATIVE-TRANSFER; TRACK FORECASTS; PART I; MODEL; PARAMETERIZATION;
IMPLEMENTATION; INTERPOLATION
AB The impacts of AMSU-A and IASI (Infrared Atmospheric Sounding Interferometer) radiances assimilation on the prediction of typhoons Vicente and Saola (2012) are studied by using the ensemble transform Kalman filter/three-dimensional variational (ETKF/3DVAR) Hybrid system for the Weather Research and Forecasting (WRF) model. The experiment without assimilating radiance data in 3DVAR is compared with two experiments using the 3DVAR and ETKF/3DVAR hybrid systems to assimilate AMSU-A radiance, respectively. The results show that AMSU-A radiance data have slight positive impacts on track forecasts of the 3DVAR system. When the ETKF/3DVAR hybrid system is employed, typhoon track forecast skills are greatly improved. For 36-h forecasts, the hybrid system has a lower root-mean-square error for wind and temperature at most levels, and specific humidity at low levels, compared to 3DVAR. It is also found that, on average, the use of the IASI radiance data along with AMSU-A radiance data in the hybrid system further increases the track, wind, and specific humidity forecast accuracy compared to the experiment without IASI radiance assimilation.
C1 [Xu Dongmei; Min Jinzhong] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China.
[Xu Dongmei; Huang Xiang-Yu; Wang Hongli; Mizzi, Arthur P.] Natl Ctr Atmospher Res, Boulder, CO 80302 USA.
[Wang Hongli] NOAA, Global Syst Div, Earth Syst Res Lab, Boulder, CO 80302 USA.
RP Xu, DM (reprint author), Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China.
EM xdmjolly@gmail.com
RI Wang, Hongli/C-4579-2012
OI Wang, Hongli/0000-0003-0855-6743
FU US National Science Foundation
FX NCAR is sponsored by the US National Science Foundation. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the
views of the US National Science Foundation.
NR 46
TC 3
Z9 3
U1 0
U2 4
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 2095-6037
EI 2198-0934
J9 J METEOROL RES-PRC
JI J. Meteorol. Res.
PD FEB
PY 2015
VL 29
IS 1
BP 28
EP 40
DI 10.1007/s13351-014-4053-z
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB7TA
UT WOS:000349829500002
ER
PT J
AU Berweger, S
Weber, JC
John, J
Velazquez, JM
Pieterick, A
Sanford, NA
Davydov, AV
Brunschwig, B
Lewis, NS
Wallis, TM
Kabos, P
AF Berweger, Samuel
Weber, Joel C.
John, Jimmy
Velazquez, Jesus M.
Pieterick, Adam
Sanford, Norman A.
Davydov, Albert V.
Brunschwig, Bruce
Lewis, Nathan S.
Wallis, Thomas M.
Kabos, Pavel
TI Microwave Near-Field Imaging of Two-Dimensional Semiconductors
SO NANO LETTERS
LA English
DT Article
DE Transition metal dichalcogenide; MoS2; microwave; near-field; quantum
capacitance; atomic force microscope
ID QUANTUM CAPACITANCE; HYDROGEN-EVOLUTION; EFFECT TRANSISTORS; LAYER MOS2;
GRAPHENE; MICROSCOPY; MONOLAYER; WSE2; CRYSTALS
AB Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS2 and n- and p-doped WSe2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects
C1 [Berweger, Samuel; Weber, Joel C.; Sanford, Norman A.; Wallis, Thomas M.; Kabos, Pavel] NIST, Boulder, CO 80305 USA.
[Velazquez, Jesus M.; Pieterick, Adam; Brunschwig, Bruce; Lewis, Nathan S.] CALTECH, Joint Ctr Artificial Photosynth, Beckman Inst, Kavli Nanosci Inst, Pasadena, CA 91125 USA.
[John, Jimmy; Velazquez, Jesus M.; Pieterick, Adam; Brunschwig, Bruce; Lewis, Nathan S.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA.
[Davydov, Albert V.] NIST, Gaithersburg, MD 20899 USA.
RP Berweger, S (reprint author), NIST, Boulder, CO 80305 USA.
EM samuel.berweger@nist.gov
RI Davydov, Albert/F-7773-2010
OI Davydov, Albert/0000-0003-4512-2311
FU Office of Science of the U.S. Department of Energy [DE-SC0004993]
FX We would like to thank Will Gannett, Mark Keller, and Alexandra Curtin
for helpful advice on sample preparation. This material is based upon
work performed by the Joint Center for Artificial Photosynthesis, a DOE
Energy Innovation Hub, supported through the Office of Science of the
U.S. Department of Energy under Award Number DE-SC0004993. Mention of
commercial products is for informational purposes only, it does not
imply NIST's recommendation or endorsement.
NR 41
TC 7
Z9 8
U1 10
U2 92
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD FEB
PY 2015
VL 15
IS 2
BP 1122
EP 1127
DI 10.1021/nl504960u
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CB4DI
UT WOS:000349578000050
PM 25625509
ER
PT J
AU Munoz-Marmol, M
Crespo, J
Fritts, MJ
Maojo, V
AF Munoz-Marmol, Miguel
Crespo, Jose
Fritts, Martin J.
Maojo, Victor
TI Towards the taxonomic categorization and recognition of nanoparticle
shapes
SO NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE
LA English
DT Article
DE Nanoparticle shapes; Taxonomic categorization; Nanoinformatics; Image
processing; Watershed segmentation
ID DRUG-DELIVERY; FOUNDATIONAL MODEL; PARTICLES; ONTOLOGY; NANOSTRUCTURES;
PRIMITIVES; ANATOMY
AB The shape of nanoparticles and nanomaterials is a fundamental characteristic that has been shown to influence a number of their properties and effects, particularly for nanomedical applications. The information related with this feature of nanoparticles and nanomaterials is, therefore, crucial to exploit and foster in existing and future research in this area. We have found that descriptions of morphological and spatial properties are consistently reported in the nanotechnology literature, and in general, these morphological properties can be observed and measured using various microscopy techniques. In this paper, we outline a taxonomy of nanoparticle shapes constructed according to nanotechnologists' descriptions and formal geometric concepts that can be used to address the problem of nanomaterial categorization. We employ an image segmentation technique, belonging to the mathematical morphology field, which is capable of identifying shapes in images that can be used to (semi-) automatically annotate nanoparticle images. (C) 2015 Elsevier Inc. All rights reserved.
C1 [Munoz-Marmol, Miguel; Crespo, Jose; Maojo, Victor] Univ Politecn Madrid, Biomed Informat Grp, Madrid, Spain.
[Fritts, Martin J.] NIST, Mat Measurement Lab, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA.
RP Maojo, V (reprint author), Univ Politecn Madrid, Fac Informat, Dept Inteligencia Artificial, D-2102,Campus Montegancedo S-N, Boadilla Del Monte 28660, Madrid, Spain.
EM vmaojo@infomed.dia.fi.upm.es
NR 42
TC 4
Z9 4
U1 3
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1549-9634
EI 1549-9642
J9 NANOMED-NANOTECHNOL
JI Nanomed.-Nanotechnol. Biol. Med.
PD FEB
PY 2015
VL 11
IS 2
BP 457
EP 465
DI 10.1016/j.nano.2014.07.006
PG 9
WC Nanoscience & Nanotechnology; Medicine, Research & Experimental
SC Science & Technology - Other Topics; Research & Experimental Medicine
GA CB6NW
UT WOS:000349744700023
PM 25072377
ER
PT J
AU Wang, H
Legg, SA
Hallberg, RW
AF Wang, He
Legg, Sonya A.
Hallberg, Robert W.
TI Representations of the Nordic Seas overflows and their large scale
climate impact in coupled models
SO OCEAN MODELLING
LA English
DT Article
DE Overflow; AMOC; Climate model
ID MERIDIONAL OVERTURNING CIRCULATION; GREENLAND-SCOTLAND RIDGE;
NORTH-ATLANTIC; Z-COORDINATE; PART I; SIMULATION CHARACTERISTICS;
THERMOHALINE CIRCULATION; GLOBAL OCEAN; DEEP-WATER; VARIABILITY
AB The sensitivity of large scale ocean circulation and climate to overflow representation is studied using coupled climate models, motivated by the differences between two models differing only in their ocean components: CM2G (which uses an isopycnal-coordinate ocean model) and CM2M (which uses a z-coordinate ocean model). Analysis of the control simulations of the two models shows that the Atlantic Meridional Overturning Circulation (AMOC) and the North Atlantic climate have some differences, which may be related to the representation of overflow processes. Firstly, in CM2G, as in the real world, overflows have two branches flowing out of the Nordic Seas, to the east and west of Iceland, respectively, while only the western branch is present in CM2M. This difference in overflow location results in different horizontal circulation in the North Atlantic. Secondly, the diapycnal mixing in the overflow downstream region is much larger in CM2M than in CM2G, which affects the entrainment and product water properties. Two sensitivity experiments are conducted in CM2G to isolate the effect of these two model differences: in the first experiment, the outlet of the eastern branch of the overflow is blocked, and the North Atlantic horizontal circulation is modified due to the absence of the eastern branch of the overflow, although the AMOC has little change; in the second experiment, the diapycnal mixing downstream of the overflow is enhanced, resulting in changes in the structure and magnitude of the AMOC. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Wang, He; Legg, Sonya A.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08540 USA.
[Hallberg, Robert W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
RP Wang, H (reprint author), Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08540 USA.
EM hw@princeton.edu
RI Legg, Sonya/E-5995-2010
FU National Oceanic and Atmospheric Administration, U.S. Department of
Commerce [NA08OAR4320752]
FX We would like to thank two anonymous reviewers for their comments which
helped to improve the manuscript. We are also grateful to Drs. Rong
Zhang and Steve Griffies for their useful comments on an earlier version
of the paper. This paper was prepared under award NA08OAR4320752 from
the National Oceanic and Atmospheric Administration, U.S. Department of
Commerce. The statements, findings, conclusions, and recommendations are
those of the author(s) and do not necessarily reflect the views of the
National Oceanic and Atmospheric Administration, or the U.S. Department
of Commerce.
NR 46
TC 5
Z9 5
U1 1
U2 11
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1463-5003
EI 1463-5011
J9 OCEAN MODEL
JI Ocean Model.
PD FEB
PY 2015
VL 86
BP 76
EP 92
DI 10.1016/j.ocemod.2014.12.005
PG 17
WC Meteorology & Atmospheric Sciences; Oceanography
SC Meteorology & Atmospheric Sciences; Oceanography
GA CB5VL
UT WOS:000349695700005
ER
PT J
AU Gedzelman, SD
AF Gedzelman, Stanley David
TI Red-based cumulus
SO APPLIED OPTICS
LA English
DT Article
AB Observations and model simulations of cumulus clouds whose bases are tinted red when the Sun is well above the horizon are presented. Conditions for seeing red bases include (1) a red underlying surface (which may consist of dust clouds, as from haboobs) with high albedo, (2) small fractional cloud cover when the Sun is far enough below the zenith for direct sunlight to illuminate much of the surface directly below and around cloud base, (3) optically thick clouds so that the bases are dark, and (4) clouds with bases that are near enough to the observer to appear high in the sky so that the admixture of scattered light from the intervening atmosphere is minimized. (C) 2015 Optical Society of America
C1 [Gedzelman, Stanley David] CUNY City Coll, Dept Earth & Atmospher Sci, New York, NY 10031 USA.
[Gedzelman, Stanley David] CUNY City Coll, NOAA CREST Ctr, New York, NY 10031 USA.
RP Gedzelman, SD (reprint author), CUNY City Coll, Dept Earth & Atmospher Sci, New York, NY 10031 USA.
