FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU McDowell, A
Barnard, E
Liu, J
Li, HY
Patrick, S
AF McDowell, Andrew
Barnard, Emma
Liu, Jared
Li, Huiying
Patrick, Sheila
TI Proposal to reclassify Propionibacterium acnes type I as
Propionibacterium acnes subsp acnes subsp nov and Propionibacterium
acnes type II as Propionibacterium acnes subsp defendens subsp nov.
SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY
LA English
DT Article
ID PROGRESSIVE MACULAR HYPOMELANOSIS; HUMAN SKIN; EVOLUTIONARY; GENETICS;
STRAINS; PCR
AB Recently, it has been proposed that strains of Propionibacterium acnes from the type III genetic division should be classified as P. acnessubsp. elongatum subsp. nov., with strains from the type I and II divisions collectively classified as P. acnessubsp. acnes subsp. nov. Under such a taxonomic re-appraisal, we believe that types I and II should also have their own separate rank of subspecies. In support of this, we describe a polyphasic taxonomic study based on the analysis of publicly available multilocus and whole-genome sequence datasets, alongside a systematic review of previously published phylogenetic, genomic, phenotypic and clinical data. Strains of types I and II form highly distinct clades on the basis of multilocus sequence analysis (MLSA) and whole-genome phylogenetic reconstructions. In silico or digital DNA-DNA similarity values also fall within the 70-80 % boundary recommended for bacterial subspecies. Furthermore, we see important differences in genome content, including the presence of an active CRISPR/Cas system in type II strains, but not type I, and evidence for increasing linkage equilibrium within the separate divisions. Key biochemical differences include positive test results for beta-haemolytic, neuraminidase and sorbitol fermentation activities with type I strains, but not type II. We now propose that type I strains should be classified as P. acnessubsp. acnes subsp. nov., and type II as P. acnessubsp. defendens subsp. nov. The type strain of P. acnessubsp. acnes subsp. nov. is NCTC 737(T) (=ATCC 6919(T)=JCM 6425(T)=DSM 1897(T)=CCUG 1794(T)), while the type strain of P. acnessubsp. defendens subsp. nov. is ATCC 11828 (=JCM 6473=CCUG 6369).
C1 [McDowell, Andrew] Univ Ulster, Altnagelvin Area Hosp, Biomed Sci Res Inst, Northern Ireland Ctr Stratified Med, C TRIC Bldg, Coleraine BT52 1SA, Londonderry, North Ireland.
[Barnard, Emma; Liu, Jared; Li, Huiying] Univ Calif Los Angeles, David Geffen Sch Med, Crump Inst Mol Imaging, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA.
[Li, Huiying] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA USA.
[Patrick, Sheila] Queens Univ, Sch Med Dent & Biomed Sci, Ctr Infect & Immun, Belfast, Antrim, North Ireland.
RP McDowell, A (reprint author), Univ Ulster, Altnagelvin Area Hosp, Biomed Sci Res Inst, Northern Ireland Ctr Stratified Med, C TRIC Bldg, Coleraine BT52 1SA, Londonderry, North Ireland.
EM a.mcdowell@ulster.ac.uk
OI McDowell, Andrew/0000-0002-9649-0504
FU National Institutes of Health (NIH) from the National Institute of
General Medical Sciences (NIGMS) [R01GM099530]; Ruth L. Kirschstein
National Research Service Award [AI007323]; European Union Regional
Development Fund (ERDF) EU Sustainable Competitiveness Programme for
Northern Ireland [11.5M]; Northern Ireland Public Health Agency (HSC R
and D); Ulster University
FX E. B., J. L. and H. L. are funded by the National Institutes of Health
(NIH) grant R01GM099530 from the National Institute of General Medical
Sciences (NIGMS) awarded to H. L. J. L. is also supported by the Ruth L.
Kirschstein National Research Service Award AI007323. This work was also
supported by a grant of 11.5M awarded to Professor Tony Bjourson from
European Union Regional Development Fund (ERDF) EU Sustainable
Competitiveness Programme for Northern Ireland; Northern Ireland Public
Health Agency (HSC R and D) and Ulster University.
NR 44
TC 0
Z9 0
U1 0
U2 0
PU MICROBIOLOGY SOC
PI LONDON
PA CHARLES DARWIN HOUSE, 12 ROGER ST, LONDON WC1N 2JU, ERKS, ENGLAND
SN 1466-5026
EI 1466-5034
J9 INT J SYST EVOL MICR
JI Int. J. Syst. Evol. Microbiol.
PD DEC
PY 2016
VL 66
BP 5358
EP 5365
DI 10.1099/ijsem.0.001521
PN 12
PG 8
WC Microbiology
SC Microbiology
GA EJ6VM
UT WOS:000393357900071
PM 27670798
ER
PT J
AU Hackett, R
AF Hackett, R.
TI Response of two-row and six-row barley to fertiliser N under Irish
conditions
SO IRISH JOURNAL OF AGRICULTURAL AND FOOD RESEARCH
LA English
DT Article
DE fertiliser N; N accumulation; six-row barley; two-row barley; yield
ID WINTER BARLEY; NITROGEN-FERTILIZATION; USE EFFICIENCY; YIELD; STABILITY;
CEREALS; WHEAT
AB A range of cultivar types, including two-row and six-row types as well as line and hybrid types, are used for winter barley production in Ireland. There is little information available on the fertiliser nitrogen (N) requirements or the N use efficiency of these different types, particularly under Irish conditions. The objectives of the work presented here were to compare the response to fertiliser N of a two-row line cultivar, a six-row line cultivar and a six-row hybrid cultivar in terms of grain yield and aspects of N use efficiency. Experiments were carried out over three growing seasons, in the period 2012-2014, on a light-textured soil comparing the response of the three cultivars of winter barley to fertiliser N application rates ranging from 0 to 260 kg N/ha. There was no evidence that cultivar type, regardless of whether it was a two-row or six-row line cultivar or a six-row hybrid cultivar, influenced the response to fertiliser N of winter barley. There were some indications that six-row cultivars were less efficient at recovering soil N but used accumulated N more efficiently than the two-row cultivar. This work provided no evidence to support adjustment of fertiliser N inputs to winter barley based on cultivar type.
C1 [Hackett, R.] TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland.
RP Hackett, R (reprint author), TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland.
EM Richie.Hackett@teagasc.ie
NR 22
TC 0
Z9 0
U1 0
U2 0
PU TEAGASC
PI CARLOW
PA OAK PARK, CARLOW 00000, IRELAND
SN 0791-6833
J9 IRISH J AGR FOOD RES
JI Irish J. Agr. Food Res.
PD DEC
PY 2016
VL 55
IS 2
BP 136
EP 144
DI 10.1515/ijafr-2016-0013
PG 9
WC Agriculture, Multidisciplinary; Food Science & Technology
SC Agriculture; Food Science & Technology
GA EK0FS
UT WOS:000393602700006
ER
PT J
AU Parkison, AJ
Parker, SS
Nelson, AT
AF Parkison, Adam J.
Parker, Stephen S.
Nelson, Andrew T.
TI Fabrication of ThN Using a Carbothermic Reduction to Nitridation Process
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
DE nitridation; nitrides; reduction; thermal treatment; thermogravimetry;
carbothermic
ID LIGHT-WATER REACTORS; THERMAL-CONDUCTIVITY; THORIUM; PRESSURE
AB A carbothermic reduction to nitridation process was developed which is capable of producing high-purity thorium mononitride (ThN) in bulk quantities. This was accomplished through study of three distinct processing routes using thermogravimetric analysis. The information gathered was then used to guide development of a draft process, which was tested within a tungsten production furnace. Scaling issues were identified and corrected following the draft process. Finally, a partitioned process was developed in response to the draft process which separates the reduction from the nitridation and carbon cleanup steps. This partitioned process was demonstrated to be capable of producing phase-pure ThN, with oxygen and carbon impurities of 990 +/- 130 wppm and 240 +/- 30 wppm, respectively.
C1 [Parkison, Adam J.; Parker, Stephen S.; Nelson, Andrew T.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
RP Parkison, AJ (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
EM ajparkison@lanl.gov
OI Nelson, Andrew/0000-0002-4071-3502
FU U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research
and Development program
FX This work was supported by the U.S. Department of Energy, Office of
Nuclear Energy Fuel Cycle Research and Development program. The authors
would like to thank Amber Telles for performing the combustion and inert
gas fusion analyses.
NR 13
TC 0
Z9 0
U1 0
U2 0
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-7820
EI 1551-2916
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD DEC
PY 2016
VL 99
IS 12
BP 3909
EP 3914
DI 10.1111/jace.14453
PG 6
WC Materials Science, Ceramics
SC Materials Science
GA EK3RQ
UT WOS:000393844100009
ER
PT J
AU Soderquist, CZ
Buck, EC
McCloy, JS
Schweiger, MJ
Kruger, AA
AF Soderquist, Chuck Z.
Buck, Edgar C.
McCloy, John S.
Schweiger, Mike J.
Kruger, Albert A.
TI Formation of Technetium Salts in Hanford Low-Activity Waste Glass
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
DE nuclear waste; radioactive waste; volatilization
ID BOROSILICATE GLASS; SOLUBILITY; RHENIUM; BEHAVIOR
AB The distribution and physical form of technetium in a Hanford low-activity waste (LAW) glass was examined with scanning electron microscopy (SEM) and X-ray diffraction (XRD). A simulated Hanford LAW glass was spiked with varying amounts of potassium pertechnetate and melted at 1000 degrees C. The glass was melted in a sealed quartz ampoule with the air pumped out, so that volatile material could leave the glass but would not be lost from the system. Previous studies have shown that technetium remains in the glass up to about 2000 ppm, but rises to the top of the melt as a separate salt phase above this concentration. Examination by SEM shows that crystals of technetium compounds appear to grow out of the hot glass, which implies that the hot glass was supersaturated in technetium salts. Some of the technetium compound crystals had apparently melted, but other crystals had obviously not melted and must have formed after the glass had partially cooled. The technetium compounds in the salt layer are KTcO4 and NaTcO4, according to SEM and XRD. No TcO2 was found in the salt phase, even though Tc(IV) has been previously reported in the glass.
C1 [Soderquist, Chuck Z.; Buck, Edgar C.; Schweiger, Mike J.] Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA.
[McCloy, John S.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
[McCloy, John S.] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA.
[Kruger, Albert A.] US DOE, Off River Protect, Richland, WA 99352 USA.
RP Soderquist, CZ (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA.
EM chuck.soderquist@pnnl.gov
FU Department of Energy's Hanford Tank Waste Treatment and Immobilization
Plant; U.S. DOE [DE-AC05-76RL01830]
FX The authors are grateful for the financial support provided by the
Federal Project Director William F. Hamel, Jr. of the Department of
Energy's Hanford Tank Waste Treatment and Immobilization Plant. Pacific
Northwest National Laboratory is operated by Battelle Memorial Institute
for the U.S. DOE under contract DE-AC05-76RL01830. The authors thank
Peggy Smoot, Jarrod Crum, and Jose Marcial for assistance with XRD
measurement and phase fitting.
NR 23
TC 1
Z9 1
U1 1
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-7820
EI 1551-2916
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD DEC
PY 2016
VL 99
IS 12
BP 3924
EP 3931
DI 10.1111/jace.14442
PG 8
WC Materials Science, Ceramics
SC Materials Science
GA EK3RQ
UT WOS:000393844100011
ER
PT J
AU Xie, ZL
Blair, RG
Orlovskaya, N
Cullen, DA
Kata, D
Rutkowski, P
Lis, J
Qin, N
T-Raissi, A
AF Xie, Zhilin
Blair, Richard G.
Orlovskaya, Nina
Cullen, David A.
Kata, Dariusz
Rutkowski, Pawel
Lis, Jerzy
Qin, Nan
T-Raissi, Ali
TI Oxygen Interaction with Hexagonal OsB2 at High Temperature
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
DE osmium diboride; ceramics; STEM; thermal analysis
ID MECHANICAL-PROPERTIES; TITANIUM DIBORIDE; OSMIUM DIBORIDE; POWDER;
MECHANOCHEMISTRY; COMPOSITES; STABILITY; SUPERHARD; CERAMICS; PRESSURE
AB The stability of ReB2-type hexagonal OsB2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure, sintering of OsB2 powders occurred at a relatively low temperature (900 degrees C). Hexagonal OsB2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.
C1 [Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA.
[Blair, Richard G.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA.
[Cullen, David A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Kata, Dariusz; Rutkowski, Pawel; Lis, Jerzy] AGH Univ Sci & Technol Krakow, Dept Ceram & Refractories, Fac Mat Sci & Ceram, Al Mickiewicza 30, PL-30059 Krakow, Poland.
[Qin, Nan; T-Raissi, Ali] Univ Cent Florida, Florida Solar Energy Ctr, Cocoa, FL 32922 USA.
RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA.
EM Nina.Orlovskaya@ucf.edu
OI Cullen, David/0000-0002-2593-7866
FU NSF [DMR - 0748364]
FX This work was supported by NSF project DMR - 0748364. Electron
microscopy and high-temperature XRD were supported by ORNL's Center for
Nanophase Materials Sciences (CNMS), which is a DOE Office of Science
User Facility.
NR 30
TC 0
Z9 0
U1 0
U2 0
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-7820
EI 1551-2916
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD DEC
PY 2016
VL 99
IS 12
BP 4057
EP 4065
DI 10.1111/jace.14434
PG 9
WC Materials Science, Ceramics
SC Materials Science
GA EK3RQ
UT WOS:000393844100029
ER
PT J
AU Berger, CM
Mahmoud, A
Hermann, RP
Braun, W
Yazhenskikh, E
Sohn, YJ
Menzler, NH
Guillon, O
Bram, M
AF Berger, Cornelius M.
Mahmoud, Abdelfattah
Hermann, Raphael P.
Braun, Waldemar
Yazhenskikh, Elena
Sohn, Yoo Jung
Menzler, Norbert H.
Guillon, Olivier
Bram, Martin
TI Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide
Batteries
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
DE solid oxide fuel cell; Mossbauer spectroscopy; iron/iron compounds;
electrolysis; Rechargeable oxide battery
ID CHEMICAL-LOOPING COMBUSTION; REDOX FLOW BATTERY; REDUCTION EQUILIBRIA;
AIR BATTERY; FUEL-CELLS; MOSSBAUER; TEMPERATURE; SYSTEM; FERRITES;
FE-FE2O3-CAO
AB Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging-discharging cycles. In comparison, CaFe3O5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this study, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe3O5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mossbauer spectrometry, and scanning electron microscopy. Results show a great potential to operate the battery with this storage material during multiple charging-discharging cycles.
C1 [Berger, Cornelius M.; Braun, Waldemar; Yazhenskikh, Elena; Sohn, Yoo Jung; Menzler, Norbert H.; Guillon, Olivier; Bram, Martin] Forschungszentrum Julich, Inst Energy & Climate Res IEK, D-52428 Julich, Germany.
[Berger, Cornelius M.; Sohn, Yoo Jung; Menzler, Norbert H.; Guillon, Olivier; Bram, Martin] JARA, Julich, Germany.
[Mahmoud, Abdelfattah; Hermann, Raphael P.] Forschungszentrum Julich, JARA FIT, JCNS, D-52428 Julich, Germany.
[Mahmoud, Abdelfattah; Hermann, Raphael P.] Forschungszentrum Julich, JARA FIT, PGI, D-52428 Julich, Germany.
[Mahmoud, Abdelfattah] Univ Liege, Inst Chem B6, LCIS GREENMAT, B-4000 Liege, Belgium.
[Hermann, Raphael P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Berger, CM (reprint author), Forschungszentrum Julich, Inst Energy & Climate Res IEK, D-52428 Julich, Germany.; Berger, CM (reprint author), JARA, Julich, Germany.
EM c.berger@fz-juelich.de
OI Berger, Cornelius M./0000-0003-4155-0191; Bram,
Martin/0000-0002-1203-2777
FU German Federal Ministry of Education and Research (BMBF) [03EK3017];
U.S. Department of Energy, the Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division
FX The authors thank Dr. D. Sebold for the support at the SEM as well as
Prof. F. Grandjean and G. J. Long for useful comments on the Mossbauer
spectral results. Furthermore, the authors gratefully acknowledge the
financial support by the German Federal Ministry of Education and
Research (BMBF) under the project grant 03EK3017 and the support of the
U.S. Department of Energy, the Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division.
NR 42
TC 0
Z9 0
U1 3
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-7820
EI 1551-2916
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD DEC
PY 2016
VL 99
IS 12
BP 4083
EP 4092
DI 10.1111/jace.14439
PG 10
WC Materials Science, Ceramics
SC Materials Science
GA EK3RQ
UT WOS:000393844100032
ER
PT J
AU Xu, Y
Feygenson, M
Page, K
Nickles, LS
Brinkman, KS
AF Xu, Yun
Feygenson, Mikhail
Page, Katharine
Nickles, Lindsay Shuller
Brinkman, Kyle S.
TI Structural Evolution in Hollandite Solid Solutions Across the A-Site
Compositional Range from Ba1.33Ga2.66Ti5.34O16 to Cs1.33Ga1.33Ti6.67O16
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
DE nuclear waste; density functional theory; hollandite; neutron
diffraction; structural
ID NUCLEAR-WASTE IMMOBILIZATION; LEAD SCANDIUM TANTALATE; STABILITY;
THERMOCHEMISTRY; SYNROC; PHASE
AB Hollandite solid solutions along the A-site compositional range from the pure barium end-member Ba1.33Ga2.66Ti5.34O16 to the pure cesium end-member Cs1.33Ga1.33Ti6.67O16 have been synthesized using a solid-state reaction technique. The crystal structure of the hollandite across the entire compositional range remained in the I4/m space group. Structural evolution was resolved by neutron diffraction, total scattering data, and density functional theory calculations. A trend of decreasing thermodynamic stability with smaller tunnel cations was attributed to increased structural distortion observed in the system. In addition, the tunnel cations' local environment was studied in the eightfold coordinated oxygen cavities. Local binding features of the tunnel cations reveals that the hollandite structure can strongly stabilize tunnel cations, even at elevated temperatures up to 500 K.
C1 [Xu, Yun; Brinkman, Kyle S.] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA.
[Feygenson, Mikhail; Page, Katharine] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Nickles, Lindsay Shuller] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA.
RP Brinkman, KS (reprint author), Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA.
EM ksbrink@clemson.edu
OI Feygenson, Mikhail /0000-0002-0316-3265
FU Scientific User Facilities Division, Office of Basic Energy Sciences, US
Department of Energy; DOE-EPSCoR Project [DE-SC0012530]
FX The research performed at Oak Ridge National Laboratory's Spallation
Neutron Source was sponsored by the Scientific User Facilities Division,
Office of Basic Energy Sciences, US Department of Energy. The authors
gratefully acknowledge financial support from the DOE-EPSCoR Project
Number: DE-SC0012530, "Radionuclide Waste Disposal: Development of
Multi-scale Experimental and Modeling Capabilities".
NR 27
TC 0
Z9 0
U1 0
U2 0
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-7820
EI 1551-2916
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD DEC
PY 2016
VL 99
IS 12
BP 4100
EP 4106
DI 10.1111/jace.14443
PG 7
WC Materials Science, Ceramics
SC Materials Science
GA EK3RQ
UT WOS:000393844100034
ER
PT J
AU Prsa, K
Nehrkorn, J
Corbey, JF
Evans, WJ
Demir, S
Long, JR
Guidi, T
Waldmann, O
AF Prsa, Krunoslav
Nehrkorn, Joscha
Corbey, Jordan F.
Evans, William J.
Demir, Selvan
Long, Jeffrey R.
Guidi, Tatiana
Waldmann, Oliver
TI Perspectives on Neutron Scattering in Lanthanide-Based Single-Molecule
Magnets and a Case Study of the Tb-2(mu-N-2) System
SO MAGNETOCHEMISTRY
LA English
DT Review
DE single-molecule magnet; lanthanide ions; inelastic neutron scattering;
ligand field; Ising model; magnetic exchange
ID ANISOTROPIC EXCHANGE; DYSPROSIUM TRIANGLES; ION MAGNETS; AB-INITIO;
COMPLEXES; RELAXATION; MAGNETIZATION; SPECTROSCOPY; DIFFRACTION;
SPLITTINGS
AB Single-molecule magnets (SMMs) based on lanthanide ions display the largest known blocking temperatures and are the best candidates for molecular magnetic devices. Understanding their physical properties is a paramount task for the further development of the field. In particular, for the poly-nuclear variety of lanthanide SMMs, a proper understanding of the magnetic exchange interaction is crucial. We discuss the strengths and weaknesses of the neutron scattering technique in the study of these materials and particularly for the determination of exchange. We illustrate these points by presenting the results of a comprehensive inelastic neutron scattering study aimed at a radical-bridged diterbium(III) cluster, Tb-2(mu-N-2(3)), which exhibits the largest blocking temperature for a poly-nuclear SMM. Results on the YIII analogue Y-2(mu-N-2(3-)) and the parent compound Tb-2(mu-N-2(2-)) (showing no SMM features) are also reported. The results on the parent compound include the first direct determination of the lanthanide-lanthanide exchange interaction in a molecular cluster based on inelastic neutron scattering. In the SMM compound, the resulting physical picture remains incomplete due to the difficulties inherent to the problem.
C1 [Prsa, Krunoslav; Nehrkorn, Joscha; Waldmann, Oliver] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany.
[Nehrkorn, Joscha] Univ Washington, Dept Chem, Seattle, WA 98195 USA.
[Corbey, Jordan F.; Evans, William J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA.
[Demir, Selvan; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Demir, Selvan] Georg August Univ Gottingen, Inst Anorgan Chem, Tammannstr 4, D-37077 Gottingen, Germany.
[Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Long, Jeffrey R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Guidi, Tatiana] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England.
RP Waldmann, O (reprint author), Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany.
EM krunoslav.prsa@physik.uni-freiburg.de; nehrkorn@uw.edu; jcorbey@uci.edu;
wevans@uci.edu; selvan.demir@chemie.uni-goettingen.de;
jrlong@berkeley.edu; tatiana.guidi@stfc.ac.uk;
oliver.waldmann@physik.uni-freiburg.de
FU U.S. National Science Foundation [CHE-1565776]; National Science
Foundation (NSF) [CHE-1464841]
FX K.P. and O.W. thank J. Mutschler for help with point-charge model
calculations. W.J.E. thanks the U.S. National Science Foundation for
support (CHE-1565776). The work performed at University of California,
Berkeley was supported by the National Science Foundation (NSF) under
Grant CHE-1464841.
NR 64
TC 0
Z9 0
U1 3
U2 3
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2312-7481
J9 MAGNETOCHEMISTRY
JI Magnetochemistry
PD DEC
PY 2016
VL 2
IS 4
AR 45
DI 10.3390/magnetochemistry2040045
PG 19
WC Chemistry, Physical
SC Chemistry
GA EJ9WY
UT WOS:000393579100005
ER
PT J
AU Guo, W
Sneed, BT
Zhou, L
Tang, W
Kramer, MJ
Cullen, DA
Poplawsky, JD
AF Guo, Wei
Sneed, Brian T.
Zhou, Lin
Tang, Wei
Kramer, Matthew J.
Cullen, David A.
Poplawsky, Jonathan D.
TI Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom
Probe Tomography of the Phase Separation in an Alnico 8 Alloy
SO MICROSCOPY AND MICROANALYSIS
LA English
DT Article
DE phase separation; atom probe tomography (APT); electron tomography;
correlative tomography; alnico alloy
ID TRANSMISSION ELECTRON-MICROSCOPY; HAADF-STEM TOMOGRAPHY; MATERIALS
SCIENCE; SCALE; EVOLUTION; SPECIMENS; FIELD
AB Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology and volume fractions of Fe-Co-rich and Ni-Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2-4 nm Fe-rich alpha(1) phases that are nucleated in the Ni-rich alpha(2) matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed.
C1 [Guo, Wei; Sneed, Brian T.; Poplawsky, Jonathan D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Zhou, Lin; Tang, Wei; Kramer, Matthew J.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.
[Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Guo, W; Poplawsky, JD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM wguo2007@gmail.com; poplawskyJD@ornl.gov
OI Cullen, David/0000-0002-2593-7866
FU US Department of Energy (DOE), Office of Energy Efficiency and Renewable
Energy, under its Vehicle Technologies Program, through the Ames
Laboratory, Iowa State University [DE-AC02-07CH11358]
FX The research is supported by the US Department of Energy (DOE), Office
of Energy Efficiency and Renewable Energy, under its Vehicle
Technologies Program, through the Ames Laboratory, Iowa State University
under contract DE-AC02-07CH11358. This research was performed, in part,
using instrumentation provided by the DOE, Office of Nuclear Energy,
Fuel Cycle R&D Program, and the Nuclear Science User Facilities. APT
research was conducted at Oak Ridge National Laboratory's Center for
Nanophase Materials Sciences, which is a DOE Office of Science User
Facility.
NR 40
TC 1
Z9 1
U1 2
U2 2
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 1431-9276
EI 1435-8115
J9 MICROSC MICROANAL
JI Microsc. microanal.
PD DEC
PY 2016
VL 22
IS 6
BP 1251
EP 1260
DI 10.1017/S1431927616012496
PG 10
WC Materials Science, Multidisciplinary; Microscopy
SC Materials Science; Microscopy
GA EK3UE
UT WOS:000393853100014
PM 27998366
ER
PT J
AU Zhong, XL
Schilling, S
Zaluzec, NJ
Burke, MG
AF Zhong, Xiang Li
Schilling, Sibylle
Zaluzec, Nestor J.
Burke, M. Grace
TI Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell
Analytical Transmission Electron Microscopy of Electropolished Specimens
SO MICROSCOPY AND MICROANALYSIS
LA English
DT Article
DE liquid; gas; E-cell; sample preparation; S/TEM; AEM
ID TEM; GROWTH; ELECTRODEPOSITION; KINETICS; COPPER; WATER; LIFT
AB In recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments.
C1 [Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J.; Burke, M. Grace] Univ Manchester, Sch Mat, Mat Performance Ctr, Manchester M13 9PL, Lancs, England.
[Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J.; Burke, M. Grace] Univ Manchester, Ctr Electron Microscopy, Manchester M13 9PL, Lancs, England.
[Zaluzec, Nestor J.] Argonne Natl Lab, Ctr Electron Microscopy, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Zaluzec, NJ (reprint author), Univ Manchester, Sch Mat, Mat Performance Ctr, Manchester M13 9PL, Lancs, England.; Zaluzec, NJ (reprint author), Univ Manchester, Ctr Electron Microscopy, Manchester M13 9PL, Lancs, England.; Zaluzec, NJ (reprint author), Argonne Natl Lab, Ctr Electron Microscopy, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM zaluzec@microscopy.com
FU Engineering and Physical Sciences Research Council UK PROMINENT program;
Defense Threat Reduction Agency [HDTRA1-12-1-0013]; BP DRL Innovation
Fund; Electron Microscopy Center in the Center for Nanoscale Materials,
a US Department of Energy Office of Science User Facility
[DE-AC02-06CH11357]; [EP/G035954/1]; [EP/J021172/1]
FX Dr. A. Janssen and Dr. M.A. Kulzick are acknowledged for their
insightful comments. S.S. acknowledges the Engineering and Physical
Sciences Research Council UK PROMINENT program for support. In addition,
this work was supported in part by research grants including grant nos.
EP/G035954/1 and EP/J021172/1 and Defense Threat Reduction Agency grant
no. HDTRA1-12-1-0013, the BP 2013 DRL Innovation Fund, as well as the
Electron Microscopy Center in the Center for Nanoscale Materials, a US
Department of Energy Office of Science User Facility under contract no.
DE-AC02-06CH11357.
NR 29
TC 0
Z9 0
U1 5
U2 5
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 1431-9276
EI 1435-8115
J9 MICROSC MICROANAL
JI Microsc. microanal.
PD DEC
PY 2016
VL 22
IS 6
BP 1350
EP 1359
DI 10.1017/S1431927616011855
PG 10
WC Materials Science, Multidisciplinary; Microscopy
SC Materials Science; Microscopy
GA EK3UE
UT WOS:000393853100022
PM 27819208
ER
PT J
AU Schwab, J
Quataert, E
Kasen, D
AF Schwab, Josiah
Quataert, Eliot
Kasen, Daniel
TI The evolution and fate of super-Chandrasekhar mass white dwarf merger
remnants
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE supernovae: general; white dwarfs
ID STELLAR ASTROPHYSICS MESA; ACCRETION-INDUCED COLLAPSE; CORONAE-BOREALIS
STARS; IA SUPERNOVAE; AGB STARS; ELECTRON-CAPTURE; O+NE+MG CORES;
NEUTRON-STAR; DARK-MATTER; PROGENITORS
AB We present stellar evolution calculations of the remnant of the merger of two carbon-oxygen white dwarfs (CO WDs). We focus on cases that have a total mass in excess of the Chandrasekhar mass. After the merger, the remnant manifests as an L similar to 3 x 10(4) L-circle dot source for similar to 10(4) yr. A dusty wind may develop, leading these sources to be self-obscured and to appear similar to extreme asymptotic giant branch (AGB) stars. Roughly similar to 10 such objects should exist in the Milky Way and M31 at any time. As found in previous work, off-centre carbon fusion is ignited within the merger remnant and propagates inwards via a carbon flame, converting the WD to an oxygen-neon (ONe) composition. By following the evolution for longer than previous calculations, we demonstrate that after carbon-burning reaches the centre, neutrino-cooled Kelvin-Helmholtz contraction leads to off-centre neon ignition in remnants with masses >= 1.35 M-circle dot. The resulting neon-oxygen flame converts the core to a silicon WD. Thus, super-Chandrasekhar WD merger remnants do not undergo electron-capture induced collapse as traditionally assumed. Instead, if the remnant mass remains above the Chandrasekhar mass, we expect that it will form a low-mass iron core and collapse to form a neutron star. Remnants that lose sufficient mass will end up as massive, isolated ONe or Si WDs.
C1 [Schwab, Josiah; Quataert, Eliot; Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Schwab, Josiah; Quataert, Eliot; Kasen, Daniel] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.
[Schwab, Josiah; Quataert, Eliot; Kasen, Daniel] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA.
[Kasen, Daniel] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Schwab, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Schwab, J (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.; Schwab, J (reprint author), Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA.
EM jwschwab@berkeley.edu
FU NSF Graduate Research Fellowship Program [DGE-1106400]; NSF
[AST-1205732]; Simons Investigator award from Simons Foundation; David
and Lucile Packard Foundation; Gordon and Betty Moore Foundation
[GBMF5076]; Department of Energy Office of Nuclear Physics; Office of
Energy Research, Office of High Energy and Nuclear Physics, Divisions of
Nuclear Physics of the US Department of Energy [DE-AC02-05CH11231];
Office of the CIO
FX We thank Lars Bildsten, Jared Brooks, Rob Farmer, Jason Ferguson, Ken
Shen, and Frank Timmes for helpful discussions. We thank Marius Dan and
Cody Raskin for providing the results of their SPH simulations as part
of previous work. We thank Ken'ichi Nomoto, Todd Thompson, and Stan
Woosley for useful conversations following the presentation of these
results in preliminary form. We thank an anonymous referee for comments
that led to improvements in the manuscript. We acknowledge stimulating
workshops at Sky House and Palomar Observatory where these ideas
germinated. JS is supported by the NSF Graduate Research Fellowship
Program under grant DGE-1106400 and by NSF grant AST-1205732. EQ is
supported in part by a Simons Investigator award from the Simons
Foundation and the David and Lucile Packard Foundation. This research is
funded in part by the Gordon and Betty Moore Foundation through Grant
GBMF5076. DK was supported in part by a Department of Energy Office of
Nuclear Physics Early Career Award, and by the Director, Office of
Energy Research, Office of High Energy and Nuclear Physics, Divisions of
Nuclear Physics, of the US Department of Energy under Contract no.
DE-AC02-05CH11231. This research used the SAVIO computational cluster
resource provided by the Berkeley Research Computing program at the
University of California Berkeley (supported by the UC Chancellor, the
UC Berkeley Vice Chancellor of Research, and the Office of the CIO).
This research has made use of NASA's Astrophysics Data System and GNU
Parallel (Tange 2011).
NR 70
TC 2
Z9 2
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD DEC
PY 2016
VL 463
IS 4
BP 3461
EP 3475
DI 10.1093/mnras/stw2249
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EJ9SW
UT WOS:000393568200004
ER
PT J
AU Kacprzak, T
Kirk, D
Friedrich, O
Amara, A
Refregier, A
Marian, L
Dietrich, JP
Suchyta, E
Aleksic, J
Bacon, D
Becker, MR
Bonnett, C
Bridle, SL
Chang, C
Eifler, TF
Hartley, WG
Huff, EM
Krause, E
MacCrann, N
Melchior, P
Nicola, A
Samuroff, S
Sheldon, E
Troxel, MA
Weller, J
Zuntz, J
Abbott, TMC
Abdalla, FB
Armstrong, R
Benoit-Levy, A
Bernstein, GM
Bernstein, RA
Bertin, E
Brooks, D
Burke, DL
Rosell, AC
Kind, MC
Carretero, J
Castander, FJ
Crocce, M
D'Andrea, CB
da Costa, LN
Desai, S
Diehl, HT
Evrard, AE
Neto, AF
Flaugher, B
Fosalba, P
Frieman, J
Gerdes, DW
Goldstein, DA
Gruen, D
Gruendl, RA
Gutierrez, G
Honscheid, K
Jain, B
James, DJ
Jarvis, M
Kuehn, K
Kuropatkin, N
Lahav, O
Lima, M
March, M
Marshall, JL
Martini, P
Miller, CJ
Miquel, R
Mohr, JJ
Nichol, RC
Nord, B
Plazas, AA
Romer, AK
Roodman, A
Rykoff, ES
Sanchez, E
Scarpine, V
Schubnell, M
Sevilla-Noarbe, I
Smith, RC
Soares-Santos, M
Sobreira, F
Swanson, MEC
Tarle, G
Thomas, D
Vikram, V
Walker, AR
Zhang, Y
AF Kacprzak, T.
Kirk, D.
Friedrich, O.
Amara, A.
Refregier, A.
Marian, L.
Dietrich, J. P.
Suchyta, E.
Aleksic, J.
Bacon, D.
Becker, M. R.
Bonnett, C.
Bridle, S. L.
Chang, C.
Eifler, T. F.
Hartley, W. G.
Huff, E. M.
Krause, E.
MacCrann, N.
Melchior, P.
Nicola, A.
Samuroff, S.
Sheldon, E.
Troxel, M. A.
Weller, J.
Zuntz, J.
Abbott, T. M. C.
Abdalla, F. B.
Armstrong, R.
Benoit-Levy, A.
Bernstein, G. M.
Bernstein, R. A.
Bertin, E.
Brooks, D.
Burke, D. L.
Carnero Rosell, A.
Kind, M. Carrasco
Carretero, J.
Castander, F. J.
Crocce, M.
D'Andrea, C. B.
da Costa, L. N.
Desai, S.
Diehl, H. T.
Evrard, A. E.
Fausti Neto, A.
Flaugher, B.
Fosalba, P.
Frieman, J.
Gerdes, D. W.
Goldstein, D. A.
Gruen, D.
Gruendl, R. A.
Gutierrez, G.
Honscheid, K.
Jain, B.
James, D. J.
Jarvis, M.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Lima, M.
March, M.
Marshall, J. L.
Martini, P.
Miller, C. J.
Miquel, R.
Mohr, J. J.
Nichol, R. C.
Nord, B.
Plazas, A. A.
Romer, A. K.
Roodman, A.
Rykoff, E. S.
Sanchez, E.
Scarpine, V.
Schubnell, M.
Sevilla-Noarbe, I.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Swanson, M. E. C.
Tarle, G.
Thomas, D.
Vikram, V.
Walker, A. R.
Zhang, Y.
CA DES Collaboration
TI Cosmology constraints from shear peak statistics in Dark Energy Survey
Science Verification data
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE gravitational lensing: weak; methods: data analysis; methods:
statistical; cosmological parameter; cosmology: observations; dark
matter
ID WEAK-LENSING SURVEYS; PRIMORDIAL NON-GAUSSIANITY; BONN DEEP SURVEY;
COSMIC SHEAR; INTRINSIC ALIGNMENTS; GALAXY CLUSTERS; CROSS-CORRELATION;
SHAPE MEASUREMENT; NOISE BIAS; COVARIANCE-MATRIX
AB Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg(2) field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0 < S/N < 4. To predict the peak counts as a function of cosmological parameters, we use a suite of N-body simulations spanning 158 models with varying Omega(m) and sigma(8), fixing w = -1, Omega(b) = 0.04, h = 0.7 and n(s) = 1, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure sigma(8)(Omega(m)/0.3)(0.6) = 0.77 +/- 0.07, after marginalizing over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending and source contamination by cluster members. These models indicate that peaks with S/N > 4 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data.
C1 [Kacprzak, T.; Amara, A.; Refregier, A.; Chang, C.; Hartley, W. G.; Nicola, A.] Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland.
[Kirk, D.; Hartley, W. G.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Friedrich, O.; Weller, J.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Friedrich, O.; Weller, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany.
[Marian, L.; Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Dietrich, J. P.; Weller, J.; Desai, S.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Dietrich, J. P.; Desai, S.; Mohr, J. J.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Suchyta, E.; Bernstein, G. M.; Jain, B.; Jarvis, M.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Aleksic, J.; Bonnett, C.; D'Andrea, C. B.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain.
[Bacon, D.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Becker, M. R.; Krause, E.; Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
[Becker, M. R.; Carretero, J.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.
[Bridle, S. L.; MacCrann, N.; Samuroff, S.; Troxel, M. A.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England.
[Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Huff, E. M.; Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Huff, E. M.; Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA.
[Melchior, P.; Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA.
[Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile.
[Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa.
[Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, UMR 7095, CNRS, F-75014 Paris, France.
[Benoit-Levy, A.; Bertin, E.] UPMC Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA.
[Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Carnero Rosell, A.; da Costa, L. N.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Sobreira, F.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Lima, M.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Bellaterra, Barcelona, Spain.
[D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Diehl, H. T.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Zhang, Y.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA.
[Goldstein, D. A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil.
[Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA.
[Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain.
[Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Complutense 40, E-28040 Madrid, Spain.
[Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
RP Kacprzak, T (reprint author), Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland.
EM tomasz.kacprzak@phys.ethz.ch
OI Abdalla, Filipe/0000-0003-2063-4345; Sobreira,
Flavia/0000-0002-7822-0658
FU US Department of Energy; US National Science Foundation; Ministry of
Science and Education of Spain; Science and Technology Facilities
Council of the United Kingdom; Higher Education Funding Council for
England; National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign; Kavli Institute of
Cosmological Physics at the University of Chicago; Center for Cosmology
and Astro-Particle Physics at the Ohio State University; Mitchell
Institute for Fundamental Physics and Astronomy at Texas AM University;
Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de
Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia,
Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Dark Energy
Survey; Argonne National Laboratory; University of California at Santa
Cruz; University of Cambridge; Centro de Investigaciones Energeticas;
Medioambientales y Tecnologicas-Madrid; University of Chicago;
University College London; DES-Brazil Consortium; University of
Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi
National Accelerator Laboratory; University of Illinois at
Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut
de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory;
Ludwig-Maximilians Universitat Munchen; Excellence Cluster Universe;
University of Michigan; National Optical Astronomy Observatory;
University of Nottingham; Ohio State University; University of
Pennsylvania; University of Portsmouth; SLAC National Accelerator
Laboratory; Stanford University; University of Sussex; Texas AM
University; National Science Foundation [AST-1138766]; MINECO
[AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia
Severo Ochoa [SEV-2012-0234]; European Research Council under European
Union, ERC [240672, 291329, 306478]; European Research Council
[FP7/291329]; ETHZ ISG; Brutus cluster team; Dark Universe by Deutsche
Forschungsgemeinschaft (DFG) [SFB-Transregio 33]
FX Funding for the DES Projects has been provided by the US Department of
Energy, the US National Science Foundation, the Ministry of Science and
Education of Spain, the Science and Technology Facilities Council of the
United Kingdom, the Higher Education Funding Council for England, the
National Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign, the Kavli Institute of Cosmological
Physics at the University of Chicago, the Center for Cosmology and
Astro-Particle Physics at the Ohio State University, the Mitchell
Institute for Fundamental Physics and Astronomy at Texas A&M University,
Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de
Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia,
Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the
Collaborating Institutions in the Dark Energy Survey.; The Collaborating
Institutions are Argonne National Laboratory, the University of
California at Santa Cruz, the University of Cambridge, Centro de
Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the
University of Chicago, University College London, the DES-Brazil
Consortium, the University of Edinburgh, the Eidgenossische Technische
Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the
University of Illinois at Urbana-Champaign, the Institut de Ciencies de
l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence
Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen
and the associated Excellence Cluster Universe, the University of
Michigan, the National Optical Astronomy Observatory, the University of
Nottingham, The Ohio State University, the University of Pennsylvania,
the University of Portsmouth, SLAC National Accelerator Laboratory,
Stanford University, the University of Sussex, and Texas A&M
University.; The DES data management system is supported by the National
Science Foundation under Grant Number AST-1138766. The DES participants
from Spanish institutions are partially supported by MINECO under grants
AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia
Severo Ochoa SEV-2012-0234. Research leading to these results has
received funding from the European Research Council under the European
Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant
agreements 240672, 291329 and 306478.; DK acknowledges support from a
European Research Council Advanced Grant FP7/291329. TK thanks the
support of ETHZ ISG and the Brutus cluster team. OF was supported by
SFB-Transregio 33 'The Dark Universe' by the Deutsche
Forschungsgemeinschaft (DFG).
NR 125
TC 4
Z9 4
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD DEC
PY 2016
VL 463
IS 4
BP 3653
EP 3673
DI 10.1093/mnras/stw2070
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EJ9SW
UT WOS:000393568200019
ER
PT J
AU Hamada, MS
Margevicius, KJ
AF Hamada, M. S.
Margevicius, K. J.
TI An Application of a Zero-inflated Lifetime Distribution with Multiple
and Incomplete Data Sources
SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL
LA English
DT Article
DE Bayesian inference; binomial and exponential distribution;
goodness-of-fit; eft-censored and right-censored data; prediction
AB We analyze data sampled from a population of parts in which an associated anomaly can occur at assembly or after assembly. Using a zero-inflated lifetime distribution to fit left-censored and right-censored data as well data from a supplementary sample, we make predictions about the proportion of the population with anomalies today and in the future. Goodness-of-fit is also addressed. Copyright (C) 2016 John Wiley & Sons, Ltd.
C1 [Hamada, M. S.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87544 USA.
[Margevicius, K. J.] Los Alamos Natl Lab, Div W, Los Alamos, NM USA.
RP Hamada, MS (reprint author), Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87544 USA.
EM hamada@lanl.gov
OI Margevicius, Kristen/0000-0002-4116-8307
NR 7
TC 0
Z9 0
U1 0
U2 0
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0748-8017
EI 1099-1638
J9 QUAL RELIAB ENG INT
JI Qual. Reliab. Eng. Int.
PD DEC
PY 2016
VL 32
IS 8
SI SI
BP 2883
EP 2887
DI 10.1002/qre.1972
PG 5
WC Engineering, Multidisciplinary; Engineering, Industrial; Operations
Research & Management Science
SC Engineering; Operations Research & Management Science
GA EJ6EC
UT WOS:000393310400020
ER
PT J
AU Farmer, MT
Robb, KR
Francis, MW
AF Farmer, M. T.
Robb, K. R.
Francis, M. W.
TI Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core Melt Spreading
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(NURETH)
CY AUG 30-SEP 04, 2015
CL Chicago, IL
SP Amer Nucl Soc, Thermal Hydraul Div
DE Fukushima; ex-vessel; melt spreading
AB Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for the analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis has been carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. The best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and the extent of spreading during relocation from the vessel. This information was then used as input for the long-term debris coolability analysis with CORQUENCH, which is reported in a companion paper.
C1 [Farmer, M. T.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Robb, K. R.; Francis, M. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Farmer, MT (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM farmer@anl.gov
NR 22
TC 1
Z9 1
U1 0
U2 0
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD DEC
PY 2016
VL 196
IS 3
SI SI
BP 446
EP 460
DI 10.13182/NT16-44
PG 15
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA EF7QK
UT WOS:000390524000004
ER
PT J
AU Cao, Y
Yang, SZ
Jesse, S
Kravchenko, I
Yu, P
Chen, LQ
Kalinin, SV
Balke, N
Li, Q
AF Cao, Ye
Yang, Shuzhen
Jesse, Stephen
Kravchenko, Ivan
Yu, Pu
Chen, Long-Qing
Kalinin, Sergei V.
Balke, Nina
Li, Qian
TI Exploring Polarization Rotation Instabilities in Super-Tetragonal BiFeO3
Epitaxial Thin Films and Their Technological Implications
SO ADVANCED ELECTRONIC MATERIALS
LA English
DT Article
ID STRAINED BIFEO3; ELECTROMECHANICAL RESPONSE; MULTIFERROIC BIFEO3;
PHASE-TRANSITIONS; DOMAIN-WALLS; NANOSCALE; MECHANISM; BOUNDARY
C1 [Cao, Ye; Jesse, Stephen; Kravchenko, Ivan; Kalinin, Sergei V.; Balke, Nina; Li, Qian] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Yang, Shuzhen; Yu, Pu] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China.
[Yang, Shuzhen; Yu, Pu] Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China.
[Yang, Shuzhen; Yu, Pu] RIKEN, CEMS, Wako, Saitama 3510198, Japan.
[Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
RP Balke, N; Li, Q (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM balken@ornl.gov; liq1@ornl.gov
RI Kravchenko, Ivan/K-3022-2015
OI Kravchenko, Ivan/0000-0003-4999-5822
FU U.S. DOE, Office of Basic Energy Sciences (BES), Materials Sciences and
Engineering Division (MSED) through the Office of Science Early Career
Research Program; FWP [ERKCZ07]; National Basic Research Program of
China [2015CB921700]; National Natural Science Foundation of China
[11274194]; U.S. DOE, Office of BES, MSED [DE-FG02-07ER46417]
FX This study was supported by the U.S. DOE, Office of Basic Energy
Sciences (BES), Materials Sciences and Engineering Division (MSED)
through the Office of Science Early Career Research Program (Q.L., N.B.)
and FWP Grant No. ERKCZ07 (Y.C., S.V.K.). The experiments were performed
at the Center for Nanophase Materials Sciences, which is a DOE Office of
Science User Facility. The work at Tsinghua University (S.Y., P.Y.) was
supported by the National Basic Research Program of China (Grant No.
2015CB921700) and National Natural Science Foundation of China (No.
11274194). L.-Q.C. was supported by the U.S. DOE, Office of BES, MSED
under Award No. DE-FG02-07ER46417. Author contributions-Study design:
Q.L., Y.C., N.B., S.V.K.; PFM experiments: Q.L., S.J.; Phase-field
modeling: Y.C., L.-Q.C.; Thin film growth: S.Y., P.Y.; Device
fabrication: I.K.; Data analysis: Q.L.; Q.L. and Y.C. cowrote the paper
with inputs from all authors.
NR 39
TC 0
Z9 0
U1 10
U2 10
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2199-160X
J9 ADV ELECTRON MATER
JI Adv. Electron. Mater.
PD DEC
PY 2016
VL 2
IS 12
AR 1600307
DI 10.1002/aelm.201600307
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA EJ0ZH
UT WOS:000392939300009
ER
PT J
AU O'Boyle, S
Quinn, R
Dunne, N
Mockler, EM
Longphuirt, SN
AF O'Boyle, Shane
Quinn, Rebecca
Dunne, Noelle
Mockler, Eva M.
Longphuirt, Sorcha Ni
TI WHAT HAVE WE LEARNED FROM OVER TWO DECADES OF MONITORING RIVERINE
NUTRIENT INPUTS TO IRELAND'S MARINE ENVIRONMENT?
SO BIOLOGY AND ENVIRONMENT-PROCEEDINGS OF THE ROYAL IRISH ACADEMY
LA English
DT Article
ID EUTROPHICATION; ECOSYSTEMS; EVOLUTION; NITROGEN; ESTUARY
AB Excessive nutrient loading to the marine environment from different sources and pathways, including rivers, has led to nutrient over-enrichment and the phenomenon of eutrophication in estuaries and coastal waters. The systematic monitoring of riverine nutrient inputs to Ireland's marine environment began in 1990. Over this period there has been a large reduction in nutrient inputs with loads of total phosphorus, total ammonia and total nitrogen decreasing by 71.8% (4,716 tonnes), 77.3% (5,505 tonnes) and 39.0% (59,396 tonnes), respectively. The largest reductions, particularly in total phosphorus and total ammonia, were seen in the main rivers discharging to the Celtic and Irish Sea coasts, with smaller or no reductions in rivers discharging along the western and north-western Atlantic coast. The reductions indicate the success of measures to reduce nutrient loss but also the disproportionate reduction in phosphorus over nitrogen. The ratio between nitrogen and phosphorus loads has increased by 2.5% per year and by as much as 4.1% per year for discharges to the Celtic Sea. As a consequence, the stoichiometric N:P ratio of river inputs to the Celtic Sea has more than doubled. The potential for this disparity to create a nutrient imbalance in downstream estuarine and coastal waters is discussed.
C1 [O'Boyle, Shane; Quinn, Rebecca; Dunne, Noelle] Environm Protect Agcy, McCumiskey House,Clonskeagh Rd, Dublin 14, Ireland.
[O'Boyle, Shane] European Commiss, DG Environm, Brussels, Belgium.
[Dunne, Noelle] TEAGASC, Agr & Food Dev Author, Wexford, Ireland.
[Mockler, Eva M.] Univ Coll Dublin, UCD Dooge Ctr Water Resources Res, Dublin 4, Ireland.
[Longphuirt, Sorcha Ni] Environm Protect Agcy, Inniscarra, Coral Sea Isl, Australia.
RP O'Boyle, S (reprint author), Environm Protect Agcy, McCumiskey House,Clonskeagh Rd, Dublin 14, Ireland.; O'Boyle, S (reprint author), European Commiss, DG Environm, Brussels, Belgium.
EM shane.OBOYLE@ec.europa.eu
NR 28
TC 1
Z9 1
U1 1
U2 1
PU ROYAL IRISH ACAD
PI DUBLIN
PA 19 DAWSON STREET, DUBLIN 2, IRELAND
SN 0791-7945
EI 2009-003X
J9 BIOL ENVIRON
JI Biol. Environ.-Proc. R. Irish Acad.
PD DEC
PY 2016
VL 116B
IS 3
SI SI
BP 313
EP 327
DI 10.3318/BIOE.2016.23
PG 15
WC Biology; Environmental Sciences
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology
GA EJ3YO
UT WOS:000393148900014
ER
PT J
AU Yang, WH
Lu, WC
Xue, XY
Zang, QJ
Wang, CZ
AF Yang Wenhua
Lu Wencai
Xue Xuyan
Zang Qingjun
Wang Caizhuang
TI Studies on Optical Properties of Si-220 Nanoclusters via Time-dependent
Density Functional Theory Calculations
SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES
LA English
DT Article
DE Si-220 nanocluster; Optical property; Time-dependent density functional
theory(TD-DFT)
ID SILICON QUANTUM DOTS; SURFACE-PLASMON RESONANCE; ELECTRONIC-STRUCTURE;
SI NANOCRYSTALS; NANOPARTICLES; LUMINESCENCE; SHELL
AB The optical properties of bare and hydrogen passivated Si-220 nanoclusters(NCs) in four typical motifs(i.e., bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density functional theory(TD-DFT) calculations. The calculation results show that there is a significant blue shift in the optical absorption spectra when the Si NCs are passivated with hydrogen. A strong absorption peak in the visible light region appears for the hydrogenated bulk-like, onion-like and bucky-diamond Si NCs.
C1 [Yang Wenhua; Lu Wencai] Jilin Univ, Inst Theoret Chem, Changchun 130021, Peoples R China.
[Yang Wenhua; Lu Wencai; Xue Xuyan; Zang Qingjun] Qingdao Univ, Coll Phys, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Peoples R China.
[Wang Caizhuang] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
[Wang Caizhuang] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Lu, WC (reprint author), Jilin Univ, Inst Theoret Chem, Changchun 130021, Peoples R China.; Lu, WC (reprint author), Qingdao Univ, Coll Phys, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Peoples R China.
EM wencailu@jlu.edu.cn
FU US Department of Energy by Iowa State University [DE-AC02-07CH11358];
Director for Energy Research, Office of Basic Energy Sciences, Division
of Material Science and Engineering
FX Ames Laboratory is operated for the US Department of Energy by Iowa
State University under Contract No. DE-AC02-07CH11358. Work at Ames
Laboratory was supported by the Director for Energy Research, Office of
Basic Energy Sciences, Division of Material Science and Engineering
including a grant for computer time at the National Energy Research
Scientific Computing Center (NERSC) in Berkeley, CA.
NR 47
TC 0
Z9 0
U1 4
U2 4
PU HIGHER EDUCATION PRESS
PI BEIJING
PA NO 4 DEWAI DAJIE, BEIJING 100120, PEOPLES R CHINA
SN 1005-9040
EI 2210-3171
J9 CHEM RES CHINESE U
JI Chem. Res. Chin. Univ.
PD DEC
PY 2016
VL 32
IS 6
BP 1028
EP 1033
DI 10.1007/s40242-016-6085-7
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA EJ2PV
UT WOS:000393053600025
ER
PT J
AU Ahmad, R
Nicora, CD
Shukla, AK
Smith, RD
Qian, WJ
Liu, AY
AF Ahmad, Rumana
Nicora, Carrie D.
Shukla, Anil K.
Smith, Richard D.
Qian, Wei-Jun
Liu, Alvin Y.
TI An efficient method for native protein purification in the selected
range from prostate cancer tissue digests
SO CHINESE CLINICAL ONCOLOGY
LA English
DT Article
DE Prostate cancer proteins (CP proteins); purification of 10-30 kDa
proteins; anterior gradient 2 (AGR2); cancer biomarkers; proteomic
analysis
ID MASS-SPECTROMETRY; CELLS; PROTEOMICS; ABUNDANCE; BIOMARKER
AB Background: Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in a clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead to useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen.
Methods: In the present investigation, ten cancer specimens obtained from cases scored Gleason 3+3, 3+4 and 4+3 were digested by collagenase to single cells in serum-free tissue culture media. Cells were pelleted after collagenase digestion, and the cell-free supernatant from each specimen was pooled and used for isolation of proteins in the 10-30 kDa molecular weight range using a combination of sonication, dialysis and Amicon ultrafiltration. Western blotting and mass spectrometry (MS) proteomics were performed to identify the proteins in the selected size fraction.
Results: The presence of cancer-specific anterior gradient 2 (AGR2) and absence of prostate-specific antigen (PSA)/KLK3 were confirmed by Western blotting. Proteomics also detected AGR2 among many other proteins, some outside the selected molecular weight range, as well.
Conclusions: Using this approach, the potentially harmful (to the mouse host) exogenously added collagenase was removed as well as other abundant prostatic proteins like ACPP/PAP and AZGP1 to preclude the generation of antibodies against these species. The paper presents an optimized scheme for convenient and rapid isolation of native proteins in any desired size range with minor modifications.
C1 [Ahmad, Rumana; Liu, Alvin Y.] Univ Washington, Dept Urol, Seattle, WA 98195 USA.
[Ahmad, Rumana; Liu, Alvin Y.] Univ Washington, Inst Stem Cell & Regenerat Med, Seattle, WA 98195 USA.
[Nicora, Carrie D.; Shukla, Anil K.; Smith, Richard D.; Qian, Wei-Jun] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99352 USA.
[Nicora, Carrie D.; Shukla, Anil K.; Smith, Richard D.; Qian, Wei-Jun] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Ahmad, R (reprint author), Eras Lucknow Med Coll & Hosp, Dept Biochem, Hardoi Rd, Lucknow 226003, Uttar Pradesh, India.
EM rumana_ahmad@yahoo.co.in
FU NCI-EDRN [CA111244]; NIH [P41GM103493]
FX This work was supported by NCI-EDRN grant CA111244 and NIH P41GM103493.
NR 13
TC 0
Z9 0
U1 0
U2 0
PU AME PUBL CO
PI SHEUNG WAN
PA ROOM 604 6-F HOLLYWOOD CENTER, 77-91, QUEENS ROAD, SHEUNG WAN, HONG KONG
00000, PEOPLES R CHINA
SN 2304-3865
EI 2304-3873
J9 CHIN CLIN ONCOL
JI Chin. Clin. Oncol.
PD DEC
PY 2016
VL 5
IS 6
AR UNSP 78
DI 10.21037/cco.2016.12.03
PG 15
WC Oncology
SC Oncology
GA EJ3QZ
UT WOS:000393128000007
PM 28061542
ER
PT J
AU Matias, TA
Mangoni, AP
Toma, SH
Rein, FN
Rocha, RC
Toma, HE
Araki, K
AF Matias, Tiago A.
Mangoni, Ana P.
Toma, Sergio H.
Rein, Francisca N.
Rocha, Reginaldo C.
Toma, Henrique E.
Araki, Koiti
TI Catalytic Water-Oxidation Activity of a Weakly Coupled Binuclear
Ruthenium Polypyridyl Complex
SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
LA English
DT Article
DE Electrocatalysis; Electronic coupling; Oxygen; Ruthenium; Water
splitting
ID SMALL-MOLECULE ACTIVATION; SOLAR-ENERGY; ARTIFICIAL PHOTOSYNTHESIS;
BIOLOGICAL PRINCIPLES; EXCITATION-ENERGIES; RU COMPLEX; BASIS-SET;
CHEMISTRY; DIOXYGEN; ELEMENTS
AB The catalytic oxidation of water by the binuclear complex [Ru-2(H2O)(2)(bpy)(2)(tpy(2)ph)](PF6)(4) [bpy = 2,2'-bipyridine; tpy(2)ph = 1,3-bis(4'-2,2': 6', 2 ''-terpyridin-4-yl) benzene] was investigated comparatively to its mononuclear counterpart [Ru(H2O)(bpy)(phtpy)](PF6)(2) (phtpy = 4'-phenyl-2,2': 6', 2 ''-terpyridine). These catalysts were prepared from the synthesis of their precursor chloride complexes, which were also extensively characterized in this work. The H2O-Ru-II complexes were found to undergo proton-coupled electron-transfer processes to generate the redox species HO-Ru-III, O=Ru-IV, and O=Ru-V. The catalytically active species, [RuV2(O)(2)(bpy)(2)(tpy(2)ph)](6+) and [RuV(O)(bpy)(phtpy)](3+), were generated electrochemically and by using cerium(IV) ammonium nitrate. In the presence of Ce-IV, the catalytic rates for O-2 production by the binuclear and mononuclear species were 1.9 x 10(-3) and 9.5 x 10(-5) s(-1), respectively. This superior catalytic performance of the binuclear complex suggests that, despite weak electronic coupling between the Ru centers, the second site could play an important mechanistic role in the formation of the activated species [(bpy)(OO) RuIV(tpy(2)ph) RuIII(OH)(bpy)](4+).
C1 [Matias, Tiago A.; Mangoni, Ana P.; Toma, Sergio H.; Toma, Henrique E.; Araki, Koiti] Univ Sao Paulo, Dept Chem, Inst Chem, Ave Lineu Prestes 748, BR-05508000 Sao Paulo, SP, Brazil.
[Rein, Francisca N.; Rocha, Reginaldo C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Araki, K (reprint author), Univ Sao Paulo, Dept Chem, Inst Chem, Ave Lineu Prestes 748, BR-05508000 Sao Paulo, SP, Brazil.
EM koiaraki@iq.usp.br
RI Araki, Koiti/H-1086-2012
OI Araki, Koiti/0000-0003-3485-4592
FU Sao Paulo Research Foundation (FAPESP); National Council for Scientific
and Technological Development (CNPq); CNPq fellowship
FX The authors thank the Sao Paulo Research Foundation (FAPESP) and the
National Council for Scientific and Technological Development (CNPq) for
funding, including a CNPq fellowship (T.A.M. and A.P.M.).
NR 52
TC 0
Z9 0
U1 5
U2 5
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1434-1948
EI 1099-0682
J9 EUR J INORG CHEM
JI Eur. J. Inorg. Chem.
PD DEC
PY 2016
IS 36
BP 5547
EP 5556
DI 10.1002/ejic.201600889
PG 10
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA EJ2YT
UT WOS:000393078200006
ER
PT J
AU Xu, W
Sun, X
AF Xu, Wei
Sun, Xin
TI A Discrete Element Model of Armor Glass Fragmentation and Comminution
Failure Under Compression
SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE
LA English
DT Article
ID BOROSILICATE GLASS; SILICON-CARBIDE; CONFINED BOROSILICATE; DAMAGE
DEVELOPMENT; POISSONS RATIO; PENETRATION; FRACTURE; IMPACT; SIMULATION;
CERAMICS
AB Because of its good optical properties and exceptional compressive strength, lightweight borosilicate glass has been increasingly used in transparent armor applications. Due to its brittle nature, glass fails differently from ductile materials in the sense that fragmentation occurs instantly upon impact penetration ahead of the projectile tip. Therefore, the penetration resistance of glass armor typically is measured by the effective residual strength of predamaged glass under compression loading, which primarily is sustained by the interactions and accommodations of various-sized glass fragments in the comminuted zones under confinement from the surrounding intact body. As a result, a mechanistic description of this damage evolution process is needed to develop a predictive model for simulating glass strength for transparent armor applications. In the present study, a discrete element-based modeling framework has been established to understand and predict the transient compressive fragmentation and comminution failure processes within the confined borosilicate glass by explicitly resolving the experimentally observed dynamic initiation and propagation of local instabilities. The predicted results are found to aptly capture the most essential characteristic loading behaviors of the damaged glass, for which the effects of crucial material properties also were numerically evaluated.
C1 [Xu, Wei; Sun, Xin] Pacific Northwest Natl Lab, Adv Comp Math & Data Div, Richland, WA 99354 USA.
RP Xu, W (reprint author), Pacific Northwest Natl Lab, Adv Comp Math & Data Div, Richland, WA 99354 USA.
EM wei.xu@pnnl.gov
FU U.S. Department of Energy [DE-AC05-76RL01830]; TAR-DEC through the
"Purdue Project"
FX Pacific Northwest National Laboratory is operated by Battelle for the
U.S. Department of Energy under Contract No. DE-AC05-76RL01830. The
authors gratefully acknowledge the financial support from TAR-DEC
through the "Purdue Project." We also appreciate the technical guidance
from Dr. Douglas Templeton and Mr. Timothy Talladay during the project's
execution, as well as the fruitful technical discussions with all other
"Purdue Project" contributors.
NR 52
TC 0
Z9 0
U1 1
U2 1
PU WILEY PERIODICALS, INC
PI SAN FRANCISCO
PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA
SN 2041-1286
EI 2041-1294
J9 INT J APPL GLASS SCI
JI Int. J. Appl. Glass Sci.
PD DEC
PY 2016
VL 7
IS 4
SI SI
BP 503
EP 512
DI 10.1111/ijag.12184
PG 10
WC Materials Science, Ceramics
SC Materials Science
GA EJ2QC
UT WOS:000393054400012
ER
PT J
AU Danczak, RE
Sawyer, AH
Williams, KH
Stegen, JC
Hobson, C
Wilkins, MJ
AF Danczak, Robert E.
Sawyer, Audrey H.
Williams, Kenneth H.
Stegen, James C.
Hobson, Chad
Wilkins, Michael J.
TI Seasonal hyporheic dynamics control coupled microbiology and
geochemistry in Colorado River sediments
SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
LA English
DT Article
ID DISSOLVED ORGANIC-MATTER; ASSEMBLY PROCESSES; CLIMATE-CHANGE; ZONE;
GROUNDWATER; STREAM; COMMUNITIES; HYDROLOGY; AQUIFER; CARBON
AB Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. To assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cmthick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.
C1 [Danczak, Robert E.; Wilkins, Michael J.] Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA.
[Sawyer, Audrey H.; Wilkins, Michael J.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Williams, Kenneth H.; Hobson, Chad] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA USA.
[Stegen, James C.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA USA.
RP Wilkins, MJ (reprint author), Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA.; Wilkins, MJ (reprint author), Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
EM wilkins.231@osu.edu
OI Wilkins, Michael/0000-0002-3595-0853
FU Genomes to Watershed Scientific Focus Area at Lawrence Berkeley National
Laboratory; U.S. Department of Energy, Office of Science, Office of
Biological and Environmental Research [DEAC02-05CH11231]; U.S.
Department of Energy (DOE), Office of Biological and Environmental
Research, as part of Subsurface Biogeochemical Research Program's
Scientific Focus Area at the Pacific Northwest National Laboratory
(PNNL); DOE [DE-AC06-76RLO 1830]; NCBI [PRJNA31818]
FX This work was supported as part of the Genomes to Watershed Scientific
Focus Area at Lawrence Berkeley National Laboratory, which is funded by
the U.S. Department of Energy, Office of Science, Office of Biological
and Environmental Research under award DEAC02-05CH11231. J.C.S. was
supported by the U.S. Department of Energy (DOE), Office of Biological
and Environmental Research, as part of Subsurface Biogeochemical
Research Program's Scientific Focus Area at the Pacific Northwest
National Laboratory (PNNL). PNNL is operated for the DOE by Battelle
under contract DE-AC06-76RLO 1830. A portion of the research was
performed by using Institutional Computing at PNNL. Supporting
information is available at the journal website. 16S rRNA gene data from
this study have been deposited at NCBI under bioproject number
PRJNA31818.
NR 51
TC 0
Z9 0
U1 10
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-8953
EI 2169-8961
J9 J GEOPHYS RES-BIOGEO
JI J. Geophys. Res.-Biogeosci.
PD DEC
PY 2016
VL 121
IS 12
BP 2976
EP 2987
DI 10.1002/2016JG003527
PG 12
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA EJ3TL
UT WOS:000393134800005
ER
PT J
AU Zhu, Q
Iversen, CM
Riley, WJ
Slette, IJ
Vander Stel, HM
AF Zhu, Qing
Iversen, Colleen M.
Riley, William J.
Slette, Ingrid J.
Vander Stel, Holly M.
TI Root traits explain observed tundra vegetation nitrogen uptake patterns:
Implications for trait-based land models
SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
LA English
DT Article
ID DEEP SOIL LAYERS; TERRESTRIAL ECOSYSTEMS; GLOBAL ANALYSIS; UPTAKE
KINETICS; BOREAL FOREST; ECTOMYCORRHIZAL FUNGI; NUTRIENT-UPTAKE; CO2
ENRICHMENT; LOBLOLLY-PINE; ARCTIC TUNDRA
AB Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. However, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit N-15 tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, to explain the observations. Observations using an N-15 tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. In addition, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. Our results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.
C1 [Zhu, Qing; Riley, William J.] Lawrence Berkeley Natl Lab, Climate Sci Dept, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA.
[Iversen, Colleen M.; Vander Stel, Holly M.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA.
[Iversen, Colleen M.; Vander Stel, Holly M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA.
[Slette, Ingrid J.] Colorado State Univ, Ecol, Ft Collins, CO 80523 USA.
[Slette, Ingrid J.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA.
RP Zhu, Q (reprint author), Lawrence Berkeley Natl Lab, Climate Sci Dept, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA.
EM qzhu@lbl.gov
OI Riley, William/0000-0002-4615-2304; Vander Stel,
Holly/0000-0003-0077-3858; ZHU, QING/0000-0003-2441-944X; Iversen,
Colleen/0000-0001-8293-3450
FU Office of Science, Office of Biological and Environmental Research of
the U.S. Department of Energy [DE-AC02-05CH11231]; NGEE Arctic; US
Department of Energy [DE-AC05-00OR22725]; Department of Energy
FX This research was supported by the Director, Office of Science, Office
of Biological and Environmental Research of the U.S. Department of
Energy under contract DE-AC02-05CH11231 to Lawrence Berkeley National
Laboratory as part of the Next-Generation Ecosystem Experiments in the
Arctic (NGEE Arctic) project. NGEE Arctic supported C.M.I., I.J.S., and
H.M.V.S. Oak Ridge National Laboratory is managed by UT-Battelle, LLC,
for the US Department of Energy under contract DE-AC05-00OR22725. The
United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).
NR 82
TC 0
Z9 0
U1 8
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-8953
EI 2169-8961
J9 J GEOPHYS RES-BIOGEO
JI J. Geophys. Res.-Biogeosci.
PD DEC
PY 2016
VL 121
IS 12
BP 3101
EP 3112
DI 10.1002/2016JG003554
PG 12
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA EJ3TL
UT WOS:000393134800014
ER
PT J
AU Ma, Q
Li, W
Thorne, RM
Bortnik, J
Reeves, GD
Kletzing, CA
Kurth, WS
Hospodarsky, GB
Spence, HE
Baker, DN
Blake, JB
Fennell, JF
Claudepierre, SG
Angelopoulos, V
AF Ma, Q.
Li, W.
Thorne, R. M.
Bortnik, J.
Reeves, G. D.
Kletzing, C. A.
Kurth, W. S.
Hospodarsky, G. B.
Spence, H. E.
Baker, D. N.
Blake, J. B.
Fennell, J. F.
Claudepierre, S. G.
Angelopoulos, V.
TI Characteristic energy range of electron scattering due to plasmaspheric
hiss
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID OUTER RADIATION BELT; DISCRETE CHORUS EMISSIONS; RELATIVISTIC ELECTRONS;
STATISTICAL PROPERTIES; RESONANT SCATTERING; LOCAL ACCELERATION;
GEOMAGNETIC STORM; PITCH-ANGLE; SIMULATIONS; DIFFUSION
AB We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant mu=4-200 MeV/ G. The electron diffusion coefficients due to hiss scattering are calculated at L=2-6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant mu lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L=3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV-1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.
C1 [Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA.
[Li, W.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA.
[Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA.
[Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
[Baker, D. N.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
[Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.] Aerosp Corp, Space Sci Lab, Los Angeles, CA 90009 USA.
[Angelopoulos, V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA.
[Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.
RP Ma, Q (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA.
EM qianlima@atmos.ucla.edu
OI Ma, Qianli/0000-0001-5452-4756; Spence, Harlan/0000-0002-2526-2205;
Kurth, William/0000-0002-5471-6202; Reeves,
Geoffrey/0000-0002-7985-8098; Hospodarsky, George/0000-0001-9200-9878
FU NASA [NNX15AI96G, NNX15AF61G, NNX14AN85G, NNX13AI61G, NNX14AI18G];
National Sciences Foundation (NSF) [AGS 1405054, 1564510]; NSF/DOE basic
plasma physics partnership program [DE-SC0010578]; AFOSR grant
[FA9550-15-1-0158]; JHU/APL contracts under NASA's prime contract
[967399, 921647, NAS5-01072]; EMFISIS subaward [1001057397:01]
FX The authors would like to gratefully acknowledge the support from NASA
grants NNX15AI96G, NNX15AF61G, NNX14AN85G, NNX13AI61G, and NNX14AI18G,
National Sciences Foundation (NSF) grants AGS 1405054 and 1564510,
NSF/DOE basic plasma physics partnership program grant DE-SC0010578,
AFOSR grant FA9550-15-1-0158, and JHU/APL contracts 967399 and 921647
under NASA's prime contract NAS5-01072. The analysis at UCLA was
supported by the EMFISIS subaward 1001057397:01. We acknowledge the Van
Allen Probes data from the EMFISIS instrument obtained from
http://emfisis.physics.uiowa.edu/Flight/, data from the MagEIS and REPT
instruments obtained from http://www.rbspect.lanl.gov/data_pub/, and the
THEMIS data obtained from http://themis.ssl.berkeley.edu/data/themis/.
We thank the World Data Center for Geomagnetism, Kyoto for providing Kp,
Dst, and AL indices (http://wdc.kugi.kyoto-u.ac.jp/kp/index.html).
NR 52
TC 0
Z9 0
U1 0
U2 0
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD DEC
PY 2016
VL 121
IS 12
BP 11737
EP 11749
DI 10.1002/2016JA023311
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EJ4JQ
UT WOS:000393183300010
ER
PT J
AU Tang, CL
Zhang, JC
Reeves, GD
Su, ZP
Baker, DN
Spence, HE
Funsten, HO
Blake, JB
Wygant, JR
AF Tang, C. L.
Zhang, J. -C.
Reeves, G. D.
Su, Z. P.
Baker, D. N.
Spence, H. E.
Funsten, H. O.
Blake, J. B.
Wygant, J. R.
TI Prompt enhancement of the Earth's outer radiation belt due to substorm
electron injections
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID TIME-DOMAIN STRUCTURES; INNER MAGNETOSPHERE; CHORUS WAVES; RELATIVISTIC
ELECTRONS; GEOSYNCHRONOUS ORBIT; ENERGETIC PARTICLE; FIELD STRUCTURES;
MAGNETIC STORMS; HILDCAA EVENTS; HIGH-INTENSITY
AB We present multipoint simultaneous observations of the near-Earth magnetotail and outer radiation belt during the substorm electron injection event on 16 August 2013. Time History of Events and Macroscale Interactions during Substorms A in the near-Earth magnetotail observed flux-enhanced electrons of 300 keV during the magnetic field dipolarization. Geosynchronous orbit satellites also observed the intensive electron injections. Located in the outer radiation belt, RBSP-A observed enhancements of MeV electrons accompanied by substorm dipolarization. The phase space density (PSD) of MeV electrons at L*similar to 5.4 increased by 1 order of magnitude in 1 h, resulting in a local PSD peak of MeV electrons, which was caused by the direct effect of substorm injections. Enhanced MeV electrons in the heart of the outer radiation belt were also detected within 2 h, which may be associated with intensive substorm electron injections and subsequent local acceleration by chorus waves. Multipoint observations have shown that substorm electron injections not only can be the external source of MeV electrons at the outer edge of the outer radiation belt (L*similar to 5.4) but also can provide the intensive seed populations in the outer radiation belt. These initial higher-energy electrons from injection can reach relativistic energy much faster. The observations also provide evidence that enhanced substorm electron injections can explain rapid enhancements of MeV electrons in the outer radiation belt.
C1 [Tang, C. L.] Shandong Univ, Inst Space Sci, Shandong Prov Key Lab Opt Astron & Solar Terr Env, Weihai, Peoples R China.
[Zhang, J. -C.; Spence, H. E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Zhang, J. -C.; Spence, H. E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
[Reeves, G. D.; Funsten, H. O.] Los Alamos Natl Lab, ISR Div, Los Alamos, NM USA.
[Su, Z. P.] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei, Peoples R China.
[Baker, D. N.] Univ Colorado, Lab Atmospher & Space Res, Boulder, CO 80309 USA.
[Blake, J. B.] Aerosp Corp, POB 92957, Los Angeles, CA 90009 USA.
[Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
RP Tang, CL (reprint author), Shandong Univ, Inst Space Sci, Shandong Prov Key Lab Opt Astron & Solar Terr Env, Weihai, Peoples R China.
EM tcl@sdu.edu.cn
OI Zhang, Jichun/0000-0003-4405-0619; Su, Zhenpeng/0000-0001-5577-4538;
Spence, Harlan/0000-0002-2526-2205; Reeves, Geoffrey/0000-0002-7985-8098
FU National Natural Science Foundation of China [41004075, 41274170];
National Basic Research Program of China [2012CB825601]; Shandong
Province Natural Science Foundation [ZR2014DM003]
FX This work was supported by the National Natural Science Foundation of
China grants 41004075 and 41274170, the National Basic Research Program
of China (2012CB825601), and the Shandong Province Natural Science
Foundation grant ZR2014DM003. We acknowledge CDAWeb
(http://cdaweb.gsfc.nasa.gov/) for the use of AE and SYM-H data. All the
Van Allen Probes data are publicly available at
http://www.rbsp-ect.lanl.gov/by the MagEIS and REPT instruments,
http://emfisis.physics.uiowa.edu/data/index by the EMFISIS instrument,
and http://rbsp.space.um.edu/data/rbsp/by the EFW instrument. We thank
V. Angelopoulos for the use of data from the THEMIS mission. We
acknowledge the THEMIS investigators for the use of the data and the
analysis software. THEMIS data are available at
http://themis.ssl.berkeley.edu/data/themis/. GOES data are made
available at http://satdat.ngdc.noaa.gov/sem/goes/data. LANL-GEO data
are provided by Geoffrey D. Reeves. Global distribution of chorus wave
amplitudes is provided by W. Li at University of California, Los
Angeles. C.L. Tang thanks L. Dai, W. Li, Aaron Breneman, and George
Hospodarsky for their helpful discussions.
NR 82
TC 0
Z9 0
U1 1
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD DEC
PY 2016
VL 121
IS 12
BP 11826
EP 11838
DI 10.1002/2016JA023550
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EJ4JQ
UT WOS:000393183300015
ER
PT J
AU Zheng, LH
Chan, AA
O'Brien, TP
Tu, W
Cunningham, GS
Albert, JM
Elkington, SR
AF Zheng, Liheng
Chan, A. A.
O'Brien, T. P.
Tu, W.
Cunningham, G. S.
Albert, J. M.
Elkington, S. R.
TI Effects of magnetic drift shell splitting on electron diffusion in the
radiation belts
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID PITCH-ANGLE SCATTERING; VAN ALLEN PROBES; VANALLEN RADIATION; SEED
POPULATION; CHORUS WAVES; MAGNETOSPHERE; FIELD; PRECIPITATION; MOTION;
EVENT
AB Drift shell splitting in the presence of pitch angle scattering breaks all three adiabatic invariants of radiation belt electron motion and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. The Radbelt Electron Model (REM) solves such a Fokker-Planck equation and is used to investigate the phase space density sources. Our simulation results and theoretical arguments suggest that drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces outer zone phase space density enhancements, and this reduction has a limit corresponding to two-dimensional local diffusion on a curved surface in the phase space.
C1 [Zheng, Liheng; Chan, A. A.] Rice Univ, Dept Phys & Astron, Houston, TX USA.
[Zheng, Liheng] Univ Texas Dallas, William B Hanson Ctr Space Sci, Richardson, TX 75083 USA.
[O'Brien, T. P.] Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA.
[Tu, W.] West Virginia Univ, Dept Phys & Astron, Morgantown, WV USA.
[Cunningham, G. S.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA.
[Albert, J. M.] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM USA.
[Elkington, S. R.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
RP Zheng, LH (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX USA.; Zheng, LH (reprint author), Univ Texas Dallas, William B Hanson Ctr Space Sci, Richardson, TX 75083 USA.
EM zhengliheng@gmail.com
FU NASA Heliophysics Supporting Research (H-SR) Program [NNX15AI93G]; NASA
Geospace Science Program [NNX10AL02G]; NASA Heliophysics Theory Program
[NNX11AJ38G]; NASA's Living With a Star Program through a Heliophysics
Guest Investigator [NNX10AQ51G]; NASA's Living With a Star Program
through theory and modeling - Van Allen Probes Mission's Energetic
Particle, Composition, and Thermal Plasma (ECT) investigation; U.S.
Department of Energy through the LANL Laboratory Directed Research and
Development (LDRD) Program; NSF [AGS-1613081]; NASA [NNX15AW06G]
FX This material is based upon work supported by the NASA Heliophysics
Supporting Research (H-SR) Program under grant NNX15AI93G, the NASA
Geospace Science Program under grant NNX10AL02G, the NASA Heliophysics
Theory Program under grant NNX11AJ38G, NASA's Living With a Star Program
through a Heliophysics Guest Investigator under grant NNX10AQ51G and
through theory and modeling funding from the Van Allen Probes Mission's
Energetic Particle, Composition, and Thermal Plasma (ECT) investigation,
and by the U.S. Department of Energy through the LANL Laboratory
Directed Research and Development (LDRD) Program. Van Allen Probes
electron flux data used in this paper are taken from Tu et al. [2014].
The work by W. Tu was supported by NSF grant AGS-1613081 and NASA grant
NNX15AW06G. We also acknowledge the PI and instrument team of the
NOAA/POES SEM-2 instrument for providing data to the LANL coauthors. The
drift shell splitting chorus wave diffusion coefficients can be obtained
by contacting T.P. O'Brien at paul.obrien@aero.org.
NR 43
TC 0
Z9 0
U1 1
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD DEC
PY 2016
VL 121
IS 12
BP 11985
EP 12000
DI 10.1002/2016JA023438
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EJ4JQ
UT WOS:000393183300026
ER
PT J
AU Littlefield, JA
Marriott, J
Schivley, GA
Cooney, G
Skone, TJ
AF Littlefield, James A.
Marriott, Joe
Schivley, Greg A.
Cooney, Gregory
Skone, Timothy J.
TI Using Common Boundaries to Assess Methane Emissions A Life Cycle
Evaluation of Natural Gas and Coal Power Systems
SO JOURNAL OF INDUSTRIAL ECOLOGY
LA English
DT Article
DE GHG; GWP; industrial ecology; LCA; methane; natural gas emissions
ID GLOBAL WARMING POTENTIALS; SHALE GAS; LEAKAGE
AB There is consensus on the importance of upstream methane (CH4) emissions to the life cycle greenhouse gas (GHG) footprint of natural gas systems, but inconsistencies among recent studies explain why some researchers calculate a CH4 emission rate of less than 1% whereas others calculate a CH4 emission rate as high as 10%. These inconsistencies arise from differences in data collection methods, data collection time frames, and system boundaries. This analysis focuses on system boundary inconsistencies. Our results show that the calculated CH4 emission rate can increase nearly fourfold not by changing the magnitude of any particular emission source, but by merely changing the portions of the supply chain that are included within the system boundary. Our calculated CH4 emission rate for extraction through pipeline transmission is 1.2% for current practices. Our model allows us to identify GHG contributors in the upstream supply chain, but also allows us to tie upstream findings to complete life cycle scenarios. If applied to the life cycles of power systems and assessed in terms of cumulative radiative forcing, the upstream CH4 emission rate can be as high as 3.2% before the GHG impacts from natural gas power exceed those from coal power at any point during a 100-year time frame.
C1 [Littlefield, James A.; Marriott, Joe; Schivley, Greg A.; Cooney, Gregory] Booz Allen Hamilton, Pittsburgh, PA USA.
[Skone, Timothy J.] NETL, Strateg Energy Anal & Planning Div, Pittsburgh, PA USA.
RP Littlefield, JA (reprint author), 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA.
EM littlefield_james@bah.com
OI Schivley, Greg/0000-0002-8947-694X
FU DOE NETL [DE-FE0004001]
FX This analysis was prepared by the Energy Sector Planning and Analysis
(ESPA) team for the United States Department of Energy (DOE), National
Energy Technology Laboratory (NETL). This work was completed under DOE
NETL Contract Number DE-FE0004001.
NR 29
TC 0
Z9 0
U1 4
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1088-1980
EI 1530-9290
J9 J IND ECOL
JI J. Ind. Ecol.
PD DEC
PY 2016
VL 20
IS 6
BP 1360
EP 1369
DI 10.1111/jiec.12394
PG 10
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental;
Environmental Sciences
SC Science & Technology - Other Topics; Engineering; Environmental Sciences
& Ecology
GA EJ3OA
UT WOS:000393120300010
ER
PT J
AU Tsai, L
Kelly, JC
Simon, BS
Chalat, RM
Keoleian, GA
AF Tsai, Liang
Kelly, Jarod C.
Simon, Brett S.
Chalat, Rachel M.
Keoleian, Gregory A.
TI Life Cycle Assessment of Offshore Wind Farm Siting Effects of Locational
Factors, Lake Depth, and Distance from Shore
SO JOURNAL OF INDUSTRIAL ECOLOGY
LA English
DT Article
DE industrial ecology; life cycle assessment (LCA); offshore wind farm;
wind energy; wind farm siting; wind turbine foundations
ID GREENHOUSE-GAS EMISSIONS; POWER-SYSTEMS; TURBINE; ELECTRICITY; PLANTS;
MW
AB According to previous studies, the life cycle energy intensity of an offshore wind farm (OWF) varies between 0.03 and 0.13 megawatt-hours (MWh) of primary energy for each MWh of electricity generated. The variation in these life cycle energy intensity studies, after normalizing for capacity factor and life span, is significantly affected by OWF location because of geographical properties, namely, wind speed and water depth. To improve OWF siting, this study investigates how an OWF's distance from shore and geographical location impacts its environmental benefit. A process-based life cycle assessment is conducted to compare 20 OWF siting scenarios in Michigan's Great Lakes for their cumulative fossil energy demand, global warming potential, and acidification potential. Each scenario (four lake locations at five offshore distances) has unique foundation, transmission, installation, and operational requirements based on site characteristics. The results demonstrate that the cumulative environmental burden from an OWF is most significantly affected by (1) water depth, (2) distance from shore, and (3) distance to power grid, in descending order of importance, if all other site-relevant variables are held constant. The results also show that when OWFs are sited further offshore, the benefit of increased wind energy generation does not necessarily outweigh the increase in negative environmental impacts. This suggests that siting OWF nearer to shore may result in a better life cycle environmental performance. Finally, we demonstrate how much an OWF's environmental burdens can be reduced if the OWF system is either recycled, transported a shorter distance, or manufactured in a region with a high degree of renewable energy on the grid.
C1 [Tsai, Liang; Kelly, Jarod C.; Simon, Brett S.; Chalat, Rachel M.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Tsai, Liang] Natl Quemoy Univ, Dept Business Adm, Kinmen, Taiwan.
[Kelly, Jarod C.] Argonne Natl Lab, Chicago, IL USA.
[Simon, Brett S.] GTM Res, Boston, MA USA.
[Chalat, Rachel M.] DTE Energy Elect Co, Ann Arbor, MI USA.
[Keoleian, Gregory A.] Univ Michigan, Sch Nat Resources & Environm, Sustainable Syst, Ann Arbor, MI 48109 USA.
[Keoleian, Gregory A.] Univ Michigan, Civil & Environm Engn, Ann Arbor, MI 48109 USA.
[Keoleian, Gregory A.] Univ Michigan, Ctr Sustainable Syst, Ann Arbor, MI 48109 USA.
RP Keoleian, GA (reprint author), Univ Michigan, Sch Nat Resources & Environm, 3012 Dana Bldg,440 Church St, Ann Arbor, MI 48109 USA.
EM gregak@umich.edu
FU National Science Foundation [1235671]
FX This material is based upon work supported by the National Science
Foundation under Grant No. 1235671. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation.
NR 36
TC 0
Z9 0
U1 2
U2 2
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1088-1980
EI 1530-9290
J9 J IND ECOL
JI J. Ind. Ecol.
PD DEC
PY 2016
VL 20
IS 6
BP 1370
EP 1383
DI 10.1111/jiec.12400
PG 14
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental;
Environmental Sciences
SC Science & Technology - Other Topics; Engineering; Environmental Sciences
& Ecology
GA EJ3OA
UT WOS:000393120300011
ER
PT J
AU Moran, KR
Fairchild, G
Generous, N
Hickmann, K
Osthus, D
Priedhorsky, R
Hyman, J
Del Valle, SY
AF Moran, Kelly R.
Fairchild, Geoffrey
Generous, Nicholas
Hickmann, Kyle
Osthus, Dave
Priedhorsky, Reid
Hyman, James
Del Valle, Sara Y.
TI Epidemic Forecasting is Messier Than Weather Forecasting: The Role of
Human Behavior and Internet Data Streams in Epidemic Forecast
SO JOURNAL OF INFECTIOUS DISEASES
LA English
DT Article
DE disease; weather; forecasting; Internet data; modeling
ID BIG DATA; INFLUENZA; SURVEILLANCE
AB Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.
C1 [Moran, Kelly R.; Fairchild, Geoffrey; Generous, Nicholas; Del Valle, Sara Y.] Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA.
[Hickmann, Kyle; Hyman, James] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM USA.
[Osthus, Dave] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA.
[Priedhorsky, Reid] Los Alamos Natl Lab, High Performance Comp Div, Los Alamos, NM USA.
[Hyman, James] Tulane Univ, Dept Math, New Orleans, LA 70118 USA.
RP Del Valle, SY (reprint author), Los Alamos Natl Lab, Analyt Intelligence & Technol, POB 1663,MS F609, Los Alamos, NM 87545 USA.
EM sdelvall@lanl.gov
FU National Institute of General Medical Sciences, National Institutes of
Health [U01-GM097658-01]; Department of Energy [DE-AC52-06NA25396]
FX This work was supported by the Models of Infectious Disease Agent Study,
National Institute of General Medical Sciences, National Institutes of
Health (grant U01-GM097658-01). Los Alamos National Laboratory is
operated by Los Alamos National Security, for the Department of Energy,
under contract DE-AC52-06NA25396.
NR 29
TC 1
Z9 1
U1 4
U2 4
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 0022-1899
EI 1537-6613
J9 J INFECT DIS
JI J. Infect. Dis.
PD DEC 1
PY 2016
VL 214
SU 4
BP S404
EP S408
DI 10.1093/infdis/jiw375
PG 5
WC Immunology; Infectious Diseases; Microbiology
SC Immunology; Infectious Diseases; Microbiology
GA EJ3RW
UT WOS:000393130300006
ER
PT J
AU Wang, X
Lamprou, A
Svec, F
Bai, Y
Liu, HW
AF Wang, Xin
Lamprou, Alexandros
Svec, Frantisek
Bai, Yu
Liu, Huwei
TI Polymer-based monolithic column with incorporated chiral metal-organic
framework for enantioseparation of methyl phenyl sulfoxide using
nano-liquid chromatography
SO JOURNAL OF SEPARATION SCIENCE
LA English
DT Article
DE Chiral stationary phases; Enantioselectivity; Nano-liquid
chromatography; Metal-organic frameworks; Polymer monoliths
ID STATIONARY-PHASE; MASS-SPECTROMETRY; SMALL MOLECULES; SEPARATION;
MICROEXTRACTION; PERFORMANCE
AB A new approach to the preparation of enantioselective porous polymer monolithic columns with incorporated chiral metal-organic framework for nano-liquid chromatography has been developed. While no enantioseparation was achieved with monolithic poly(4-vinylpyridine-co-ethylene dimethacrylate) column, excellent separations of both enantiomers of (+/-)methyl phenyl sulfoxide were achieved with its counterpart prepared after admixing metalorganic framework [Zn-2(benzene dicarboxylate)(l-lactic acid)(dmf)], which is synthesized from zinc nitrate, L-lactic acid, and benzene dicarboxylic acid in the polymerization mixture. These novel monolithic columns combined selectivity of the chiral framework with the excellent hydrodynamic properties of polymer monoliths, may provide a great impact on future studies in the field of chiral analysis by liquid chromatography.
C1 [Wang, Xin; Bai, Yu; Liu, Huwei] Peking Univ, Beijing Natl Lab Mol Sci, Key Lab Bioorgan Chem & Mol Engn, Minist Educ,Inst Analyt Chem,Coll Chem & Mol Engn, Beijing, Peoples R China.
[Wang, Xin; Lamprou, Alexandros; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.; Liu, HW (reprint author), Peking Univ, Coll Chem & Mol Engn, 202 Chengfu Rd, Beijing 100871, Peoples R China.
EM fsvec@lbl.gov; hwliu@pku.edu.cn
FU National Natural Science Foundation of China [2152780016, 21175008];
Office of Science, Office of Basic Energy Sciences, Scientific User
Facilities Division of the U.S. Department of Energy [DE-AC02-05CH11231]
FX The work was financially supported by the National Natural Science
Foundation of China (Grant Nos. 2152780016 and 21175008). All analytical
experiments presented in this paper were performed at the Molecular
Foundry, Lawrence Berkeley National Laboratory and supported by the
Office of Science, Office of Basic Energy Sciences, Scientific User
Facilities Division of the U.S. Department of Energy, under Contract No.
DE-AC02-05CH11231.
NR 23
TC 0
Z9 0
U1 7
U2 7
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1615-9306
EI 1615-9314
J9 J SEP SCI
JI J. Sep. Sci.
PD DEC
PY 2016
VL 39
IS 23
BP 4544
EP 4548
DI 10.1002/jssc.201600810
PG 5
WC Chemistry, Analytical
SC Chemistry
GA EJ2HG
UT WOS:000393030100009
PM 27730732
ER
PT J
AU Ginley, DS
Aggarwal, S
Singh, R
Gennett, T
van Hest, MFAM
Perkins, JD
AF Ginley, David S.
Aggarwal, Shruti
Singh, Rajiv
Gennett, Tom
van Hest, Maikel F. A. M.
Perkins, John D.
TI Development of solution-processed nanowire composites for
opto-electronics
SO MRS COMMUNICATIONS
LA English
DT Article
ID TRANSPARENT CONDUCTIVE ELECTRODES; PEROVSKITE SOLAR-CELLS; SILVER
NANOWIRES; NETWORK; STABILITY; LAYER
AB Silver nanowire-based contacts represent one of the major new directions in transparent contacts for opto-electronic devices with the added advantage that they can have Indium-Tin-Oxide-like properties at substantially reduced processing temperatures and without the use of vacuum-based processing. However, nanowires alone often do not adhere well to the substrate or other film interfaces; even after a relatively high-temperature anneal and unencapsulated nanowires show environmental degradation at high temperature and humidity. Here we report on the development of ZnO/Ag-nanowire composites that have sheet resistance below 10 Omega/sq and >90% transmittance from a solution-based process with process temperatures below 200 degrees C. These films have significant applications potential in photovoltaics and displays.
C1 [Ginley, David S.; Gennett, Tom; van Hest, Maikel F. A. M.; Perkins, John D.] Natl Renewable Energy Lab, Proc Tech & Adv Concepts, Golden, CO 80401 USA.
[Aggarwal, Shruti] Guro Gobind Singh Indraprastha Univ, Univ Sch Basic & Appl Sci, New Delhi 110075, India.
[Singh, Rajiv] Natl Phys Lab, New Delhi 110012, India.
RP Ginley, DS (reprint author), Natl Renewable Energy Lab, Proc Tech & Adv Concepts, Golden, CO 80401 USA.
EM David.ginley@nrel.gov
FU US Department of Energy, Office of Energy Efficiency and Renewable
Energy, Office of Solar Energy Technology [DE-AC36-08GO28308]; Solar
Energy Research Institute for India and the U.S. (SERIIUS) - U.S.
Department of Energy (Office of Science) [DE AC36-08G028308]; Solar
Energy Research Institute for India and the U.S. (SERIIUS) - U.S.
Department of Energy (Office of Basic Energy Sciences) [DE
AC36-08G028308]; Solar Energy Research Institute for India and the U.S.
(SERIIUS) - U.S. Department of Energy (Energy Efficiency and Renewable
Energy, Solar Energy Technology Program) [DE AC36-08G028308]; Solar
Energy Research Institute for India and the U.S. (SERIIUS) - U.S.
Department of Energy (Office of International Affairs) [DE
AC36-08G028308]; Government of India [IUSSTF/JCERDC-SERIIUS/2012];
Baskara Fellowship; Raman Fellowship
FX This work was supported as part of the SunShot Initiative by the US
Department of Energy, Office of Energy Efficiency and Renewable Energy,
Office of Solar Energy Technology under Award Number DE-AC36-08GO28308
to the National Renewable Energy Laboratory (NREL). This research is
based upon work supported in part by the Solar Energy Research Institute
for India and the U.S. (SERIIUS) funded jointly by the U.S. Department
of Energy subcontract DE AC36-08G028308 (Office of Science, Office of
Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar
Energy Technology Program, with support from the Office of International
Affairs) and the Government of India subcontract
IUSSTF/JCERDC-SERIIUS/2012 dated 22nd Nov. 2012. Shruti Aggarwal would
like to acknowledge the support of the Baskara Fellowship and Rajiv
Singh would like to acknowledge the support of the Raman Fellowship.
NR 24
TC 0
Z9 0
U1 5
U2 5
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 2159-6859
EI 2159-6867
J9 MRS COMMUN
JI MRS Commun.
PD DEC
PY 2016
VL 6
IS 4
BP 341
EP 347
DI 10.1557/mrc.2016.49
PG 7
WC Materials Science, Multidisciplinary
SC Materials Science
GA EJ3QW
UT WOS:000393127700003
ER
PT J
AU Garten, LM
Zakutayev, A
Perkins, JD
Gorman, BP
Ndione, PF
Ginley, DS
AF Garten, Lauren M.
Zakutayev, Andriy
Perkins, John D.
Gorman, Brian P.
Ndione, Paul F.
Ginley, David S.
TI Structure property relationships in gallium oxide thin films grown by
pulsed laser deposition
SO MRS COMMUNICATIONS
LA English
DT Article
AB Beta-gallium oxide (beta-Ga2O3) is of increasing interest to the optoelectronic community for transparent conductor and power electronic applications. Considerable variability exists in the literature on the growth and doping of Ga2O3 films, especially as a function of growth approach, temperature, and oxygen partial pressure. Here pulsed laser deposition (PLD) was used to grow high-quality beta-Ga2O3 films on (0001) sapphire and (-201) Ga2O3 single crystals and to explore the growth, stability, and dopability of these films as function of temperature and oxygen partial pressure. There is a strong temperature dependence to the phase formation, morphology, and electronic properties of beta-Ga2O3 from 350 to 550 degrees C.
C1 [Garten, Lauren M.; Zakutayev, Andriy; Perkins, John D.; Ndione, Paul F.; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Gorman, Brian P.] Colorado Sch Mines, Golden, CO 80401 USA.
RP Garten, LM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM Lauren.garten@nrel.gov
FU Center for the Next Generation of Materials by Design, an Energy
Frontier Research Center; U.S. Department of Energy, Office of Science,
Basic Energy Sciences [DE-AC36-08GO28308]
FX This work was funded by the Center for the Next Generation of Materials
by Design, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Basic Energy Sciences under
Contract No. DE-AC36-08GO28308 to NREL.
NR 12
TC 0
Z9 0
U1 10
U2 10
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 2159-6859
EI 2159-6867
J9 MRS COMMUN
JI MRS Commun.
PD DEC
PY 2016
VL 6
IS 4
BP 348
EP 353
DI 10.1557/mrc.2016.50
PG 6
WC Materials Science, Multidisciplinary
SC Materials Science
GA EJ3QW
UT WOS:000393127700004
ER
PT J
AU Ndione, PF
Zakutayev, A
Kumar, M
Packard, CE
Berry, JJ
Perkins, JD
Ginley, DS
AF Ndione, P. F.
Zakutayev, A.
Kumar, M.
Packard, C. E.
Berry, J. J.
Perkins, J. D.
Ginley, D. S.
TI Tuning the physical properties of amorphous In-Zn-Sn-O thin films using
combinatorial sputtering
SO MRS COMMUNICATIONS
LA English
DT Article
ID TRANSPARENT CONDUCTING OXIDES; SINTERED ZINC-OXIDE;
ELECTRICAL-PROPERTIES; INDIUM-OXIDE; TRANSPORT
AB Transparent conductive oxides and amorphous oxide semiconductors are important materials for many modern technologies. Here, we explore the ternary indium zinc tin oxide (IZTO) using combinatorial synthesis and spatially resolved characterization. The electrical conductivity, work function, absorption onset, mechanical hardness, and elastic modulus of the optically transparent (>85%) amorphous IZTO thin films were found to be in the range of 10-2415 S/cm, 4.6-5.3 eV, 3.20-3.34 eV, 9.0-10.8 GPa, and 111-132 GPa, respectively, depending on the cation composition and the deposition conditions. This study enables control of IZTO performance over a broad range of cation compositions.
C1 [Ndione, P. F.; Zakutayev, A.; Packard, C. E.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
[Kumar, M.; Packard, C. E.] Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA.
RP Ndione, PF (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM paul.ndione@nrel.gov
OI Packard, Corinne/0000-0002-5815-8586
FU U.S. Department of Energy [DE-AC36-08GO28308]; U.S. Department of
Energy, Office of Science, Basic Energy Sciences Program, as part of the
CNMGD Energy Frontier Research Center; Office of Energy Efficiency and
Renewable Energy, Solar Energy Technology Program, as a part of SunShot
initiative; Center for Revolutionary Solar Photoconversion (CRSP); NREL
FX This work was supported by the U.S. Department of Energy, under Award
Number DE-AC36-08GO28308 to the National Renewable Energy Laboratory
(NREL). P.F.N. and A.Z. gratefully acknowledge support from the U.S.
Department of Energy, Office of Science, Basic Energy Sciences Program,
as part of the CNMGD Energy Frontier Research Center. J.D.P. and D.S.G.
gratefully acknowledge support from Office of Energy Efficiency and
Renewable Energy, Solar Energy Technology Program, as a part of SunShot
initiative. M.K. gratefully acknowledges funding from Center for
Revolutionary Solar Photoconversion (CRSP). C.P. gratefully acknowledges
funding from a joint appointment at NREL. P.F.N. would like to thank Dr.
Thomas Gennett and Dr. Philip Parilla at NREL for useful discussions.
NR 38
TC 0
Z9 0
U1 1
U2 1
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 2159-6859
EI 2159-6867
J9 MRS COMMUN
JI MRS Commun.
PD DEC
PY 2016
VL 6
IS 4
BP 360
EP 366
DI 10.1557/mrc.2016.57
PG 7
WC Materials Science, Multidisciplinary
SC Materials Science
GA EJ3QW
UT WOS:000393127700006
ER
PT J
AU Alexander, KC
Ganesh, P
Chi, MF
Kent, P
Sumpter, BG
AF Alexander, Kathleen C.
Ganesh, P.
Chi, Miaofang
Kent, Paul
Sumpter, Bobby G.
TI Grain boundary stability and influence on ionic conductivity in a
disordered perovskite-a first-principles investigation of lithium
lanthanum titanate
SO MRS COMMUNICATIONS
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; SOLID-STATE ELECTROLYTE; ELASTIC BAND METHOD;
WAVE BASIS-SET; SADDLE-POINTS; BATTERIES; PATHS
AB The origin of ionic conductivity in bulk lithium lanthanum titanate, a promising solid electrolyte for Li-ion batteries, has long been under debate, with experiments showing lower conductivity than predictions. Using first-principles-based calculations, we find that experimentally observed type I boundaries are more stable compared with the type II grain boundaries, consistent with their observed relative abundance. Grain boundary stability appears to strongly anti-correlate with the field strength as well as the spatial extent of the space charge region. Ion migration is faster along type II grain boundaries than across, consistent with recent experiments of increased conductivity when type II densities were increased.
C1 [Alexander, Kathleen C.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Ganesh, P.; Chi, Miaofang; Kent, Paul; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Kent, Paul; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
RP Alexander, KC (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.; Ganesh, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM katcalex@mit.edu; ganeshp@ornl.gov
FU U.S. DOE Office of Science [DE-AC02-05CH11231]; DOE Computational
Science Graduate Fellowship [DE-FG02-97ER25308]; Fannie and John Hertz
Foundation
FX This work was performed at the Center for Nanophase Materials Sciences,
a US Department of Energy Office of Science User Facility. This work
made use of computational resources at the NERSC computing facility
which is supported by the U.S. DOE Office of Science under Contract No.
DE-AC02-05CH11231. K.C.A. acknowledges support from a DOE Computational
Science Graduate Fellowship under Grant No. DE-FG02-97ER25308 and
support from the Fannie and John Hertz Foundation. P. G. would like to
acknowledge the Laboratory Directed Research and Development Program
(LDRD) of Oak Ridge National Laboratory, managed by UT-Battelle, LLC,
for the U.S. Department of Energy.
NR 30
TC 0
Z9 0
U1 11
U2 11
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 2159-6859
EI 2159-6867
J9 MRS COMMUN
JI MRS Commun.
PD DEC
PY 2016
VL 6
IS 4
BP 455
EP 463
DI 10.1557/mrc.2016.58
PG 9
WC Materials Science, Multidisciplinary
SC Materials Science
GA EJ3QW
UT WOS:000393127700018
ER
PT J
AU Xu, YF
Chen, JH
Ma, YG
Tang, AH
Xu, ZB
Zhu, YH
AF Xu, Yi-Fei
Chen, Jin-Hui
Ma, Yu-Gang
Tang, Ai-Hong
Xu, Zhang-Bu
Zhu, Yu-Hui
TI Physics performance of the STAR zero degree calorimeter at relativistic
heavy ion collider
SO NUCLEAR SCIENCE AND TECHNIQUES
LA English
DT Article; Proceedings Paper
CT International Workshop on Nuclear Dynamics in Heavy-Ion Reactions (IWND)
CY MAY 15-20, 2016
CL Xinxiang, PEOPLES R CHINA
DE Zero degree calorimeter; Calibration; Energy resolution; STAR
ID QUARK-GLUON PLASMA; COLLISIONS; COLLABORATION; PERSPECTIVE
AB The zero degree calorimeter (ZDC) at RHIC-STAR was installed in the year 2000. After running for more than 10 years, the performance of the STAR-ZDC cannot maintain a proper status because of the radiation damage. The ZDC on RHIC-BRAHMS had been moved to STAR in 2011 after some tests. We present here the result of the tests as well as the physical performance of those ZDC modules between the 2011 and 2015 RHIC runs. The excellent energy resolution of the ZDC in heavy ion collision provides a good candidate for future detector development, such as the CSR experiment at CAS-Lanzhou facility.
C1 [Xu, Yi-Fei; Chen, Jin-Hui; Ma, Yu-Gang; Zhu, Yu-Hui] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
[Xu, Yi-Fei; Zhu, Yu-Hui] Univ Chinese Acad Sci, Beijing 100049, Peoples R China.
[Ma, Yu-Gang] ShanghaiTech Univ, Shanghai 200031, Peoples R China.
[Tang, Ai-Hong; Xu, Zhang-Bu] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Ma, YG (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.; Ma, YG (reprint author), ShanghaiTech Univ, Shanghai 200031, Peoples R China.
EM chenjinhui@sinap.ac.cn; ygma@sinap.ac.cn
FU Major State Basic Research Development Program in China [2014CB845400];
National Natural Science Foundation of China [11421505, 11520101004,
11322547, 11275250]
FX This work was supported by the Major State Basic Research Development
Program in China (2014CB845400), and the National Natural Science
Foundation of China (Nos. 11421505, 11520101004, 11322547, and
11275250).
NR 12
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER SINGAPORE PTE LTD
PI SINGAPORE
PA #04-01 CENCON I, 1 TANNERY RD, SINGAPORE 347719, SINGAPORE
SN 1001-8042
EI 2210-3147
J9 NUCL SCI TECH
JI Nucl. Sci. Tech.
PD DEC
PY 2016
VL 27
IS 6
AR 126
DI 10.1007/s41365-016-0129-z
PG 6
WC Nuclear Science & Technology; Physics, Nuclear
SC Nuclear Science & Technology; Physics
GA EJ3MU
UT WOS:000393117100001
ER
PT J
AU Sloan, JV
Hotz, M
Boutan, C
Bradley, R
Carosi, G
Carter, D
Clarke, J
Crisosto, N
Daw, EJ
Gleason, J
Hoskins, J
Khatiwada, R
Lyapustin, D
Malagon, A
O'Kelley, S
Ottens, RS
Rosenberg, LJ
Rybka, G
Stern, I
Sullivan, NS
Tanner, DB
van Bibber, K
Wagner, A
Will, D
AF Sloan, J. V.
Hotz, M.
Boutan, C.
Bradley, R.
Carosi, G.
Carter, D.
Clarke, J.
Crisosto, N.
Daw, E. J.
Gleason, J.
Hoskins, J.
Khatiwada, R.
Lyapustin, D.
Malagon, A.
O'Kelley, S.
Ottens, R. S.
Rosenberg, L. J.
Rybka, G.
Stern, I.
Sullivan, N. S.
Tanner, D. B.
van Bibber, K.
Wagner, A.
Will, D.
TI Limits on axion-photon coupling or on local axion density: Dependence on
models of the Milky Way's dark halo
SO PHYSICS OF THE DARK UNIVERSE
LA English
DT Article
DE Axions; Halo models; Dark matter; Microwave cavity; Direct detections
ID STRONG CP PROBLEM; INVISIBLE AXION; SECONDARY INFALL; MATTER HALOS;
INVARIANCE; UNIVERSE
AB The mu eV-scale axion is a compelling cold dark matter candidate. The Axion Dark Matter eXperiment (ADMX) searches for axions by stimulating the decay of galactic dark matter halo axions into detectable microwave photons by their conversion in a resonant cavity permeated by a strong, static magnetic field. The signal depends on properties of the Milky Way's dark matter halo; the choice of halo model has significant implications for the sensitivity of direct detection searches, e.g., ADMX. This paper explores the sensitivity of the data taken by ADMX from 2008 to 2010 to various dark matter halo models. New models for the phase-space distribution of local axions are considered; the analysis demonstrates that certain assumptions about the dark matter halo improve limits on axion-photon coupling. In addition, new ADMX data covering 860-892 MHz are included in the analysis. (C) 2016 Published by Elsevier B.V.
C1 [Sloan, J. V.; Hotz, M.; Boutan, C.; Khatiwada, R.; Lyapustin, D.; Malagon, A.; Ottens, R. S.; Rosenberg, L. J.; Wagner, A.; Will, D.] Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA.
[Sloan, J. V.; Hotz, M.; Boutan, C.; Khatiwada, R.; Lyapustin, D.; Malagon, A.; Ottens, R. S.; Rosenberg, L. J.; Rybka, G.; Wagner, A.; Will, D.] Univ Washington, Seattle, WA 98195 USA.
[Carosi, G.; Carter, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Bradley, R.; Sullivan, N. S.; Tanner, D. B.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA.
[Clarke, J.; O'Kelley, S.; van Bibber, K.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Crisosto, N.; Gleason, J.; Hoskins, J.; Stern, I.] Univ Florida, Gainesville, FL 32611 USA.
[Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England.
[Wagner, A.] Raytheon BBN Technol, Cambridge, MA 02138 USA.
RP Sloan, JV (reprint author), Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA.; Sloan, JV (reprint author), Univ Washington, Seattle, WA 98195 USA.
EM jvsloan@uw.edu
OI Stern, Ian/0000-0002-1166-465X
FU DOE [DE-SC00098000, DE-SC0011665, DE-AC52-07NA27344, DE-AC03-76SF00098,
DE-AC02-05CH11231]; Heising-Simons Foundation [2014-185]; Lawrence
Livermore National Laboratory LDRD program [05-ERD-073, 09-ERD-052,
10-SI-015]
FX Supported by DOE Grants DE-SC00098000, DOE grant DE-SC0011665,
DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation
2014-185, and the Lawrence Livermore National Laboratory LDRD program
05-ERD-073, 09-ERD-052, and 10-SI-015. SQUID development was supported
by DOE grant DE-AC02-05CH11231.
NR 40
TC 1
Z9 1
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2212-6864
J9 PHYS DARK UNIVERSE
JI Phys. Dark Universe
PD DEC
PY 2016
VL 14
BP 95
EP 102
DI 10.1016/j.dark.2016.09.003
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EJ3DE
UT WOS:000393092000013
ER
PT J
AU Abramson, BW
Kachel, B
Kramer, DM
Ducat, DC
AF Abramson, Bradley W.
Kachel, Benjamin
Kramer, David M.
Ducat, Daniel C.
TI Increased Photochemical Efficiency in Cyanobacteria via an Engineered
Sucrose Sink
SO PLANT AND CELL PHYSIOLOGY
LA English
DT Article
DE Calvin-Benson cycle; Cyanobacteria; Energy balance; Photosynthesis;
Source-sink; Synechococcus elongatus PCC 7942
ID STATE 1 TRANSITION; PHOTOSYSTEM-II; CHLAMYDOMONAS-REINHARDTII;
CHLOROPHYLL FLUORESCENCE; SYNECHOCOCCUS-ELONGATUS; SALT STRESS; PCC
7942; PHOTOSYNTHESIS; SUGAR; PRODUCTIVITY
AB In plants, a limited capacity to utilize or export the endproducts of the Calvin-Benson cycle (CB) from photosynthetically active source cells to non-photosynthetic sink cells can result in reduced carbon capture and photosynthetic electron transport (PET), and lowered photochemical efficiency. The down-regulation of photosynthesis caused by reduced capacity to utilize photosynthate has been termed ` sink limitation'. Recently, several cyanobacterial and algal strains engineered to overproduce target metabolites have exhibited increased photochemistry, suggesting that possible source-sink regulatory mechanisms may be involved. We directly examined photochemical properties following induction of a heterologous sucrose 'sink' in the unicellular cyanobacterium Synechococcus elongatus PCC 7942. We show that total photochemistry increases proportionally to the experimentally controlled rate of sucrose export. Importantly, the quantum yield of PSII (phi II) increases in response to sucrose export while the PET chain becomes more oxidized from less PSI acceptor-side limitation, suggesting increased CB activity and a decrease in sink limitation. Enhanced photosynthetic activity and linear electron flow are detectable within hours of induction of the heterologous sink and are independent of pigmentation alterations or the ionic/ osmotic effects of the induction system. These observations provide direct evidence that secretion of heterologous carbon bioproducts can be used as an alternative approach to improve photosynthetic efficiency, presumably by by-passing sink limitation. Our results also suggest that engineered microalgal production strains are valuable alternative models for examining photosynthetic sink limitation because they enable greater control and monitoring of metabolite fluxes relative to plants.
C1 [Abramson, Bradley W.; Kramer, David M.; Ducat, Daniel C.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.
[Abramson, Bradley W.] Michigan State Univ, Dept Cell & Mol Biol, E Lansing, MI 48824 USA.
[Kachel, Benjamin] Heidelberg Univ, Dept Pharm & Mol Biotechnol, Heidelberg, Germany.
[Kramer, David M.; Ducat, Daniel C.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA.
RP Ducat, DC (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.; Ducat, DC (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA.
EM ducatdan@msu.edu
FU Office of Science of the US Department of Energy [DE-FG02-91ER20021]
FX This work was supported by the Office of Science of the US Department of
Energy [DE-FG02-91ER20021].
NR 56
TC 0
Z9 0
U1 4
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0032-0781
EI 1471-9053
J9 PLANT CELL PHYSIOL
JI Plant Cell Physiol.
PD DEC
PY 2016
VL 57
IS 12
BP 2451
EP 2460
DI 10.1093/pcp/pcw169
PG 10
WC Plant Sciences; Cell Biology
SC Plant Sciences; Cell Biology
GA EJ4AZ
UT WOS:000393159600001
PM 27742883
ER
PT J
AU Fang, L
Ishikawa, T
Rennie, EA
Murawska, GM
Lao, JM
Yan, JW
Tsai, AYL
Baidoo, EEK
Xu, J
Keasling, JD
Demura, T
Kawai-Yamada, M
Scheller, HV
Mortimer, JC
AF Fang, Lin
Ishikawa, Toshiki
Rennie, Emilie A.
Murawska, Gosia M.
Lao, Jeemeng
Yan, Jingwei
Tsai, Alex Yi-Lin
Baidoo, Edward E. K.
Xu, Jun
Keasling, Jay D.
Demura, Taku
Kawai-Yamada, Maki
Scheller, Henrik V.
Mortimer, Jenny C.
TI Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces
Plant Immune Responses and Reduces Cellulose Content in Arabidopsis
SO PLANT CELL
LA English
DT Article
ID TANDEM MASS-SPECTROMETRY; CELL-WALL BIOSYNTHESIS; PLASMA-MEMBRANE;
SYNTHASE COMPLEXES; GENETIC-EVIDENCE; TOBACCO-LEAVES; IDENTIFICATION;
THALIANA; GLYCOSYLTRANSFERASE; METABOLISM
AB Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming; 25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologous expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged.
C1 [Fang, Lin; Rennie, Emilie A.; Murawska, Gosia M.; Lao, Jeemeng; Yan, Jingwei; Tsai, Alex Yi-Lin; Baidoo, Edward E. K.; Keasling, Jay D.; Scheller, Henrik V.; Mortimer, Jenny C.] Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Fang, Lin; Rennie, Emilie A.; Murawska, Gosia M.; Lao, Jeemeng; Yan, Jingwei; Tsai, Alex Yi-Lin; Baidoo, Edward E. K.; Keasling, Jay D.; Scheller, Henrik V.; Mortimer, Jenny C.] Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA.
[Ishikawa, Toshiki; Kawai-Yamada, Maki] Saitama Univ, Grad Sch Sci & Engn, Saitama 3388570, Japan.
[Xu, Jun; Keasling, Jay D.; Mortimer, Jenny C.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Demura, Taku] RIKEN, Ctr Sustainable Resource Sci, Biomass Engn Program, Cellulose Prod Res Team, Yokohama, Kanagawa 2300045, Japan.
[Demura, Taku] Nara Inst Sci & Technol, Grad Sch Biol Sci, Nara 6300192, Japan.
[Scheller, Henrik V.] Univ Calif Berkeley, Plant & Microbial Biol, Berkeley, CA 94720 USA.
RP Mortimer, JC (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA.; Mortimer, JC (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA.; Mortimer, JC (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
EM jcmortimer@lbl.gov
OI Xu, Jun/0000-0003-3507-0159
FU U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]; RIKEN FPR fellowship; JSPS
KAKENHI [24010084, 15K20909, 26292190]
FX We thank Ramana Pidatala for assistance with callus culture, Mi-Yeon Lee
for assistance with plant growth, Leanne Chan and Chris Petzold for
protein sequencing, and Misato Ohtani and the Demura team for their
support whilst J.C.M. was at RIKEN. This work was part of the DOE Joint
BioEnergy Institute (http://www.jbei.org) supported by the U.S.
Department of Energy, Office of Science, Office of Biological and
Environmental Research, through contract DE-AC02-05CH11231 between
Lawrence Berkeley National Laboratory and the U.S. Department of Energy
(L.F., E.A.R., J.L., E.E.K.B., J.D.K., J.C.M., H.V.S.), by a RIKEN FPR
fellowship (J.C.M.), and by JSPS KAKENHI 24010084 and 15K20909 to T.I.
and 26292190 to M.K.-Y.
NR 63
TC 0
Z9 0
U1 6
U2 6
PU AMER SOC PLANT BIOLOGISTS
PI ROCKVILLE
PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA
SN 1040-4651
EI 1532-298X
J9 PLANT CELL
JI Plant Cell
PD DEC
PY 2016
VL 28
IS 12
BP 2991
EP 3004
DI 10.1105/tpc.16.00186
PG 14
WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
GA EJ4DY
UT WOS:000393167800009
PM 27895225
ER
PT J
AU Lan, W
Rencoret, J
Lu, FC
Karlen, SD
Smith, BG
Harris, PJ
del Rio, JC
Ralph, J
AF Lan, Wu
Rencoret, Jorge
Lu, Fachuang
Karlen, Steven D.
Smith, Bronwen G.
Harris, Philip J.
Carlos del Rio, Jose
Ralph, John
TI Tricin-lignins: occurrence and quantitation of tricin in relation to
phylogeny
SO PLANT JOURNAL
LA English
DT Article
DE thioacidolysis; acidolysis; derivatization followed by reductive
cleavage; Poaceae; tricin-d(6); stable isotopically labeled internal
standard; liquid chromatography-mass spectrometry; multiple reaction
monitoring
ID ANTIOXIDANT FLAVONE GLYCOSIDES; STRUCTURAL-CHARACTERIZATION;
BRACHYPODIUM-DISTACHYON; MONOCOT LIGNIFICATION; ACID DEGRADATION;
FLAVONOLIGNANS; BIOSYNTHESIS; CLEAVAGE; IDENTIFICATION; ACIDOLYSIS
AB Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as an authentic monomer in grass lignification that likely functions as a nucleation site. It is linked onto lignin as an aryl alkyl ether by radical coupling with monolignols or their acylated analogs. However, the level of tricin that incorporates into lignin remains unclear. Herein, three lignin characterization methods: acidolysis; thioacidolysis; and derivatization followed by reductive cleavage; were applied to quantitatively assess the amount of lignin-integrated tricin. Their efficiencies at cleaving the tricin-(4'-O-beta)-ether bonds and the degradation of tricin under the corresponding reaction conditions were evaluated. A hexadeuterated tricin analog was synthesized as an internal standard for accurate quantitation purposes. Thioacidolysis proved to be the most efficient method, liberating more than 91% of the tricin with little degradation. A survey of different seed-plant species for the occurrence and content of tricin showed that it is widely distributed in the lignin from species in the family Poaceae (order Poales). Tricin occurs at low levels in some commelinid monocotyledon families outside the Poaceae, such as the Arecaceae (the palms, order Arecales) and Bromeliaceae (Poales), and the non-commelinid monocotyledon family Orchidaceae (Orchidales). One eudicotyledon was found to have tricin (Medicago sativa, Fabaceae). The content of lignin-integrated tricin is much higher than the extractable tricin level in all cases. Lignins, including waste lignin streams from biomass processing, could therefore provide a large and alternative source of this valuable flavone, reducing the costs, and encouraging studies into its application beyond its current roles.
C1 [Lan, Wu; Lu, Fachuang; Karlen, Steven D.; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.
[Lan, Wu; Ralph, John] Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA.
[Rencoret, Jorge; Carlos del Rio, Jose] CSIC, IRNAS, Ave Reina Mercedes 10, Seville 41012, Spain.
[Lu, Fachuang; Karlen, Steven D.; Ralph, John] Univ Wisconsin, Dept Biochem, 420 Henry Mall, Madison, WI 53705 USA.
[Lu, Fachuang] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou, Guangdong, Peoples R China.
[Smith, Bronwen G.] Univ Auckland, Sch Chem Sci, Auckland, New Zealand.
[Harris, Philip J.] Univ Auckland, Sch Biol Sci, Auckland, New Zealand.
RP Lu, FC (reprint author), Univ Wisconsin, Wisconsin Energy Inst, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.; Ralph, J (reprint author), Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA.; Lu, FC; Ralph, J (reprint author), Univ Wisconsin, Dept Biochem, 420 Henry Mall, Madison, WI 53705 USA.; Lu, FC (reprint author), South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou, Guangdong, Peoples R China.
EM fachuanglu@wisc.edu; jralph@wisc.edu
RI RENCORET, JORGE/E-1747-2013
OI RENCORET, JORGE/0000-0003-2728-7331
FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science)
[DE-FC02-07ER64494]; FEDER funds [CTQ2014-60764-JIN]; University of
Auckland; US Department of Energy, Energy Biosciences Program
[DE-AI02-06ER64299]
FX The authors thank the China Scholarship Council, State Education
Department, for supporting living expenses for Wu Lan's PhD Program in
the Department of Biological System Engineering, University of
Wisconsin, Madison, USA. WL, FL, SK and JRa were funded by the DOE Great
Lakes Bioenergy Research Center (DOE BER Office of Science
DE-FC02-07ER64494). JRe was funded by the Spanish Project
CTQ2014-60764-JIN (co-financed by FEDER funds), BGS and PJH by the
University of Auckland, and JRa, BGS and PJH in part by US Department of
Energy, Energy Biosciences Program, Grant #DE-AI02-06ER64299 (2006).
NR 58
TC 1
Z9 1
U1 6
U2 6
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0960-7412
EI 1365-313X
J9 PLANT J
JI Plant J.
PD DEC
PY 2016
VL 88
IS 6
BP 1046
EP 1057
DI 10.1111/tpj.13315
PG 12
WC Plant Sciences
SC Plant Sciences
GA EJ3QH
UT WOS:000393126200011
PM 27553717
ER
PT J
AU Romm, H
Beinke, C
Garcia, O
Di Giorgio, M
Gregoire, E
Livingston, G
Lloyd, DC
Martinez-Lopez, W
Moquet, JE
Sugarman, SL
Wilkins, RC
Ainsbury, EA
AF Romm, Horst
Beinke, Christina
Garcia, Omar
Di Giorgio, Marina
Gregoire, Eric
Livingston, Gordon
Lloyd, David C.
Martinez-Lopez, Wilner
Moquet, Jayne E.
Sugarman, Stephen L.
Wilkins, Ruth C.
Ainsbury, Elizabeth A.
TI A NEW CYTOGENETIC BIODOSIMETRY IMAGE REPOSITORY FOR THE DICENTRIC ASSAY
SO RADIATION PROTECTION DOSIMETRY
LA English
DT Article; Proceedings Paper
CT 4th EPR BioDose Meeting
CY OCT 04-08, 2015
CL Hanover, NH
SP Int Assoc Biol & EPR Radiat Dosimetry
ID SCALE RADIATION ACCIDENTS; BIOLOGICAL DOSIMETRY; CHROMOSOME ANALYSIS;
POPULATION TRIAGE; RADIOLOGICAL EMERGENCY; EUROPEAN NETWORK;
LABORATORIES; CASUALTIES; CAPACITY; BIODOSENET
AB The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of similar to 25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analysed by international experts. The detailed scoring results and dose estimations have, in most cases, already been published. The compilation of these images into one image repository provides a valuable tool for training and research purposes in biological dosimetry. No special software is needed to view and score the image galleries. For those new to the dicentric assay, the BioDoseNet Image Repository provides an introduction to and training for the dicentric assay. It is an excellent instrument for intra-laboratory training purposes or inter-comparisons between laboratories, as recommended by the International Organization for Standardisation standards. In the event of a radiation accident, the repository can also increase the surge capacity and reduce the turnaround time for dose estimations. Finally, it provides a mechanism for the discussion of scoring discrepancies in difficult cases.
C1 [Romm, Horst] Bundesamt Strahlenschutz, Neuherberg, Salzgitter, Germany.
[Beinke, Christina] Bundeswehr Inst Radiobiol, Munich, Germany.
[Garcia, Omar] Ctr Protecc & Higiene Radiac, Havana, Cuba.
[Di Giorgio, Marina] Autoridad Regulatoria Nucl, Buenos Aires, DF, Argentina.
[Gregoire, Eric] Inst Radioprotect & Surete Nucl, Fontenay Aux Roses, France.
[Livingston, Gordon; Wilkins, Ruth C.] Oak Ridge Associated Univ, REAC TS, Oak Ridge, TN USA.
[Lloyd, David C.; Moquet, Jayne E.; Ainsbury, Elizabeth A.] Publ Hlth England, Chilton, England.
[Martinez-Lopez, Wilner] Inst Invest Biol Clemente Estable, Montevideo, Uruguay.
[Wilkins, Ruth C.] Hlth Canada, Ottawa, ON, Canada.
RP Romm, H (reprint author), Bundesamt Strahlenschutz, Neuherberg, Salzgitter, Germany.
EM hromm@bfs.de
NR 45
TC 0
Z9 0
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0144-8420
EI 1742-3406
J9 RADIAT PROT DOSIM
JI Radiat. Prot. Dosim.
PD DEC 1
PY 2016
VL 172
IS 1-3
BP 192
EP 200
DI 10.1093/rpd/ncw158
PG 9
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA EJ4HX
UT WOS:000393178600021
PM 27412509
ER
PT J
AU Garty, G
Turner, HC
Salerno, A
Bertucci, A
Zhang, J
Chen, Y
Dutta, A
Sharma, P
Bian, D
Taveras, M
Wang, H
Bhatla, A
Balajee, A
Bigelow, AW
Repin, M
Lyulko, OV
Simaan, N
Yao, YL
Brenner, DJ
AF Garty, G.
Turner, H. C.
Salerno, A.
Bertucci, A.
Zhang, J.
Chen, Y.
Dutta, A.
Sharma, P.
Bian, D.
Taveras, M.
Wang, H.
Bhatla, A.
Balajee, A.
Bigelow, A. W.
Repin, M.
Lyulko, O. V.
Simaan, N.
Yao, Y. L.
Brenner, D. J.
TI THE DECADE OF THE RABIT (2005-15)
SO RADIATION PROTECTION DOSIMETRY
LA English
DT Article; Proceedings Paper
CT 4th EPR BioDose Meeting
CY OCT 04-08, 2015
CL Hanover, NH
SP Int Assoc Biol & EPR Radiat Dosimetry
ID HIGH-THROUGHPUT BIODOSIMETRY; BLOCK MICRONUCLEUS ASSAY; CYTOGENETIC
BIODOSIMETRY; BIOLOGICAL DOSIMETRY; RADIATION; EXPOSURE; SYSTEM; TRIAGE;
TOOL; CHROMOSOMES
AB The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with 'off the shelf' systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell:: explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies.
C1 [Garty, G.; Turner, H. C.; Bertucci, A.; Dutta, A.; Sharma, P.; Taveras, M.; Balajee, A.; Bigelow, A. W.; Repin, M.; Lyulko, O. V.; Brenner, D. J.] Columbia Univ, Ctr Radiol Res, VC11-230,630 West 168th St, New York, NY 10032 USA.
[Salerno, A.; Zhang, J.; Chen, Y.; Wang, H.; Bhatla, A.; Simaan, N.; Yao, Y. L.] Columbia Univ, Dept Mech Engn, 500 West 120th St, New York, NY 10027 USA.
[Salerno, A.] Pratt & Whitney Canada Corp, 1000 Marie Victorin, Longueuil, PQ J4G 1A1, Canada.
[Zhang, J.] Auris Surg Robot Inc, 125 Shoreway Rd, San Carlos, CA 94070 USA.
[Dutta, A.] BioReliance Corp, 9630 Med Ctr Dr, Rockville, MD 20850 USA.
[Wang, H.] Gen Motors Co, 30500 Mound Rd, Warren, MI 48090 USA.
[Bhatla, A.] Curios Lab Inc, 54 Mallard Pl, Secaucus, NJ 07094 USA.
[Balajee, A.] Oak Ridge Associated Univ, Oak Ridge Inst Sci & Educ, Cytogenet Biodosimetry Lab, Radiat Emergency Assistance Ctr & Training Site, Bldg SC-10,1299 Bethel Valley Rd, Oak Ridge, TN 37830 USA.
[Simaan, N.] Vanderbuilt Univ, Dept Mech Engn, PMB 351592, Nashville, TN 37235 USA.
RP Garty, G (reprint author), Columbia Univ, Ctr Radiol Res, VC11-230,630 West 168th St, New York, NY 10032 USA.
EM gyg2101@cumc.columbia.edu
FU National Institute of Allergy and Infectious Diseases (NIAID)
[U19-AI067773]; National Institute of Environmental Health Sciences
(NIEHS) [R21-ES019494]
FX This work was supported by the National Institute of Allergy and
Infectious Diseases (NIAID) [U19-AI067773 to the Center for
High-Throughput Minimally Invasive Radiation Biodosimetry], and the
National Institute of Environmental Health Sciences (NIEHS)
[R21-ES019494]. The content is solely the responsibility of the authors
and does not necessarily represent the official views of NIAID, NIEHS or
the National Institutes of Health.
NR 34
TC 0
Z9 0
U1 1
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0144-8420
EI 1742-3406
J9 RADIAT PROT DOSIM
JI Radiat. Prot. Dosim.
PD DEC 1
PY 2016
VL 172
IS 1-3
BP 201
EP 206
DI 10.1093/rpd/ncw172
PG 6
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA EJ4HX
UT WOS:000393178600022
PM 27412510
ER
PT J
AU Li, ZQ
Lau, WKM
Ramanathan, V
Wu, G
Ding, Y
Manoj, MG
Liu, J
Qian, Y
Li, J
Zhou, T
Fan, J
Rosenfeld, D
Ming, Y
Wang, Y
Huang, J
Wang, B
Xu, X
Lee, SS
Cribb, M
Zhang, F
Yang, X
Zhao, C
Takemura, T
Wang, K
Xia, X
Yin, Y
Zhang, H
Guo, J
Zhai, PM
Sugimoto, N
Babu, SS
Brasseur, GP
AF Li, Zhanqing
Lau, W. K. -M.
Ramanathan, V.
Wu, G.
Ding, Y.
Manoj, M. G.
Liu, J.
Qian, Y.
Li, J.
Zhou, T.
Fan, J.
Rosenfeld, D.
Ming, Y.
Wang, Y.
Huang, J.
Wang, B.
Xu, X.
Lee, S. -S.
Cribb, M.
Zhang, F.
Yang, X.
Zhao, C.
Takemura, T.
Wang, K.
Xia, X.
Yin, Y.
Zhang, H.
Guo, J.
Zhai, P. M.
Sugimoto, N.
Babu, S. S.
Brasseur, G. P.
TI Aerosol and monsoon climate interactions over Asia
SO REVIEWS OF GEOPHYSICS
LA English
DT Review
ID CLOUD CONDENSATION NUCLEI; INDIAN-SUMMER MONSOON; BLACK CARBON AEROSOLS;
EURASIAN SNOW COVER; DEEP CONVECTIVE CLOUDS; DIURNAL TEMPERATURE-RANGE;
TROPICAL CONVERGENCE ZONE; GENERAL-CIRCULATION MODEL; INCIDENT
SOLAR-RADIATION; SEA-SURFACE TEMPERATURE
AB The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcing of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.
C1 [Li, Zhanqing; Li, J.; Zhang, F.; Yang, X.; Zhao, C.; Wang, K.] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China.
[Li, Zhanqing; Li, J.; Zhang, F.; Yang, X.; Zhao, C.; Wang, K.] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China.
[Li, Zhanqing; Lau, W. K. -M.; Manoj, M. G.; Liu, J.; Lee, S. -S.; Cribb, M.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.
[Li, Zhanqing; Lau, W. K. -M.; Manoj, M. G.; Liu, J.; Lee, S. -S.; Cribb, M.] Univ Maryland, ESSIC, College Pk, MD 20742 USA.
[Ramanathan, V.] Univ Calif San Diego, Dept Atmospher & Climate Sci, San Diego, CA 92103 USA.
[Wu, G.; Zhou, T.; Xia, X.] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China.
[Ding, Y.; Zhang, H.] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China.
[Qian, Y.; Fan, J.] Pacific Northwest Natl Lab, Richland, WA 99352 USA.
[Rosenfeld, D.] Hebrew Univ Jerusalem, Inst Earth Sci, Jerusalem, Israel.
[Ming, Y.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Wang, Y.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Huang, J.] Lanzhou Univ, Coll Atmospher Sci, Lanzhou, Peoples R China.
[Wang, B.] Univ Hawaii, Dept Atmospher Sci, Honolulu, HI 96822 USA.
[Wang, B.; Yin, Y.] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Nanjing, Jiangsu, Peoples R China.
[Xu, X.; Guo, J.; Zhai, P. M.] Chinese Acad Meteorol Sci, Beijing, Peoples R China.
[Takemura, T.] Kyushu Univ, Res Inst Appl Mech, Fukuoka, Japan.
[Sugimoto, N.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan.
[Babu, S. S.] Vikram Sarabhai Space Ctr, Space Phys Lab, Thiruvananthapuram, Kerala, India.
[Brasseur, G. P.] Max Planck Inst Meteorol, Hamburg, Germany.
RP Li, ZQ (reprint author), Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China.; Li, ZQ (reprint author), Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China.; Li, ZQ (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.; Li, ZQ (reprint author), Univ Maryland, ESSIC, College Pk, MD 20742 USA.
EM zli@atmos.umd.edu
RI qian, yun/E-1845-2011; Wang, Kaicun/F-7813-2012; Kyushu,
RIAM/F-4018-2015; Takemura, Toshihiko/C-2822-2009; Cribb,
Maureen/K-1341-2013
OI Wang, Kaicun/0000-0002-7414-5400; Takemura,
Toshihiko/0000-0002-2859-6067; Cribb, Maureen/0000-0002-9745-3676
FU China's National Basic Research Program on Global Change [2013CB955804];
National Natural Science Foundation of China [91544217]; U.S. National
Science Foundation [AGS1534670]; NOAA [NA15NWS4680011]; U.S. Department
of Energy [DESC0007171]; DOE ESM Program [DE-AC05-76RL01830]
FX We are grateful to the following people who provided some of the
original figures used in this article: Jaehwa Lee (Figure 1), F. Song
(Figure 2), J. Wu and J. Lin (Figure 6), J. Xin (Figure 7a), K. Lee
(Figures 4c and 7b), A. Robock (Figure 11), S. Dey (Figure 14), V. Vinoj
(Figure 18), R. Zhang (Figure 19), and Jun Matsumoto (Figure 30). The
bulk of the writing was done while the lead author was on sabbatical
leave at the Beijing Normal University and the Max-Planck Institutes of
Germany. Major funding supports pertinent to this work have been
provided by the China's National Basic Research Program on Global Change
(grant 2013CB955804), National Natural Science Foundation of China
(grant 91544217), U.S. National Science Foundation (AGS1534670), NOAA
(NA15NWS4680011), and the U.S. Department of Energy (DESC0007171), DOE
ESM Program under contract DE-AC05-76RL01830.
NR 474
TC 2
Z9 2
U1 25
U2 25
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 8755-1209
EI 1944-9208
J9 REV GEOPHYS
JI Rev. Geophys.
PD DEC
PY 2016
VL 54
IS 4
BP 866
EP 929
DI 10.1002/2015RG000500
PG 64
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA EJ4WM
UT WOS:000393217800004
ER
PT J
AU Berkowitz, B
Dror, I
Hansen, SK
Scher, H
AF Berkowitz, Brian
Dror, Ishai
Hansen, Scott K.
Scher, Harvey
TI Measurements and models of reactive transport in geological media
SO REVIEWS OF GEOPHYSICS
LA English
DT Review
ID HETEROGENEOUS POROUS-MEDIA; BIMOLECULAR REACTION-KINETICS; NATURAL
GRADIENT EXPERIMENT; LANDFILL LEACHATE PLUME; NON-FICKIAN TRANSPORT;
SOLUTE TRANSPORT; LABORATORY EXPERIMENTS; BIOGEOCHEMICAL PROCESSES;
CO2-INDUCED DISSOLUTION; HYDRAULIC CONDUCTIVITY
AB Reactive chemical transport plays a key role in geological media across scales, from pore scale to aquifer scale. Systems can be altered by changes in solution chemistry and a wide variety of chemical transformations, including precipitation/dissolution reactions that cause feedbacks that directly affect the flow and transport regime. The combination of these processes with advective-dispersive-diffusive transport in heterogeneous media leads to a rich spectrum of complex dynamics. The principal challenge in modeling reactive transport is to account for the subtle effects of fluctuations in the flow field and species concentrations; spatial or temporal averaging generally suppresses these effects. Moreover, it is critical to ground model conceptualizations and test model outputs against laboratory experiments and field measurements. This review emphasizes the integration of these aspects, considering carefully designed and controlled experiments at both laboratory and field scales, in the context of development and solution of reactive transport models based on continuum-scale and particle tracking approaches. We first discuss laboratory experiments and field measurements that define the scope of the phenomena and provide data for model comparison. We continue by surveying models involving advection-dispersion-reaction equation and continuous time random walk formulations. The integration of measurements and models is then examined, considering a series of case studies in different frameworks. We delineate the underlying assumptions, and strengths and weaknesses, of these analyses, and the role of probabilistic effects. We also show the key importance of quantifying the spreading and mixing of reactive species, recognizing the role of small-scale physical and chemical fluctuations that control the initiation of reactions.
C1 [Berkowitz, Brian; Dror, Ishai; Hansen, Scott K.; Scher, Harvey] Weizmann Inst Sci, Dept Earth & Planetary Sci, Rehovot, Israel.
[Hansen, Scott K.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM USA.
RP Berkowitz, B (reprint author), Weizmann Inst Sci, Dept Earth & Planetary Sci, Rehovot, Israel.
EM brian.berkowitz@weizmann.ac.il
RI BERKOWITZ, BRIAN/K-1497-2012;
OI BERKOWITZ, BRIAN/0000-0003-3078-1859; Hansen, Scott/0000-0001-8022-0123
FU Minerva Foundation; Federal German Ministry for Education and Research;
Azrieli Foundation postdoctoral fellowship
FX The authors thank the Editor, Fabio Florindo, and two anonymous referees
for particularly constructive comments. B.B. holds the Sam Zuckerberg
Professorial Chair in Hydrology. The financial support by the Minerva
Foundation with funding from the Federal German Ministry for Education
and Research (B.B.) and the Azrieli Foundation postdoctoral fellowship
(S.K.H.) is gratefully acknowledged. The data presented in this study
are listed in the provided references. Requests for data of the authors'
publications can be directed to B. Berkowitz
(brian.berkowitz@weizmann.ac.il).
NR 175
TC 0
Z9 0
U1 7
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 8755-1209
EI 1944-9208
J9 REV GEOPHYS
JI Rev. Geophys.
PD DEC
PY 2016
VL 54
IS 4
BP 930
EP 986
DI 10.1002/2016RG000524
PG 57
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA EJ4WM
UT WOS:000393217800005
ER
PT J
AU Zamora, RJ
Voter, AF
Perez, D
Santhi, N
Mniszewski, SM
Thulasidasan, S
Eidenbenz, SJ
AF Zamora, Richard J.
Voter, Arthur F.
Perez, Danny
Santhi, Nandakishore
Mniszewski, Susan M.
Thulasidasan, Sunil
Eidenbenz, Stephan J.
TI Discrete event performance prediction of speculatively parallel
temperature-accelerated dynamics
SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION
INTERNATIONAL
LA English
DT Article
DE Discrete-event simulation; performance prediction; accelerated molecular
dynamics; temperature-accelerated dynamics; distributed computing7
ID FINDING SADDLE-POINTS; SIMULATION; SURFACES
AB Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling timescales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The temperature-accelerated dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiple states. Here we utilize a discrete-event-based application simulator to introduce and explore a new speculatively parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Following this method, we discover that a non-trivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications.
C1 [Zamora, Richard J.; Voter, Arthur F.; Perez, Danny] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA.
[Santhi, Nandakishore; Mniszewski, Susan M.; Thulasidasan, Sunil; Eidenbenz, Stephan J.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA.
RP Zamora, RJ (reprint author), Los Alamos Natl Lab, T-1 B214, Los Alamos, NM 87545 USA.
EM rjzamora@lanl.gov
OI Santhi, Nandakishore/0000-0002-4755-7821
FU United States Department of Energy (U.S. DOE), Office of Science, Office
of Basic Energy Sciences, Materials Sciences and Engineering Division;
National Nuclear Security Administration of the U.S. DOE
[DE-AC52-O6NA25396]
FX This work was supported by the United States Department of Energy (U.S.
DOE), Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division. LANL is operated by Los Alamos
National Security, LLC, for the National Nuclear Security Administration
of the U.S. DOE, under contract DE-AC52-O6NA25396.
NR 43
TC 0
Z9 0
U1 0
U2 0
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0037-5497
EI 1741-3133
J9 SIMUL-T SOC MOD SIM
JI Simul.-Trans. Soc. Model. Simul. Int.
PD DEC
PY 2016
VL 92
IS 12
BP 1065
EP 1086
DI 10.1177/0037549716674806
PG 22
WC Computer Science, Interdisciplinary Applications; Computer Science,
Software Engineering
SC Computer Science
GA EJ4QS
UT WOS:000393202500003
ER
PT J
AU Hasty, P
Campisi, J
Sharp, ZD
AF Hasty, Paul
Campisi, Judith
Sharp, Z. Dave
TI Do p53 stress responses impact organismal aging?
SO TRANSLATIONAL CANCER RESEARCH
LA English
DT Review
DE p53; stress response; cellular senescence; aging
ID EXTENDS LIFE-SPAN; GENETICALLY HETEROGENEOUS MICE; DNA-DAMAGE RESPONSE;
WILD-TYPE P53; TUMOR SUPPRESSION; P53-DEFICIENT MICE; CALORIE
RESTRICTION; EMBRYONIC LETHALITY; SIRTUIN ACTIVATORS; MAMMALIAN TARGET
AB p53 is a transcriptional regulator that responds to cellular stresses to suppress oncogenesis, but some of these responses can have unintended consequences that influence non-cancer-related aging processes. The impact of these consequences is not well understood-partly due to the many complex processes that influence p53 function and partly due to the vast array of processes that p53 affects. p53 has the potential to both accelerate and hinder cellular aging processes, which would likely have antithetical biological outcomes with regard to organismal aging. To accelerate aging, p53 induces apoptosis or cell cycle arrest as a prerequisite to cellular senescence; both can impair the mobilization of stem and progenitor cell populations. To suppress aging, p53 inhibits unregulated proliferation pathways that could lead to cellular senescence and a senescence-associated secretory phenotype (SASP), which creates a pro-inflammatory and degenerative tissue milieu. A review of mouse models supports both possibilities, highlighting the complexity of the p53 influence over organismal aging. A deeper knowledge of how p53 integrates and is integrated with various biological processes will improve our understanding of its influence over the aging process.
C1 [Hasty, Paul; Sharp, Z. Dave] Univ Texas Hlth Sci Ctr San Antonio, Inst Biotechnol, Dept Mol Med, San Antonio, TX 78245 USA.
[Hasty, Paul; Sharp, Z. Dave] Univ Texas Hlth Sci Ctr San Antonio, Canc Therapy & Res Ctr, San Antonio, TX 78245 USA.
[Hasty, Paul; Sharp, Z. Dave] Univ Texas Hlth Sci Ctr San Antonio, Barshop Inst Longev & Aging Studies, San Antonio, TX 78245 USA.
[Campisi, Judith] Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94945 USA.
[Campisi, Judith] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Hasty, P (reprint author), Barshop Inst Longev & Aging Studies, Dept Mol Med, Inst Biotechnol, 15355 Lambda Dr, San Antonio, TX 78245 USA.
EM hastye@uthscsa.edu
FU CTRC [CA054174]; [NIH: P01-AG017242]; [P30-AG013319]; [R01-CA193835]
FX This work was supported by the following grants from the NIH:
P01-AG017242 to PH and JC, P30-AG013319 to PH and R01-CA193835 to ZDS
and PH. We also thank the CTRC (CA054174) for support.
NR 93
TC 0
Z9 0
U1 1
U2 1
PU AME PUBL CO
PI SHEUNG WAN
PA ROOM 604 6-F HOLLYWOOD CENTER, 77-91, QUEENS ROAD, SHEUNG WAN, HONG KONG
00000, PEOPLES R CHINA
SN 2218-676X
EI 2219-6803
J9 TRANSL CANCER RES
JI Transl. Cancer Res.
PD DEC
PY 2016
VL 5
IS 6
BP 685
EP 691
DI 10.21037/tcr.2016.12.02
PG 7
WC Oncology
SC Oncology
GA EJ5YE
UT WOS:000393294300008
ER
PT J
AU Hansen, SK
Berkowitz, B
Vesselinov, VV
O'Malley, D
Karra, S
AF Hansen, Scott K.
Berkowitz, Brian
Vesselinov, Velimir V.
O'Malley, Daniel
Karra, Satish
TI Push-pull tracer tests: Their information content and use for
characterizing non-Fickian, mobile-immobile behavior
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID SOLUTE TRANSPORT; MASS-TRANSFER; RANDOM-WALK; RATE COEFFICIENTS;
DISTRIBUTIONS; AQUIFER; DIFFUSION; SORPTION; MODELS; FLOW
AB Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In reality, heterogeneous flow fields mean that both assumptions are idealizations. To understand their impact, we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale dispersion, and velocity field heterogeneity on push-pull breakthrough curves and compares them to the effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path reversibility, we develop a continuous-time-random-walk-based interpretation framework which is flow-field-agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is uninformative about velocity field heterogeneity. Our interpretation method determines a mapping function (i.e., subordinator) from travel time in the absence of MIMT to travel time in its presence. A mathematical theory allowing this function to be directly "plugged into'' an existing Laplace-domain transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the calibration are presented and applied to interpretation of data from a push-pull test performed in a heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one obtained using a million-node 3-D numerical model. Finally, we demonstrate analytically and numerically how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics.
C1 [Hansen, Scott K.; Vesselinov, Velimir V.; O'Malley, Daniel; Karra, Satish] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87544 USA.
[Hansen, Scott K.; Berkowitz, Brian] Weizmann Inst Sci, Dept Earth & Planetary Sci, Rehovot, Israel.
RP Hansen, SK (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87544 USA.; Hansen, SK (reprint author), Weizmann Inst Sci, Dept Earth & Planetary Sci, Rehovot, Israel.
EM skh3@lanl.gov
RI BERKOWITZ, BRIAN/K-1497-2012;
OI BERKOWITZ, BRIAN/0000-0003-3078-1859; Hansen, Scott/0000-0001-8022-0123;
Karra, Satish/0000-0001-7847-6293; Vesselinov,
Velimir/0000-0002-6222-0530
FU Azrieli Foundation; LANL Environmental Programs; P. & A.
Guggenheim-Ascarelli Foundation; DiaMonD project (An Integrated
Multifaceted Approach to Mathematics at the Interfaces of Data, Models,
and Decisions, U.S. Department of Energy Office of Science) [11145687];
Sam Zuckerberg Professorial Chair in Hydrology
FX S.K.H. gratefully acknowledges partial financial support in the form of
a postdoctoral fellowship from the Azrieli Foundation, as well as
support from the LANL Environmental Programs. B.B. gratefully
acknowledges the support of a research grant from the P. & A.
Guggenheim-Ascarelli Foundation from. B.B. holds the Sam Zuckerberg
Professorial Chair in Hydrology. V.V.V. was supported by the LANL
Environmental Programs and the DiaMonD project (An Integrated
Multifaceted Approach to Mathematics at the Interfaces of Data, Models,
and Decisions, U.S. Department of Energy Office of Science, grant
11145687). The authors thank Gaisheng Liu and his coauthors for sharing
the data against which we calibrated in section 6. All other numerical
results derive from simulations performed by the authors; the
corresponding author maintains an archive of the relevant codes. The
authors thank the Editor, Associate Editor, and anonymous reviewers for
constructive comments.
NR 39
TC 0
Z9 0
U1 1
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD DEC
PY 2016
VL 52
IS 12
BP 9565
EP 9585
DI 10.1002/2016WR018769
PG 21
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA EJ6HV
UT WOS:000393321000022
ER
PT J
AU Lu, D
Zhang, GN
Webster, C
Barbier, C
AF Lu, Dan
Zhang, Guannan
Webster, Clayton
Barbier, Charlotte
TI An improved multilevel Monte Carlo method for estimating probability
distribution functions in stochastic oil reservoir simulations
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM POROUS-MEDIA; STEADY-STATE FLOW;
RANDOM INPUT DATA; COLLOCATION METHOD; LOCALIZED ANALYSES; UNCERTAINTY;
EFFICIENT; MODEL
AB In this work, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challenge in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.
C1 [Lu, Dan] Oak Ridge Natl Lab, Climate Change Sci Inst, Comp Sci & Math Div, Oak Ridge, TN 37830 USA.
[Zhang, Guannan; Webster, Clayton] Oak Ridge Natl Lab, Dept Computat & Appl Math, Oak Ridge, TN USA.
[Webster, Clayton] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA.
[Barbier, Charlotte] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA.
RP Lu, D (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Comp Sci & Math Div, Oak Ridge, TN 37830 USA.
EM lud1@ornl.gov
OI Zhang, Guannan/0000-0001-7256-150X; Lu, Dan/0000-0001-5162-9843
FU U.S. Defense Advanced Research Projects Agency, Defense Sciences Office
[HR0011619523]; U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Applied Mathematics program
[ERKJ259, ERKJ314]; U.S. Air Force Office of Scientific Research
[1854-V521-12]; U.S. National Science Foundation, Computational
Mathematics program [1620280, 1620027]; Laboratory Directed Research and
Development program at the Oak Ridge National Laboratory
[DE-AC05-00OR22725]
FX The author would like to thank the anonymous referees for their
insightful comments and suggestions that have helped improve the paper.
This work is partially supported by the U.S. Defense Advanced Research
Projects Agency, Defense Sciences Office under contract HR0011619523;
the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Applied Mathematics program under
contracts ERKJ259 and ERKJ314; the U.S. Air Force Office of Scientific
Research under grants 1854-V521-12; the U.S. National Science
Foundation, Computational Mathematics program under awards 1620280 and
1620027; and by the Laboratory Directed Research and Development program
at the Oak Ridge National Laboratory, which is operated by UT-Battelle,
LLC., for the U.S. Department of Energy, under contract
DE-AC05-00OR22725.
NR 46
TC 0
Z9 0
U1 1
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD DEC
PY 2016
VL 52
IS 12
BP 9642
EP 9660
DI 10.1002/2016WR019475
PG 19
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA EJ6HV
UT WOS:000393321000026
ER
PT J
AU Matsubara, Y
Grills, DC
Koide, Y
AF Matsubara, Yasuo
Grills, David C.
Koide, Yoshihiro
TI Experimental Insight into the Thermodynamics of the Dissolution of
Electrolytes in Room-Temperature Ionic Liquids: From the Mass Action Law
to the Absolute Standard Chemical Potential of a Proton
SO ACS Omega
LA English
DT Article
ID ETHANOL-WATER SOLVENTS; ELECTROCATALYTIC CO2 REDUCTION; TRANSFER
ACTIVITY-COEFFICIENTS; EQUILIBRIUM ACIDITY PK(A); AQUEOUS-ORGANIC
SOLVENTS; SOLVATION FREE-ENERGIES; GIBBS FREE-ENERGY; BINARY-MIXTURES;
SINGLE IONS; MOLTEN-SALT
AB Room-temperature ionic liquids (ILs) are a class of nonaqueous solvents that have expanded the realm of modern chemistry, drawing increasing interest over the last few decades, not only in terms of their own unique physical chemistry but also in many applications including organic synthesis, electrochemistry, and biological systems, wherein charged solutes (i.e., electrolytes) often play vital roles. However, our fundamental understanding of the dissolution of an electrolyte in an IL is still rather limited. For example, the activity of a charged species has frequently been assumed to be unity without a clear experimental basis. In this study, we have discussed a standard component-based scheme for the dissolution of an electrolyte in an IL, supported by our observation of ideal Nernstian responses for the reduction of silver and ferrocenium salts in a representative IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide ([emim(+)][NTf2-] or [emim(+)][TFSI-]). Using this scheme, which was also supported by temperature-dependent measurements with ILs having longer alkyl chains in the imidazolium ring, and the solubility of the IL in water, we established the concept of Gibbs transfer energies of "pseudo-single ions" from the IL to conventional neutral molecular solvents (water, acetonitrile, and methanol). This concept, which bridges component-and constituent-based energetics, utilizes an extrathermodynamic assumption, which itself was justified by experimental observations. These energies enable us to eliminate inner potential differences between the IL and molecular solvents (solvent-solvent interactions), that is, on a practical level, conditional liquid junction potential differences, so that we can discuss ion-solvent interactions independently. Specifically, we have examined the standard electrode potential of the ferrocenium/ferrocene redox couple, Fc(+)/Fc, and the absolute intrinsic standard chemical potential of a proton in [emim(+)][NTf2-], finding that the proton is more acidic in the IL than in water by 6.5 +/- 0.6 units on the unified pH scale. These results strengthen the progress on the physical chemistry of ions in IL solvent systems on the basis of their activities, providing a rigorous thermodynamic framework.