EM sdgbrg@gmail.com
NR 10
TC 0
Z9 0
U1 0
U2 1
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD FEB 1
PY 2015
VL 54
IS 4
BP B165
EP B169
DI 10.1364/AO.54.00B165
PG 5
WC Optics
SC Optics
GA CA8II
UT WOS:000349161300020
PM 25967822
ER
PT J
AU Li, B
Lu, YJ
Li, CY
Godil, A
Schreck, T
Aono, M
Burtscher, M
Chen, Q
Chowdhury, NK
Fang, B
Fu, HB
Furuya, T
Li, HS
Liu, JZ
Johan, H
Kosaka, R
Koyanagi, H
Ohbuchi, R
Tatsuma, A
Wan, YJ
Zhang, CL
Zou, CQ
AF Li, Bo
Lu, Yijuan
Li, Chunyuan
Godil, Afzal
Schreck, Tobias
Aono, Masaki
Burtscher, Martin
Chen, Qiang
Chowdhury, Nihad Karim
Fang, Bin
Fu, Hongbo
Furuya, Takahiko
Li, Haisheng
Liu, Jianzhuang
Johan, Henry
Kosaka, Ryuichi
Koyanagi, Hitoshi
Ohbuchi, Ryutarou
Tatsuma, Atsushi
Wan, Yajuan
Zhang, Chaoli
Zou, Changqing
TI A comparison of 3D shape retrieval methods based on a large-scale
benchmark supporting multimodal queries
SO COMPUTER VISION AND IMAGE UNDERSTANDING
LA English
DT Article
DE 3D shape retrieval; Large-scale benchmark; Multimodal queries; Unified;
Performance evaluation; Query-by-Model; Query-by-Sketch; SHREC
ID MODEL RETRIEVAL; OBJECT RETRIEVAL; SIMILARITY SEARCH; ZERNIKE MOMENTS;
IMAGE; RECOGNITION; DIFFUSION; FEATURES; CLASSIFICATION; DESCRIPTORS
AB Large-scale 3D shape retrieval has become an important research direction in content-based 3D shape retrieval. To promote this research area, two Shape Retrieval Contest (SHREC) tracks on large scale comprehensive and sketch-based 3D model retrieval have been organized by us in 2014. Both tracks were based on a unified large-scale benchmark that supports multimodal queries (3D models and sketches). This benchmark contains 13680 sketches and 8987 3D models, divided into 171 distinct classes. It was compiled to be a superset of existing benchmarks and presents a new challenge to retrieval methods as it comprises generic models as well as domain-specific model types. Twelve and six distinct 3D shape retrieval methods have competed with each other in these two contests, respectively. To measure and compare the performance of the participating and other promising Query-by-Model or Query-by-Sketch 3D shape retrieval methods and to solicit state-of-the-art approaches, we perform a more comprehensive comparison of twenty-six (eighteen originally participating algorithms and eight additional state-of-the-art or new) retrieval methods by evaluating them on the common benchmark. The benchmark, results, and evaluation tools are publicly available at our websites (C) 2014 Elsevier Inc. All rights reserved.
C1 [Li, Bo; Lu, Yijuan; Burtscher, Martin] Texas State Univ, Dept Comp Sci, San Marcos, TX 78666 USA.
[Li, Chunyuan; Godil, Afzal] NIST, Informat Technol Lab, Gaithersburg, MD 20899 USA.
[Schreck, Tobias] Univ Konstanz, Constance, Germany.
[Aono, Masaki; Chowdhury, Nihad Karim; Kosaka, Ryuichi; Tatsuma, Atsushi] Toyohashi Univ Technol, Dept Comp Sci & Engn, Toyohashi, Aichi, Japan.
[Burtscher, Martin; Chen, Qiang; Fang, Bin] Chongqing Univ, Coll Comp Sci, Chongqing, Peoples R China.
[Fu, Hongbo] City Univ Hong Kong, Sch Creat Media, Hong Kong, Hong Kong, Peoples R China.
[Furuya, Takahiko; Ohbuchi, Ryutarou] Univ Yamanashi, Dept Comp Sci & Engn, Yamanashi, Japan.
[Li, Haisheng; Wan, Yajuan; Zhang, Chaoli] Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing, Peoples R China.
[Liu, Jianzhuang] Huawei Technol Co Ltd, Media Lab, Shenzhen, Peoples R China.
[Johan, Henry] Fraunhofer IDM NTU, Singapore, Singapore.
[Zou, Changqing] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China.
RP Li, B (reprint author), Texas State Univ, Dept Comp Sci, 601 Univ Dr, San Marcos, TX 78666 USA.
EM b_l58@txstate.edu
OI Ohbuchi, Ryutarou/0000-0002-7605-9135; FU, Hongbo /0000-0002-0284-726X
FU Texas State University Research Enhancement Program (REP), Army Research
Office [W911NF-12-1-0057]; NSF CRI [1305302]; Fraunhofer IDM@NTU;
National Research Foundation (NRF)
FX The work of Bo Li and Yijuan Lu is supported by the Texas State
University Research Enhancement Program (REP), Army Research Office
grant W911NF-12-1-0057, and NSF CRI 1305302 to Dr. Yijuan Lu.; Henry
Johan is supported by Fraunhofer IDM@NTU, which is funded by the
National Research Foundation (NRF) and managed through the multi-agency
Interactive & Digital Media Programme Office (IDMPO) hosted by the Media
Development Authority of Singapore (MDA).
NR 134
TC 20
Z9 21
U1 4
U2 22
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1077-3142
EI 1090-235X
J9 COMPUT VIS IMAGE UND
JI Comput. Vis. Image Underst.
PD FEB
PY 2015
VL 131
BP 1
EP 27
DI 10.1016/j.cviu.2014.10.006
PG 27
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic
SC Computer Science; Engineering
GA CB4HN
UT WOS:000349588900002
ER
PT J
AU Trathan, PN
Garcia-Borboroglu, P
Boersma, D
Bost, CA
Crawford, RJM
Crossin, GT
Cuthbert, RJ
Dann, P
Davis, LS
De La Puente, S
Ellenberg, U
Lynch, HJ
Mattern, T
Putz, K
Seddon, PJ
Trivelpiece, W
Wienecke, B
AF Trathan, Phil N.
Garcia-Borboroglu, Pablo
Boersma, Dee
Bost, Charles-Andre
Crawford, Robert J. M.
Crossin, Glenn T.
Cuthbert, Richard J.
Dann, Peter
Davis, Lloyd Spencer
De La Puente, Santiago
Ellenberg, Ursula
Lynch, Heather J.
Mattern, Thomas
Puetz, Klemens
Seddon, Philip J.
Trivelpiece, Wayne
Wienecke, Barbara
TI Pollution, habitat loss, fishing, and climate change as critical threats
to penguins
SO CONSERVATION BIOLOGY
LA English
DT Review
DE bycatch; habitat degradation; marine pollution; overfishing; resource
competition; switch; captura accesoria; competencia por recursos;
contaminacion marina; degradacion de habitat; sobrepesca
ID GOLFO SAN JORGE; SOUTHERN-OCEAN; ANTARCTIC PENINSULA; AFRICAN PENGUINS;
MAGELLANIC PENGUINS; SPHENISCUS-DEMERSUS; ROCKHOPPER PENGUINS; FALKLAND
ISLANDS; MARINE; POPULATION
AB Cumulative human impacts across the world's oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales. Contaminacion, Perdida de Habitat, Pesca y Cambio Climatico como Amenazas Criticas para los Pinguinos
Resumen Los impactos humanos acumulativos a lo largo de los oceanos del planeta son considerables. Por eso examinamos un solo modelo de grupo taxonomico, los pinguinos (Sphenischidae), para explorar como las especies y las comunidades marinas pueden estar en riesgo de disminuir o de extinguirse en el hemisferio sur. Buscamos determinar la amenaza mas importante para los pinguinos y sugerir metodos para mitigar estas amenazas. Nuestra revision tiene relevancia para otros grupos taxonomicos en el hemisferio sur y en las latitudes nortenas, donde los impactos humanos son mayores. Nuestra revision se baso en una evaluacion experta y una revision de literaratura de las 18 especies de pinguinos; 49 cientificos contribuyeron al proceso. Para cada especie de pinguino, consideramos su rango y distribucion, tendencias poblacionales y las principales amenazas antropogenicas en aproximadamente los ultimos 250 anos. Estas amenazas fueron la captura de adultos para obtener aceite, piel y plumas y el uso como carnada para la pesca de cangrejos y langostas: la recoleccion de huevos; la degradacion del habitat terrestre; la contaminacion marina; la pesca accesoria y la competencia por recursos; la variabilidad ambiental y el cambio climatico; y el envenenamiento por algas toxicas y enfermedades. La perdida de habitat, la contaminacion y la pesca, todos factores que los humanos pueden mitigar, siguen siendo las amenazas principales para las especies de pinguinos. Su resiliencia futura a mas impactos por cambio climatico dependera certeramente de que nos enfoquemos en las amenazas actuales a la degradacion de habitats existentes en tierra y en el mar. Sugerimos que la proteccion de habitats de reproduccion, en conjunto con la designacion de reservas marinas de escala apropiada, incluyendo alta mar, sera critica para la conservacion futura de los pinguinos. Sin embargo, las zonas de conservacion a gran escala no son siempre practicas o politicamente viables, y otros metodos de manejo basados en ecosistemas que incluyen la zonificacion espacial, la mitigacion de captura accesoria, y el control fuerte de captura deben desarrollarse para mantener la biodiversidad marina y asegurar que el funcionamiento de los ecosistemas se mantenga a lo largo de una variedad de escalas.
C1 [Trathan, Phil N.] British Antarctic Survey, Cambridge CB3 0ET, England.
[Garcia-Borboroglu, Pablo] Ctr Nacl Patagon CONICET, Puerto Madryn, Chubut, Argentina.
[Boersma, Dee] Univ Washington, Dept Biol, Seattle, WA 98195 USA.
[Bost, Charles-Andre] CNRS, UPR 1934, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France.
[Crawford, Robert J. M.] Branch Oceans & Coasts, Dept Environm Affairs, ZA-8000 Cape Town, South Africa.
[Crossin, Glenn T.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada.
[Cuthbert, Richard J.] Royal Soc Protect Birds, Sandy SG19 2DL, Beds, England.
[Dann, Peter] Phillip Isl Nat Parks, Res Dept, Phillip Isl, Vic 3922, Australia.
[Davis, Lloyd Spencer] Univ Otago, Ctr Sci Commun, Dunedin, New Zealand.
[De La Puente, Santiago] Univ Cayetano Heredia, Ctr Sostenibilidad Ambiental, Lima 18, Peru.
[Ellenberg, Ursula; Mattern, Thomas; Seddon, Philip J.] Univ Otago, Dept Zool, Dunedin, New Zealand.
[Lynch, Heather J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Puetz, Klemens] Antarctic Res Trust, D-27432 Bremervoerde, Germany.
[Trivelpiece, Wayne] SW Fisheries Sci Ctr, Antarctic Ecosyst Res Div, La Jolla, CA 92065 USA.
[Wienecke, Barbara] Australian Antarctic Div, Kingston, Tas 7050, Australia.
RP Trathan, PN (reprint author), British Antarctic Survey, Madingley Rd, Cambridge CB3 0ET, England.
EM pnt@bas.ac.uk
RI Seddon, Philip/G-8659-2011;
OI Seddon, Philip/0000-0001-9076-9566; Ellenberg,
Ursula/0000-0002-3100-6742
NR 78
TC 17
Z9 17
U1 48
U2 245
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0888-8892
EI 1523-1739
J9 CONSERV BIOL
JI Conserv. Biol.
PD FEB
PY 2015
VL 29
IS 1
BP 31
EP 41
DI 10.1111/cobi.12349
PG 11
WC Biodiversity Conservation; Ecology; Environmental Sciences
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA CA2AX
UT WOS:000348712400006
PM 25102756
ER
PT J
AU Wittmann, ME
Cooke, RM
Rothlisberger, JD
Rutherford, ES
Zhang, H
Mason, DM
Lodge, DM
AF Wittmann, Marion E.
Cooke, Roger M.
Rothlisberger, John D.
Rutherford, Edward S.
Zhang, Hongyan
Mason, Doran M.
Lodge, David M.
TI Use of structured expert judgment to forecast invasions by bighead and
silver carp in Lake Erie
SO CONSERVATION BIOLOGY
LA English
DT Article
DE Asian carp; ecological forecasting; invasive species; Laurentian Great
Lakes; risk assessment; carpa asiatica; especies invasoras; evaluacion
de riesgo; Grandes Lagos; prediccion ecologica
ID CLASSICAL-MODEL; ASIAN CARPS; RISK; INVADERS
AB Identifying which nonindigenous species will become invasive and forecasting the damage they will cause is difficult and presents a significant problem for natural resource management. Often, the data or resources necessary for ecological risk assessment are incomplete or absent, leaving environmental decision makers ill equipped to effectively manage valuable natural resources. Structured expert judgment (SEJ) is a mathematical and performance-based method of eliciting, weighting, and aggregating expert judgments. In contrast to other methods of eliciting and aggregating expert judgments (where, for example, equal weights may be assigned to experts), SEJ weights each expert on the basis of his or her statistical accuracy and informativeness through performance measurement on a set of calibration variables. We used SEJ to forecast impacts of nonindigenous Asian carp (Hypophthalmichthys spp.) in Lake Erie, where it is believed not to be established. Experts quantified Asian carp biomass, production, and consumption and their impact on 4 fish species if Asian carp were to become established. According to experts, in Lake Erie Asian carp have the potential to achieve biomass levels that are similar to the sum of biomasses for several fishes that are harvested commercially or recreationally. However, the impact of Asian carp on the biomass of these fishes was estimated by experts to be small, relative to long term average biomasses, with little uncertainty. Impacts of Asian carp in tributaries and on recreational activities, water quality, or other species were not addressed. SEJ can be used to quantify key uncertainties of invasion biology and also provide a decision-support tool when the necessary information for natural resource management and policy is not available. El Uso de Juicio Experto Estructurado para Predecir Invasiones de Carpas Asiaticas en el Lago Erie
Resumen Identificar cuales especies no-nativas se volveran invasoras y predecir el dano que causaran es complicado y presenta un problema significativo para el manejo de recursos naturales. Con frecuencia los datos o recursos necesarios para la evaluacion de riesgo ecologico estan incompletos o son inexistentes, lo que deja mal equipados a quienes toman las decisiones ambientales para manejar efectivamente recursos naturales valiosos. El juicio experto estructurado (JEE) es un metodo con bases matematicas y de desempeno para obtener, sopesar y agregar juicios expertos. En contraste con otros metodos de obtencion y agregacion de juicios expertos (donde, por ejemplo, se le pueden asignar pesos iguales a los expertos), JEE sopesa a cada experto con base en su asertividad estadistica y capacidad de informar por medio de la medida de desempeno en un conjunto de variables de calibracion. Usamos JEE para predecir los impactos de las carpas asiaticas no-nativas Hypophthalmichthys spp. en el Lago Erie, donde se cree que no se ha establecido. Los expertos cuantificaron la biomasa, produccion y consumo de la carpa asiatica y su impacto sobre cuatro especies de peces si la carpa asiatica se llegara a establecer en el lago. De acuerdo a los expertos, en el Lago Erie, la carpa asiatica tiene el potencial de adquirir niveles de biomasa similares a la suma de biomasa de varios peces que se han cultivado comercialmente o recreativamente. Sin embargo, se estimo por los expertos que el impacto de la carpa asiatica sobre la biomasa de estos peces seria pequeno, con poca incertidumbre. Los impactos de la carpa asiatica sobre los tributarios y las actividades recreativas, la calidad del agua o sobre otras especies no se evaluaron. El JEE puede usarse para cuantificar incertidumbres clave de la biologia de la invasion y tambien proporcionar una herramienta de apoyo para las decisiones cuando la informacion necesaria para el manejo de los recursos naturales y la politica no esta disponible.
C1 [Wittmann, Marion E.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46656 USA.
[Cooke, Roger M.] Resources Future Inc, Washington, DC 20036 USA.
[Cooke, Roger M.] Delft Univ Technol, NL-2628 CN Delft, Netherlands.
[Cooke, Roger M.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland.
[Rothlisberger, John D.] US Forest Serv, Milwaukee, WI 53202 USA.
[Rutherford, Edward S.; Mason, Doran M.] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48108 USA.
[Zhang, Hongyan] Univ Michigan, Cooperat Inst Limnol & Ecosyst Res SNRE, Ann Arbor, MI 48108 USA.
[Lodge, David M.] Dept Biol Sci, Notre Dame, IN 46656 USA.
[Lodge, David M.] Environm Change Initiat, Notre Dame, IN 46656 USA.
RP Wittmann, ME (reprint author), Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46656 USA.
EM mwittmann@gmail.com
OI Mason, Doran/0000-0002-6017-4243; Rutherford, Edward/0000-0002-7282-6667
FU Environmental Protection Agency Great Lakes Restoration Initiative, NOAA
Center for Sponsored Coastal Ocean Research awards [NA09NOS4780192,
NA10NOS4780218]
FX We thank the experts for their dedicated and focused response to the
elicitation. This research was funded by Environmental Protection Agency
Great Lakes Restoration Initiative, NOAA Center for Sponsored Coastal
Ocean Research awards NA09NOS4780192 and NA10NOS4780218. We thank A.
Deines for his support in the preparation of the elicitation. This is
NOAA-GLERL contribution 1716 and a publication of the Notre Dame
Environmental Change Initiative.
NR 42
TC 8
Z9 9
U1 12
U2 77
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0888-8892
EI 1523-1739
J9 CONSERV BIOL
JI Conserv. Biol.
PD FEB
PY 2015
VL 29
IS 1
BP 187
EP 197
DI 10.1111/cobi.12369
PG 11
WC Biodiversity Conservation; Ecology; Environmental Sciences
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA CA2AX
UT WOS:000348712400021
PM 25132396
ER
PT J
AU Huang, BY
Banzon, VF
Freeman, E
Lawrimore, J
Liu, W
Peterson, TC
Smith, TM
Thorne, PW
Woodruff, SD
Zhang, HM
AF Huang, Boyin
Banzon, Viva F.
Freeman, Eric
Lawrimore, Jay
Liu, Wei
Peterson, Thomas C.
Smith, Thomas M.
Thorne, Peter W.
Woodruff, Scott D.
Zhang, Huai-Min
TI Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4).
Part I: Upgrades and Intercomparisons
SO JOURNAL OF CLIMATE
LA English
DT Article
ID MARINE AIR-TEMPERATURE; SST; CLIMATE; UNCERTAINTY; ICOADS; OCEAN;
LATE-19TH-CENTURY; OSCILLATION; BIASES; SITU
AB The monthly Extended Reconstructed Sea Surface Temperature (ERSST) dataset, available on global 2 degrees x 2 degrees grids, has been revised herein to version 4 (v4) from v3b. Major revisions include updated and substantially more complete input data from the International Comprehensive Ocean Atmosphere Data Set (ICOADS) release 2.5; revised empirical orthogonal teleconnections (EOTs) and EOT acceptance criterion; updated sea surface temperature (SST) quality control procedures; revised SST anomaly (SSTA) evaluation methods; updated bias adjustments of ship SSTs using the Hadley Centre Nighttime Marine Air Temperature dataset version 2 (HadNMAT2); and buoy SST bias adjustment not previously made in v3b.
Tests show that the impacts of the revisions to ship SST bias adjustment in ERSST.v4 are dominant among all revisions and updates. The effect is to make SST 0.1 degrees-0.2 degrees C cooler north of 30 degrees S but 0.1 degrees-0.2 degrees C warmer south of 30 degrees S in ERSST.v4 than in ERSST.v3b before 1940. In comparison with the Met Office SST product [the Hadley Centre Sea Surface Temperature dataset, version 3 (HadSST3)], the ship SST bias adjustment in ERSST.v4 is 0.1 degrees-0.2 degrees C cooler in the tropics but 0.1 degrees-0.2 degrees C warmer in the midlatitude oceans both before 1940 and from 1945 to 1970. Comparisons highlight differences in long-term SST trends and SSTA variations at decadal time scales among ERSST.v4, ERSST.v3b, HadSST3, and Centennial Observation-Based Estimates of SST version 2 (COBE-SST2), which is largely associated with the difference of bias adjustments in these SST products. The tests also show that, when compared with v3b, SSTAs in ERSST.v4 can substantially better represent the El Nino/La Nina behavior when observations are sparse before 1940. Comparisons indicate that SSTs in ERSST.v4 are as close to satellite-based observations as other similar SST analyses.
C1 [Huang, Boyin; Banzon, Viva F.; Freeman, Eric; Lawrimore, Jay; Liu, Wei; Peterson, Thomas C.; Woodruff, Scott D.; Zhang, Huai-Min] Natl Climat Ctr, Asheville, NC 28801 USA.
[Freeman, Eric] STG Inc, Reston, VA USA.
[Liu, Wei] Cooperat Inst Climate & Satellites, Raleigh, NC USA.
[Smith, Thomas M.] Univ Maryland, NOAA STAR SCSB, College Pk, MD 20742 USA.
[Smith, Thomas M.] Univ Maryland, CICS ESSIC, College Pk, MD 20742 USA.
[Thorne, Peter W.] Nansen Environm & Remote Sensing Ctr, Bergen, Norway.
[Woodruff, Scott D.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
RP Huang, BY (reprint author), Natl Climat Ctr, 151 Patton Ave, Asheville, NC 28801 USA.
EM boyin.huang@noaa.gov
RI Thorne, Peter/F-2225-2014; Banzon, Viva/D-5499-2014; Smith, Thomas
M./F-5626-2010
OI Thorne, Peter/0000-0003-0485-9798; Smith, Thomas M./0000-0001-7469-7849
NR 41
TC 74
Z9 75
U1 3
U2 32
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD FEB 1
PY 2015
VL 28
IS 3
BP 911
EP 930
DI 10.1175/JCLI-D-14-00006.1
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CA9WJ
UT WOS:000349275200002
ER
PT J
AU Liu, W
Huang, BY
Thorne, PW
Banzon, VF
Zhang, HM
Freeman, E
Lawrimore, J
Peterson, TC
Smith, TM
Woodruff, SD
AF Liu, Wei
Huang, Boyin
Thorne, Peter W.
Banzon, Viva F.
Zhang, Huai-Min
Freeman, Eric
Lawrimore, Jay
Peterson, Thomas C.
Smith, Thomas M.
Woodruff, Scott D.
TI Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4):
Part II. Parametric and Structural Uncertainty Estimations
SO JOURNAL OF CLIMATE
LA English
DT Article
ID MARINE AIR-TEMPERATURE; CLIMATE-CHANGE; OCEAN
AB Described herein is the parametric and structural uncertainty quantification for the monthly Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). A Monte Carlo ensemble approach was adopted to characterize parametric uncertainty, because initial experiments indicate the existence of significant nonlinear interactions. Globally, the resulting ensemble exhibits a wider uncertainty range before 1900, as well as an uncertainty maximum around World War II. Changes at smaller spatial scales in many regions, or for important features such as Nino-3.4 variability, are found to be dominated by particular parameter choices.