C1 [Matsubara, Yasuo; Koide, Yoshihiro] Kanagawa Univ, Dept Mat & Life Chem, Kanagawa Ku, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan.
[Grills, David C.] Brookhaven Natl Lab, Div Chem, POB 5000, Upton, NY 11973 USA.
RP Matsubara, Y (reprint author), Kanagawa Univ, Dept Mat & Life Chem, Kanagawa Ku, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan.; Grills, DC (reprint author), Brookhaven Natl Lab, Div Chem, POB 5000, Upton, NY 11973 USA.
EM ft101936fb@kanagawa-u.ac.jp; dcgrills@bnl.gov
OI Grills, David/0000-0001-8349-9158
FU PRESTO project: "Chemical Conversion of Light Energy" of the Japan
Science and Technology Agency (JST) [JST-PROJECT-11102684]; U.S.
Department of Energy (DOE), Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences Biosciences
[DE-SC0012704]
FX This work was partially supported by the PRESTO project: "Chemical
Conversion of Light Energy" of the Japan Science and Technology Agency
(JST) under grant JST-PROJECT-11102684. We acknowledge the work of Shota
Ishii, Kazuya Ando, Kaito Abe, Tetsuya Iijima, and Kazuki Saito on
measurements of solubilities and potential differences. Work at BNL was
supported by the U.S. Department of Energy (DOE), Office of Science,
Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences & Biosciences under contract DE-SC0012704. We thank Assoc.
Prof. Dr. Shoji Akai for kindly supporting elemental analysis and Drs.
James Wishart and Stephen Feldberg for helpful discussions.
NR 175
TC 0
Z9 0
U1 5
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2470-1343
J9 ACS OMEGA
JI ACS Omega
PD DEC
PY 2016
VL 1
IS 6
BP 1393
EP 1411
DI 10.1021/acsomega.6b00129
PG 19
WC Chemistry, Multidisciplinary
SC Chemistry
GA EI7YQ
UT WOS:000392721200035
ER
PT J
AU Chen, BL
Wang, GY
Chen, SY
Muralidharan, G
Stalheim, D
Sun, AC
Huang, EW
Liaw, PK
AF Chen, Bilin
Wang, Gongyao
Chen, Shuying
Muralidharan, Govindarajan
Stalheim, Doug
Sun, An-Cheng
Huang, E-Wen
Liaw, Peter K.
TI Fatigue-Crack-Growth Behavior of Two Pipeline Steels
SO ADVANCED ENGINEERING MATERIALS
LA English
DT Article
ID NEUTRON-DIFFRACTION; STRESS RATIOS; TIP; ALLOY; EVOLUTION; CLOSURE
AB The fatigue-crack-growth behavior of two types of pipeline steels, Alloy B [Fe-0.05C-1.52Mn-0.12Si-0.092Nb, weight percent (wt%)] and Alloy C (Fe-0.04C-1.61Mn-0.14Si-0.096Nb, wt%), have been investigated. Compact-tension (CT) specimens have been tested at various frequencies (10, 1, and 0.1 Hz) and different R ratios (0.1 and 0.5, R = P-min/P-max where P-min is the minimum applied load, and P-max is the maximum applied load) in air. It is concluded that higher R ratios lead to faster crack-growth rates (FCGRs), while frequency does not have much influence on FCGRs. Moreover, Alloy B tends to have better fatigue resistance than Alloy C under various test conditions in air.
C1 [Chen, Bilin; Wang, Gongyao; Chen, Shuying; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Muralidharan, Govindarajan] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
[Stalheim, Doug] DGS Met Solut Inc, 15003 NE 10th St, Vancouver, WA 98684 USA.
[Sun, An-Cheng] Yuan Ze Univ, Dept Chem Engn & Mat Sci, 135 Yuan Tung Rd, Chungli 32003, Taiwan.
[Huang, E-Wen] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan.
[Huang, E-Wen] Ind Technol Res Inst, Mat & Chem Res Labs, Zhudong 31040, Hsinchu County, Taiwan.
RP Liaw, PK (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
EM pliaw@utk.edu
FU U.S. Department of Transportation Federal Aviation
[USDOTDTPH56-10-T-000001]; U.S. Army Research Office project
[W911NF-13-1-0438]; National Science Foundation [CMMI-1100080,
DMR-1611180]; U.S. Department of Energy Office of Science User Facility
operated for the DOE Office of Science by the Argonne National
Laboratory [DE-AC02-06CH11357]
FX P. K. L. genuinely appreciates the U.S. Department of Transportation
Federal Aviation, under Grant No. of USDOTDTPH56-10-T-000001, with Jim
Merritt as the program manager. E. W. H. would like to acknowledge the
Ministry of Science and Technology (MOST) Program of
104-2628-E-009-003-MY3 and Atomic Energy Council (AEC) Program of
105A3015EJ. P. K. L. is very grateful to the Department of Energy (DOE),
Office of Fossil Energy, National Energy Technology Laboratory
(DE-FE-0008855, DE-FE-0024054, and DE-FE-0011194), with Mr. V. Cedro,
Mr. R. Dunst, and Dr. J. Mullen as program managers. P. K. L. very much
appreciates the support of the U.S. Army Research Office project
(W911NF-13-1-0438) with the program manager, Dr. D. M. Stepp. P. K. L.
thanks the support from the National Science Foundation (CMMI-1100080
and DMR-1611180) with the program directors, Dr. C. Cooper and Dr. D.
Farkas. We acknowledge the use of the Advanced Photon Source, a U.S.
Department of Energy Office of Science User Facility operated for the
DOE Office of Science by the Argonne National Laboratory under Contract
No. DE-AC02-06CH11357, with Dr. Y. Ren as the beamline scientist.
NR 32
TC 0
Z9 0
U1 6
U2 6
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1438-1656
EI 1527-2648
J9 ADV ENG MATER
JI Adv. Eng. Mater.
PD DEC
PY 2016
VL 18
IS 12
SI SI
BP 2028
EP 2039
DI 10.1002/adem.201600340
PG 12
WC Materials Science, Multidisciplinary
SC Materials Science
GA EJ1AB
UT WOS:000392941400006
ER
PT J
AU Baxter, HL
Mazarei, M
Fu, CX
Cheng, QK
Turner, GB
Sykes, RW
Windham, MT
Davis, MF
Dixon, RA
Wang, ZY
Stewart, CN
AF Baxter, Holly L.
Mazarei, Mitra
Fu, Chunxiang
Cheng, Qunkang
Turner, Geoffrey B.
Sykes, Robert W.
Windham, Mark T.
Davis, Mark F.
Dixon, Richard A.
Wang, Zeng-Yu
Stewart, C. Neal, Jr.
TI Time Course Field Analysis of COMT-Downregulated Switchgrass:
Lignification, Recalcitrance, and Rust Susceptibility
SO BioEnergy Research
LA English
DT Article
DE Biomass; Caffeic acid O-methyltransferase (COMT); Lignin;
Lignocellulosic biofuel; Switchgrass
ID ACID O-METHYLTRANSFERASE; MAIZE STEM TISSUES; CELL-WALL;
PANICUM-VIRGATUM; LIGNIN BIOSYNTHESIS; BIOFUEL PRODUCTION;
LIGNOCELLULOSIC BIOMASS; GENETIC MANIPULATION; BIOENERGY FEEDSTOCK;
PUCCINIA-EMACULATA
AB Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with down-regulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38 % more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2 years. In 2012, sampling was initiated in mid-growing season on reproductivestage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16 % less lignin, 33-40 % lower S/G (syringyl-to-guaiacyl) ratios, and 1542 % higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth inmid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. These results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.
C1 [Baxter, Holly L.; Mazarei, Mitra; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA.
[Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang; Turner, Geoffrey B.; Sykes, Robert W.; Davis, Mark F.; Dixon, Richard A.; Wang, Zeng-Yu; Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, BESC, Oak Ridge, TN 37831 USA.
[Fu, Chunxiang; Wang, Zeng-Yu] Samuel Roberts Noble Fdn Inc, Ardmore, OK 73401 USA.
[Cheng, Qunkang; Windham, Mark T.] Univ Tennessee, Dept Entomol & Plant Pathol, Knoxville, TN 37996 USA.
[Turner, Geoffrey B.; Sykes, Robert W.; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Dixon, Richard A.] Univ North Texas, Dept Biol Sci, Denton, TX 76203 USA.
RP Stewart, CN (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA.; Stewart, CN (reprint author), Oak Ridge Natl Lab, BESC, Oak Ridge, TN 37831 USA.
EM nealstewart@utk.edu
OI davis, mark/0000-0003-4541-9852
FU Southeastern Sun Grant Center; BioEnergy Science Center; Office of
Biological and Environmental Research in the DOE Office of Science
FX We thank Angela Ziebell, Erica Gjersing, Crissa Doeppke, and Melvin
Tucker for assistance with the cell wall characterization. We also thank
Ben Wolfe, Marcus Laxton, and the UT field staff for general field
maintenance and assistance with sample collection, Reggie Millwood for
assistance with the USDA APHIS BRS permit regulations, Erika Barton for
assistance with sample preparation, and Susan Holladay for assistance
with data entry into LIMS. This work was supported by funding from the
Southeastern Sun Grant Center and the BioEnergy Science Center. The
BioEnergy Science Center is a U.S. Department of Energy Bioenergy
Research Center supported by the Office of Biological and Environmental
Research in the DOE Office of Science.
NR 51
TC 0
Z9 0
U1 6
U2 6
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1939-1234
EI 1939-1242
J9 BIOENERG RES
JI BioEnergy Res.
PD DEC
PY 2016
VL 9
IS 4
BP 1087
EP 1100
DI 10.1007/s12155-016-9751-1
PG 14
WC Energy & Fuels; Environmental Sciences
SC Energy & Fuels; Environmental Sciences & Ecology
GA EI8CI
UT WOS:000392731900011
ER
PT J
AU Baer, DR
Munusamy, P
Thrall, BD
AF Baer, Donald R.
Munusamy, Prabhakaran
Thrall, Brian D.
TI Provenance information as a tool for addressing engineered nanoparticle
reproducibility challenges
SO Biointerphases
LA English
DT Article
ID CORE-SHELL NANOPARTICLES; ZERO-VALENT IRON; OXIDE NANOPARTICLES;
BIOMEDICAL APPLICATIONS; SILVER NANOPARTICLES; SURFACE-CHEMISTRY; CARBON
NANOTUBES; RISK-ASSESSMENT; NANOMATERIALS; TOXICITY
AB Nanoparticles of various types are of increasing research and technological importance in biological and other applications. Difficulties in the production and delivery of nanoparticles with consistent and well defined properties appear in many forms and have a variety of causes. Among several issues are those associated with incomplete information about the history of particles involved in research studies, including the synthesis method, sample history after synthesis, including time and nature of storage, and the detailed nature of any sample processing or modification. In addition, the tendency of particles to change with time or environmental condition suggests that the time between analysis and application is important and some type of consistency or verification process can be important. The essential history of a set of particles can be identified as provenance information and tells the origin or source of a batch of nano-objects along with information related to handling and any changes that may have taken place since it was originated. A record of sample provenance information for a set of particles can play a useful role in identifying some of the sources and decreasing the extent of particle variability and the lack of reproducibility observed by many researchers. (C) 2016 Author(s).
C1 [Baer, Donald R.; Munusamy, Prabhakaran; Thrall, Brian D.] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA.
RP Baer, DR (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA.
EM don.baer@pnnl.gov
FU Office of Biological and Environmental Research (BER); DOE Office of
Science, Offices of Basic Energy Science (or BES) and BER; National
Institutes of Environmental Health Sciences (or NIEHS) Centers for
Nanotechnology Health Implications Research (NCNHIR) Consortium [U19
ES019544]
FX Much of the work reported in this paper was conducted using the
Environmental Molecular Sciences Laboratory (or EMSL), a Department of
Energy (DOE) Office of Science User Facility sponsored by the Office of
Biological and Environmental Research (BER). Parts of the work were
supported by the DOE Office of Science, Offices of Basic Energy Science
(or BES) and BER, and the National Institutes of Environmental Health
Sciences (or NIEHS) Centers for Nanotechnology Health Implications
Research (NCNHIR) Consortium under Center Grant No. U19 ES019544. The
ideas included in this perspective have evolved from two different but
related sources. (1) For more than a decade, laboratories at Pacific
Northwest National Laboratory (or PNNL) and EMSL have worked with a
range of colleagues from around the world to study the behaviors of
nanomaterials of many types. These research efforts have identified
information the authors have found to be important for reproducible
studies. (2) In addition, DRB has participated within ISO Committee T201
on Surface Chemical Analysis in cooperation of ISO Committee 229
Nanotechnology to prepare a document on the information that needs to be
reported regarding the handling and preparation of nano-objects for
surface analysis. The nano-object sample handling document (ISO 20579-4)
highlights the need for the methods used for preparing nano-objects for
surface analysis to be documented, along with the data collected, to
become part of the provenance information associated with a batch of
material.
NR 79
TC 3
Z9 3
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1934-8630
EI 1559-4106
J9 BIOINTERPHASES
JI Biointerphases
PD DEC
PY 2016
VL 11
IS 4
AR 04B401
DI 10.1116/1.4964867
PG 9
WC Biophysics; Materials Science, Biomaterials
SC Biophysics; Materials Science
GA EI8JL
UT WOS:000392752400016
PM 27936809
ER
PT J
AU Bergeron, N
Williams, PT
Lamendella, R
Faghihnia, N
Grube, A
Li, XM
Wang, ZN
Knight, R
Jansson, JK
Hazen, SL
Krauss, RM
AF Bergeron, Nathalie
Williams, Paul T.
Lamendella, Regina
Faghihnia, Nastaran
Grube, Alyssa
Li, Xinmin
Wang, Zeneng
Knight, Rob
Jansson, Janet K.
Hazen, Stanley L.
Krauss, Ronald M.
TI Diets high in resistant starch increase plasma levels of
trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD
risk
SO BRITISH JOURNAL OF NUTRITION
LA English
DT Article
DE Trimethylamine-N-oxide; Resistant starch; Carbohydrate; Lipids; Insulin;
Glucose; CVD
ID CONTAINING MONOOXYGENASE 3; APOLIPOPROTEIN-A-I; REDUCED-FAT DIET;
INSULIN SENSITIVITY; HIGH-AMYLOSE; L-CARNITINE; LIQUID-CHROMATOGRAPHY;
LIPOPROTEIN RESPONSE; RUMINOCOCCUS-BROMII; AMYLOPECTIN STARCH
AB Production of trimethylamine-N-oxide (TMAO), a biomarker of CVD risk, is dependent on intestinal microbiota, but little is known of dietary conditions promoting changes in gut microbial communities. Resistant starches (RS) alter the human microbiota. We sought to determine whether diets varying in RS and carbohydrate (CHO) content affect plasma TMAO levels. We also assessed postprandial glucose and insulin responses and plasma lipid changes to diets high and low in RS. In a cross-over trial, fifty-two men and women consumed a 2week baseline diet (41 percentage of energy (% E) CHO, 40% fat, 19% protein), followed by 2-week high-and low-RS diets separated by 2week washouts. RS diets were assigned at random within the context of higher (51-53 % E) v. lower CHO (39-40 % E) intake. Measurements were obtained in the fasting state and, for glucose and insulin, during a meal test matching the composition of the assigned diet. With lower CHO intake, plasma TMAO, carnitine, betaine and gamma-butyrobetaine concentrations were higher after the high-v. low-RS diet (P < 0.01 each). These metabolites were not differentially affected by high v. low RS when CHO intake was high. Although the high-RS meal reduced postprandial insulin and glucose responses when CHO intake was low (P < 0.01 each), RS did not affect fasting lipids, lipoproteins, glucose or insulin irrespective of dietary CHO content. In conclusion, a lower-CHO diet high in RS was associated with higher plasma TMAO levels. These findings, together with the absence of change in fasting lipids, suggest that short-term high-RS diets do not improve markers of cardiometabolic health.
C1 [Bergeron, Nathalie; Faghihnia, Nastaran; Krauss, Ronald M.] Childrens Hosp, Oakland Res Inst, Oakland, CA 94609 USA.
[Bergeron, Nathalie] Touro Univ, Coll Pharm, Vallejo, CA 94592 USA.
[Williams, Paul T.] Lawrence Berkeley Natl Lab, Dept Genome Sci, Div Life Sci, Berkeley, CA 94720 USA.
[Lamendella, Regina; Grube, Alyssa] Juniata Coll, Huntingdon, PA 16652 USA.
[Li, Xinmin; Wang, Zeneng; Hazen, Stanley L.] Cleveland Clin, Dept Cellular & Mol Med, Cleveland, OH 44195 USA.
[Knight, Rob] Univ Calif San Diego, Dept Pediat & Comp Sci & Engn, San Diego, CA 92093 USA.
[Knight, Rob] Univ Colorado Boulder, Dept Chem & Biochem & Comp Sci, Boulder, CO 80309 USA.
[Knight, Rob] Univ Colorado Boulder, BioFrontiers Inst, Boulder, CO 80309 USA.
[Jansson, Janet K.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
RP Bergeron, N; Krauss, RM (reprint author), Childrens Hosp, Oakland Res Inst, Oakland, CA 94609 USA.; Bergeron, N (reprint author), Touro Univ, Coll Pharm, Vallejo, CA 94592 USA.
EM nbergeron@chori.org; rkrauss@chori.org
FU National Institutes of Health (NIH) [DK086472]; NIH National Center for
Advancing Translational Sciences, University of California, San
Francisco (UCSF) Clinical and Translational Science Unit [UL1 TR000004];
Ingredion Inc.; NIH; Office of Dietary Supplements [HL103866, DK106000];
Lenard Krieger Endowment
FX The authors received the following financial supports: National
Institutes of Health (NIH) (DK086472); NIH National Center for Advancing
Translational Sciences, University of California, San Francisco (UCSF)
Clinical and Translational Science Unit (UL1 TR000004); Ingredion Inc.;
NIH and Office of Dietary Supplements (HL103866 and DK106000); S. L. H.
is also partially supported by funds from the Lenard Krieger Endowment.
NR 60
TC 0
Z9 0
U1 5
U2 5
PU CAMBRIDGE UNIV PRESS
PI CAMBRIDGE
PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND
SN 0007-1145
EI 1475-2662
J9 BRIT J NUTR
JI Br. J. Nutr.
PD DEC
PY 2016
VL 116
IS 12
BP 2020
EP 2029
DI 10.1017/S0007114516004165
PG 10
WC Nutrition & Dietetics
SC Nutrition & Dietetics
GA EI8AK
UT WOS:000392726300003
PM 27993177
ER
PT J
AU Matos, MN
Lozada, M
Anselmino, LE
Musumeci, MA
Henrissat, B
Jansson, JK
Mac Cormack, WP
Carroll, J
Sjoling, S
Lundgren, L
Dionisi, HM
AF Matos, Marina N.
Lozada, Mariana
Anselmino, Luciano E.
Musumeci, Matias A.
Henrissat, Bernard
Jansson, Janet K.
Mac Cormack, Walter P.
Carroll, JoLynn
Sjoling, Sara
Lundgren, Leif
Dionisi, Hebe M.
TI Metagenomics unveils the attributes of the alginolytic guilds of
sediments from four distant cold coastal environments
SO ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID BACTERIAL COMMUNITY STRUCTURE; COMPARATIVE-ANALYSIS SYSTEM; BALTIC SEA;
ALGAL POLYSACCHARIDES; MICROBIAL COMMUNITY; ESCHERICHIA-COLI; MARINE
BACTERIUM; ALGINATE LYASE; SP-NOV.; DEGRADATION
AB Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate degradation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The aim of this work was to gain a better understanding of alginate utilization capabilities in cold coastal environments. Sediment metagenomes from four high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homologue sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including members of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments showed distinct structures with a higher proportion of novel genes. Examination of the gene neighbourhood of the alginate lyase homologues revealed distinct patterns depending on the potential lineage of the scaffolds, with evidence of evolutionary relationships among alginolytic gene clusters from Bacteroidetes and Proteobacteria. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass.
C1 [Matos, Marina N.; Lozada, Mariana; Anselmino, Luciano E.; Musumeci, Matias A.; Dionisi, Hebe M.] Consejo Nacl Invest Cient & Tecn, Ctr El Estudio Sistemas Marinos CESIMAR, Lab Microbiol Ambiental, U9120ACD, Puerto Madryn, Argentina.
[Henrissat, Bernard] Aix Marseille Univ, CNRS, Architecture & Fonct Macromol Biol, F-13288 Marseille, France.
[Henrissat, Bernard] INRA, USC AFMB 1408, F-13288 Marseille, France.
[Henrissat, Bernard] King Abdulaziz Univ, Dept Biol Sci, Jeddah 21589, Saudi Arabia.
[Jansson, Janet K.] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA.
[Mac Cormack, Walter P.] Inst Antartico Argentino, C1064ABR, Buenos Aires, DF, Argentina.
[Mac Cormack, Walter P.] Univ Buenos Aires, CONICET, Inst Nanobiotec, C1113AAC, Buenos Aires, DF, Argentina.
[Carroll, JoLynn] Fram High North Res Ctr Climate & Environm, Akvaplan Niva, NO-9296 Tromso, Norway.
[Carroll, JoLynn] UiT Arctic Univ Norway, CAGE Ctr Arctic Gas Hydrate Environm & Climate, N-9037 Tromso, Norway.
[Sjoling, Sara] Sodertorn Univ, Sch Nat Sci & Environm Studies, S-14189 Huddinge, Sweden.
[Lundgren, Leif] Stockholm Univ, SE-10691 Stockholm, Sweden.
RP Dionisi, HM (reprint author), Consejo Nacl Invest Cient & Tecn, Ctr El Estudio Sistemas Marinos CESIMAR, Lab Microbiol Ambiental, U9120ACD, Puerto Madryn, Argentina.
EM hdionisi@cenpat-conicet.gob.ar
RI Fac Sci, KAU, Biol Sci Dept/L-4228-2013
FU Department of Energy-Joint Genome Institute (DOE-JGI) under the
Community Sequencing Program (CSP) [403959, 404206, 404777-404782,
404786, 404788-404801]; CONICET [112-200801-01736]; National Agency for
the Promotion of Science and Technology of Argentina [0468]; University
of Buenos Aires [UBA 2014-2017 20020130100569BA]; European Commission
through the Marie Curie Action IRSES IMCONet [318718]; Argentinean
Antarctic Institute; ANPCyT [0124]; Pacific Northwest National
Laboratory [DE-AC05-76RLO1830]; Agence Nationale de la Recherche
[ANR-10-BINF-03-04]; Research Council of Norway [223259]
FX ML, MAM and HMD are staff members from The National Research Council of
Argentina (CONICET). MNM is a post-doctoral fellow from CONICET. The
metagenomic dataset was generated at the Department of Energy-Joint
Genome Institute (DOE-JGI) under the Community Sequencing Program (CSP
proposal ID 328, project IDs 403959, 404206, 404777-404782, 404786,
404788-404801). HMD and ML were supported by Grants from CONICET (No.
112-200801-01736) and The National Agency for the Promotion of Science
and Technology of Argentina (ANPCyT PICT2008 No. 0468). WMC was
supported by Grants from the University of Buenos Aires (UBA 2014-2017
20020130100569BA), the European Commission through the Marie Curie
Action IRSES IMCONet (Project No. 318718), the Argentinean Antarctic
Institute and ANPCyT (PICTO 2010 No. 0124). JKJ was supported by the
Pacific Northwest National Laboratory under Contract DE-AC05-76RLO1830.
BH was supported by Agence Nationale de la Recherche, Grant BIP:BIP
(ANR-10-BINF-03-04). JC's research contribution is supported by the
Research Council of Norway (Grant No. 223259). We thank Krystle
Chavarria for her technical support and Ricardo Vera and Horacio Ocariz
for their help in sample collection. We would like to dedicate this work
to our late colleagues Horacio Ocariz and Leif Lundgren, who left us too
early.
NR 70
TC 0
Z9 0
U1 2
U2 2
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1462-2912
EI 1462-2920
J9 ENVIRON MICROBIOL
JI Environ. Microbiol.
PD DEC
PY 2016
VL 18
IS 12
BP 4471
EP 4484
DI 10.1111/1462-2920.13433
PG 14
WC Microbiology
SC Microbiology
GA EJ1CD
UT WOS:000392946900014
PM 27348213
ER
PT J
AU Alfaro, M
Castanera, R
Lavin, JL
Grigoriev, IV
Oguiza, JA
Ramirez, L
Pisabarro, AG
AF Alfaro, Manuel
Castanera, Raul
Lavin, Jose L.
Grigoriev, Igor V.
Oguiza, Jose A.
Ramirez, Lucia
Pisabarro, Antonio G.
TI Comparative and transcriptional analysis of the predicted secretome in
the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus
SO ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID PATHOGEN USTILAGO-MAYDIS; PROTEIN FAMILIES; CERATO-PLATANIN; GENOME
SEQUENCE; PHYLOGENETIC ANALYSIS; FILAMENTOUS FUNGI; LACCARIA-BICOLOR;
EDIBLE MUSHROOM; INSIGHTS; MECHANISMS
AB Fungi interact with their environment by secreting proteins to obtain nutrients, elicit responses and modify their surroundings. Because the set of proteins secreted by a fungus is related to its lifestyle, it should be possible to use it as a tool to predict fungal lifestyle. To test this hypothesis, we bioinformatically identified 538 and 554 secretable proteins in the monokaryotic strains PC9 and PC15 of the white rot basidiomycete Pleurotus ostreatus. Functional annotation revealed unknown functions (37.2%), glycosyl hydrolases (26.5%) and redox enzymes (11.5%) as the main groups in the two strains. When these results were combined with RNA-seq analyses, we found that the relative importance of each group was different in different strains and culture conditions and the relevance of the unknown function proteins was enhanced. Only a few genes were actively expressed in a given culture condition in expanded multigene families, suggesting that family expansi on could increase adaptive opportunities rather than activity under a specific culture condition. Finally, we used the set of P. ostreatus secreted proteins as a query to search their counterparts in other fungal genomes and found that the secretome profiles cluster the tested basidiomycetes into lifestyle rather than phylogenetic groups.
C1 [Alfaro, Manuel; Castanera, Raul; Lavin, Jose L.; Oguiza, Jose A.; Ramirez, Lucia; Pisabarro, Antonio G.] Univ Publ Navarra, Dept Agr Prod, Genet & Microbiol Res Grp, Pamplona 31006, Spain.
[Lavin, Jose L.] CIC bioGUNE, Genome Anal Platform, Bizkaia Technol Pk, Derio 48160, Spain.
[Lavin, Jose L.] CIBERehd, Bizkaia Technol Pk, Derio 48160, Spain.
[Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
RP Pisabarro, AG (reprint author), Univ Publ Navarra, Dept Agr Prod, Genet & Microbiol Res Grp, Pamplona 31006, Spain.
EM gpisabarro@unavarra.es
OI Lavin, Jose Luis/0000-0003-0914-3211
FU Spanish National Research Plan [AGL2011-30495]; Office of Science of the
U.S. Department of Energy [DE-AC02-05CH11231]; Basque Country
Government; Innovation Technology Dept. of Bizkaia
FX This work was supported by funds from the project AGL2011-30495 of the
Spanish National Research Plan, by additional institutional support from
the Public University of Navarre, and by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (work
conducted by the U.S. Department of Energy Joint Genome Institute). JLL
is supported by the Basque Country Government (Etortek Research Programs
2011/2014) and from the Innovation Technology Dept. of Bizkaia.
NR 75
TC 1
Z9 1
U1 4
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1462-2912
EI 1462-2920
J9 ENVIRON MICROBIOL
JI Environ. Microbiol.
PD DEC
PY 2016
VL 18
IS 12
BP 4710
EP 4726
DI 10.1111/1462-2920.13360
PG 17
WC Microbiology
SC Microbiology
GA EJ1CD
UT WOS:000392946900032
PM 27117896
ER
PT J
AU Yan, QY
Li, JJ
Yu, YH
Wang, JJ
He, ZL
Van Nostrand, JD
Kempher, ML
Wu, LY
Wang, YP
Liao, LJ
Li, XH
Wu, S
Ni, JJ
Wang, C
Zhou, JZ
AF Yan, Qingyun
Li, Jinjin
Yu, Yuhe
Wang, Jianjun
He, Zhili
Van Nostrand, Joy D.
Kempher, Megan L.
Wu, Liyou
Wang, Yaping
Liao, Lanjie
Li, Xinghao
Wu, Shu
Ni, Jiajia
Wang, Chun
Zhou, Jizhong
TI Environmental filtering decreases with fish development for the assembly
of gut microbiota
SO ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID INTESTINAL MICROBIOTA; BACTERIAL COMMUNITIES; ECOLOGICAL PROCESSES;
ISLAND BIOGEOGRAPHY; NEUTRAL THEORY; DIVERSITY; METABOLISM; ZEBRAFISH;
EVOLUTION; MICE
AB Gut microbiota typically occupy habitats with definable limits/borders that are comparable to oceanic islands. The gut therefore can be regarded as an 'island' for the assembly of microbial communities within the 'sea' of surrounding environments. This study aims to reveal the ecological mechanisms that govern microbiota in the fish gut 'island' ecosystem. Taxonomic compositions, phylogenetic diversity, and community turnover across host development were analyzed via the high-throughput sequencing of 16S rRNA gene amplicons. The results indicate that the Shannon diversity of gut microbiota in the three examined freshwater fish species all significantly decreased with host development, and the dominant bacterial taxa also changed significantly during host development. Null model and phylogenetic-based mean nearest taxon distance (MNTD) analyses suggest that host gut environmental filtering led to the assembly of microbial communities in the fish gut 'island'. However, the phylogenetic clustering of local communities and deterministic processes that governed community turnover became less distinct as the fish developed. The observed mechanisms that shaped fish gut microbiota seemed to be mainly shaped by the gut environment and by some other selective changes accompanying the host development process. These findings greatly enhance our understanding of stage-specific community assembly patterns in the fish gut ecosystem.
C1 [Yan, Qingyun; Li, Jinjin; Yu, Yuhe; Wang, Yaping; Liao, Lanjie; Li, Xinghao; Wu, Shu; Ni, Jiajia; Wang, Chun] Chinese Acad Sci, Key Lab Aquat Biodivers & Conservat, Wuhan 430072, Peoples R China.
[Yan, Qingyun; Li, Jinjin; Yu, Yuhe; Wang, Yaping; Liao, Lanjie; Li, Xinghao; Wu, Shu; Ni, Jiajia; Wang, Chun] Chinese Acad Sci, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China.
[Li, Jinjin] Qilu Normal Univ, Jinan 250013, Peoples R China.
[Wang, Jianjun; He, Zhili; Van Nostrand, Joy D.; Kempher, Megan L.; Wu, Liyou; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA.
[Wang, Jianjun; He, Zhili; Van Nostrand, Joy D.; Kempher, Megan L.; Wu, Liyou; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Wang, Jianjun] Chinese Acad Sci, State Key Lab Lake Sci & Environm, Nanjing Inst Geog & Limnol, Nanjing 210008, Peoples R China.
[Li, Xinghao; Wang, Chun] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China.
[Ni, Jiajia] Guangdong Inst Microbiol, State Key Lab Appl Microbiol Southern China, Guangzhou 510070, Guangdong, Peoples R China.
[Wang, Chun] Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China.
[Zhou, Jizhong] Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Con, Sch Environm, Beijing 100084, Peoples R China.
[Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Yan, QY (reprint author), Chinese Acad Sci, Key Lab Aquat Biodivers & Conservat, Wuhan 430072, Peoples R China.; Yan, QY (reprint author), Chinese Acad Sci, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China.; Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Con, Sch Environm, Beijing 100084, Peoples R China.; Zhou, JZ (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM yanqyun@ihb.ac.cn; yhyu@ihb.ac.cn; jzhou@ou.edu
OI Wang, Jianjun/0000-0001-7039-7136
FU National Natural Science Foundation of China [31400109, 31372202]; Youth
Innovation Promotion Association of the Chinese Academy of Sciences
[Y22Z07]; Office of the Vice President for Research at the University of
Oklahoma
FX This work was supported by the National Natural Science Foundation of
China (31400109, 31372202), by the Youth Innovation Promotion
Association of the Chinese Academy of Sciences (Y22Z07), and by the
Office of the Vice President for Research at the University of Oklahoma.
NR 67
TC 4
Z9 4
U1 17
U2 17
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1462-2912
EI 1462-2920
J9 ENVIRON MICROBIOL
JI Environ. Microbiol.
PD DEC
PY 2016
VL 18
IS 12
BP 4739
EP 4754
DI 10.1111/1462-2920.13365
PG 16
WC Microbiology
SC Microbiology
GA EJ1CD
UT WOS:000392946900034
PM 27130138
ER
PT J
AU Bloom-Ackermann, Z
Steinberg, N
Rosenberg, G
Oppenheimer-Shaanan, Y
Pollack, D
Ely, S
Storzi, N
Levy, A
Kolodkin-Gal, I
AF Bloom-Ackermann, Zohar
Steinberg, Nitai
Rosenberg, Gili
Oppenheimer-Shaanan, Yaara
Pollack, Dan
Ely, Shir
Storzi, Nimrod
Levy, Asaf
Kolodkin-Gal, Ilana
TI Toxin-Antitoxin systems eliminate defective cells and preserve symmetry
in Bacillus subtilis biofilms
SO ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID ESCHERICHIA-COLI; MASTER REGULATOR; DNA RELEASE; BACTERIA; DEATH; TNRA;
CANNIBALISM; COMPETENCE; DISPERSAL; DISCOVERY
AB Toxin-antitoxin modules are gene pairs encoding a toxin and its antitoxin, and are found on the chromosomes of many bacteria, including pathogens. Here, we characterize the specific contribution of the TxpA and YqcG toxins in elimination of defective cells from developing Bacillus subtilis biofilms. On nutrient limitation, defective cells accumulated in the biofilm breaking its symmetry. Deletion of the toxins resulted in accumulation of morphologically abnormal cells, and interfered with the proper development of the multicellular community. Dual physiological responses are of significance for TxpA and YqcG activation: nitrogen deprivation enhances the transcription of both TxpA and YqcG toxins, and simultaneously sensitizes the biofilm cells to their activity. Furthermore, we demonstrate that while both toxins when overexpressed affect the morphology of the developing biofilm, the toxin TxpA can act to lyse and dissolve pre-established B. subtilis biofilms.
C1 [Bloom-Ackermann, Zohar; Steinberg, Nitai; Rosenberg, Gili; Oppenheimer-Shaanan, Yaara; Pollack, Dan; Ely, Shir; Storzi, Nimrod; Levy, Asaf; Kolodkin-Gal, Ilana] Weizmann Inst Sci, Dept Mol Genet, IL-76100 Rehovot, Israel.
[Levy, Asaf] Broad Inst MIT & Harvard, Boston, MA USA.
[Bloom-Ackermann, Zohar] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
RP Kolodkin-Gal, I (reprint author), Weizmann Inst Sci, Dept Mol Genet, IL-76100 Rehovot, Israel.
EM ilana.kolodkin-gal@weizmann.ac.il
FU ISF-icore grant [152/1]; Larson Charitable Foundation; Ruth and Herman
Albert Scholars Program for New Scientists; Ilse Katz Institute for
Materials Sciences and Magnetic Resonance Research grant; Ministry of
Health grant for alternative research methods; Rowland and Sylvia Career
Development Chair
FX This research was supported by the ISF-icore grant 152/1, Mr. and Mrs.
Dan Kane, Ms. Lois Rosen, by the Larson Charitable Foundation, by Ruth
and Herman Albert Scholars Program for New Scientists, by the Ilse Katz
Institute for Materials Sciences and Magnetic Resonance Research grant,
and by the Ministry of Health grant for alternative research methods.
IKG is a recipient of the Rowland and Sylvia Career Development Chair.
NR 63
TC 0
Z9 0
U1 1
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1462-2912
EI 1462-2920
J9 ENVIRON MICROBIOL
JI Environ. Microbiol.
PD DEC
PY 2016
VL 18
IS 12
BP 5032
EP 5047
DI 10.1111/1462-2920.13471
PG 16
WC Microbiology
SC Microbiology
GA EJ1CD
UT WOS:000392946900054
PM 27450630
ER
PT J
AU Sun, RB
Dsouza, M
Gilbert, JA
Guo, XS
Wang, DZ
Guo, ZB
Ni, YY
Chu, HY
AF Sun, Ruibo
Dsouza, Melissa
Gilbert, Jack A.
Guo, Xisheng
Wang, Daozhong
Guo, Zhibin
Ni, Yingying
Chu, Haiyan
TI Fungal community composition in soils subjected to long-term chemical
fertilization is most influenced by the type of organic matter
SO ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID ARBUSCULAR MYCORRHIZAL FUNGI; NITROGEN-FERTILIZATION; MICROBIAL
COMMUNITIES; CHAETOMIUM-GLOBOSUM; ACREMONIUM ALCALOPHILUM; MULTIVARIATE
ANALYSES; SAPROTROPHIC FUNGI; NORTHEAST CHINA; WHEAT-STRAW; ARABLE SOIL
AB Organic matter application is a widely used practice to increase soil carbon content and maintain soil fertility. However, little is known about the effect of different types of organic matter, or the input of exogenous species from these materials, on soil fungal communities. In this study, fungal community composition was characterized from soils amended with three types of organic matter over a 30-year fertilization experiment. Chemical fertilization significantly changed soil fungal community composition and structure, which was exacerbated by the addition of organic matter, with the direction of change influenced by the type of organic matter used. The addition of organic matter significantly increased soil fungal richness, with the greatest richness achieved in soils amended with pig manure. Importantly, following addition of cow and pig manure, fungal taxa associated with these materials could be found in the soil, suggesting that these exogenous species can augment soil fungal composition. Moreover, the addition of organic matter decreased the relative abundance of potential pathogenic fungi. Overall, these results indicate that organic matter addition influences the composition and structure of soil fungal communities in predictable ways.
C1 [Sun, Ruibo; Ni, Yingying; Chu, Haiyan] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, East Beijing Rd 71, Nanjing 210008, Jiangsu, Peoples R China.
[Dsouza, Melissa; Gilbert, Jack A.] Univ Chicago, Marine Biol Lab, Woods Hole, MA 02543 USA.
[Dsouza, Melissa; Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA.
[Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA.
[Guo, Xisheng; Wang, Daozhong; Guo, Zhibin] Anhui Acad Agr Sci, Soil & Fertilizer Res Inst, Key Lab Nutrient Cycling & Resources Environm Anh, South Nongke Rd 40, Hefei 230031, Peoples R China.
RP Chu, HY (reprint author), Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, East Beijing Rd 71, Nanjing 210008, Jiangsu, Peoples R China.
EM hychu@issas.ac.cn
FU Strategic Priority Research Program of the Chinese Academy of Sciences
[XDB15010101]; National Program on Key Basic Research Project
[2014CB954002]; National Natural Science Foundation of China [41371254]
FX We thank Congcong Shen, Xingjia Xiang and Yuntao Li for assistance in
soil sampling, and Keke Hua for the management of the experimental
field. We also thank Rong Huang for assistance in sequencing. This work
was funded by the Strategic Priority Research Program of the Chinese
Academy of Sciences (XDB15010101), the National Program on Key Basic
Research Project (2014CB954002) and the National Natural Science
Foundation of China (41371254). The authors declare no conflicts of
interest.
NR 115
TC 0
Z9 0
U1 22
U2 22
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1462-2912
EI 1462-2920
J9 ENVIRON MICROBIOL
JI Environ. Microbiol.
PD DEC
PY 2016
VL 18
IS 12
BP 5137
EP 5150
DI 10.1111/1462-2920.13512
PG 14
WC Microbiology
SC Microbiology
GA EJ1CD
UT WOS:000392946900062
PM 27581342
ER
PT J
AU Holby, EF
AF Holby, E. F.
TI First-Principles Molecular Dynamics Study of Carbon Corrosion in PEFC
Catalyst Materials
SO FUEL CELLS
LA English
DT Article
DE Ab initio calculations; Carbon; Corrosion; First-principles Molecular
Dynamics; Graphene; Molecular Modeling
ID OXYGEN REDUCTION REACTION; TOTAL-ENERGY CALCULATIONS; MEMBRANE
FUEL-CELLS; WAVE BASIS-SET; DEFECTS; METALS; ELECTROCATALYSTS;
DEGRADATION; INSTABILITY; DURABILITY
AB Carbon corrosion plays an important role in ORR catalyst durability for both Pt-based catalysts as well as Pt group metal-free (PGM-free) catalysts. This corrosion process is attributed to CO2 generation during one of several probable, kinetically controlled electrochemical reactions. Previous relative stability studies considered only thermodynamic formation energy and thus do not include the kinetic nature of the carbon corrosion mechanism. In this manuscript, a model for electron beam damage utilizing first-principles molecular dynamics is applied to the understanding of how defects and surface species may affect the durability and corrosion susceptibility of graphene support structures at the atomic scale. Based on the outcomes of these studies, the calculated knockon displacement threshold energy is hypothesized to be a computationally accessible durability descriptor sensitive to kinetics of C removal and local atomic structure.
C1 [Holby, E. F.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
EM holby@lanl.gov
FU DOE-EERE through the Fuel Cell Technologies Office; U.S. Department of
Energy [DE-AC528-06NA25396]
FX The author deeply appreciates financial assistance for this research
from DOE-EERE through the Fuel Cell Technologies Office and wishes to
thank the Los Alamos National Laboratory for institutional computing
resources. Los Alamos National Laboratory is operated by Los Alamos
National Security LLC for the National Nuclear Security Administration
of the U.S. Department of Energy under contract DE-AC528-06NA25396. The
author would also like to thank P. Zelenay for aid in proofing the
manuscript.
NR 32
TC 1
Z9 1
U1 7
U2 7
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1615-6846
EI 1615-6854
J9 FUEL CELLS
JI Fuel Cells
PD DEC
PY 2016
VL 16
IS 6
BP 669
EP 674
DI 10.1002/fuce.201600012
PG 6
WC Electrochemistry; Energy & Fuels
SC Electrochemistry; Energy & Fuels
GA EI5KA
UT WOS:000392531900002
ER
PT J
AU Medici, EF
Zenyuk, IV
Parkinson, DY
Weber, AZ
Allen, JS
AF Medici, E. F.
Zenyuk, I. V.
Parkinson, D. Y.
Weber, A. Z.
Allen, J. S.
TI Understanding Water Transport in Polymer Electrolyte Fuel Cells Using
Coupled Continuum and Pore-Network Models
SO FUEL CELLS
LA English
DT Article
DE Continuum Model; Polymer Electrolyte Fuel Cells; Pore-network Model;
Water and Thermal Management; X-ray Computed Tomography
ID GAS-DIFFUSION LAYERS; RAY COMPUTED-TOMOGRAPHY; POROUS-MEDIA;
LOW-TEMPERATURES; 2-PHASE FLOW; MANAGEMENT; PERFORMANCE; EVAPORATION;
SATURATION
AB Water management remains a critical issue for polymer electrolyte fuel cell performance and durability, especially at lower temperatures and with ultrathin electrodes. To understand and explain experimental observations better, water transport in gas diffusion layers (GDLs) with macroscopically heterogeneous morphologies was simulated using a novel coupling of continuum and pore-network models. X-ray computed tomography was used to extract GDL material parameters for use in the pore-network model. The simulations were conducted to explain experimental observations associated with stacking of anode GDLs, where stacking of the anode GDLs increased the limiting current density. Through imaging, it is shown that the stacked anode GDL exhibited an interfacial region of high porosity. The coupled model shows that this morphology allowed more efficient water movement through the anode and higher temperatures at the cathode compared to the single GDL case. As a result, the cathode exhibited less flooding and hence better low temperature performance with the stacked anode GDL.
C1 [Medici, E. F.; Allen, J. S.] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA.
[Zenyuk, I. V.] Tufts Univ, Dept Mech Engn, Medford, MA 02155 USA.
[Parkinson, D. Y.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Weber, A. Z.] Lawrence Berkeley Natl Lab, Energy Technol Area, Energy Convers Grp, Berkeley, CA 94720 USA.
EM azweber@lbl.gov
FU FERE, Fuel Cell Technologies Office of the U.S. DOE [DE-AC02-05CH11231,
DE-EE-0005667]; 3M; John F. and Joan M. Calder Endowed Professorship in
Mechanical Engineering; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX We would like to thank Dr. Andrew Steinbach for providing experimental
data and insightful discussion. This work was supported by FERE, Fuel
Cell Technologies Office of the U.S. DOE under contract number
DE-AC02-05CH11231 and DE-EE-0005667 in collaboration with 3M (who
provided cost share) as well as with funds from the John F. and Joan M.
Calder Endowed Professorship in Mechanical Engineering. The Advanced
Light Source is supported by the Director, Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.
NR 32
TC 2
Z9 2
U1 5
U2 5
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1615-6846
EI 1615-6854
J9 FUEL CELLS
JI Fuel Cells
PD DEC
PY 2016
VL 16
IS 6
BP 725
EP 733
DI 10.1002/fuce.201500213
PG 9
WC Electrochemistry; Energy & Fuels
SC Electrochemistry; Energy & Fuels
GA EI5KA
UT WOS:000392531900008
ER
PT J
AU Perez-Gelvez, YN
Kurz, S
Tiemeyer, M
Rhodes, OE
Bergmann, CW
Gutierrez-Sanchez, G
AF Perez-Gelvez, Yeni N.
Kurz, Simone
Tiemeyer, Michael
Rhodes, Olin E.
Bergmann, Carl W.
Gutierrez-Sanchez, Gerardo
TI N-GLYCOME PROFILE IN MEDAKA FISH EXPOSE TO LOW DOSES OF IONIZATION
RADIATION
SO GLYCOBIOLOGY
LA English
DT Meeting Abstract
CT Annual Meeting of the Society-for-Glycobiology
CY NOV 19-22, 2016
CL New Orleans, LA
SP Soc Glycobiol
C1 [Perez-Gelvez, Yeni N.; Kurz, Simone; Tiemeyer, Michael; Bergmann, Carl W.; Gutierrez-Sanchez, Gerardo] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA.
[Rhodes, Olin E.] Univ Georgia, Savannah River Ecol Lab, Athens, GA 30602 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 0959-6658
EI 1460-2423
J9 GLYCOBIOLOGY
JI Glycobiology
PD DEC
PY 2016
VL 26
IS 12
MA 41
BP 1390
EP 1390
PG 1
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA EJ0XX
UT WOS:000392935600045
ER
PT J
AU Scheller, HV
Ebert, B
Rautengarten, C
Birdseye, DS
Heazlewood, JL
AF Scheller, Henrik V.
Ebert, Berit
Rautengarten, Carsten
Birdseye, Devon S.
Heazlewood, Joshua L.
TI Identification of novel transporters for UDP-arabinose in plants
SO GLYCOBIOLOGY
LA English
DT Meeting Abstract
CT Annual Meeting of the Society-for-Glycobiology
CY NOV 19-22, 2016
CL New Orleans, LA
SP Soc Glycobiol
C1 [Scheller, Henrik V.; Ebert, Berit; Rautengarten, Carsten; Birdseye, Devon S.; Heazlewood, Joshua L.] Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Berkeley, CA USA.
[Scheller, Henrik V.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
[Ebert, Berit; Rautengarten, Carsten; Heazlewood, Joshua L.] Univ Melbourne, ARC Ctr Excellence Plant Cell Walls, Melbourne, Vic 3010, Australia.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 0959-6658
EI 1460-2423
J9 GLYCOBIOLOGY
JI Glycobiology
PD DEC
PY 2016
VL 26
IS 12
MA 43
BP 1391
EP 1391
PG 1
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA EJ0XX
UT WOS:000392935600047
ER
PT J
AU Huang, XH
Schurman, N
Handa, K
Hakomori, S
AF Huang, Xiaohua
Schurman, Nathan
Handa, Kazuko
Hakomori, Senitiroh
TI Glycosphingolipids involved in contact inhibition of cell growth
SO GLYCOBIOLOGY
LA English
DT Meeting Abstract
CT Annual Meeting of the Society-for-Glycobiology
CY NOV 19-22, 2016
CL New Orleans, LA
SP Soc Glycobiol
C1 [Huang, Xiaohua; Schurman, Nathan; Handa, Kazuko; Hakomori, Senitiroh] Pacific Northwest Res Inst, Div Biomembrane Res, Seattle, WA USA.
[Hakomori, Senitiroh] Univ Washington, Dept Pathobiol, Seattle, WA 98195 USA.
[Hakomori, Senitiroh] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 0959-6658
EI 1460-2423
J9 GLYCOBIOLOGY
JI Glycobiology
PD DEC
PY 2016
VL 26
IS 12
MA 151
BP 1435
EP 1436
PG 2
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA EJ0XX
UT WOS:000392935600154
ER
PT J
AU Aoki, K
Camus, A
Beasley, J
Tuberville, T
Peterson, D
Bergman, C
Tiemeyer, M
AF Aoki, Kazuhiro
Camus, Alvin
Beasley, James
Tuberville, Tracey
Peterson, Douglas
Bergman, Carl
Tiemeyer, Michael
TI Dissecting glycan diversity across animal species by mass spectrometry
SO GLYCOBIOLOGY
LA English
DT Meeting Abstract
CT Annual Meeting of the Society-for-Glycobiology
CY NOV 19-22, 2016
CL New Orleans, LA
SP Soc Glycobiol
C1 [Aoki, Kazuhiro; Bergman, Carl; Tiemeyer, Michael] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA.
[Camus, Alvin] UGA Coll Vet Med, Dept Pathol, Athens, GA USA.
[Beasley, James; Tuberville, Tracey] Univ Georgia, Savannah River Ecol Lab, Athens, GA 30602 USA.
[Peterson, Douglas] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 0959-6658
EI 1460-2423
J9 GLYCOBIOLOGY
JI Glycobiology
PD DEC
PY 2016
VL 26
IS 12
MA 240
BP 1472
EP 1473
PG 2
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA EJ0XX
UT WOS:000392935600243
ER
PT J
AU Throckmorton, HM
Newman, BD
Heikoop, JM
Perkins, GB
Feng, XH
Graham, DE
O'Malley, D
Vesselinov, VV
Young, J
Wullschleger, SD
Wilson, CJ
AF Throckmorton, Heather M.
Newman, Brent D.
Heikoop, Jeffrey M.
Perkins, George B.
Feng, Xiahong
Graham, David E.
O'Malley, Daniel
Vesselinov, Velimir V.
Young, Jessica
Wullschleger, Stan D.
Wilson, Cathy J.
TI Active layer hydrology in an arctic tundra ecosystem: quantifying water
sources and cycling using water stable isotopes
SO HYDROLOGICAL PROCESSES
LA English
DT Article
DE active layer; arctic; hydrology; tundra; water isotopes
ID THAW-LAKE BASINS; NONNEGATIVE MATRIX FACTORIZATION; COASTAL-PLAIN;
SUBSURFACE DRAINAGE; NORTHERN SIBERIA; ICE WEDGES; PERMAFROST; ALASKA;
CARBON; SOIL
AB Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (H-2 and O-18) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (H-2 vs O-18). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. This research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models. Copyright (c) 2016 John Wiley & Sons, Ltd.
C1 [Throckmorton, Heather M.] MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Newman, Brent D.; Heikoop, Jeffrey M.; Perkins, George B.; O'Malley, Daniel; Vesselinov, Velimir V.; Wilson, Cathy J.] Los Alamos Natl Lab, Earth & Environm Sci Div, Bikini Atoll Rd, Los Alamos, NM 87545 USA.
[Feng, Xiahong] Dept Earth Sci, Dartmouth Coll, 6105 Fairchild, Hanover, NH 03755 USA.
[Graham, David E.; Wullschleger, Stan D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Young, Jessica] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA.
RP Throckmorton, HM (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM heather.throckmorton@gmail.com
OI Graham, David/0000-0001-8968-7344
FU LANL Laboratory Directed Research and Development Project
[LDRD201200068DR]; Next-Generation Ecosystem Experiments (NGEE Arctic)
project; Office of Biological and Environmental Research in the DOE
Office of Science [ERKP 757]
FX This work was supported by LANL Laboratory Directed Research and
Development Project LDRD201200068DR and by the Next-Generation Ecosystem
Experiments (NGEE Arctic) project. NGEE Arctic is supported by the
Office of Biological and Environmental Research in the DOE Office of
Science, Project ERKP 757. Logistical support was provided by UIC
Science and the Atmospheric Radiation Measurement (ARM) North Slope of
Alaska (NSA) Climate Research Facility. The authors wish to thank Marvin
Gard, Garrett Altmann, Lily Cohen and Michael Hudak, Walter Brower, and
Jimmy Ivanhoff for their support and assistance in fieldwork and
preparation; Lauren Charsley- Groffman for her assistance with map
design; and Emily Kluk for her assistance in sample analyses and
laboratory management. The data for the paper are available at the Next
Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide
Information Analysis Center (Throckmorton et al., 2016).
NR 62
TC 1
Z9 1
U1 5
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0885-6087
EI 1099-1085
J9 HYDROL PROCESS
JI Hydrol. Process.
PD DEC
PY 2016
VL 30
IS 26
BP 4972
EP 4986
DI 10.1002/hyp.10883
PG 15
WC Water Resources
SC Water Resources
GA EI9YY
UT WOS:000392866700007
ER
PT J
AU Hagos, SM
Zhang, CD
Feng, Z
Burleyson, CD
De Mott, C
Kerns, B
Benedict, JJ
Martini, MN
AF Hagos, Samson M.
Zhang, Chidong
Feng, Zhe
Burleyson, Casey D.
De Mott, Charlotte
Kerns, Brandon
Benedict, James J.
Martini, Matus N.
TI The impact of the diurnal cycle on the propagation of Madden-Julian
Oscillation convection across the Maritime Continent
SO Journal of Advances in Modeling Earth Systems
LA English
DT Article
ID TROPICAL WESTERN PACIFIC; MJO; MODEL; SIMULATION; TRACKING; SYSTEM
AB Influences of the diurnal cycle on the propagation of the Madden-Julian Oscillation (MJO) convection across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value, the MJO convection signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that the surface downwelling shortwave radiation is larger in the presence of the diurnal cycle (CONTROL simulations) primarily because clouds preferentially form in the afternoon and are smaller during day time in comparison to nighttime. Furthermore, the diurnal covariability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in the CONTROL runs compared to NODC runs. An analysis of observations indicates that ahead of and behind the MJO active phase, the diurnal cycle of cloudiness enhances downwelling shortwave radiation and hence convection over the MC islands. This enhanced stationary convection competes with and disrupts the convective signal of MJO events that propagate over the waters surrounding the islands.
C1 [Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.] Pacific Northwest Natl Lab, Richland, WA 99352 USA.
[Zhang, Chidong; Kerns, Brandon; Benedict, James J.] Univ Miami, Miami, FL 33136 USA.
[De Mott, Charlotte] Colorado State Univ, Ft Collins, CO 80523 USA.
[Martini, Matus N.] Naval Res Lab, Monterey, CA USA.
RP Hagos, SM (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA.
EM samson.hagos@pnnl.gov
FU U.S. Department of Energy Office of Science Biological and Environmental
Research as part of the Atmospheric Systems Research Program and
Regional and Global Climate Modeling Programs; NOAA CPO grant
[NA13OAR4310161]; Battelle for the U.S. Department of Energy
[DE-AC05-76RLO1830]
FX This research was supported by the U.S. Department of Energy Office of
Science Biological and Environmental Research as part of the Atmospheric
Systems Research Program and Regional and Global Climate Modeling
Programs (authors S.H., C.B., Z.F., and M.M.) and a NOAA CPO grant
NA13OAR4310161 (author C.Z.). Data from the U.S. Department of Energy's
Atmospheric Radiation Measurement (ARM) Climate Research Facility Manus
site are used. Computing resources for the model simulations are
provided by the National Energy Research Scientific Computing Center
(NERSC). Pacific Northwest National Laboratory is operated by Battelle
for the U.S. Department of Energy under contract DE-AC05-76RLO1830.
NR 35
TC 2
Z9 2
U1 5
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD DEC
PY 2016
VL 8
IS 4
BP 1552
EP 1564
DI 10.1002/2016MS000725
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EI9FL
UT WOS:000392813100003
ER
PT J
AU Blossey, PN
Bretherton, CS
Cheng, AN
Endo, S
Heus, T
Lock, AP
van der Dussen, JJ
AF Blossey, Peter N.
Bretherton, Christopher S.
Cheng, Anning
Endo, Satoshi
Heus, Thijs
Lock, Adrian P.
van der Dussen, Johan J.
TI CGILS Phase 2 LES intercomparison of response of subtropical marine low
cloud regimes to CO2 quadrupling and a CMIP3 composite forcing change
SO Journal of Advances in Modeling Earth Systems
LA English
DT Article
ID MIXED-LAYER MODEL; STRATOCUMULUS RESPONSE; CLIMATE SENSITIVITY;
FEEDBACK; COVER; CIRCULATION
AB Phase 1 of the CGILS large-eddy simulation (LES) intercomparison is extended to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide ("fast adjustment'') and to a composite climate perturbation representative of CMIP3 multimodel mean 2XCO(2) near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. The results are generally consistent with a single-LES study of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. The cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.
C1 [Blossey, Peter N.; Bretherton, Christopher S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
[Cheng, Anning] Sci Syst & Applicat Inc, Hampton, VA USA.
[Cheng, Anning] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA.
[Endo, Satoshi] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Heus, Thijs] Cleveland State Univ, Dept Phys, Cleveland, OH 44115 USA.
[Lock, Adrian P.] Met Off, Exeter, Devon, England.
[van der Dussen, Johan J.] Delft Univ Technol, Delft, Netherlands.
RP Blossey, PN (reprint author), Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
EM pblossey@uw.edu
RI Heus, Thijs/E-7336-2012
OI Heus, Thijs/0000-0003-2650-2423
FU NSF Science and Technology Center for Multi-Scale Modeling of
Atmospheric Processes (CMMAP) [ATM-0425247]; DOE Atmospheric System
Research Program [DE-SC0005450, DE-SC0008779]; Laboratory Directed
Research and Development (LDRD) Program of Brookhaven National
Laboratory; Deutscher Wetter Dienst (DWD) through the Hans-Ertel Centre
for Weather Research; European Union CLoud Intercomparison, Process
Study & Evaluation (EUCLIPSE) project from European Union, Seventh
Framework Programme (FP7) [244067]
FX P.N.B. and C.S.B. acknowledge support from the NSF Science and
Technology Center for Multi-Scale Modeling of Atmospheric Processes
(CMMAP), led by David Randall and managed by Colorado State University
under cooperative agreement ATM-0425247. A.C. was supported by the DOE
Atmospheric System Research Program under Interagency agreement
DE-SC0005450 and DE-SC0008779 and used computational resources provided
by Argonne National Laboratory, DOE's Office of Science and the local
computation clusters: K-cluster and Icluster. S.E. was partly supported
by the Laboratory Directed Research and Development (LDRD) Program of
Brookhaven National Laboratory. T.H. was supported by the Deutscher
Wetter Dienst (DWD) through the Hans-Ertel Centre for Weather Research.
J.J.v.d.D. was supported by the European Union CLoud Intercomparison,
Process Study & Evaluation (EUCLIPSE) project through funding from
European Union, Seventh Framework Programme (FP7/2007-2013) under grant
agreement 244067. The model output data and scripts used to produce the
plots in this paper, along with a description of the simulation setup
and forcings for the different cases, may be accessed at
http://hdl.handle.net/1773/37295.
NR 33
TC 0
Z9 0
U1 3
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD DEC
PY 2016
VL 8
IS 4
BP 1714
EP 1726
DI 10.1002/2016MS000765
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EI9FL
UT WOS:000392813100011
ER
PT J
AU Zhao, C
Leung, LR
Park, SH
Hagos, S
Lu, J
Sakaguchi, K
Yoon, J
Harrop, BE
Skamarock, W
Duda, MG
AF Zhao, Chun
Leung, L. Ruby
Park, Sang-Hun
Hagos, Samson
Lu, Jian
Sakaguchi, Koichi
Yoon, Jinho
Harrop, Bryce E.
Skamarock, William
Duda, Michael G.
TI Exploring the impacts of physics and resolution on aqua-planet
simulations from a nonhydrostatic global variable-resolution modeling
framework
SO Journal of Advances in Modeling Earth Systems
LA English
DT Article
ID COMMUNITY ATMOSPHERE MODEL; CENTROIDAL VORONOI TESSELLATIONS; CLOUD
MICROPHYSICS SCHEME; SHALLOW-WATER EQUATIONS; AQUAPLANET SIMULATIONS;
CLIMATE SIMULATIONS; DYNAMICAL CORE; STANDARD TEST; VERSION 3;
CIRCULATION
AB The nonhydrostatic Model for Prediction Across Scales (NH-MPAS) provides a global framework to achieve high resolution using regional mesh refinement. Previous studies using the hydrostatic version of MPAS (H-MPAS) with the physics parameterizations of Community Atmosphere Model version 4 (CAM4) found notable resolution-dependent behaviors. This study revisits the resolution sensitivity using NH-MPAS with both CAM4 and CAM5 physics. A series of aqua-planet simulations at global quasiuniform resolutions and global variable resolution with a regional mesh refinement over the tropics are analyzed, with a primary focus on the distinct characteristics of NH-MPAS in simulating precipitation, clouds, and large-scale circulation features compared to H-MPAS-CAM4. The resolution sensitivity of total precipitation and column integrated moisture in NH-MPAS is smaller than that in H-MPAS-CAM4. This contributes importantly to the reduced resolution sensitivity of large-scale circulation features such as the intertropical convergence zone and Hadley circulation in NH-MPAS compared to H-MPAS. In addition, NH-MPAS shows almost no resolution sensitivity in the simulated westerly jet, in contrast to the obvious poleward shift in H-MPAS with increasing resolution, which is partly explained by differences in the hyperdiffusion coefficients used in the two models that influence wave activity. With the reduced resolution sensitivity, simulations in the refined region of the NH-MPAS global variable resolution configuration exhibit zonally symmetric features that are more comparable to the quasiuniform high-resolution simulations than those from H-MPAS that displays zonal asymmetry in simulations inside the refined region. Overall, NH-MPAS with CAM5 physics shows less resolution sensitivity compared to CAM4.
C1 [Zhao, Chun; Leung, L. Ruby; Hagos, Samson; Lu, Jian; Sakaguchi, Koichi; Yoon, Jinho; Harrop, Bryce E.] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Park, Sang-Hun; Skamarock, William; Duda, Michael G.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Yoon, Jinho] Gwanju Inst Sci & Technol, Sch Earth Sci & Environm Engn, Gwangju, South Korea.
RP Zhao, C (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
EM chun.zhao@pnnl.gov
FU Office of Science of the U.S. Department of Energy (DOE), Regional &
Global Climate Modeling (RGCM) program; Korean Polar Research Institute;
Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231,
DE-AC02-06CH11357]; DOE [DE-AC05-76RL01830]
FX This research was supported by the Office of Science of the U.S.
Department of Energy (DOE) as part of the Regional & Global Climate
Modeling (RGCM) program. Dr. J.-H. Yoon was partially supported by
funding from the Korean Polar Research Institute. This study used
computing resources from the National Energy Research Scientific
Computing Center, which is the DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy
under contract DE-AC02-05CH11231 and contract DE-AC02-06CH11357,
respectively. Pacific Northwest National Laboratory is operated by
Battelle Memorial Institute for the DOE under contract
DE-AC05-76RL01830.
NR 55
TC 0
Z9 0
U1 1
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD DEC
PY 2016
VL 8
IS 4
BP 1751
EP 1768
DI 10.1002/2016MS000727
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EI9FL
UT WOS:000392813100013
ER
PT J
AU Sakaguchi, K
Lu, J
Leung, LR
Zhao, C
Li, YJ
Hagos, S
AF Sakaguchi, Koichi
Lu, Jian
Leung, L. Ruby
Zhao, Chun
Li, Yanjie
Hagos, Samson
TI Sources and pathways of the upscale effects on the Southern Hemisphere
jet in MPAS-CAM4 variable-resolution simulations
SO Journal of Advances in Modeling Earth Systems
LA English
DT Article
ID COMMUNITY ATMOSPHERE MODEL; ROSSBY-WAVE PROPAGATION; STATIONARY WAVES;
STORM-TRACKS; SUMMER MONSOON; DYNAMICAL CORE; VERSION 3; MPAS-A; WINTER;
CLIMATE
AB Impacts of regional grid refinement on large-scale circulations ("upscale effects'') were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations, precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. The result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.
C1 [Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby; Zhao, Chun; Hagos, Samson] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Li, Yanjie] Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China.
RP Leung, LR (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
EM ruby.leung@pnnl.gov
FU U.S. Department of Energy (DOE) Office of Science Biological and
Environmental Research, Regional and Global Climate Modeling program;
National Natural Science Foundation of China [41575060]; Office of
Science [DE-AC02-05CH11231]; DOE by Battelle Memorial Institute
[DE-AC05-76RL01830]
FX All data and simulation output used in this study are archived at the
National Energy Research Scientific Computing Center (NERSC) and can be
accessed by contacting L. Ruby Leung (ruby. leung@pnnl.gov). The authors
thank the anonymous reviewers for their valuable comments and Bryce
Harrop for helpful discussions. This study was supported by the U.S.
Department of Energy (DOE) Office of Science Biological and
Environmental Research as part of the Regional and Global Climate
Modeling program. The contribution of Y. Li was supported by grant
41575060 from the National Natural Science Foundation of China. This
research used computational resources from the National Energy Research
Scientific Computing Center (NERSC), a DOE User Facility supported by
the Office of Science under contract DE-AC02-05CH11231. Additional
computational resources were provided by the Pacific Northwest National
Laboratory (PNNL) Institutional Computing program. PNNL is operated for
DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830.
NR 82
TC 1
Z9 1
U1 1
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD DEC
PY 2016
VL 8
IS 4
BP 1786
EP 1805
DI 10.1002/2016MS000743
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EI9FL
UT WOS:000392813100015
ER
PT J
AU Voigt, A
Biasutti, M
Scheff, J
Bader, J
Bordoni, S
Codron, F
Dixon, RD
Jonas, J
Kang, SM
Klingaman, NP
Leung, R
Lu, J
Mapes, B
Maroon, EA
McDermid, S
Park, JY
Roehrig, R
Rose, BEJ
Russell, GL
Seo, JB
Toniazzo, T
Wei, HH
Yoshimori, M
Zeppetello, LRV
AF Voigt, Aiko
Biasutti, Michela
Scheff, Jacob
Bader, Juergen
Bordoni, Simona
Codron, Francis
Dixon, Ross D.
Jonas, Jeffrey
Kang, Sarah M.
Klingaman, Nicholas P.
Leung, Ruby
Lu, Jian
Mapes, Brian
Maroon, Elizabeth A.
McDermid, Sonali
Park, Jong-yeon
Roehrig, Romain
Rose, Brian E. J.
Russell, Gary L.
Seo, Jeongbin
Toniazzo, Thomas
Wei, Ho-Hsuan
Yoshimori, Masakazu
Zeppetello, Lucas R. Vargas
TI The tropical rain belts with an annual cycle and a continent model
intercomparison project: TRACMIP
SO Journal of Advances in Modeling Earth Systems
LA English
DT Article
ID GENERAL-CIRCULATION MODELS; ENERGY FLUX EQUATOR; CLIMATE SENSITIVITY;
SAHEL RAINFALL; ATMOSPHERIC CIRCULATION; OVERTURNING CIRCULATION;
INTERANNUAL VARIATIONS; RADIATIVE FEEDBACKS; HYDROLOGICAL CYCLE; OCEAN
CIRCULATION
AB This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP's potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate change.
C1 [Voigt, Aiko] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Dept Troposphere Res, Karlsruhe, Germany.
[Voigt, Aiko; Biasutti, Michela; Scheff, Jacob; Zeppetello, Lucas R. Vargas] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA.
[Bader, Juergen; Park, Jong-yeon] Max Planck Inst Meteorol, Hamburg, Germany.
[Bordoni, Simona; Wei, Ho-Hsuan] CALTECH, Pasadena, CA 91125 USA.
[Codron, Francis] UPMC, Sorbonne Univ, Lab Oceanog & Climat, Paris, France.
[Dixon, Ross D.] Univ Wisconsin, Madison, WI USA.
[Jonas, Jeffrey] Columbia Univ, Ctr Climate Syst Res, New York, NY USA.
[Kang, Sarah M.; Seo, Jeongbin] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan, South Korea.
[Klingaman, Nicholas P.] Univ Reading, Natl Ctr Atmospher Sci Climate, Reading, Berks, England.
[Klingaman, Nicholas P.] Univ Reading, Dept Meteorol, Reading, Berks, England.
[Leung, Ruby; Lu, Jian] Pacific Northwest Natl Lab, Richland, WA 99352 USA.
[Mapes, Brian] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA.
[Maroon, Elizabeth A.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
[McDermid, Sonali] NYU, New York, NY USA.
[Roehrig, Romain] CNRS, Ctr Natl Rech Meteorol, UMR Meteo France 3589, Toulouse, France.
[Rose, Brian E. J.] SUNY Albany, Albany, NY USA.
[Russell, Gary L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Toniazzo, Thomas] Bjerknes Ctr Climate Res, Uni Res, Bergen, Norway.
[Yoshimori, Masakazu] Hokkaido Univ, Fac Environm Earth Sci, Sapporo, Hokkaido, Japan.
[Yoshimori, Masakazu] Hokkaido Univ, Arctic Res Ctr, Sapporo, Hokkaido, Japan.
RP Voigt, A (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Dept Troposphere Res, Karlsruhe, Germany.; Voigt, A (reprint author), Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA.
EM aiko.voigt@kit.edu
RI Voigt, Aiko/H-4691-2012; Klingaman, Nicholas/H-4610-2012; Biasutti,
Michela/G-3804-2012
OI Voigt, Aiko/0000-0002-7394-8252; Klingaman,
Nicholas/0000-0002-2927-9303; Biasutti, Michela/0000-0001-6681-1533
FU NSF [AGS-1565522, AGS-1433551, AGS-1462544, AGS-1455071]; Earth
Institute of Columbia University; German Ministry of Education and
Research (BMBF); FONA: Research for Sustainable Development [01LK1509A];
Department of Energy BER award [DE-SC0014423]; IDRIS supercomputing
center; project MORDICUS of the French National Research Agency (ANR)
[ANR-13-SENV-0002]; National Science Foundation; Basic Science Research
Program through the National Research Foundation of Korea (NRF) -
Ministry of Science, ICT and Future Planning [2016R1A1A3A04005520];
Independent Research Fellowship from the UK Natural Environment Research
Council [NE/L010976/1]; U.S. Department of Energy Office of Science
Biological and Environmental Research (BER), Regional and Global Climate
Modeling program; NSF IGERT Program on Ocean Change; JSPS KAKENHI
[15K05280]; Program for Risk Information on Climate Change (SOUSEI
program) of MEXT, Japan
FX We are indebted to RSMAS (University of Miami) for hosting the TRACMIP
data sets on their data repository. M.B., A.V. and J. Scheff are
supported by NSF award AGS-1565522. A.V. and M.B. acknowledge support
from the undergraduate research program of the Earth Institute of
Columbia University for LRVZ. A.V. received support from the German
Ministry of Education and Research (BMBF) and FONA: Research for
Sustainable Development (www.fona.de) under grant 01LK1509A. M.B. was
supported by a Department of Energy BER award DE-SC0014423. J. Scheff
was funded by NSF award AGS-1433551. SB and HHW were supported by the
NSF under grant AGS-1462544. F.C. acknowledges support from the IDRIS
supercomputing center and the project MORDICUS ANR-13-SENV-0002 of the
French National Research Agency (ANR). R.D.D. acknowledges
high-performance computing support from Yellowstone
(ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information
Systems Laboratory, sponsored by the National Science Foundation. S.M.K.
and J. Seo were supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT and Future Planning (2016R1A1A3A04005520). N.P.K. was
funded by an Independent Research Fellowship from the UK Natural
Environment Research Council (NE/L010976/1). MetUM simulations were
performed on the ARCHER UK national supercomputing service
(http://www.archer.ac.uk). R.L. and J.L. were supported by the U.S.
Department of Energy Office of Science Biological and Environmental
Research (BER) as part of the Regional and Global Climate Modeling
program. E.A.M. was supported by the NSF IGERT Program on Ocean Change.
S.M. acknowledges and thanks Larissa Nazarenko for her help in making
the GISS ModelE2 contributions possible. B.E.J.R. acknowledges support
from NSF grant AGS-1455071. M.Y. acknowledges support from JSPS KAKENHI
grant 15K05280 and the Program for Risk Information on Climate Change
(SOUSEI program) of MEXT, Japan. The MIROC5 simulations were conducted
using the Fujitsu PRIMEHPC FX10 System in the Information Technology
Center and collaborating with the Atmosphere and Ocean Research
Institute, both in the University of Tokyo. We thank Catherine Pomposi
for comments on an earlier version of the manuscript. Tracmip
simulations are made publicly available on an OpenDAP data server of
BM's group at the University of Miami. Detailed instructions on how to
obtain the simulations are provided on the project's website
www.sites.google.com/site/tracmip/ and can also be obtained from AV and
MB via tracmip@gmail.com.
NR 100
TC 1
Z9 1
U1 2
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD DEC
PY 2016
VL 8
IS 4
BP 1868
EP 1891
DI 10.1002/2016MS000748
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EI9FL
UT WOS:000392813100019
ER
PT J
AU Leng, GY
Zhang, XS
Huang, MY
Yang, QC
Rafique, R
Asrar, GR
Leung, LR
AF Leng, Guoyong
Zhang, Xuesong
Huang, Maoyi
Yang, Qichun
Rafique, Rashid
Asrar, Ghassem R.
Leung, L. Ruby
TI Simulating county-level crop yields in the Conterminous United States
using the Community Land Model: The effects of optimizing irrigation and
fertilization
SO Journal of Advances in Modeling Earth Systems
LA English
DT Article
ID ASSIMILATION SYSTEM NLDAS; CLIMATE-CHANGE; WATER MANAGEMENT; CARBON
BUDGETS; SURFACE MODEL; NITROGEN; VARIABILITY; SENSITIVITY; FIXATION;
IMPACT
AB In this study, we applied version 4.5 of the Community Land Model (CLM) at a 0.125 degrees resolution to provide the first county-scale model validation for simulating crop yields over the Conterminous United States (CONUS). Large bias was found in simulating crop yields against U.S. Department of Agriculture (USDA) survey data, with county-level root-mean-square error (RMSE) of 42% and 38% for simulated US mean corn and soybean yields, respectively. We then synthesized crop yield, irrigation and fertilization data sets from USDA and U. S. Geological Survey (USGS) to constrain model simulations. Compared with fertilization, irrigation has limited effects on crop yields with improvements limited to irrigated regions. In most current-generation Earth system models (ESMs), fertilizers are applied spatially uniformly with fixed amounts and timing without considering crop fertilizer demand. To address this weakness, we propose a prognostic fertilization scheme that dynamically determines the timing and rate of each fertilizer application, with the annual amounts and valid fertilization time windows constrained by surveyed data. The optimized fertilization scheme reduces RMSE to 22% and 21% of the US mean corn and soybean yields, respectively. Compared with the default CLM4.5, our fertilization scheme substantially improves crop yield simulations especially over major crop growing regions. However, to compensate for the widely documented biases in denitrification rates simulated by CLM4.5, the dynamically determined fertilization timing and rates do not match the fertilization practices of farmers exactly. Therefore, caution should be exercised when extending this method beyond the contemporary conditions.
C1 [Leng, Guoyong; Zhang, Xuesong; Yang, Qichun; Rafique, Rashid; Asrar, Ghassem R.] Pacific Northwest Natl Lab, Joint Global Change Res Inst, College Pk, MD USA.
[Huang, Maoyi; Leung, L. Ruby] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Earth Syst Anal & Modeling Grp, Richland, WA 99354 USA.
RP Huang, MY (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Earth Syst Anal & Modeling Grp, Richland, WA 99354 USA.