Substantial differences in parametric uncertainty estimates are found between ERSST.v4 and the independently derived Hadley Centre SST version 3 (HadSST3) product. The largest uncertainties are over the mid and high latitudes in ERSST.v4 but in the tropics in HadSST3. Overall, in comparison with HadSST3, ERSST.v4 has larger parametric uncertainties at smaller spatial and shorter time scales and smaller parametric uncertainties at longer time scales, which likely reflects the different sources of uncertainty quantified in the respective parametric analyses. ERSST.v4 exhibits a stronger globally averaged warming trend than HadSST3 during the period of 1910-2012, but with a smaller parametric uncertainty. These global-mean trend estimates and their uncertainties marginally overlap.
Several additional SST datasets are used to infer the structural uncertainty inherent in SST estimates. For the global mean, the structural uncertainty, estimated as the spread between available SST products, is more often than not larger than the parametric uncertainty in ERSST.v4. Neither parametric nor structural uncertainties call into question that on the global-mean level and centennial time scale, SSTs have warmed notably.
C1 [Liu, Wei] N Carolina State Univ, Cooperat Inst Climate & Satellites, Raleigh, NC 27695 USA.
[Liu, Wei; Huang, Boyin; Banzon, Viva F.; Zhang, Huai-Min; Freeman, Eric; Lawrimore, Jay; Peterson, Thomas C.; Woodruff, Scott D.] NOAA Natl Climat Data Ctr, Asheville, NC USA.
[Thorne, Peter W.] Nansen Environm & Remote Sensing Ctr, Bergen, Norway.
[Freeman, Eric] STG Inc, Reston, VA USA.
[Smith, Thomas M.] Univ Maryland, NOAA STAR SCSB, College Pk, MD 20742 USA.
[Smith, Thomas M.] Univ Maryland, CICS ESSIC, College Pk, MD 20742 USA.
[Woodruff, Scott D.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
RP Liu, W (reprint author), UCSD, Scripps Inst Oceanog, CASPO, 9500 Gilman Dr, La Jolla, CA 92093 USA.
EM wel109@ucsd.edu
RI Thorne, Peter/F-2225-2014; Banzon, Viva/D-5499-2014; Smith, Thomas
M./F-5626-2010
OI Thorne, Peter/0000-0003-0485-9798; Smith, Thomas M./0000-0001-7469-7849
FU NOAA/NCDC
FX In the early phases of this work, PWT was supported by NOAA/NCDC whilst
an employee of the Cooperative Institute for Climate and Satellites. We
thank John Kennedy for providing some of the data sources for
constructing Fig. 12 and useful discussions around the value of the
various products used therein. Comments from two anonymous NCDC internal
reviewers helped to improve the manuscript. We thank three anonymous
reviewers who provided substantive reviews that considerably improved
the manuscript.
NR 31
TC 25
Z9 25
U1 1
U2 10
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD FEB 1
PY 2015
VL 28
IS 3
BP 931
EP 951
DI 10.1175/JCLI-D-14-00007.1
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CA9WJ
UT WOS:000349275200003
ER
PT J
AU Griffies, SM
Winton, M
Anderson, WG
Benson, R
Delworth, TL
Dufour, CO
Dunne, JP
Goddard, P
Morrison, AK
Rosati, A
Wittenberg, AT
Yin, JJ
Zhang, R
AF Griffies, Stephen M.
Winton, Michael
Anderson, Whit G.
Benson, Rusty
Delworth, Thomas L.
Dufour, Carolina O.
Dunne, John P.
Goddard, Paul
Morrison, Adele K.
Rosati, Anthony
Wittenberg, Andrew T.
Yin, Jianjun
Zhang, Rong
TI Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of
Climate Models
SO JOURNAL OF CLIMATE
LA English
DT Article
ID SOUTHERN-OCEAN; CIRCULATION MODELS; NUMERICAL-MODEL; PART I; SIMULATION
CHARACTERISTICS; GENERAL-CIRCULATION; GULF-STREAM; EDDY FLUXES;
RESOLUTION; TRANSPORT
AB The authors characterize impacts on heat in the ocean climate system from transient ocean mesoscale eddies. Their tool is a suite of centennial-scale 1990 radiatively forced numerical climate simulations from three GFDL coupled models comprising the Climate Model, version 2.0-Ocean (CM2-O), model suite. CM2-O models differ in their ocean resolution: CM2.6 uses a 0.1 degrees ocean grid, CM2.5 uses an intermediate grid with 0.25 degrees spacing, and CM2-1deg uses a nominal 1.0 degrees grid.
Analysis of the ocean heat budget reveals that mesoscale eddies act to transport heat upward in a manner that partially compensates (or offsets) for the downward heat transport from the time-mean currents. Stronger vertical eddy heat transport in CM2.6 relative to CM2.5 accounts for the significantly smaller temperature drift in CM2.6. The mesoscale eddy parameterization used in CM2-1deg also imparts an upward heat transport, yet it differs systematically from that found in CM2.6. This analysis points to the fundamental role that ocean mesoscale features play in transient ocean heat uptake. In general, the more accurate simulation found in CM2.6 provides an argument for either including a rich representation of the ocean mesoscale in model simulations of the mean and transient climate or for employing parameterizations that faithfully reflect the role of eddies in both lateral and vertical heat transport.
C1 [Griffies, Stephen M.; Winton, Michael; Anderson, Whit G.; Benson, Rusty; Delworth, Thomas L.; Dunne, John P.; Rosati, Anthony; Wittenberg, Andrew T.; Zhang, Rong] NOAA GFDL, Princeton, NJ 08542 USA.
[Dufour, Carolina O.; Morrison, Adele K.] Princeton Univ, Princeton, NJ 08544 USA.
[Goddard, Paul; Yin, Jianjun] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA.
RP Griffies, SM (reprint author), NOAA GFDL, 201 Forrestal Rd, Princeton, NJ 08542 USA.
EM stephen.griffies@noaa.gov
RI Zhang, Rong/D-9767-2014; Wittenberg, Andrew/G-9619-2013; Delworth,
Thomas/C-5191-2014
OI Zhang, Rong/0000-0002-8493-6556; Wittenberg, Andrew/0000-0003-1680-8963;
FU GFDL community; U.S. Department of Energy [DE-SC0006848]; Carbon
Mitigation Initiative (CMI) project at Princeton University - BP
FX We thank the GFDL community for their support of this work, which
required a tremendous amount of computational hardware and software
resources. We thank Alistair Adcroft, Ivy Frenger, Robert Hallberg, Andy
Hogg, Malte Jansen, Rym Msadek, Jorge Sarmiento, Ron Stouffer, and three
anonymous reviewers for helpful and encouraging comments on drafts of
this paper. Many figures were produced by Ferret developed at NOAA/PMEL.
Carolina Dufour was supported by the U.S. Department of Energy under
Contract DE-SC0006848. Adele Morrison was supported by the Carbon
Mitigation Initiative (CMI) project at Princeton University, sponsored
by BP.
NR 108
TC 37
Z9 37
U1 3
U2 23
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD FEB 1
PY 2015
VL 28
IS 3
BP 952
EP 977
DI 10.1175/JCLI-D-14-00353.1
PG 26
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CA9WJ
UT WOS:000349275200004
ER
PT J
AU Smirnov, D
Newman, M
Alexander, MA
Kwon, YO
Frankignoul, C
AF Smirnov, Dimitry
Newman, Matthew
Alexander, Michael A.
Kwon, Young-Oh
Frankignoul, Claude
TI Investigating the Local Atmospheric Response to a Realistic Shift in the
Oyashio Sea Surface Temperature Front
SO JOURNAL OF CLIMATE
LA English
DT Article
ID NORTH PACIFIC SST; GENERAL-CIRCULATION MODEL; KUROSHIO EXTENSION SYSTEM;
EAST CHINA SEA; GULF-STREAM; MIDLATITUDE SST; OMEGA-EQUATION; STORM
TRACKS; INTERANNUAL VARIABILITY; DECADAL VARIABILITY
AB The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25 degrees) version of the global Community Atmosphere Model, version 5 (CAMS). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly-induced diabatic heating ((Q) over dot) is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1 degrees) version of CAMS. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of (Q) over dot. However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (omega) budget reveals that HR has a substantially stronger V2(Q) over dot response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
C1 [Smirnov, Dimitry; Newman, Matthew] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Smirnov, Dimitry; Newman, Matthew; Alexander, Michael A.] NOAA ESRL, Boulder, CO 80305 USA.
[Kwon, Young-Oh] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
[Frankignoul, Claude] Univ Paris 06, LOCEAN IPSL, Paris, France.
RP Smirnov, D (reprint author), NOAA ESRL, 325 Broadway,R PSD1, Boulder, CO 80305 USA.
EM chillwx@gmail.com
RI Newman, Matthew /F-8336-2010; Kwon, Young-Oh/C-2190-2008; Alexander,
Michael/A-7097-2013
OI Newman, Matthew /0000-0001-5348-2312; Kwon,
Young-Oh/0000-0002-1241-2817; Alexander, Michael/0000-0001-9646-6427
FU NSF [AGS CLD 1035325, AGS CLD 1035423]; DOE [DE-SC0007052]
FX The authors thank Justin Small and Shoshiro Minobe for stimulating
discussions, as well as Hisashi Nakamura and two anonymous reviewers for
constructive suggestions. Michael Wehner provided the 0.25 degrees
initial condition files for CAMS. We also gratefully acknowledge funding
provided by NSF to DS and MN (AGS CLD 1035325) and Y-OK and CF (AGS CLD
1035423) and by DOE to Y-OK (DE-SC0007052).
NR 86
TC 15
Z9 15
U1 4
U2 11
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD FEB 1
PY 2015
VL 28
IS 3
BP 1126
EP 1147
DI 10.1175/JCLI-D-14-00285.1
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CA9WJ
UT WOS:000349275200013
ER
PT J
AU Zhang, XF
Zhang, SQ
Liu, ZY
Wu, XR
Han, GJ
AF Zhang, Xuefeng
Zhang, Shaoqing
Liu, Zhengyu
Wu, Xinrong
Han, Guijun
TI Parameter Optimization in an Intermediate Coupled Climate Model with
Biased Physics
SO JOURNAL OF CLIMATE
LA English
DT Article
ID DATA ASSIMILATION; KALMAN FILTER; BALANCE MODEL; SYSTEM; PREDICTION;
IMPACT; STATE
AB Imperfect physical parameterization schemes in a coupled climate model are an important source of model biases that adversely impact climate prediction. However, how observational information should be used to optimize physical parameterizations through parameter estimation has not been fully studied. Using an intermediate coupled ocean atmosphere model, the authors investigate parameter optimization when the assimilation model contains biased physics within a biased assimilation experiment framework. Here, the biased physics is induced by using different outgoing longwave radiation schemes in the assimilation model and the "truth" model that is used to generate simulated observations. While the stochastic physics, implemented by initially perturbing the physical parameters, can significantly enhance the ensemble spread and improve the representation of the model ensemble, the parameter estimation is able to mitigate the model biases induced by the biased physics. Furthermore, better results for climate estimation and prediction can be obtained when only the most influential physical parameters are optimized and allowed to vary geographically. In addition, the parameter optimization with the biased model physics improves the performance of the climate estimation and prediction in the deep ocean significantly, even if there is no direct observational constraint on the low-frequency component of the state variables. These results provide some insight into decadal predictions in a coupled ocean atmosphere general circulation model that includes imperfect physical schemes that are initialized from the climate observing system.
C1 [Zhang, Xuefeng; Wu, Xinrong] GFDL Wisconsin Joint Visiting Program, Princeton, NJ USA.
[Zhang, Xuefeng; Wu, Xinrong; Han, Guijun] Natl Marine Data & Informat Serv, Key Lab Marine Environm Informat Technol, State Ocean Adm, Tianjin 300171, Peoples R China.
[Zhang, Shaoqing] Princeton Univ, NOAA GFDL, Princeton, NJ 08544 USA.
[Liu, Zhengyu] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA.
[Liu, Zhengyu] Univ Wisconsin, Ctr Climate Res, Madison, WI USA.
[Liu, Zhengyu] Peking Univ, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China.
RP Zhang, XF (reprint author), Natl Marine Data & Informat Serv, MEIT, 93,6 Wei Rd, Tianjin 300171, Peoples R China.
EM xfz.nmdis@hotmail.com
FU NSF [2012CB955200]; National Basic Research Program of China
[2013CB430304]; National Natural Science Foundation of China [41030854,
41106005, 41206178]
FX The authors would like to thank Drs. X. Yang, G. Vecchi, I. Held, Y.-S.
Chang, and A. Wittenberg for their generous discussions. Suggestions
from three anonymous reviewers contributed significantly to the final
version of this work. This research is sponsored by NSF, 2012CB955200
and partly supported by grants from the National Basic Research Program
of China (2013CB430304) and the National Natural Science Foundation of
China (under Grants 41030854, 41106005, and 41206178).
NR 29
TC 4
Z9 4
U1 0
U2 4
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD FEB 1
PY 2015
VL 28
IS 3
BP 1227
EP 1247
DI 10.1175/JCLI-D-14-00348.1
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CA9WJ
UT WOS:000349275200018
ER
PT J
AU Berg, A
Lintner, BR
Findell, K
Seneviratne, SI
van den Hurk, B
Ducharne, A
Cheruy, F
Hagemann, S
Lawrence, DM
Malyshev, S
Meier, A
Gentine, P
AF Berg, Alexis
Lintner, Benjamin R.
Findell, Kirsten
Seneviratne, Sonia I.
van den Hurk, Bart
Ducharne, Agnes
Cheruy, Frederique
Hagemann, Stefan
Lawrence, David M.
Malyshev, Sergey
Meier, Arndt
Gentine, Pierre
TI Interannual Coupling between Summertime Surface Temperature and
Precipitation over Land: Processes and Implications for Climate Change
SO JOURNAL OF CLIMATE
LA English
DT Article
ID CONTIGUOUS UNITED-STATES; SOIL-MOISTURE; CMIP5 SIMULATIONS; MODEL
SIMULATIONS; EUROPEAN SUMMER; NORTH-AMERICA; HEAT FLUXES; VARIABILITY;
SENSITIVITY; CONVECTION
AB Widespread negative correlations between summertime-mean temperatures and precipitation over land regions are a well-known feature of terrestrial climate. This behavior has generally been interpreted in the context of soil moisture atmosphere coupling, with soil moisture deficits associated with reduced rainfall leading to enhanced surface sensible heating and higher surface temperature. The present study revisits the genesis of these negative temperature precipitation correlations using simulations from the Global Land Atmosphere Coupling Experiment phase 5 of the Coupled Model Intercomparison Project (GLACE-CMIP5) multimodel experiment. The analyses are based on simulations with five climate models, which were integrated with prescribed (noninteractive) and with interactive soil moisture over the period 1950-2100. While the results presented here generally confirm the interpretation that negative correlations between seasonal temperature and precipitation arise through the direct control of soil moisture on surface heat flux partitioning, the presence of widespread negative correlations when soil moisture atmosphere interactions are artificially removed in at least two out of five models suggests that atmospheric processes, in addition to land surface processes, contribute to the observed negative temperature precipitation correlation. On longer time scales, the negative correlation between precipitation and temperature is shown to have implications for the projection of climate change impacts on near-surface climate: in all models, in the regions of strongest temperature precipitation anticorrelation on interannual time scales, long-term regional warming is modulated to a large extent by the regional response of precipitation to climate change, with precipitation increases (decreases) being associated with minimum (maximum) warming. This correspondence appears to arise largely as the result of soil moisture atmosphere interactions.
C1 [Berg, Alexis; Lintner, Benjamin R.] Rutgers State Univ, New Brunswick, NJ 08903 USA.
[Findell, Kirsten] Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Seneviratne, Sonia I.] ETH, Zurich, Switzerland.
[van den Hurk, Bart] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands.
[Ducharne, Agnes] Univ Paris 06, CNRS, UMR METIS, Paris, France.
[Cheruy, Frederique] Univ Paris 06, Inst Pierre Simon Laplace, Lab Meteorol Dynam, Paris, France.
[Hagemann, Stefan] Max Planck Inst Meteorol, D-20146 Hamburg, Germany.
[Lawrence, David M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Malyshev, Sergey] Princeton Univ, Princeton, NJ 08544 USA.
[Meier, Arndt] Lund Univ, Ctr Environm & Climate Res, Lund, Sweden.
[Gentine, Pierre] Columbia Univ, Palisades, NY 10964 USA.
RP Berg, A (reprint author), Columbia Univ, Int Res Inst Climate & Soc, Earth Inst, 61 Rt 9W, Palisades, NY 10964 USA.
EM aberg@iri.columbia.edu
RI Seneviratne, Sonia/G-8761-2011; Lawrence, David/C-4026-2011
OI Seneviratne, Sonia/0000-0001-9528-2917; Lawrence,
David/0000-0002-2968-3023
FU National Science Foundation (NSF) [AGS-1035968, AGS-1035843]; New Jersey
Agricultural Experiment Station Hatch Grant [NJ07102]; NSF
[AGS-1331375]; EU-FP7 EMBRACE project (European Commission's 7th
Framework Programme) [282672]; GEWEX (World Climate Research Programme,
WCRP); National Oceanic and Atmospheric (U.S. Department of Commerce)
[NA08OAR4320752]; ILEAPS (Integrated Geosphere-Biosphere Programme,
IGBP); U.S. Department of Agriculture [2011-67003-30373]; Carbon
Mitigation Initiative at Princeton University - British Petroleum
FX Alexis Berg was supported by National Science Foundation (NSF) Grants
AGS-1035968 and AGS-1035843 and New Jersey Agricultural Experiment
Station Hatch Grant NJ07102, and is currently supported by NSF
Postdoctoral Fellowship AGS-1331375. S.I.S. acknowledges support of the
EU-FP7 EMBRACE project (European Commission's 7th Framework Programme,
Grant Agreement 282672), and the GEWEX (World Climate Research
Programme, WCRP) and ILEAPS (Integrated Geosphere-Biosphere Programme,
IGBP) projects, for the coordination and realization of the GLACE-CMIP5
experiment. S.M. acknowledges support from the National Oceanic and
Atmospheric (U.S. Department of Commerce) Grant NA08OAR4320752, U.S.
Department of Agriculture Grant 2011-67003-30373, and the Carbon
Mitigation Initiative at Princeton University, sponsored by British
Petroleum. The University of Delaware, CMAP, and GPCP datasets are
provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website
at http://www.esrl.noaa.gov/psd/. We thank Micah Wilhelm for his help
with the GLACE-CMIP5 multimodel database.
NR 56
TC 14
Z9 14
U1 4
U2 19
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD FEB 1
PY 2015
VL 28
IS 3
BP 1308
EP 1328
DI 10.1175/JCLI-D-14-00324.1
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CA9WJ
UT WOS:000349275200023
ER
PT J
AU Zhang, Y
Hong, Y
Wang, XG
Gourley, JJ
Xue, XW
Saharia, M
Ni, GH
Wang, GL
Huang, Y
Chen, S
Tang, GQ
AF Zhang, Yu
Hong, Yang
Wang, Xuguang
Gourley, Jonathan J.
Xue, Xianwu
Saharia, Manabendra
Ni, Guangheng
Wang, Gaili
Huang, Yong
Chen, Sheng
Tang, Guoqiang
TI Hydrometeorological Analysis and Remote Sensing of Extremes: Was the
July 2012 Beijing Flood Event Detectable and Predictable by Global
Satellite Observing and Global Weather Modeling Systems?
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID DISTRIBUTIONS-ORIENTED VERIFICATION; FORECAST SYSTEM; PRECIPITATION
FORECASTS; HYDROLOGIC MODEL; RIVER-BASINS; ENSEMBLE; WATER
AB Prediction, and thus preparedness, in advance of flood events is crucial for proactively reducing their impacts. In the summer of 2012, Beijing, China, experienced extreme rainfall and flooding that caused 79 fatalities and economic losses of $1.6 billion. Using rain gauge networks as a benchmark, this study investigated the detectability and predictability of the 2012 Beijing event via the Global Hydrological Prediction System (GHPS), forced by the NASA Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis at near-real time and by the deterministic and ensemble precipitation forecast products from the NOAA Global Forecast System (GFS) at several lead times. The results indicate that the disastrous flooding event was detectable by the satellite-based global precipitation observing system and predictable by the GHPS forced by the GFS 4 days in advance. However, the GFS demonstrated inconsistencies from run to run, limiting the confidence in predicting the extreme event. The GFS ensemble precipitation forecast products from NOAA for streamflow forecasts provided additional information useful for estimating the probability of the extreme event. Given the global availability of satellite-based precipitation in near-real time and GFS precipitation forecast products at varying lead times, this study demonstrates the opportunities and challenges that exist for an integrated application of GHPS. This system is particularly useful for the vast ungauged regions of the globe.
C1 [Zhang, Yu; Hong, Yang; Xue, Xianwu; Saharia, Manabendra; Chen, Sheng] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA.
[Zhang, Yu; Hong, Yang; Xue, Xianwu; Saharia, Manabendra; Chen, Sheng] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA.
[Zhang, Yu; Hong, Yang; Wang, Xuguang] Univ Oklahoma, Ctr Anal & Predict Storms, Norman, OK 73019 USA.
[Wang, Xuguang] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA.
[Gourley, Jonathan J.] Natl Weather Ctr, NOAA Natl Severe Storms Lab, Norman, OK 73072 USA.
[Ni, Guangheng; Tang, Guoqiang] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China.
[Wang, Gaili] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China.
[Huang, Yong] Anhui Meteorol Bur, Hefei, Peoples R China.
RP Hong, Y (reprint author), Natl Weather Ctr, ARRC Suite 4610,120 David L Boren Blvd, Norman, OK 73072 USA.
EM yanghong@ou.edu
RI Wang, Xuguang/C-5458-2013; Gourley, Jonathan/C-7929-2016; Xue,
Xianwu/C-8006-2016; Hong, Yang/D-5132-2009;
OI Gourley, Jonathan/0000-0001-7363-3755; Xue, Xianwu/0000-0002-2106-6370;
Hong, Yang/0000-0001-8720-242X; Tang, Guoqiang/0000-0002-0923-583X
NR 38
TC 3
Z9 4
U1 2
U2 20
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD FEB
PY 2015
VL 16
IS 1
BP 381
EP 395
DI 10.1175/JHM-D-14-0048.1
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB1DR
UT WOS:000349367500025
ER
PT J
AU Chiu, CK
Lee, DJ
Chen, H
Chow, LC
Ko, CC
AF Chiu, Chi-Kai
Lee, Dong Joon
Chen, Hsin
Chow, Laurence C.