EM maoyi.huang@pnnl.gov
OI Huang, Maoyi/0000-0001-9154-9485; Leung, Ruby/0000-0002-3221-9467
FU DOE Great Lakes Bioenergy Research Center; NASA Terrestrial Ecology
Program [NNH12AU03I]; Laboratory Directed Research and Development
Project - Pacific Northwest National Laboratory (PNNL); U.S. Department
of Energy [DE-AC05-76RLO1830]; Integrated Assessment Research program
through the Integrated Multi-sector, Multi-scale Modeling (IM3)
Scientific Focus Area (SFA) - Biological and Environmental Research
Division of Office of Science, U.S. Department of Energy
FX We thank the editor Dr. Paul Dirmeyer, the anonymous associate editor
and two anonymous reviewers for their constructive comments and
suggestions that helped to improve the quality of this paper. This study
was carried out with support from the Integrated Assessment Research
program through the Integrated Multi-sector, Multi-scale Modeling
(IM3) Scientific Focus Area (SFA) sponsored by the Biological
and Environmental Research Division of Office of Science, U.S.
Department of Energy. The work related to the comparison between
surveyed and modeled crop yields are also partially funded by the DOE
Great Lakes Bioenergy Research Center and NASA Terrestrial Ecology
Program (NNH12AU03I), and a Laboratory Directed Research and Development
Project by the Pacific Northwest National Laboratory (PNNL). PNNL is
operated by Battelle Memorial Institute for the U.S. Department of
Energy under contract DE-AC05-76RLO1830. Data set for configuring the
model is available from the corresponding author upon request. The
gridded crop area data are downloaded from
ftp://ftp.rz.uni-frankfurt.de/pub/uni-frankfurt/physische_geographie/hyd
rologie/public/data/MIRCA2000/harvested_area_grids. The USGS irrigation
amounts are downloaded from http://water.usgs.gov/watuse/. The USDA
fertilizer use data are downloaded from
http://www.ers.usda.gov/dataproducts/fertilizer-use-and-price.aspx. The
USDA crop yields data are downloaded from
http://www.nass.usda.gov/Quick_Stats/. Field data from the Kellogg
Biological Station (KBS) are downloaded from http://lter.kbs.msu.edu/.
NR 62
TC 0
Z9 0
U1 9
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD DEC
PY 2016
VL 8
IS 4
BP 1912
EP 1931
DI 10.1002/2016MS000645
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EI9FL
UT WOS:000392813100021
ER
PT J
AU Reinig, MR
Novak, SW
Tao, XD
Bentolila, LA
Roberts, DG
MacKenzie-Graham, A
Godshalk, SE
Raven, MA
Knowles, DW
Kubby, J
AF Reinig, Marc R.
Novak, Samuel W.
Tao, Xiaodong
Bentolila, Laurent A.
Roberts, Dustin G.
MacKenzie-Graham, Allan
Godshalk, Sirie E.
Raven, Mary A.
Knowles, David W.
Kubby, Joel
TI Enhancing image quality in cleared tissue with adaptive optics
SO JOURNAL OF BIOMEDICAL OPTICS
LA English
DT Article
DE adaptive optics; CLARITY; multiphoton microscope; brain; neural circuits
ID LIGHT-SCATTERING; BIOLOGICAL CELLS; REFRACTIVE-INDEX; ABERRATION
CORRECTION; MICROSCOPY; RESOLUTION; CLARITY
AB Our ability to see fine detail at depth in tissues is limited by scattering and other refractive characteristics of the tissue. For fixed tissue, we can limit scattering with a variety of clearing protocols. This allows us to see deeper but not necessarily clearer. Refractive aberrations caused by the bulk index of refraction of the tissue and its variations continue to limit our ability to see fine detail. Refractive aberrations are made up of spherical and other Zernike modes, which can be significant at depth. Spherical aberration that is common across the imaging field can be corrected using an objective correcting collar, although this can require manual intervention. Other aberrations may vary across the imaging field and can only be effectively corrected using adaptive optics. Adaptive optics can also correct other aberrations simultaneously with the spherical aberration, eliminating manual intervention and speeding imaging. We use an adaptive optics two-photon microscope to examine the impact of the spherical and higher order aberrations on imaging and contrast the effect of compensating only for spherical aberration against compensating for the first 22 Zernike aberrations in two tissue types. Increase in image intensity by 1.6x and reduction of root mean square error by 3x are demonstrated. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
C1 [Reinig, Marc R.; Novak, Samuel W.; Tao, Xiaodong; Kubby, Joel] Univ Calif Santa Cruz, WM Keck Ctr Adapt Opt Microscopy, Baskin Engn, 1154 High St, Santa Cruz, CA 95064 USA.
[Bentolila, Laurent A.] Univ Calif Los Angeles, Calif Nanosyst Inst, Adv Light Microscopy Spect Lab, 570 Westwood Plaza,Bldg 114, Los Angeles, CA 90095 USA.
[Roberts, Dustin G.] Univ Calif Los Angeles, Brain Mapping Ctr, 660 Charles E Young Dr South, Los Angeles, CA 90095 USA.
[MacKenzie-Graham, Allan] Univ Calif Los Angeles, Neurol, 710 Westwood Plaza,POB 951769, Los Angeles, CA 90095 USA.
[Godshalk, Sirie E.] Univ Calif Santa Barbara, Neurosci Res Inst, Microscopy Facil, 3087 Calle Rosales, Santa Barbara, CA 93105 USA.
[Raven, Mary A.] UCSBs Off Technol & Ind Alliances, 342 Lagoon Rd,Mail Code 2055, Santa Barbara, CA 93106 USA.
[Knowles, David W.] Lawrence Berkeley Natl Lab, Berkeley Drosophila Transcript Network Project, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Reinig, MR (reprint author), Univ Calif Santa Cruz, WM Keck Ctr Adapt Opt Microscopy, Baskin Engn, 1154 High St, Santa Cruz, CA 95064 USA.
EM mrr10837@ucsc.edu
FU W.M. Keck Foundation; UC Office of the President for the UC Work Group
for Adaptive Optics in Biological Imaging; Multicampus Research Programs
and Initiatives [MR-15-327968]; National Science Foundation [1353461,
1429810]
FX The results presented herein were obtained at the W.M. Keck Center for
Adaptive Optical Microscopy (CfAOM) at the University of California,
Santa Cruz. The CfAOM was made possible by the generous financial
support of the W.M. Keck Foundation. This material is based upon work
supported by the UC Office of the President for the UC Work Group for
Adaptive Optics in Biological Imaging, by the Multicampus Research
Programs and Initiatives, Grant No. MR-15-327968. This material is also
based upon work supported by the National Science Foundation under Grant
Nos. 1353461 and 1429810. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.
NR 28
TC 0
Z9 0
U1 4
U2 4
PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 1083-3668
EI 1560-2281
J9 J BIOMED OPT
JI J. Biomed. Opt.
PD DEC
PY 2016
VL 21
IS 12
AR 121508
DI 10.1117/1.JBO.21.12.121508
PG 9
WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine &
Medical Imaging
SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine &
Medical Imaging
GA EJ0QG
UT WOS:000392914600010
PM 27735018
ER
PT J
AU Bygd, HC
Bratlie, KM
AF Bygd, Hannah C.
Bratlie, Kaitlin M.
TI Investigating the Synergistic Effects of Combined Modified Alginates on
Macrophage Phenotype
SO POLYMERS
LA English
DT Article
DE alginate; macrophage phenotype; TNF-; synergy
ID TRANSDERMAL DRUG-DELIVERY; FOREIGN-BODY RESPONSE; POLYLYSINE
MICROCAPSULES; ALTERNATIVE ACTIVATION; BIOCOMPATIBILITY; CHEMISTRY;
ISLETS; COMBINATORIAL; POLARIZATION; PLASTICITY
AB Understanding macrophage responses to biomaterials is crucial to the success of implanted medical devices, tissue engineering scaffolds, and drug delivery vehicles. Cellular responses to materials may depend synergistically on multiple surface chemistries, due to the polyvalent nature of cell-ligand interactions. Previous work in our lab found that different surface functionalities of chemically modified alginate could sway macrophage phenotype toward either the pro-inflammatory or pro-angiogenic phenotype. Using these findings, this research aims to understand the relationship between combined material surface chemistries and macrophage phenotype. Tumor necrosis factor- (TNF-) secretion, nitrite production, and arginase activity were measured and used to determine the ability of the materials to alter macrophage phenotype. Cooperative relationships between pairwise modifications of alginate were determined by calculating synergy values for the aforementioned molecules. Several materials appeared to improve M1 to M2 macrophage reprogramming capabilities, giving valuable insight into the complexity of surface chemistries needed for optimal incorporation and survival of implanted biomaterials.
C1 [Bygd, Hannah C.; Bratlie, Kaitlin M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Bratlie, Kaitlin M.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA.
[Bratlie, Kaitlin M.] Ames Natl Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.
EM hcbygd@iastate.edu; kbratlie@iastate.edu
OI Bratlie, Kaitlin/0000-0002-5197-0176
FU National Science Foundation [CBET-1227867]; Roy J. Carver Charitable
Trust [13-4265]; NSF ARI-R2 [CMMI-0963224]
FX This work was supported by the National Science Foundation under Grant
No. CBET-1227867 and the Roy J. Carver Charitable Trust Grant No.
13-4265. The authors also acknowledge support from NSF ARI-R2
(CMMI-0963224) for funding the renovation of the research laboratories
used for these studies.
NR 63
TC 0
Z9 0
U1 4
U2 4
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2073-4360
J9 POLYMERS-BASEL
JI Polymers
PD DEC
PY 2016
VL 8
IS 12
AR 422
DI 10.3390/polym8120422
PG 16
WC Polymer Science
SC Polymer Science
GA EI4VL
UT WOS:000392491500015
ER
PT J
AU Bao, WL
Hong, CW
Chunduri, S
Krishnamoorthy, S
Pouchet, LN
Rastello, F
Sadayappan, P
AF Bao, Wenlei
Hong, Changwan
Chunduri, Sudheer
Krishnamoorthy, Sriram
Pouchet, Louis-Noel
Rastello, Fabrice
Sadayappan, P.
TI Static and Dynamic Frequency Scaling on Multicore CPUs
SO ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION
LA English
DT Article
DE Static Analysis; Voltage and Frequency Scaling; CPU Energy; Affine
Programs
ID FRAMEWORK; VOLTAGE; ENERGY
AB Dynamic Voltage and Frequency Scaling (DVFS) typically adapts CPU power consumption by modifying a processor's operating frequency (and the associated voltage). Typical DVFS approaches include using default strategies such as running at the lowest or the highest frequency or reacting to the CPU's runtime load to reduce or increase frequency based on the CPU usage. In this article, we argue that a compile-time approach to CPU frequency selection is achievable for affine program regions and can significantly outperform runtime-based approaches. We first propose a lightweight runtime approach that can exploit the properties of the power profile specific to a processor, outperforming classical Linux governors such as powersave or on-demand for computational kernels. We then demonstrate that, for affine kernels in the application, a purely compile-time approach to CPU frequency and core count selection is achievable, providing significant additional benefits over the runtime approach. Our framework relies on a one-time profiling of the target CPU, along with a compile-time categorization of loop-based code segments in the application. These are combined to determine at compile-time the frequency and the number of cores to use to execute each affine region to optimize energy or energy-delay product. Extensive evaluation on 60 benchmarks and 5 multi-core CPUs show that our approach systematically outperforms the powersave Linux governor while also improving overall performance.
C1 [Bao, Wenlei; Hong, Changwan; Sadayappan, P.] Ohio State Univ, Dept Comp Sci & Engn, Dreese Lab 395, 2015 Neil Ave, Columbus, OH 43210 USA.
[Chunduri, Sudheer] IBM Res, New Delhi, India.
[Krishnamoorthy, Sriram] Pacific Northwest Natl Lab, Richland, WA 99352 USA.
[Pouchet, Louis-Noel] Colorado State Univ, Dept Comp Sci, 1873 Campus Delivery, Ft Collins, CO 80523 USA.
[Rastello, Fabrice] Univ Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble, France.
[Krishnamoorthy, Sriram] POB 999 MSIN J4-30, Richland, WA 99352 USA.
[Chunduri, Sudheer] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA.
RP Bao, WL (reprint author), Ohio State Univ, Dept Comp Sci & Engn, Dreese Lab 395, 2015 Neil Ave, Columbus, OH 43210 USA.
EM bao.79@osu.edu; hong.589@osu.edu; sudheer@anl.gov; sriram@pnnl.gov;
pouchet@colostate.edu; fabrice.rastello@inria.fr;
saday@cse.ohio-state.edu
FU U.S. National Science Foundation [1524127]; U.S. Department of Energys
(DOE) Office of Science, Office of Advanced Scientific Computing
Research [63823, DE-SC0014135]; DOE [DE-AC05-76RL01830]
FX This work was supported in part by the U.S. National Science Foundation,
award 1524127; by the U.S. Department of Energys (DOE) Office of
Science, Office of Advanced Scientific Computing Research, under award
63823 and DE-SC0014135. Pacific Northwest National Laboratory is
operated by Battelle for DOE under Contract DE-AC05-76RL01830. We would
like to thank Charles Lefurgy for his guidance in using the AMESTER tool
and power monitoring on POWER8 nodes.
NR 39
TC 0
Z9 0
U1 1
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA
SN 1544-3566
EI 1544-3973
J9 ACM T ARCHIT CODE OP
JI ACM Trans. Archit. Code Optim.
PD DEC
PY 2016
VL 13
IS 4
AR 51
DI 10.1145/3011017
PG 26
WC Computer Science, Hardware & Architecture; Computer Science, Theory &
Methods
SC Computer Science
GA EI3UD
UT WOS:000392416400020
ER
PT J
AU Kurt, MC
Krishnamoorthy, S
Agrawal, G
Ren, B
AF Kurt, Mehmet Can
Krishnamoorthy, Sriram
Agrawal, Gagan
Ren, Bin
TI User-Assisted Store Recycling for Dynamic Task Graph Schedulers
SO ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION
LA English
DT Article
DE Task parallelism; memory management; dynamic scheduling
AB The emergence of the multi-core era has led to increased interest in designing effective yet practical parallel programming models. Models based on task graphs that operate on single-assignment data are attractive in several ways. Notably, they can support dynamic applications and precisely represent the available concurrency. However, for efficient execution, they also require nuanced algorithms for scheduling and memory management. In this article, we consider memory-efficient dynamic scheduling of task graphs. Specifically, we present a novel approach for dynamically recycling the memory locations assigned to data items as they are produced by tasks. We develop algorithms to identify memory-efficient store recycling functions by systematically evaluating the validity of a set of user-provided or automatically generated alternatives. Because recycling functions can be input data-dependent, we have also developed support for continued correct execution of a task graph in the presence of a potentially incorrect store recycling function.
Experimental evaluation demonstrates that this approach to automatic store recycling incurs little to no overheads, achieves memory usage comparable to the best manually derived solutions, often produces recycling functions valid across problem sizes and input parameters, and efficiently recovers from an incorrect choice of store recycling functions.
C1 [Kurt, Mehmet Can] Quantcast Corp, 795 Folsom St, San Francisco, CA 94103 USA.
[Agrawal, Gagan] Ohio State Univ, 395 Dreese Labs,2015 Neil Ave, Columbus, OH 43210 USA.
[Krishnamoorthy, Sriram] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA.
[Ren, Bin] Coll William & Mary, McGlothlin St Hall 126,251 Jamestown Rd, Williamsburg, VA 23185 USA.
RP Kurt, MC (reprint author), Quantcast Corp, 795 Folsom St, San Francisco, CA 94103 USA.
EM mcankurt@quantcast.com; sriram@pnnl.gov; agrawal@cse.ohio-state.edu;
bren@cs.wm.edu
FU U.S. Department of Energy's (DOE) Office of Science, Office of Advanced
Scientific Computing Research [63823]; DOE [DE-AC05-76RL01830]; NSF
[CCF-1319420, CCF-1629392]; Department of Energy (DOE) [DE-SC0014135]
FX This work was supported in part by the U.S. Department of Energy's (DOE)
Office of Science, Office of Advanced Scientific Computing Research,
under award 63823. Pacific Northwest National Laboratory is operated by
Battelle for DOE under Contract DE-AC05-76RL01830. This work was also
partially supported by NSF awards CCF-1319420 and CCF-1629392 and the
Department of Energy (DOE) award DE-SC0014135 to The Ohio State
University.
NR 28
TC 0
Z9 0
U1 0
U2 0
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA
SN 1544-3566
EI 1544-3973
J9 ACM T ARCHIT CODE OP
JI ACM Trans. Archit. Code Optim.
PD DEC
PY 2016
VL 13
IS 4
AR 55
DI 10.1145/3018111
PG 24
WC Computer Science, Hardware & Architecture; Computer Science, Theory &
Methods
SC Computer Science
GA EI3UD
UT WOS:000392416400024
ER
PT J
AU Okamoto, NL
Yuge, K
Tanaka, K
Inui, H
George, EP
AF Okamoto, Norihiko L.
Yuge, Koretaka
Tanaka, Katsushi
Inui, Haruyuki
George, Easo P.
TI Atomic displacement in the CrMnFeCoNi high-entropy alloy - A scaling
factor to predict solid solution strengthening
SO AIP ADVANCES
LA English
DT Article
ID MULTICOMPONENT ALLOYS; AB-INITIO; PRINCIPAL ELEMENTS; ALUMINUM-ALLOYS;
DIFFRACTION; EFFICIENT; STRESS; METALS
AB Although metals strengthened by alloying have been used for millennia, models to quantify solid solution strengthening (SSS) were first proposed scarcely seventy years ago. Early models could predict the strengths of only simple alloys such as dilute binaries and not those of compositionally complex alloys because of the difficulty of calculating dislocation-solute interaction energies. Recently, models and theories of SSS have been proposed to tackle complex high-entropy alloys (HEAs). Here we show that the strength at 0 K of a prototypical HEA, CrMnFeCoNi, can be scaled and predicted using the root-mean-square atomic displacement, which can be deduced from X-ray diffraction and first-principles calculations as the isotropic atomic displacement parameter, that is, the average displacements of the constituent atoms from regular lattice positions. We show that our approach can be applied successfully to rationalize SSS in FeCoNi, MnFeCoNi, MnCoNi, MnFeNi, CrCoNi, CrFeCoNi, and CrMnCoNi, which are all medium-entropy subsets of the CrMnFeCoNi HEA. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
C1 [Okamoto, Norihiko L.; Yuge, Koretaka; Inui, Haruyuki] Kyoto Univ, Dept Mat Sci & Engn, Kyoto 6068501, Japan.
[Okamoto, Norihiko L.; Inui, Haruyuki] Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat ESISM, Kyoto 6068501, Japan.
[Tanaka, Katsushi] Kobe Univ, Dept Mech Engn, Nada Ku, Kobe, Hyogo 6578501, Japan.
[George, Easo P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[George, Easo P.] Ruhr Univ Bochum, Inst Mat, Univ Str 150, D-44801 Bochum, Germany.
RP Okamoto, NL (reprint author), Kyoto Univ, Dept Mat Sci & Engn, Kyoto 6068501, Japan.; Okamoto, NL (reprint author), Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat ESISM, Kyoto 6068501, Japan.
EM okamoto.norihiko.7z@kyoto-u.ac.jp
RI TANAKA, Katsushi/P-7887-2016
FU JSPS; U.S. Department of Energy, Office of Science, Basic Energy
Sciences, Materials Sciences and Engineering Division; DFG in Germany
[GE 2736/1-1]; JSPS [15H02300, 16K14373, 16K14415]; Elements Strategy
Initiative for Structural Materials (ESISM) from the Ministry of
Education, Culture, Sports, Science and Technology (MEXT) of Japan;
Advanced Low Carbon Technology Research and Development Program (ALCA)
from the Japan Science and Technology Agency (JST)
FX The study was conceived during a short-term research stay by E.P.G. in
the group of H.I. at Kyoto University sponsored by an invitation
fellowship of JSPS; the HEA was fabricated while E.P.G. was at the Oak
Ridge National Laboratory funded by the U.S. Department of Energy,
Office of Science, Basic Energy Sciences, Materials Sciences and
Engineering Division. E.P.G. acknowledges DFG funding in Germany through
project GE 2736/1-1. This work was also supported by JSPS KAKENHI grant
numbers 15H02300, 16K14373 and 16K14415, and the Elements Strategy
Initiative for Structural Materials (ESISM) from the Ministry of
Education, Culture, Sports, Science and Technology (MEXT) of Japan, and
in part by Advanced Low Carbon Technology Research and Development
Program (ALCA) from the Japan Science and Technology Agency (JST). The
synchrotron radiation experiments were performed at the BL02B1 of
SPring-8 with the approval of the Japan Synchrotron Radiation Research
Institute (JASRI) (Proposal Nos. 2014B1228, 2014B1553, 2015A1468 &
2016B1096). We wish to thank Dr K. Sugimoto and Dr N. Yasuda for their
assistance at the BL02B1 of SPring-8.
NR 38
TC 1
Z9 1
U1 13
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 2158-3226
J9 AIP ADV
JI AIP Adv.
PD DEC
PY 2016
VL 6
IS 12
AR 125008
DI 10.1063/1.4971371
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA EH9KZ
UT WOS:000392091500031
ER
PT J
AU Reinke, CM
El-Kady, I
AF Reinke, Charles M.
El-Kady, Ihab
TI Phonon-based scalable platform for chip-scale quantum computing
SO AIP ADVANCES
LA English
DT Article; Proceedings Paper
CT 3rd International Conference on Phononic Crystals/Metamaterials, Phonon
Transport and Phonon Coupling
CY MAY 31-JUN 05, 2015
CL Paris, FRANCE
ID RESONATORS
AB We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
C1 [Reinke, Charles M.; El-Kady, Ihab] Sandia Natl Labs, Dept Appl Photon Microsyst, POB 8500 MS 1082, Albuquerque, NM 87185 USA.
[El-Kady, Ihab] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA.
RP El-Kady, I (reprint author), Sandia Natl Labs, Dept Appl Photon Microsyst, POB 8500 MS 1082, Albuquerque, NM 87185 USA.; El-Kady, I (reprint author), Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA.
EM ielkady@sandia.gov
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX The authors would like to thank Susan Clark for enlightening discussions
of the qubit entanglement scheme and Edward Bielejec for providing
indispensable information regarding ion implantation. Sandia National
Laboratories is a multi-mission laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 22
TC 1
Z9 1
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 2158-3226
J9 AIP ADV
JI AIP Adv.
PD DEC
PY 2016
VL 6
IS 12
AR 122002
DI 10.1063/1.4972568
PG 12
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA EH9KZ
UT WOS:000392091500023
ER
PT J
AU Singh, M
Gulati, R
Srinivasan, RS
Bhandari, M
AF Singh, Manan
Gulati, Rupesh
Srinivasan, Ravi S.
Bhandari, Mahabir
TI Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing
Assemblies
SO BUILDINGS
LA English
DT Article
DE roofing assemblies; steel fasteners; heat transfer; energy impact
AB Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases-without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG) approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ) namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta, GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software) and 3D analysis using HEAT3 is also discussed proving the relevance of 3D over 2D heat transfer analysis.
C1 [Singh, Manan] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA.
[Gulati, Rupesh] Walt Disney World Resort, Architecture Facil Engn, Orlando, FL 32830 USA.
[Srinivasan, Ravi S.] Univ Florida, ME Rinker Sr Sch Construct Management, Gainesville, FL 32611 USA.
[Bhandari, Mahabir] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Bldg Technol Program, Oak Ridge, TN 37831 USA.
RP Singh, M (reprint author), Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA.; Srinivasan, RS (reprint author), Univ Florida, ME Rinker Sr Sch Construct Management, Gainesville, FL 32611 USA.
EM manansingh5@gmail.com; Rupesh.K.Gulati@disney.com; sravi@ufl.edu;
bhandarims@ornl.gov
NR 6
TC 0
Z9 0
U1 1
U2 1
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2075-5309
J9 BUILDINGS
JI Buildings
PD DEC
PY 2016
VL 6
IS 4
AR 49
DI 10.3390/buildings6040049
PG 18
WC Construction & Building Technology
SC Construction & Building Technology
GA EI1KE
UT WOS:000392235200001
ER
PT J
AU Zuidema, P
Haggerty, J
Cadeddu, M
Jensen, J
Orlandi, E
Mech, M
Vivekanandan, J
Wang, ZE
AF Zuidema, Paquita
Haggerty, Julie
Cadeddu, Maria
Jensen, Jorgen
Orlandi, Emiliano
Mech, Mario
Vivekanandan, J.
Wang, Zhien
TI Recommendations for Improving US NSF-Supported Airborne Microwave
Radiometry
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
C1 [Zuidema, Paquita] Univ Miami, Miami, FL USA.
[Haggerty, Julie; Jensen, Jorgen; Vivekanandan, J.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
[Cadeddu, Maria] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Orlandi, Emiliano; Mech, Mario] Univ Cologne, Cologne, Germany.
[Wang, Zhien] Univ Wyoming, Laramie, WY 82071 USA.
RP Zuidema, P (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA.
EM pzuidema@rsmas.miami.edu
NR 6
TC 0
Z9 0
U1 0
U2 0
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD DEC
PY 2016
VL 97
IS 12
BP 2257
EP 2261
DI 10.1175/BAMS-D-15-00081.1
PG 5
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EI3CN
UT WOS:000392367400005
ER
PT J
AU Schwarz, K
Sham, LJ
Mattsson, AE
Scheffler, M
AF Schwarz, Karlheinz
Sham, Lu J.
Mattsson, Ann E.
Scheffler, Matthias
TI Obituary for Walter Kohn (1923-2016)
SO COMPUTATION
LA English
DT Editorial Material
C1 [Schwarz, Karlheinz] Vienna Univ Technol, Inst Mat Chem, Getreidemarkt 9-165, A-1060 Vienna, Austria.
[Sham, Lu J.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Mattsson, Ann E.] Sandia Natl Labs, Multi Scale Sci, Albuquerque, NM 87185 USA.
[Scheffler, Matthias] Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, Berlin, Germany.
[Scheffler, Matthias] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA.
[Scheffler, Matthias] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA.
RP Schwarz, K (reprint author), Vienna Univ Technol, Inst Mat Chem, Getreidemarkt 9-165, A-1060 Vienna, Austria.
EM kschwarz@theochem.tuwien.ac.at; lsham@ucsd.edu; aematts@sandia.gov;
scheffler@fhi-berlin.mpg.de
NR 3
TC 1
Z9 1
U1 3
U2 3
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2079-3197
J9 COMPUTATION
JI Computation
PD DEC
PY 2016
VL 4
IS 4
AR 40
DI 10.3390/computation4040040
PG 5
WC Mathematics, Interdisciplinary Applications
SC Mathematics
GA EI1VM
UT WOS:000392274200003
ER
PT J
AU Sapkota, D
Mukherjee, R
Mandrus, D
AF Sapkota, Deepak
Mukherjee, Rupam
Mandrus, David
TI Single Crystal Growth, Resistivity, and Electronic Structure of the Weyl
Semimetals NbP and TaP
SO CRYSTALS
LA English
DT Article
DE phosphide; Weyl semimetal; chemical vapor transport; density functional
theory; resistivity
ID FERMI ARCS; DISCOVERY
AB We have successfully synthesized niobium monophosphide and tantalum monophosphide crystals by a chemical vapor transport technique. We report resistivity vs. temperature of both materials in the temperature range from 2 K to 300 K. We have also performed electronic structure calculations and present the band structure and density of states of these two compounds. The calculations show that both compounds are semimetals, as their conduction and valence bands overlap near the Fermi energy.
C1 [Sapkota, Deepak; Mandrus, David] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Mukherjee, Rupam; Mandrus, David] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Mandrus, D (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.; Mandrus, D (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; Mandrus, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM dsapkota@vols.utk.edu; rmukherj@utk.edu; dmandrus@utk.edu
FU National Science Foundation [NSF-EFRI-1433496]
FX This work was supported by the National Science Foundation under grant
NSF-EFRI-1433496.
NR 21
TC 0
Z9 0
U1 6
U2 6
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2073-4352
J9 CRYSTALS
JI Crystals
PD DEC
PY 2016
VL 6
IS 12
AR 160
DI 10.3390/cryst6120160
PG 7
WC Crystallography; Materials Science, Multidisciplinary
SC Crystallography; Materials Science
GA EI1VO
UT WOS:000392274400004
ER
PT J
AU Schoonen, M
Smirnov, A
AF Schoonen, Martin
Smirnov, Alexander
TI Staging Life in an Early Warm 'Seltzer' Ocean
SO ELEMENTS
LA English
DT Article
DE Hadean; origin of life; water-rock interaction; carbon dioxide;
catalysis; clay minerals
ID PREBIOTIC SYNTHESIS; SERPENTINIZATION; REDUCTION; NITROGEN; NITRITE;
NITRATE; CARBON; EARTH
AB The stage for the origin of life may have been set during a period that was as short as 20 million years within the first 100 million years after the formation of the Moon (at similar to 4.5 Ga). The atmosphere at that time contained more carbon dioxide than at any other period thereafter. Carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust, and may have led to conditions conducive to forming the building blocks of life. The conversion of inorganic carbon and nitrogen to the essential building blocks of life may have been facilitated by clays, zeolites, sulfides, and metal alloys that had been formed as the crust reacted with a warm and carbonated (seltzer) ocean. Geochemical modeling constrains the conditions favorable for the formation of these potential mineral catalysts.
C1 [Schoonen, Martin] Brookhaven Natl Lab, Upton, NY 11793 USA.
[Schoonen, Martin] RIS4E, Dept Geosci, Stony Brook, NY 11764 USA.
[Smirnov, Alexander] Lone Star Coll Kingwood, Dept Geol, 20000 Kingwood Dr, Kingwood, TX 77339 USA.
RP Schoonen, M (reprint author), Brookhaven Natl Lab, Upton, NY 11793 USA.; Schoonen, M (reprint author), RIS4E, Dept Geosci, Stony Brook, NY 11764 USA.
EM martin.schoonen@stonybrook.edu; alexander.smirnov@lonestar.edu
FU NASA's Exobiology and Astrobiology program; RIS4E node of the NASA Solar
System Exploration Research Virtual Institute (SSERVI); Department of
Energy, Office of Science
FX NASA's Exobiology and Astrobiology program provided more than a decade
of funding to Schoonen's group at Stony Brook University to investigate
the role of minerals, particularly sulfides, in shaping the conditions
during the Hadean through theoretical and experimental approaches. Many
students, including Alexander Smirnov, contributed to this research
effort. Collaborations, discussions, and student exchanges with Scott
McLennan (Stony Brook University), Daniel Strongin (Temple University),
John Peters (University of Montana), Hiroshi Ohmoto and Jim Kasting
(Penn State), Tom McCollum (University of Colorado), George Cody
(Carnegie), and Nita Sahai (Akron University) helped shape our work and
thinking on this topic. Alexander Smirnov would like to thank Francis
McCubbin (Johnson Space Center) for providing ongoing petrological
perspectives into his work. Schoonen is particularly thankful for the
mentorship by Hu Barnes (Penn State) and the interaction with the late
Dick Holland, who instilled an interest in the geochemistry of the early
Earth. Jan Schoonen, Scott McLennan, two reviewers and Element's editors
are thanked for reviewing an earlier draft of the paper. Work on this
paper was supported in part by the RIS4E node of the NASA
Solar System Exploration Research Virtual Institute (SSERVI). This is
SSERVI publication SERVI-2016-032. Brookhaven National Laboratory is
supported by the Department of Energy, Office of Science.
NR 30
TC 3
Z9 3
U1 8
U2 8
PU MINERALOGICAL SOC AMER
PI CHANTILLY
PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA
SN 1811-5209
EI 1811-5217
J9 ELEMENTS
JI Elements
PD DEC
PY 2016
VL 12
IS 6
BP 395
EP 400
DI 10.2113/gselements.12.6.395
PG 6
WC Geochemistry & Geophysics; Mineralogy
SC Geochemistry & Geophysics; Mineralogy
GA EI1TL
UT WOS:000392260800004
ER
PT J
AU Lee, SH
Uin, J
Guenther, AB
de Gouw, JA
Yu, FQ
Nadykto, AB
Herb, J
Ng, NL
Koss, A
Brune, WH
Baumann, K
Kanawade, VP
Keutsch, FN
Nenes, A
Olsen, K
Goldstein, A
Ouyang, Q
AF Lee, Shan-Hu
Uin, Janek
Guenther, Alex B.
de Gouw, Joost A.
Yu, Fangqun
Nadykto, Alex B.
Herb, Jason
Ng, Nga L.
Koss, Abigail
Brune, William H.
Baumann, Karsten
Kanawade, Vijay P.
Keutsch, Frank N.
Nenes, Athanasios
Olsen, Kevin
Goldstein, Allen
Ouyang, Qi
TI Isoprene suppression of new particle formation: Potential mechanisms and
implications
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID SECONDARY ORGANIC AEROSOL; IONIZATION MASS-SPECTROMETRY; NUCLEATION MODE
PARTICLES; BOREAL FOREST SITE; SIZE-DISTRIBUTION; SULFURIC-ACID;
ATMOSPHERIC PARTICLES; BIOGENIC EMISSIONS; OH CONCENTRATIONS;
BOUNDARY-LAYER
AB Secondary aerosols formed from anthropogenic pollutants and natural emissions have substantial impacts on human health, air quality, and the Earth's climate. New particle formation (NPF) contributes up to 70% of the global production of cloud condensation nuclei (CCN), but the effects of biogenic volatile organic compounds (BVOCs) and their oxidation products on NPF processes in forests are poorly understood. Observations show that isoprene, the most abundant BVOC, suppresses NPF in forests. But the previously proposed chemical mechanism underlying this suppression process contradicts atmospheric observations. By reviewing observations made in other forests, it is clear that NPF rarely takes place during the summer when emissions of isoprene are high, even though there are sufficient concentrations of monoterpenes. But at present it is not clear how isoprene and its oxidation products may change the oxidation chemistry of terpenes and how NOx and other atmospheric key species affect NPF in forest environments. Future laboratory experiments with chemical speciation of gas phase nucleation precursors and clusters and chemical composition of particles smaller than 10 nm are required to understand the role of isoprene in NPF. Our results show that climate models can overpredict aerosol's first indirect effect when not considering the absence of NPF in the southeastern U.S. forests during the summer using the current nucleation algorithm that includes only sulfuric acid and total concentrations of low-volatility organic compounds. This highlights the importance of understanding NPF processes as function of temperature, relative humidity, and BVOC compositions to make valid predictions of NPF and CCN at a wide range of atmospheric conditions.
C1 [Lee, Shan-Hu; Ouyang, Qi] Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA.
[Uin, Janek] Brookhaven Natl Lab, Dept Biol Environm & Climate Sci, Upton, NY 11973 USA.
[Guenther, Alex B.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA.
[de Gouw, Joost A.; Koss, Abigail] NOAA, Chem Sci Div, Boulder, CO USA.
[Yu, Fangqun; Nadykto, Alex B.; Herb, Jason] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA.
[Nadykto, Alex B.] Moscow State Univ Technol Stankin, Dept Appl Math, Moscow, Russia.
[Ng, Nga L.; Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
[Ng, Nga L.; Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Brune, William H.] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA.
[Baumann, Karsten] Atmospher Res & Anal Inc, Morrisville Cary, NC USA.
[Kanawade, Vijay P.] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden.
[Keutsch, Frank N.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
[Olsen, Kevin; Goldstein, Allen] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.
RP Lee, SH (reprint author), Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA.
EM shanhu.lee@uah.edu
RI de Gouw, Joost/A-9675-2008; Koss, Abigail/B-5421-2015
OI de Gouw, Joost/0000-0002-0385-1826;
FU NSF [AGS-1137821, 1241498, AGS-1242258, 1247421]
FX S.H.L. thanks NSF (AGS-1137821 and 1241498) for the funding support;
Paul Ziemann, Katrianne Lehtipalo, Bin Yuan, Neil Donahue, and Jason
Surratt for their useful discussions; Yi You and Roxana Sierra for the
assistance on measurements in SOAS; and Joel Thornton, Ben Lee, Felipe
D. Lopez-Hilfiker, and Claudia Mohr for providing the concentrations of
oxygenated organic compounds measured by the UW HRTOF-CIMS. The
Caltech-CIMS measured IEPOX data are provided by Paul Wennberg, Tran
Nguyen, Alex Teng, Jason St. Clair, and John Crounse, in support of NSF
(AGS-1240604). N.L.N. and F.N.K. acknowledge funding from NSF
(AGS-1242258 and 1247421). Data presented here care available at the
SOAS data archive website:
http://esrl.noaa.gov/csd/groups/csd7/measurements/2013senex/. Please
contact Shanhu Lee (sl0056@uah.edu) for questions.
NR 89
TC 0
Z9 0
U1 18
U2 18
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD DEC
PY 2016
VL 121
IS 24
BP 14621
EP 14635
DI 10.1002/2016JD024844
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EI1OR
UT WOS:000392247400020
ER
PT J
AU Yang, Y
Peng, XD
Ren, FJ
Wen, HM
Su, JF
Xie, WD
AF Yang, Yan
Peng, Xiaodong
Ren, Fengjuan
Wen, Haiming
Su, Junfei
Xie, Weidong
TI Constitutive Modeling and Hot Deformation Behavior of Duplex Structured
Mg-Li-Al--Sr Alloy
SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
LA English
DT Article
DE Mg-Li alloys; Hot deformation; Constitutive equation; Processing maps;
Dynamic recrystallization
ID DYNAMIC RECRYSTALLIZATION BEHAVIOR; PROCESSING MAP;
MECHANICAL-PROPERTIES; MAGNESIUM ALLOY; AS-CAST; ZR ALLOY;
MICROSTRUCTURE; COMPRESSION; EVOLUTION; WORKABILITY
AB Hot deformation behavior of an as-extruded duplex structured Mg-9Li-3Al-2.5Sr alloy is investigated via hot compression tests conducted at 200-350 degrees C with strain rate of 0.001-1 s(-1). The flow behavior of Mg-9Li-3Al-2.5Sr alloy can be described accurately by hyperbolic sine constitutive equation and the average activation energy for deformation is calculated as 143.5 kJ/mol. Based on a dynamic materials model, the processing maps of Mg-9Li-3AI-2.5Sr alloy which describe the variation of power dissipation efficiency are constructed as a function of temperature and strain rate. The processing maps exhibit an area of discontinuous dynamic recrystallization occurring at 280-300 degrees C with strain rate of 0.001-0.01 s(-1), which corresponds to the optimum hot working conditions. Copyright (C) 2016, The editorial office of Journal of Materials Science & Technology. Published by Elsevier Limited.
C1 [Yang, Yan; Peng, Xiaodong; Ren, Fengjuan; Su, Junfei; Xie, Weidong] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China.
[Yang, Yan; Peng, Xiaodong; Xie, Weidong] Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China.
[Wen, Haiming] Idaho State Univ, Dept Nucl Engn & Hlth Phys, Idaho Falls, ID 83402 USA.
[Wen, Haiming] Idaho Natl Lab, Characterizat & Adv PIE Div, Idaho Falls, ID 83415 USA.
RP Yang, Y (reprint author), Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China.; Yang, Y (reprint author), Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China.
EM yanyang@cqu.edu.cn
RI Wen, Haiming/B-3250-2013
OI Wen, Haiming/0000-0003-2918-3966
FU National Natural Science Foundation [51601024]; National Key Research
and Development plan [2016YFB0700403]; Chongqing Research Program of
Basic Research and Frontier Technology [cstc2016jcyjA0418]; Fundamental
Research Funds for the Central Universities [106112015CDJXY130011,
CDJZR14130007]
FX The authors are grateful to the financial support from the National
Natural Science Foundation (Project No. 51601024), the National Key
Research and Development plan (Project No. 2016YFB0700403), the
Chongqing Research Program of Basic Research and Frontier Technology
(Project No. cstc2016jcyjA0418), the Fundamental Research Funds for the
Central Universities (Project No. 106112015CDJXY130011 and No.
CDJZR14130007). H.M. Wen utilized his private time to perform related
work.
NR 34
TC 0
Z9 0
U1 7
U2 7
PU JOURNAL MATER SCI TECHNOL
PI SHENYANG
PA 72 WENHUA RD, SHENYANG 110015, PEOPLES R CHINA
SN 1005-0302
J9 J MATER SCI TECHNOL
JI J. Mater. Sci. Technol.
PD DEC
PY 2016
VL 32
IS 12
BP 1289
EP 1296
DI 10.1016/j.jmst.2016.11.015
PG 8
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA EI5TL
UT WOS:000392557600011
ER
PT J
AU Coleman, JE
AF Coleman, J. E.
TI A spectral pyrometer to spatially resolve the blackbody temperature of a
warm dense plasma
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID HIGH-SPEED; INFRARED PYROMETER; EMISSIVITY
AB A pyrometer has been developed to spatially resolve the blackbody temperature of a radiatively cooling warm dense plasma. The pyrometer is composed of a lens coupled fiber array, Czerny-Turner visible spectrometer, and an intensified gated CCD for the detector. The radiatively cooling warm dense plasma is generated by a similar to 100-ns-long intense relativistic electron bunch with an energy of 19.1 MeV and a current of 0.2 kA interacting with 100-mu m-thick low-Z foils. The continuum spectrum is measured over 250 nm with a low groove density grating. These plasmas emit visible light or blackbody radiation on relatively long time scales (similar to 0.1 to 100 mu s). The diagnostic layout, calibration, and proof-of-principle measurement of a radiatively cooling aluminum plasma is presented, which includes a spatially resolved temperature gradient and the ability to temporally resolve it also. Published by AIP Publishing.
C1 [Coleman, J. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Coleman, JE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
FU National Nuclear Security Administration of the U.S. Department of
Energy [DE-AC52-06NA25396]
FX This work was supported by the National Nuclear Security Administration
of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. I
would like to take the opportunity to thank Don Roeder, Valerie
Fatherley, Anthony Chavez, and Sharon Dominguez for their manufacturing
and design support. I would like to thank the operators, technicians,
and engineers Sam Snider, Melissa Reed, Tim McCurdy, Rudy Valdez,
Armando Martinez, and Travis Weaver for their continued support.
NR 23
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD DEC
PY 2016
VL 87
IS 12
AR 123113
DI 10.1063/1.4973433
PG 5
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EH9NA
UT WOS:000392096800013
PM 28040936
ER
PT J
AU Hoffman, AS
Debefve, LM
Bendjeriou-Sedjerari, A
Ould-Chikh, S
Bare, SR
Basset, JM
Gates, BC
AF Hoffman, A. S.
Debefve, L. M.
Bendjeriou-Sedjerari, A.
Ould-Chikh, S.
Bare, Simon R.
Basset, J. -M.
Gates, B. C.
TI Transmission and fluorescence X-ray absorption spectroscopy cell/flow
reactor for powder samples under vacuum or in reactive atmospheres (vol
97, 073108, 2016)
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Correction
C1 [Hoffman, A. S.; Debefve, L. M.; Gates, B. C.] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA.
[Bendjeriou-Sedjerari, A.; Ould-Chikh, S.; Basset, J. -M.] KAUST, KCC, Thuwal 239556900, Saudi Arabia.
[Bare, Simon R.] SSRL, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA.
EM bcgates@ucdavis.edu
NR 1
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD DEC
PY 2016
VL 87
IS 12
AR 129901
DI 10.1063/1.4971181
PG 1
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EH9NA
UT WOS:000392096800081
PM 28040947
ER
PT J
AU Schollmeier, MS
Loisel, GP
AF Schollmeier, Marius S.
Loisel, Guillaume P.
TI Systematic search for spherical crystal X-ray microscopes matching 1-25
keV spectral line sources
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID NATIONAL IGNITION FACILITY; BENT CRYSTALS; HIGH-ENERGY; LASER-FUSION;
PLASMA; CONFINEMENT; DENSITY
AB Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90 degrees which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this article, after performing a systematic, automated search over more than 9 x 10(6) possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every He-alpha or K-alpha x-ray source for the elements Ne to Sn. Using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date. Published by AIP Publishing.
C1 [Schollmeier, Marius S.; Loisel, Guillaume P.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
RP Schollmeier, MS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM mscholl@sandia.gov
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX We thank Tommy Ao, Ross E. Falcon, Matthias Geissel, Eric C. Harding,
John L. Porter, Patrick K. Rambo, Jens Schwarz, Daniel B. Sinars, and
Christopher S. Speas at Sandia National Laboratories, and Jeffrey A.
Koch at National Security Technologies LLC for the support and helpful
discussions. Sandia National Laboratories is a multi-mission laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000.
NR 58
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD DEC
PY 2016
VL 87
IS 12
AR 123511
DI 10.1063/1.4972248
PG 20
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EH9NA
UT WOS:000392096800026
PM 28040953
ER
PT J
AU Terentyev, S
Blank, V
Kolodziej, T
Shvyd'ko, Y
AF Terentyev, Sergey
Blank, Vladimir
Kolodziej, Tomasz
Shvyd'ko, Yuri
TI Curved diamond-crystal spectrographs for x-ray free-electron laser
noninvasive diagnostics
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID SYNCHROTRON-RADIATION; SPECTROMETER; OPTICS; REFLECTIVITY
AB We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-mu m thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for similar or equal to 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations. Published by AIP Publishing.
C1 [Terentyev, Sergey; Blank, Vladimir] Technol Inst Superhard & Novel Carbon Mat, Troitsk 142190, Russia.
[Kolodziej, Tomasz; Shvyd'ko, Yuri] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Shvyd'ko, Y (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM shvydko@aps.anl.gov
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DEA-C02-06CH11357]; Ministry of Education and Science of
Russian Federation [RFMEF1586114X0001, 14.586.21.0001]
FX Work at the Advanced Photon Source was supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DEA-C02-06CH11357. Work at TISCNM was supported by the
Ministry of Education and Science of Russian Federation: scientific
Project No. RFMEF1586114X0001, Grant No. 14.586.21.0001.
NR 30
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD DEC
PY 2016
VL 87
IS 12
AR 125117
DI 10.1063/1.4973326
PG 6
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EH9NA
UT WOS:000392096800072
PM 28040980
ER
PT J
AU Thaler, A
Northen, E
Aczel, AA
MacDougall, GJ
AF Thaler, A.
Northen, E.
Aczel, A. A.
MacDougall, G. J.
TI A mechanical rotator for neutron scattering measurements
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
ID QUANTUM CRITICALITY; MAGNETIC-STRUCTURE; MN3O4; CRYOSTAT; CELL
AB We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses and future extension possibilities. Published by AIP Publishing.
C1 [Thaler, A.; Northen, E.; MacDougall, G. J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Thaler, A.; Northen, E.; MacDougall, G. J.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA.
[Thaler, A.; Aczel, A. A.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
RP MacDougall, GJ (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.; MacDougall, GJ (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA.
EM gmacdoug@illinois.edu
OI Thaler, Alexander/0000-0001-5066-8904; MacDougall,
Gregory/0000-0002-7490-9650
FU National Science Foundation [DMR-1455264-CAR]; Scientific User
Facilities Division, Office of Basic Energy Sciences, (U.S.) Department
of Energy (DOE)
FX This work was sponsored by the National Science Foundation, under Grant
No. DMR-1455264-CAR. Experiments performed at Oak Ridge National
Laboratory's High Flux Isotope Reactor were sponsored by the Scientific
User Facilities Division, Office of Basic Energy Sciences, (U.S.)
Department of Energy (DOE). We would like to thank Chris Redmon and Todd
Sherline of Oak Ridge National Laboratory for their feedback regarding
several design components. We would also like to thank Alex Zakjevskii,
Annie Farwick, and Brian Nguyen for their help in taking the
measurements.
NR 34
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD DEC
PY 2016
VL 87
IS 12
AR 125109
DI 10.1063/1.4972279
PG 7
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EH9NA
UT WOS:000392096800064
PM 28040949
ER
PT J
AU Engelhard, MH
Lyubinetsky, A
Baer, DR
AF Engelhard, Mark H.
Lyubinetsky, Andre
Baer, Don R.
TI Gallium arsenide (GaAs) (001) after sublimation of arsenic (As)
thin-film cap, by XPS
SO SURFACE SCIENCE SPECTRA
LA English
DT Article
DE gallium arsenide; GaAs; As-capped GaAs; XPS; x-ray photoelectron
spectroscopy; ESCA
AB Survey and high-energy-resolution spectra are reported for MBE grown GaAs (001) that had been capped with As. The As cap was removed by heating in situ prior to analysis. The current data expands upon the spectral regions previously reported in Surface Science Spectra. High energy resolution spectral features reported include: 2p, 3s, 3p, 3d, and L3M4,5M4,5 peaks for As; 2p, 3s, 3p, 3d, and L3M4,5M4,5 peaks for Ga; and the valence band region. (C) 2016 American Vacuum Society.
C1 [Engelhard, Mark H.; Lyubinetsky, Andre; Baer, Don R.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA.
RP Engelhard, MH (reprint author), Pacific Northwest Natl Lab, Environm Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA.
FU DOE's Office of Biological and Environmental Research
FX The specimen was provided by Professor Ravi Droopad, Dept. of Physics,
Texas State University, San Marcos, TX. These spectra were collected
using the Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the DOE's Office of Biological and
Environmental Research, located at Pacific Northwest National Laboratory
(PNNL).
NR 7
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1055-5269
EI 1520-8575
J9 SURF SCI SPECTRA
JI Surf. Sci. Spectra
PD DEC
PY 2016
VL 23
IS 2
BP 83
EP 92
DI 10.1116/1.4962156
PG 10
WC Physics, Condensed Matter
SC Physics
GA EI5JT
UT WOS:000392531200001
ER
PT J
AU Myhre, K
Meyer, H
Du, M
AF Myhre, Kristian
Meyer, Harry
Du, Miting
TI Samarium and europium beta"-alumina derivatives characterized by XPS
SO SURFACE SCIENCE SPECTRA
LA English
DT Article
DE beta"-alumina; europium; samarium
ID THIN-FILMS; PHOSPHOR
AB Characterization of samarium, and europium beta"-alumina derivatives has been carried out using x-ray photoelectron spectroscopy (XPS). Beta"-alumina has been widely studied as a material capable of incorporating many different cations into its lattice structure, such as sodium and many of the lanthanide elements. This unique behavior has been recently explored at Oak Ridge National Laboratory for separating samarium and europium from each other. The XPS of samarium and europium in the beta"-alumina structure are reported here. Additionally, the XPS spectra of the europium and samarium trichloride starting materials are presented in the database. (C) 2017 American Vacuum Society.
C1 [Myhre, Kristian] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, 821 Volunteer Blvd, Knoxville, TN 37996 USA.
[Meyer, Harry; Du, Miting] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, POB 2008, Oak Ridge, TN 37831 USA.
RP Myhre, K (reprint author), Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, 821 Volunteer Blvd, Knoxville, TN 37996 USA.
OI Myhre, Kristian/0000-0002-5947-5743
FU Laboratory Directed Research and Development Program at Oak Ridge
National Laboratory
FX The authors thank Jason Craig for sealing samples in quartz tubes and
Randy Parten for cutting and grinding various samples. This Research is
sponsored by the Laboratory Directed Research and Development Program at
Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S.
Department of Energy.
NR 16
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1055-5269
EI 1520-8575
J9 SURF SCI SPECTRA
JI Surf. Sci. Spectra
PD DEC
PY 2016
VL 23
IS 2
BP 102
EP 111
DI 10.1116/1.4972828
PG 10
WC Physics, Condensed Matter
SC Physics
GA EI5JT
UT WOS:000392531200003
ER
PT J
AU Haasch, RT
Abraham, DA
AF Haasch, Richard T.
Abraham, Daniel A.
TI Introduction to a series of LiNi0.8Co0.2O2-based high-power lithium-ion
battery positive electrodes analyzed by x-ray photoelectron spectroscopy
SO SURFACE SCIENCE SPECTRA
LA English
DT Editorial Material
ID CELLS
C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
[Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
EM r-haasch@illinois.edu; abraham@cmt.anl.gov
FU Office of Vehicle Technologies at the U.S. Department of Energy
FX D.A. gratefully acknowledges support from the Office of Vehicle
Technologies at the U.S. Department of Energy. This work was carried out
in part in the Frederick Seitz Materials Research Laboratory Central
Research Facilities, University of Illinois.
NR 3
TC 0
Z9 0
U1 2
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1055-5269
EI 1520-8575
J9 SURF SCI SPECTRA
JI Surf. Sci. Spectra
PD DEC
PY 2016
VL 23
IS 2
BP 112
EP 117
DI 10.1116/1.4972829
PG 6
WC Physics, Condensed Matter
SC Physics
GA EI5JT
UT WOS:000392531200004
ER
PT J
AU Haasch, RT
Abraham, DA
AF Haasch, Richard T.
Abraham, Daniel A.
TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes
analyzed by x-ray photoelectron spectroscopy: 1. Fresh electrode
SO SURFACE SCIENCE SPECTRA
LA English
DT Article
DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy
conversion and storage
ID PHOTOEMISSION
AB X-ray photoelectron spectroscopy (XPS) was used to analyze a fresh LiNi0.8Co0.2O2-based high power lithium-ion battery cathode. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, S 2p, P 2p, and Li 1s are presented. In addition, XP spectra were obtained using incident Mg K-alpha radiation at 0.98903 nm. A survey spectrum together with Ni 2p, Co 2p, and C 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals and show only minor sulfur contamination. (C) 2017 American Vacuum Society.
C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61081 USA.
[Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61081 USA.
FU Office of Vehicle Technologies at U.S. Department of Energy
FX D.A. gratefully acknowledges support from the Office of Vehicle
Technologies at the U.S. Department of Energy. This work was carried out
in part in the Frederick Seitz Materials Research Laboratory Central
Research Facilities, University of Illinois.
NR 3
TC 0
Z9 0
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1055-5269
EI 1520-8575
J9 SURF SCI SPECTRA
JI Surf. Sci. Spectra
PD DEC
PY 2016
VL 23
IS 2
BP 118
EP 128
DI 10.1116/1.4972837
PG 11
WC Physics, Condensed Matter
SC Physics
GA EI5JT
UT WOS:000392531200005
ER
PT J
AU Haasch, RT
Abraham, DA
AF Haasch, Richard T.
Abraham, Daniel A.
TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes
analyzed by x-ray photoelectron spectroscopy: 2. Following 3 formation
cycles
SO SURFACE SCIENCE SPECTRA
LA English
DT Article
DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy
conversion and storage
ID PHOTOEMISSION
AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following 3 formation cycles. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p and Li 1s are presented. In addition, XP spectra were obtained using incident Mg K-alpha radiation at 0.98903 nm. A survey spectrum together with Ni 2p, Co 2p, and C 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals and the not rinsed cathode shows only minor sulfur contamination. (C) 2017 American Vacuum Society.
C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
[Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
FU Office of Vehicle Technologies at U.S. Department of Energy
FX D.A. gratefully acknowledges support from the Office of Vehicle
Technologies at the U.S. Department of Energy. This work was carried out
in part in the Frederick Seitz Materials Research Laboratory Central
Research Facilities, University of Illinois.
NR 3
TC 0
Z9 0
U1 2
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1055-5269
EI 1520-8575
J9 SURF SCI SPECTRA
JI Surf. Sci. Spectra
PD DEC
PY 2016
VL 23
IS 2
BP 129
EP 140
DI 10.1116/1.4972840
PG 12
WC Physics, Condensed Matter
SC Physics
GA EI5JT
UT WOS:000392531200006
ER
PT J
AU Haasch, RT
Abraham, DA
AF Haasch, Richard T.
Abraham, Daniel A.
TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes
analyzed by x-ray photoelectron spectroscopy: 3. Following calendar-life
test for 12 weeks at 40 degrees C, 60% state-of-charge (3.747 V)
SO SURFACE SCIENCE SPECTRA
LA English
DT Article
DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy
conversion and storage
ID PHOTOEMISSION
AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following calendar-life testing at 40 degrees C, 60% state-of-charge. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p, and Li 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals. Both cathodes show only minor nitrogen contamination. (C) 2017 American Vacuum Society.
C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
[Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
FU Office of Vehicle Technologies at the U.S. Department of Energy
FX D.A. gratefully acknowledges support from the Office of Vehicle
Technologies at the U.S. Department of Energy. This work was carried out
in part in the Frederick Seitz Materials Research Laboratory Central
Research Facilities, University of Illinois.
NR 3
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1055-5269
EI 1520-8575
J9 SURF SCI SPECTRA
JI Surf. Sci. Spectra
PD DEC
PY 2016
VL 23
IS 2
BP 141
EP 148
DI 10.1116/1.4972841
PG 8
WC Physics, Condensed Matter
SC Physics
GA EI5JT
UT WOS:000392531200007
ER
PT J
AU Haasch, RT
Abraham, DA
AF Haasch, Richard T.
Abraham, Daniel A.
TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes
analyzed by x-ray photoelectron spectroscopy: 4. Following calendar-life
test for 8 weeks at 50 degrees C, 60% state-of-charge (3.747 V)
SO SURFACE SCIENCE SPECTRA
LA English
DT Article
DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy
conversion and storage
ID PHOTOEMISSION
AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following calendar-life testing at 50 degrees C, 60% state-of-charge. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p and Li 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals. (C) 2017 American Vacuum Society.
C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
[Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
FU Office of Vehicle Technologies at the U.S. Department of Energy
FX D.A. gratefully acknowledges support from the Office of Vehicle
Technologies at the U.S. Department of Energy. This work was carried out
in part in the Frederick Seitz Materials Research Laboratory Central
Research Facilities, University of Illinois.
NR 3
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1055-5269
EI 1520-8575
J9 SURF SCI SPECTRA
JI Surf. Sci. Spectra
PD DEC
PY 2016
VL 23
IS 2
BP 149
EP 156
DI 10.1116/1.4972842
PG 8
WC Physics, Condensed Matter
SC Physics
GA EI5JT
UT WOS:000392531200008
ER
PT J
AU Haasch, R
Abraham, DA
AF Haasch, Richard
Abraham, Daniel A.
TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes
analyzed by x-ray photoelectron spectroscopy: 5. Following calendar-life
test for 8 weeks at 60 degrees C, 60% state-of-charge (3.747 V)
SO SURFACE SCIENCE SPECTRA
LA English
DT Article
DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy
conversion and storage
ID PHOTOEMISSION
AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following calendar-life testing at 60 degrees C, 60% state-of-charge. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p and Li 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals. (C) 2017 American Vacuum Society.
C1 [Haasch, Richard] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
[Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Haasch, R (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
FU Office of Vehicle Technologies at U.S. Department of Energy
FX D.A. gratefully acknowledges support from the Office of Vehicle
Technologies at the U.S. Department of Energy. This work was carried out
in part in the Frederick Seitz Materials Research Laboratory Central
Research Facilities, University of Illinois.
NR 3
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1055-5269
EI 1520-8575
J9 SURF SCI SPECTRA
JI Surf. Sci. Spectra
PD DEC
PY 2016
VL 23
IS 2
BP 157
EP 164
DI 10.1116/1.4972865
PG 8
WC Physics, Condensed Matter
SC Physics
GA EI5JT
UT WOS:000392531200009
ER
PT J
AU Haasch, RT
Abraham, DA
AF Haasch, Richard T.
Abraham, Daniel A.
TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes
analyzed by x-ray photoelectron spectroscopy: 6. Following calendar-life
test for 2 weeks at 70 degrees C, 60% state-of-charge (3.747 V)
SO SURFACE SCIENCE SPECTRA
LA English
DT Article
DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy
conversion and storage
ID PHOTOEMISSION
AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following calendar-life testing at 70 degrees C, 60% state-of-charge. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p, and Li 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals. (C) 2017 American Vacuum Society.
C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
[Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA.
FU Office of Vehicle Technologies at the U.S. Department of Energy
FX D.A. gratefully acknowledges support from the Office of Vehicle
Technologies at the U.S. Department of Energy. This work was carried out
in part in the Frederick Seitz Materials Research Laboratory Central
Research Facilities, University of Illinois.
NR 3
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1055-5269
EI 1520-8575
J9 SURF SCI SPECTRA
JI Surf. Sci. Spectra
PD DEC
PY 2016
VL 23
IS 2
BP 165
EP 172
DI 10.1116/1.4972866
PG 8
WC Physics, Condensed Matter
SC Physics
GA EI5JT
UT WOS:000392531200010
ER
PT J
AU Bridges, RA
Imam, N
Mintz, TM
AF Bridges, Robert A.
Imam, Neena
Mintz, Tiffany M.
TI Understanding GPU Power: A Survey of Profiling, Modeling, and Simulation
Methods
SO ACM COMPUTING SURVEYS
LA English
DT Article
DE Experimentation; Performance; GPU; GPGPU; power profile; power model;
simulation
ID PERFORMANCE; ARCHITECTURES
AB Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high-throughput applications. Although GPUs consume large amounts of power, their use for high-throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. This work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. As direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to power use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling are discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Last, possible directions for future research are discussed.
C1 [Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
RP Bridges, RA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM bridgesra@ornl.gov; imamn@ornl.gov; mintztm@ornl.gov
FU United States Department of Defense; U.S. Department of Energy
[DE-AC05-00OR22725]; Department of Energy; United States Government
FX This work was supported by the United States Department of Defense and
used resources of the Computational Research and Development Programs at
Oak Ridge National Laboratory. This manuscript has been authored by
UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes. The Department of Energy will provide public access
to these results of federally sponsored research in accordance with the
DOE Public Access Plan
http://energy.gov/downloads/doe-public-access-plan.
NR 98
TC 1
Z9 1
U1 1
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA
SN 0360-0300
EI 1557-7341
J9 ACM COMPUT SURV
JI ACM Comput. Surv.
PD DEC
PY 2016
VL 49
IS 3
AR 41
DI 10.1145/2962131
PG 27
WC Computer Science, Theory & Methods
SC Computer Science
GA EH3AH
UT WOS:000391639400001
ER
PT J
AU Jiao, F
Chen, YL
Jin, HB
He, PG
Chen, CL
De Yoreo, JJ
AF Jiao, Fang
Chen, Yulin
Jin, Haibao
He, Pingang
Chen, Chun-Long
De Yoreo, James J.
TI Self-Repair and Patterning of 2D Membrane-Like Peptoid Materials
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
DE 2D membranes; nanopatterns; peptoids; self-repair
ID SEQUENCE-SPECIFIC POLYPEPTOIDS; MECHANICAL CALCULATIONS; 2-DIMENSIONAL
POLYMERS; FORCE-FIELD; NANOSHEETS; PEPTIDE; PROTEINS; SURFACE; GROWTH;
CHARGE
AB Due to their unique physical and chemical properties, 2D materials have attracted intense interest for applications in filtration, sensing, nanoelectronics, and biomedical devices. Peptoids are a class of biomimetic sequence-defined polymers for which certain amphiphillic sequences self-assemble into 2D crystalline materials with properties that mimic those of cell membranes. In this study the ability of these membrane-like materials to self-repair following damage on a range of substrates is explored. In situ atomic force microscopy (AFM) is used to both create damage and image the subsequent repair process. Damage is induced by using the AFM to scribe peptoid-free patterns within a preassembled membrane. The results show here that, upon introduction of a peptoid-containing solution, for a suitable range of pH conditions, the damage is eliminated through assembly of the peptoids at the newly created edges, regardless of whether the substrates are negatively or positively charged and even in the absence of an underlying surface. The rate of the advancing edge depends on the edge orientation, the pH, and the composition of the substrate. Moreover, if the solution contains a second peptoid having an identical sequence in the hydrophobic block, repair of the defects results in nanoscale patterns of the new peptoid, even if the hydrophilic regions are distinct. Consequently, this ability to self-repair can be exploited to create nm-sized patterns of distinct functional groups within a single coherent membrane.
C1 [Jiao, Fang; He, Pingang] East China Normal Univ, Sch Chem & Mol Engn, Shanghai 200241, Peoples R China.
[Jiao, Fang; Chen, Yulin; Jin, Haibao; Chen, Chun-Long; De Yoreo, James J.] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
[De Yoreo, James J.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA.
RP Chen, CL; De Yoreo, JJ (reprint author), Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA.; De Yoreo, JJ (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA.
EM chunlong.chen@pnnl.gov; james.deyoreo@pnnl.gov
FU Materials Synthesis and Simulation Across Scales (MS3) Initiative
through the LDRD program at Pacific Northwest National Laboratory
(PNNL); U.S. Department of Energy, Office of Basic Energy Sciences,
Biomolecular Materials Program at PNNL; China Scholarship Council;
Department of Energy by Battelle [DE-AC05-76RL01830]
FX Peptoid synthesis was supported by the Materials Synthesis and
Simulation Across Scales (MS3) Initiative through the LDRD program at
Pacific Northwest National Laboratory (PNNL). In situ AFM studies were
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, Biomolecular Materials Program at PNNL. F.J. gratefully
acknowledges financial support from China Scholarship Council. PNNL is
multiprogram national laboratory operated for Department of Energy by
Battelle under Contract No. DE-AC05-76RL01830.
NR 35
TC 0
Z9 0
U1 23
U2 23
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1616-301X
EI 1616-3028
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD DEC
PY 2016
VL 26
IS 48
BP 8960
EP 8967
DI 10.1002/adfm.201602365
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA EH5KT
UT WOS:000391812700010
ER
PT J
AU Chen, XF
Guo, PJ
He, C
Dong, BQ
Ocola, LE
Schaller, RD
Chang, RPH
Sun, C
AF Chen, Xiangfan
Guo, Peijun
He, Cheng
Dong, Biqin
Ocola, Leonidas E.
Schaller, Richard D.
Chang, Robert P. H.
Sun, Cheng
TI Scaling the Artificial Polariton Bandgap at Infrared Frequencies Using
Indium Tin Oxide Nanorod Arrays
SO ADVANCED OPTICAL MATERIALS
LA English
DT Article
ID SURFACE-PLASMON RESONANCES; OPTICAL-PROPERTIES; SILICON NANOWIRES;
METAMATERIALS; NANOCRYSTALS; TRANSPARENCY; CONDUCTIVITY; NANOANTENNAS;
ABSORPTION; NANOSCALE
AB Artificial polariton bandgaps at infrared frequencies are investigated by exploiting the strong coupling of electromagnetic waves with induced electric dipoles in two-dimensional (2D) indium tin oxide nanorod arrays (ITO-NRAs). The electric dipoles originate from the collective oscillations of free electrons within the individual ITO nanorods undergoing plasmonic resonance. Controlling the near-field interactions among the neighboring electric dipoles allows for manipulation of the collective polariton modes that are manifested as a polariton bandgap. A theoretical model is developed to understand the coupled phenomena underlying the unique characteristics of plasmon-polariton bandgaps. With high-degree geometric control of the ITO-NRAs, it is experimentally demonstrated that reducing the spacing between ITO nanorods in a square array strengthens the near-field interactions and thus results in a redshift as well as broadening of the polariton bandgap. Furthermore, arranging ITO-NRAs in a rectangular lattice breaks the symmetry with respect to the principle axis, which leads to a splitting of the collective polariton modes owing to the competition between the quasi-longitudinally and quasi-transversely coupled plasmon-polariton modes. The work highlights the use of a classical dipole coupling method for scaling polariton bandgaps to the infrared in artificial plasmonic lattices, thereby offering a new design dimension for infrared sensing, absorbers, and optical communications.
C1 [Chen, Xiangfan; He, Cheng; Dong, Biqin; Sun, Cheng] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA.
[Guo, Peijun; Chang, Robert P. H.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Ocola, Leonidas E.; Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA.
[Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP Sun, C (reprint author), Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA.; Chang, RPH (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
EM r-chang@northwestern.edu; c-sun@northwestern.edu
OI Chen, Xiangfan/0000-0002-5627-7530; Ocola, Leonidas/0000-0003-4990-1064
FU National Science Foundation (NSF) [EEC-1530734, DBI-1353952]; MRSEC
program at Northwestern University [NSF DMR-1121262]; US Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; State of Illinois; Northwestern University; Soft
and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF
NNCI-1542205]; MRSEC at the Materials Research Center [NSF DMR-1121262];
International Institute for Nanotechnology (IIN); Keck Foundation; State
of Illinois through the IIN
FX X.C. and P.G. contributed equally to this work. This work was supported
by the National Science Foundation (NSF) under Grant Nos. EEC-1530734
and DBI-1353952, and the MRSEC program (Grant No. NSF DMR-1121262) at
Northwestern University. Use of the Center for Nanoscale Materials was
supported by the US Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work
used the Northwestern University Micro/Nano Fabrication Facility
(NUFAB), which was supported by the State of Illinois and Northwestern
University. This work also made use of the EPIC facility of the NUANCE
Center at Northwestern University, which has received support from the
Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (Grant No.
NSF NNCI-1542205), the MRSEC program (Grant No. NSF DMR-1121262) at the
Materials Research Center, the International Institute for
Nanotechnology (IIN), the Keck Foundation, and the State of Illinois,
through the IIN.
NR 54
TC 1
Z9 1
U1 11
U2 11
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 2195-1071
J9 ADV OPT MATER
JI Adv. Opt. Mater.
PD DEC
PY 2016
VL 4
IS 12
BP 2077
EP 2084
DI 10.1002/adom.201600439
PG 8
WC Materials Science, Multidisciplinary; Optics
SC Materials Science; Optics
GA EI3QA
UT WOS:000392405100025
ER
PT J
AU Tilka, JA
Park, J
Sampson, KC
Cai, Z
Evans, PG
AF Tilka, J. A.
Park, J.
Sampson, K. C.
Cai, Z.
Evans, P. G.
TI Fabrication and convergent X-ray nanobeam diffraction characterization
of submicron-thickness SrTiO3 crystalline sheets
SO APL MATERIALS
LA English
DT Article
ID FIB-INDUCED DAMAGE; ELECTRON-MICROSCOPY; SINGLE-CRYSTAL; ION;
NANOMEMBRANES; RECOVERY; SILICON; OXIDES
AB The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction rocking curve widths of these SrTiO3 sheets are less than 0.02 degrees, less than a factor of two larger than bulk SrTiO3, making these crystals suitable substrates for epitaxial thin film growth. The change in the rocking curve width is sufficiently small that we deduce that dislocations are not introduced into the SrTiO3 sheets. Observed lattice distortions are consistent with a low concentration of point defects. (C) 2016 Author(s).
C1 [Tilka, J. A.; Park, J.; Sampson, K. C.; Evans, P. G.] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA.
[Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Evans, PG (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA.
EM pgevans@wisc.edu
RI Evans, Paul/A-9260-2009
OI Evans, Paul/0000-0003-0421-6792
FU U.S. DOE, Basic Energy Sciences, Materials Sciences and Engineering
[DE-FG02-04ER46147]; National Science Foundation Graduate Research
Fellowship Program [DGE-1256259]; NSF [DMR-1106050]; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; University of Wisconsin Materials Research Science
and Engineering Center, NSF [DMR-1121288]
FX The development of the x-ray nanobeam analysis methods employed in this
work was supported by the U.S. DOE, Basic Energy Sciences, Materials
Sciences and Engineering, Contract No. DE-FG02-04ER46147. J.A.T.
acknowledges support from the National Science Foundation Graduate
Research Fellowship Program, Grant No. DGE-1256259 and from NSF Grant
No. DMR-1106050. Use of the Advanced Photon Source was supported by the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. This research used
shared facilities supported by the University of Wisconsin Materials
Research Science and Engineering Center, NSF Grant No. DMR-1121288. The
authors would like to thank Eli Mueller for carefully reviewing the
simulation.
NR 28
TC 0
Z9 0
U1 5
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 2166-532X
J9 APL MATER
JI APL Mater.
PD DEC
PY 2016
VL 4
IS 12
AR 126108
DI 10.1063/1.4972528
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA EH7ZL
UT WOS:000391991100009
ER
PT J
AU Zhang, XD
Vesselinov, VV
AF Zhang, Xiaodong
Vesselinov, Velimir V.
TI Energy-water nexus: Balancing the tradeoffs between two-level decision
makers
SO APPLIED ENERGY
LA English
DT Article
DE Energy-water nexus; Two-level decision making; Tradeoff; GHG emission
control
ID MULTILEVEL PROGRAMMING-PROBLEMS; ELECTRICITY-GENERATION; UNITED-STATES;
FUZZY; MODEL; MANAGEMENT; SYSTEM; TEXAS
AB Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energy-water nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improves upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decision-making in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level, decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. These analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed" decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Zhang, Xiaodong; Vesselinov, Velimir V.] Los Alamos Natl Lab, Earth & Environm Sci Div, Computat Earth Sci EES 16, Los Alamos, NM 87545 USA.
RP Zhang, XD (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Computat Earth Sci EES 16, Los Alamos, NM 87545 USA.
EM gerryzxd@gmail.com
OI Zhang, Xiaodong/0000-0001-5353-1647
NR 49
TC 1
Z9 1
U1 8
U2 8
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD DEC 1
PY 2016
VL 183
BP 77
EP 87
DI 10.1016/j.apenergy.2016.08.156
PG 11
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA EH6PY
UT WOS:000391897600006
ER
PT J
AU Ke, XD
Wu, D
Rice, J
Kintner-Meyer, M
Lu, N
AF Ke, Xinda
Wu, Di
Rice, Jennie
Kintner-Meyer, Michael
Lu, Ning
TI Quantifying impacts of heat waves on power grid operation
SO APPLIED ENERGY
LA English
DT Article
DE Climate change; Heat wave; Power grid operation; Production cost model;
Unit commitment
ID STOCHASTIC UNIT COMMITMENT; CLIMATE-CHANGE; ENERGY-CONSUMPTION;
UNCERTAINTY; BUILDINGS; SYSTEMS; LEVEL
AB Climate change is projected to cause an increase in the severity and frequency of extreme weather events such as heat waves and droughts. Such changes present planning and operating challenges and risks to many economic sectors. In the electricity sector, statistics of extreme events in the past have been used to help plan for future peak loads, determine associated infrastructure requirements, and evaluate operational risks, but industry-standard planning tools have yet to be coupled with or informed by temperature models to explore the irhpacts of the "new normal" on planning studies. For example, high ambient temperatures during heat waves reduce the output capacity and efficiency of gas-fired combustion turbines just when they are needed most to meet peak demands. This paper describes the development and application of a production cost and unit commitment model coupled to high resolution, hourly temperature data and a temperature-dependent load model. The coupled system has the ability to represent the impacts of hourly temperature on load conditions and available capacity and efficiency of combustion turbines, and therefore capture the potential impacts on system reserve and production cost. Ongoing work expands this capability to address the impacts of water availability and temperature on power grid operation. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Lu, Ning] North Carolina State Univ, Raleigh, NC 27606 USA.
[Ke, Xinda; Wu, Di; Rice, Jennie; Kintner-Meyer, Michael] Pacific Northwest Natl Lab, Richland, WA 99354 USA.
RP Wu, D (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA.
EM di.wu@pnnl.gov
OI Wu, Di/0000-0001-6955-4333
FU U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research as part of the Integrated Assessment Research
Program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830]
FX This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Biological and Environmental
Research as part of the Integrated Assessment Research Program. The
Pacific Northwest National Laboratory is operated for DOE by Battelle
Memorial Institute under contract DE-AC05-76RL01830.
NR 35
TC 0
Z9 0
U1 6
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD DEC 1
PY 2016
VL 183
BP 504
EP 512
DI 10.1016/j.apenergy.2016.08.188
PG 9
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA EH6PY
UT WOS:000391897600041
ER
PT J
AU Wei, W
Liu, F
Wang, JH
Chen, LJ
Mei, SW
Yuan, TJ
AF Wei, Wei
Liu, Feng
Wang, Jianhui
Chen, Laijun
Mei, Shengwei
Yuan, Tiejiang
TI Robust environmental-economic dispatch incorporating wind power
generation and carbon capture plants
SO APPLIED ENERGY
LA English
DT Article
DE Carbon-capture plants; Environmental-economic dispatch; Nash bargaining
problem; Wind generation; Robust optimization
ID UNIT COMMITMENT; PROGRAMMING APPROACH; RESERVE DISPATCH; ENERGY;
OPTIMIZATION; OPERATION; SYSTEMS; ALGORITHMS; MARKETS
AB Utilizing clean renewable generation and carbon capture plants (CCPs) can remarkably reduce the carbon emission from electricity production. Because operating carbon capture facility consumers additional energy, minimizing the production cost and reducing the carbon emission may conflict with each other. To compromise these two objectives and cope with uncertain wind generation, this paper proposes a robust environmental-economic dispatch (EED) method that jointly optimizes energy and reserve schedules in the upcoming dispatch period. The operating characteristic of CCP and the volatility of wind energy are considered in the proposed model. Because both objectives are convex functions, the Pareto front can be readily computed by using the 8-constraint method. The Nash bargaining criterion is adopted to determine a fair trade-off between the generation cost and the carbon emission in the absence of a clear carbon tax or emission cap. A second-order cone program (SOCP) is proposed to locate the bargaining solution on the Pareto front. An adaptive scenario generation algorithm is derived to solve the robust EED problem in a tractable manner. The PJM 5-bus system is used to illustrate the obtained dispatch strategy, and demonstrate the contribution of CCPs on reducing the carbon emissions and enhancing the operational flexibility. Case studies on the IEEE 118-bus system corroborate the applicability of the proposed method. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Wei, Wei; Liu, Feng; Chen, Laijun; Mei, Shengwei] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China.