Ko, Ching-Chang
TI In-situ hybridization of calcium silicate and hydroxyapatite-gelatin
nanocomposites enhances physical property and in vitro osteogenesis
SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
LA English
DT Article
ID BONE REGENERATION; PHOSPHATE CEMENT; SCAFFOLDS; DIFFERENTIATION;
PROLIFERATION; HYBRIDS; AMINOSILANE; BIOACTIVITY; COMPOSITE; CULTURE
AB Low mechanical strengths and inadequate bioactive material-tissue interactions of current synthetic materials limit their clinical applications in bone regeneration. Here, we demonstrate gelatin modified siloxanecalcium silicate (GEMOSIL-CS), a nanocomposite made of gelatinous hydroxyapatite with in situ pozzolanic formation of calcium silicate (CS) interacting among gelatin, silica and Calcium Hydroxide (Ca(OH)(2)). It is shown the formation of CS matrices, which chemically bonds to the gelatinous hydroxyapatite, provided hygroscopic reinforcement mechanism and promoted both in vitro and in vivo osteogenic properties of GEMOSIL-CS. The formation of CS was identified by Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction. The interfacial bindings within nanocomposites were studied by FTIR and thermogravimetric analysis. Both gelatin and CS have been found critical to the structure integrity and mechanical strengths (93 MPa in compressive strength and 58.9 MPa in biaxial strength). The GEMOSIL-CS was biocompatible and osteoconductive as result of type I collagen secretion and mineralized nodule formation from MC3T3 osteoblasts. SEM and TEM indicated the secretion of collagen fibers and mineral particles as the evidence of mineralization in the early stage of osteogenic differentiation. In vivo bone formation capability was performed by implanting GEMOSIL-CS into rat calvarial defects for 12 weeks and the result showed comparable new bone formation between GEMOSIL-CS group (20 %) and the control (20.19 %). The major advantage of GEMOSIL-CS composites is in situ self-hardening in ambient or aqueous environment at room temperature providing a simple, fast and cheap method to produce porous scaffolds.
C1 [Chiu, Chi-Kai; Lee, Dong Joon; Ko, Ching-Chang] Univ N Carolina, Sch Dent, NC Oral Hlth Inst, Chapel Hill, NC 27599 USA.
[Chen, Hsin] Univ N Carolina, Sch Dent, Dept Endodont, Chapel Hill, NC 27599 USA.
[Chow, Laurence C.] NIST, Paffenbarger Res Ctr ADAF, Gaithersburg, MD 20899 USA.
[Ko, Ching-Chang] Univ N Carolina, Sch Dent, Dept Orthodont, Chapel Hill, NC 27599 USA.
RP Ko, CC (reprint author), Univ N Carolina, Sch Dent, Dept Orthodont, 275 Brauer Hall,CB 7454, Chapel Hill, NC 27599 USA.
EM cchiu3@ncsu.edu; dongjoon_lee@unc.edu; Hsin_Chen@unc.edu;
larry.chow@nist.gov; Ching-Chang_Ko@unc.edu
FU NIH/NIDCR [KO8DE018695, R01DE022816-01]
FX Research reported in this publication was supported by NIH/NIDCR
KO8DE018695 and R01DE022816-01.
NR 41
TC 0
Z9 0
U1 5
U2 30
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0957-4530
EI 1573-4838
J9 J MATER SCI-MATER M
JI J. Mater. Sci.-Mater. Med.
PD FEB
PY 2015
VL 26
IS 2
AR 92
DI 10.1007/s10856-015-5456-9
PG 14
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA CB1QI
UT WOS:000349402400031
PM 25649517
ER
PT J
AU Peng, SQ
Qian, YK
Lumpkin, R
Du, Y
Wang, DX
Li, P
AF Peng, Shiqiu
Qian, Yu-Kun
Lumpkin, Rick
Du, Yan
Wang, Dongxiao
Li, Ping
TI Characteristics of the Near-Surface Currents in the Indian Ocean as
Deduced from Satellite-Tracked Surface Drifters. Part I: Pseudo-Eulerian
Statistics
SO JOURNAL OF PHYSICAL OCEANOGRAPHY
LA English
DT Article
ID LAGRANGIAN EDDY STATISTICS; NORTH-ATLANTIC; PACIFIC-OCEAN; EL-NINO;
LATERAL DIFFUSIVITY; MOZAMBIQUE CHANNEL; CALIFORNIA CURRENT; SUMMER
MONSOON; KINETIC-ENERGY; ADRIATIC SEA
AB Using the 1985-2013 record of near-surface currents from satellite-tracked drifters, the pseudo-Eulerian statistics of the near-surface circulation in the Indian Ocean (IO) are analyzed. It is found that the distributions of the current velocities and mean kinetic energy (MKE) in the IO are extremely inhomogeneous in space and nonstationary in time. The most energetic regions with climatologic mean velocity over 50 cm s(-1) and MKE over 500 cm(2) s(-2) are found off the eastern coast of Somalia (with maxima of over 100cm s(-1) and 1500 cm(2) s(-2)) and the equatorial IO, associated with the strong, annually reversing Somalia Current and the twice-a-year eastward equatorial jets. High eddy kinetic energy (EKE) is found in regions of the equatorial IO, western boundary currents, and Agulhas Return Current, with a maximum of over 3000 cm(2) s(-2) off the eastern coast of Somalia. The lowest EKE (< 500cm(2) s(-2)) occurs in the south subtropical gyre between 308 and 40 degrees S and the central-eastern Arabian Sea. Annual and semiannual variability is a significant fraction of the total EKE off the eastern coast of Somalia and in the central-eastern equatorial IO. In general, both the MKE and EKE estimated in the present study are qualitatively in agreement with, but quantitatively larger than, estimates from previous studies. These pseudo-Eulerian MKE and EKE fields, based on the most extensive drifter dataset to date, are the most precise in situ estimates to date and can be used to validate satellite and numerical results.
C1 [Peng, Shiqiu; Qian, Yu-Kun; Du, Yan; Wang, Dongxiao; Li, Ping] Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou, Guangdong, Peoples R China.
[Lumpkin, Rick] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
RP Peng, SQ (reprint author), Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, West Xinggang Rd 164, Guangzhou, Guangdong, Peoples R China.
EM speng@scsio.ac.cn
RI Lumpkin, Rick/C-9615-2009; DU, Yan/C-4496-2013; WANG,
DongXiao/B-4445-2012
OI Lumpkin, Rick/0000-0002-6690-1704;
FU Strategic Priority Research Program of the Chinese Academy of Sciences
[XDA11010304]; MOST of China [2011CB403505, 2010CB950302]; National
Natural Science Foundation of China [41076009]; Knowledge Innovation
Program of the Chinese Academy of Sciences [SQ201305]; Chinese Academy
of Sciences [KZCX2-EW-208]; Hundred Talent Program of the Chinese
Academy of Sciences; NOAA's Climate Program Office; Atlantic
Oceanographic and Meteorological Laboratory
FX The authors thank all operational agencies and researchers who deployed
drifters in the Indian Ocean and made this study possible. This work was
jointly supported by the Strategic Priority Research Program of the
Chinese Academy of Sciences (Grant XDA11010304), the MOST of China
(Grants 2011CB403505 and 2010CB950302), the National Natural Science
Foundation of China (Grants 41076009), the Knowledge Innovation Program
of the Chinese Academy of Sciences (SQ201305), Chinese Academy of
Sciences through the project KZCX2-EW-208, and the Hundred Talent
Program of the Chinese Academy of Sciences. R. Lumpkin was funded by
NOAA's Climate Program Office and the Atlantic Oceanographic and
Meteorological Laboratory.
NR 78
TC 2
Z9 3
U1 0
U2 8
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-3670
EI 1520-0485
J9 J PHYS OCEANOGR
JI J. Phys. Oceanogr.
PD FEB
PY 2015
VL 45
IS 2
BP 441
EP 458
DI 10.1175/JPO-D-14-0050.1
PG 18
WC Oceanography
SC Oceanography
GA CB3RO
UT WOS:000349546200008
ER
PT J
AU Peng, SQ
Qian, YK
Lumpkin, R
Li, P
Wang, DX
Du, Y
AF Peng, Shiqiu
Qian, Yu-Kun
Lumpkin, Rick
Li, Ping
Wang, Dongxiao
Du, Yan
TI Characteristics of the Near-Surface Currents in the Indian Ocean as
Deduced from Satellite-Tracked Surface Drifters. Part II: Lagrangian
Statistics
SO JOURNAL OF PHYSICAL OCEANOGRAPHY
LA English
DT Article
ID MEAN FLOW DECOMPOSITION; WESTERN NORTH-ATLANTIC; TROPICAL PACIFIC-OCEAN;
SOUTH CHINA SEA; EDDY-DIFFUSIVITY; EL-NINO; CIRCULATION; VARIABILITY;
SCALES; TRACER
AB Lagrangian statistics of the surface circulation in the Indian Ocean (IO) are investigated using drifter observations during 1985-2013. The methodology isolates the influence of low-frequency variations and horizontal shear of mean flow. The estimated Lagrangian statistics are spatially inhomogeneous and anisotropic over the IO basin, with values of similar to 6-85 x 10(7) cm(2) s(-1) for diffusivity, similar to 2-7 days for integral time scale, and similar to 33-223km for length scale. Large diffusivities (>20 x 10(7) cm(2) s(-1)) occur in the central-eastern equatorial IO and the eastern African coast. Small diffusivities (similar to 6-8310 7 cm(2) s(-1)) appear in the subtropical gyre of the southern IO and the southeastern Arabian Sea. The equatorial IO has the largest zonal diffusivity (similar to 85 x 10(7) cm(2) s(-1)), corresponding to the largest time scale (7 days) and length scale (similar to 223 km), while the eastern coast of Somalia has the largest meridional diffusivity (similar to 31 3 10 7 cm(2) s(-1)). The minor component of the Lagrangian length scale is approximately equal to the first baroclinic Rossby radius (R-1) at midlatitudes (R-1 similar to 30-50 km), while the major component equals R-1 in the equatorial region (R-1 > 80 km). The periods of the energetic eddy-containing bands in the IO in Lagrangian spectra range from several days to a couple of months, where anticyclones dominate. Asignificant result is that the drifter-derived diffusivities asymptote to constant values in relatively short time lags (similar to 10 days) for some subregions of the IO if they are correctly calculated. This is an important contribution to the ongoing debate regarding drifter-based diffusivity estimates with relatively short Lagrangian velocity time series versus tracer-based estimates.
C1 [Peng, Shiqiu; Qian, Yu-Kun; Li, Ping; Wang, Dongxiao; Du, Yan] Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou, Guangdong, Peoples R China.
[Lumpkin, Rick] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
RP Peng, SQ (reprint author), Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, West Xingang Rd 164, Guangzhou, Guangdong, Peoples R China.
EM speng@scsio.ac.cn
RI Lumpkin, Rick/C-9615-2009; DU, Yan/C-4496-2013; WANG,
DongXiao/B-4445-2012
OI Lumpkin, Rick/0000-0002-6690-1704;
FU Strategic Priority Research Program of the Chinese Academy of Sciences
[XDA11010304]; MOST of China [2011CB403505, 2010CB950302]; National
Natural Science Foundation of China [41376021, 41306013]; Knowledge
Innovation Program of the Chinese Academy of Sciences [SQ201305];
Chinese Academy of Sciences [KZCX2-EW-208]; Hundred Talent Program of
the Chinese Academy of Sciences; NOAA's Climate Program Office; Atlantic
Oceanographic and Meteorological Laboratory
FX The authors thank all operational agencies and researchers who deployed
drifters in the Indian Ocean and made this study possible. This work was
jointly supported by the Strategic Priority Research Program of the
Chinese Academy of Sciences (XDA11010304), the MOST of China
(2011CB403505 and 2010CB950302), National Natural Science Foundation of
China (41376021 and 41306013), the Knowledge Innovation Program of the
Chinese Academy of Sciences (SQ201305), Chinese Academy of Sciences
through the project KZCX2-EW-208, and the Hundred Talent Program of the
Chinese Academy of Sciences. R. Lumpkin was funded by NOAA's Climate
Program Office and the Atlantic Oceanographic and Meteorological
Laboratory.
NR 61
TC 1
Z9 2
U1 1
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-3670
EI 1520-0485
J9 J PHYS OCEANOGR
JI J. Phys. Oceanogr.
PD FEB
PY 2015
VL 45
IS 2
BP 459
EP 477
DI 10.1175/JPO-D-14-0049.1
PG 19
WC Oceanography
SC Oceanography
GA CB3RO
UT WOS:000349546200009
ER
PT J
AU Chen, H
Gopalakrishnan, SG
AF Chen, Hua
Gopalakrishnan, Sundararaman G.
TI A Study on the Asymmetric Rapid Intensification of Hurricane Earl (2010)
Using the HWRF System
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID VERTICAL WIND SHEAR; TROPICAL-CYCLONE INTENSIFICATION; INNER-CORE;
ENVIRONMENTAL-INFLUENCES; INTENSE HURRICANES; PART II; CONVECTION;
EVOLUTION; TEMPERATURE; VORTICES
AB In this study, the results of a forecast from the operational Hurricane Weather Research and Forecast (HWRF) system for Hurricane Earl (2010) are verified against observations and analyzed to understand the asymmetric rapid intensification of a storm in a sheared environment. The forecast verification shows that HWRF captured well Earl's observed evolution of intensity, convection asymmetry, wind field asymmetry, and vortex tilt in terms of magnitude and direction in the pre rapid and rapid intensification (RI) stages. Examination of the high-resolution forecast data reveals that the tilt was large at the RI onset and decreased quickly once RI commenced, suggesting that vertical alignment is the result instead of the trigger for RI. The RI onset is associated with the development of upper-level warming in the eye, which results from upper-level storm-relative flow advecting the warm air caused by subsidence warming in the upshear-left region toward the low-level storm center. This scenario does not occur until persistent convective bursts (CB) are concentrated in the downshear-left quadrant. The temperature budget calculation indicates that horizontal advection plays an important role in the development of upper-level warming in the early RI stage. The upper-level warming associated with the asymmetric intensification process occurs by means of the cooperative interaction of the convective-scale subsidence, resulting from CBs in favored regions and the shear-induced mesoscale subsidence. When CBs are concentrated in the downshear-left and upshear-left quadrants, the subsidence warming is maximized upshear and then advected toward the low-level storm center by the storm-relative flow at the upper level. Subsequently, the surface pressure falls and RI occurs.
C1 [Chen, Hua] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA.
[Chen, Hua; Gopalakrishnan, Sundararaman G.] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA.
RP Gopalakrishnan, SG (reprint author), NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, 4301 Rickenbacker Causeway, Miami, FL 33149 USA.
EM gopal@noaa.gov
RI Gopalakrishnan , Sundararaman /I-5773-2013; Chen, Hua/B-7664-2014
OI Gopalakrishnan , Sundararaman /0000-0003-1384-7860; Chen,
Hua/0000-0002-9493-6939
FU NOAA's Hurricane Forecast Improvement Program (HFIP); NOAA
[NA13OAR4830232, NA14NWS4680028]
FX The authors acknowledge funding from NOAA's Hurricane Forecast
Improvement Program (HFIP), and this work was supported by NOAA Grants
NA13OAR4830232 and NA14NWS4680028. We acknowledge the contributions from
Drs. Thiago Quirino and Xuejin Zhang on the HWRF developmental efforts.
Thanks are also due to Drs. Paul Reasor, Frank Marks, Robert Rogers, and
Tomi Vukicevic for providing a thorough internal review and insightful
comments that led to significant improvements of the original
manuscript. Thanks are due to Ms. Gail Derr for offering editorial
support and to Mr. Josh Alland, a summer intern, for analyzing some of
the HWRF forecasts that led to this effort.
NR 64
TC 19
Z9 19
U1 0
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
EI 1520-0469
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD FEB
PY 2015
VL 72
IS 2
BP 531
EP 550
DI 10.1175/JAS-D-14-0097.1
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CA5NU
UT WOS:000348955900003
ER
PT J
AU Delgado, JP
AF Delgado, James P.
TI Legends in Sail
SO MARINERS MIRROR
LA English
DT Book Review
C1 [Delgado, James P.] NOAA, Washington, DC 20230 USA.
RP Delgado, JP (reprint author), NOAA, Washington, DC 20230 USA.
EM james.delgado@noaa.gov
NR 1
TC 0
Z9 0
U1 0
U2 0
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND
SN 0025-3359
EI 2049-680X
J9 MARINERS MIRROR
JI Mar. Mirror
PD FEB
PY 2015
VL 101
IS 1
BP 116
EP 117
DI 10.1080/00253359.2015.994813
PG 2
WC History
SC History
GA CB1PP
UT WOS:000349400400027
ER
PT J
AU Roessner, U
Bearden, DW
Ebbels, T
AF Roessner, Ute
Bearden, Daniel W.
Ebbels, Timothy
TI The international Metabolomics Society in 2015: the path forward to
success
SO METABOLOMICS
LA English
DT News Item
C1 [Roessner, Ute] Univ Melbourne, Sch BioSci, Melbourne, Vic 3010, Australia.
[Bearden, Daniel W.] NIST, Mat Measurement Lab, Div Chem Sci, Hollings Marine Lab, Charleston, SC 29412 USA.
[Ebbels, Timothy] Univ London Imperial Coll Sci Technol & Med, Dept Surg & Canc, London SW7 2AZ, England.
RP Roessner, U (reprint author), Univ Melbourne, Sch BioSci, Melbourne, Vic 3010, Australia.
EM u.roessner@unimelb.edu.au; dan.bearden@nist.gov; t.ebbels@imperial.ac.uk
RI Roessner, Ute/E-9446-2015
OI Roessner, Ute/0000-0002-6482-2615
NR 0
TC 0
Z9 0
U1 0
U2 8
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1573-3882
EI 1573-3890
J9 METABOLOMICS
JI Metabolomics
PD FEB
PY 2015
VL 11
IS 1
BP 1
EP 2
DI 10.1007/s11306-014-0756-5
PG 2
WC Endocrinology & Metabolism
SC Endocrinology & Metabolism
GA AZ6QH
UT WOS:000348343300001
ER
PT J
AU Aberson, SD
Aksoy, A
Sellwood, KJ
Vukicevic, T
Zhang, XJ
AF Aberson, Sim D.
Aksoy, Altug
Sellwood, Kathryn J.
Vukicevic, Tomislava
Zhang, Xuejin
TI Assimilation of High-Resolution Tropical Cyclone Observations with an
Ensemble Kalman Filter Using HEDAS: Evaluation of 2008-11 HWRF Forecasts
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID HURRICANE; INITIALIZATION; VERIFICATION
AB NOAA has been gathering high-resolution, flight-level dropwindsonde and airborne Doppler radar data in tropical cyclones for almost three decades; the U. S. Air Force routinely obtained the same type and quality of data, excepting Doppler radar, for most of that time. The data have been used for operational diagnosis and for research, and, starting in 2013, have been assimilated into operational regional tropical cyclone models. This study is an effort to quantify the impact of assimilating these data into a version of the operational Hurricane Weather Research and Forecasting model using an ensemble Kalman filter. A total of 83 cases during 2008-11 were investigated. The aircraft whose data were used in the study all provide high-density flight-level wind and thermodynamic observations as well as surface wind speed data. Forecasts initialized with these data assimilated are compared to those using the model standard initialization. Since only NOAA aircraft provide airborne Doppler radar data, these data are also tested to see their impact above the standard aircraft data. The aircraft data alone are shown to provide some statistically significant improvement to track and intensity forecasts during the critical watch and warning period before projected landfall ( through 60 h), with the Doppler radar data providing some further improvement. This study shows the potential for improved forecasts with regular tropical cyclone aircraft reconnaissance and the assimilation of data obtained from them, especially airborne Doppler radar data, into the numerical guidance.
C1 [Aberson, Sim D.; Vukicevic, Tomislava] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA.
[Aksoy, Altug; Sellwood, Kathryn J.; Zhang, Xuejin] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL USA.
RP Aberson, SD (reprint author), NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, 4301 Rickenbacker Causeway, Miami, FL 33149 USA.
EM sim.aberson@noaa.gov
RI Aberson, Sim/C-4891-2013; Aksoy, Altug/A-3508-2009; Sellwood,
Kathryn/H-6500-2014; Zhang, Xuejin/B-3085-2014
OI Aberson, Sim/0000-0002-3670-0100; Aksoy, Altug/0000-0002-2335-7710;
Sellwood, Kathryn/0000-0001-7978-9101; Zhang, Xuejin/0000-0003-2630-534X
FU NOAA Hurricane Forecast Improvement Project (HFIP); CIMAS [NA67RJ0149]
FX The authors acknowledge funding from the NOAA Hurricane Forecast
Improvement Project (HFIP) that supported this work and provided the
computing resources. This research was carried out in part under the
auspices of CIMAS, a joint institute of the University of Miami and
NOAA, Cooperative Agreement NA67RJ0149. HRD director Dr. Frank Mark's
guidance and leadership have been instrumental in the success of the
HEDAS project. The commitment and effort of NOAA Aircraft Operations
Center, Hurricane Research Division, and Air Force Reserve flight crews
in providing observations is greatly appreciated. Dr. John Gamache
worked tirelessly to make real-time transmission of airborne Doppler
radar data possible. Dr. Jeffrey Whitaker of NOAA/ESRL has provided the
GFS/EnKF data. Kevin Yeh and Robert Black provided and updated the code
to postprocess the model output data, and much of the postprocessing
itself was done by Bryan Williams. Lisa Bucci, Dr. Sundararaman
Gopalakrishnan, and Dr. Thiago Quirino helped in the running of the
model at various stages. Drs. Sylvie Lorsolo and John Gamache
postprocessed some of the Doppler radar superobservations. The
manuscript was improved by careful internal review by John Kaplan and
John Gamache, and the expert editing of Mike Jankulak.
NR 26
TC 2
Z9 2
U1 1
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD FEB
PY 2015
VL 143
IS 2
BP 511
EP 523
DI 10.1175/MWR-D-14-00138.1
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB1XX
UT WOS:000349422400007
ER
PT J
AU Xiang, BQ
Lin, SJ
Zhao, M
Zhang, SQ
Vecchi, G
Li, T
Jiang, XN
Harris, L
Chen, JH
AF Xiang, Baoqiang
Lin, Shian-Jiann
Zhao, Ming
Zhang, Shaoqing
Vecchi, Gabriel
Li, Tim
Jiang, Xianan
Harris, Lucas
Chen, Jan-Huey
TI Beyond Weather Time-Scale Prediction for Hurricane Sandy and Super
Typhoon Haiyan in a Global Climate Model
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID MADDEN-JULIAN OSCILLATION; TROPICAL CYCLONE ACTIVITY; WESTERN PACIFIC;
NORTH-ATLANTIC; NONDEVELOPING DISTURBANCES; CYCLOGENESIS; WAVES;
PREDICTABILITY; VARIABILITY; MODULATION
AB While tropical cyclone (TC) prediction, in particular TC genesis, remains very challenging, accurate prediction of TCs is critical for timely preparedness and mitigation. Using a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the authors studied the predictability of two destructive landfall TCs: Hurricane Sandy in 2012 and Super Typhoon Haiyan in 2013. Results demonstrate that the geneses of these two TCs are highly predictable with the maximum prediction lead time reaching 11 days. The "beyond weather time scale" predictability of tropical cyclogenesis is primarily attributed to the model's skillful prediction of the intraseasonal Madden-Julian oscillation (MJO) and the westward propagation of easterly waves. Meanwhile, the landfall location and time can be predicted one week ahead for Sandy's U. S landfall, and two weeks ahead for Haiyan's landing in the Philippines. The success in predicting Sandy and Haiyan, together with low false alarms, indicates the potential of using the GFDL coupled model for extended-range predictions of TCs.