[Wang, Jianhui] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Yuan, Tiejiang] Xinjiang Univ, Dept Elect Engn, Urumqi 830046, Peoples R China.
RP Wei, W (reprint author), Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China.
EM wei-wei04@mails.tsinghua.edu.cn
FU National Natural Science Foundation of China [51007041, 51577163];
Foundation for Innovative Research Groups of the National Natural
Science Foundation of China [51321005]
FX This work is supported in part by the National Natural Science
Foundation of China (No. 51007041), in part by the National Natural
Science Foundation of China (No. 51577163), and in part by the
Foundation for Innovative Research Groups of the National Natural
Science Foundation of China (No. 51321005).
NR 38
TC 3
Z9 3
U1 6
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD DEC 1
PY 2016
VL 183
BP 674
EP 684
DI 10.1016/j.apenergy.2016.09.013
PG 11
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA EH6PY
UT WOS:000391897600054
ER
PT J
AU Yu, XQ
Yan, D
Sun, KY
Hong, TZ
Zhu, DD
AF Yu, Xinqiao
Yan, Da
Sun, Kaiyu
Hong, Tianzhen
Zhu, Dandan
TI Comparative study of the cooling energy performance of variable
refrigerant flow systems and variable air volume systems in office
buildings
SO APPLIED ENERGY
LA English
DT Article
DE Variable refrigerant flow (VRF) systems; Variable air volume (VAV)
systems; Field measurement; Building simulation; Energy performance;
Comparative analysis
ID CONDITIONING SYSTEM; THERMAL COMFORT; CLIMATE-CHANGE; SIMULATION;
CONSUMPTION; TOOLKIT; MODEL; INFORMATION; TEMPERATURE; IMPACT
AB Variable air volume (VAV) and variable refrigerant flow (VRF) systems are widely used in office buildings. This study investigated VAV and VRF systems in five typical office buildings in China, and compared their cooling energy use. Site survey and field measurements were conducted to collect the data of building characteristics and operation. Measured cooling electricity use was collected from sub-metering in the five buildings. The sub-metering data normalized by climate and operating hours indicated that the cooling energy consumed by VRF systems was up to 70% lower than that consumed by VAV systems. This was mainly because of the different operation modes of both system types that led to significantly fewer operating hours for the VRF systems. Building simulations were used to quantify the impact of operation modes of VRF and VAV systems on cooling loads. A prototype office building in China was used as the model. The simulation results showed that the VRF operation mode required much lower cooling load when compared to the VAV operation mode. For example, the cooling loads decreased by 42% in Hong Kong and 53% in Qingdao. The key findings include the following: the VRF systems operated in the part-time-part-space mode enabling occupants to turn on the air-conditioning only when needed and when the spaces were occupied. However, the VAV systems operated in the full-time-full-space mode limiting occupants' control of operation. These findings provide insights into VRF systems operation and controls as well as their energy performance, which could help guide HVAC designers on system selection and building operators or facility managers on system operations to achieve low- or zero-net energy buildings. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Yu, Xinqiao; Yan, Da] Tsinghua Univ, Sch Architecture, Beijing, Peoples R China.
[Sun, Kaiyu; Hong, Tianzhen] Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, Berkeley, CA USA.
[Zhu, Dandan] Beijing Inst Architectural Design, Beijing, Peoples R China.
RP Yan, D (reprint author), Tsinghua Univ, Sch Architecture, Beijing, Peoples R China.
EM yanda@tsinghua.edu.cn
FU Engineering and Physical Sciences Research Council (EPSRC)
[EP/N009703/1]; National Natural Science Foundation of China (NSFC)
[51561135001]; Innovative Research Groups of the National Natural
Science Foundation of China [51521005]; Daikin-Tsinghua Joint Research
Center; Assistant Secretary of the Office of Energy Efficiency &
Renewable Energy of the U.S. Department of Energy through the U.S.-China
joint program of Clean Energy Research Center on Building Energy
Efficiency [DE-AC02-05CH11231]
FX This research was funded by the Engineering and Physical Sciences
Research Council (EPSRC) grant (EP/N009703/1) and the National Natural
Science Foundation of China (NSFC) grant (51561135001) for the Total
Performance of Low Carbon Buildings in China and the UK, and Innovative
Research Groups of the National Natural Science Foundation of China
(grant number 51521005). It was also supported by Daikin-Tsinghua Joint
Research Center and the Assistant Secretary of the Office of Energy
Efficiency & Renewable Energy of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231 through the U.S.-China joint program of
Clean Energy Research Center on Building Energy Efficiency.
NR 44
TC 2
Z9 2
U1 4
U2 4
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD DEC 1
PY 2016
VL 183
BP 725
EP 736
DI 10.1016/j.apenergy.2016.09.033
PG 12
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA EH6PY
UT WOS:000391897600058
ER
PT J
AU Manic, M
Amarasinghe, K
Rodriguez-Andina, JJ
Rieger, C
AF Manic, Milos
Amarasinghe, Kasun
Rodriguez-Andina, Juan J.
Rieger, Craig
TI Intelligent Buildings of the Future Cyberaware, Deep Learning Powered,
and Human Interacting
SO IEEE INDUSTRIAL ELECTRONICS MAGAZINE
LA English
DT Article
ID SMART GRIDS
C1 [Manic, Milos] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA.
[Manic, Milos] Virginia Commonwealth Univ, Modern Heurist Res Grp, Richmond, VA 23284 USA.
[Amarasinghe, Kasun] Virginia Commonwealth Univ, Comp Sci, Richmond, VA 23284 USA.
[Amarasinghe, Kasun] Univ Vigo, Dept Elect Technol, Vigo, Spain.
[Rieger, Craig] Idaho Natl Lab, Idaho Falls, ID USA.
RP Manic, M (reprint author), Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA.; Manic, M (reprint author), Virginia Commonwealth Univ, Modern Heurist Res Grp, Richmond, VA 23284 USA.
EM misko@ieee.org; amarasinghek@vcu.edu; jjrdguez@uvigo.es;
craig.rieger@inl.gov
OI Rodriguez-Andina, Juan J./0000-0002-0919-1793; Manic,
Milos/0000-0003-1484-7678
NR 56
TC 0
Z9 0
U1 4
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1932-4529
EI 1941-0115
J9 IEEE IND ELECTRON M
JI IEEE Ind. Electron. Mag.
PD DEC
PY 2016
VL 10
IS 4
BP 32
EP 49
DI 10.1109/MIE.2016.2615575
PG 18
WC Engineering, Electrical & Electronic
SC Engineering
GA EH3ZU
UT WOS:000391711500005
ER
PT J
AU Aalseth, CE
Colaresi, J
Collar, JI
Fast, JE
Hossbach, TW
Orrell, JL
Overman, CT
Scholz, B
Vandevender, BA
Yocum, KM
AF Aalseth, Craig E.
Colaresi, Jim
Collar, Juan I.
Fast, James E.
Hossbach, Todd W.
Orrell, John L.
Overman, Cory T.
Scholz, Bjorn
Vandevender, Brent A.
Yocum, K. Michael
TI A Low-Noise Germanium Ionization Spectrometer for Low-Background Science
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE COMSOL thermal model; cryostat; dark matter; low-noise detector;
neutrino nucleus coherent scattering; p-type point contact high purity
germanium ionization spectrometer
ID DETECTORS; COPPER
AB Recent progress on the development of very low noise high purity germanium ionization spectrometers has produced an instrument of 1.2 kg mass and excellent noise performance. The detector was installed in a low-background cryostat intended for use in a direct detection search for low mass, WIMP dark matter. This transaction reports the thermal characterization of the cryostat, specifications of the newly prepared 1.2 kg p-type point contact germanium detector, and the spectroscopic performance of the integrated system. The integrated detector and low background cryostat achieved full-width-at-half-maximum noise performance of 98 eV for an electronic pulse generator peak and 1.9 keV for the 1332-keV Co-60 gamma ray.
C1 [Aalseth, Craig E.; Fast, James E.; Hossbach, Todd W.; Orrell, John L.; Overman, Cory T.; Vandevender, Brent A.] Pacific Northwest Natl Lab, Richland, WA 99352 USA.
[Colaresi, Jim; Yocum, K. Michael] CANBERRA Ind, Meriden, CT 06450 USA.
[Collar, Juan I.; Scholz, Bjorn] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Collar, Juan I.; Scholz, Bjorn] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
RP Orrell, JL (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA.
EM john.orrell@pnnl.gov
RI Orrell, John/E-9313-2015
OI Orrell, John/0000-0001-7968-4051
FU National Science Foundation [PHYS-1003940]
FX The authors would like to thank Eric W. Hoppe and Jason Merriman for
fabrication of the cryostat end cap and infrared shield using their
ultra-pure copper electroforming capability. The Ultra-Sensitive Nuclear
Measurement Initiative, a Laboratory Directed Research and Development
program at the Pacific Northwest National Laboratory, supported the
development of the low background cryostat. The National Science
Foundation supported the development of the low noise germanium detector
via a grant to the University of Chicago (PHYS-1003940).
NR 23
TC 0
Z9 0
U1 2
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD DEC
PY 2016
VL 63
IS 6
BP 2782
EP 2792
DI 10.1109/TNS.2016.2614431
PG 11
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA EH3SV
UT WOS:000391693100006
ER
PT J
AU Bentoumi, G
Rogge, RB
Andrews, MT
Corcoran, EC
Dimayuga, I
Kelly, DG
Li, L
Sur, B
AF Bentoumi, G.
Rogge, R. B.
Andrews, M. T.
Corcoran, E. C.
Dimayuga, I.
Kelly, D. G.
Li, L.
Sur, B.
TI A Novel In-Beam Delayed Neutron Counting Technique for Characterization
of Special Nuclear Materials
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Delayed neutron counting; fissile material; non-destructive assay;
neutron beam; nuclear forensics; nuclear non-proliferation
ID DIE-AWAY ANALYSIS; DIFFERENTIAL DIE; GAMMA-RAYS; ACTIVATION-ANALYSIS;
FISSILE MATERIALS; URANIUM; SYSTEM; PLUTONIUM; NP-237; ENERGY
AB A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of U-235 via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples.
C1 [Bentoumi, G.; Rogge, R. B.; Dimayuga, I.; Li, L.; Sur, B.] Canadian Nucl Labs, Chalk River, ON K0J 1J0, Canada.
[Andrews, M. T.; Corcoran, E. C.; Kelly, D. G.] Royal Mil Coll Canada, Kingston, ON K7K 7B4, Canada.
[Andrews, M. T.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
RP Bentoumi, G (reprint author), Canadian Nucl Labs, Chalk River, ON K0J 1J0, Canada.
EM ghaouti.bentoumi@cnl.ca; ronald.rogger@cnl.ca; madison@lanl.gov;
corcoran-e@rmc.ca; ike.dimayuga@cnl.ca; david.kelly@rmc.ca;
Liqian.li@cnl.ca; bhaskar.sur@cnl.ca
OI Andrews, Madison/0000-0002-8503-1011
NR 32
TC 0
Z9 0
U1 3
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD DEC
PY 2016
VL 63
IS 6
BP 2807
EP 2814
DI 10.1109/TNS.2016.2624146
PG 8
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA EH3SV
UT WOS:000391693100009
ER
PT J
AU Peterson, GG
Wang, YQ
Ianno, NJ
Nastasi, M
AF Peterson, George G.
Wang, Yongqiang
Ianno, N. J.
Nastasi, Michael
TI Modeling Changes in Measured Conductance of Thin Boron Carbide
Semiconducting Films Under Irradiation
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Alpha particle radiation; conductance; hydrogenated boron carbides;
neutron detector; p-n heterojunction; semiconducting boron carbides
ID SILICON DETECTORS; NEUTRON-IRRADIATION; RADIATION-DAMAGE; RICH SOLIDS;
DIODE; PION; TEMPERATURE; EVOLUTION
AB Semiconducting, p-type, amorphous partially dehydrogenated boron carbide films (a-B10C2+x:H-y) were deposited utilizing plasma enhanced chemical vapor deposition (PECVD) onto n-type silicon thus creating a heterojunction diode. A model was developed for the conductance of the device as a function of perturbation frequency (f) that incorporates changes of the electrical properties for both the a-B10C2+x:H-y film and the silicon substrate when irradiated. The virgin model has 3 independent variables (R1, C1, R3), and 1 dependent variable (f). Samples were then irradiated with 200 keV He+ ions, and the conductance model was matched to the measured data. It was found that initial irradiation (0.1 displacements per atom (dpa) equivalent) resulted in a decrease in the parallel junction resistance parameter from 6032 Omega to 2705 Omega. Further irradiation drastically increased the parallel junction resistance parameter to 39000 Omega (0.2 dpa equivalent), 77440 Omega (0.3 dpa equivalent), and 190000 Omega (0.5 dpa equivalent). It is believed that the initial irradiation causes type inversion of the silicon substrate changing the original junction from a p-n to a p-p+ with a much lower barrier height leading to a lower junction resistance component between the a-B10C2+x:H-y and irradiated silicon. Additionally, it was found that after irradiation, a second parallel resistor and capacitor component is required for the model, introducing 2 additional independent variables (R2, C2). This is interpreted as the junction between the irradiated and virgin silicon near ion end of range.
C1 [Peterson, George G.] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA.
[Wang, Yongqiang] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Ianno, N. J.] Univ Nebraska, Dept Elect Engn, Ctr Microelect & Opt Mat Res, Lincoln, NE 68588 USA.
[Nastasi, Michael] Univ Nebraska, Nebraska Ctr Energy Sci Res, Lincoln, NE 68583 USA.
[Nastasi, Michael] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA.
RP Nastasi, M (reprint author), Univ Nebraska, Nebraska Ctr Energy Sci Res, Lincoln, NE 68583 USA.; Nastasi, M (reprint author), Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA.
EM mnastasi2@unl.edu
FU National Science Foundation [ECCS: 1542182]; Nebraska Research
Initiative; Center for Integrated Nanotechnologies, a DOE Nanoscience
user facility
FX This work was performed in part in the Nebraska Nanoscale Facility:
National Nanotechnology Coordinated Infrastructure and the Nebraska
Center for Materials and Nanoscience, which are supported by the
National Science Foundation under Award ECCS: 1542182, and the Nebraska
Research Initiative. This work was supported in part by the Center for
Integrated Nanotechnologies, a DOE Nanoscience user facility jointly
operated by Los Alamos and Sandia National laboratories.
NR 55
TC 0
Z9 0
U1 2
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD DEC
PY 2016
VL 63
IS 6
BP 2815
EP 2822
DI 10.1109/TNS.2016.2626268
PG 8
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA EH3SV
UT WOS:000391693100010
ER
PT J
AU Roecker, C
Bernstein, A
Marleau, P
Vetter, K
AF Roecker, Caleb
Bernstein, Adam
Marleau, Peter
Vetter, Kai
TI Measurement of High-Energy Neutron Flux Above Ground Utilizing a
Spallation Based Multiplicity Technique
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Cosmogenic neutrons; high-energy neutron spectroscopy
ID COSMIC-RAY STARS; ANGULAR-DISTRIBUTION; SPECTRUM; DETECTORS
AB Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Monte Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. These results demonstrate the feasibility of future below ground measurements with MARS.
C1 [Roecker, Caleb] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
[Bernstein, Adam] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA.
[Marleau, Peter] Sandia Natl Labs, Radiat & Nucl Detect Syst, Livermore, CA 94550 USA.
[Vetter, Kai] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Roecker, C (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
EM calebroecker@berkeley.edu
FU Department of Energy National Nuclear Security Administration through
the Nuclear Science and Security Consortium [DE-NA0000979]; U.S.
Department of Energy by Lawrence Livermore National Laboratory
[DE-AC5-07NA27344, LLNL-JRNL-695883]; U.S. Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]
FX This material is based upon work supported by the Department of Energy
National Nuclear Security Administration under Award Number:
DE-NA0000979 through the Nuclear Science and Security Consortium. This
work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract
DE-AC5-07NA27344. LLNL-JRNL-695883. Sandia National Laboratories is a
multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000. Approved for unlimited release,
SAND2016-6353.
NR 28
TC 0
Z9 0
U1 3
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD DEC
PY 2016
VL 63
IS 6
BP 2823
EP 2829
DI 10.1109/TNS.2016.2628644
PG 7
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA EH3SV
UT WOS:000391693100011
ER
PT J
AU Kwon, YW
Ponshock, T
Molitoris, JD
AF Kwon, Y. W.
Ponshock, T.
Molitoris, J. D.
TI Failure Loading of Metallic and Composite Cylinders Under Internal
Pressure Loading
SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME
LA English
DT Article
DE mechanical device for internal pressure loading; failure of cylindrical
structure; composite materials; multiscale analysis
ID MICROMECHANICS MODEL; MULTISCALE ANALYSIS; MULTILEVEL; VESSELS
AB A new mechanical device was developed to apply internal pressure loading to a cylindrical structure in order to determine its failure strength and failure mode under pressure loading. The device can be used for a uniaxial testing machine to apply internal pressure to a cylindrical structure. As a result, the developed device does not require any fluid to generate internal pressure loading. The device consists of two truncated conical shape of rams and eight pieces of the identical shape of wedges. The effectiveness of the device was assessed using both detailed finite element analyses of metallic cylinders as well as the analytical analysis. Then, a set of experimental tests were undertaken for aluminum alloy cylinders in order to evaluate experimental failure strength against the numerical and analytical results. Finally, composite cylinders made of glass-fiber or carbon-fiber woven fabrics were tested using the device, and the experimental results were compared to the predicted results using a multiscale analysis model. Those results agreed well with each other.
C1 [Kwon, Y. W.; Ponshock, T.] Naval Postgrad Sch, Dept Mech & Aerosp Engn, Monterey, CA 93943 USA.
[Molitoris, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Kwon, YW (reprint author), Naval Postgrad Sch, Dept Mech & Aerosp Engn, Monterey, CA 93943 USA.
FU Defense Threat Reduction Agency (DTRA)
FX The authors appreciate the assistance by Dr. C.-M. Park for helping with
the experimental tests, and J. Mobley and J. Batteux for machining the
experimental apparatus. Finally, we appreciate the financial support
from Defense Threat Reduction Agency (DTRA).
NR 13
TC 0
Z9 0
U1 2
U2 2
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0094-9930
EI 1528-8978
J9 J PRESS VESS-T ASME
JI J. Press. Vessel Technol.-Trans. ASME
PD DEC
PY 2016
VL 138
IS 6
AR 060903
DI 10.1115/1.4033772
PG 8
WC Engineering, Mechanical
SC Engineering
GA EH4DB
UT WOS:000391720200004
ER
PT J
AU Guimond, SR
Reisner, JM
Marras, S
Giraldo, FX
AF Guimond, Stephen R.
Reisner, Jon M.
Marras, Simone
Giraldo, Francis X.
TI The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID NONHYDROSTATIC ATMOSPHERIC MODEL; DISCONTINUOUS GALERKIN METHODS;
KINETIC-ENERGY SPECTRUM; SEA INTERACTION THEORY; VORTEX ROSSBY-WAVES;
TROPICAL CYCLONES; 3-DIMENSIONAL PERTURBATIONS; NUMERICAL DIFFUSION;
AXISYMMETRIZATION; CYCLOGENESIS
AB The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible.
Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia gravity wave activity is much smaller, resulting in good agreement between models.
The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.
C1 [Guimond, Stephen R.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, 5825 Univ Res Ct 4001, College Pk, MD 20742 USA.
[Reisner, Jon M.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Marras, Simone; Giraldo, Francis X.] Naval Postgrad Sch, Dept Appl Math, Monterey, CA USA.
[Marras, Simone] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA.
RP Guimond, SR (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, 5825 Univ Res Ct 4001, College Pk, MD 20742 USA.
EM sguimond@umd.edu
OI Marras, Simone/0000-0002-7498-049X
FU Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) at
Los Alamos National Laboratory; Office of Naval Research [PE-0602435]
FX The first author would like to thank the Institute of Geophysics,
Planetary Physics, and Signatures (IGPPS) at Los Alamos National
Laboratory for supporting this work. The first author thanks Dr. David
Nolan for many useful comments on the work and for providing his initial
conditions. The first author also thanks Dr. Michael Waite for
discussions on the spectral dynamics portion of the study. We thank Dr.
Michal Kopera for assistance with NUMA parallel I/O. Input from Dr. Paul
Reasor on early versions of this work was valuable. In addition, we
thank Dr. George Bryan, Dr. Bill Skamarock, and Dr. Mike Montgomery for
their comments. The contribution of SM and FXG was supported by the
Office of Naval Research through program element PE-0602435. Finally, we
thank three anonymous reviewers for their constructive criticism, which
helped improve the conclusions and clarity of the paper.
NR 42
TC 0
Z9 0
U1 2
U2 2
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
EI 1520-0469
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD DEC
PY 2016
VL 73
IS 12
BP 4661
EP 4684
DI 10.1175/JAS-D-16-0055.1
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EH3CK
UT WOS:000391646500003
ER
PT J
AU Virts, KS
Houze, RA
AF Virts, Katrina S.
Houze, Robert A., Jr.
TI Seasonal and Intraseasonal Variability of Mesoscale Convective Systems
over the South Asian Monsoon Region
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID TRMM PRECIPITATION RADAR; INDIAN-SUMMER MONSOON; BOREAL SUMMER;
HIMALAYAN REGION; CLOUD CLUSTERS; WARM POOL; A-TRAIN; RAINFALL;
OSCILLATION; BENGAL
AB Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Premonsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal.
During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do premonsoon MCSs. During the monsoon, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60-day northward propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeastward over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.
C1 [Virts, Katrina S.; Houze, Robert A., Jr.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
[Houze, Robert A., Jr.] Pacific Northwest Natl Lab, Richland, WA USA.
[Virts, Katrina S.] NASA, Marshall Space Flight Ctr, ZP-11,320 Sparkman Dr, Huntsville, AL 35805 USA.
RP Virts, KS (reprint author), NASA, Marshall Space Flight Ctr, ZP-11,320 Sparkman Dr, Huntsville, AL 35805 USA.
EM katrina.virts@nsstc.uah.edu
FU National Aeronautics and Space Administration [NNX13AQ37G]; U.S.
Department of Energy Biological and Environmental Research Atmospheric
System Research [DE-SC008452]; Regional and Global Climate Modeling
programs; DOE [DE-AC05-76RL01830]
FX The authors thank Beth Tully for her expert processing of the graphics
and three reviewers for their helpful comments. This work was supported
by the National Aeronautics and Space Administration (Grant NNX13AQ37G),
and the U.S. Department of Energy Biological and Environmental Research
Atmospheric System Research (Grant DE-SC008452) and the Regional and
Global Climate Modeling programs. PNNL is operated for DOE by Battelle
Memorial Institute under Contract DE-AC05-76RL01830. Lightning location
data were provided by WWLLN (http://wwlln.net), a collaboration of over
50 universities and institutions. ERA-Interim data are available from
the European Centre for Medium-Range Weather Forecasts and CloudSat data
from the CloudSat Data Processing Center, as described in the reference
list.
NR 62
TC 0
Z9 0
U1 0
U2 0
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
EI 1520-0469
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD DEC
PY 2016
VL 73
IS 12
BP 4753
EP 4774
DI 10.1175/JAS-D-16-0022.1
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EH3CK
UT WOS:000391646500008
ER
PT J
AU Vardelle, A
Moreau, C
Akedo, J
Ashrafizadeh, H
Berndt, CC
Berghaus, JO
Boulos, M
Brogan, J
Bourtsalas, AC
Dolatabadi, A
Dorfman, M
Eden, TJ
Fauchais, P
Fisher, G
Gaertner, F
Gindrat, M
Henne, R
Hyland, M
Irissou, E
Jordan, EH
Khor, KA
Killinger, A
Lau, YC
Li, CJ
Li, L
Longtin, J
Markocsan, N
Masset, PJ
Matejicek, J
Mauer, G
McDonald, A
Mostaghimi, J
Sampath, S
Schiller, G
Shinoda, K
Smith, MF
Syed, AA
Themelis, NJ
Toma, FL
Trelles, JP
Vassen, R
Vuoristo, P
AF Vardelle, Armelle
Moreau, Christian
Akedo, Jun
Ashrafizadeh, Hossein
Berndt, Christopher C.
Berghaus, Jorg Oberste
Boulos, Maher
Brogan, Jeffrey
Bourtsalas, Athanasios C.
Dolatabadi, Ali
Dorfman, Mitchell
Eden, Timothy J.
Fauchais, Pierre
Fisher, Gary
Gaertner, Frank
Gindrat, Malko
Henne, Rudolf
Hyland, Margaret
Irissou, Eric
Jordan, Eric H.
Khor, Khiam Aik
Killinger, Andreas
Lau, Yuk-Chiu
Li, Chang-Jiu
Li, Li
Longtin, Jon
Markocsan, Nicolaie
Masset, Patrick J.
Matejicek, Jiri
Mauer, Georg
McDonald, Andre
Mostaghimi, Javad
Sampath, Sanjay
Schiller, Guenter
Shinoda, Kentaro
Smith, Mark F.
Syed, Asif Ansar
Themelis, Nickolas J.
Toma, Filofteia-Laura
Trelles, Juan Pablo
Vassen, Robert
Vuoristo, Petri
TI The 2016 Thermal Spray Roadmap
SO JOURNAL OF THERMAL SPRAY TECHNOLOGY
LA English
DT Article
DE anti-wear and anti-corrosion coatings; biomedical; electronics; energy
generation; functional coatings; gas turbines; thermal spray processes
ID PRECURSOR PLASMA SPRAY; AEROSOL DEPOSITION METHOD; HIGH-TEMPERATURE
CORROSION; PHYSICAL VAPOR-DEPOSITION; OXIDE FUEL-CELLS; STABILIZED
ZIRCONIA COATINGS; HIGH-PERFORMANCE ELECTRODES; HYDROGEN EVOLUTION
REACTION; GAS-TURBINE ENGINES; IN-VITRO BEHAVIOR
AB Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications.
C1 [Vardelle, Armelle; Fauchais, Pierre] Univ Limoges, Limoges, France.
[Moreau, Christian; Dolatabadi, Ali] Concordia Univ, Montreal, PQ, Canada.
[Akedo, Jun; Shinoda, Kentaro] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan.
[Ashrafizadeh, Hossein; McDonald, Andre] Univ Alberta, Edmonton, AB, Canada.
[Berndt, Christopher C.] Swinburne Univ Technol, Hawthorn, Vic, Australia.
[Berghaus, Jorg Oberste] Soleras Adv Coatings, Deinze, Belgium.
[Boulos, Maher] Univ Sherbrooke, Sherbrooke, PQ, Canada.
[Brogan, Jeffrey] Mesoscribe Technol Inc, St James, NY USA.
[Bourtsalas, Athanasios C.; Themelis, Nickolas J.] Columbia Univ, New York, NY USA.
[Dorfman, Mitchell] Oerlikon Metco Inc, Westbury, NY USA.
[Eden, Timothy J.] Penn State Univ, State Coll, PA USA.
[Fisher, Gary] Alberta Innovates Technol Futures, Edmonton, AB, Canada.
[Gaertner, Frank] Helmut Schmidt Univ, Hamburg, Germany.
[Gindrat, Malko] Oerlikon Metco AG, Wohlen, Switzerland.
[Henne, Rudolf; Schiller, Guenter; Syed, Asif Ansar] German Aerosp Ctr DLR, Stuttgart, Germany.
[Hyland, Margaret] Univ Auckland, Auckland, New Zealand.
[Irissou, Eric] Natl Res Council Canada, Boucherville, PQ, Canada.
[Jordan, Eric H.] Univ Connecticut, Storrs, CT USA.
[Khor, Khiam Aik] Nanyang Technol Univ, Singapore, Singapore.
[Killinger, Andreas] Univ Stuttgart, Stuttgart, Germany.
[Lau, Yuk-Chiu] GE Power, Niskayuna, NY USA.
[Li, Chang-Jiu] Xi An Jiao Tong Univ, Xian, Shaanxi, Peoples R China.
[Li, Li] Praxair Surface Technol Inc, Indianapolis, IN USA.
[Longtin, Jon; Sampath, Sanjay] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Markocsan, Nicolaie] Univ West, Trollhattan, Sweden.
[Masset, Patrick J.] Fraunhofer UMSICHT, Sulzbach Rosenberg, Germany.
[Matejicek, Jiri] Inst Plasma Phys, Prague, Czech Republic.
[Mauer, Georg; Vassen, Robert] Forschungszentrum Julich, Inst Energy & Climate Res, Julich, Germany.
[Mostaghimi, Javad] Univ Toronto, Toronto, ON, Canada.
[Smith, Mark F.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Toma, Filofteia-Laura] Fraunhofer Inst Mat & BeamTechnol IWS, Dresden, Germany.
[Trelles, Juan Pablo] Univ Massachusetts Lowell, Lowell, MA USA.
[Vuoristo, Petri] Tampere Univ Technol, Tampere, Finland.
RP Vardelle, A (reprint author), Univ Limoges, Limoges, France.; Moreau, C (reprint author), Concordia Univ, Montreal, PQ, Canada.
EM armelle.vardelle@unilim.fr; christian.moreau@concordia.ca
RI Gaertner, Frank/K-2905-2014; Vuoristo, Petri/G-4257-2014; Khor, Khiam
Aik/G-2827-2010;
OI Gaertner, Frank/0000-0002-6757-5605; Toma,
Filofteia-Laura/0000-0001-6164-8933
NR 362
TC 1
Z9 1
U1 20
U2 20
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1059-9630
EI 1544-1016
J9 J THERM SPRAY TECHN
JI J. Therm. Spray Technol.
PD DEC
PY 2016
VL 25
IS 8
BP 1376
EP 1440
DI 10.1007/s11666-016-0473-x
PG 65
WC Materials Science, Coatings & Films
SC Materials Science
GA EF0UF
UT WOS:000390041000002
ER
PT J
AU Makela, MR
Bredeweg, EL
Magnuson, JK
Baker, SE
De Vries, RP
Hilden, K
AF Makela, Miia R.
Bredeweg, Erin L.
Magnuson, Jon K.
Baker, Scott E.
De Vries, Ronald P.
Hilden, Kristiina
TI Fungal Ligninolytic Enzymes and Their Applications
SO MICROBIOLOGY SPECTRUM
LA English
DT Article
ID ARYL-ALCOHOL OXIDASE; SITE-DIRECTED MUTAGENESIS; WHITE-ROT FUNGUS;
LACCASE-CATALYZED POLYMERIZATION; DYE-DECOLORIZING PEROXIDASE; RECYCLE
PERCOLATION PROCESS; PLANT-CELL WALLS; PHANEROCHAETE-CHRYSOSPORIUM;
LIGNOCELLULOSIC BIOMASS; VERSATILE PEROXIDASE
AB The global push toward an efficient and economical biobased economy has driven research to develop more cost-effective applications for the entirety of plant biomass, including lignocellulosic crops. As discussed elsewhere (Karlsson M, Atanasova L, Funck Jensen D, Zeilinger S, in Heitman J et al. [ed], Tuberculosis and the Tubercle Bacillus, 2nd ed, in press), significant progress has been made in the use of polysaccharide fractions from lignocellulose, cellulose, and various hemicellulose types. However, developing processes for use of the lignin fraction has been more challenging. In this chapter, we discuss characteristics of lignolytic enzymes and the fungi that produce them as well as potential and current uses of lignin-derived products.
C1 [Makela, Miia R.; De Vries, Ronald P.; Hilden, Kristiina] Univ Helsinki, Dept Food & Environm Sci, Div Microbiol & Biotechnol, FIN-00014 Helsinki, Finland.
[Bredeweg, Erin L.; Baker, Scott E.] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA.
[Magnuson, Jon K.; Baker, Scott E.] Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Magnuson, Jon K.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
[De Vries, Ronald P.] Univ Utrecht, CBS KNAW Fungal Biodivers Ctr & Fungal Mol Physio, Fungal Physiol, NL-3584 CT Utrecht, Netherlands.
RP De Vries, RP (reprint author), Univ Helsinki, Dept Food & Environm Sci, Div Microbiol & Biotechnol, FIN-00014 Helsinki, Finland.; Baker, SE (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA.; Baker, SE (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA.; De Vries, RP (reprint author), Univ Utrecht, CBS KNAW Fungal Biodivers Ctr & Fungal Mol Physio, Fungal Physiol, NL-3584 CT Utrecht, Netherlands.
EM scott.baker@pnnl.gov; r.devries@cbs.knaw.nl
OI Makela, Miia/0000-0003-0771-2329
NR 176
TC 0
Z9 0
U1 6
U2 6
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
EI 2165-0497
J9 MICROBIOL SPECTR
JI Microbiol. Spectr.
PD DEC
PY 2016
VL 4
IS 6
AR UNSP FUNK-0017-2016
DI 10.1128/microbiolspec.FUNK-0017-2016
PG 13
WC Microbiology
SC Microbiology
GA EI1AU
UT WOS:000392208200006
ER
PT J
AU Marin, O
Vinuesa, R
Obabko, AV
Schlatter, P
AF Marin, O.
Vinuesa, R.
Obabko, A. V.
Schlatter, P.
TI Characterization of the secondary flow in hexagonal ducts
SO PHYSICS OF FLUIDS
LA English
DT Article
ID DIRECT NUMERICAL-SIMULATION; REGULAR POLYGONAL DUCTS; HIGH
REYNOLDS-NUMBERS; SQUARE DUCT; TURBULENT-FLOW; HEAT-TRANSFER;
LAMINAR-FLOW; FORCED-CONVECTION; ENTRANCE REGION; ASPECT RATIO
AB In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Re-tau,Re- c similar or equal to 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area < K >(yz) decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress (uw) over bar on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120 degrees aperture of its vertex, whereas in the square duct the 90 degrees corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15D(H) measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90 degrees corner sets the location of a high-speed streak at a distance z(nu)(+) similar or equal to 50 from it, whereas in hexagons the 120 degrees aperture leads to a shorter distance of z(nu)(+) similar or equal to 38. At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow. Published by AIP Publishing.
C1 [Marin, O.; Obabko, A. V.] Argonne Natl Lab, MCS Div, 9700 Cass Ave, Lemont, IL 60439 USA.
[Vinuesa, R.; Schlatter, P.] KTH Mech, Linne FLOW Ctr, Stockholm, Sweden.
[Vinuesa, R.; Schlatter, P.] Swedish E Sci Res Ctr SeRC, Stockholm, Sweden.
RP Vinuesa, R (reprint author), KTH Mech, Linne FLOW Ctr, Stockholm, Sweden.; Vinuesa, R (reprint author), Swedish E Sci Res Ctr SeRC, Stockholm, Sweden.
EM rvinuesa@mech.kth.se
OI Vinuesa, Ricardo/0000-0001-6570-5499
FU NE Advanced Modeling and Simulation (NEAMS) Program of Nuclear Energy,
Office of Science of the U.S. Department of Energy; Knut and Alice
Wallenberg Foundation; Swedish Research Council (VR); Office of Science
and Advanced Scientific Computing Research of the U.S. Department of
Energy [DE-AC02-06CH11357]
FX O.M. and A.V.O. acknowledge the support of NE Advanced Modeling and
Simulation (NEAMS) Program of Nuclear Energy, Office of Science of the
U.S. Department of Energy. R.V. and P.S. acknowledge the financial
support from the Knut and Alice Wallenberg Foundation and the Swedish
Research Council (VR). Computer time was provided by the Argonne
Leadership Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science and Advanced Scientific Computing
Research of the U.S. Department of Energy under Contract No.
DE-AC02-06CH11357.
NR 48
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-6631
EI 1089-7666
J9 PHYS FLUIDS
JI Phys. Fluids
PD DEC
PY 2016
VL 28
IS 12
AR 125101
DI 10.1063/1.4968844
PG 26
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA EH9LH
UT WOS:000392092300024
ER
PT J
AU Apruzese, JP
Giuliani, JL
Ouart, ND
Tangri, V
Harvey-Thompson, AJ
Jones, B
Jennings, CA
Hansen, SB
Ampleford, DJ
Rochau, GA
Coverdale, CA
AF Apruzese, J. P.
Giuliani, J. L.
Ouart, N. D.
Tangri, V.
Harvey-Thompson, A. J.
Jones, B.
Jennings, C. A.
Hansen, S. B.
Ampleford, D. J.
Rochau, G. A.
Coverdale, C. A.
TI Effects of a Xe dopant on an Ar gas-puff implosion on Z
SO PHYSICS OF PLASMAS
LA English
DT Article
ID Z-PINCH; RADIATION TRANSPORT; PLASMAS; ARGON
AB Two Ar gas-puff experiments, each using loads consisting of two annuli and a center jet, were recently performed on Sandia National Laboratories' Z machine. These shots had the same load except that one of them (Z2603) employed a Xe dopant of 0.8% by number in the jet, which was not present in the otherwise identical Z2605. The extensive diagnostics deployed in these experiments reveal that the presence of this small fraction of Xe had a significant effect on the emitted K-shell radiation. Use of the Xe dramatically reduced the Ar K-shell yield from 373+/-9% to 129+/-9% kJ. However, the total yield increased, from 1.02+/-17% to 1.14+/-17% MJ. Also, the K-shell power pulse for Z2603 exhibited two nearly equal peaks separated by similar to 5 ns, but that of Z2605 consisted of a more conventional single peak. Analysis of time-and space resolved K-shell spectra using a detailed atomic model for Ar ions indicates that a much greater fraction of the load mass was heated to the K-shell in the non-Xe shot Z2605. Previous average-ion atomic calculations of Xe cooling rates [Post et al., At. Data Nucl. Data Tables 20, 397 (1977)] show that the radiative cooling of the small 0.8% Xe fraction is nonetheless significant compared to that of the Ar and is therefore likely responsible for the differences in the shots. Published by AIP Publishing.
C1 [Apruzese, J. P.; Giuliani, J. L.; Ouart, N. D.; Tangri, V.] Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA.
[Harvey-Thompson, A. J.; Jones, B.; Jennings, C. A.; Hansen, S. B.; Ampleford, D. J.; Rochau, G. A.; Coverdale, C. A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Apruzese, J. P.] Syntek Technol, Arlington, VA 22203 USA.
[Tangri, V.] Berkeley Res Associates Inc, Beltsville, MD 20705 USA.
RP Apruzese, JP (reprint author), Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA.; Apruzese, JP (reprint author), Syntek Technol, Arlington, VA 22203 USA.
FU U.S. Department of Energy, National Nuclear Security Administration;
Sandia National Laboratories; U.S. Department of Energy's National
Nuclear Security Administration [DE-AC04-94AL85000]
FX This work was supported by the U.S. Department of Energy, National
Nuclear Security Administration, and by Sandia National Laboratories.
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration, under Contract No. DE-AC04-94AL85000.
NR 20
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 123303
DI 10.1063/1.4972877
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000094
ER
PT J
AU Cheng, B
Kwan, TJT
Wang, YM
Yi, SA
Batha, SH
Wysocki, FJ
AF Cheng, B.
Kwan, T. J. T.
Wang, Y. M.
Yi, S. A.
Batha, S. H.
Wysocki, F. J.
TI Effects of preheat and mix on the fuel adiabat of an imploding capsule
SO PHYSICS OF PLASMAS
LA English
DT Article
ID SIMULATIONS; TARGETS; GAIN
AB We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M-clean/M-DT >= 0.98, is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effects and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot. Published by AIP Publishing.
C1 [Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Cheng, B (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
FU U.S. Department of Energy by Los Alamos National Laboratory
[W-7405-ENG-36]
FX The authors wish to thank the referees for valuable suggestions. The
authors are grateful to C. Cerjan and O. L. Landen for sharing the
experimental data and analysis and for valuable discussions. This work
was performed under the auspices of the U.S. Department of Energy by the
Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
NR 38
TC 0
Z9 0
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 120702
DI 10.1063/1.4971814
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000002
ER
PT J
AU Ebrahimi, F
AF Ebrahimi, F.
TI Dynamo-driven plasmoid formation from a current-sheet instability
SO PHYSICS OF PLASMAS
LA English
DT Article
ID MAGNETIC RECONNECTION
AB Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from (1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and (2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. The plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas. Published by AIP Publishing.
C1 [Ebrahimi, F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Ebrahimi, F.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA.
RP Ebrahimi, F (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Ebrahimi, F (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA.
FU DOE [DE-SC0010565, DE-AC02-09CHI1466, DE-SC0012467]
FX We acknowledge Professor S. Prager, and Dr. R. Raman for their
thoughtful comments on this Manuscript. This work was supported by DOE
Grant Nos. DE-SC0010565, DE-AC02-09CHI1466, and DE-SC0012467.
NR 20
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 120705
DI 10.1063/1.4972218
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000005
ER
PT J
AU Egedal, J
Wetherton, B
Daughton, W
Le, A
AF Egedal, J.
Wetherton, B.
Daughton, W.
Le, A.
TI Processes setting the structure of the electron distribution function
within the exhausts of anti-parallel reconnection
SO PHYSICS OF PLASMAS
LA English
DT Article
ID MAGNETIC RECONNECTION; DIFFUSION REGION; ACCELERATION; EVENTS
AB In situ spacecraft observations within the exhausts of magnetic reconnection document a large variation in the velocity space structure of the electron distribution function. Multiple mechanisms help govern the underlying electron dynamics, yielding a range of signatures for collisionless reconnection. These signatures include passing beams of electrons separated by well-defined boundaries from betatron heated/cooled trapped electrons. The present study emphasizes how localized regions of non-adiabatic electron dynamics can mix electrons across the trapped/passing boundaries and impact the form of the electron distributions in the full width of the exhaust. While our study is based on 2D simulations, the described principles shaping the velocity space distributions also apply to 3D geometries making our findings relevant to spacecraft observation of reconnection in the Earth's magnetosphere. Published by AIP Publishing.
C1 [Egedal, J.; Wetherton, B.] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA.
[Daughton, W.; Le, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Egedal, J (reprint author), Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA.
FU NASA [NNX14AC68G, NNX14AL38G]; NASA Heliophysics Theory Program at LANL
FX The work at UW-Madison was funded in part by NASA Grant No. NNX14AC68G.
The numerical simulation work was supported by the NASA Heliophysics
Theory Program at LANL, and A. Le acknowledges NASA Grant No.
NNX14AL38G. Initial simulations were carried out using LANL
institutional computing resources and the Pleiades computer at NASA,
while the final simulation was carried out on Kraken with an allocation
of advanced computing resources provided by the National Science
Foundation at the National Institute for Computational Sciences
(http://www.nics.tennessee.edu/).
NR 30
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 122904
DI 10.1063/1.4972135
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000067
ER
PT J
AU Liu, ZX
Xu, XQ
Gao, X
Hubbard, AE
Hughes, JW
Walk, JR
Theiler, C
Xia, TY
Baek, SG
Golfinopoulos, T
Whyte, D
Zhang, T
Li, JG
AF Liu, Z. X.
Xu, X. Q.
Gao, X.
Hubbard, A. E.
Hughes, J. W.
Walk, J. R.
Theiler, C.
Xia, T. Y.
Baek, S. G.
Golfinopoulos, T.
Whyte, D.
Zhang, T.
Li, J. G.
TI The physics mechanisms of the weakly coherent mode in the Alcator C-Mod
Tokamak
SO PHYSICS OF PLASMAS
LA English
DT Article
ID TURBULENCE
AB The weakly coherent mode (WCM) in I-mode has been studied by a six-field two-fluid model based on the Braginskii equations under the BOUT++ framework for the first time. The calculations indicate that a tokamak pedestal exhibiting a WCM is linearly unstable to drift Alfven wave (DAW) instabilities and the resistive ballooning mode. The nonlinear simulation shows promising agreement with the experimental measurements of the WCM. The shape of the density spectral and location of the spectral peak of the dominant toroidal number mode n = 20 agrees with the experimental data from reflectometry. The simulated mode propagates in electron diamagnetic direction is consistent with the results from the magnetic probes in the laboratory frame, a large ratio of particle to heat diffusivity is consistent with the distinctive experimental feature of I-mode, and the value of the simulated chi(e) at the edge is in the range of experimental errors of chi(eff) from the experiment. The prediction of the WCM shows that free energy is mainly provided by the electron pressure gradient, which gives guidance for pursuing future I-mode studies. Published by AIP Publishing.
C1 [Liu, Z. X.; Gao, X.; Xia, T. Y.; Zhang, T.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China.
[Liu, Z. X.; Xu, X. Q.; Xia, T. Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hubbard, A. E.; Hughes, J. W.; Walk, J. R.; Theiler, C.; Baek, S. G.; Golfinopoulos, T.; Whyte, D.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RP Liu, ZX (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China.; Liu, ZX (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM zxliu316@ipp.ac.cn
FU National Magnetic Confinement Fusion Program of China [2014GB106001,
2014GB106003]; National Natural Science Foundation of China [11021565,
11275234, 11405213, 1405215, 11405217, 11422546]; U.S. DOE by LLNL
[DE-AC52-07NA27344]; Alcator C-Mod [DE-FC02-99ER54512]; PPPL
[DE-AC02-09CH11466]
FX The authors wish to acknowledge Dr. Ben Dudson and Dr. M. V. Umansky for
their contribution to the BOUT++ framework, Mr. E. Davis for useful
physics discussions. This work was supported by the National Magnetic
Confinement Fusion Program of China (Grant Nos. 2014GB106001 and
2014GB106003), and the National Natural Science Foundation of China
(Grant Nos. 11021565, 11275234, 11405213, 11405215, 11405217, and
11422546), and was performed under the auspices of the U.S. DOE by LLNL
under Contract No. DE-AC52-07NA27344, by Alcator C-Mod under Contract
No. DE-FC02-99ER54512, and by PPPL under Contract No. DE-AC02-09CH11466.
NR 23
TC 1
Z9 1
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 120703
DI 10.1063/1.4972088
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000003
ER
PT J
AU Narkis, J
Rahman, HU
Ney, P
Desjarlais, MP
Wessel, FJ
Conti, F
Valenzuela, JC
Beg, FN
AF Narkis, J.
Rahman, H. U.
Ney, P.
Desjarlais, M. P.
Wessel, F. J.
Conti, F.
Valenzuela, J. C.
Beg, F. N.
TI Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions
SO PHYSICS OF PLASMAS
LA English
DT Article
ID STAGED Z-PINCH; INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR;
INSTABILITIES; TARGETS; PHYSICS; DRIVER; GAIN
AB 1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J x B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compression heating the target to high energy density. Shock compression of the target coincides with the development of a J x B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. Delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe. Published by AIP Publishing.
C1 [Narkis, J.; Valenzuela, J. C.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA.
[Rahman, H. U.; Ney, P.; Wessel, F. J.; Conti, F.] Magneto Inertial Fus Technol Inc, Irvine, CA 92612 USA.
[Desjarlais, M. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Narkis, J (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA.
EM jnarkis@ucsd.edu
FU ARPA-E [DE-AR0000569]; U.S. Department of Energy's National Nuclear
Security Administration [De-AC04-94AL8500]
FX Funding for this work was provided by ARPA-E, Grant No. DE-AR0000569.;
Sandia National Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under Contract No. De-AC04-94AL8500.
NR 29
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 122706
DI 10.1063/1.4972547
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000062
ER
PT J
AU Ralph, JE
Strozzi, D
Ma, T
Moody, JD
Hinkel, DE
Callahan, DA
MacGowan, BJ
Michel, P
Kline, JL
Glenzer, SH
Albert, F
Benedetti, LR
Divol, L
MacKinnon, AJ
Pak, A
Rygg, JR
Schneider, MB
Town, RPJ
Widmann, K
Hsing, W
Edwards, MJ
AF Ralph, J. E.
Strozzi, D.
Ma, T.
Moody, J. D.
Hinkel, D. E.
Callahan, D. A.
MacGowan, B. J.
Michel, P.
Kline, J. L.
Glenzer, S. H.
Albert, F.
Benedetti, L. R.
Divol, L.
MacKinnon, A. J.
Pak, A.
Rygg, J. R.
Schneider, M. B.
Town, R. P. J.
Widmann, K.
Hsing, W.
Edwards, M. J.
TI Experimental room temperature hohlraum performance study on the National
Ignition Facility
SO PHYSICS OF PLASMAS
LA English
DT Article
ID CONFINEMENT; LIGHT
AB Room temperature or "warm" (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or "cryo" (similar to 20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is similar to 2.5x less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 angstrom wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Finally, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter. Published by AIP Publishing.
C1 [Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Albert, F.; Benedetti, L. R.; Divol, L.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Kline, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Glenzer, S. H.; MacKinnon, A. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
RP Ralph, JE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RI Albert, Felicie/G-2645-2013;
OI Strozzi, David/0000-0001-8814-3791
FU U.S. Department of Energy [DE-AC52-07NA27344]
FX This work provides the physics basis for new uses of the warm gas filled
hohlraum platform on the NIF with a laser energy exceeding 1MJ. The
results indicate that the warm platform could be used for surrogate
implosion experiments on new designs with a high x-ray drive.
Additionally, the relative simplicity of fielding of this platform will
allow for more complicated experiments such as the planned magnetized
hohlraum experiments and others. This work was performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344.
NR 22
TC 0
Z9 0
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 122707
DI 10.1063/1.4972548
PG 15
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000063
ER
PT J
AU Romadanov, I
Smolyakov, A
Raitses, Y
Kaganovich, I
Tian, T
Ryzhkov, S
AF Romadanov, Ivan
Smolyakov, Andrei
Raitses, Yevgeny
Kaganovich, Igor
Tian, Tang
Ryzhkov, Sergei
TI Structure of nonlocal gradient-drift instabilities in Hall E x B
discharges
SO PHYSICS OF PLASMAS
LA English
DT Article
ID SIMON-HOH INSTABILITY; PLASMA; THRUSTERS; OSCILLATIONS
AB Gradient-drift (collisionless Simon-Hoh) instability is a robust instability often considered to be important for Hall plasma discharges supported by the electron current due to the E x B drift. Most of the previous studies of this mode were based on the local approximation. Here, we consider the nonlocal model which takes into account the electron inertia as well as the effects of the entire profiles of plasma parameters such as the electric, magnetic fields, and plasma density. Contrary to local models, nonlocal analysis predicts multiple unstable modes, which exist in the regions, where local instability criteria are not satisfied. This is especially pronounced for the long wavelength modes which provide larger contribution to the anomalous transport. Published by AIP Publishing.
C1 [Romadanov, Ivan; Smolyakov, Andrei] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada.
[Raitses, Yevgeny; Kaganovich, Igor] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
[Tian, Tang] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China.
[Ryzhkov, Sergei] Bauman Moscow State Tech Univ, Moscow 105005, Russia.
RP Romadanov, I (reprint author), Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada.
EM ivr509@mail.usask.ca; andrei.smolyakov@usask.ca; yraitses@pppl.gov;
ikaganovich@pppl.gov; tt961108@gmail.com; svryzhkov@bmstu.ru
RI Рыжков, Сергей/E-6619-2017;
OI Рыжков, Сергей/0000-0003-0351-718X; Romadanov, Ivan/0000-0003-3291-3341
FU NSERC of Canada; U.S. Air Force Office for Scientific Research
[FA9550-15-1-0226]; Russian Ministry of Science and Education
(Minobrnauka) Project [13.79.2014/K]
FX The authors thank Ivan Halzov and Winston Frias for the help with
numerical methods and model formulation, and Edward Startsev for the
fruitful discussion. This work was supported in part by NSERC of Canada
and U.S. Air Force Office for Scientific Research FA9550-15-1-0226. S.R.
was partially supported by the Russian Ministry of Science and Education
(Minobrnauka), Project No. 13.79.2014/K.
NR 43
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 122111
DI 10.1063/1.4971816
PG 13
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000018
ER
PT J
AU Ruiz, DE
Parker, JB
Shi, EL
Dodin, IY
AF Ruiz, D. E.
Parker, J. B.
Shi, E. L.
Dodin, I. Y.
TI Zonal-flow dynamics from a phase-space perspective
SO PHYSICS OF PLASMAS
LA English
DT Article
ID MAGNETOROTATIONAL TURBULENCE; MODE TURBULENCE; GENERATION; STABILITY;
WAVES; JETS
AB The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. However, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. We derive a modified theory that takes both of these effects into account, while still treating DW quanta ("driftons") as particles in phase space. The drifton dynamics is described by an equation of the Wigner-Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional terms missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. Numerical simulations are presented to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2. Published by AIP Publishing.
C1 [Ruiz, D. E.; Shi, E. L.; Dodin, I. Y.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Parker, J. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Dodin, I. Y.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Ruiz, DE (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
FU U.S. DOE [DE-AC02-09CH11466, DE-AC52-07NA27344]; NNSA SSAA Program
through DOE [DE-NA0002948]; U.S. DOD NDSEG Fellowship [32-CFR-168 a]
FX The authors thank J. A. Krommes for valuable discussions. This work was
supported by the U.S. DOE through Contract Nos. DE-AC02-09CH11466 and
DE-AC52-07NA27344, by the NNSA SSAA Program through DOE Research Grant
No. DE-NA0002948, and by the U.S. DOD NDSEG Fellowship through Contract
No. 32-CFR-168 a.
NR 36
TC 2
Z9 2
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 122304
DI 10.1063/1.4971813
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000037
ER
PT J
AU Ryazantsev, SN
Skobelev, IY
Faenov, AY
Pikuz, TA
Higginson, DP
Chen, SN
Revet, G
Beard, J
Portugall, O
Soloviev, AA
Grum-Grzhimailo, AN
Fuchs, J
Pikuz, SA
AF Ryazantsev, S. N.
Skobelev, I. Yu.
Faenov, A. Ya.
Pikuz, T. A.
Higginson, D. P.
Chen, S. N.
Revet, G.
Beard, J.
Portugall, O.
Soloviev, A. A.
Grum-Grzhimailo, A. N.
Fuchs, J.
Pikuz, S. A.
TI Diagnostics of laser-produced plasmas based on the analysis of intensity
ratios of He-like ions X-ray emission
SO PHYSICS OF PLASMAS
LA English
DT Article
ID RECOMBINATION; CRITERIA
AB In this paper, we detail the diagnostic technique used to infer the spatially resolved electron temperatures and densities in experiments dedicated to investigate the generation of magnetically collimated plasma jets. It is shown that the relative intensities of the resonance transitions in emitting He-like ions can be used to measure the temperature in such recombining plasmas. The intensities of these transitions are sensitive to the plasma density in the range of 10(16) - 10(20) cm(-3) and to plasma temperature ranges from 10 to 100 eV for ions with a nuclear charge Z(n) similar to 10. We show how detailed calculations of the emissivity of F VIII ions allow to determine the parameters of the plasma jets that were created using ELFIE ns laser facility (Ecole Polytechnique, France). The diagnostic and analysis technique detailed here can be applied in a broader context than the one of this study, i.e., to diagnose any recombining plasma containing He-like fluorine ions. Published by AIP Publishing.
C1 [Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; Pikuz, T. A.; Pikuz, S. A.] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia.
[Ryazantsev, S. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia.
[Skobelev, I. Yu.; Pikuz, S. A.] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia.
[Faenov, A. Ya.; Pikuz, T. A.] Osaka Univ, Inst Acad Initiat, Suita, Osaka 5650871, Japan.
[Higginson, D. P.; Chen, S. N.; Revet, G.; Fuchs, J.] Ecole Polytech, LULI, CEA, CNRS, F-91128 Palaiseau, France.
[Higginson, D. P.; Chen, S. N.; Revet, G.; Fuchs, J.] Univ Paris Saclay, F-91128 Palaiseau, France.
[Higginson, D. P.; Chen, S. N.; Revet, G.; Fuchs, J.] UPMC Univ Paris 06, F-91128 Palaiseau, France.
[Higginson, D. P.; Chen, S. N.; Revet, G.; Fuchs, J.] Sorbonne Univ, F-91128 Palaiseau, France.
[Higginson, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Chen, S. N.; Revet, G.; Soloviev, A. A.; Fuchs, J.] Inst Appl Phys, 46 Ulyanov St, Nizhnii Novgorod 603950, Russia.
[Beard, J.; Portugall, O.] UPS, LNCMI, UPR 3228, CNRS,UGA,INSA, F-31400 Toulouse, France.
[Grum-Grzhimailo, A. N.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia.
RP Faenov, AY (reprint author), Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia.; Faenov, AY (reprint author), Osaka Univ, Inst Acad Initiat, Suita, Osaka 5650871, Japan.
EM tapikuz@yahoo.com
RI Grum-Grzhimailo, Alexei/D-6274-2012
FU Russian Foundation for Basic Research [14-29-06099, 15-32-21121,
16-32-60183]; RAS Presidium Program for Basic Research [11];
Competitiveness Program of NRNU MEPhI; ANR Blanc Grant (France)
[12-BS09-025-01 SILAMPA]; Ministry of Education and Science of the
Russian Federation [14.Z50.31.0007]; Agence Nationale de la Recherche
[11-IDEX-0004-02]; U.S. Department of Energy [DE-AC52-07NA27344]
FX The work was supported by the Russian Foundation for Basic Research in
the frame of the Project Nos. ##14-29-06099, 15-32-21121, 16-32-60183
and by RAS Presidium Program for Basic Research #11. Also this work was
supported by the Competitiveness Program of NRNU MEPhI. The authors
acknowledge the support of the LULI technical teams in the execution of
this work. We thank the Dresden High Magnetic Field Laboratory at
Helmholtz-Zentrum Dresden-Rossendorf for the development of the pulsed
power generator. We thank B. Albertazzi and M. Nakatsutsumi for their
prior work in laying the groundwork for the experimental platform. It
was also supported by ANR Blanc Grant (France) No. 12-BS09-025-01
SILAMPA and in part by the Ministry of Education and Science of the
Russian Federation under Contract No. 14.Z50.31.0007. This work was
partly done within the LABEX Plas@Par project and supported by Grant No.
11-IDEX-0004-02 from Agence Nationale de la Recherche. This work was
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344.
NR 29
TC 0
Z9 0
U1 6
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 123301
DI 10.1063/1.4971805
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000092
ER
PT J
AU Sydorenko, D
Kaganovich, ID
Ventzek, PLG
Chen, L
AF Sydorenko, D.
Kaganovich, I. D.
Ventzek, P. L. G.
Chen, L.
TI Effect of collisions on the two-stream instability in a finite length
plasma
SO PHYSICS OF PLASMAS
LA English
DT Article
ID BEAM; SIMULATION
AB The instability of a monoenergetic electron beam in a collisional one-dimensional plasma bounded between grounded walls is considered both analytically and numerically. Collisions between electrons and neutrals are accounted for the plasma electrons only. Solution of a dispersion equation shows that the temporal growth rate of the instability is a decreasing linear function of the collision frequency which becomes zero when the collision frequency is two times the collisionless growth rate. This result is confirmed by fluid simulations. Practical formulas are given for the estimate of the threshold beam current which is required for the two-stream instability to develop for a given system length, neutral gas pressure, plasma density, and beam energy. Particle-in-cell simulations carried out with different neutral densities and beam currents demonstrate a good agreement with the fluid theory predictions for both the growth rate and the threshold beam current. Published by AIP Publishing.
C1 [Sydorenko, D.] Univ Alberta, Edmonton, AB T6G 2E1, Canada.
[Kaganovich, I. D.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
[Ventzek, P. L. G.; Chen, L.] Tokyo Electron Amer, Austin, TX 78741 USA.
RP Sydorenko, D (reprint author), Univ Alberta, Edmonton, AB T6G 2E1, Canada.
FU U.S. Department of Energy
FX D. Sydorenko and I. D. Kaganovich are supported by the U.S. Department
of Energy. The authors thank A. Khrabrov for his assistance in carrying
out the simulations.
NR 19
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 122119
DI 10.1063/1.4972543
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000026
ER
PT J
AU Tang, XZ
Guo, ZH
AF Tang, Xian-Zhu
Guo, Zehua
TI Critical role of electron heat flux on Bohm criterion
SO PHYSICS OF PLASMAS
LA English
DT Article
ID SHEATH; PLASMA; DISCHARGE; EQUATIONS
AB Bohm criterion, originally derived for an isothermal-electron and cold-ion plasma, is often used as a rule of thumb for more general plasmas. Here, we establish a more precise determination of the Bohm criterion that are quantitatively useful for understanding and modeling collisional plasmas that still have collisional mean-free-path much greater than plasma Debye length. Specifically, it is shown that electron heat flux, rather than the isothermal electron assumption, is what sets the Bohm speed to be root k(B)(T-e parallel to + 3T(i parallel to))/m(i) with T-e,T-i parallel to the electron and ion parallel temperature at the sheath entrance and m(i) the ion mass. Published by AIP Publishing.
C1 [Tang, Xian-Zhu; Guo, Zehua] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Tang, XZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
FU U.S. Department of Energy Office of Science, Office of Fusion Energy
Sciences and Advanced Scientific Computing Research under National
Nuclear Security Administration of the U.S. Department of Energy by Los
Alamos National Laboratory [DE-AC52-06NA25396]
FX This work was supported by the U.S. Department of Energy Office of
Science, Office of Fusion Energy Sciences and Advanced Scientific
Computing Research, under the auspices of the National Nuclear Security
Administration of the U.S. Department of Energy by Los Alamos National
Laboratory, operated by Los Alamos National Security LLC under Contract
No. DE-AC52-06NA25396.
NR 29
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 120701
DI 10.1063/1.4971808
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000001
ER
PT J
AU Tu, XBA
Zhu, BB
Tang, YF
Qin, H
Liu, J
Zhang, RL
AF Tu, Xiongbiao
Zhu, Beibei
Tang, Yifa
Qin, Hong
Liu, Jian
Zhang, Ruili
TI A family of new explicit, revertible, volume-preserving numerical
schemes for the system of Lorentz force
SO PHYSICS OF PLASMAS
LA English
DT Article
ID GUIDING CENTER MOTION; CONSTRUCTION; FORMULATION
AB The Lorentz system underlies the fundamental rules for the motion of charged particle in electromagnetic field, which is proved volume-preserving. In this paper, we construct a family of new revertible numerical schemes for general autonomous systems, which in particular, are explicit and volume-preserving for Lorentz systems. These new schemes can prevent the extra numerical errors caused by mismatched initial half-step values in the Boris-like algorithm. Numerical experiments demonstrate the superiorities of our second-order methods in long-term simulations and energy preservation over the Boris algorithm and a higher order Runge-Kutta method (RK3). We also apply these new methods to the guiding center system and find that they behave much better than RK3. Published by AIP Publishing.
C1 [Tu, Xiongbiao; Zhu, Beibei; Tang, Yifa] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China.
[Tu, Xiongbiao; Zhu, Beibei; Tang, Yifa] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China.
[Qin, Hong; Liu, Jian; Zhang, Ruili] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China.
[Qin, Hong; Liu, Jian; Zhang, Ruili] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
[Qin, Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Liu, J (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China.; Liu, J (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
EM jliuphy@ustc.edu.cn
OI Liu, Jian/0000-0001-7484-401X
FU National Magnetic Confinement Fusion Energy Research Project
[2014GB124005, 2015GB111003]; National Natural Science Foundation of
China [11371357, 11505186]; GeoAlgorithmic Plasma Simulator (GAPS)
Project
FX This research was supported by the National Magnetic Confinement Fusion
Energy Research Project (2014GB124005, 2015GB111003), the National
Natural Science Foundation of China (Grant Nos. 11371357 and 11505186),
and the GeoAlgorithmic Plasma Simulator (GAPS) Project.
NR 27
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 122514
DI 10.1063/1.4972878
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000054
ER
PT J
AU Wang, YL
Liu, J
Qin, H
AF Wang, Yulei
Liu, Jian
Qin, Hong
TI Lorentz covariant canonical symplectic algorithms for dynamics of
charged particles
SO PHYSICS OF PLASMAS
LA English
DT Article
ID HAMILTONIAN-SYSTEMS; INTEGRATORS
AB In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSAs) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of a discrete symplectic structure and the Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which are difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when the Lorentz factor varies. Published by AIP Publishing.
C1 [Wang, Yulei; Liu, Jian; Qin, Hong] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China.
[Wang, Yulei; Liu, Jian; Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
[Wang, Yulei; Liu, Jian] Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China.
[Qin, Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Liu, J (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China.; Liu, J (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Liu, J (reprint author), Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China.
EM jliuphy@ustc.edu.cn
OI Liu, Jian/0000-0001-7484-401X; Wang, Yulei/0000-0001-9863-5917
FU National Magnetic Confinement Fusion Energy Research Project
[2015GB111003, 2014GB124005]; National Natural Science Foundation of
China [NSFC-11575185, 11575186, 11305171]; JSPS-NRF-NSFC A3 Foresight
Program [NSFC-11261140328]; Key Research Program of Frontier Sciences
CAS [QYZDB-SSW-SYS004]; GeoAlgorithmic Plasma Simulator (GAPS) Project
FX This research was supported by National Magnetic Confinement Fusion
Energy Research Project (2015GB111003, 2014GB124005), National Natural
Science Foundation of China (NSFC-11575185, 11575186, 11305171),
JSPS-NRF-NSFC A3 Foresight Program (NSFC-11261140328), Key Research
Program of Frontier Sciences CAS (QYZDB-SSW-SYS004), and the
GeoAlgorithmic Plasma Simulator (GAPS) Project.
NR 40
TC 0
Z9 0
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 122513
DI 10.1063/1.4972824
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000053
ER
PT J
AU Weidl, MS
Winske, D
Jenko, F
Niemann, C
AF Weidl, Martin S.
Winske, Dan
Jenko, Frank
Niemann, Chris
TI Hybrid simulations of a parallel collisionless shock in the large plasma
device
SO PHYSICS OF PLASMAS
LA English
DT Article
ID ION-BEAM INSTABILITIES; BOW SHOCK; ELECTROMAGNETIC INSTABILITIES;
MAGNETIC PULSATIONS; ALFVEN WAVES; UPSTREAM; LASERS; CONSEQUENCES;
ASTROPHYSICS
AB We present two-dimensional hybrid kinetic/magnetohydrodynamic simulations of planned laser-ablation experiments in the Large Plasma Device. Our results, based on parameters that have been validated in previous experiments, show that a parallel collisionless shock can begin forming within the available space. Carbon-debris ions that stream along the magnetic-field direction with a blow-off speed of four times the Alfven velocity excite strong magnetic fluctuations, eventually transferring part of their kinetic energy to the surrounding hydrogen ions. This acceleration and compression of the background plasma creates a shock front, which satisfies the Rankine-Hugoniot conditions and can therefore propagate on its own. Furthermore, we analyze the upstream turbulence and show that it is dominated by the right-hand resonant instability. Published by AIP Publishing.
C1 [Weidl, Martin S.; Jenko, Frank; Niemann, Chris] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Winske, Dan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Weidl, MS (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
OI Weidl, Martin/0000-0002-3440-3225
FU DTRA [HDTRA1-12-1-0024]; DOE [DE-SC0006583:0003, DE-NA0001995]; NSF
[1414591]
FX This work was facilitated by the Max-Planck/Princeton Center for Plasma
Physics and supported by DTRA under Contract No. HDTRA1-12-1-0024, by
DOE under Contract Nos. DE-SC0006583:0003 and DE-NA0001995, and by NSF
Award No. 1414591.
NR 41
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 122102
DI 10.1063/1.4971231
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000009
ER
PT J
AU Williams, GJ
Barnak, D
Fiksel, G
Hazi, A
Kerr, S
Krauland, C
Link, A
Manuel, MJE
Nagel, SR
Park, J
Peebles, J
Pollock, BB
Beg, FN
Betti, R
Chen, H
AF Williams, G. J.
Barnak, D.
Fiksel, G.
Hazi, A.
Kerr, S.
Krauland, C.
Link, A.
Manuel, M. J. -E.
Nagel, S. R.
Park, J.
Peebles, J.
Pollock, B. B.
Beg, F. N.
Betti, R.
Chen, Hui
TI Target material dependence of positron generation from high intensity
laser-matter interactions
SO PHYSICS OF PLASMAS
LA English
DT Article
ID PAIR PRODUCTION; ULTRAINTENSE LASERS; POWER
AB The effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z = 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z(2). The unexpectedly low scaling results from Coulomb collisions that act to stop or scatter positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities. Published by AIP Publishing.
C1 [Williams, G. J.; Hazi, A.; Link, A.; Nagel, S. R.; Park, J.; Pollock, B. B.; Chen, Hui] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Williams, G. J.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
[Barnak, D.; Fiksel, G.; Betti, R.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA.
[Fiksel, G.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA.
[Kerr, S.] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2R3, Canada.
[Krauland, C.; Peebles, J.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA.
[Manuel, M. J. -E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
RP Williams, GJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.; Williams, GJ (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
OI Williams, Gerald Jackson/0000-0002-6495-5696; Nagel,
Sabrina/0000-0002-7768-6819; Kerr, Shaun/0000-0003-4822-564X; Barnak,
Daniel/0000-0002-4646-7517
FU U.S. Department of Energy (DOE) [DE-AC52-07NA27344]; Laboratory Directed
Research and Development Program [13-LW-076]; LLNL Graduate Livermore
Scholar Program
FX We thank D. Cloyne, R. Costa, C. Bruns, J. Bonlie, and R. Cauble, for
their support at the Jupiter Laser Facility. This work was performed
under the auspices of the U.S. Department of Energy (DOE) by the
Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344. This work was funded by the Laboratory Directed
Research and Development Program under project tracking codes 13-LW-076.
GJW acknowledges the support of the LLNL Graduate Livermore Scholar
Program.
NR 29
TC 0
Z9 0
U1 2
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD DEC
PY 2016
VL 23
IS 12
AR 123109
DI 10.1063/1.4971235
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA EH8HP
UT WOS:000392013000078
ER
PT J
AU Siranart, N
Blakely, EA
Cheng, A
Handa, N
Sachs, RK
AF Siranart, Nopphon
Blakely, Eleanor A.
Cheng, Alden
Handa, Naval
Sachs, Rainer K.
TI Mixed Beam Murine Harderian Gland Tumorigenesis: Predicted Dose-Effect
Relationships if neither Synergism nor Antagonism Occurs
SO RADIATION RESEARCH
LA English
DT Article
ID RELATIVE BIOLOGICAL EFFECTIVENESS; SPACE RADIATION; MAMMALIAN-CELLS; LET
RADIATIONS; HEAVY-IONS; 2 AGENTS; X-RAYS; CARCINOGENESIS; EXPOSURES;
IRRADIATION
AB Complex mixed radiation fields exist in interplanetary space, and little is known about their late effects on space travelers. In silico synergy analysis default predictions are useful when planning relevant mixed-ion-beam experiments and interpreting their results. These predictions are based on individual dose-effect relationships (IDER) for each component of the mixed-ion beam, assuming no synergy or antagonism. For example, a default hypothesis of simple effect additivity has often been used throughout the study of biology. However, for more than a century pharmacologists interested in mixtures of therapeutic drugs have analyzed conceptual, mathematical and practical questions similar to those that arise when analyzing mixed radiation fields, and have shown that simple effect additivity often gives unreasonable predictions when the IDER are curvilinear. Various alternatives to simple effect additivity proposed in radiobiology, pharmacometrics, toxicology and other fields are also known to have important limitations. In this work, we analyze upcoming murine Harderian gland (HG) tumor prevalence mixed-beam experiments, using customized open-source software and published IDER from past single-ion experiments. The upcoming experiments will use acute irradiation and the mixed beam will include components of high atomic number and energy (HZE). We introduce a new alternative to simple effect additivity, "incremental effect additivity'', which is more suitable for the HG analysis and perhaps for other end points. We use incremental effect additivity to calculate default predictions for mixture dose-effect relationships, including 95% confidence intervals. We have drawn three main conclusions from this work. 1. It is important to supplement mixed-beam experiments with single-ion experiments, with matching end point(s), shielding and dose timing. 2. For HG tumorigenesis due to a mixed beam, simple effect additivity and incremental effect additivity sometimes give default predictions that are numerically close. However, if nontargeted effects are important and the mixed beam includes a number of different HZE components, simple effect additivity becomes unusable and another method is needed such as incremental effect additivity. 3. Eventually, synergy analysis default predictions of the effects of mixed radiation fields will be replaced by more mechanistic, biophysically-based predictions. However, optimizing synergy analyses is an important first step. If mixed-beam experiments indicate little synergy or antagonism, plans by NASA for further experiments and possible missions beyond low earth orbit will be substantially simplified. (C) 2016 by Radiation Research Society
C1 [Siranart, Nopphon; Cheng, Alden; Handa, Naval; Sachs, Rainer K.] Univ Calif Berkeley, Dept Math, MC 3840,Evans Hall, Berkeley, CA 94720 USA.
[Blakely, Eleanor A.] Lawrence Berkeley Natl Lab, Biosci Area, Berkeley, CA USA.
RP Sachs, RK (reprint author), Univ Calif Berkeley, Dept Math, MC 3840,Evans Hall, Berkeley, CA 94720 USA.
EM sachs@math.berkeley.edu
FU NASA under U.S. Department of Energy [NNJ16HP22I, DE-AC02-05CH11231];
Undergraduate Research Apprenticeship Program (URAP) at UC Berkeley
FX We thank F.A. Cucinotta and P.Y. Chang for highly informative
discussions. This research was supported by NASA [grant no. NNJ16HP22I
(RKS and EAB)] under U.S. Department of Energy contract no.
DE-AC02-05CH11231. Additional support was provided by the Undergraduate
Research Apprenticeship Program (URAP) at UC Berkeley (NS, AC and NH).
NR 56
TC 0
Z9 0
U1 0
U2 0
PU RADIATION RESEARCH SOC
PI LAWRENCE
PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA
SN 0033-7587
EI 1938-5404
J9 RADIAT RES
JI Radiat. Res.
PD DEC
PY 2016
VL 186
IS 6
BP 577
EP 591
DI 10.1667/RR14411.1
PG 15
WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging
SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology,
Nuclear Medicine & Medical Imaging
GA EH5OA
UT WOS:000391821400005
PM 27874325
ER
PT J
AU Templin, T
Sharma, P
Guida, P
Grabham, P
AF Templin, Thomas
Sharma, Preety
Guida, Peter
Grabham, Peter
TI Short-Term Effects of Low-LET Radiation on the Endothelial Barrier:
Uncoupling of PECAM-1 and the Production of Endothelial Microparticles
SO RADIATION RESEARCH
LA English
DT Article
ID RELATIVE BIOLOGICAL EFFECTIVENESS; ATHEROSCLEROTIC DISEASE;
EXTRACELLULAR VESICLES; PROTON IRRADIATION; IONIZING-RADIATION; CELLS;
RELEASE; GROWTH; TISSUE; MECHANISMS
AB A significant target for radiation-induced effects is the microvascular system, which is critical to healthy tissue function and its pathology is linked to disrupted endothelial barrier function. Low-linear energy transfer (LET) ionizing radiation is a source of noncancer pathologies in humans and little is known about the early events that could initiate subsequent diseases. However, it is well known that gamma radiation causes a very early disruption of the endothelial barrier at doses below those required for cytotoxic effects. After irradiation of human umbilical vein endothelial cells (HUVECs) to doses as low as 2 Gy, transendothelial electrical resistance (TEER) is transiently reduced at 3 h, and the platelet-derived endothothelial cell adhesion molecule (PE-CAM-1 or CD31) is uncoupled from the cells along with the release of endothelial microparticles (EMPs). In this study, we measured TEER reduction as an indicator of barrier function loss, and specifically examined the shedding of EMPs from human endothelial barrier models after a variety of low-LET irradiations, including photons and charged particles. Our findings showed two TEER responses, dependent on radiation type and environmental conditions. The first response was diminishing oscillations of TEER, which occurred during the first 10 h postirradiation. This response occurred after a 5 Gy proton or helium-ion (1 GeV/n) dose in addition to a 5 Gy gamma or X radiation dose. This occurred only in the presence of multiple growth factors and did not show a dose response, nor was it associated with EMP release. The second response was a single acute drop in TEER at 3 h after photon irradiation. Dose response was observed and was associated with the shedding of EMPs in 2D barrier cultures and in 3D vessel models. In this case, helium-ion and proton irradiations did not induce a drop in TEER or shedding of EMPs. The photon radiation effects was observed both in serum-free media and in the presence of multiple growth factors, indicating that it occurs under a range of environmental conditions. These results show an acute response of the human endothelial barrier that is relevant to photon irradiation. Significantly, it involves the release of EMPs, which have recently attracted attention due to their emerging clinical importance. (C) 2016 by Radiation Research Society
C1 [Templin, Thomas; Sharma, Preety; Grabham, Peter] Columbia Univ, Coll Phys & Surg, Ctr Radiol Res, P & S 11-243,630 West 168th St, New York, NY 10032 USA.
[Guida, Peter] Brookhaven Natl Lab, Biosci Dept, Upton, NY 11973 USA.
RP Grabham, P (reprint author), Columbia Univ, Coll Phys & Surg, Dept Pathol, P & S 11-243,630 West 168th St, New York, NY 10032 USA.; Grabham, P (reprint author), Columbia Univ, Coll Phys & Surg, Dept Anat & Cell Biol, P & S 11-243,630 West 168th St, New York, NY 10032 USA.
EM pwg2@columbia.edu
FU NASA [NNJ09ZSA001N, NNJ11ZSA001N]
FX We thank the Medical Center team at Brookhaven National Laboratory
(BNL), Adam Rusek and the NSRL team at BNL. This work was supported by
NASA, grant nos. NNJ09ZSA001N and NNJ11ZSA001N.
NR 38
TC 0
Z9 0
U1 1
U2 1
PU RADIATION RESEARCH SOC
PI LAWRENCE
PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA
SN 0033-7587
EI 1938-5404
J9 RADIAT RES
JI Radiat. Res.
PD DEC
PY 2016
VL 186
IS 6
BP 602
EP 613
DI 10.1667/RR14510.1
PG 12
WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging
SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology,
Nuclear Medicine & Medical Imaging
GA EH5OA
UT WOS:000391821400007
PM 27905868
ER
PT J
AU Hermann, SL
Xue, SS
Rowe, L
Davidson-Lowe, E
Myers, A
Eshchanov, B
Bahlai, CA
AF Hermann, Sara L.
Xue, Saisi
Rowe, Logan
Davidson-Lowe, Elizabeth
Myers, Andrew
Eshchanov, Bahodir
Bahlai, Christie A.
TI Thermally moderated firefly activity is delayed by precipitation
extremes
SO ROYAL SOCIETY OPEN SCIENCE
LA English
DT Article
DE lightning bug; Lampyridae; phenology; ecoinformatics; long-term
ecological research
ID CLIMATE-CHANGE; COLEOPTERA-LAMPYRIDAE; ELEVATION GRADIENT;
LUCIOLA-CRUCIATA; ECOLOGY; BIOLUMINESCENCE; LANDSCAPE; RESPONSES;
ECOINFORMATICS; POPULATIONS
AB The timing of events in the life history of temperate insects is most typically primarily cued by one of two drivers: photoperiod or temperature accumulation over the growing season. However, an insect's phenology can also be moderated by other drivers like rainfall or the phenology of its host plants. When multiple drivers of phenology interact, there is greater potential for phenological asynchronies to arise between an organism and those with which it interacts. We examined the phenological patterns of a highly seasonal group of fireflies (Photinus spp., predominantly P. pyralis) over a 12-year period (2004-2015) across 10 plant communities to determine whether interacting drivers could explain the variability observed in the adult flight activity density (i.e. mating season) of this species. We found that temperature accumulation was the primary driver of phenology, with activity peaks usually occurring at a temperature accumulation of approximately 800 degree days (base 10 degrees C); however, our model found this peak varied by nearly 180 degree-day units among years. This variation could be explained by a quadratic relationship with the accumulation of precipitation in the growing season; in years with either high or low precipitation extremes at our study site, flight activity was delayed. More fireflies were captured in general in herbaceous plant communities with minimal soil disturbance (alfalfa and no-till field crop rotations), but only weak interactions occurred between within-season responses to climatic variables and plant community. The interaction we observed between temperature and precipitation accumulation suggests that, although climate warming has the potential to disrupt phenology of many organisms, changes to regional precipitation patterns can magnify these disruptions.
C1 [Hermann, Sara L.; Rowe, Logan; Davidson-Lowe, Elizabeth; Myers, Andrew; Eshchanov, Bahodir] Michigan State Univ, Dept Entomol, E Lansing, MI 48824 USA.
[Hermann, Sara L.; Davidson-Lowe, Elizabeth] Michigan State Univ, Ecol Evolutionary Biol & Behav Program, E Lansing, MI 48824 USA.
[Xue, Saisi] Michigan State Univ, Dept Chem Engn, Biomass Convers Res Lab, E Lansing, MI 48824 USA.
[Bahlai, Christie A.] Michigan State Univ, Dept Integrat Biol, E Lansing, MI 48824 USA.
[Hermann, Sara L.; Myers, Andrew] Penn State Univ, Dept Entomol, State Coll, PA 16803 USA.
[Xue, Saisi] DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[Bahlai, Christie A.] Mozilla Sci Lab, Mountain View, CA 94041 USA.
RP Bahlai, CA (reprint author), Michigan State Univ, Dept Integrat Biol, E Lansing, MI 48824 USA.; Bahlai, CA (reprint author), Mozilla Sci Lab, Mountain View, CA 94041 USA.
EM cbahlai@msu.edu
OI Bahlai, Christie/0000-0002-8937-8709
FU National Science Foundation Long Term Ecological Research program
[1027253]; Mozilla Foundation; Leona M. and Harry B. Helmsley Charitable
Trust
FX Data used in this study were produced with funding from the National
Science Foundation Long Term Ecological Research program grant no.
1027253. C.A.B. was funded by a fellowship from the Mozilla Foundation
and the Leona M. and Harry B. Helmsley Charitable Trust.
NR 55
TC 0
Z9 0
U1 10
U2 10
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 2054-5703
J9 ROY SOC OPEN SCI
JI R. Soc. Open Sci.
PD DEC
PY 2016
VL 3
IS 12
AR UNSP 160712
DI 10.1098/rsos.160712
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EH4HH
UT WOS:000391731800022
PM 28083109
ER
PT J
AU Mallajosyula, AT
Nie, WY
Gupta, G
Blackburn, JL
Doorn, SK
Mohite, AD
AF Mallajosyula, Arun T.
Nie, Wanyi
Gupta, Gautam
Blackburn, Jeffrey L.
Doorn, Stephen K.
Mohite, Aditya D.
TI Critical Role of the Sorting Polymer in Carbon Nanotube-Based Minority
Carrier Devices
SO ACS NANO
LA English
DT Article
DE carbon nanotube layer; single chirality; polymer wrapping;
polyfluorenes; solar cell
ID ORGANIC SOLAR-CELLS; THIN-FILM PHOTOVOLTAICS; OPEN-CIRCUIT VOLTAGE;
POLYFLUORENE DERIVATIVES; CHARGE-TRANSFER; HOLE-TRANSPORT;
POLY(9,9-DIOCTYLFLUORENE); DISPERSION; LAYER
AB A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFO may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFOIC60 and C-60-only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C-60-only addition, with a relatively higher contribution to photocurrent from the PFO-C-60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C-60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. These results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.
C1 [Mallajosyula, Arun T.; Nie, Wanyi; Gupta, Gautam; Doorn, Stephen K.; Mohite, Aditya D.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Blackburn, Jeffrey L.] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA.
[Mallajosyula, Arun T.] Indian Inst Technol, Dept Elect & Elect Engn, Gauhati 781039, Assam, India.
RP Mohite, AD (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
EM amohite@lanl.gov
OI MOHITE, ADITYA/0000-0001-8865-409X
FU LANL LDRD program; Solar Photochemistry Program of the U.S. Department
of Energy, Office of Science, Basic Energy Sciences, Division of
Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308]
FX This work was supported in part by the LANL LDRD program and performed
in part at the Center for Integrated Nano technologies, a DOE Office of
Science user facility. Jeff Blackburn was supported by the Solar
Photochemistry Program of the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Division of Chemical Sciences,
Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to
NREL.
NR 45
TC 0
Z9 0
U1 8
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD DEC
PY 2016
VL 10
IS 12
BP 10808
EP 10815
DI 10.1021/acsnano.6b04885
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EG5JI
UT WOS:000391079700023
PM 27966903
ER
PT J
AU Makarov, NS
Lin, QL
Pietryga, JM
Robel, I
Klimov, VI
AF Makarov, Nikolay S.
Lin, Qianglu
Pietryga, Jeffrey M.
Robel, Istvan
Klimov, Victor I.
TI Auger Up-Conversion of Low-Intensity Infrared Light in Engineered
Quantum Dots
SO ACS NANO
LA English
DT Article
DE core/shell PbSe/CdSe quantum dot; up-conversion; two photon absorption;
Auger up-conversion; Auger recombination; single exciton; biexciton;
trion
ID IN-BULK NANOCRYSTALS; CARRIER MULTIPLICATION YIELDS; SILICON
SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; DUAL EMISSION; MULTIEXCITON
GENERATION; CDSE/CDS TETRAPODS; ELECTRON-TRANSFER; EFFICIENCY;
RELAXATION
AB One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, non optimal absorption energies, and difficulties for implementing in practical devices. Here we show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. This process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. Compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the "productive" Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localised excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.
C1 [Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.; Robel, Istvan; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA.
RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA.
EM klimov@lanl.gov
FU Center for Advanced Solar Photophysics (CASP), an Energy Frontier
Research Center - U.S. Department of Energy, Office of Science, Basic
Energy Sciences
FX This work was supported by the Center for Advanced Solar Photophysics
(CASP), an Energy Frontier Research Center funded by the U.S. Department
of Energy, Office of Science, Basic Energy Sciences.
NR 72
TC 0
Z9 0
U1 17
U2 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD DEC
PY 2016
VL 10
IS 12
BP 10829
EP 10841
DI 10.1021/acsnano.6b04928
PG 13
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EG5JI
UT WOS:000391079700025
PM 27936587
ER
PT J
AU Kumar, S
Wang, ZW
Huang, XP
Kumari, N
Davila, N
Strachan, JP
Vine, D
Kilcoyne, ALD
Nishi, Y
Williams, RS
AF Kumar, Suhas
Wang, Ziwen
Huang, Xiaopeng
Kumari, Niru
Davila, Noraica
Strachan, John Paul
Vine, David
Kilcoyne, A. L. David
Nishi, Yoshio
Williams, R. Stanley
TI Conduction Channel Formation and Dissolution Due to Oxygen
Thermophoresis/Diffusion in Hafnium Oxide Memristors
SO ACS NANO
LA English
DT Article
DE memristors; thermophoresis; operating mechanism; oxygen migration;
filament
ID RRAM; OPERATION; DEVICES; ARRAY; HFOX
AB Transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory because of their favorable operating power, endurance, speed, and density. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physicochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.
C1 [Kumar, Suhas; Huang, Xiaopeng; Kumari, Niru; Davila, Noraica; Strachan, John Paul; Williams, R. Stanley] Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA.
[Wang, Ziwen; Nishi, Yoshio] Stanford Univ, Stanford, CA 94305 USA.
[Vine, David; Kilcoyne, A. L. David] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Kumar, S; Williams, RS (reprint author), Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA.
EM Suhas.Kumar@hpe.com; Stan.Williams@hpe.com
RI Kilcoyne, David/I-1465-2013
FU Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-AC02-05CH11231]; National Science Foundation
through the NNIN [ECS-9731293]
FX We gratefully acknowledge Prof. Rainer Waser and Prof. Regina Dittmann
for providing a detailed critique and useful suggestions to help us
improve the manuscript. All synchrotron measurements were performed at
the Advanced Light Source, beamlines 5.3.2.2 and 11.0.2, at Lawrence
Berkeley National Laboratory, Berkeley, CA, USA. The Advanced Light
Source is supported by the Director, Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. Work was performed in part at the Stanford
Nanofabrication Facility, which is supported by the National Science
Foundation through the NNIN under Grant ECS-9731293.
NR 32
TC 2
Z9 2
U1 22
U2 22
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD DEC
PY 2016
VL 10
IS 12
BP 11205
EP 11210
DI 10.1021/acsnano.6b06275
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EG5JI
UT WOS:000391079700065
PM 27957851
ER
PT J
AU Hartmann, NF
Pramanik, R
Dowgiallo, AM
Ihly, R
Blackburn, JL
Doorn, SK
AF Hartmann, Nicolai F.
Pramanik, Rajib
Dowgiallo, Anne-Marie
Ihly, Rachelle
Blackburn, Jeffrey L.
Doorn, Stephen K.
TI Photoluminescence Imaging of Polyfluorene Surface Structures on
Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton
Transport
SO ACS NANO
LA English
DT Article
DE carbon nanotubes; energy harvesting photovoltaics; exciton transport;
surface structure
ID HETEROJUNCTION SOLAR-CELLS; CHARGE-TRANSFER; DIFFUSION; DYNAMICS;
TRANSISTORS; PHOTOVOLTAICS; SPECTRA
AB Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood. Here, we present the results of a combined pump probe and photoluminescence imaging study of polyfluorene (PFO)-wrapped (6,5) and (7,5) SWCNTs that provide additional insight into the role played by polymer structures in defining exciton transport. Pump probe measurements suggest exciton transport occurs over larger length scales in films composed of PFO-wrapped (7,5) SWCNTs, compared to those prepared from PFO-bpy-wrapped (6,5) SWCNTs. To explore the role the difference in polymer structure may play as a possible origin of differing transport behaviors, we performed a photoluminescence imaging study of individual polymer-wrapped (6,5) and (7,5) SWCNTs. The PFO-bpy-wrapped (6,5) SWCNTs showed more uniform intensity distributions along their lengths, in contrast to the PFO-wrapped (7,5) SWCNTs, which showed irregular, discontinuous intensity distributions. These differences likely originate from differences in surface coverage and suggest the PFO wrapping on (7,5) nanotubes produces a more open surface structure than is available with the PFO-bpy wrapping of (6,5) nanotubes. The open structure likely leads to improved intertube coupling that enhances exciton transport within the (7,5) films, consistent with the results of our pump-probe measurements.
C1 [Hartmann, Nicolai F.; Pramanik, Rajib; Doorn, Stephen K.] Los Alamos Natl Lab, MPA CINT, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Dowgiallo, Anne-Marie; Ihly, Rachelle; Blackburn, Jeffrey L.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Doorn, SK (reprint author), Los Alamos Natl Lab, MPA CINT, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.; Blackburn, JL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM jeffrey.blackburn@nrel.gov; skdoom@lanl.gov
OI Hartmann, Nicolai/0000-0002-4174-532X
FU Los Alamos National Laboratory LDRD program; Solar Photochemistry
Program of the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences [DE-AC3-08GO28308]
FX We thank G. Rumbles and S. Tretiak for helpful discussions. This work
was supported in part by the Los Alamos National Laboratory LDRD
program. Portions of this work were performed at the Center for
Integrated Nanotechnology, a U.S. Department of Energy, Office of
Science User Facility. NREL authors were supported by the Solar
Photochemistry Program of the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences, under Contract No. DE-AC3-08GO28308 to
NREL.
NR 49
TC 0
Z9 0
U1 5
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD DEC
PY 2016
VL 10
IS 12
BP 11449
EP 11458
DI 10.1021/acsnano.6b07168
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EG5JI
UT WOS:000391079700092
PM 27936574
ER
PT J
AU Balakrishnan, V
Bedewy, M
Meshot, ER
Pattinson, SW
Polsen, ES
Laye, F
Zakharov, DN
Stach, EA
Hart, AJ
AF Balakrishnan, Viswanath
Bedewy, Mostafa
Meshot, Eric R.
Pattinson, Sebastian W.
Polsen, Erik S.
Laye, Fabrice
Zakharov, Dmitri N.
Stach, Eric A.
Hart, A. John
TI Real-Time Imaging of Self-Organization and Mechanical Competition in
Carbon Nanotube Forest Growth
SO ACS NANO
LA English
DT Article
DE carbon nanotubes; self-organization; electron microscopy; chemical vapor
deposition; forces
ID IN-SITU OBSERVATION; POPULATION-GROWTH; CATALYST; NUCLEATION;
NANOPARTICLES; DYNAMICS; INSIGHTS; DENSITY
AB The properties of carbon nanotube (CNT) networks and analogous materials comprising filamentary nanostructures are governed by the intrinsic filament properties and their hierarchical organization and interconnection. As a result, direct knowledge of the collective dynamics of CNT synthesis and self-organization is essential to engineering improved CNT materials for applications such as membranes and thermal interfaces. Here, we use real-time environmental transmission electron microscopy (E-TEM) to observe nucleation and self-organization of CNTs into vertically aligned forests. Upon introduction of the carbon source, we observe a large scatter in the onset of nucleation of individual CNTs and the ensuing growth rates. Experiments performed at different temperatures and catalyst particle densities show the critical role of CNT density on the dynamics of self-organization; low-density CNT nucleation results in the CNTs becoming pinned to the substrate and forming random networks, whereas higher density CNT nucleation results in self-organization of the CNTs into bundles that are oriented perpendicular to the substrate. We also find that mechanical coupling between growing CNTs alters their growth trajectory and shape, causing significant deformations, buckling, and defects in the CNT walls. Therefore, it appears that CNT CNT coupling not only is critical for self-organization but also directly influences CNT quality and likely the resulting properties of the forest. Our findings show that control of the time-distributed kinetics of CNT nucleation and bundle formation are critical to manufacturing well-organized CNT assemblies and that E-TEM can be a powerful tool to investigate the mesoscale dynamics of CNT networks.
C1 [Balakrishnan, Viswanath; Bedewy, Mostafa; Pattinson, Sebastian W.; Hart, A. John] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Balakrishnan, Viswanath; Bedewy, Mostafa; Pattinson, Sebastian W.; Hart, A. John] MIT, Lab Mfg & Prod, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Bedewy, Mostafa; Polsen, Erik S.; Laye, Fabrice] Univ Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA.
[Polsen, Erik S.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Zakharov, Dmitri N.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Balakrishnan, Viswanath] Indian Inst Technol Mandi, Sch Engn, Mandi 175001, Himachal Prades, India.
[Bedewy, Mostafa] Univ Pittsburgh, Dept Ind Engn, 3700 OHara St, Pittsburgh, PA 15261 USA.
RP Hart, AJ (reprint author), MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Hart, AJ (reprint author), MIT, Lab Mfg & Prod, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM ajhart@mit.edu
RI Stach, Eric/D-8545-2011
OI Stach, Eric/0000-0002-3366-2153
FU Department of Energy Office of Basic Energy Sciences [DE-SC0004927];
U.S. Department of Energy Office of Basic Energy Sciences
[DE-SC0012704]; U.S. Department of Energy by Lawrence Livermore National
Laboratory [DE-AC52-07NA27344]
FX Financial support to B.V., M.B., and A.J.H. was provided by the
Department of Energy Office of Basic Energy Sciences (DE-SC0004927). In
situ and ex situ TEM experiments were performed at the Center for
Functional Nanomaterials, Brookhaven National Laboratory, which is
supported by the U.S. Department of Energy Office of Basic Energy
Sciences (DE-SC0012704). Catalyst deposition and ex situ electron
microscopy were performed at the Center for Nanoscale Systems (CNS) at
Harvard University. Catalyst deposition of additional samples was
carried out at the Lurie Nanofabrication Facility (LNF) at the
University of Michigan. E.M. was supported under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344.
NR 36
TC 0
Z9 0
U1 12
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD DEC
PY 2016
VL 10
IS 12
BP 11496
EP 11504
DI 10.1021/acsnano.6b07251
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EG5JI
UT WOS:000391079700097
PM 27959511
ER
PT J
AU Adam, R
Aghanim, N
Ashdown, M
Aumont, J
Baccigalupi, C
Ballardini, M
Banday, AJ
Barreiro, RB
Bartolo, N
Basak, S
Battye, R
Benabed, K
Bernard, JP
Bersanelli, M
Bielewicz, P
Bock, JJ
Bonaldi, A
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Boulanger, F
Bucher, M
Burigana, C
Calabrese, E
Cardoso, JF
Carron, J
Chiang, HC
Colombo, LPL
Combet, C
Comis, B
Couchot, F
Coulais, A
Crill, BP
Curto, A
Cuttaia, F
Davis, RJ
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Di Valentino, E
Dickinson, C
Diego, JM
Dore, O
Douspis, M
Ducout, A
Dupac, X
Elsner, F
Ensslin, TA
Eriksen, HK
Falgarone, E
Fantaye, Y
Finelli, F
Forastieri, F
Frailis, M
Fraisse, AA
Franceschi, E
Frolov, A
Galeotta, S
Galli, S
Ganga, K
Genova-Santos, RT
Gerbino, M
Ghosh, T
Gonzalez-Nuevo, J
Gorski, KM
Gruppuso, A
Gudmundsson, JE
Hansen, FK
Helou, G
Henrot-Versille, S
Herranz, D
Hivon, E
Huang, Z
Ilic, S
Jaffe, AH
Jones, WC
Keihanen, E
Keskitalo, R
Kisner, TS
Knox, L
Krachmalnicoff, N
Kunz, M
Kurki-Suonio, H
Lagache, G
Lahteenmaki, A
Lamarre, JM
Langer, M
Lasenby, A
Lattanzi, M
Lawrence, CR
Le Jeune, M
Levrier, F
Lewis, A
Liguori, M
Lilje, PB
Lopez-Caniego, M
Ma, YZ
Macias-Perez, JF
Maggio, G
Mangilli, A
Maris, M
Martin, PG
Martinez-Gonzalez, E
Matarrese, S
Mauri, N
McEwen, JD
Meinhold, PR
Melchiorri, A
Mennella, A
Migliaccio, M
Miville-Deschenes, MA
Molinari, D
Moneti, A
Montier, L
Morgante, G
Moss, A
Naselsky, P
Natoli, P
Oxborrow, CA
Pagano, L
Paoletti, D
Partridge, B
Patanchon, G
Patrizii, L
Perdereau, O
Perotto, L
Pettorino, V
Piacentini, F
Plaszczynski, S
Polastri, L
Polenta, G
Puget, JL
Rachen, JP
Racine, B
Reinecke, M
Remazeilles, M
Renzi, A
Rocha, G
Rossetti, M
Roudier, G
Rubino-Martin, JA
Ruiz-Granados, B
Salvati, L
Sandri, M
Savelainen, M
Scott, D
Sirri, G
Sunyaev, R
Suur-Uski, AS
Tauber, JA
Tenti, M
Toffolatti, L
Tomasi, M
Tristram, M
Trombetti, T
Valiviita, J
Van Tent, F
Vielva, P
Villa, F
Vittorio, N
Wandelt, BD
Wehus, IK
White, M
Zacchei, A
Zonca, A
AF Adam, R.
Aghanim, N.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Ballardini, M.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Battye, R.
Benabed, K.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bock, J. J.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Boulanger, F.
Bucher, M.
Burigana, C.
Calabrese, E.
Cardoso, J. -F.
Carron, J.
Chiang, H. C.
Colombo, L. P. L.
Combet, C.
Comis, B.
Couchot, F.
Coulais, A.
Crill, B. P.
Curto, A.
Cuttaia, F.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Di Valentino, E.
Dickinson, C.
Diego, J. M.
Dore, O.
Douspis, M.
Ducout, A.
Dupac, X.
Elsner, F.
Ensslin, T. A.
Eriksen, H. K.
Falgarone, E.
Fantaye, Y.
Finelli, F.
Forastieri, F.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Frolov, A.
Galeotta, S.
Galli, S.
Ganga, K.
Genova-Santos, R. T.
Gerbino, M.
Ghosh, T.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gruppuso, A.
Gudmundsson, J. E.
Hansen, F. K.
Helou, G.
Henrot-Versille, S.
Herranz, D.
Hivon, E.
Huang, Z.
Ilic, S.
Jaffe, A. H.
Jones, W. C.
Keihanen, E.
Keskitalo, R.
Kisner, T. S.
Knox, L.
Krachmalnicoff, N.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lahteenmaki, A.
Lamarre, J. -M.
Langer, M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Le Jeune, M.
Levrier, F.
Lewis, A.
Liguori, M.
Lilje, P. B.
Lopez-Caniego, M.
Ma, Y. -Z.
Macias-Perez, J. F.
Maggio, G.
Mangilli, A.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Matarrese, S.
Mauri, N.
McEwen, J. D.
Meinhold, P. R.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Miville-Deschenes, M. -A.
Molinari, D.
Moneti, A.
Montier, L.
Morgante, G.
Moss, A.
Naselsky, P.
Natoli, P.
Oxborrow, C. A.
Pagano, L.
Paoletti, D.
Partridge, B.
Patanchon, G.
Patrizii, L.
Perdereau, O.
Perotto, L.
Pettorino, V.
Piacentini, F.
Plaszczynski, S.
Polastri, L.
Polenta, G.
Puget, J. -L
Rachen, J. P.
Racine, B.
Reinecke, M.
Remazeilles, M.
Renzi, A.
Rocha, G.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Ruiz-Granados, B.
Salvati, L.
Sandri, M.
Savelainen, M.
Scott, D.
Sirri, G.
Sunyaev, R.
Suur-Uski, A. -S.
Tauber, J. A.
Tenti, M.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Trombetti, T.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Vittorio, N.
Wandelt, B. D.
Wehus, I. K.
White, M.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XLVII. Planck constraints on reionization
history
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic background radiation; dark ages, reionization, first stars;
polarization
ID MICROWAVE BACKGROUND ANISOTROPIES; PROBE WMAP OBSERVATIONS; STAR-FORMING
GALAXIES; ANGULAR POWER SPECTRUM; HIGH-REDSHIFT GALAXIES; SOUTH-POLE
TELESCOPE; DEEP FIELD CAMPAIGN; LY-ALPHA-EMITTERS; SIMILAR-TO 6; COSMIC
REIONIZATION
AB We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.
C1 [Ganga, K.; Le Jeune, M.; Patanchon, G.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite,CEA lrfu, Observ Paris,CNRS IN2P3, APC AstroParticule & Cosmol, F-75205 Paris 13, France.
[Calabrese, E.; Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, Aalto 00076, Finland.
[Calabrese, E.; Lahteenmaki, A.] Dept Radio Sci & Engn, Aalto 00076, Finland.
[Fantaye, Y.; Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy.
[Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Ilic, S.] Aix Marseille Univ, Ctr Phys Theor, F-13288 Marseille, France.
[Ashdown, M.; Curto, A.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa.
[Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ilic, S.; Montier, L.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Oxborrow, C. A.] Tech Univ Denmark, Space Natl Space Inst, DTU, Lyngby, Denmark.
[Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland.
[Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ la Laguna, Dept Astrofis, San Cristobal de la Laguna 38206, Tenerife, Spain.
[Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Oviedo 33003, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada.
[Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Carron, J.; Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00560, Finland.
[Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95064 USA.
[Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy.
[Burigana, C.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy.
[de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ La Sapienza, Dipartimento Fis, I-00133 Rome, Italy.
[Bersanelli, M.; Ducout, A.; Krachmalnicoff, N.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[Fantaye, Y.; Forastieri, F.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark.
[Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28691, Spain.
[Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands.
[Matarrese, S.] Gran Sasso Sci Inst, INFN, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany.
[Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA.
[Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki 00560, Finland.
[de Zotti, G.] INAF Osservatorio Astron Padova, I-35131 Padua, Italy.
[Polenta, G.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, I-34127 Trieste, Italy.
[Ballardini, M.; Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] INAF IASF Bologna, I-40127 Bologna, Italy.
[Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy.
[Tenti, M.] INFN CNAF, I-40127 Bologna, Italy.
[Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Patrizii, L.; Sirri, G.] INFN, Sez Bologna, I-40127 Bologna, Italy.
[Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, I-44122 Ferrara, Italy.
[Melchiorri, A.; Pagano, L.] Univ Rome Sapienza, INFN, Sez Roma 1, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, I-00185 Rome, Italy.
[Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, London SW7 2AZ, England.
[Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Ghosh, T.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Puget, J. -L; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, Inst Astrophys Spatiale, CNRS, F-91405 Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Migliaccio, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Racine, B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38205, Spain.
[Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander 39005, Spain.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Basak, S.; Battye, R.; Bonaldi, A.; Davis, R. J.; Dickinson, C.; Ma, Y. -Z.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Ashdown, M.; Curto, A.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Cambridge CB3 OHA, England.
[Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France.
[Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, F-75000 Paris, France.
[Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France.
[Adam, R.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France.
[Van Tent, F.] Univ ParisSud 11, Lab Phys Theor, F-91405 Orsay, France.
[Van Tent, F.] CNRS, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Ensslin, T. A.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark.
[Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, S-10691 Stockholm, Sweden.
[Baccigalupi, C.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, I-34136 Trieste, Italy.
[Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, ZA-4000 Durban, South Africa.
[Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Frolov, A.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada.
[Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England.
[Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden.
[Benabed, K.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR 7095, F-75014 Paris, France.
[Banday, A. J.; Bernard, J. -P.; Ilic, S.; Montier, L.] Univ Toulouse, UPS OMP IRAP, F-31028 Toulouse 4, France.
[Ruiz-Granados, B.] Univ Granada, Dept Fis Tedr & Cosmos, Fac Ciencias, Granada 18010, Spain.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Tristram, M (reprint author), Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France.
EM marian.douspis@ias.u-psud.fr; tristram@lal.in2p3.fr
RI Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017;
bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014;
Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki,
Anne/L-5987-2013; White, Martin/I-3880-2015; Ruiz-Granados,
Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017
OI Huang, Zhiqi/0000-0002-1506-1063; Lilje, Per/0000-0003-4324-7794;
Ballardini, Mario/0000-0003-4481-3559; Barreiro, Rita
Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876;
Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz,
Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732;
Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio,
Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; White,
Martin/0000-0001-9912-5070; Gerbino, Martina/0000-0002-3538-1283
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MINECO (Spain); RES (Spain); Tekes (Finland); AoF (Finland);
CSC (Finland); MPG (Germany); DLR (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC (EU); PRACE (EU); J.A. (Spain)
FX The Planck Collaboration acknowledges the support of: ESA; CNES, and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes,
AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planck-collaboration
NR 110
TC 3
Z9 3
U1 5
U2 5
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A108
DI 10.1051/0004-6361/201628897
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900066
ER
PT J
AU Adam, R
Ade, PAR
Aghanim, N
Ashdown, M
Aumont, J
Baccigalupi, C
Banday, AJ
Barreiro, RB
Bartolo, N
Battaner, E
Benabed, K
Benoit-Levy, A
Bersanelli, M
Bielewicz, P
Bikmaev, I
Bonaldi, A
Bond, JR
Borrill, J
Bouchet, FR
Burenin, R
Burigana, C
Calabrese, E
Cardoso, JF
Catalano, A
Chiang, HC
Christensen, PR
Churazov, E
Colombo, LPL
Combet, C
Comis, B
Couchot, F
Crill, BP
Curto, A
Cuttaia, F
Danese, L
Davis, RJ
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Desert, FX
Diego, JM
Dole, H
Dore, O
Douspis, M
Ducout, A
Dupac, X
Elsner, F
Ensslin, TA
Finelli, F
Forni, O
Frailis, M
Fraisse, AA
Franceschi, E
Galeotta, S
Ganga, K
Genova-Santos, RT
Giard, M
Giraud-Heraud, Y
Gjerlow, E
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Gudmundsson, JE
Hansen, FK
Harrison, DL
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hivon, E
Hobson, M
Hornstrup, A
Hovest, W
Hurier, G
Jaffe, HA
Jaffe, TR
Jones, WC
Keihanen, E
Keskitalo, R
Khamitov, I
Kisner, TS
Kneissl, R
Knoche, J
Kunz, M
Kurki-Suonio, H
Lagache, G
Lahteenmaki, A
Lamarre, JM
Lasenby, A
Lattanzi, M
Lawrence, CR
Leonardi, R
Levrier, F
Liguori, M
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Macias-Perez, JF
Maffei, B
Maggio, G
Mandolesi, N
Mangilli, A
Maris, M
Martin, PG
Martinez-Gonzalez, E
Masi, S
Matarrese, S
Melchiorri, A
Mennella, A
Migliaccio, M
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Mortlock, D
Munshi, D
Murphy, JA
Naselsky, P
Nati, F
Natoli, P
Norgaard-Nielsen, HU
Novikov, D
Novikov, I
Oxborrow, CA
Pagano, L
Pajot, F
Paoletti, D
Pasian, F
Perdereau, O
Perotto, L
Pettorino, V
Piacentini, F
Piat, M
Plaszczynski, S
Pointecouteau, E
Polenta, G
Ponthieu, N
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Rebolo, R
Reinecke, M
Remazeilles, M
Renault, C
Renzi, A
Ristorcelli, I
Rocha, G
Rosset, C
Rossetti, M
Roudier, G
Rubino-Martin, JA
Rusholme, B
Santos, D
Savelainen, M
Savini, G
Scott, D
Stolyarov, V
Stompor, R
Sudiwala, R
Sunyaev, R
Sutton, D
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Tucci, M
Valenziano, L
Valiviita, J
Van Tent, F
Vielva, P
Villa, F
Wade, LA
Wehus, IK
Yvon, D
Zacchei, A
Zonca, A
AF Adam, R.
Ade, P. A. R.
Aghanim, N.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Battaner, E.
Benabed, K.
Benoit-Levy, A.
Bersanelli, M.
Bielewicz, P.
Bikmaev, I.
Bonaldi, A.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burenin, R.
Burigana, C.
Calabrese, E.
Cardoso, J. -F.
Catalano, A.
Chiang, H. C.
Christensen, P. R.
Churazov, E.
Colombo, L. P. L.
Combet, C.
Comis, B.
Couchot, F.
Crill, B. P.
Curto, A.
Cuttaia, F.
Danese, L.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Desert, F. -X.
Diego, J. M.
Dole, H.
Dore, O.
Douspis, M.
Ducout, A.
Dupac, X.
Elsner, F.
Ensslin, T. A.
Finelli, F.
Forni, O.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Galeotta, S.
Ganga, K.
Genova-Santos, R. T.
Giard, M.
Giraud-Heraud, Y.
Gjerlow, E.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Gudmundsson, J. E.
Hansen, F. K.
Harrison, D. L.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hivon, E.
Hobson, M.
Hornstrup, A.
Hovest, W.
Hurier, G.
Jaffe, A. H.
Jaffe, T. R.
Jones, W. C.
Keihanen, E.
Keskitalo, R.
Khamitov, I.
Kisner, T. S.
Kneissl, R.
Knoche, J.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lahteenmaki, A.
Lamarre, J. -M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Leonardi, R.
Levrier, F.
Liguori, M.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Macias-Perez, J. F.
Maffei, B.
Maggio, G.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Masi, S.
Matarrese, S.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Mortlock, D.
Munshi, D.
Murphy, J. A.
Naselsky, P.
Nati, F.
Natoli, P.
Norgaard-Nielsen, H. U.
Novikov, D.
Novikov, I.
Oxborrow, C. A.
Pagano, L.
Pajot, F.
Paoletti, D.
Pasian, F.
Perdereau, O.
Perotto, L.
Pettorino, V.
Piacentini, F.
Piat, M.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Rebolo, R.
Reinecke, M.
Remazeilles, M.
Renault, C.
Renzi, A.
Ristorcelli, I.
Rocha, G.
Rosset, C.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Rusholme, B.
Santos, D.
Savelainen, M.
Savini, G.
Scott, D.
Stolyarov, V.
Stompor, R.
Sudiwala, R.
Sunyaev, R.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tucci, M.
Valenziano, L.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Wade, L. A.
Wehus, I. K.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XLIII. Spectral energy distribution of dust
in clusters of galaxies
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE galaxies: clusters: intracluster medium; galaxies: clusters: general;
diffuse radiation; infrared: general
ID INFRARED-EMISSION; SCALING RELATIONS; INTRACLUSTER DUST; INTERSTELLAR
DUST; COMA CLUSTER; LUMINOSITY; HERSCHEL; EVOLUTION; CONSTRAINTS;
CALIBRATION
AB Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at v <= 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz <= v <= 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck's resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for the signal and its temperature.
C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Sorbonne Paris Cite,Observ Paris, APC AstroParticule & Cosmol, CNRS IN2P3 CEA Irfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
[Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland.
[Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland.
[Bikmaev, I.] Acad Sci Tatarstan, Bauman Str 20, Kazan 420111, Republic Of Tat, Russia.
[Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy.
[Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, West Ville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
[Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Casilla 763, Santiago 0355, Chile.
[Leonardi, R.] CGEE, SCS Qd 9,Torre C,4 Andar,Ed Parque Cidade Corp, BR-70308200 Brasilia, DF, Brazil.
[Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Rebolo, R.] CSIC, E-28049 Madrid, Spain.
[Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France.
[Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland.
[Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain.
[Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33077, Spain.
[Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kremlevskaya Str 18, Kazan 420008, Russia.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada.
[Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Franceschi, E.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, SF-00100 Helsinki, Finland.
[Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy.
[Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy.
[Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy.
[Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy.
[Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark.
[Kneissl, R.] ESO Vitacura, European So Observ, Alonso Cordova 3107, Santiago 19001, Chile.
[Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain.
[Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
[Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 35131, Finland.
[de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35131 Padua, Italy.
[Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, Trieste, Italy.
[Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, Bologna, Italy.
[Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, Milan, Italy.
[Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy.
[Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy.
[Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, Via Valerio 2, I-34127 Trieste, Italy.
[Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France.
[Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England.
[Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.
[Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.] CNRS, Inst Astrophys Paris, UMR7095, 98Bis Blvd Arago, F-75014 Paris, France.
[Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-38106 Oslo, Norway.
[Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain.
[Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.
[Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA.
[Bonaldi, A.; Davis, R. J.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
[Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
[Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia.
[Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France.
[Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France.
[Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,IRFU,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris, France.
[Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris, France.
[Adam, R.; Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.; Valiviita, J.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France.
[Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France.
[Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Astro Space Ctr, 84-32 Profsoyuznaya St,GSP-7, Moscow, Russia.
[Churazov, E.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany.
[Burenin, R.] Moscow Inst Phys & Technol, Inst Sky Per 9, Moscow 141700, Russia.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland.
[Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark.
[Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.
[Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England.
[Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy.
[Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy.
[Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales.
[Bouchet, F. R.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR7095, 98Bis Blvd Arago, F-75014 Paris, France.
[Burenin, R.; Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Prof Soyuznaya Str 84-32, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia.
[Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England.
[Khamitov, I.] TUBITAK Natl Observ, Akdeniz Univ Campus, TR-07058 Antalya, Turkey.
[Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden.
[Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.] Univ Paris 06, UPMC, UMR7095, 98Bis Blvd Arago, F-75014 Paris, France.
[Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, IRAP, UPS, OMP, F-31028 Toulouse 4, France.
[Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain.
[Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain.
[Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland.
EM comis@lpsc.in2p3.fr
RI Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Churazov,
Eugene/A-7783-2013; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita
Belen/N-5442-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz,
Diego/K-9143-2014
OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794;
Savini, Giorgio/0000-0003-4449-9416; Colombo, Loris/0000-0003-4572-7732;
Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio,
Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Hivon,
Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov,
Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272;
Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz,
Diego/0000-0003-4540-1417
FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA;
DoE (USA); STFC; UKSA (UK); CSIC; MINECO; JA; RES (Spain); Tekes; AoF;
CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark);
SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC; PRACE (EU); [ANR-11-BS56-015]
FX The Planck Collaboration acknowledges the support of: ESA; CNES, and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes,
AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planck-collaboration. This paper
makes use of the HEALPix software package. We acknowledge the support of
grant ANR-11-BS56-015. We are thankful to the anonymous referee for
useful comments that helped improve the quality of the paper.
NR 69
TC 0
Z9 0
U1 1
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A104
DI 10.1051/0004-6361/201628522
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900045
ER
PT J
AU Adam, R
Ade, PAR
Alves, MIR
Ashdown, M
Aumont, J
Baccigalupi, C
Banday, AJ
Barreiro, RB
Bartolo, N
Battaner, E
Benabed, K
Benoit-Levy, A
Bernard, JP
Bersanelli, M
Bielewicz, P
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Boulanger, F
Bucher, M
Burigana, C
Butler, RC
Calabrese, E
Cardoso, JF
Catalano, A
Chiang, HC
Christensen, PR
Colombo, LPL
Combet, C
Couchot, F
Crill, BP
Curto, A
Cuttaia, F
Danese, L
Davis, RJ
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Dickinson, C
Diego, JM
Dolag, K
Dore, O
Ducout, A
Dupac, X
Elsner, F
Ensslin, TA
Eriksen, HK
Ferriere, K
Finelli, F
Forni, O
Frailis, M
Fraisse, AA
Franceschi, E
Galeotta, S
Ganga, K
Ghosh, T
Giard, M
Gjerlow, E
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Gudmundsson, JE
Hansen, FK
Harrison, DL
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hobson, M
Hornstrup, A
Hurier, G
Jaffe, AH
Jaffe, TR
Jones, WC
Juvela, M
Keihanen, E
Keskitalo, R
Kisner, TS
Knoche, J
Kunz, M
Kurki-Suonio, H
Lamarre, JM
Lasenby, A
Lattanzi, M
Lawrence, CR
Leahy, JP
Leonardi, R
Levrier, F
Liguori, M
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Lubin, PM
Macias-Perez, JF
Maggio, G
Maino, D
Mandolesi, N
Mangilli, A
Maris, M
Martin, PG
Martinez-Gonzalez, E
Masi, S
Matarrese, S
Melchiorri, A
Mennella, A
Migliaccio, M
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Munshi, D
Murphy, JA
Naselsky, P
Nati, F
Natoli, P
Norgaard-Nielsen, HU
Oppermann, N
Orlando, E
Pagano, L
Pajot, F
Paladini, R
Paoletti, D
Pasian, F
Perotto, L
Pettorino, V
Piacentini, F
Piat, M
Pierpaoli, E
Plaszczynski, S
Pointecouteau, E
Polenta, G
Ponthieu, N
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Reinecke, M
Remazeilles, M
Renault, C
Renzi, A
Ristorcelli, I
Rocha, G
Rossetti, M
Roudier, G
Rubino-Martin, JA
Rusholme, B
Sandri, M
Santos, D
Savelainen, M
Scott, D
Spencer, LD
Stolyarov, V
Stompor, R
Strong, AW
Sudiwala, R
Sunyaev, R
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Tucci, M
Valenziano, L
Valiviita, J
Van Tent, F
Vielva, P
Villa, F
Wade, LA
Wandelt, BD
Wehus, IK
Yvon, D
Zacchei, A
Zonca, A
AF Adam, R.
Ade, P. A. R.
Alves, M. I. R.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Battaner, E.
Benabed, K.
Benoit-Levy, A.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Boulanger, F.
Bucher, M.
Burigana, C.
Butler, R. C.
Calabrese, E.
Cardoso, J. -F.
Catalano, A.
Chiang, H. C.
Christensen, P. R.
Colombo, L. P. L.
Combet, C.
Couchot, F.
Crill, B. P.
Curto, A.
Cuttaia, F.
Danese, L.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Dickinson, C.
Diego, J. M.
Dolag, K.
Dore, O.
Ducout, A.
Dupac, X.
Elsner, F.
Ensslin, T. A.
Eriksen, H. K.
Ferriere, K.
Finelli, F.
Forni, O.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Galeotta, S.
Ganga, K.
Ghosh, T.
Giard, M.
Gjerlow, E.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Gudmundsson, J. E.
Hansen, F. K.
Harrison, D. L.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hobson, M.
Hornstrup, A.
Hurier, G.
Jaffe, A. H.
Jaffe, T. R.
Jones, W. C.
Juvela, M.
Keihanen, E.
Keskitalo, R.
Kisner, T. S.
Knoche, J.
Kunz, M.
Kurki-Suonio, H.
Lamarre, J. -M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Leahy, J. P.
Leonardi, R.
Levrier, F.
Liguori, M.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Lubin, P. M.
Macias-Perez, J. F.
Maggio, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Masi, S.
Matarrese, S.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Munshi, D.
Murphy, J. A.
Naselsky, P.
Nati, F.
Natoli, P.
Norgaard-Nielsen, H. U.
Oppermann, N.
Orlando, E.
Pagano, L.
Pajot, F.
Paladini, R.
Paoletti, D.
Pasian, F.
Perotto, L.
Pettorino, V.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Reinecke, M.
Remazeilles, M.
Renault, C.
Renzi, A.
Ristorcelli, I.
Rocha, G.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Rusholme, B.
Sandri, M.
Santos, D.
Savelainen, M.
Scott, D.
Spencer, L. D.
Stolyarov, V.
Stompor, R.
Strong, A. W.
Sudiwala, R.
Sunyaev, R.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tucci, M.
Valenziano, L.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Wade, L. A.
Wandelt, B. D.
Wehus, I. K.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XLII. Large-scale Galactic magnetic fields
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE ISM: general; ISM: magnetic fields; polarization
ID PROBE WMAP OBSERVATIONS; COSMIC-RAY PROPAGATION; SYNCHROTRON EMISSION;
MILKY-WAY; POLARIZATION MEASUREMENTS; SPECTRAL INDEX; OUTER GALAXY;
MODELS; DUST; MAPS
AB Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.
C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA lrfu,Obser Paris,Sorbonne Paris Cite, F-75205 Paris 13, France.
[Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy.
[Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Cardoso, J. -F.; Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa.
[Leonardi, R.] Parque Cidade Corp, CGEE, BR-70308200 Brasilia, DF, Brazil.
[Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France.
[Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland.
[Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Spain.
Univ Oviedo, Dept Fis, Oviedo 33007, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys Astron, Vancouver, BC, Canada.
[Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA.
[Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland.
[Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy.
[Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark.
[Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28692, Spain.
[Tauber, J. A.] European Space Agcy, ESTEC, NL-2201 AZ Noordwijk, Netherlands.
[Matarrese, S.] Gran Sasso Sci Inst, INFN, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany.
[Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[de Zotti, G.] INAF, Osservatorio Astron Padova, I-35122 Padua, Italy.
[Polenta, G.] INAF, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osservatorio Astron Trieste, I-40127 Trieste, Italy.
[Benoit-Levy, A.; Burigana, C.; Butler, R. C.; Catalano, A.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, I-40129 Bologna, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, I-20133 Milan, Italy.
[Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, I-40127 Bologna, Italy.
[Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy.
[Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, I-00185 Rome, Italy.
[Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, I-34127 Trieste, Italy.
[Ponthieu, N.] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France.
[Ducout, A.; Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, London SW7 2AZ, England.
[Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Alves, M. I. R.; Aumont, J.; Benoit-Levy, A.; Boulanger, F.; Catalano, A.; Ghosh, T.; Hurier, G.; Kunz, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst dAstrophys Spatiale, F-91405 Orsay, France.
[Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst dAstrophys Paris, CNRS UMR 7095, F-75014 Paris, France.
[Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Rubino-Martin, J. A.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Spain.
[Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucleare, Sez57adova, I-35131 Padua, Italy.
[Benoit-Levy, A.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Davis, R. J.; Dickinson, C.; Leahy, J. P.; Remazeilles, M.] Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
[Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England.
[Stolyarov, V.] Kazan Fed Univ, Kazan 420008, Russia.
[Couchot, F.; Mangilli, A.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France.
[Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observatoire Paris, F-75014 Paris, France.
[Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA Saclay,CEA DSM CNRS, F-91191 Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS UMR 5141, Labe Traitement & Commun Informat, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France.
[Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France.
[Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, F-91405 Orsay, France.
[Van Tent, F.] CNRS, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Strong, A. W.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland.
[Christensen, P. R.] Niels Bohr Inst, Copenhagen, Denmark.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, S-10691 Stockholm, Sweden.
[Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, I-34136 Trieste, Italy.
[Terenzi, L.] Univ eCampus, SMARTEST Res Ctr, I-22060 Novedrate CO, Italy.
[Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Parade, Cardiff CF24 3AA, Wales.
[Bouchet, F. R.] Inst dAstrophys Paris, Sorbonne Univ UPMC, UMR 7095, F-75014 Paris, France.
[Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai 369167, Russia.
[Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England.
[Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden.
[Benabed, K.; Benoit-Levy, A.; Elsner, F.; Prunet, S.; Wandelt, B. D.] UPMC, UMR 7095, Univ Paris 06, F-75014 Paris, France.
[Alves, M. I. R.; Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Catalano, A.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Dolag, K.] Ludwig Maximilian Univ Munich, Univ Observ, D-81679 Munich, Germany.
[Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Granada 18071, Spain.
[Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain.
[Orlando, E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, W W Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA.
[Orlando, E.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Jaffe, TR (reprint author), CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
EM tjaffe@irap.omp.eu
RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014;
bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014;
Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016;
OI Lilje, Per/0000-0003-4324-7794; Pierpaoli, Elena/0000-0002-7957-8993;
Juvela, Mika/0000-0002-5809-4834; Stolyarov,
Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272;
bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo,
Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417;
Colombo, Loris/0000-0003-4572-7732; Valiviita,
Jussi/0000-0001-6225-3693; Toffolatti, Luigi/0000-0003-2645-7386;
Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa,
Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF
(Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada);
DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland);
FCT/MCTES (Portugal); ERC; PRACE (EU)
FX The Planck Collaboration acknowledges the support of: ESA; CNES, and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF,
and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the
results in this paper have been derived using the HEALPix package. We
acknowledge the use of the Legacy Archive for Microwave Background Data
Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive
Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics
Science Division at the NASA Goddard Space Flight Center.
NR 56
TC 0
Z9 0
U1 2
U2 2
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A103
DI 10.1051/0004-6361/201528033
PG 28
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900022
ER
PT J
AU Ade, PAR
Aghanim, N
Ashdown, M
Aumont, J
Baccigalupi, C
Banday, AJ
Barreiro, RB
Bartolo, N
Basak, S
Battaner, E
Benabed, K
Benoit-Levy, A
Bernard, JP
Bersanelli, M
Bielewicz, P
Bock, JJ
Bonaldi, A
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Boulanger, F
Burigana, C
Butler, RC
Calabrese, E
Cardoso, JF
Catalano, A
Chiang, HC
Christensen, PR
Clements, DL
Colombi, S
Colombo, LPL
Combet, C
Crill, BP
Curto, A
Cuttaia, F
Danese, L
Davis, RJ
de Bernardis, P
de Zotti, G
Delabrouille, J
Dickinson, C
Diego, JM
Dore, O
Ducout, A
Dupac, X
Elsner, F
Ensslin, TA
Eriksen, HK
Finelli, F
Forni, O
Frailis, M
Fraisse, AA
Franceschi, E
Galeotta, S
Galli, S
Ganga, K
Ghosh, T
Giard, M
Giraud-Heraud, Y
Gjerlow, E
Gonzalez-Nuevo, J
Gorski, KM
Gruppuso, A
Gudmundsson, JE
Harrison, DL
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hornstrup, A
Hovest, W
Hurier, G
Jaffe, AH
Jones, WC
Keihanen, E
Keskitalo, R
Kisner, TS
Knoche, J
Knox, L
Kunz, M
Kurki-Suonio, H
Lagache, G
Lahteenmaki, A
Lamarre, JM
Lasenby, A
Lattanzi, M
Leonardi, R
Levrier, F
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Lubin, PM
Macias-Perez, JF
Maffei, B
Maggie, G
Maino, D
Mandolesi, N
Mangilli, A
Maris, M
Martin, PG
Martinez-Gonzalez, E
Masi, S
Matarrese, S
Meinhold, PR
Melchiorri, A
Mennella, A
Migliaccio, M
Mitra, S
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Mortlock, D
Moss, A
Munshi, D
Murphy, JA
Naselsky, P
Nati, F
Natoli, P
Netterfield, CB
Norgaard-Nielsen, HU
Novikov, D
Novikov, I
Pagano, L
Pajot, F
Paoletti, D
Pasian, F
Patanchon, G
Perdereau, O
Perotto, L
Pettorino, V
Piacentini, F
Piat, M
Pierpaoli, E
Pointecouteau, E
Polenta, G
Pratt, GW
Rachen, JP
Reinecke, M
Remazeilles, M
Renault, C
Renzi, A
Ristorcelli, I
Rocha, G
Rosset, C
Rossetti, M
Roudier, G
Rubino-Martin, JA
Rusholme, B
Sandri, M
Santos, D
Savelainen, M
Savini, G
Scott, D
Spencer, LD
Stolyarov, V
Stompor, R
Sudiwala, R
Sunyaev, R
Sutton, D
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Tucci, M
Tuovinen, J
Valenziano, L
Valiviita, J
Van Tent, B
Vielva, P
Villa, F
Wade, LA
Wandelt, BD
Wehus, IK
Yvon, D
Zacchei, A
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Battaner, E.
Benabed, K.
Benoit-Levy, A.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bock, J. J.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Boulanger, F.
Burigana, C.
Butler, R. C.
Calabrese, E.
Cardoso, J. -F.
Catalano, A.
Chiang, H. C.
Christensen, P. R.
Clements, D. L.
Colombi, S.
Colombo, L. P. L.
Combet, C.
Crill, B. P.
Curto, A.
Cuttaia, F.
Danese, L.
Davis, R. J.
de Bernardis, P.
de Zotti, G.
Delabrouille, J.
Dickinson, C.
Diego, J. M.
Dore, O.
Ducout, A.
Dupac, X.
Elsner, F.
Ensslin, T. A.
Eriksen, H. K.
Finelli, F.
Forni, O.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Galeotta, S.
Galli, S.
Ganga, K.
Ghosh, T.
Giard, M.
Giraud-Heraud, Y.
Gjerlow, E.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gruppuso, A.
Gudmundsson, J. E.
Harrison, D. L.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hornstrup, A.
Hovest, W.
Hurier, G.
Jaffe, A. H.
Jones, W. C.
Keihanen, E.
Keskitalo, R.
Kisner, T. S.
Knoche, J.
Knox, L.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lahteenmaki, A.
Lamarre, J. -M.
Lasenby, A.
Lattanzi, M.
Leonardi, R.
Levrier, F.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Lubin, P. M.
Macias-Perez, J. F.
Maffei, B.
Maggie, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Masi, S.
Matarrese, S.
Meinhold, P. R.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Mitra, S.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Mortlock, D.
Moss, A.
Munshi, D.
Murphy, J. A.
Naselsky, P.
Nati, F.
Natoli, P.
Netterfield, C. B.
Norgaard-Nielsen, H. U.
Novikov, D.
Novikov, I.
Pagano, L.
Pajot, F.
Paoletti, D.
Pasian, F.
Patanchon, G.
Perdereau, O.
Perotto, L.
Pettorino, V.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Pointecouteau, E.
Polenta, G.
Pratt, G. W.
Rachen, J. P.
Reinecke, M.
Remazeilles, M.
Renault, C.
Renzi, A.
Ristorcelli, I.
Rocha, G.
Rosset, C.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Rusholme, B.
Sandri, M.
Santos, D.
Savelainen, M.
Savini, G.
Scott, D.
Spencer, L. D.
Stolyarov, V.
Stompor, R.
Sudiwala, R.
Sunyaev, R.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tucci, M.
Tuovinen, J.
Valenziano, L.
Valiviita, J.
Van Tent, B.
Vielva, P.
Villa, F.
Wade, L. A.
Wandelt, B. D.
Wehus, I. K.
Yvon, D.
Zacchei, A.
Zonca, A.
TI Planck intermediate results XLI. A map of lensing-induced B-modes
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmology: observations; cosmic background radiation; polarization;
gravitational lensing: weak
ID MICROWAVE BACKGROUND POLARIZATION; INFLATIONARY UNIVERSE SCENARIO;
GRAVITY-WAVES; CMB; RECONSTRUCTION; COSMOLOGY; PROSPECTS; FLATNESS;
HORIZON; SPHERE
AB The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced B-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12 sigma, which agrees with the theoretical expectation derived from the Planck best-fit Lambda cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 less than or similar to l less than or similar to 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.
C1 [Benoit-Levy, A.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEAlrfu,Observ Paris,Sorbonne Paris Cite, F-75205 Paris 13, France.
[Lahteenmaki, A.] Aalto Univ Metsahovi Radio Observ, Aalto 00076, Finland.
[Lahteenmaki, A.] Dept Radio Sci & Engn, Aalto 00076, Finland.
[Kunz, M.] African Inst Math Sci, ZA-00040 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy.
[Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, Cambridge CB3 OHE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa.
[Leonardi, R.] CGEE, SCS Qd 9, BR-70308200 Brasilia, DF, Brazil.
[Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland.
[Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91109 USA.
[Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain.
[Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France.
[Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland.
[Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain.
[Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Oviedo 33007, Spain.
[Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada.
[Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter, Arts & Sci, Los Angeles, CA 90089 USA.
[Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00560, Finland.
[Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 93106 USA.
[Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Bartolo, N.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy.
[Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy.
[Benoit-Levy, A.; de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00133 Rome, Italy.
[Benoit-Levy, A.; Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy.
[Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, DK-1165 Copenhagen, Denmark.
[Naselsky, P.] Univ Copenhagen, Discovery Ctr, Niels Bohr Inst, DK-1165 Copenhagen, Denmark.
[Dupac, X.; Lopez-Caniego, M.] Planck Sci Off, ESAC, European Space Agcy, Madrid 28691, Spain.
[Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands.
[Terenzi, L.] Univ e Campus, Fac Ingn, I-22060 Novedrate, CO, Italy.
[Matarrese, S.] INFN, Gran Sasso Sci Inst, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany.
[Benoit-Levy, A.; Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[de Zotti, G.] INAF, Osserv Astron Padova, I-35131 Padua, Italy.
[Polenta, G.] INAF, Osserv Astron Roma, I-00040 Monte Porzio Catone, Italy.
[Benoit-Levy, A.; Frailis, M.; Galeotta, S.; Maggie, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osserv Astron Trieste, Trieste, Italy.
[Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, I-40126 Bologna, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy.
[Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, I-40126 Bologna, Italy.
[Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Sez Roma 1, INFN, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, INFN, I-00133 Rome, Italy.
[Mitra, S.] Pune Univ Campus, IUCAA, Pune 411007, Maharashtra, India.
[Benoit-Levy, A.; Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, London SW7 2AZ, England.
[Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Aghanim, N.; Aumont, J.; Benoit-Levy, A.; Bonaldi, A.; Boulanger, F.; Catalano, A.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Remazeilles, M.] Univ Paris 11, CNRS UMR8617, Inst Astrophys Spatiale, F-91898 Orsay, France.
[Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Bouchet, F. R.; Cardoso, J. -F.; Catalano, A.; Colombi, S.; Ducout, A.; Elsner, F.; Moneti, A.; Sygnet, J. -F.; Wandelt, B. D.] CNRS UMR7095, Inst Astrophys Paris, F-75014 Paris, France.
[Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England.
[Eriksen, H. K.; Gjerlow, E.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38205, Spain.
[Barreiro, R. B.; Benoit-Levy, A.; Bonaldi, A.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Santander 39005, Spain.
[Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Benoit-Levy, A.; Bock, J. J.; Bonaldi, A.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Benoit-Levy, A.; Bonaldi, A.; Davis, R. J.; Dickinson, C.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Ashdown, M.; Benoit-Levy, A.; Bonaldi, A.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 OHA, England.
[Stolyarov, V.] Kazan Fed Univ, Kazan 420008, Russia.
[Benoit-Levy, A.; Mangilli, A.; Perdereau, O.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France.
[Benoit-Levy, A.; Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, Observ Paris, LERMA, F-75000 Paris, France.
[Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU Serv Astrophys,CEA DSM, Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France.
[Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France.
[Van Tent, B.] Univ Paris 11, CNRS, Lab Phys Theor, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, Moscow 117997, Russia.
[Benoit-Levy, A.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland.
[Christensen, P. R.; Novikov, I.] Niels Bohr Inst, DK-1165 Copenhagen, Denmark.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark.
[Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, S-10691 Stockholm, Sweden.
[Savini, G.] UCL, Optic Sci Lab, London, England.
[Baccigalupi, C.; Basak, S.; Benoit-Levy, A.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, I-34136 Trieste, Italy.
[Ade, P. A. R.; Benoit-Levy, A.; Bonaldi, A.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Bouchet, F. R.] Univ Paris 06, Sorbonne Univ, UMR7095, Inst Astrophys Paris, F-75014 Paris, France.
[Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian 369167, Russia.
[Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England.
[Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmopart Phys, S-10691 Stockholm, Sweden.
[Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Colombi, S.; Elsner, F.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France.
[Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18071, Spain.
[Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Perotto, L (reprint author), Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France.
EM laurence.perotto@lpsc.in2p3.fr
RI Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017;
Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014;
Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Stolyarov,
Vladislav/C-5656-2017
OI Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416;
Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita
Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876;
Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz,
Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732;
Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio,
Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; TERENZI,
LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF
(Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada);
DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland);
FCT/MCTES (Portugal); ERC (EU); PRACE (EU)
FX The Planck Collaboration acknowledges the support of: ESA; CNES, and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF,
and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck. This paper made use of the HEALPix
software package. We thank the anonymous referee for their helpful
comments and thoughtful suggestions that contributed to improve this
paper.
NR 72
TC 0
Z9 0
U1 1
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A102
DI 10.1051/0004-6361/201527932
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900017
ER
PT J
AU Ade, PAR
Aghanim, N
Arnaud, M
Ashdown, M
Aumont, J
Baccigalupi, C
Banday, AJ
Barreiro, RB
Bartolo, N
Battaner, E
Benabed, K
Benoit-Levy, A
Bernard, JP
Bersanelli, M
Bielewicz, P
Bonaldi, A
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Burigana, C
Butler, RC
Calabrese, E
Cardoso, JF
Catalano, A
Chamballu, A
Chiang, HC
Christensen, PR
Churazov, E
Clements, DL
Colombo, LPL
Combet, C
Comis, B
Couchot, F
Coulais, A
Crill, BP
Curto, A
Cuttaia, F
Danese, L
Davies, RD
Davis, RJ
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Dickinson, C
Diego, JM
Dolag, K
Dole, H
Donzelli, S
Dore, O
Douspis, M
Ducout, A
Dupac, X
Efstathiou, G
Elsner, F
Ensslin, TA
Eriksen, HK
Finelli, F
Forni, O
Frailis, M
Fraisse, AA
Franceschi, E
Galeotta, S
Galli, S
Gangal, K
Giard, M
Giraud-Heraud, Y
Gjerlow, E
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Gudmundsson, JE
Hansen, FK
Harrison, DL
Helou, G
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hivon, E
Hobson, M
Hornstrup, A
Hovest, W
Huffenberger, KM
Hurier, G
Jaffe, AH
Jaffe, TR
Jones, WC
Keihanen, E
Keskitalo, R
Kisner, TS
Kneissl, R
Knoche, J
Kunz, M
Kurki-Suonio, H
Lagache, G
Lamarre, JM
Lasenby, A
Lattanzi, M
Lawrence, CR
Leonardi, R
Levrier, F
Liguori, M
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Lubin, PM
Macias-Perez, JF
Maffei, B
Maggio, G
Maino, D
Mandolesi, N
Mangilli, A
Marcos-Caballero, A
Maris, M
Martin, PG
Martinez-Gonzalez, E
Masi, S
Matarrese, S
Mazzotta, P
Meinhold, PR
Melchiorri, A
Mennella, A
Migliaccio, M
Mitra, S
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Mortlock, D
Munshi, D
Murphy, JA
Naselsky, P
Nati, F
Natoli, P
Noviello, F
Novikov, D
Novikov, I
Oppermann, N
Oxborrow, CA
Pagano, L
Pajot, F
Paoletti, D
Pasian, F
Pearson, TJ
Perdereau, O
Perotto, L
Pettorino, V
Piacentini, F
Piat, M
Pierpaoli, E
Plaszczynski, S
Pointecouteau, E
Polenta, G
Ponthieu, N
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Reinecke, M
Remazeilles, M
Renault, C
Renzi, A
Ristorcelli, I
Rocha, G
Rosset, C
Rossetti, M
Roudier, G
Rubino-Martin, JA
Rusholme, B
Sandri, M
Santos, D
Savelainen, M
Savini, G
Schaefer, BM
Scott, D
Soler, JD
Stolyarov, V
Stompor, R
Sudiwala, R
Sunyaev, R
Sutton, D
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Tucci, M
Umana, G
Valenziano, L
Valiviita, J
Van Tent, B
Vielva, P
Villa, F
Wade, LA
Wandelt, BD
Wehus, IK
Weller, J
Yvon, D
Zacchei, A
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Arnaud, M.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Battaner, E.
Benabed, K.
Benoit-Levy, A.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burigana, C.
Butler, R. C.
Calabrese, E.
Cardoso, J. -F.
Catalano, A.
Chamballu, A.
Chiang, H. C.
Christensen, P. R.
Churazov, E.
Clements, D. L.
Colombo, L. P. L.
Combet, C.
Comis, B.
Couchot, F.
Coulais, A.
Crill, B. P.
Curto, A.
Cuttaia, F.
Danese, L.
Davies, R. D.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Dickinson, C.
Diego, J. M.
Dolag, K.
Dole, H.
Donzelli, S.
Dore, O.
Douspis, M.
Ducout, A.
Dupac, X.
Efstathiou, G.
Elsner, F.
Ensslin, T. A.
Eriksen, H. K.
Finelli, F.
Forni, O.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Galeotta, S.
Galli, S.
Gangal, K.
Giard, M.
Giraud-Heraud, Y.
Gjerlow, E.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Gudmundsson, J. E.
Hansen, F. K.
Harrison, D. L.
Helou, G.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hivon, E.
Hobson, M.
Hornstrup, A.
Hovest, W.
Huffenberger, K. M.
Hurier, G.
Jaffe, A. H.
Jaffe, T. R.
Jones, W. C.
Keihanen, E.
Keskitalo, R.
Kisner, T. S.
Kneissl, R.
Knoche, J.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J. -M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Leonardi, R.
Levrier, F.
Liguori, M.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Lubin, P. M.
Macias-Perez, J. F.
Maffei, B.
Maggio, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Marcos-Caballero, A.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Masi, S.
Matarrese, S.
Mazzotta, P.
Meinhold, P. R.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Mitra, S.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Mortlock, D.
Munshi, D.
Murphy, J. A.
Naselsky, P.
Nati, F.
Natoli, P.
Noviello, F.
Novikov, D.
Novikov, I.
Oppermann, N.
Oxborrow, C. A.
Pagano, L.
Pajot, F.
Paoletti, D.
Pasian, F.
Pearson, T. J.
Perdereau, O.
Perotto, L.
Pettorino, V.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Reinecke, M.
Remazeilles, M.
Renault, C.
Renzi, A.
Ristorcelli, I.
Rocha, G.
Rosset, C.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Rusholme, B.
Sandri, M.
Santos, D.
Savelainen, M.
Savini, G.
Schaefer, B. M.
Scott, D.
Soler, J. D.
Stolyarov, V.
Stompor, R.
Sudiwala, R.
Sunyaev, R.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tucci, M.
Umana, G.
Valenziano, L.
Valiviita, J.
Van Tent, B.
Vielva, P.
Villa, F.
Wade, L. A.
Wandelt, B. D.
Wehus, I. K.
Weller, J.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XL. The Sunyaev-Zeldovich signal from the
Virgo cluster
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE ISM: general; galaxies: clusters: individual: Virgo; galaxies: clusters:
intracluster medium; cosmic background radiation; large-scale structure
of Universe
ID HUBBLE-SPACE-TELESCOPE; HOT INTERGALACTIC MEDIUM; CENTIMETER LINE
WIDTHS; X-RAY; GALAXY CLUSTERS; VIRIAL RADIUS; 3-DIMENSIONAL STRUCTURE;
GAS; DISTANCE; TEMPERATURE
AB The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Planck's wide angular scale and frequency coverage, together with its high sensitivity, enable a detailed study of this big object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure that correlates well with the morphology observed from X-rays, but extends beyond the observed X-ray signal. We find good agreement between the SZ signal (or Compton parameter, y(c)) observed by Planck and the expected signal inferred from X-ray observations and simple analytical models. Owing to its proximity to us, the gas beyond the virial radius in Virgo can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. We study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo, out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii, while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusive warm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions. Finally, based on the combination of the same SZ and X-ray data, we constrain the total amount of gas in Virgo. Under the hypothesis that the abundance of baryons in Virgo is representative of the cosmic average, we also infer a distance for Virgo of approximately 18 Mpc, in good agreement with previous estimates.
C1 [Cardoso, J. -F.; Delabrouille, J.; Gangal, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
[Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy.
[Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, J J Thomson Ave, Cambridge CB3 OHE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
[Kneissl, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107, Santiago 7630355, Chile.
[Leonardi, R.] Parque Cidade Corp, CGEE, SCS Qd 9,Lote C,Torre C, 4, BR-70308200 Brasilia, DF, Brazil.
[Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA.
[Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France.
[Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland.
[Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Spain.
[Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys Astron, 6224 Agr Rd, Vancouver, BC, Canada.
[Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA.
[Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA.
[Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland.
[Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Studi Padova, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy.
[Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, P le A Moro 2, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy.
[Gregorio, A.] Univ Trieste, Dipartimento Fis, Via Valerio 2, I-34127 Trieste, Italy.
[Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Scientifica 1, I-00133 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientifica, I-00133 Rome, Italy.
Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
[Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107, Santiago 19001, Chile.
[Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain.
[Tauber, J. A.] European Space Agcy, ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
[Terenzi, L.] Univ Studi Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate CO, Italy.
[Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland.
[Umana, G.] INAF Osservatorio Astrofisico Catania, Via S Sofia 78, Catania, Italy.
[de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo dell Osservatorio 5, I-35122 Padua, Italy.
[Polenta, G.] INAF Osservatorio Astronomico Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astronomico Trieste, Via G B Tiepolo 11, I-40127 Trieste, Italy.
[Benoit-Levy, A.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy.
[Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via Bassini 15, I-20133 Milan, Italy.
[Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy.
[Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Scientifica 1, I-00185 Rome, Italy.
[Ponthieu, N.] INFN, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy.
[Ponthieu, N.] Univ Grenoble Alpes, IPAG, Inst Planetol & dAstrophys Grenoble, CNRS,IPAG, F-38000 Grenoble, France.
[Mitra, S.] Pune Univ Campus, IUCAA, Post Bag 4, Pune 411007, Maharashtra, India.
[Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England.
[Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.] Univ Paris Sud 11, Inst dAstrophys Spatiale, CNRS UMR 8617, Batiment 121, F-91405 Orsay, France.
[Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst dAstrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France.
[Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 OHA, England.
[Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna 38205, Spain.
[Barreiro, R. B.; Benoit-Levy, A.; Bonaldi, A.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Marcos-Caballero, A.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda los Castros S-N, Santander 39005, Spain.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.
[Benoit-Levy, A.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA.
[Benoit-Levy, A.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
[Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
[Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia.
[Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France.
[Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observatoire Paris, 61 Ave IObser, Paris, France.
[Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv dAstrophys, CEA DSM CNRS, Bat 709, F-91191 Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS UMR 5141, Lab Traitement & Commun IInformat, 46 Rue Barrault, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France.
[Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France.
[Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France.
[Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia.
[Churazov, E.; Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland.
[Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark.
Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark.
[Savini, G.] UCL, Optic Sci Lab, Gower St, London, England.
[Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy.
[Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales.
[Bouchet, F. R.] UPMC, Inst dAstrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France.
[Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai-Cherkessian 369167, Russia.
[Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England.
[Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden.
[Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France.
[Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany.
[Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Dolag, K.; Weller, J.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany.
[Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain.
[Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain.
[Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland.
RP Diego, JM (reprint author), Univ Cantabria, CSIC, Inst Fis Cantabria, Avda los Castros S-N, Santander 39005, Spain.
EM jdiego@ifca.unican.es
RI Churazov, Eugene/A-7783-2013; Stolyarov, Vladislav/C-5656-2017;
Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016;
bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014;
Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016;
OI Villa, Fabrizio/0000-0003-1798-861X; Hivon, Eric/0000-0003-1880-2733;
TERENZI, LUCA/0000-0001-9915-6379; Stolyarov,
Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272;
Mazzotta, Pasquale/0000-0002-5411-1748; bonavera,
laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822;
Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732;
Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio,
Hannu/0000-0002-4618-3063; Lilje, Per/0000-0003-4324-7794; Savini,
Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF
(Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada);
DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland);
FCT/MCTES (Portugal); ERC (EU); PRACE (EU)
FX The Planck Collaboration acknowledges the support of: ESA; CNES, and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF,
and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the
results presented in this work are based on observations obtained with
XMM-Newton an ESA science mission with instruments and contributions
directly funded by ESA Member States and NASA5.
NR 73
TC 0
Z9 0
U1 1
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A101
DI 10.1051/0004-6361/201527743
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900009
ER
PT J
AU Ade, PAR
Aghanim, N
Arnaud, M
Aumont, J
Baccigalupi, C
Banday, AJ
Barreiro, RB
Bartolo, N
Battaner, E
Benabed, K
Benoit-Levy, A
Bernard, JP
Bersanelli, M
Bielewicz, P
Bonaldi, A
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Boulanger, F
Burigana, C
Butler, RC
Calabrese, E
Catalano, A
Chiang, HC
Christensen, PR
Clements, DL
Colombo, LPL
Couchot, F
Coulais, A
Crill, BP
Curto, A
Cuttaia, F
Danese, L
Davies, RD
Davis, RJ
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Dickinson, C
Diego, JM
Dole, H
Dore, O
Douspis, M
Ducout, A
Dupac, X
Elsner, F
Ensslin, TA
Eriksen, HK
Falgarone, E
Finelli, F
Flores-Cacho, I
Frailis, M
Fraisse, AA
Franceschi, E
Galeotta, S
Galli, S
Ganga, K
Giard, M
Giraud-Heraud, Y
Gjerlow, E
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Gudmundsson, JE
Hansen, FK
Harrison, DL
Helou, G
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hivon, E
Hobson, M
Hornstrup, A
Hovest, W
Enberger, KMHF
Hurier, G
Jaffe, AH
Jaffe, TR
Keihanen, E
Keskitalo, R
Kisner, TS
Kneissl, R
Knoche, J
Kunz, M
Kurki-Suonio, H
Lagache, G
Lamarre, JM
Lasenby, A
Lattanzi, M
Lawrence, CR
Leonardi, R
Levrier, F
Liguori, M
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Lubin, PM
Macias-Perez, JF
Maffei, B
Maggio, G
Maino, D
Mandolesi, N
Mangilli, A
Maris, M
Martin, PG
Martinez-Gonzalez, E
Masi, S
Matarrese, S
Melchiorri, A
Mennella, A
Migliaccio, M
Mitra, S
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Mortlock, D
Munshi, D
Murphy, JA
Nati, F
Natoli, P
Nesvadba, NPH
Noviello, F
Novikov, D
Novikov, I
Oxborrow, CA
Pagano, L
Pajot, F
Paoletti, D
Partridge, B
Pasian, F
Pearson, TJ
Perdereau, O
Perotto, L
Pettorino, V
Piacentini, F
Piat, M
Plaszczynski, S
Pointecouteau, E
Polenta, G
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Reinecke, M
Remazeilles, M
Renault, C
Renzi, A
Ristorcelli, I
Rocha, G
Rosset, C
Rossetti, M
Roudier, G
Rubino-Martin, JA
Rusholme, B
Sandri, M
Santos, D
Savelainen, M
Savini, G
Scott, D
Spencer, LD
Stolyarov, V
Stompor, R
Sudiwala, R
Sunyaev, R
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Tucci, M
Turler, M
Umana, G
Valenziano, L
Valiviita, J
Van Tent, F
Vielva, P
Villa, F
Wade, LA
Wandelt, BD
Wehus, IK
Welikala, N
Yvon, D
Zacchei, A
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Arnaud, M.
Aumont, J.
Baccigalupi, C.
Banday, A. J.
Barreiro, R. B. -
Bartolo, N.
Battaner, E.
Benabed, K.
Benoit-Levy, A.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Boulanger, F.
Burigana, C.
Butler, R. C.
Calabrese, E.
Catalano, A.
Chiang, H. C.
Christensen, P. R.
Clements, D. L.
Colombo, L. P. L.
Couchot, F.
Coulais, A.
Crill, B. P.
Curto, A.
Cuttaia, F.
Danese, L.
Davies, R. D.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Dickinson, C.
Diego, J. M.
Dole, H.
Dore, O.
Douspis, M.
Ducout, A.
Dupac, X.
Elsner, F.
Ensslin, T. A.
Eriksen, H. K.
Falgarone, E.
Finelli, F.
Flores-Cacho, I.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Galeotta, S.
Galli, S.
Ganga, K.
Giard, M.
Giraud-Heraud, Y.
Gjerlow, E.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Gudmundsson, J. E.
Hansen, F. K.
Harrison, D. L.
Helou, G.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hivon, E.
Hobson, M.
Hornstrup, A.
Hovest, W.
Huffenberger, K. M.
Hurier, G.
Jaffe, A. H.
Jaffe, T. R.
Keihanen, E.
Keskitalo, R.
Kisner, T. S.
Kneissl, R.
Knoche, J.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J. -M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Leonardi, R.
Levrier, F.
Liguori, M.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Lubin, P. M.
Macias-Perez, J. F.
Maffei, B.
Maggio, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Masi, S.
Matarrese, S.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Mitra, S.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Mortlock, D.
Munshi, D.
Murphy, J. A.
Nati, F.
Natoli, P.
Nesvadba, N. P. H.
Noviello, F.
Novikov, D.
Novikov, I.
Oxborrow, C. A.
Pagano, L.
Pajot, F.
Paoletti, D.
Partridge, B.
Pasian, F.
Pearson, T. J.
Perdereau, O.
Perotto, L.
Pettorino, V.
Piacentini, F.
Piat, M.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Reinecke, M.
Remazeilles, M.
Renault, C.
Renzi, A.
Ristorcelli, I.
Rocha, G.
Rosset, C.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Rusholme, B.
Sandri, M.
Santos, D.
Savelainen, M.
Savini, G.
Scott, D.
Spencer, L. D.
Stolyarov, V.
Stompor, R.
Sudiwala, R.
Sunyaev, R.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tucci, M.
Tuerler, M.
Umana, G.
Valenziano, L.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Wade, L. A.