C1 [Xiang, Baoqiang; Lin, Shian-Jiann; Zhao, Ming; Zhang, Shaoqing; Vecchi, Gabriel; Harris, Lucas; Chen, Jan-Huey] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Xiang, Baoqiang; Zhao, Ming; Chen, Jan-Huey] Univ Corp Atmospher Res, Boulder, CO USA.
[Li, Tim] Univ Hawaii Manoa, Dept Meteorol, Int Pacific Res Ctr, Honolulu, HI 96822 USA.
[Jiang, Xianan] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA.
RP Xiang, BQ (reprint author), UCAR, GFDL, 201 Forrestal Rd, Princeton, NJ 08540 USA.
EM baoqiang.xiang@noaa.gov
RI Vecchi, Gabriel/A-2413-2008; Zhao, Ming/C-6928-2014
OI Vecchi, Gabriel/0000-0002-5085-224X;
FU NOAA [NA14OAR4830101]; NOAA MAPP Program [NA12OAR4310075]; ONR
[N00014-12-10450]
FX The authors appreciate helpful comments from Howard Diamond and they
benefitted from the discussions with Frederic Vitart, Zhuo Wang,
Xiaosong Yang, and Hiroyuki Murakami. The authors acknowledge support
from NOAA under Grant NA14OAR4830101 (BX, SJL, GV, and JHC) and NOAA
MAPP Program under Awards NA12OAR4310075 (BX, MZ, XJ). TL was supported
by ONR Grant N00014-12-10450.
NR 39
TC 9
Z9 9
U1 1
U2 17
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD FEB
PY 2015
VL 143
IS 2
BP 524
EP 535
DI 10.1175/MWR-D-14-00227.1
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB1XX
UT WOS:000349422400008
ER
PT J
AU Rogers, RF
Reasor, PD
Zhang, JA
AF Rogers, Robert F.
Reasor, Paul D.
Zhang, Jun A.
TI Multiscale Structure and Evolution of Hurricane Earl (2010) during Rapid
Intensification
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID VERTICAL WIND SHEAR; TROPICAL CYCLONE INTENSIFICATION; INTENSITY
FORECASTING EXPERIMENT; MESOSCALE CONVECTIVE VORTICES; HIGH-RESOLUTION
SIMULATION; BOUNDARY-LAYER STRUCTURE; AIRBORNE DOPPLER RADAR; PART II;
ENVIRONMENTAL SHEAR; GPS DROPWINDSONDE
AB The structure and evolution of Hurricane Earl (2010) during its rapid intensification as sampled by aircraft is studied here. Rapid intensification occurs in two stages. During the early stage, covering; 24 h, Earl was a tropical storm experiencing moderate northeasterly shear with an asymmetric distribution of convection, and the symmetric structure was shallow, broad, and diffuse. The upper-level circulation center was significantly displaced from the lower-level circulation at the beginning of this stage. Deep, vigorous convection-termed convective bursts-was located on the east side of the storm and appeared to play a role in positioning the upper-level cyclonic circulation center above the low-level center. By the end of this stage the vortex was aligned and extended over a deep layer, and rapid intensification began. During the late stage, rapid intensification continued as Earl intensified similar to 20 m s(-1) during the next 24 h. The vortex remained aligned in the presence of weaker vertical shear, although azimuthal asymmetries persisted that were characteristic of vortices in shear. Convective bursts concentrated near the radius of maximum winds, with the majority located inside the radius of maximum winds. Each of the two stages described here raises questions about the role of convective-and vortex-scale processes in rapid intensification. During the early stage, the focus is on the role of convective bursts and their associated mesoscale convective system on vortex alignment and the onset of rapid intensification. During the late stage, the focus is on the processes that explain the observed radial distribution of convective bursts that peak inside the radius of maximum winds.
C1 [Rogers, Robert F.; Reasor, Paul D.] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA.
[Zhang, Jun A.] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL USA.
RP Rogers, RF (reprint author), NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, 4301 Rickenbacker Causeway, Miami, FL 33149 USA.
EM robert.rogers@noaa.gov
RI Zhang, Jun/F-9580-2012; Reasor, Paul/B-2932-2014; Rogers,
Robert/I-4428-2013
OI Reasor, Paul/0000-0001-6407-017X;
FU NOAA; NASA [NNG11HG00I]
FX The authors thank Hua Chen, John Kaplan, and two reviewers for their
helpful comments on this manuscript; John Gamache, whose work on
developing and implementing the automated Doppler quality control and
synthesis routines, has been instrumental in performing this work; and
Thiago Quirino, who provided the GFS analysis grids shown here. Our
thanks also go to the staff of NOAA's Aircraft Operations Center for
skillfully and reliably collecting this data. Funding for this work was
provided by NOAA base funds through the NOAA Hurricane Forecast
Improvement Project (HFIP) and the NASA Hurricane and Severe Storm
Sentinel (HS3) Project NNG11HG00I.
NR 95
TC 29
Z9 29
U1 1
U2 13
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD FEB
PY 2015
VL 143
IS 2
BP 536
EP 562
DI 10.1175/MWR-D-14-00175.1
PG 27
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB1XX
UT WOS:000349422400009
ER
PT J
AU Yoshimura, H
Mizuta, R
Murakami, H
AF Yoshimura, Hiromasa
Mizuta, Ryo
Murakami, Hiroyuki
TI A Spectral Cumulus Parameterization Scheme Interpolating between Two
Convective Updrafts with Semi-Lagrangian Calculation of Transport by
Compensatory Subsidence
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID GENERAL-CIRCULATION MODELS; LARGE-SCALE MODELS; CLIMATE SIMULATIONS;
MOISTURE BUDGETS; SINGLE-COLUMN; NUMERICAL PREDICTION; CLOUD ENSEMBLE;
WATER-CONTENT; HEAT; TEMPERATURE
AB The authors have developed a new spectral cumulus parameterization scheme that explicitly considers an ensemble of multiple convective updrafts by interpolating in-cloud variables between two convective updrafts with large and small entrainment rates. This cumulus scheme has the advantages that the variables in entraining and detraining convective updrafts are calculated in detail layer by layer as in the Tiedtke scheme, and that a spectrum of convective updrafts with different heights due to the difference in entrainment rates is explicitly represented, as in the Arakawa-Schubert scheme. A conservative and monotonic semi-Lagrangian scheme is used for calculation of transport by convection-induced compensatory subsidence. Use of the semi-Lagrangian scheme relaxes the mass-flux limit due to the Courant-Friedrichs-Lewy (CFL) condition, and moreover ensures nonnegative natural material transport. A global atmospheric model using this cumulus scheme gives an atmospheric simulation that agrees well with the observational climatology.
C1 [Yoshimura, Hiromasa; Mizuta, Ryo] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan.
[Murakami, Hiroyuki] Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08544 USA.
RP Yoshimura, H (reprint author), Meteorol Res Inst, 1-1 Nagamine, Tsukuba, Ibaraki 3050052, Japan.
EM hyoshimu@mri-jma.go.jp
RI Murakami, Hiroyuki/L-5745-2015
FU SOUSEI Program of the Ministry of Education, Culture, Sports, Science,
and Technology of Japan
FX We are grateful to Masato Sugi, Tomoaki Ose, Seiji Yukimoto, Yoshinori
Yamada, Eiki Shindo, MRI model development members, and MRI model
analysis members for providing important information about cumulus
parameterization and MJO, evaluating the cumulus scheme, and encouraging
us. This work was conducted under the framework of the "Development of
Basic Technology for Risk Information on Climate Change" supported by
the SOUSEI Program of the Ministry of Education, Culture, Sports,
Science, and Technology of Japan. Figure 11 was made with a diagnostic
tool developed by the U.S. CLIVAR MJO Working Group.
NR 72
TC 18
Z9 18
U1 0
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD FEB
PY 2015
VL 143
IS 2
BP 597
EP 621
DI 10.1175/MWR-D-14-00068.1
PG 25
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB1XX
UT WOS:000349422400012
ER
PT J
AU Saglamyurek, E
Jin, J
Verma, VB
Shaw, MD
Marsili, F
Nam, SW
Oblak, D
Tittel, W
AF Saglamyurek, Erhan
Jin, Jeongwan
Verma, Varun B.
Shaw, Matthew D.
Marsili, Francesco
Nam, Sae Woo
Oblak, Daniel
Tittel, Wolfgang
TI Quantum storage of entangled telecom-wavelength photons in an
erbium-doped optical fibre
SO NATURE PHOTONICS
LA English
DT Article
ID MEMORY; EFFICIENCY; LEVEL
AB The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibreoptic links(1). Quantum memories for light(2) are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non- classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.
C1 [Saglamyurek, Erhan; Jin, Jeongwan; Oblak, Daniel; Tittel, Wolfgang] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada.
[Saglamyurek, Erhan; Jin, Jeongwan; Oblak, Daniel; Tittel, Wolfgang] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada.
[Verma, Varun B.; Nam, Sae Woo] NIST, Boulder, CO 80305 USA.
[Shaw, Matthew D.; Marsili, Francesco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Tittel, W (reprint author), Univ Calgary, Inst Quantum Sci & Technol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada.
EM wtittel@ucalgary.ca
RI Tittel, Wolfgang/A-1600-2011
FU Alberta Innovates Technology Futures (AITF); National Science and
Engineering Research Council of Canada (NSERC); Defense Advanced
Research Projects Agency (DARPA) Information in a Photon (InPho)
programme
FX E.S., J.J., D.O. and W. T. thank C. Thiel, N. Sinclair, M. Hedges, T.
Lutz, K. Heshami, M. Grimau Puigiber, L. Giner, A. Croteau, C. La Mela
and V. Kiselyov for technical help and/or discussions, and acknowledge
funding through Alberta Innovates Technology Futures (AITF) and the
National Science and Engineering Research Council of Canada (NSERC). W.
T. is a senior fellow of the Canadian Institute for Advanced Research
(CIFAR). V. B. V. and S. W. N. acknowledge partial funding for detector
development from the Defense Advanced Research Projects Agency (DARPA)
Information in a Photon (InPho) programme. Part of the research was
carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration.
NR 30
TC 48
Z9 49
U1 1
U2 32
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1749-4885
EI 1749-4893
J9 NAT PHOTONICS
JI Nat. Photonics
PD FEB
PY 2015
VL 9
IS 2
BP 83
EP 87
DI 10.1038/NPHOTON.2014.311
PG 5
WC Optics; Physics, Applied
SC Optics; Physics
GA CB0YT
UT WOS:000349354300012
ER
PT J
AU Kfir, O
Grychtol, P
Turgut, E
Knut, R
Zusin, D
Popmintchev, D
Popmintchev, T
Nembach, H
Shaw, JM
Fleischer, A
Kapteyn, H
Murnane, M
Cohen, O
AF Kfir, Ofer
Grychtol, Patrik
Turgut, Emrah
Knut, Ronny
Zusin, Dmitriy
Popmintchev, Dimitar
Popmintchev, Tenio
Nembach, Hans
Shaw, Justin M.
Fleischer, Avner
Kapteyn, Henry
Murnane, Margaret
Cohen, Oren
TI Generation of bright phase-matched circularly-polarized extreme
ultraviolet high harmonics
SO NATURE PHOTONICS
LA English
DT Article
ID HIGH-ORDER HARMONICS; ANGULAR-MOMENTUM; SPIN; DYNAMICS; LASER; SOFT;
INTERFEROMETRY; TRANSMISSION; SPECTROSCOPY; DICHROISM
AB Circularly-polarized extreme ultraviolet and X-ray radiation is useful for analysing the structural, electronic and magnetic properties of materials. To date, such radiation has only been available at large-scale X-ray facilities such as synchrotrons. Here, we demonstrate the first bright, phase-matched, extreme ultraviolet circularly-polarized high harmonics source. The