Wandelt, B. D.
Wehus, I. K.
Welikala, N.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XXXIX. The Planck list of high-redshift
source candidates
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE catalogs; submillimeter: galaxies; galaxies: high-redshift; galaxies:
clusters: general; large-scale structure of Universe
ID SOUTH-POLE TELESCOPE; STAR-FORMING GALAXIES; FAR-INFRARED PROPERTIES;
SIMILAR-TO 2; GRAVITATIONALLY LENSED GALAXIES; LY-ALPHA EMITTERS; MU-M
OBSERVATIONS; DEEP FIELD-SOUTH; GREATER-THAN 1; RADIO GALAXY
AB The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of T-xgal = 35K and a spectral index of beta(xgal) = 1.5. Exhibiting extremely high luminosities, larger than 10(14) L-circle dot, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z.
C1 [Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS,Obser Paris, IN2P3,CEA,Irfu,Sorbonne Paris Cite, F-75205 Paris 13, France.
[Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy.
[Lagache, G.] Univ Aix Marseille, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa.
[Kneissl, R.] ALMA Santiago Cent Off, Santiago 7630355, Chile.
[Leonardi, R.] CGEE, BR-70308200 Brasilia, DF, Brazil.
[Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Flores-Cacho, I.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Brazil.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Yvon, D.] CEA, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France.
[Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327,2800 Kgs, Lyngby, Denmark.
[Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E. Ansermet, CH-1211 Geneva, Switzerland.
[Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain.
[Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z4, Canada.
[Colombo, L. P. L.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA.
[Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England.
[Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA.
[Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FI-00100 Helsinki, Finland.
[Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ USA.
[Lubin, P. M.; Zonca, A.] Univ Calif, Dept Phys, Santa Barbara, CA USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy.
[Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, P Moro 2, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20122 Milan, Italy.
Univ Trieste, Dipartimento Fis, Via Valerio 2, I-34128 Trieste, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Dipartimento Mate, Via Ric Scientifica, I-00173 Rome, Italy.
[Christensen, P. R.] Discovery Ctr, Niels Bohr Inst, Blegdamsvej 17, Copenhagen 2100, Denmark.
[Gregorio, A.; Kneissl, R.] ESO Vitacura, 3107 Alonso Cordova, Santiago 19001, Chile.
[Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
[Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA.
[Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00100, Finland.
[Umana, G.] INAF, Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy.
[de Zotti, G.] INAF, Osservatorio Astronom Padova, Vicolo Osservatorio 5, Padua, Italy.
[Polenta, G.] INAF, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via G B Tiepolo 11, I-34131 Trieste, Italy.
[Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E. Bassini 15, I-20133 Milan, Italy.
[Burigana, C.; Finelli, F.; Gruppuso, A.; Paoletti, D.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Lattanzi, M.; Natoli, P.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy.
[Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, P Aldo Moro 2, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, INFN, Via Ric Scientifica 1, I-00173 Rome, Italy.
[Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy.
[Tuerler, M.] Univ Geneva, Dept Astron, ISDC, Ch dEcogia 16, CH-1290 Versoix, Switzerland.
[Mitra, S.] Univ Poona, Pune 411007, Maharashtra, India.
[Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England.
[Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Dole, H.] Inst Univ France, 103 bd St Michel, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Boulanger, F.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Nesvadba, N. P. H.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst dAstrophys Spatiale, F-91405 Orsay, France.
[Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS UMR 7095, Inst dAstrophys Paris, 98bis boule vard Arago, F-75014 Paris, France.
[Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Crill, B. P.; Rubino-Martin, J. A.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Spain.
[Barreiro, R. B. -; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Sez Padova, Ist Nazl Fis Nucl, Via Marzolo 8, I-35131 Padua, Italy.
[Benoit-Levy, A.; Colombo, L. P. L.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA.
[Benoit-Levy, A.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England.
[Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
[Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia.
[Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, F-91400 Orsay, France.
[Benoit-Levy, A.; Catalano, A.; Coulais, A.; Dupac, X.; Giraud-Heraud, Y.; Hornstrup, A.; Hovest, W.; Kisner, T. S.; Pettorino, V.; Stolyarov, V.] CNRS, LERMA, Observatoire Paris, 61 Ave IObservatoire, F-75014 Paris, France.
[Arnaud, M.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, IRFU, F-91191 Gif Sur Yvette, France.
[Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS, Lab Phys Subatom & Cosmol, IN2P3, 53 rue Martyrs, F-38026 Grenoble, France.
[Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, F-91405 Orsay, France.
[Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia.
[Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, Garching, Germany.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland.
[Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
[Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.
[Savini, G.] UCL, Optic Sci Lab, London WC1E 6BT, England.
[Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy.
[Terenzi, L.] Univ Studi Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate CO, Italy.
[Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Bouchet, F. R.] Inst dAstrophys Paris, Sorbonne Univ UPMC, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France.
[Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str, Moscow 117997, Russia.
[Borrill, J.] Univ Calif, Space Sci Lab, Berkeley, CA 92521 USA.
[Calabrese, E.; Welikala, N.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England.
[Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden.
[Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France.
[Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor Cosmos, Granada 18010, Spain.
[Battaner, E.] Univ Granada, Inst Carlos Fis Teor Computac, Granada 18010, Spain.
[Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland.
RI Colombo, Loris/J-2415-2016; Stolyarov, Vladislav/C-5656-2017; Barreiro,
Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo,
Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014;
OI Colombo, Loris/0000-0003-4572-7732; Valiviita,
Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063;
Hivon, Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379;
Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita
Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876;
Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz,
Diego/0000-0003-4540-1417; Lilje, Per/0000-0003-4324-7794; Savini,
Giorgio/0000-0003-4449-9416
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MINECO, J.A. (Spain); RES (Spain); Tekes (Finland); AoF
(Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada);
DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland);
FCT/MCTES (Portugal); ERC (EU); PRACE (EU)
FX The Planck Collaboration acknowledges the support of: ESA; CNES and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes,
AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planck-collaboration.
NR 137
TC 0
Z9 0
U1 1
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A100
DI 10.1051/0004-6361/201527206
PG 28
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900007
ER
PT J
AU Ade, PAR
Aghanim, N
Aller, HD
Aller, MF
Arnaud, M
Aumont, J
Baccigalupi, C
Banday, AJ
Barreiro, RB
Bartolo, N
Battaner, E
Benabed, K
Benoit-Levy, A
Bernard, JP
Bersanelli, M
Bielewicz, P
Bonaldi, A
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Burigana, C
Calabrese, E
Catalano, A
Chiang, HC
Christensen, PR
Clements, DL
Colomb, LPL
Couchot, F
Crill, BP
Curto, A
Cuttaia, F
Danese, L
Davies, RD
Davis, RJ
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Dickinson, C
Diego, JM
Dole, H
Donzelli, S
Dore, O
Ducout, A
Dupac, X
Efstathiou, G
Elsner, F
Eriksen, HK
Finelli, F
Forni, O
Frailis, M
Fraisse, AA
Franceschi, E
Galeotta, S
Galli, S
Ganga, K
Giard, M
Giraud-Heraud, Y
Gjerlow, E
Gonzalez-Nuevo, J
Gorski, KM
Gruppuso, A
Gurwel, MA
Hansen, FK
Harrison, DL
Henrot-Versille, S
Hernandez-Monteagudo, C
Hildebrandt, SR
Hobson, M
Hornstrup, A
Hovatta, T
Hovest, W
Huffenberger, KM
Hurier, G
Jaffe, AH
Jaffe, TR
Jarvela, E
Keihanen, E
Keskitalo, R
Kisner, TS
Kneiss, R
Knoche, J
Kunz, M
Kurki-Suonio, H
Lahteenmaki, A
Lamarre, JM
Lasenby, A
Lattanzi, M
Lawrence, CR
Leonardi, R
Levrier, F
Liguori, M
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Lubin, PM
Macias-Perez, JF
Maffei, B
Maino, D
Mandolesi, N
Maris, M
Martini, PG
Martinez-Gonzalez, E
Masi, S
Matarrese, S
Max-Moerbeck, W
Meinhold, PR
Melchiorri, A
Mennella, A
Migliaccio, M
Millgaliev, M
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Mortlock, D
Munshi, D
Murphy, JA
Nati, F
Natoli, P
Nieppola, E
Noviello, F
Novikov, D
Novikov, I
Pagano, L
Pajot, F
Paoletti, D
Partridge, B
Pasian, F
Pearson, TJ
Perdereau, O
Perotto, L
Pettorino, V
Piacentini, F
Piat, M
Pierpaoli, E
Plaszczynski, S
Pointecouteau, E
Polenta, G
Pratt, GW
Ramakrishnan, V
Rastorgueva-Foi, EA
Readhead, ACS
Reinecke, M
Remazeilles, M
Renault, C
Renzi, A
Richards, JL
Ristorcelli, I
Rocha, G
Rossetti, M
Roudier, G
Rubino-Martin, JA
Rusholme, B
Sandri, M
Savelainen, M
Savini, G
Scott, D
Sotnikova, Y
Stolyarov, V
Sunyaev, R
Sutton, D
Suur-Uski, AS
Sygnet, JF
Tammi, J
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tornikoski, M
Tristram, M
Tucci, M
Turler, M
Valenziano, L
Valiviita, J
Valtaoja, E
Van Tent, B
Vielva, P
Ville, F
Wade, LA
Wehrle, AE
Wehus, IK
Yvon, D
Zacchei, A
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Aller, H. D.
Aller, M. F.
Arnaud, M.
Aumont, J.
Baccigalupi, C.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Battaner, E.
Benabed, K.
Benoit-Levy, A.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burigana, C.
Calabrese, E.
Catalano, A.
Chiang, H. C.
Christensen, P. R.
Clements, D. L.
Colomb, L. P. L.
Couchot, F.
Crill, B. P.
Curto, A.
Cuttaia, F.
Danese, L.
Davies, R. D.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Dickinson, C.
Diego, J. M.
Dole, H.
Donzelli, S.
Dore, O.
Ducout, A.
Dupac, X.
Efstathiou, G.
Elsner, F.
Eriksen, H. K.
Finelli, F.
Forni, O.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Galeotta, S.
Galli, S.
Ganga, K.
Giard, M.
Giraud-Heraud, Y.
Gjerlow, E.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gruppuso, A.
Gurwel, M. A.
Hansen, F. K.
Harrison, D. L.
Henrot-Versille, S.
Hernandez-Monteagudo, C.
Hildebrandt, S. R.
Hobson, M.
Hornstrup, A.
Hovatta, T.
Hovest, W.
Huffenberger, K. M.
Hurier, G.
Jaffe, A. H.
Jaffe, T. R.
Jarvela, E.
Keihanen, E.
Keskitalo, R.
Kisner, T. S.
Kneiss, R.
Knoche, J.
Kunz, M.
Kurki-Suonio, H.
Lahteenmaki, A.
Lamarre, J. -M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Leonardi, R.
Levrier, F.
Liguori, M.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Lubin, P. M.
Macias-Perez, J. F.
Maffei, B.
Maino, D.
Mandolesi, N.
Maris, M.
Martini, P. G.
Martinez-Gonzalez, E.
Masi, S.
Matarrese, S.
Max-Moerbeck, W.
Meinhold, P. R.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Millgaliev, M.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Mortlock, D.
Munshi, D.
Murphy, J. A.
Nati, F.
Natoli, P.
Nieppola, E.
Noviello, F.
Novikov, D.
Novikov, I.
Pagano, L.
Pajot, F.
Paoletti, D.
Partridge, B.
Pasian, F.
Pearson, T. J.
Perdereau, O.
Perotto, L.
Pettorino, V.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Pratt, G. W.
Ramakrishnan, V.
Rastorgueva-Foi, E. A.
Readhead, A. C. S.
Reinecke, M.
Remazeilles, M.
Renault, C.
Renzi, A.
Richards, J. L.
Ristorcelli, I.
Rocha, G.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Rusholme, B.
Sandri, M.
Savelainen, M.
Savini, G.
Scott, D.
Sotnikova, Y.
Stolyarov, V.
Sunyaev, R.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tammi, J.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tornikoski, M.
Tristram, M.
Tucci, M.
Turler, M.
Valenziano, L.
Valiviita, J.
Valtaoja, E.
Van Tent, B.
Vielva, P.
Ville, F.
Wade, L. A.
Wehrle, A. E.
Wehus, I. K.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XLV. Radio spectra of northern extragalactic
radio sources
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE galaxies: active; galaxies: general; radio continuum: galaxies
ID LONG-TERM VARIABILITY; BL LACERTAE OBJECTS; GAMMA-RAY OUTBURST;
FLUX-DENSITY SCALE; QUASAR 3C 454.3; MULTIWAVELENGTH OBSERVATIONS; 2010
NOVEMBER; GASP-WEBT; BLAZAR; JET
AB Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.
C1 [Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, APC, CNRS IN2P3, CEA lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
[Jarvela, E.; Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland.
[Jarvela, E.; Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland.
[Hovatta, T.; Nieppola, E.; Ramakrishnan, V.; Tammi, J.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland.
[Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy.
[Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, 830 Dennison Bldg,500 Church St, Ann Arbor, MI 48109 USA.
[Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 OHE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, West Ville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
[Kneiss, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107, Santiago 7630355, Chile.
[Bond, J. R.; Martini, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Hovatta, T.; Max-Moerbeck, W.; Readhead, A. C. S.; Richards, J. L.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA.
[Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France.
[Hornstrup, A.; Linden-Vornle, M.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-12114 Geneva, Switzerland.
[Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Spain.
[Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain.
[Scott, D.] Univ British Columbia, Dept Phys Astron, 6224 Agr Rd, Vancouver, BC, Canada.
[Colomb, L. P. L.; Pierpaoli, E.] Univ Southern California, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA.
[Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA.
[Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland.
[Chiang, H. C.; Fraisse, A. A.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Richards, J. L.] Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA.
[Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy.
[Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, P Moro 2, I-00133 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientifica 1, I-00133 Rome, Italy.
[Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark.
[Kneiss, R.] ESO Vitacura, Alonso Cordova 3107, Santiago, Chile.
[Dupac, X.; Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain.
[Tauber, J. A.] European Space Agcy, ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
[Terenzi, L.] Univ Campus, Facolta Ingn, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, Italy.
[Nieppola, E.] Univ Turku, Finnish Ctr Astron ESO, FINCA, Vaisalantie 20, Piikkio 21500, Finland.
[Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Phys Theor, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Gurwel, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA.
[Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland.
[de Zotti, G.] INAF, Osservatorio Astronomico Padova, Vicolo dellOsservatorio 5, Padua, Italy.
[Polenta, G.] Ist Nazl Fis Nucl, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osservatorio Astron Trieste, Via G B Tiepolo 11, Trieste, Italy.
[Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Ville, F.] INAF, IASF Bologna, Via Gobetti 101, Bologna, Italy.
[Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via Bassini 15, Milan, Italy.
[Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy.
[Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Scientifica 1, I-00185 Rome, Italy.
[Turler, M.] Univ Geneva, Dept Astron, ISDC, Ch dEcogia 16, CH-1290 Versoix, Switzerland.
[Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England.
[Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Dole, H.] Inst Univ France, 103 bd St Michel, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Dole, H.; Hurier, G.; Kunz, M.; Miville-Deschenes, M. -A.; Pajot, F.; Remazeilles, M.] Univ Paris Sud 11, Inst Astrophys Spatiale, CNRS UMR8617, Batiment 121, F-91405 Orsay, France.
[Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Moneti, A.; Sygnet, J. -F.] CNRS, Inst Astrophys Paris, UMR7095, 98bis Blv Arago, F-75014 Paris, France.
[Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna, Spain.
[Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, Santander 39005, Spain.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Mar zolo 8, I-35131 Padua, Italy.
[Benoit-Levy, A.; Bonaldi, A.; Colomb, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA.
[Benoit-Levy, A.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
[Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
[Millgaliev, M.; Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia.
[Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France.
[Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75000 Paris, France.
[Arnaud, M.; Pratt, G. W.] Univ Paris Dide, CEA Saclay, CEA DSM CNRS, IRFU Serv Astrophys,Lab AIM, Bat 709, F-91191 Gif Sur Yvette, France.
[Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France.
[Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France.
[Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Astro Space Ctr, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia.
[Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany.
[Max-Moerbeck, W.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland.
[Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark.
[Savini, G.] UCL, Optic Sci Lab, Gower St, London, England.
[Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy.
[Rastorgueva-Foi, E. A.] Univ Tasmania, Sch Math & Phys, Private Bag 37, Hobart, Tas, Australia.
[Ade, P. A. R.; Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales.
[Bouchet, F. R.] Sorbonne Univ UPMC, Inst Astrophys Paris, UMR7095, 98bis Blvd Arago, F-75014 Paris, France.
[Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia.
[Wehrle, A. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Suite, CO 205 USA.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Millgaliev, M.; Sotnikova, Y.; Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai 369167, Russia.
[Calabrese, E.] Univ Oxford, Dept Astrophys, Keble Rd, Oxford OX1 3RH, England.
[Valtaoja, E.] Turku Univ, Dept Phys & Astron, Tuorla Observ, Vaisalantie 20, Piikkio 21500, Finland.
[Benabed, K.; Benoit-Levy, A.; Elsner, F.] UPMC, Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France.
[Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teorica & Cosmos, Granada 18071, Spain.
[Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain.
[Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland.
RP Lahteenmaki, A (reprint author), Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland.; Lahteenmaki, A (reprint author), Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA.
EM anne.lahteenmaki@aalto.fi
RI Lahteenmaki, Anne/L-5987-2013; Stolyarov, Vladislav/C-5656-2017;
Ramakrishnan, Venkatessh/C-8628-2017; Barreiro, Rita Belen/N-5442-2014;
bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014;
OI Stolyarov, Vladislav/0000-0001-8151-828X; Ramakrishnan,
Venkatessh/0000-0002-9248-086X; Barreiro, Rita
Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876;
Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Valiviita,
Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063;
Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379;
Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794;
Savini, Giorgio/0000-0003-4449-9416; Pierpaoli,
Elena/0000-0002-7957-8993
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF
(Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada);
DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland);
FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Academy of Finland [212656,
210338, 121148]; Smithsonian Institution; Academia Sinica; NASA
[NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; NSF; NASA;
University of Michigan; Russian Government Programme of Competitive
Growth of Kazan Federal University
FX The Planck Collaboration acknowledges the support of: ESA; CNES, and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes,
AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planck-collaboration. The Metsahovi
team acknowledges the support from the Academy of Finland to our
observing projects (Nos. 212656, 210338, 121148, and others). The
Submillimeter Array is a joint project between the Smithsonian
Astrophysical Observatory and the Academia Sinica Institute of Astronomy
and Astrophysics and is funded by the Smithsonian Institution and the
Academia Sinica. The OVRO 40-m monitoring programme is supported in part
by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and
AST-1109911. UMRAO has been supported by a series of grants from the NSF
and NASA, and by the University of Michigan. We also acknowledge support
through the Russian Government Programme of Competitive Growth of Kazan
Federal University.
NR 60
TC 0
Z9 0
U1 2
U2 2
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A106
DI 10.1051/0004-6361/201527780
PG 37
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900011
ER
PT J
AU Aghanim, N
Ashdown, M
Aumont, J
Baccigalupi, C
Ballardini, M
Banday, AJ
Barreiro, RB
Bartolo, N
Basak, S
Benabed, K
Bernard, JP
Bersanelli, M
Bielewicz, P
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Boulanger, F
Burigana, C
Calabrese, E
Cardoso, JF
Carron, J
Chiang, HC
Colombo, LPL
Comis, B
Couchot, F
Coulais, A
Crill, BP
Curto, A
Cuttaia, F
de Bernardis, P
de Zotti, G
Delabrouille, J
Di Valentino, E
Dickinson, C
Diego, JM
Dore, O
Douspis, M
Ducout, A
Dupac, X
Dusini, S
Elsner, F
Ensslin, TA
Eriksen, HK
Falgarone, E
Fantaye, Y
Finelli, F
Forastieri, F
Frailis, M
Fraisse, AA
Franceschi, E
Frolov, A
Galeotta, S
Galli, S
Ganga, K
Genova-Santos, RT
Gerbino, M
Ghosh, T
Giraud-Heraud, Y
Gonzalez-Nuevo, J
Gorski, KM
Gruppuso, A
Gudmundsson, JE
Hansen, FK
Helou, G
Henrot-Versille, S
Herranz, D
Hivon, E
Huang, Z
Jaffe, AH
Jones, WC
Keihanen, E
Keskitalo, R
Kiiveri, K
Kisner, TS
Krachmalnicoff, N
Kunz, M
Kurki-Suonio, H
Lamarre, JM
Langer, M
Lasenby, A
Lattanzi, M
Lawrence, CR
Le Jeune, M
Levrier, F
Lilje, PB
Lilley, M
Lindholm, V
Lopez-Caniego, M
Ma, YZ
Macias-Perez, JF
Maggio, G
Maino, D
Mandolesi, N
Mangilli, A
Maris, M
Martin, PG
Martinez-Gonzalez, E
Matarrese, S
Mauri, N
McEwen, JD
Melchiorri, A
Mennella, A
Migliaccio, M
Miville-Deschenes, MA
Molinari, D
Moneti, A
Montier, L
Morgante, G
Moss, A
Natoli, P
Oxborrow, CA
Pagano, L
Paoletti, D
Patanchon, G
Perdereau, O
Perotto, L
Pettorino, V
Piacentini, F
Plaszczynski, S
Polastri, L
Polenta, G
Puget, JL
Rachen, JP
Racine, B
Reinecke, M
Remazeilles, M
Renzi, A
Rocha, G
Rosset, C
Rossetti, M
Roudier, G
Rubino-Martin, JA
Ruiz-Granados, B
Salvati, L
Sandri, M
Savelainen, M
Scott, D
Sirignano, C
Sirri, G
Soler, JD
Spencer, LD
Suur-Uski, AS
Tauber, JA
Tavagnacco, D
Tenti, M
Toffolatti, L
Tomasi, M
Tristram, M
Trombetti, T
Valiviita, J
Van Tent, F
Vielva, P
Villa, F
Vittorio, N
Wandelt, BD
Wehus, IK
Zacchei, A
Zonca, A
AF Aghanim, N.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Ballardini, M.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Benabed, K.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Boulanger, F.
Burigana, C.
Calabrese, E.
Cardoso, J. -F.
Carron, J.
Chiang, H. C.
Colombo, L. P. L.
Comis, B.
Couchot, F.
Coulais, A.
Crill, B. P.
Curto, A.
Cuttaia, F.
de Bernardis, P.
de Zotti, G.
Delabrouille, J.
Di Valentino, E.
Dickinson, C.
Diego, J. M.
Dore, O.
Douspis, M.
Ducout, A.
Dupac, X.
Dusini, S.
Elsner, F.
Ensslin, T. A.
Eriksen, H. K.
Falgarone, E.
Fantaye, Y.
Finelli, F.
Forastieri, F.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Frolov, A.
Galeotta, S.
Galli, S.
Ganga, K.
Genova-Santos, R. T.
Gerbino, M.
Ghosh, T.
Giraud-Heraud, Y.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gruppuso, A.
Gudmundsson, J. E.
Hansen, F. K.
Helou, G.
Henrot-Versille, S.
Herranz, D.
Hivon, E.
Huang, Z.
Jaffe, A. H.
Jones, W. C.
Keihanen, E.
Keskitalo, R.
Kiiveri, K.
Kisner, T. S.
Krachmalnicoff, N.
Kunz, M.
Kurki-Suonio, H.
Lamarre, J. -M.
Langer, M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Le Jeune, M.
Levrier, F.
Lilje, P. B.
Lilley, M.
Lindholm, V.
Lopez-Caniego, M.
Ma, Y. -Z.
Macias-Perez, J. F.
Maggio, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Matarrese, S.
Mauri, N.
McEwen, J. D.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Miville-Deschenes, M. -A.
Molinari, D.
Moneti, A.
Montier, L.
Morgante, G.
Moss, A.
Natoli, P.
Oxborrow, C. A.
Pagano, L.
Paoletti, D.
Patanchon, G.
Perdereau, O.
Perotto, L.
Pettorino, V.
Piacentini, F.
Plaszczynski, S.
Polastri, L.
Polenta, G.
Puget, J. -L.
Rachen, J. P.
Racine, B.
Reinecke, M.
Remazeilles, M.
Renzi, A.
Rocha, G.
Rosset, C.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Ruiz-Granados, B.
Salvati, L.
Sandri, M.
Savelainen, M.
Scott, D.
Sirignano, C.
Sirri, G.
Soler, J. D.
Spencer, L. D.
Suur-Uski, A. -S.
Tauber, J. A.
Tavagnacco, D.
Tenti, M.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Trombetti, T.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Vittorio, N.
Wandelt, B. D.
Wehus, I. K.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XLVIII. Disentangling Galactic dust emission
and cosmic infrared background anisotropies
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmology: observations; methods: data analysis; ISM: general; dust,
extinction; infrared: diffuse background; large-scale structure of
Universe
ID INTERNAL LINEAR COMBINATION; COMPONENT SEPARATION; POWER SPECTRUM;
MILKY-WAY; MODEL; CMB; MAPS; GALAXIES; SPHERE
AB Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = +/- 20 degrees. We find that the dust temperature is T = (19.4 +/- 1.3) K and the dust spectral index is beta = 1.6 +/- 0.1 averaged over the whole sky, while T = (19.4 +/- 1.5) K and beta = 1.6 +/- 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes vertical bar b vertical bar > 20 degrees. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.
C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Racine, B.; Remazeilles, M.; Rosset, C.] Univ Paris Diderot, Sorbonne Paris Cite,CEA lrfu, APC,CNRS IN2P3, AstroParticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
[Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn SNC, I-00133 Rome, Italy.
[Ashdown, M.; Curto, A.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, West Ville Campus,Private Bag X54001, Durban 4000, South Africa.
[Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto M5S 3H8, ON, Canada.
[Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Montier, L.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland.
[Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain.
[Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S N, Oviedo 33007, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada.
[Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Carron, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FIN-00014 Helsinki, Finland.
[Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA.
[Bartolo, N.; Matarrese, S.; Sirignano, C.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy.
[Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, Alma Mater Studiorum,Via Berti Pichat 6-2, I-40127 Bologna, Italy.
[Burigana, C.; Forastieri, F.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
[de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, P Le A Moro 2, I-00185 Rome, Italy.
[Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy.
[Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy.
[Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy.
[Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy.
[Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S N,Urbanizac Villafranca, Madrid 28692, Spain.
[Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
[Matarrese, S.] INFN, Gran Sasso Sci Inst, Via F Crispi 7, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland.
[de Zotti, G.] INAF, Osservator Astron Padova, Vicolo Osservator 5, I-35122 Padua, Italy.
[Polenta, G.] INAF, Osservator Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Tavagnacco, D.; Zacchei, A.] INAF, Osservator Astron Trieste, Via G B Tiepolo 11, I-40127 Trieste, Italy.
[Ballardini, M.; Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via E Bassini 15, I-20133 Milan, Italy.
[Tenti, M.] INFN, CNAF, Via Berti Pichat 6-2, I-40127 Bologna, Italy.
[Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Sirri, G.] INFN, Sez Bologna, Via Berti Pichat 6-2, I-40127 Bologna, Italy.
[Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy.
[Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy.
[Ducout, A.; Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England.
[Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Ghosh, T.; Kunz, M.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Lilley, M.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France.
[Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S N, San Cristobal la Laguna 38205, Tenerife, Spain.
[Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S N, E-39005 Santander, Spain.
[Bartolo, N.; Dusini, S.; Matarrese, S.; Sirignano, C.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.
[Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA.
[Dickinson, C.; Ma, Y. -Z.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
[Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Ashdown, M.; Curto, A.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
[Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France.
[Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France.
[Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France.
[Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, CNRS 1N2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France.
[Van Tent, F.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France.
[Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany.
[McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland.
[Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstulls Backen 23, S-10691 Stockholm, Sweden.
[Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy.
[Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
[Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales.
[Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada.
[Bouchet, F. R.; Di Valentino, E.; Lilley, M.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, 98 bis Blvd Arago, F-75014 Paris, France.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England.
[Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, S-10691 Stockholm, Sweden.
[Benabed, K.; Elsner, F.; Hivon, E.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR 7095, 98 bis Blvd Arago, F-75014 Paris, France.
[Banday, A. J.; Bernard, J. -P.; Montier, L.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain.
[Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland.
RP Remazeilles, M (reprint author), Univ Paris Diderot, Sorbonne Paris Cite,CEA lrfu, APC,CNRS IN2P3, AstroParticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.; Remazeilles, M (reprint author), Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.; Remazeilles, M (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
EM mathieu.remazeilles@manchester.ac.uk
RI Colombo, Loris/J-2415-2016; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino,
Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri,
Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; Gonzalez-Nuevo,
Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014;
OI Colombo, Loris/0000-0003-4572-7732; Valiviita,
Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063;
Villa, Fabrizio/0000-0003-1798-861X; Huang, Zhiqi/0000-0002-1506-1063;
Lilje, Per/0000-0003-4324-7794; Gerbino, Martina/0000-0002-3538-1283;
Barreiro, Rita Belen/0000-0002-6139-4272; bonavera,
laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822;
Herranz, Diego/0000-0003-4540-1417; Ballardini,
Mario/0000-0003-4481-3559
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF
(Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada);
DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland);
FCT/MCTES (Portugal); ERC (EU); PRACE (EU); ERC [307209]
FX The Planck Collaboration acknowledges the support of: ESA; CNES, and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes,
AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the
results in this paper have been derived using the HEALPix package. The
research leading to these results has received funding from the ERC
Grant No. 307209.
NR 52
TC 0
Z9 0
U1 3
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A109
DI 10.1051/0004-6361/201629022
PG 26
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900075
ER
PT J
AU Aghanim, N
Ashdown, M
Aumont, J
Baccigalupi, C
Ballardini, M
Banday, AJ
Barreiro, RB
Bartolo, N
Basak, S
Benabed, K
Bernard, JP
Bersanelli, M
Bielewicz, P
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Burigana, C
Calabrese, E
Cardoso, JF
Carron, J
Chiang, HC
Colombo, LPL
Comis, B
Contreras, D
Couchot, F
Coulais, A
Crill, BP
Curto, A
Cuttaia, F
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Desert, FX
Di Valentino, E
Dickinson, C
Diego, JM
Dore, O
Ducout, A
Dupac, X
Dusini, S
Elsner, F
Ensslin, TA
Eriksen, HK
Fantaye, Y
Finelli, F
Forastieri, F
Frailis, M
Franceschi, E
Frolov, A
Galeotta, S
Galli, S
Ganga, K
Genova-Santos, RT
Gerbino, M
Giraud-Heraud, Y
Gonzalez-Nuevo, J
Gorski, KM
Gruppuso, A
Gudmundsson, JE
Hansen, FK
Henrot-Versille, S
Herranz, D
Hivon, E
Huang, Z
Jaffe, AH
Jones, WC
Keihanen, E
Keskitalo, R
Kiiveri, K
Krachmalnicoff, N
Kunz, M
Kurki-Suonio, H
Lamarre, JM
Langer, M
Lasenby, A
Lattanzi, M
Lawrence, CR
Le Jeune, M
Leahy, JP
Levrier, F
Liguori, M
Lilje, PB
Lindholm, V
Lopez-Caniego, M
Ma, YZ
Macias-Perez, JF
Maggio, G
Maino, D
Mandolesi, N
Maris, M
Martin, PG
Martinez-Gonzalez, E
Matarrese, S
Mauri, N
McEwen, JD
Meinhold, PR
Melchiorri, A
Mennella, A
Migliaccio, M
Miville-Deschenes, MA
Molinari, D
Moneti, A
Morgante, G
Moss, A
Natoli, P
Pagano, L
Paoletti, D
Patanchon, G
Patrizii, L
Perotto, L
Pettorino, V
Piacentini, F
Polastri, L
Polenta, G
Rachen, JP
Racine, B
Reinecke, M
Remazeilles, M
Renzi, A
Rocha, G
Rosset, C
Rossetti, M
Roudier, G
Rubino-Martin, JA
Ruiz-Granados, B
Sandri, M
Savelainen, M
Scott, D
Sirignano, C
Sirri, G
Spencer, LD
Suur-Uski, AS
Tauber, JA
Tavagnacco, D
Tenti, M
Toffolatti, L
Tomasi, M
Tristram, M
Trombetti, T
Valiviita, J
Van Tent, F
Vielva, P
Villa, F
Vittorio, N
Wandelt, BD
Wehus, IK
Zacchei, A
Zonca, A
AF Aghanim, N.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Ballardini, M.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Benabed, K.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burigana, C.
Calabrese, E.
Cardoso, J. -F.
Carron, J.
Chiang, H. C.
Colombo, L. P. L.
Comis, B.
Contreras, D.
Couchot, F.
Coulais, A.
Crill, B. P.
Curto, A.
Cuttaia, F.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Desert, F. -X.
Di Valentino, E.
Dickinson, C.
Diego, J. M.
Dore, O.
Ducout, A.
Dupac, X.
Dusini, S.
Elsner, F.
Ensslin, T. A.
Eriksen, H. K.
Fantaye, Y.
Finelli, F.
Forastieri, F.
Frailis, M.
Franceschi, E.
Frolov, A.
Galeotta, S.
Galli, S.
Ganga, K.
Genova-Santos, R. T.
Gerbino, M.
Giraud-Heraud, Y.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gruppuso, A.
Gudmundsson, J. E.
Hansen, F. K.
Henrot-Versille, S.
Herranz, D.
Hivon, E.
Huang, Z.
Jaffe, A. H.
Jones, W. C.
Keihanen, E.
Keskitalo, R.
Kiiveri, K.
Krachmalnicoff, N.
Kunz, M.
Kurki-Suonio, H.
Lamarre, J. -M.
Langer, M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Le Jeune, M.
Leahy, J. P.
Levrier, F.
Liguori, M.
Lilje, P. B.
Lindholm, V.
Lopez-Caniego, M.
Ma, Y. -Z.
Macias-Perez, J. F.
Maggio, G.
Maino, D.
Mandolesi, N.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Matarrese, S.
Mauri, N.
McEwen, J. D.
Meinhold, P. R.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Miville-Deschenes, M. -A.
Molinari, D.
Moneti, A.
Morgante, G.
Moss, A.
Natoli, P.
Pagano, L.
Paoletti, D.
Patanchon, G.
Patrizii, L.
Perotto, L.
Pettorino, V.
Piacentini, F.
Polastri, L.
Polenta, G.
Rachen, J. P.
Racine, B.
Reinecke, M.
Remazeilles, M.
Renzi, A.
Rocha, G.
Rosset, C.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Ruiz-Granados, B.
Sandri, M.
Savelainen, M.
Scott, D.
Sirignano, C.
Sirri, G.
Spencer, L. D.
Suur-Uski, A. -S.
Tauber, J. A.
Tavagnacco, D.
Tenti, M.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Trombetti, T.
Valiviita, J.
Van Tent, F.
Vielva, P.
Villa, F.
Vittorio, N.
Wandelt, B. D.
Wehus, I. K.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XLIX. Parity-violation constraints from
polarization data
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmology: observations; cosmic background radiation; cosmological
parameters; methods: data analysis; methods: statistical
ID PROBE WMAP OBSERVATIONS; B-MODE POLARIZATION; DISTANT RADIO GALAXIES;
COSMOLOGICAL DISTANCES; POWER SPECTRUM; MICROWAVE; BIREFRINGENCE;
TEMPERATURE; STATISTICS; ROTATION
AB Parity-violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing T-B and E-B correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle alpha, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for alpha that are in agreement within statistical uncertainties and are very stable against several consistency tests. Considering the T-B and E-B information jointly, we find alpha = 0 degrees: 31 +/- 0 degrees.05 (stat:) +/- 0 degrees:28 (syst:) from the harmonic analysis and alpha = 0 degrees.35 +/- 0 degrees.05 (stat :) 0 degrees.28 (syst :) from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck's polarization-sensitive bolometers.
C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Racine, B.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite,Observ Paris, APC AstroParticule & Cosmol, CNRS IN2P3,CEA lrfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
[Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy.
[Ashdown, M.; Curto, A.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
[Bond, J. R.; Huang, Z.; Martin, P. G.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Bielewicz, P.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Crill, B. P.; Dore, O.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland.
[Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Spain.
[Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Calvo Sotelo S N, Oviedo 33007, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Contreras, D.; Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada.
[Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Carron, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland.
[Chiang, H. C.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA.
[Bartolo, N.; Liguori, M.; Matarrese, S.; Sirignano, C.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Burigana, C.; Forastieri, F.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
[de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple Moro 2, I-00185 Rome, Italy.
[Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy.
[Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy.
[Villa, F.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy.
[Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy.
[Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S N,Urbanizac Villafranca Ca, Madrid 28692, Spain.
[Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
[Matarrese, S.] INFN, Gran Sasso Sci Inst, Via F Crispi 7, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland.
[de Zotti, G.] INAF Osservator Astron Padova, Vicolo Osservator 5, I-35122 Padua, Italy.
[Polenta, G.] INAF Osservator Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Tavagnacco, D.; Zacchei, A.] INAF Osservator Astron Trieste, Via G B Tiepolo 11, I-40127 Trieste, Italy.
[Ballardini, M.; Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Vielva, P.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy.
[Tenti, M.] INFN CNAF, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Patrizii, L.; Sirri, G.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy.
[Melchiorri, A.; Pagano, L.] Univ Rome Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy.
[Desert, F. -X.] IPAG, F-38000 Grenoble, France.
[Desert, F. -X.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, IPAG, F-38000 Grenoble, France.
[Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France.
[Ducout, A.; Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England.
[Aghanim, N.; Aumont, J.; Kunz, M.; Langer, M.; Miville-Deschenes, M. -A.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis blvd Arago, F-75014 Paris, France.
[Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S N, Tenerife 38205, Spain.
[Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.] CSIC Univ Cantabria, Inst Fis Cantabria, Avda Los Castros S N, Santander 39005, Spain.
[Bartolo, N.; Dusini, S.; Liguori, M.; Matarrese, S.; Sirignano, C.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.
[Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA.
[Dickinson, C.; Leahy, J. P.; Ma, Y. -Z.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
[Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Ashdown, M.; Curto, A.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
[Couchot, F.; Henrot-Versille, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91898 Orsay, France.
[Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75014 Paris, France.
[Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France.
[Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France.
[Van Tent, F.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France.
[Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France.
[Ensslin, T. A.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany.
[McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Bielewicz, P.] Nicholas Copernicus Astron Ctr, Bartycka 18, Warsaw 00716, Poland.
[Gerbino, M.; Gudmundsson, J. E.] NORDITA, Nord Inst Theoret Phys, Roslagstulls Backen 23, S-10691 Stockholm, Sweden.
[Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy.
[Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
[Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales.
[Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada.
[Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England.
[Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden.
[Benabed, K.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France.
[Banday, A. J.; Bernard, J. -P.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain.
[Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland.
RP Gruppuso, A (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy.; Gruppuso, A (reprint author), INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
EM gruppuso@iasfbo.inaf.it
RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014;
Colombo, Loris/J-2415-2016; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino,
Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri,
Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017;
OI Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz,
Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732;
Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio,
Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Huang,
Zhiqi/0000-0002-1506-1063; Toffolatti, Luigi/0000-0003-2645-7386;
Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita
Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Lilje,
Per/0000-0003-4324-7794; Ballardini, Mario/0000-0003-4481-3559
FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA;
DoE (USA); STFC; UKSA (UK); CSIC; MINECO; JA; RES (Spain); Tekes; AoF;
CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark);
SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC; PRACE (EU)
FX The Planck Collaboration acknowledges the support of: ESA; CNES, and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes,
AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the
results of this paper have been derived using the HEALPIX package
(Gorski et al. 2005).
NR 66
TC 0
Z9 0
U1 4
U2 4
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A110
DI 10.1051/0004-6361/201629018
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900074
ER
PT J
AU Aghanim, N
Ashdown, M
Aumont, J
Baccigalupi, C
Ballardini, M
Banday, AJ
Barreiro, RB
Bartolo, N
Basak, S
Battye, R
Benabed, K
Bernard, JP
Bersanelli, M
Bielewicz, P
Bock, JJ
Bonaldi, A
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Boulanger, F
Bucher, M
Burigana, C
Butler, RC
Calabrese, E
Cardoso, JF
Carron, J
Challinor, A
Chiang, HC
Colombo, LPL
Combet, C
Comis, B
Coulais, A
Crill, BP
Curto, A
Cuttaia, F
Davis, RJ
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Delouis, JM
Di Valentino, E
Dickinson, C
Diego, JM
Dore, O
Douspis, M
Ducout, A
Dupac, X
Efstathiou, G
Elsner, F
Ensslin, TA
Eriksen, HK
Falgarone, E
Fantaye, Y
Finelli, F
Forastieri, F
Frailis, M
Fraisse, AA
Franceschi, E
Frolov, A
Galeotta, S
Galli, S
Ganga, K
Genova-Santos, RT
Gerbino, M
Ghosh, T
Gonzalez-Nuevo, J
Gorski, KM
Gratton, S
Gruppuso, A
Gudmundsson, JE
Hansen, FK
Helou, G
Henrot-Versille, S
Herranz, D
Hivon, E
Huang, Z
Ilic, S
Jaffe, H
Jones, WC
Keihanen, E
Keskitalo, R
Kisner, TS
Knox, L
Krachmalnicoff, N
Kunz, M
Kurki-Suonio, H
Lagache, G
Lamarre, JM
Langer, M
Lasenby, A
Lattanzi, M
Lawrence, CR
Le Jeune, M
Leahy, JP
Levrier, F
Liguori, M
Lilje, PB
Lopez-Caniego, M
Ma, YZ
Macias-Perez, JF
Maggio, G
Mangilli, A
Maris, M
Martin, PG
Martinez-Gonzalez, E
Matarrese, S
Mauri, N
McEwen, JD
Meinhold, PR
Melchiorri, A
Mennella, A
Migliaccio, M
Miville-Deschenes, MA
Molinari, D
Moneti, A
Montier, L
Morgante, G
Moss, A
Mottet, S
Naselsky, P
Natoli, P
Oxborrow, CA
Pagano, L
Paoletti, D
Partridge, B
Patanchon, G
Patrizii, L
Perdereau, O
Perotto, L
Pettorino, V
Piacentini, F
Plaszczynski, S
Polastri, L
Polenta, G
Puget, JL
Rachen, JP
Racine, B
Reinecke, M
Remazeilles, M
Renzi, A
Rocha, G
Rossetti, M
Roudier, G
Rubino-Martin, JA
Ruiz-Granados, B
Salvati, L
Sandri, M
Savelainen, M
Scott, D
Sirri, G
Sunyaev, R
Suur-Uski, AS
Tauber, JA
Tenti, M
Toffolatti, L
Tomasi, M
Tristram, M
Trombetti, T
Valiviita, J
Van Tent, F
Vibert, L
Vielva, P
Villa, F
Vittorio, N
Wandelt, BD
Watson, R
Wehus, IK
White, M
Zacchei, A
Zonca, A
AF Aghanim, N.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Ballardini, M.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Battye, R.
Benabed, K.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bock, J. J.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Boulanger, F.
Bucher, M.
Burigana, C.
Butler, R. C.
Calabrese, E.
Cardoso, J. -F.
Carron, J.
Challinor, A.
Chiang, H. C.
Colombo, L. P. L.
Combet, C.
Comis, B.
Coulais, A.
Crill, B. P.
Curto, A.
Cuttaia, F.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Delouis, J. -M.
Di Valentino, E.
Dickinson, C.
Diego, J. M.
Dore, O.
Douspis, M.
Ducout, A.
Dupac, X.
Efstathiou, G.
Elsner, F.
Ensslin, T. A.
Eriksen, H. K.
Falgarone, E.
Fantaye, Y.
Finelli, F.
Forastieri, F.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Frolov, A.
Galeotta, S.
Galli, S.
Ganga, K.
Genova-Santos, R. T.
Gerbino, M.
Ghosh, T.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gratton, S.
Gruppuso, A.
Gudmundsson, J. E.
Hansen, F. K.
Helou, G.
Henrot-Versille, S.
Herranz, D.
Hivon, E.
Huang, Z.
Ilic, S.
Jaffe, A. H.
Jones, W. C.
Keihanen, E.
Keskitalo, R.
Kisner, T. S.
Knox, L.
Krachmalnicoff, N.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J. -M.
Langer, M.
Lasenby, A.
Lattanzi, M.
Lawrence, C. R.
Le Jeune, M.
Leahy, J. P.
Levrier, F.
Liguori, M.
Lilje, P. B.
Lopez-Caniego, M.
Ma, Y. -Z.
Macias-Perez, J. F.
Maggio, G.
Mangilli, A.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Matarrese, S.
Mauri, N.
McEwen, J. D.
Meinhold, P. R.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Miville-Deschenes, M. -A.
Molinari, D.
Moneti, A.
Montier, L.
Morgante, G.
Moss, A.
Mottet, S.
Naselsky, P.
Natoli, P.
Oxborrow, C. A.
Pagano, L.
Paoletti, D.
Partridge, B.
Patanchon, G.
Patrizii, L.
Perdereau, O.
Perotto, L.
Pettorino, V.
Piacentini, F.
Plaszczynski, S.
Polastri, L.
Polenta, G.
Puget, J. -L.
Rachen, J. P.
Racine, B.
Reinecke, M.
Remazeilles, M.
Renzi, A.
Rocha, G.
Rossetti, M.
Roudier, G.
Rubino-Martin, J. A.
Ruiz-Granados, B.
Salvati, L.
Sandri, M.
Savelainen, M.
Scott, D.
Sirri, G.
Sunyaev, R.
Suur-Uski, A. -S.
Tauber, J. A.
Tenti, M.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Trombetti, T.
Valiviita, J.
Van Tent, F.
Vibert, L.
Vielva, P.
Villa, F.
Vittorio, N.
Wandelt, B. D.
Watson, R.
Wehus, I. K.
White, M.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XLVI. Reduction of large-scale systematic
effects in HFI polarization maps and estimation of the reionization
optical depth
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmology: observations; dark ages, reionization, first stars; cosmic
background radiation; space vehicles: instruments; instrumentation:
detectors
ID PROBE WMAP OBSERVATIONS; POWER SPECTRA; PHOTOMETRIC CALIBRATION; COSMIC
REIONIZATION; MODEL; CONSTRAINTS; TEMPERATURE; INSTRUMENT; LUMINOSITY;
EMISSION
AB This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth tau using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain tau from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based tau posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 +/- 0.009. In a companion paper these results are discussed in the context of the best-fit Planck Lambda CDM cosmological model and recent models of reionization.
C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Le Jeune, M.; Patanchon, G.; Racine, B.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, APC AstroParticule & Cosmol, CNRS IN2P3 CEA Irfu Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
[Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd,Muizenberg, ZA-7945 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy.
[Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Ilic, S.] Aix Marseille Univ, Ctr Phys Theor, 163 Ave Luminy, F-13288 Marseille, France.
[Ashdown, M.; Curto, A.; Lasenby, A.; Lawrence, C. R.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
[Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ilic, S.; Montier, L.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA USA.
[Challinor, A.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327,2800 Kgs, Lyngby, Denmark.
[Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland.
[Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain.
[Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S N, Oviedo 33007, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada.
[Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Carron, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland.
[Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 93106 USA.
[Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy.
[Ballardini, M.] Univ Bologna, Alma Mater Studiorum, Dipartmento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Burigana, C.; Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
[de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, P A Moro 2, I-00133 Rome, Italy.
[Bersanelli, M.; Krachmalnicoff, N.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy.
[Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy.
[Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark.
[Dupac, X.; Lopez-Caniego, M.] European Space Agcy, Planck Sci Off, Camino Bajo Castillo,S-N, Madrid 28691, Spain.
[Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
[Matarrese, S.] INFN, Gran Sasso Sci Inst, Via F Crispi 7, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA.
[Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland.
[de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy.
[Polenta, G.] INAF Osservatorio Astronom Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Zacchei, A.] INAF Osservatorio Astronom Trieste, Via GB Tiepolo 11, I-34127 Trieste, Italy.
[Ballardini, M.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Molinari, D.; Morgante, G.; Paoletti, D.; Rubino-Martin, J. A.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy.
[Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy.
[Tenti, M.] INFN CNAF, Via Berti Pichat 6-2, I-40127 Bologna, Italy.
[Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Patrizii, L.; Sirri, G.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy.
[Melchiorri, A.; Pagano, L.] Univ Rome Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, Piazzale Aldo Moro 2, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy.
[Ducout, A.; Jaffe, A. H.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England.
[Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Ghosh, T.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Puget, J. -L.; Remazeilles, M.; Vibert, L.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Delouis, J. -M.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Mottet, S.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France.
[Challinor, A.; Efstathiou, G.; Gratton, S.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain.
[Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain.
[Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.
[Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Battye, R.; Bonaldi, A.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Ma, Y. -Z.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg, Manchester M13 9PL, Lancs, England.
[Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
[Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France.
[Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75000 Paris, France.
[Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France.
[Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France.
[Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Ensslin, T. A.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany.
[McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark.
[Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.
[Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy.
[Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
[Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada.
[Bouchet, F. R.; Di Valentino, E.; Mottet, S.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France.
[Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Calabrese, E.] Univ Oxford, SubDept Astrophys, Oxford OX1 3RH, England.
[Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden.
[Benabed, K.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France.
[Banday, A. J.; Bernard, J. -P.; Ilic, S.; Montier, L.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain.
[Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland.
RP Puget, JL (reprint author), Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.
EM jean-loup.puget@ias.u-psud.fr
RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014;
Colombo, Loris/J-2415-2016; White, Martin/I-3880-2015; Ruiz-Granados,
Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita
Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera,
laura/E-9368-2017
OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794;
Ballardini, Mario/0000-0003-4481-3559; Watson,
Robert/0000-0002-5873-0124; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822;
Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732;
Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio,
Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Huang,
Zhiqi/0000-0002-1506-1063; White, Martin/0000-0001-9912-5070; Gerbino,
Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272;
bonavera, laura/0000-0001-8039-3876
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); RES (Spain); MINECO (Spain); CSC (Finland); AoF (Finland);
Tekes (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC (EU); PRACE (EU); J.A. (Spain)
FX The Planck Collaboration acknowledges the support of: ESA; CNES and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes,
AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planck-collaboration.
NR 58
TC 5
Z9 5
U1 3
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A107
DI 10.1051/0004-6361/201628890
PG 52
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900065
ER
PT J
AU Aghanim, N
Alves, MIR
Arzoumanian, D
Aumont, J
Baccigalupi, C
Ballardini, M
Banday, AJ
Barreiro, RB
Bartolo, N
Basak, S
Benabed, K
Bernard, JP
Bersanelli, M
Bielewicz, P
Bonavera, L
Bond, JR
Borrill, J
Bouchet, FR
Boulanger, F
Bracco, A
Bucher, M
Burigana, C
Calabrese, E
Cardoso, JF
Chiang, HC
Colombo, LPL
Combet, C
Comis, B
Couchot, F
Coulais, A
Crill, BP
Curto, A
Cuttaia, F
Davis, RJ
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Delouis, JM
Di Valentino, E
Dickinson, C
Diego, JM
Dore, O
Douspis, M
Ducout, A
Dupac, X
Dusini, S
Efstathiou, G
Elsner, F
Ensslin, TA
Eriksen, HK
Falgarone, E
Fantaye, Y
Ferriere, K
Finelli, F
Frailis, M
Fraisse, AA
Franceschi, E
Frolov, A
Galeotta, S
Galli, S
Ganga, K
Genova-Santos, RT
Gerbino, M
Ghosh, T
Gonzalez-Nuevo, J
Gorski, KM
Gratton, S
Gregorio, A
Gruppuso, A
Gudmundsson, JE
Guillet, V
Hansen, FK
Helou, G
Henrot-Versille, S
Herranz, D
Hivon, E
Huang, Z
Jaffe, AH
Jaffe, TR
Jones, WC
Keihanen, E
Keskitalo, R
Kisner, TS
Krachmalnicoff, N
Kunz, M
Kurki-Suonio, H
Lagache, G
Lahteenmaki, A
Lamarre, JM
Langer, M
Lasenby, A
Lattanzi, M
Le Jeune, M
Levrier, F
Liguori, M
Lilje, PB
Lopez-Caniego, M
Lubin, PM
Macias-Perez, JF
Maggio, G
Maino, D
Mandolesi, N
Mangilli, A
Maris, M
Martin, PG
Martinez-Gonzalez, E
Matarrese, S
Mauri, N
McEwen, JD
Melchiorri, A
Mennella, A
Migliaccio, M
Miville-Deschenes, MA
Molinari, D
Moneti, A
Montier, L
Morgante, G
Moss, A
Naselsky, P
Natoli, P
Neveu, J
Norgaard-Nielsen, HU
Oppermann, N
Oxborrow, CA
Pagano, L
Paoletti, D
Partridge, B
Perdereau, O
Perotto, L
Pettorino, V
Piacentini, F
Plaszczynski, S
Polenta, G
Rachen, JP
Rebolo, R
Reinecke, M
Remazeilles, M
Renzi, A
Ristorcelli, I
Rocha, G
Rossetti, M
Roudier, G
Ruiz-Granados, B
Salvati, L
Sandri, M
Savelainen, M
Scott, D
Sirignano, C
Soler, JD
Suur-Uski, AS
Tauber, JA
Tavagnacco, D
Tenti, M
Toffolatti, L
Tomasi, M
Tristram, M
Trombetti, T
Valiviita, J
Vansyngel, F
Van Tent, F
Vielva, P
Villa, F
Wandelt, BD
Wehus, IK
Zacchei, A
Zonca, A
AF Aghanim, N.
Alves, M. I. R.
Arzoumanian, D.
Aumont, J.
Baccigalupi, C.
Ballardini, M.
Banday, A. J.
Barreiro, R. B.
Bartolo, N.
Basak, S.
Benabed, K.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Boulanger, F.
Bracco, A.
Bucher, M.
Burigana, C.
Calabrese, E.
Cardoso, J. -F.
Chiang, H. C.
Colombo, L. P. L.
Combet, C.
Comis, B.
Couchot, F.
Coulais, A.
Crill, B. P.
Curto, A.
Cuttaia, F.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Delouis, J. -M.
Di Valentino, E.
Dickinson, C.
Diego, J. M.
Dore, O.
Douspis, M.
Ducout, A.
Dupac, X.
Dusini, S.
Efstathiou, G.
Elsner, F.
Ensslin, T. A.
Eriksen, H. K.
Falgarone, E.
Fantaye, Y.
Ferriere, K.
Finelli, F.
Frailis, M.
Fraisse, A. A.
Franceschi, E.
Frolov, A.
Galeotta, S.
Galli, S.
Ganga, K.
Genova-Santos, R. T.
Gerbino, M.
Ghosh, T.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gratton, S.
Gregorio, A.
Gruppuso, A.
Gudmundsson, J. E.
Guillet, V.
Hansen, F. K.
Helou, G.
Henrot-Versille, S.
Herranz, D.
Hivon, E.
Huang, Z.
Jaffe, A. H.
Jaffe, T. R.
Jones, W. C.
Keihanen, E.
Keskitalo, R.
Kisner, T. S.
Krachmalnicoff, N.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lahteenmaki, A.
Lamarre, J. -M.
Langer, M.
Lasenby, A.
Lattanzi, M.
Le Jeune, M.
Levrier, F.
Liguori, M.
Lilje, P. B.
Lopez-Caniego, M.
Lubin, P. M.
Macias-Perez, J. F.
Maggio, G.
Maino, D.
Mandolesi, N.
Mangilli, A.
Maris, M.
Martin, P. G.
Martinez-Gonzalez, E.
Matarrese, S.
Mauri, N.
McEwen, J. D.
Melchiorri, A.
Mennella, A.
Migliaccio, M.
Miville-Deschenes, M. -A.
Molinari, D.
Moneti, A.
Montier, L.
Morgante, G.
Moss, A.
Naselsky, P.
Natoli, P.
Neveu, J.
Norgaard-Nielsen, H. U.
Oppermann, N.
Oxborrow, C. A.
Pagano, L.
Paoletti, D.
Partridge, B.
Perdereau, O.
Perotto, L.
Pettorino, V.
Piacentini, F.
Plaszczynski, S.
Polenta, G.
Rachen, J. P.
Rebolo, R.
Reinecke, M.
Remazeilles, M.
Renzi, A.
Ristorcelli, I.
Rocha, G.
Rossetti, M.
Roudier, G.
Ruiz-Granados, B.
Salvati, L.
Sandri, M.
Savelainen, M.
Scott, D.
Sirignano, C.
Soler, J. D.
Suur-Uski, A. -S.
Tauber, J. A.
Tavagnacco, D.
Tenti, M.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Trombetti, T.
Valiviita, J.
Vansyngel, F.
Van Tent, F.
Vielva, P.
Villa, F.
Wandelt, B. D.
Wehus, I. K.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results XLIV. Structure of the Galactic magnetic
field from dust polarization maps of the southern Galactic cap
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE magnetohydrodynamics (MHD); polarization; methods: data analysis; dust,
extinction; cosmic background radiation; ISM: magnetic fields
ID MILKY-WAY; INTERSTELLAR TURBULENCE; SYNCHROTRON EMISSION; GRAIN
ALIGNMENT; H I; GAS; GRADIENTS; LOFAR; SCALE; SKY
AB Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60 degrees). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (Psi), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l(0); b(0)) = (70 degrees +/- 5 degrees, 24 degrees +/- 5 degrees). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram Psi of has a standard deviation of 12 degrees about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and Psi to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p(0)) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 +/- 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves.
C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Le Jeune, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,AstroParticule & Cosmol,CNRS,IN2P3,CEA,Lrfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
[Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland.
[Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland.
[Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa.
[Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy.
[Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Curto, A.; Lasenby, A.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England.
[Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
[Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada.
[Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Jaffe, T. R.; Montier, L.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
[Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Rebolo, R.] CSIC, E-28006 Madrid, Spain.
[Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark.
[Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland.
[Genova-Santos, R. T.; Rebolo, R.] ULL, Dept Astrofis, Tenerife 38206, Spain.
[Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada.
[Colombo, L. P. L.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA.
[Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, Helsinki 00014, Finland.
[Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA.
[Bartolo, N.; Liguori, M.; Matarrese, S.; Sirignano, C.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy.
[Ballardini, M.] Univ Bologna, Alma Mater Studiorum, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Burigana, C.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
[de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy.
[Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy.
[Gregorio, A.; Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy.
[Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
[Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain.
[Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
[Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy.
[Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany.
[Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA USA.
[Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu, FIN-00014 Helsinki, Finland.
[de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy.
[Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Tavagnacco, D.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-40127 Trieste, Italy.
[Ballardini, M.; Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40129 Bologna, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy.
[Tenti, M.] CNAF, Ist Nazl Fis Nucl, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Ballardini, M.; Burigana, C.; Finelli, F.; Mauri, N.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
[Lattanzi, M.; Molinari, D.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy.
[Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy.
[Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy.
[Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, Via Valerio 2, I-34127 Trieste, Italy.
[Ducout, A.; Jaffe, A. H.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England.
[Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Remazeilles, M.; Soler, J. D.; Vansyngel, F.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Delouis, J. -M.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France.
[Efstathiou, G.; Gratton, S.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway.
[Genova-Santos, R. T.; Rebolo, R.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain.
[Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain.
[Bartolo, N.; Dusini, S.; Liguori, M.; Matarrese, S.; Sirignano, C.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.
[Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA.
[Davis, R. J.; Dickinson, C.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
[Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Curto, A.; Gratton, S.; Lasenby, A.; Migliaccio, M.; Neveu, J.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
[Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France.
[Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Neveu, J.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France.
[Arzoumanian, D.; Bracco, A.; Soler, J. D.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris, France.
[Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris, France.
[Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France.
[Van Tent, F.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France.
[Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France.
[Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Ensslin, T. A.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany.
[McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England.
[Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland.
[Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
[Gerbino, M.; Gudmundsson, J. E.] NORDITA, Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.
[Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy.
[Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada.
[Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France.
[Borrill, J.] Univ Calif, Space Sci Lab, Berkeley, CA 94720 USA.
[Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England.
[Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden.
[Benabed, K.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France.
[Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Ferriere, K.; Jaffe, T. R.; Montier, L.; Ristorcelli, I.] Univ Toulouse, UPSOMP, IRAP, F-31028 Toulouse 4, France.
[Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain.
[Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland.
RP Bracco, A (reprint author), Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.; Bracco, A (reprint author), Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France.
EM andrea.bracco@cea.fr
RI Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki,
Anne/L-5987-2013; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino,
Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri,
Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; Gonzalez-Nuevo,
Joaquin/I-3562-2014
OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794;
Ballardini, Mario/0000-0003-4481-3559; Herranz,
Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732;
Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio,
Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Hivon,
Eric/0000-0003-1880-2733; Gerbino, Martina/0000-0002-3538-1283;
Barreiro, Rita Belen/0000-0002-6139-4272; bonavera,
laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822
FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA;
DoE (USA); STFC; UKSA (UK); CSIC; MINECO; JA; RES (Spain); Tekes; AoF;
CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark);
SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC; PRACE (EU); European Research Council under the
European Union's Seventh Framework Programme/ERC [267934]
FX The Planck Collaboration acknowledges the support of: ESA; CNES, and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes,
AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); ERC and PRACE (EU). A description of the Planck
Collaboration and a list of its members, indicating which technical or
scientific activities they have been involved in, can be found at
http://www.cosmos.esa.int/web/planck/planckcollaboration. The research
leading to these results has received funding from the European Research
Council under the European Union's Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement No. 267934.
NR 89
TC 0
Z9 0
U1 2
U2 2
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD DEC
PY 2016
VL 596
AR A105
DI 10.1051/0004-6361/201628636
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MX
UT WOS:000390797900052
ER
PT J
AU Yan, ZF
Liu, CX
Todd-Brown, KE
Liu, YY
Bond-Lamberty, B
Bailey, VL
AF Yan, Zhifeng
Liu, Chongxuan
Todd-Brown, Katherine E.
Liu, Yuanyuan
Bond-Lamberty, Ben
Bailey, Vanessa L.
TI Pore-scale investigation on the response of heterotrophic respiration to
moisture conditions in heterogeneous soils
SO BIOGEOCHEMISTRY
LA English
DT Article
DE Pore-scale; Process model; Heterotrophic respiration; Moisture; Soil
structure; Clay content
ID DIFFERENTLY TEXTURED SOILS; DISSOLVED ORGANIC-CARBON; MICROBIAL
ACTIVITY; DIFFUSION-COEFFICIENTS; POROUS-MEDIA; WATER; MATTER; MODELS;
TEMPERATURE; GAS
AB The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75, which is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geophysical, and biochemical factors.
C1 [Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.; Liu, Yuanyuan; Bailey, Vanessa L.] Pacific Northwest Natl Lab, 3335 Innovat Blvd, Richland, WA 99354 USA.
[Liu, Chongxuan] South Univ Sci & Technol China, Sch Environm Sci & Engn, Shenzhen, Peoples R China.
[Bond-Lamberty, Ben] Univ Maryland, Joint Global Climate Change Res Inst, Pacific Northwest Natl Lab, College Pk, MD 20740 USA.
RP Liu, CX (reprint author), Pacific Northwest Natl Lab, 3335 Innovat Blvd, Richland, WA 99354 USA.
EM Chongxuan.liu@pnnl.gov
RI Bond-Lamberty, Ben/C-6058-2008; Liu, Chongxuan/C-5580-2009
OI Bond-Lamberty, Ben/0000-0001-9525-4633;
FU US Department of Energy (DOE) Biological and Environmental Research
(BER) Division through the Terrestrial Ecosystem Science (TES) program
[61512]; Linus Pauling Distinguished Postdoctoral Fellowship, a
Laboratory Directed Research program at PNNL; [DE-AC06-76RLO 1830]
FX This research was supported by the US Department of Energy (DOE)
Biological and Environmental Research (BER) Division through the
Terrestrial Ecosystem Science (TES) program (Grant Number 61512). Part
of the research was performed at Environmental Molecular Science
Laboratory (EMSL), a DOE National user facility located at Pacific
Northwest National Laboratory (PNNL). PNNL is operated by Battelle
Memorial Institute under subcontract DE-AC06-76RLO 1830. Dr. Todd-Brown
is grateful for support given by the Linus Pauling Distinguished
Postdoctoral Fellowship, a Laboratory Directed Research program at PNNL.
We thank the associate editor and two anonymous reviewers whose
insightful comments improved the manuscript substantially.
NR 61
TC 0
Z9 0
U1 13
U2 13
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0168-2563
EI 1573-515X
J9 BIOGEOCHEMISTRY
JI Biogeochemistry
PD DEC
PY 2016
VL 131
IS 1-2
BP 121
EP 134
DI 10.1007/s10533-016-0270-0
PG 14
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA EH0AC
UT WOS:000391423500008
ER
PT J
AU Xu, TF
Hou, ZY
Jia, XF
Spycher, N
Jiang, ZJ
Feng, B
Na, J
Yuan, YL
AF Xu, Tianfu
Hou, Zhaoyun
Jia, Xiaofeng
Spycher, Nicolas
Jiang, Zhenjiao
Feng, Bo
Na, Jin
Yuan, Yilong
TI Classical and integrated multicomponent geothermometry at the Tengchong
geothermal field, Southwestern China
SO ENVIRONMENTAL EARTH SCIENCES
LA English
DT Article
DE Reservoir temperature; Quartz geothermometer; Integrated multicomponent
geothermometry; Numerical optimization; Tengchong geothermal field
ID EQUILIBRIA; WATERS
AB To reconstruct deep fluid chemical composition and increase the confidence in estimated reservoir temperatures, a more integral geothermometry method was compared to other classical geothermometers. Here, we apply the integrated multicomponent geothermometry (IMG) method using the GeoT code to estimate reservoir temperatures at the Tengchong geothermal field in Southwestern China. Results show reservoir temperatures calculated using the quartz geothermometer are closest to those estimated with the IMG method. The concentrations of Al and Mg, as well as selected minerals for geothermometry computations, are key factors for successfully using the IMG. Using the IMG method together with classical geothermometers can significantly increase confidence in reservoir temperature estimations. The methods presented and simulation program used here may be useful for analysis of other geothermal fields under similar conditions.
C1 [Xu, Tianfu; Hou, Zhaoyun; Jiang, Zhenjiao; Feng, Bo; Na, Jin; Yuan, Yilong] Jilin Univ, Minist Educ, Key Lab Groundwater Resources & Environm, Changchun 130021, Peoples R China.
[Jia, Xiaofeng] China Geol Survey, Ctr Hydrogeol & Environm Geol Survey, Baoding 071051, Peoples R China.
[Spycher, Nicolas] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Feng, B (reprint author), Jilin Univ, Minist Educ, Key Lab Groundwater Resources & Environm, Changchun 130021, Peoples R China.
EM fengbo234@126.com
RI Spycher, Nicolas/E-6899-2010
FU National Natural Science Foundation of China [41572215, 41402205]; China
Geological Survey, Geothermal Resources Investigation in Xining-Guinan
of Qinghai Province [12120115046201, 121201012000150011]
FX This work was supported by the National Natural Science Foundation of
China (Grant Nos. 41572215 and 41402205) and the China Geological
Survey, Geothermal Resources Investigation in Xining-Guinan of Qinghai
Province (Grant Nos. 12120115046201 and 121201012000150011).
NR 24
TC 0
Z9 0
U1 3
U2 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1866-6280
EI 1866-6299
J9 ENVIRON EARTH SCI
JI Environ. Earth Sci.
PD DEC
PY 2016
VL 75
IS 24
AR 1502
DI 10.1007/s12665-016-6298-6
PG 10
WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources
SC Environmental Sciences & Ecology; Geology; Water Resources
GA EG9LB
UT WOS:000391379100011
ER
PT J
AU Xue, Y
Chang, FL
Zhang, D
Chen, YK
AF Xue, Yaru
Chang, Fanglan
Zhang, Dong
Chen, Yangkang
TI Simultaneous Sources Separation via an Iterative Rank-Increasing Method
SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
LA English
DT Article
DE Deblending; rank increasing (RI); rank reduction (RR); simultaneous
sources separation; singular value decomposition (SVD)
ID RANDOM NOISE ATTENUATION; SHAPING REGULARIZATION; DOMAIN; TFPF
AB Simultaneous sources acquisition attracts intensive attention from both academia and industry due to its greatly improved efficiency in acquiring high-density seismic data. Unfortunately, its merits are compromised by the strong interference noise between adjacent shots. In this letter, we propose a stepwise rank-increasing (RI) method to estimate the crosstalk noise in simultaneous sources acquisition. The proposed algorithm assumes that an ideal common offset gather (COG) can be represented via a low-rank matrix in the time-space domain. The coherent signals are estimated from low-rank decomposition and transformed to the crosstalk noise by employing a priori information about random dithering code, and then the blending noise is subtracted from the blended data. By increasing the rank of coherent signals step-by-step, the crosstalk noise can be gradually estimated with high accuracy. In this letter, singular value decomposition is utilized to increase the rank of COG data. Applications on synthetic and field data sets demonstrate the better performance of the proposed RI method not only by more effectively suppressing noise but also by accelerating the convergence rate.
C1 [Xue, Yaru; Chang, Fanglan; Zhang, Dong] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102200, Peoples R China.
[Chen, Yangkang] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78713 USA.
[Chen, Yangkang] Oak Ridge Natl Lab, Oak Ridge, TN USA.
RP Xue, Y (reprint author), China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102200, Peoples R China.
EM xueyaru@cup.edu.cn; chenyk2016@gmail.com
FU National Natural Science Foundation of China [41204095]; Science
Research Foundation for Returned Overseas Chinese Scholars, State
Education Ministry
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 41204095 and in part by the Science
Research Foundation for Returned Overseas Chinese Scholars, State
Education Ministry.
NR 17
TC 0
Z9 0
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1545-598X
EI 1558-0571
J9 IEEE GEOSCI REMOTE S
JI IEEE Geosci. Remote Sens. Lett.
PD DEC
PY 2016
VL 13
IS 12
BP 1915
EP 1919
DI 10.1109/LGRS.2016.2617338
PG 5
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA EG8HZ
UT WOS:000391298500033
ER
PT J
AU Venkatakrishnan, SV
Donatelli, J
Kumar, D
Sarje, A
Sinha, SK
Li, XS
Hexemer, A
AF Venkatakrishnan, S. V.
Donatelli, Jeffrey
Kumar, Dinesh
Sarje, Abhinav
Sinha, Sunil K.
Li, Xiaoye S.
Hexemer, Alexander
TI A multi-slice simulation algorithm for grazing-incidence small-angle
X-ray scattering
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Article
DE grazing-incidence small-angle X-ray scattering; GISAXS; distorted-wave
Born approximation; multi-slice algorithm
ID NEUTRON-SCATTERING; SURFACE; FILMS
AB Grazing-incidence small-angle X-ray scattering (GISAXS) is an important technique in the characterization of samples at the nanometre scale. A key aspect of GISAXS data analysis is the accurate simulation of samples to match the measurement. The distorted-wave Born approximation (DWBA) is a widely used model for the simulation of GISAXS patterns. For certain classes of sample such as nanostructures embedded in thin films, where the electric field intensity variation is significant relative to the size of the structures, a multi-slice DWBA theory is more accurate than the conventional DWBA method. However, simulating complex structures in the multi-slice setting is challenging and the algorithms typically used are designed on a case-by-case basis depending on the structure to be simulated. In this paper, an accurate algorithm for GISAXS simulations based on the multi-slice DWBA theory is presented. In particular, fundamental properties of the Fourier transform have been utilized to develop an algorithm that accurately computes the average refractive index profile as a function of depth and the Fourier transform of the portion of the sample within a given slice, which are key quantities required for the multi-slice DWBA simulation. The results from this method are compared with the traditionally used approximations, demonstrating that the proposed algorithm can produce more accurate results. Furthermore, this algorithm is general with respect to the sample structure, and does not require any sample-specific approximations to perform the simulations.
C1 [Venkatakrishnan, S. V.; Kumar, Dinesh; Hexemer, Alexander] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Donatelli, Jeffrey; Sarje, Abhinav; Li, Xiaoye S.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA USA.
[Sinha, Sunil K.] Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USA.
RP Hexemer, A (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
EM ahexemer@lbl.gov
FU AH's Early Career Award from the US Department of Energy (DoE); Office
of Science, Office of Basic Energy Sciences, US DoE [DE-AC02-05CH11231];
Center for Advanced Mathematics for Energy Research Applications
(CAMERA); Office of Basic Energy Sciences, US DoE [DE-SC0003678]
FX SVV and AH were supported by AH's Early Career Award from the US
Department of Energy (DoE). The Advanced Light Source is supported by
the Director, Office of Science, Office of Basic Energy Sciences, US
DoE, under contract No. DE-AC02-05CH11231. This work was partially
supported by the Center for Advanced Mathematics for Energy Research
Applications (CAMERA). SKS's work at UCSD was supported by the Office of
Basic Energy Sciences, US DoE, under grant No. DE-SC0003678. We thank Yi
Yang and Jingjin Song, Department of Physics, University of California
San Diego, for helpful discussions.
NR 17
TC 1
Z9 1
U1 3
U2 3
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5767
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD DEC
PY 2016
VL 49
BP 1876
EP 1884
DI 10.1107/S1600576716013273
PN 6
PG 9
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA EG6ZW
UT WOS:000391195900003
ER
PT J
AU Bahadur, J
Medina, CR
He, LL
Melnichenko, YB
Rupp, JA
Blach, TP
Mildner, DFR
AF Bahadur, Jitendra
Medina, Cristian R.
He, Lilin
Melnichenko, Yuri B.
Rupp, John A.
Blach, Tomasz P.
Mildner, David F. R.
TI Determination of closed porosity in rocks by small-angle neutron
scattering
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Article
DE small-angle X-ray scattering; SANS; ultra-small-angle X-ray scattering;
USANS; rock; CO2 sequestration; porosity
ID X-RAY-SCATTERING; CARBON-DIOXIDE; PORE STRUCTURE; SEDIMENTARY BASINS;
GAS-ADSORPTION; SURFACE-AREA; COAL; WATER; STORAGE; SHALE
AB Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) have been used to study a carbonate rock from a deep saline aquifer that is a potential candidate as a storage reservoir for CO2 sequestration. A new methodology is developed for estimating the fraction of accessible and inaccessible pore volume using SANS/USANS measurements. This method does not require the achievement of zero average contrast for the calculation of accessible and inaccessible pore volume fraction. The scattering intensity at high Q increases with increasing CO2 pressure, in contrast with the low-Q behaviour where the intensity decreases with increasing pressure. Data treatment for high-Q scattering at different pressures of CO2 is also introduced to explain this anomalous behaviour. The analysis shows that a significant proportion of the pore system consists of micropores (< 20 angstrom) and that the majority (80%) of these micropores remain inaccessible to CO2 at reservoir pressures.
C1 [Bahadur, Jitendra] Bhabha Atom Res Ctr, Solid State Phys Div, Bombay 400085, Maharashtra, India.
[Medina, Cristian R.; Rupp, John A.] Indiana Univ, Indiana Geol Survey, Bloomington, IN 47405 USA.
[He, Lilin; Melnichenko, Yuri B.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.
[Blach, Tomasz P.] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia.
[Mildner, David F. R.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
RP Bahadur, J (reprint author), Bhabha Atom Res Ctr, Solid State Phys Div, Bombay 400085, Maharashtra, India.
EM jbahadur@barc.gov.in
OI He, Lilin/0000-0002-9560-8101
FU Laboratory Directed Research and Development Program; Scientific User
Facilities Division, Office of Basic Energy Sciences, US Department of
Energy (DOE); National Science Foundation [DMR-0944772]; Indiana
Geological Survey from Battelle Memorial Institute under a DOE contract
for the Midwest Regional Carbon Sequestration Partnership (MRCSP);
Central Analytical Research Facility; Science and Engineering Faculty of
the Queensland University of Technology
FX The research at Oak Ridge National Laboratory's High Flux Isotope
Reactor was sponsored by the Laboratory Directed Research and
Development Program and the Scientific User Facilities Division, Office
of Basic Energy Sciences, US Department of Energy (DOE). The USANS
measurements at the National Institute of Standards and Technology were
supported in part by the National Science Foundation under agreement No.
DMR-0944772. This work was partially supported by a subcontract to the
Indiana Geological Survey from Battelle Memorial Institute under a DOE
contract for the Midwest Regional Carbon Sequestration Partnership
(MRCSP). TPB thanks the Central Analytical Research Facility and the
Science and Engineering Faculty of the Queensland University of
Technology for funding travel to ORNL and NIST. We dedicate this paper
to the memory of Yuri Melnichenko, recognizing his achievements in the
development of SANS techniques for investigating the petrophysical
characteristics of earth materials.
NR 45
TC 0
Z9 0
U1 7
U2 7
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5767
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD DEC
PY 2016
VL 49
BP 2021
EP 2030
DI 10.1107/S1600576716014904
PN 6
PG 10
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA EG6ZW
UT WOS:000391195900017
ER
PT J
AU Bruno, AE
Soares, AS
Owen, RL
Snell, EH
AF Bruno, Andrew E.
Soares, Alexei S.
Owen, Robin L.
Snell, Edward H.
TI The use of haptic interfaces and web services in crystallography: an
application for a 'screen to beam' interface
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Article
DE haptic interfaces; crystallization; X-ray data collection; automation;
crystal screening; in situ diffraction
ID MACROMOLECULAR CRYSTALLOGRAPHY; CRYSTALLIZATION; ICE
AB Haptic interfaces have become common in consumer electronics. They enable easy interaction and information entry without the use of a mouse or keyboard. The work presented here illustrates the application of a haptic interface to crystallization screening in order to provide a natural means for visualizing and selecting results. By linking this to a cloud-based database and web-based application program interface, the same application shifts the approach from 'point and click' to 'touch and share', where results can be selected, annotated and discussed collaboratively. In the crystallographic application, given a suitable crystallization plate, beamline and robotic end effector, the resulting information can be used to close the loop between screening and X-ray analysis, allowing a direct and efficient 'screen to beam' approach. The application is not limited to the area of crystallization screening; 'touch and share' can be used by any information-rich scientific analysis and geographically distributed collaboration.
C1 [Bruno, Andrew E.] SUNY Buffalo, Ctr Computat Res, Buffalo, NY 14203 USA.
[Soares, Alexei S.] Brookhaven Natl Lab, Photon Sci Directorate, POB 5000, Upton, NY 11973 USA.
[Owen, Robin L.] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot OX11 ODE, Oxon, England.
[Snell, Edward H.] Hauptman Woodward Med Res Inst, 700 Ellicott St, Buffalo, NY 14203 USA.
[Snell, Edward H.] SUNY Buffalo, Dept Struct Biol, 700 Ellicott St, Buffalo, NY 14203 USA.
RP Snell, EH (reprint author), Hauptman Woodward Med Res Inst, 700 Ellicott St, Buffalo, NY 14203 USA.; Snell, EH (reprint author), SUNY Buffalo, Dept Struct Biol, 700 Ellicott St, Buffalo, NY 14203 USA.
EM esnell@hwi.buffalo.edu
FU NIH [1R01GM088396]
FX This work was partially supported by NIH grant No. 1R01GM088396. In
addition to the work carried out at the NSLS, the authors would like to
thank Diamond Light Source for beamtime and the staff of beamline I24
for assistance. Joseph Luft and the staff of the High-Throughput
Crystallization Screening Center are thanked for the use of one of their
lysozyme control plates. Rick Roberts is thanked for his input to the
work.
NR 17
TC 0
Z9 0
U1 1
U2 1
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5767
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD DEC
PY 2016
VL 49
BP 2082
EP 2090
DI 10.1107/S160057671601431X
PN 6
PG 9
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA EG6ZW
UT WOS:000391195900024
PM 27980513
ER
PT J
AU Adlmann, FA
Palsson, GK
Bilheux, JC
Ankner, JF
Gutfreund, P
Kawecki, M
Wolff, M
AF Adlmann, F. A.
Palsson, G. K.
Bilheux, J. C.
Ankner, J. F.
Gutfreund, P.
Kawecki, M.
Wolff, M.
TI Overlataren: a fast way to transfer and orthogonalize two-dimensional
off-specular reflectivity data
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Article
DE off-specular scattering; neutron reflectometry; interfaces; surfaces
ID X-RAY-SCATTERING; MAGNETIC MULTILAYERS; NEUTRON REFLECTIVITY;
THIN-FILMS; COPOLYMER FILMS; SURFACE; TEMPERATURE; DIFFRACTION;
MEMBRANES; PHASE
AB Reflectivity measurements offer unique opportunities for the study of surfaces and interfaces, and specular reflectometry has become a standard tool in materials science to resolve structures normal to the surface of a thin film. Off-specular scattering, which probes lateral structures, is more difficult to analyse, because the Fourier space being probed is highly anisotropic and the scattering pattern is truncated by the interface. As a result, scattering patterns collected with (especially time-of-flight) neutron reflectometers are difficult to transform into reciprocal space for comparison with model calculations. A program package is presented for a generic two-dimensional transformation of reflectometry data into q space and back. The data are represented on an orthogonal grid, allowing cuts along directions relevant for theoretical modelling. This treatment includes background subtraction as well as a full characterization of the resolution function. The method is optimized for computational performance using repeatable operations and standardized instrument settings.
C1 [Adlmann, F. A.; Palsson, G. K.; Kawecki, M.; Wolff, M.] Uppsala Univ, Dept Phys & Astron, Div Mat Phys, Box 516, S-75120 Uppsala, Sweden.
[Palsson, G. K.; Gutfreund, P.] Inst Laue Langevin, BP 156, F-38042 Grenoble, France.
[Bilheux, J. C.; Ankner, J. F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA.
RP Adlmann, FA (reprint author), Uppsala Univ, Dept Phys & Astron, Div Mat Phys, Box 516, S-75120 Uppsala, Sweden.
EM franz.adlmann@physics.uu.se
FU Swedish Research Council [C0511501]; STINT [IG-2011-2067]; Scientific
User Facilities Division, Office of Basic Energy Sciences, US Department
of Energy
FX The authors acknowledge the Swedish Research Council (project grant
C0511501) and STINT (contract No. IG-2011-2067) for financial support.
This research at the Spallation Neutron Source of the ORNL was sponsored
by the Scientific User Facilities Division, Office of Basic Energy
Sciences, US Department of Energy. The authors express their gratitude
to the Large Scale Structures group at ILL for the good ongoing
partnership. Our deep gratitude is expressed towards A. Schebetov from
the Petersburg Nuclear Physics Institute and A. Vorobiev from Uppsala
University who provided the sample data for the SuperADAM section.
NR 43
TC 0
Z9 0
U1 3
U2 3
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5767
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD DEC
PY 2016
VL 49
BP 2091
EP 2099
DI 10.1107/S1600576716014382
PN 6
PG 9
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA EG6ZW
UT WOS:000391195900025
ER
PT J
AU Xie, R
Ilavsky, J
Huang, HF
Zhou, XL
Yang, C
Wang, YZ
Xu, HJ
AF Xie, R.
Ilavsky, J.
Huang, H. F.
Zhou, X. L.
Yang, C.
Wang, Y. Z.
Xu, H. J.
TI Dispersed SiC nanoparticles in Ni observed by ultra-small-angle X-ray
scattering
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Article
DE ultra-small-angle X-ray scattering (USAXS); nanoparticle-reinforced
metals; nuclear materials; Ni-SiC
ID ADVANCED PHOTON SOURCE; BEHAVIOR; COMPOSITE; ALLOYS; PHASE
AB A metal-ceramic composite, nickel reinforced with SiC nanoparticles, was synthesized and characterized for its potential application in next-generation molten salt nuclear reactors. Synchrotron ultra-small-angle X-ray scattering (USAXS) measurements were conducted on the composite. The size distribution and number density of the SiC nanoparticles in the material were obtained through data modelling. Scanning and transmission electron microscopy characterization were performed to substantiate the results of the USAXS measurements. Tensile tests were performed on the samples to measure the change in their yield strength after doping with the nanoparticles. The average interparticle distance was calculated from the USAXS results and is related to the increased yield strength of the composite.
C1 [Xie, R.; Huang, H. F.; Zhou, X. L.; Yang, C.; Xu, H. J.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
[Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Zhou, X. L.] ShanghaiTech Univ, Shanghai 201210, Peoples R China.
[Wang, Y. Z.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China.
RP Xie, R (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
EM xieruobing@sinap.ac.cn
OI Xie, Ruobing/0000-0003-0266-9122
FU National Natural Science Foundation of China [11505273]; Strategic
Priority Research Program of the Chinese Academy of Sciences
[XDA02000000]; Knowledge Innovation Program of the Chinese Academy of
Sciences [Y45501A031]; DOE Office of Science [DE-AC02-06CH11357]
FX This work was supported by the National Natural Science Foundation of
China (grant No. 11505273), the Strategic Priority Research Program of
the Chinese Academy of Sciences (grant No. XDA02000000) and the
Knowledge Innovation Program of the Chinese Academy of Sciences (grant
No. Y45501A031). This research used the resources of the Advanced Photon
Source, a US Department of Energy (DOE) Office of Science User Facility
operated for the DOE Office of Science by Argonne National Laboratory
under contract No. DE-AC02-06CH11357. The authors also appreciate the
beam time provided by beamline 16B of the Shanghai Synchrotron Radiation
Facility for the preliminary measurements.
NR 23
TC 0
Z9 0
U1 1
U2 1
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5767
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD DEC
PY 2016
VL 49
BP 2155
EP 2160
DI 10.1107/S1600576716015090
PN 6
PG 6
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA EG6ZW
UT WOS:000391195900032
ER
PT J
AU von Gundlach, AR
Garamus, VM
Willey, TM
Ilavsky, J
Hilpert, K
Rosenhahn, A
AF von Gundlach, A. R.
Garamus, V. M.
Willey, T. M.
Ilavsky, J.
Hilpert, K.
Rosenhahn, A.
TI Use of small-angle X-ray scattering to resolve intracellular structure
changes of Escherichia coli cells induced by antibiotic treatment
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Article
DE Escherichia coli ultrastructure; antibiotics; small-angle X-ray
scattering; SAXS; ultra-small-angle X-ray scattering; USAXS;
transmission electron microscopy; TEM
ID ADVANCED PHOTON SOURCE; RNA-POLYMERASE; ELECTRON-MICROSCOPY;
TRANSCRIPTION; ORGANIZATION; RIBOSOMES; SAXS; TRANSLATION; TRANSERTION;
BACTERIA
AB The application of small-angle X-ray scattering (SAXS) to whole Escherichia coli cells is challenging owing to the variety of internal constituents. To resolve their contributions, the outer shape was captured by ultra-small-angle X-ray scattering and combined with the internal structure resolved by SAXS. Building on these data, a model for the major structural components of E. coli was developed. It was possible to deduce information on the occupied volume, occurrence and average size of the most important intracellular constituents: ribosomes, DNA and proteins. E. coli was studied after treatment with three different antibiotic agents (chloramphenicol, tetracycline and rifampicin) and the impact on the intracellular constituents was monitored.
C1 [von Gundlach, A. R.; Rosenhahn, A.] Ruhr Univ Bochum, Analyt Chem Biointerfaces, Univ Str 150, D-44780 Bochum, Germany.
[Garamus, V. M.] Zentrum Mat & Kustenforsch GmbH, Helmholtz Zentrum Geesthacht, Max Planck Str 1, D-21502 Geesthacht, Germany.
[Willey, T. M.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
[Ilavsky, J.] Argonne Natl Lab, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Hilpert, K.] St Georges Univ London, Inst Infect & Immun, Cranmer Terrace, London SW17 0RE, England.
RP von Gundlach, AR (reprint author), Ruhr Univ Bochum, Analyt Chem Biointerfaces, Univ Str 150, D-44780 Bochum, Germany.
EM andreas.vongundlach@rub.de
RI Willey, Trevor/A-8778-2011
OI Willey, Trevor/0000-0002-9667-8830
NR 42
TC 1
Z9 1
U1 4
U2 4
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5767
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD DEC
PY 2016
VL 49
BP 2210
EP 2216
DI 10.1107/S1600576716018562
PN 6
PG 7
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA EG6ZW
UT WOS:000391195900037
PM 27980516
ER
PT J
AU Stiers, KM
Lee, CB
Nix, JC
Tanner, JJ
Beamer, LJ
AF Stiers, Kyle M.
Lee, Christopher B.
Nix, Jay C.
Tanner, John J.
Beamer, Lesa J.
TI Synchrotron-based macromolecular crystallography module for an
undergraduate biochemistry laboratory course
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Article
DE undergraduate education; macromolecular crystallography; synchrotron
sources; remote data collection
ID HISTIDINE ACID-PHOSPHATASE; FRANCISELLA-TULARENSIS; CRYSTAL-STRUCTURES;
BEAMLINES; EDUCATION; TUTORIAL; STUDENTS; SCIENCE; SYSTEM; TOOLS
AB This paper describes the introduction of synchrotron-based macromolecular crystallography (MX) into an undergraduate laboratory class. An introductory 2 week experimental module on MX, consisting of four laboratory sessions and two classroom lectures, was incorporated into a senior-level biochemistry class focused on a survey of biochemical techniques, including the experimental characterization of proteins. Students purified recombinant protein samples, set up crystallization plates and flash-cooled crystals for shipping to a synchrotron. Students then collected X-ray diffraction data sets from their crystals via the remote interface of the Molecular Biology Consortium beamline (4.2.2) at the Advanced Light Source in Berkeley, CA, USA. Processed diffraction data sets were transferred back to the laboratory and used in conjunction with partial protein models provided to the students for refinement and model building. The laboratory component was supplemented by up to 2 h of lectures by faculty with expertise in MX. This module can be easily adapted for implementation into other similar undergraduate classes, assuming the availability of local crystallographic expertise and access to remote data collection at a synchrotron source.
C1 [Stiers, Kyle M.; Lee, Christopher B.; Tanner, John J.; Beamer, Lesa J.] Univ Missouri, Biochem Dept, 117 Schweitzer Hall, Columbia, MO 65211 USA.
[Nix, Jay C.] Lawrence Berkeley Natl Lab, Mol Biol Consortium, Berkeley, CA 94720 USA.
RP Tanner, JJ; Beamer, LJ (reprint author), Univ Missouri, Biochem Dept, 117 Schweitzer Hall, Columbia, MO 65211 USA.
EM tannerjj@missouri.edu; beamerl@missouri.edu
FU NIH from NIGMS [T32 GM008396-26]; National Science Foundation [CHE
1506206]; Office of Science, Office of Basic Energy Sciences, of the US
Department of Energy [DE-AC02-05CH11231]; [MCB-0918389]
FX We thank the University of Missouri, including the Department of
Biochemistry and MU Structural Biology Core, for ongoing support of
institutional membership in the Molecular Biology Consortium of beamline
4.2.2 at the ALS. We also thank Abigail Graham for assistance with
pre-testing crystallization conditions for the MX module. KMS was
supported by NIH training grant T32 GM008396-26 from NIGMS. LJB is
supported by grant No. MCB-0918389 and JJT is supported by grant CHE
1506206 from the National Science Foundation. Part of this work was
performed at the Advanced Light Source. The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the US Department of Energy under contract
DE-AC02-05CH11231.
NR 26
TC 1
Z9 1
U1 0
U2 0
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5767
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD DEC
PY 2016
VL 49
BP 2235
EP 2243
DI 10.1107/S1600576716016800
PN 6
PG 9
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA EG6ZW
UT WOS:000391195900040
PM 27980518
ER
PT J
AU Zhang, Y
Inouye, H
Crowley, M
Yu, LM
Kaeli, D
Makowski, L
AF Zhang, Yan
Inouye, Hideyo
Crowley, Michael
Yu, Leiming
Kaeli, David
Makowski, Lee
TI Diffraction pattern simulation of cellulose fibrils using distributed
and quantized pair distances
SO JOURNAL OF APPLIED CRYSTALLOGRAPHY
LA English
DT Article
DE diffraction pattern simulation; cellulose fibrils; pair-distance
quantization; biomass fuels; algorithms
ID X-RAY-DIFFRACTION; NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM;
BIOMASS RECALCITRANCE; CRYSTAL-STRUCTURE; I-BETA; NANOSTRUCTURE;
MICROFIBRILS; ORIGINS
AB Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.
C1 [Zhang, Yan; Inouye, Hideyo; Yu, Leiming; Kaeli, David] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02148 USA.
[Crowley, Michael] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
[Makowski, Lee] Northeastern Univ, Dept Bioengn, Boston, MA 02148 USA.
[Makowski, Lee] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02148 USA.
RP Makowski, L (reprint author), Northeastern Univ, Dept Bioengn, Boston, MA 02148 USA.; Makowski, L (reprint author), Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02148 USA.
EM l.makowski@neu.edu
FU Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio),
an Energy Frontier Research Center - US Department of Energy, Office of
Science, Basic Energy Science [DE-SC0000997]
FX This work was supported as part of the Center for Direct Catalytic
Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research
Center funded by the US Department of Energy, Office of Science, Basic
Energy Science, under award No. DE-SC0000997.
NR 21
TC 0
Z9 0
U1 5
U2 5
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5767
J9 J APPL CRYSTALLOGR
JI J. Appl. Crystallogr.
PD DEC
PY 2016
VL 49
BP 2244
EP 2248
DI 10.1107/S1600576716013297
PN 6
PG 5
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA EG6ZW
UT WOS:000391195900041
ER
PT J
AU Nalli, NR
Barnet, CD
Reale, T
Liu, QH
Morris, VR
Spackman, JR
Joseph, E
Tan, CY
Sun, BM
Tilley, F
Leung, LR
Wolfe, D
AF Nalli, Nicholas R.
Barnet, Christopher D.
Reale, Tony
Liu, Quanhua
Morris, Vernon R.
Spackman, J. Ryan
Joseph, Everette
Tan, Changyi
Sun, Bomin
Tilley, Frank
Leung, L. Ruby
Wolfe, Daniel
TI Satellite Sounder Observations of Contrasting Tropospheric Moisture
Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric
Rivers
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID US WEST-COAST; CHANGING CLIMATE; ATLANTIC; AEROSOLS; SCIENCE; SYSTEM
AB This paper examines the performance of satellite sounder atmospheric vertical moisture profiles under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs), tropical Hadley cells, and Pacific Ocean atmospheric rivers (ARs). Operational satellite sounder moisture profile retrievals from the Suomi National Polar-Orbiting Partnership (SNPP) NOAA Unique Combined Atmospheric Processing System (NUCAPS) are empirically assessed using collocated dedicated radiosonde observations (raobs) obtained from ocean-based intensive field campaigns. The raobs from these campaigns provide uniquely independent correlative truth data not assimilated into numerical weather prediction (NWP) models for satellite sounder validation over oceans. Although ocean cases are often considered "easy" by the satellite remote sensing community, these hydro meteorological phenomena present challenges to passive sounders, including vertical gradient discontinuities (e.g., strong inversions), as well as persistent uniform clouds, aerosols, and precipitation. It is found that the operational satellite sounder 100-layer moisture profile NUCAPS product performs close to global uncertainty requirements in the SAL/Hadley cell environment, with biases relative to raob within 10% up to 350 hPa. In the more difficult AR environment, bias relative to raob is found to be within 20% up to 400 hPa. In both environments, the sounder moisture retrievals are comparable to NWP model outputs, and cross-sectional analyses show the capability of the satellite sounder for detecting and resolving these tropospheric moisture features, thereby demonstrating a near-real-time forecast utility over these otherwise raob-sparse regions.
C1 [Nalli, Nicholas R.; Tan, Changyi; Sun, Bomin; Tilley, Frank] IM Syst Grp Inc, Rockville, MD 20852 USA.
[Barnet, Christopher D.] Sci & Technol Corp, Columbia, MD USA.
[Reale, Tony; Liu, Quanhua] NOAA NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA.
[Morris, Vernon R.] Howard Univ, Washington, DC 20059 USA.
[Spackman, J. Ryan] NOAA, Earth Syst Res Lab, Sci & Technol Corp, Boulder, CO USA.
[Joseph, Everette] SUNY Albany, Albany, NY 12222 USA.
[Leung, L. Ruby] Pacific Northwest Natl Lab, Richland, WA USA.
[Wolfe, Daniel] Cooperat Inst Res Environm Sci, Boulder, CO USA.
RP Nalli, NR (reprint author), IM Syst Grp Inc, Rockville, MD 20852 USA.
EM nick.nalli@noaa.gov
FU NOAA/NESDIS Joint Polar Satellite System (JPSS) Office; Center for
Satellite Applications and Research (STAR) Satellite Meteorology and
Climatology Division; NOAA/EPP/MSI [NA11SEC4810003]; NOAA [NA17AE1625,
NA17AE1623]; Physical Sciences Division at the NOAA Earth System
Research Laboratory; U.S. DOE ARM program; U.S. DOE Office of Science
Biological and Environmental Research Regional and Global Climate
Modeling program [KP17030010]; U.S. DOE [DE-AC05-76RLO1830]
FX This research (N. R. Nalli, C. D. Barnet, T. Reale, Q. Liu, C. Tan, B.
Sun, and F. Tilley) was supported by the NOAA/NESDIS Joint Polar
Satellite System (JPSS) Office and the Center for Satellite Applications
and Research (STAR) Satellite Meteorology and Climatology Division. NCAS
(V. Morris and E. Joseph) is funded by NOAA/EPP/MSI Cooperative
Agreement NA11SEC4810003. AEROSE works in collaboration with the
Prediction and Research Moored Array in the Tropical Atlantic (PIRATA)
Northeast Extension (PNE) and is supported by NOAA Grants NA17AE1625
(Educational Partnership Program) and NA17AE1623. CalWater 2015/ACAPEX
investigators (J. R. Spackman and D. Wolfe) were supported by research
funds from the Physical Sciences Division at the NOAA Earth System
Research Laboratory. ACAPEX was supported by the U.S. DOE ARM program.
GCOS Reference Upper-Air Network (GRUAN) reprocessing was performed
courtesy of R. Dirksen (GRUAN Lead Center). L. R. Leung was supported by
the U.S. DOE Office of Science Biological and Environmental Research
Regional and Global Climate Modeling program (Grant KP17030010). The
Pacific Northwest National Laboratory is managed by Battelle for the
U.S. DOE under contract DE-AC05-76RLO1830. We acknowledge NUCAPS
collaborators for their support of NUCAPS development and validation: A.
Gambacorta [Science and Technology Corporation (STC)], F.
Iturbide-Sanchez, M. Wilson, K. Zhang, and A. K. Sharma. We are grateful
to AEROSE and CalWater/ACAPEX collaborators: C. Fairall and J. Intrieri
(chief scientists onboard the Ronald H. Brown); N. Hickmon and M.
Ritsche (AMF2 facility managers); M. Oyola and E. Roper [Howard
University (HU) NOAA Center for Atmospheric Sciences (NCAS)]; J. W.
Smith [National Research Council (NRC)]; M. Szczodrak and M. Izaguirre
[University of Miami (UM) Rosenstiel School of Marine and Atmospheric
Science (RSMAS)]; and countless students and crews of the NOAA Ronald H.
Brown. The views, opinions, and findings contained in this report are
those of the authors and should not be construed as an official National
Oceanic and Atmospheric Administration or U.S. Government position,
policy, or decision.
NR 30
TC 0
Z9 0
U1 8
U2 8
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD DEC
PY 2016
VL 17
IS 12
BP 2997
EP 3006
DI 10.1175/JHM-D-16-0163.1
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EG6MA
UT WOS:000391159400002
ER
PT J
AU Ghate, VP
Kollias, P
AF Ghate, Virendra P.
Kollias, Pavlos
TI On the Controls of Daytime Precipitation in the Amazonian Dry Season
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID SOUTH-AMERICAN MONSOON; BOUNDARY-LAYER; RAIN-FOREST; ATMOSPHERIC
CONTROLS; DIURNAL-VARIATION; DEEP CONVECTION; WATER-VAPOR; LIFE-CYCLE;
LAND; CLIMATE
AB The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily a result of local land-atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. The control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin.
C1 [Ghate, Virendra P.] Argonne Natl Lab, Lemont, IL USA.
[Kollias, Pavlos] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Kollias, Pavlos] SUNY Stony Brook, Stony Brook, NY 11794 USA.
RP Ghate, VP (reprint author), Argonne Natl Lab, Environm Sci, 9700 S Cass Ave, Lemont, IL 60439 USA.
EM vghate@anl.gov
FU U.S. Department of Energy's (DOE) Atmospheric System Research (ASR), an
Office of Science, Office of Biological and Environmental Research (BER)
program [DE-AC02-06CH11357, DE-SC00112704]; National Science Foundation
(NSF) [AGS-1445831]; U.S. Department of Energy, Office of Science,
Office of Biological and Environmental Research, Climate and
Environmental Sciences Division (CESD)
FX We thank Dr. Anthony D. Del Genio and Dr. Stephen W. Nesbitt for helpful
discussions that led to significant improvement in the manuscript. This
work was primarily supported by the U.S. Department of Energy's (DOE)
Atmospheric System Research (ASR), an Office of Science, Office of
Biological and Environmental Research (BER) program, under Contract
DE-AC02-06CH11357 awarded to Argonne National Laboratory and Contract
DE-SC00112704 awarded to Brookhaven National Laboratory. This research
was also supported by the National Science Foundation (NSF) Grant
AGS-1445831 awarded to the University of Chicago. All the data used in
this study were obtained from the Atmospheric Radiation Measurement
(ARM) program sponsored by the U.S. Department of Energy, Office of
Science, Office of Biological and Environmental Research, Climate and
Environmental Sciences Division (CESD). We gratefully acknowledge the
computing resources provided on Blues, a high-performance computing
cluster operated by the Laboratory Computing Resource Center (LCRC) at
the Argonne National Laboratory.
NR 52
TC 0
Z9 0
U1 5
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD DEC
PY 2016
VL 17
IS 12
BP 3079
EP 3097
DI 10.1175/JHM-D-16-0101.1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EG6MA
UT WOS:000391159400007
ER
PT J
AU Rhee, YJ
Nam, SM
Peebles, J
Sawada, H
Wei, M
Vaisseau, X
Sasaki, T
Giuffrida, L
Hulin, S
Vauzour, B
Santos, JJ
Batani, D
McLean, HS
Patel, PK
Li, YT
Yuan, DW
Zhang, K
Zhong, JY
Fu, CB
Hua, N
Li, K
Zhang, Y
Zhu, JQ
Kim, IJ
Jeon, JH
Jeong, TM
Choi, IW
Lee, HW
Sung, JH
Lee, SK
Nam, CH
AF Rhee, Y. J.
Nam, S. M.
Peebles, J.
Sawada, H.
Wei, M.
Vaisseau, X.
Sasaki, T.
Giuffrida, L.
Hulin, S.
Vauzour, B.
Santos, J. J.
Batani, D.
McLean, H. S.
Patel, P. K.
Li, Y. T.
Yuan, D. W.
Zhang, K.
Zhong, J. Y.
Fu, C. B.
Hua, N.
Li, K.
Zhang, Y.
Zhu, J. Q.
Kim, I. J.
Jeon, J. H.
Jeong, T. M.
Choi, I. W.
Lee, H. W.
Sung, J. H.
Lee, S. K.
Nam, C. H.
TI Spectral tomographic analysis of Bremsstrahlung X-rays generated in a
laser-produced plasma
SO LASER AND PARTICLE BEAMS
LA English
DT Article
DE Bremsstrahlung X-ray; Filter stack spectrometer; Laser-produced plasma;
Spectral reconstruction; X-ray spectrometer
ID FAST IGNITION; TARGETS; DRIVEN; SOLIDS
AB A new approach is proposed to analyze Bremsstrahlung X-rays that are emitted from laser-produced plasmas (LPP) and are measured by a stack type spectrometer. This new method is based on a spectral tomographic reconstruction concept with the variational principle for optimization, without referring to the electron energy distribution of a plasma. This approach is applied to the analysis of some experimental data obtained at a few major laser facilities to demonstrate the applicability of the method. Slope temperatures of X-rays from LPP are determined with a two-temperature model, showing different spectral characteristics of X-rays depending on laser properties used in the experiments.
C1 [Rhee, Y. J.; Nam, S. M.] Korea Atom Energy Res Inst, Daejeon 34057, South Korea.
[Rhee, Y. J.; Kim, I. J.; Jeon, J. H.; Jeong, T. M.; Choi, I. W.; Lee, H. W.; Sung, J. H.; Lee, S. K.; Nam, C. H.] Inst Basic Sci, Ctr Relativist Laser Sci, Gwangju 61005, South Korea.
[Peebles, J.; Sawada, H.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Wei, M.] Gen Atom Co, San Diego, CA 92121 USA.
[Vaisseau, X.; Sasaki, T.; Giuffrida, L.; Hulin, S.; Vauzour, B.; Santos, J. J.; Batani, D.] Univ Bordeaux, CNRS, CEA, CELIA Ctr Lasers Intenses & Applicat,UMR 5107, F-33405 Talence, France.
[Giuffrida, L.] ASCR, Vvi FZU, Inst Phys, ELI Beamlines Project, Prague, Czech Republic.
[McLean, H. S.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Li, Y. T.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Yuan, D. W.; Zhang, K.; Zhong, J. Y.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China.
[Fu, C. B.] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China.
[Hua, N.; Li, K.; Zhang, Y.; Zhu, J. Q.] SIOM, Natl Lab High Power Laser & Phys, Shanghai 201800, Peoples R China.
[Kim, I. J.; Jeong, T. M.; Choi, I. W.; Sung, J. H.; Lee, S. K.] GIST, Adv Photon Res Inst, Gwangju 61005, South Korea.
[Kim, I. J.] KBSI, Opt Instrumentat Dev Team, Daejeon 34133, South Korea.
[Nam, C. H.] GIST, Dept Phys & Photon Sci, Gwangju 61005, South Korea.
RP Rhee, YJ (reprint author), Korea Atom Energy Res Inst, Daejeon 34057, South Korea.; Rhee, YJ (reprint author), Inst Basic Sci, Ctr Relativist Laser Sci, Gwangju 61005, South Korea.
EM yjrhee@ibs.re.kr
RI Fu, Changbo/O-1550-2015;
OI Sawada, Hiroshi/0000-0002-7972-9894
FU Global R&D Networking Program - Republic of Korea's Ministry of Science,
ICT and Future Planning [NRF-2012-0004839]
FX The authors would like to thank all the staffs and technical persons who
had taken care of the laser systems in TITAN facility of LLNL, SG II
facility of SIOM, and Petawatt Laser Facility of CoReLS/IBS. This work
was partly supported by the Global R&D Networking Program
(NRF-2012-0004839) funded by the Republic of Korea's Ministry of
Science, ICT and Future Planning.
NR 30
TC 0
Z9 0
U1 5
U2 5
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0263-0346
EI 1469-803X
J9 LASER PART BEAMS
JI Laser Part. Beams
PD DEC
PY 2016
VL 34
IS 4
BP 645
EP 654
DI 10.1017/S0263034616000604
PG 10
WC Physics, Applied
SC Physics
GA EH0HC
UT WOS:000391443700009
ER
PT J
AU Abere, MJ
Zhong, ML
Kruger, J
Bonse, J
AF Abere, Michael J.
Zhong, Minlin
Krueger, Joerg
Bonse, Joern
TI Ultrafast laser-induced morphological transformations
SO MRS BULLETIN
LA English
DT Article
ID PERIODIC SURFACE-STRUCTURE; FEMTOSECOND; ABLATION; SOLIDS; PULSES;
SILICON; GAAS; TRANSITIONS; BOTTOM; OPTICS
AB Ultrafast laser processing can be used to realize various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization via the generation of "self-ordered" micro- and nanostructures as well as their hierarchical hybrids. Irradiation with high-intensity laser pulses excites materials into extreme conditions, which then return to equilibrium through these unique surface transformations. In combination with suitable top-down or bottom-up manufacturing strategies, such laser-tailored surface morphologies open up new avenues toward the control of optical, chemical, and mechanical surface properties, featuring various technical applications especially in the fields of photovoltaics, tribology, and medicine. This article reviews recent efforts in the fundamental understanding of the formation of laser-induced surface micro- and nanostructures and discusses some of their emerging capabilities.
C1 [Abere, Michael J.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Zhong, Minlin] Tsinghua Univ, Sch Mat Sci & Engn, Laser Mat Proc Res Ctr, Beijing, Peoples R China.
[Krueger, Joerg; Bonse, Joern] Bundesanstalt Mat Forsch & Prufung BAM, Nanomat Technol Div 6 4, Berlin, Germany.
RP Abere, MJ (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
EM mjabere@sandia.gov; zhml@tsinghua.edu.cn; joerg.krueger@bam.de;
joern.bonse@bam.de
RI Bonse, Jorn/B-9361-2008; Kruger, Jorg/C-2833-2009
OI Bonse, Jorn/0000-0003-4984-3896;
FU Air Force Office of Scientific Research at the University of Michigan
[FA9550-12-1-0465]; US Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX M.J.A.'s contributions to this work were supported by the Air Force
Office of Scientific Research Contract No. FA9550-12-1-0465 at the
University of Michigan. M.J.A. is currently affiliated with Sandia
National Laboratories, which is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the US Department of Energy's National Nuclear
Security Administration under Contract DE-AC04-94AL85000.
NR 41
TC 0
Z9 0
U1 4
U2 4
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0883-7694
EI 1938-1425
J9 MRS BULL
JI MRS Bull.
PD DEC
PY 2016
VL 41
IS 12
BP 969
EP 974
DI 10.1557/mrs.2016.271
PG 6
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA EH0EZ
UT WOS:000391437100013
ER
PT J
AU Yoo, JH
Kim, E
Hwang, DJ
AF Yoo, Jae-Hyuck
Kim, Eunpa
Hwang, David J.
TI Femtosecond laser patterning, synthesis, defect formation, and
structural modification of atomic layered materials
SO MRS BULLETIN
LA English
DT Article
ID NEAR-FIELD; MOS2 TRANSISTORS; GRAPHENE
AB This article summarizes recent research on laser-based processing of two-dimensional (2D) atomic layered materials, including graphene and transition-metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated and ultrafast laser radiation under ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook on developing further advanced laser processing with scalability, in situ monitoring strategies, and potential applications.
C1 [Yoo, Jae-Hyuck] Lawrence Livermore Natl Lab, Lawrence, KS 94550 USA.
[Kim, Eunpa] Samsung Elect, Suwon, South Korea.
[Hwang, David J.] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA.
RP Yoo, JH (reprint author), Lawrence Livermore Natl Lab, Lawrence, KS 94550 USA.
EM yoo5@llnl.gov; eunpa.kim@samsung.com; david.hwang@stonybrook.edu
FU US Department of Energy, National Nuclear Security Administration
[DE-AC52-07NA27344]; National Science Foundation (NSF) [EEC-1449305];
Technology Advancement Research Program - Ministry of Land,
Infrastructure, and Transport of the Korean government
[14CTAP-C086566-01-000000]; industry technology R&D program of
MOTIE/KEIT [10050501]; NSF [CMMI 1265122]; Nebraska Center for Energy
Sciences Research; US Office of Naval Research [N0014-019-1-0943]
FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore
National Security, LLC, for the US Department of Energy, National
Nuclear Security Administration under Contract DE-AC52-07NA27344. E.K.
acknowledges support to the Laser Thermal Laboratory at UC Berkeley by
the National Science Foundation (NSF) under Grant No. EEC-1449305. The
laser doping experiments were carried out at the Laser-Assisted Chemical
Vapor Deposition setup in the University of California, Berkeley Marvell
Nanolab. Analysis of the doped structures was conducted in collaboration
with J. Wu's team at University of California, Berkeley Materials
Science & Engineering. D.H. acknowledges the support of Grant No.
14CTAP-C086566-01-000000 from Technology Advancement Research Program
funded by the Ministry of Land, Infrastructure, and Transport of the
Korean government, and also to the industry technology R&D program of
MOTIE/KEIT No. 10050501. The authors thank Y.F. Lu at the University of
Nebraska-Lincoln for contributing results on ultrafast laser direct
writing of graphene patterns, supported by the NSF (CMMI 1265122),
Nebraska Center for Energy Sciences Research, and the US Office of Naval
Research (N0014-019-1-0943).
NR 43
TC 1
Z9 1
U1 15
U2 15
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0883-7694
EI 1938-1425
J9 MRS BULL
JI MRS Bull.
PD DEC
PY 2016
VL 41
IS 12
BP 1002
EP 1007
DI 10.1557/mrs.2016.248
PG 6
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA EH0EZ
UT WOS:000391437100017
ER
PT J
AU Vasudevan, RK
Ziatdinov, M
Chen, C
Kalinin, SV
AF Vasudevan, R. K.
Ziatdinov, M.
Chen, C.
Kalinin, S. V.
TI Analysis of citation networks as a new tool for scientific research
SO MRS BULLETIN
LA English
DT Article
ID EMERGING TRENDS; BIFEO3; FILMS; FLEXOELECTRICITY; MANGANITES; CITESPACE;
CRYSTALS; OXYGEN
AB The rapid growth of scientific publications necessitates new methods to understand the direction of scientific research within fields of study, ascertain the importance of particular groups, authors, or institutions, compute metrics that can determine the importance (centrality) of particular seminal papers, and provide insight into the social (collaboration) networks that are present. We present one such method based on analysis of citation networks, using the freely available CiteSpace Program. We use citation network analysis on three examples, including a single material that has been widely explored in the last decade (BiFeO3), two small subfields with a minimal number of authors (flexoelectricity and Kitaev physics), and a much wider field with thousands of publications pertaining to a single technique (scanning tunneling microscopy). Interpretation of the analysis and key insights into the fields, such as whether the fields are experiencing resurgence or stagnation, are discussed, and author or collaboration networks that are prominent are determined. Such methods represent a paradigm shift in our way of dealing with the large volume of scientific publications and could change the way literature searches and reviews are conducted, as well as how the impact of specific work is assessed.
C1 [Vasudevan, R. K.; Ziatdinov, M.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA.
[Vasudevan, R. K.; Ziatdinov, M.; Kalinin, S. V.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37830 USA.
[Chen, C.] Drexel Univ, Dept Informat Sci, Coll Comp Informat, Philadelphia, PA 19104 USA.
RP Vasudevan, RK (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA.; Vasudevan, RK (reprint author), Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37830 USA.
EM rvv@ornl.gov; ziatdinovma@ornl.gov; chaomei.chen@drexel.edu;
sergei2@ornl.gov
FU Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory; Division of Materials Sciences and Engineering,
BES, US DOE
FX Research for R.K.V. and S.V.K. was sponsored by the Laboratory Directed
Research and Development Program of Oak Ridge National Laboratory,
managed by UT-Battelle, LLC, for the US Department of Energy (DOE). M.Z.
acknowledges support from the Division of Materials Sciences and
Engineering, BES, US DOE. Research was conducted at the Center for
Nanophase Materials Sciences, which is a DOE Office of Science User
Facility.
NR 29
TC 0
Z9 0
U1 22
U2 22
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0883-7694
EI 1938-1425
J9 MRS BULL
JI MRS Bull.
PD DEC
PY 2016
VL 41
IS 12
BP 1009
EP 1015
DI 10.1557/mrs.2016.270
PG 7
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA EH0EZ
UT WOS:000391437100018
ER
PT J
AU Nygren, RE
Tabares, FL
AF Nygren, R. E.
Tabares, F. L.
TI Liquid surfaces for fusion plasma facing components-A critical review.
Part I: Physics and PSI
SO NUCLEAR MATERIALS AND ENERGY
LA English
DT Review
DE Liquid surface; Plasma facing components; Plasma facing materials;
Divertor; First wall; Fusion technology
ID CAPILLARY-PORE SYSTEMS; HIGH-HEAT-FLUX; LITHIUM DIVERTOR; 1ST
EXPERIMENTS; TOKAMAK; NSTX; PERFORMANCE; EAST; LIMITER; DEVICES
AB This review of the potential of robust plasma facing components (PFCs) with liquid surfaces for applications in future D/T fusion device summarizes the critical issues for liquid surfaces and research being done worldwide in confinement facilities, and supporting R&D in plasma surface interactions. In the paper are a set of questions and related criteria by which we will judge the progress and readiness of liquid surface PFCs. Part-II (separate paper) will cover R&D on the technology-oriented aspects of liquid surfaces including the liquid surfaces as integrated first walls in tritium breeding blankets, tritium retention and recovery, and safety. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
C1 [Nygren, R. E.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Tabares, F. L.] Assoc CIEMAT, Madrid, Spain.
RP Nygren, RE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM renygre@sandia.gov
OI Tabares, Francisco/0000-0001-7045-8672
FU US Dept. of Energy [LAB12-03]; NSTX-Lab Grant; Spanish Ministry of
Economy and Competivity [FIS2010-20911]; Tabares at CIEMAT
[ENE2014-58918-R]
FX US Dept. of Energy Grant LAB12-03, an NSTX-Lab Grant administered by the
Office of Fusion Energy Sciences supports Nygren's work on liquid
surfaces. The Spanish Ministry of Economy and Competivity under Grants
FIS2010-20911 and ENE2014-58918-R supports work on Li by Tabares at
CIEMAT.
NR 127
TC 1
Z9 1
U1 3
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2352-1791
J9 NUCL MATER ENERGY
JI Nucl. Mater. Energy
PD DEC
PY 2016
VL 9
BP 6
EP 21
DI 10.1016/j.nme.2016.08.008
PG 16
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA EG6YF
UT WOS:000391191500002
ER
PT J
AU Sakurada, S
Yuyama, K
Uemura, Y
Fujita, H
Hu, C
Toyama, T
Yoshida, N
Hinoki, T
Kondo, S
Shimada, M
Buchenauer, D
Chikada, T
Oya, Y
AF Sakurada, S.
Yuyama, K.
Uemura, Y.
Fujita, H.
Hu, C.
Toyama, T.
Yoshida, N.
Hinoki, T.
Kondo, S.
Shimada, M.
Buchenauer, D.
Chikada, T.
Oya, Y.
TI Annealing effects on deuterium retention behavior in damaged tungsten
SO NUCLEAR MATERIALS AND ENERGY
LA English
DT Article
DE Hydrogen isotopes retention; Heavy-ion irradiation; Annealing; TDS; TEM;
PAS
ID IRRADIATION; HYDROGEN; DEFECTS; IONS
AB Effects of annealing after/under iron (Fe) ion irradiation on deuterium (D) retention behavior in tungsten (W) were studied. The D-2 TDS spectra as a function of heating temperature for 0.1 dpa damaged W showed that the D retention was clearly decreased as the annealing temperature was increased. In particular, the desorption of D trapped by voids was largely reduced by annealing at 1173 K. The TEM observation indicated that the size of dislocation loops was clearly grown, and its density was decreased by the annealing above 573 K. After annealing at 1173 K, almost all the dislocation loops were recovered. The results of positron annihilation spectroscopy suggested that the density of vacancy-type defects such as voids, was decreased as the annealing temperature was increased, while its size was increased, indicating that the D retention was reduced by the recovery of the voids. Furthermore, it was found that the desorption temperature of D trapped by the voids for damaged W above 0.3 dpa was shifted toward higher temperature side. These results lead to a conclusion that the D retention behavior is controlled by defect density. The D retention in the samples annealed during irradiation was less than that annealed after irradiation. This result shows that defects would be quickly annihilated before stabilization by annealing during irradiation. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
C1 [Sakurada, S.; Yuyama, K.; Uemura, Y.; Fujita, H.; Hu, C.; Chikada, T.; Oya, Y.] Shizuoka Univ, Grad Sch Sci & Technol, Shizuoka, Japan.
[Toyama, T.] Tohoku Univ, Inst Mat Res, Ibaraki, Japan.
[Yoshida, N.] Kyushu Univ, Inst Appl Mech, Fukuoka, Japan.
[Hinoki, T.; Kondo, S.] Kyoto Univ, Inst Adv Energy, Kyoto, Japan.
[Shimada, M.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID USA.
[Buchenauer, D.] Sandia Natl Labs, Hydrogen & Combust Technol Dept, Livermore, CA USA.
RP Sakurada, S (reprint author), Shizuoka Univ, Grad Sch Sci & Technol, Shizuoka, Japan.
EM sakurada.shodai.15@shizuoka.ac.jp
RI Kyushu, RIAM/F-4018-2015
FU Joint Usage/Research Program on Zero-Emission Energy Research, Institute
of Advanced Energy, Kyoto University; Collaborative Research Program of
Research Institute for Applied Mechanics, Kyushu University
FX This study was supported by the Joint Usage/Research Program on
Zero-Emission Energy Research, Institute of Advanced Energy, Kyoto
University, by the Collaborative Research Program of Research Institute
for Applied Mechanics, Kyushu University. The Fe ion irradiation was
done in the framework of the collaborative research program at JAEA and
KAIHOKEN at The University of Tokyo.
NR 9
TC 0
Z9 0
U1 4
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2352-1791
J9 NUCL MATER ENERGY
JI Nucl. Mater. Energy
PD DEC
PY 2016
VL 9
BP 141
EP 144
DI 10.1016/j.nme.2016.06.012
PG 4
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA EG6YF
UT WOS:000391191500024
ER
PT J
AU Leonard, KJ
List, FA
Aytug, T
Gapud, AA
Geringer, JW
AF Leonard, K. J.
List, F. A., III
Aytug, T.
Gapud, A. A.
Geringer, J. W.
TI Irradiation performance of rare earth and nanoparticle enhanced high
temperature superconducting films based on YBCO
SO NUCLEAR MATERIALS AND ENERGY
LA English
DT Article
DE Superconductors; Neutron irradiation; Electrical properties; Fusion
ID YBA2CU3O7-DELTA THIN-FILMS; CRITICAL-CURRENT-DENSITY;
NEUTRON-IRRADIATION; COLUMNAR DEFECTS; ELECTRON-IRRADIATION; PINNING
IMPROVEMENT; RADIATION-DAMAGE; MICROSTRUCTURE; FIELD
AB The new series of commercially produced high temperature superconducting (HTS) tapes based on the YBa2Cu3O7 (YBCO) structure have attracted renewed attention for their performance under applied magnetic fields without significant loss in supercurrent compared to the earlier generation of conductors. This adaptability is achieved through rare earth substitution and dopants resulting in the formation of nanoparticles and extended defects within the superconducting film matrix. The electrical performance of Zr-(Gd-x,Y1-x)Ba2Cu3O7 and (Y1-x,Dy-x)Ba2Cu3O7 coated conductor tapes were tested prior to and after neutron exposures between 6.54 x 10(17) and 7.00 x 10(18) n/cm(2) (E > 0.1 MeV). Results showed a decrease in superconducting current with neutron irradiation for the range of fluences tested, with losses in the Zr-(Gd-x,Y1-x)Ba2Cu3O7 conductor being more rapid. Post-irradiation testing was limited to evaluation at 77 K and applied fields of up to 0.5 Tesla, and therefore testing at lower temperatures and higher applied fields may result in improved superconducting properties as shown in previous ion irradiation work. Under the conditions tested, the doped conductors showed a loss in critical current at fluences lower than that of undoped YBa2Cu3O7 tapes reported on in literature. (C) 2016 The Authors. Published by Elsevier Ltd.
C1 [Leonard, K. J.; List, F. A., III; Aytug, T.; Geringer, J. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Gapud, A. A.] Univ S Alabama, Dept Phys, Mobile, AL USA.
RP Leonard, KJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
EM leonardk@ornl.gov
OI Aytug, Tolga/0000-0001-7971-5508
FU U.S. Department of Energy, Office of Science, Fusion Energy Sciences;
U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy
FX The authors would like to thank Frank Riley and Joel McDuffee who helped
with capsule preparation and A. Marie Williams for her assistance in
testing the irradiated samples. This research supported by the U.S.
Department of Energy, Office of Science, Fusion Energy Sciences. This
manuscript has been authored by UT-Battelle, LLC, under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).
NR 34
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2352-1791
J9 NUCL MATER ENERGY
JI Nucl. Mater. Energy
PD DEC
PY 2016
VL 9
BP 251
EP 255
DI 10.1016/j.nme.2016.03.004
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA EG6YF
UT WOS:000391191500043
ER
PT J
AU Safi, E
Polvi, J
Lasa, A
Nordlund, K
AF Safi, E.
Polvi, J.
Lasa, A.
Nordlund, K.
TI Atomistic simulations of deuterium irradiation on iron-based alloys in
future fusion reactors
SO NUCLEAR MATERIALS AND ENERGY
LA English
DT Article
ID ENERGY
AB Iron-based alloys are now being considered as plasma-facing materials for the first wall of future fusion reactors. Therefore, the iron (Fe) and carbon (C) erosion will play a key role in predicting the life-time and viability of reactors with steel walls. In this work, the surface erosion and morphology changes due to deuterium (D) irradiation in pure Fe, Fe with 1% C impurity and the cementite, are studied using molecular dynamics (MD) simulations, varying surface temperature and impact energy. The sputtering yields for both Fe and C were found to increase with incoming energy. In iron carbide, C sputtering was preferential to Fe and the deuterium was mainly trapped as D 2 in bubbles, while mostly atomic D was present in Fe and Fe-1%C. The sputtering yields obtained from MD were compared to SDTrimSP yields. At lower impact energies, the sputtering mechanism was of both physical and chemical origin, while at higher energies (>100 eV) the physical sputtering dominated. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
C1 [Safi, E.; Polvi, J.; Nordlund, K.] Univ Helsinki, Assoc EURATOM Tekes, POB 43, FIN-00014 Helsinki, Finland.
[Lasa, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Safi, E (reprint author), Univ Helsinki, Assoc EURATOM Tekes, POB 43, FIN-00014 Helsinki, Finland.
EM elnaz.safi@helsinki.fi
OI Lasa, Ane/0000-0002-6435-1884; Nordlund, Kai/0000-0001-6244-1942
FU Euratom research and training program [633053]
FX This work has been carried out within the framework of the EUROfusion
consortium and has received funding from the Euratom research and
training program 2014-2018 under grant agreement No. 633053. The views
and opinions expressed herein do not necessarily reflect those of the
European commission. Grants for computer time from CSC, the IT center
science in Espoo, Finland, are gratefully acknowledged.
NR 19
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2352-1791
J9 NUCL MATER ENERGY
JI Nucl. Mater. Energy
PD DEC
PY 2016
VL 9
BP 571
EP 575
DI 10.1016/j.nme.2016.08.021
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA EG6YF
UT WOS:000391191500099
ER
PT J
AU Borodin, D
Brezinsek, S
Borodkina, I
Romazanov, J
Matveev, D
Kirschner, A
Lasa, A
Nordlund, K
Bjorkas, C
Airila, M
Miettunen, J
Groth, M
Firdaouss, M
AF Borodin, D.
Brezinsek, S.
Borodkina, I.
Romazanov, J.
Matveev, D.
Kirschner, A.
Lasa, A.
Nordlund, K.
Bjorkas, C.
Airila, M.
Miettunen, J.
Groth, M.
Firdaouss, M.
CA JET Contributors
TI Improved ERO modelling for spectroscopy of physically and chemically
assisted eroded beryllium from the JET-ILW
SO NUCLEAR MATERIALS AND ENERGY
LA English
DT Article
DE Beryllium; Erosion; JET ITER-like wall; Spectroscopy
ID ITER-LIKE WALL; EROSION
AB Physical and chemical assisted physical sputtering were characterised by the Be I and Be II line and BeD band emission in the observation chord measuring the sightline integrated emission in front of the inner beryllium limiter at the torus midplane. The 3D local transport and plasma-surface interaction Monte-Carlo modelling (ERO code [18]) is a key for the interpretation of the observations in the vicinity of the shaped solid Be limiter. The plasma parameter variation (density scan) in limiter regime has provided a useful material for the simulation benchmark. The improved background plasma parameters input, the new analytical expression for particle tracking in the sheath region and implementation of the BeD release into ERO has helped to clarify some deviations between modelling and experiments encountered in the previous studies [4,5]. Reproducing the observations provides additional confidence in our 'ERO-min' fit for the physical sputtering yields for the plasma-wetted areas based on simulated data. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
C1 [Borodin, D.; Brezinsek, S.; Borodkina, I.; Romazanov, J.; Matveev, D.; Kirschner, A.] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany.
[Borodkina, I.] Natl Res Nucl Univ MEPhI, 31 Kashirskoe Sh, Moscow 115409, Russia.
[Lasa, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Nordlund, K.; Bjorkas, C.; Airila, M.] VIT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland.
[Miettunen, J.; Groth, M.] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland.
[Firdaouss, M.] IRFM, CEA, F-13108 St Paul Les Durance, France.
RP Borodin, D (reprint author), Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany.
EM d.borodin@fz-juelich.de
RI Groth, Mathias/G-2227-2013; Brezinsek, Sebastijan/B-2796-2017
OI Brezinsek, Sebastijan/0000-0002-7213-3326
FU Euratom research and training programme [633053]
FX This work has been carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom research and
training programme 2014-2018 under grant agreement No 633053. The views
and opinions expressed herein do not necessarily reflect those of the
European Commission. Computer time on JURECA was provided by the Julich
Supercomputing Centre.
NR 18
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2352-1791
J9 NUCL MATER ENERGY
JI Nucl. Mater. Energy
PD DEC
PY 2016
VL 9
BP 604
EP 609
DI 10.1016/j.nme.2016.08.013
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA EG6YF
UT WOS:000391191500105
ER
PT J
AU Enders, B
Thibault, P
AF Enders, B.
Thibault, P.
TI A computational framework for ptychographic reconstructions
SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING
SCIENCES
LA English
DT Article
DE X-ray; microscopy; ptychography; diffraction; Python; phase retrieval
ID RAY-DIFFRACTION MICROSCOPY; NEAR-FIELD PTYCHOGRAPHY; PHASE RETRIEVAL;
COMPUTED-TOMOGRAPHY; RESOLUTION; HOLOGRAPHY; ALGORITHM; PYTHON
AB Ptychography is now a well-established X-ray microscopy tool for synchrotron end-stations equipped with a scanning stage and a pixelated detector. Ptychographic phasing algorithms use information from coherent diffraction to deliver quantitative images of the specimen at a resolution higher than the scanning resolution. These algorithms have traditionally been implemented in software on a per-instrument basis in various degrees of user-friendliness and sophistication. Here, we present Ptypy, a ptychography software written with the intention to serve as a framework across the diverse sets of available instruments and usage cases. A distinctive feature of the software is its formalism, which provides a convenient abstraction of the physical model, thus allowing for concise algorithmic implementations and portability across set-up geometries. We give an overview of the supported usage cases, explain the abstraction layer and design principles, and provide a step-by-step guide describing how an algorithm may be realized in a concise and readable manner. The software capabilities are illustrated with reconstructions from visible light and X-ray data.
C1 [Enders, B.] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany.
[Enders, B.] Tech Univ Munich, Inst Med Engn, D-85747 Garching, Germany.
[Enders, B.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Thibault, P.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
RP Enders, B (reprint author), Tech Univ Munich, Dept Phys, D-85747 Garching, Germany.; Enders, B (reprint author), Tech Univ Munich, Inst Med Engn, D-85747 Garching, Germany.; Enders, B (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
EM benders@tum.de
FU DFG Cluster of Excellence Munich-Centre for Advanced Photonics [EXC
158]; TUM Graduate School; European Research Council under project
'OptImaX' [279753]
FX B.E. acknowledges financial support through the DFG Cluster of
Excellence Munich-Centre for Advanced Photonics (EXC 158) and the TUM
Graduate School. P.T. acknowledges funding through the European Research
Council under the project 'OptImaX' (starting grant no. 279753).
NR 54
TC 0
Z9 0
U1 2
U2 2
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 1364-5021
EI 1471-2946
J9 P ROY SOC A-MATH PHY
JI Proc. R. Soc. A-Math. Phys. Eng. Sci.
PD DEC 1
PY 2016
VL 472
IS 2196
AR 20160640
DI 10.1098/rspa.2016.0640
PG 19
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EG5RN
UT WOS:000391102100012
PM 28119552
ER
PT J
AU Zweibel, EG
Yamada, M
AF Zweibel, Ellen G.
Yamada, Masaaki
TI Perspectives on magnetic reconnection
SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING
SCIENCES
LA English
DT Article
DE magnetic fields; magnetic reconnection; particle heating; particle
acceleration; plasma physics
ID CURRENT SHEET FORMATION; GAMMA-RAY FLARES; SOLAR-FLARES;
MAGNETOHYDRODYNAMIC RECONNECTION; 3-DIMENSIONAL RECONNECTION;
SWEET-PARKER; CRAB-NEBULA; FIELDS; PLASMA; ACCELERATION
AB Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. We conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection.
C1 [Zweibel, Ellen G.; Yamada, Masaaki] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Zweibel, Ellen G.; Yamada, Masaaki] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
[Zweibel, Ellen G.; Yamada, Masaaki] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Zweibel, EG; Yamada, M (reprint author), Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.; Zweibel, EG; Yamada, M (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.; Zweibel, EG; Yamada, M (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM zweibel@astro.wisc.edu; myamada@pppl.gov
FU Vilas Trust; University of Wisconsin-Madison; US Department of Energy
FX E.G.Z. is funded for magnetic reconnection research by the Vilas Trust
and the University of Wisconsin-Madison. M.Y. is funded by the US
Department of Energy.
NR 120
TC 0
Z9 0
U1 6
U2 6
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 1364-5021
EI 1471-2946
J9 P ROY SOC A-MATH PHY
JI Proc. R. Soc. A-Math. Phys. Eng. Sci.
PD DEC 1
PY 2016
VL 472
IS 2196
AR 20160479
DI 10.1098/rspa.2016.0479
PG 30
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EG5RN
UT WOS:000391102100004
PM 28119547
ER
PT J
AU Gati, E
Garst, M
Manna, RS
Tutsch, U
Wolf, B
Bartosch, L
Schubert, H
Sasaki, T
Schlueter, JA
Lang, M
AF Gati, Elena
Garst, Markus
Manna, Rudra S.
Tutsch, Ulrich
Wolf, Bernd
Bartosch, Lorenz
Schubert, Harald
Sasaki, Takahiko
Schlueter, John A.
Lang, Michael
TI Breakdown of Hooke's law of elasticity at the Mott critical endpoint in
an organic conductor
SO SCIENCE ADVANCES
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; CRITICAL-BEHAVIOR;
FINITE-TEMPERATURE; TRANSITION; INSULATOR; INSTABILITIES; V2O3; SALT;
NMR
AB The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes Delta L/L as a function of continuously controlled helium-gas pressure P for the organic conductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)] Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of Delta L/L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke's law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition.
C1 [Gati, Elena; Manna, Rudra S.; Tutsch, Ulrich; Wolf, Bernd; Schubert, Harald; Lang, Michael] Goethe Univ Frankfurt, Phys Inst, Max von Laue Str 1, D-60438 Frankfurt, Germany.
[Garst, Markus] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany.
[Garst, Markus] Tech Univ Dresden, Inst Theoret Phys, Zellescher Weg 17, D-01062 Dresden, Germany.
[Bartosch, Lorenz] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany.
[Sasaki, Takahiko] Tohoku Univ, Inst Mat Res, Katahira 2-1-1, Sendai, Miyagi 9808577, Japan.
[Schlueter, John A.] Natl Sci Fdn, Div Mat Res, Arlington, VA 22230 USA.
[Schlueter, John A.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA.
[Manna, Rudra S.] Univ Augsburg, Expt Phys Elektron Korrelationen & Magnetismus 6, D-86159 Augsburg, Germany.
RP Gati, E (reprint author), Goethe Univ Frankfurt, Phys Inst, Max von Laue Str 1, D-60438 Frankfurt, Germany.
EM gati@physik.uni-frankfurt.de; michael.lang@physik.uni-frankfurt.de
RI Manna, Rudra Sekhar/I-2035-2012; Garst, Markus/B-6740-2012
OI Manna, Rudra Sekhar/0000-0003-3285-445X; Garst,
Markus/0000-0001-5390-3316
FU German Science Foundation via the Transregional Collaborative Research
Center [SFB/TR49]; German Science Foundation via the Collaborative
Research Center [SFB 1143]; Japan Society for the Promotion of Science
KAKENHI [JP25287080]; Independent Research and Development program;
[DE-AC02-06CH11357]
FX The research was supported by the German Science Foundation via the
Transregional Collaborative Research Center SFB/TR49 "Condensed Matter
Systems with Variable Many-Body Interactions" and the Collaborative
Research Center SFB 1143 "Correlated Magnetism: From Frustration to
Topology." Work in Sendai was partly supported by the Japan Society for
the Promotion of Science KAKENHI grant #JP25287080. Work at Argonne, in
a U.S. Department of Energy Office of Science laboratory, is operated
under contract #DE-AC02-06CH11357. J.A.S. acknowledges support from the
Independent Research and Development program while serving at the NSF.
NR 57
TC 0
Z9 0
U1 2
U2 2
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 2375-2548
J9 SCI ADV
JI Sci. Adv.
PD DEC
PY 2016
VL 2
IS 12
AR e1601646
DI 10.1126/sciadv.1601646
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EG7XC
UT WOS:000391268800019
PM 27957540
ER
PT J
AU Lai, YT
Hura, GL
Dyer, KN
Tang, HYH
Tainer, JA
Yeates, TO
AF Lai, Yen-Ting
Hura, Greg L.
Dyer, Kevin N.
Tang, Henry Y. H.
Tainer, John A.
Yeates, Todd O.
TI Designing and defining dynamic protein cage nanoassemblies in solution
SO SCIENCE ADVANCES
LA English
DT Article
ID X-RAY-SCATTERING; BIOLOGICAL MACROMOLECULES; SAXS; ASSEMBLIES;
CONFORMATIONS; SYSTEM; FLEXIBILITY; ACQUISITION; COMPUTATION; SOFTWARE
AB Central challenges in the design of large and dynamic macromolecular assemblies for synthetic biology lie in developing effective methods for testing design strategies and their outcomes, including comprehensive assessments of solution behavior. We created and validated an advanced design of a 600-kDa protein homododecamer that self-assembles into a symmetric tetrahedral cage. The monomeric unit is composed of a trimerizing apex-forming domain genetically linked to an edge-forming dimerizing domain. Enhancing the crystallographic results, high-throughput small-angle x-ray scattering (SAXS) comprehensively contrasted our modifications under diverse solution conditions. To generate a phase diagram associating structure and assembly, we developed force plots that measure dissimilarity among multiple SAXS data sets. These new tools, which provided effective feedback on experimental constructs relative to design, have general applicability in analyzing the solution behavior of heterogeneous nanosystems and have been made available as a web-based application. Specifically, our results probed the influence of solution conditions and symmetry on stability and structural adaptability, identifying the dimeric interface as the weak point in the assembly. Force plots comparing SAXS data sets further reveal more complex and controllable behavior in solution than captured by our crystal structures. These methods for objectively and comprehensively comparing SAXS profiles for systems critically affected by solvent conditions and structural heterogeneity provide an enabling technology for advancing the design and bioengineering of nanoscale biological materials.
C1 [Lai, Yen-Ting; Yeates, Todd O.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
[Hura, Greg L.; Dyer, Kevin N.; Tang, Henry Y. H.; Tainer, John A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Hura, Greg L.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA.
[Tainer, John A.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA.
[Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
[Yeates, Todd O.] Univ Calif Los Angeles, California NanoSyst Inst, Los Angeles, CA 90095 USA.
[Lai, Yen-Ting] NIH, Vaccine Res Ctr, Bethesda, MD 20892 USA.
RP Yeates, TO (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.; Tainer, JA (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Tainer, JA (reprint author), Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA.; Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.; Yeates, TO (reprint author), Univ Calif Los Angeles, California NanoSyst Inst, Los Angeles, CA 90095 USA.
EM jatainer@lbl.gov; yeates@mbi.ucla.edu
FU NSF [CHE-1332907]; BER program of the DOE Office of Science
[DE-FC02-02ER63421]; Robert A. Welch Distinguished Chair in Chemistry;
Cancer Prevention and Research Institute of Texas; University of Texas
FX This work was supported by NSF grant CHE-1332907 (T.O.Y.) and by the BER
program of the DOE Office of Science (DE-FC02-02ER63421). J.A.T. is
supported by the Robert A. Welch Distinguished Chair in Chemistry.
J.A.T. acknowledges startup funds from the Cancer Prevention and
Research Institute of Texas, and the University of Texas STARs program.
NR 48
TC 0
Z9 0
U1 6
U2 6
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 2375-2548
J9 SCI ADV
JI Sci. Adv.
PD DEC
PY 2016
VL 2
IS 12
AR e1501855
DI 10.1126/sciadv.1501855
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EG7XC
UT WOS:000391268800001
PM 27990489
ER
PT J
AU Rowley, DB
Forte, AM
Rowan, CJ
Glisovic, P
Moucha, R
Grand, SP
Simmons, NA
AF Rowley, David B.
Forte, Alessandro M.
Rowan, Christopher J.
Glisovic, Petar
Moucha, Robert
Grand, Stephen P.
Simmons, Nathan A.
TI Kinematics and dynamics of the East Pacific Rise linked to a stable,
deep-mantle upwelling
SO SCIENCE ADVANCES
LA English
DT Article
ID SOUTHWEST INDIAN RIDGE; CURRENT PLATE MOTIONS; INTRAPLATE VOLCANISM;
RELATIVE IMPORTANCE; SUBDUCTION ZONES; BENEATH AFRICA; EARTHS CORE; SEA;
MA; CONVECTION
AB Earth's tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth's dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.
C1 [Rowley, David B.; Rowan, Christopher J.] Univ Chicago, Dept Geophys Sci, 5734 South Ellis Ave, Chicago, IL 60637 USA.
[Forte, Alessandro M.; Glisovic, Petar] Univ Quebec, GEOTOP, Montreal, PQ H3C 3P8, Canada.
[Forte, Alessandro M.] Univ Florida, Dept Geol Sci, Gainesville, FL 32611 USA.
[Rowan, Christopher J.] Kent State Univ, Dept Geol, 221 McGilvrey Hall, Kent, OH 44242 USA.
[Moucha, Robert] Syracuse Univ, Dept Earth Sci, Syracuse, NY 13244 USA.
[Grand, Stephen P.] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA.
[Simmons, Nathan A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA.
RP Rowley, DB (reprint author), Univ Chicago, Dept Geophys Sci, 5734 South Ellis Ave, Chicago, IL 60637 USA.
EM drowley@uchicago.edu
RI Simmons, Nathan/J-9022-2014;
OI Rowley, David/0000-0001-9767-9029; Glisovic, Petar/0000-0001-5636-7731
FU Canadian Institute for Advanced Research-Earth System Evolution Program;
Canadian Institute for Advanced Research; Natural Sciences and
Engineering Research Council of Canada; John Simon Guggenheim Memorial
Foundation; University of Florida; U.S. Department of Energy
[DE-AC52-07NA27344]; NSF [EAR0309189]
FX D.B.R. and A.M.F. thank the Canadian Institute for Advanced
Research-Earth System Evolution Program for postdoctoral fellowship
support to C.J.R. and members of Engaging Scientists and Engineers in
Policy for discussions and encouragement. A.M.F. acknowledges funding
from the Canadian Institute for Advanced Research, the Natural Sciences
and Engineering Research Council of Canada, the John Simon Guggenheim
Memorial Foundation, and the University of Florida. Work performed by
N.A.S. is under the auspices of the U.S. Department of Energy under
contract DE-AC52-07NA27344. S.P.G. acknowledges NSF grant EAR0309189.
NR 91
TC 1
Z9 1
U1 5
U2 5
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 2375-2548
J9 SCI ADV
JI Sci. Adv.
PD DEC
PY 2016
VL 2
IS 12
AR e1601107
DI 10.1126/sciadv.1601107
PG 18
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EG7XC
UT WOS:000391268800010
PM 28028535
ER
PT J
AU Campisi, J
AF Campisi, Judith
TI Cellular Senescence and Lung Function during Aging
SO ANNALS OF THE AMERICAN THORACIC SOCIETY
LA English
DT Article
AB Cellular senescence is a cell fate decision and stress response that entails a permanent arrest of cell proliferation coupled to a complex secretory phenotype. Senescent cells increase in number with age in most, if not all, mammalian tissues, including the airways and lungs. They also increase at greater than expected numbers, compared with age-matched controls, at sites of age-related pathologies such as chronic obstructive pulmonary disorder and emphysema. The senescence response is a double-edged sword. The proliferative arrest suppresses the development of cancer by preventing the propagation of stressed or damaged cells that are at risk for neoplastic transformation. However, this arrest can also curtail the proliferation of stem or progenitor cells and thus hamper tissue repair and regeneration. Similarly, the secretory phenotype can promote wound healing by transiently providing growth factors and the initial inflammatory stimulus that is required for tissue repair. However, when chronically present, the secretory phenotype of senescent cells can drive pathological inflammation, which contributes to a host of age-related pathologies, including cancer. There are now transgenes and prototype small molecules that can clear senescent cells, at least in mouse models, and thus improve health span and median life span. The next challenge will be to develop interventions and supplements that can abrogate the deleterious effects of senescent cells while preserving their beneficial effects.
C1 [Campisi, Judith] Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94945 USA.
[Campisi, Judith] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Campisi, J (reprint author), Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94945 USA.; Campisi, J (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM jcampisi@buckinstitute.org
FU National Institutes of Health [AG009909, AG017242, AG041122]
FX Supported by National Institutes of Health grants AG009909, AG017242,
and AG041122.
NR 0
TC 1
Z9 1
U1 1
U2 1
PU AMER THORACIC SOC
PI NEW YORK
PA 25 BROADWAY, 18 FL, NEW YORK, NY 10004 USA
SN 1546-3222
EI 2325-6621
J9 ANN AM THORAC SOC
JI Ann. Am. Thoracic Society
PD DEC
PY 2016
VL 13
SU 5
BP S402
EP S406
DI 10.1513/AnnalsATS.201609-703AW
PG 5
WC Respiratory System
SC Respiratory System
GA EG2OZ
UT WOS:000390884500004
PM 28005423
ER
PT J
AU Phaneuf, CR
Mangadu, B
Piccini, ME
Singh, AK
Koh, CY
AF Phaneuf, Christopher R.
Mangadu, Betty
Piccini, Matthew E.
Singh, Anup K.
Koh, Chung-Yan
TI Rapid, Portable, Multiplexed Detection of Bacterial Pathogens Directly
from Clinical Sample Matrices
SO BIOSENSORS-BASEL
LA English
DT Article
DE microfluidics; diagnostics; pathogen detection; point-of-care;
immunoassay; centrifugal; enteric diseases
ID CENTRIFUGAL MICROFLUIDIC PLATFORM; MEDIATED ISOTHERMAL AMPLIFICATION;
EXTREME POINT; PCR; SEDIMENTATION; CHALLENGES; BIOSENSOR; HEALTH; TOXIN;
CARE
AB Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. This platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 mu L of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated in diarrheal and enteric diseases in less than 20 min.
C1 [Phaneuf, Christopher R.; Mangadu, Betty; Piccini, Matthew E.; Singh, Anup K.; Koh, Chung-Yan] Sandia Natl Labs, Biotechnol & Bioengn, Livermore, CA 94551 USA.
[Piccini, Matthew E.] Cepheid, Sunnyvale, CA 94089 USA.
RP Koh, CY (reprint author), Sandia Natl Labs, Biotechnol & Bioengn, Livermore, CA 94551 USA.
EM crphane@sandia.gov; bmangad@sandia.gov; mpcostabile@msn.com;
aksingh@sandia.gov; ckoh@sandia.gov
FU National Institute of Allergy and Infectious Diseases of the National
Institutes of Health [R01AI098853]; U.S. Department of Energy's National
Nuclear Security Administration [DE-AC04-94AL85000. SAND2016-8183J]
FX This work was supported by the National Institute of Allergy and
Infectious Diseases of the National Institutes of Health under Award
Number R01AI098853. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institutes of Health. We thank M. Aragon for assistance with
figures. Sandia National Laboratories is a multi-mission laboratory
managed and operated by the Sandia Corporation, a wholly owned
subsidiary of the Lockheed Martin Corporation, for the U.S. Department
of Energy's National Nuclear Security Administration under contract
DE-AC04-94AL85000. SAND2016-8183J.
NR 35
TC 1
Z9 1
U1 6
U2 6
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2079-6374
J9 BIOSENSORS-BASEL
JI Biosensors-Basel
PD DEC
PY 2016
VL 6
IS 4
AR 49
DI 10.3390/bios6040049
PG 10
WC Chemistry, Analytical
SC Chemistry
GA EG4CD
UT WOS:000390990100001
ER
PT J
AU Hurley, JH
Nogales, E
AF Hurley, James H.
Nogales, Eva
TI Next-generation electron microscopy in autophagy research
SO CURRENT OPINION IN STRUCTURAL BIOLOGY
LA English
DT Article
ID ENDOPLASMIC-RETICULUM; SELECTIVE AUTOPHAGY; COMPLEX I; ARCHITECTURE;
PHAGOPHORE; MECHANISMS; SCAFFOLD; MACROAUTOPHAGY; BIOGENESIS; YEAST
AB Autophagy is the process whereby cytosol, organelles, and inclusions are taken up in a double-membrane vesicle known as the autophagosome, and transported to the lysosome for destruction and recycling. Electron microscopy (EM) led to the discovery of autophagy in the 1950s and has been a central part of its characterization ever since. New capabilities in single particle EM studies of the autophagy machinery are beginning to provide exciting insights into the mechanisms of autophagosome initiation, growth, and substrate targeting. These include EM structures at various resolutions of part of the Atg1 protein kinase complex and all of the class III phosphatidylinositol 3-phosphate complex I that initiate autophagy; the mTORC1 complex that regulates autophagy initiation; the Apel particle, a major substrate for selective autophagy in yeast; and p62, a mammalian selective autophagy adaptor. Equally exciting are the prospects for increased resolution and insight into autophagosome formation in cells from advances in cryo-EM tomography and focused ion beam-scanning electron microscopy (FIB-SEM). This review considers recent accomplishments, prospects for progress, and remaining obstacles that still need to be overcome.
C1 [Hurley, James H.; Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.
[Hurley, James H.; Nogales, Eva] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.
[Hurley, James H.; Nogales, Eva] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA.
[Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
RP Hurley, JH; Nogales, E (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Hurley, JH; Nogales, E (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.; Hurley, JH; Nogales, E (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA.; Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
EM jimhurley@berkeley.edu; enogales@lbl.gov
FU [P01 GM051487]; [R01 GM111730]
FX We thank Arthur Yeremenko and Lindsey Young for generating figures. The
application of EM to autophagy in our labs is supported by grants P01
GM051487 (EN and JHH); Electron Microscopy of Biological Macromolecules
and R01 GM111730 (JHH); Autophagy Initiation by the Atg1 Complex.
NR 32
TC 0
Z9 0
U1 6
U2 6
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0959-440X
EI 1879-033X
J9 CURR OPIN STRUC BIOL
JI Curr. Opin. Struct. Biol.
PD DEC
PY 2016
VL 41
BP 211
EP 216
DI 10.1016/j.sbi.2016.08.006
PG 6
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA EG3TJ
UT WOS:000390967300027
PM 27614295
ER
PT J
AU Walker, RC
Hardee, PE
Davies, F
Ly, C
Junor, W
Mertens, F
Lobanov, A
AF Walker, R. Craig
Hardee, Philip E.
Davies, Fred
Ly, Chun
Junor, William
Mertens, Florent
Lobanov, Andrei
TI Observations of the Structure and Dynamics of the Inner M87 Jet
SO GALAXIES
LA English
DT Article
DE galaxies: individual (M87); galaxies: jets; galaxies: active; radio
continuum: galaxies
ID GAMMA-RAY EMISSION; CENTRAL BLACK-HOLE; RADIO JET; SCHWARZSCHILD RADII;
BASE; EFFICIENT; GALAXY
AB M87 is the best source in which to study a jet at high resolution in gravitational units because it has a very high mass black hole and is nearby. The angular size of the black hole is second only to Sgr A*, which does not have a strong jet. The jet structure is edge brightened with a wide opening angle base and a weak counterjet. We have roughly annual observations for 17 years plus intensive monitoring at three week intervals for a year and five day intervals for 2.5 months made with the Very Long Baseline Array (VLBA) at 43 GHz. The inner jet shows very complex dynamics, with apparent motions both along and across the jet. Speeds from zero to over 2c are seen, with acceleration observed over the first 3 milli-arcseconds. The counterjet decreases in brightness much more rapidly than the main jet, as is expected from relativistic beaming in an accelerating jet oriented near the line-of-sight. Details of the structure and dynamics are discussed. The roughly annual observations show side-to-side motion of the whole jet with a characteristic time scale of about 9 years.
C1 [Walker, R. Craig] Natl Radio Astron Observ, Socorro, NM 87801 USA.
[Hardee, Philip E.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Davies, Fred] MPIA, D-69117 Heidelberg, Germany.
[Ly, Chun] Goddard Space Flight Ctr, Astrophys Sci Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
[Junor, William] Los Alamos Natl Lab, ISR 2,MS-D436,POB 1663, Los Alamos, NM 87545 USA.
[Mertens, Florent; Lobanov, Andrei] Max Planck Inst Radioastron, Huegel 69, D-53121 Bonn, Germany.
[Mertens, Florent] Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands.
[Lobanov, Andrei] Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany.
RP Walker, RC (reprint author), Natl Radio Astron Observ, Socorro, NM 87801 USA.
EM cwalker@nrao.edu; pehardee@gmail.com; fdavies@ucla.edu;
astro.chun@gmail.com; bjunor@lanl.gov; florent.mertens@gmail.com;
alobanov@mpifr-bonn.mpg.de
FU International Max Planck Research School (IMPRS) for Astronomy and
Astrophysics at the University of Bonn; International Max Planck
Research School (IMPRS) for Astronomy and Astrophysics at the University
of Cologne; NASA
FX The Very Long Baseline Array is an instrument of the National Radio
Astronomy Observatory, which is a facility of the National Science
Foundation operated under cooperative agreement by Associated
Universities, Inc. This work made use of the Swinburne University of
Technology software correlator [24], developed as part of the Australian
Major National Research Facilities Programme and operated under licence.
Florent Mertens was supported for this research through a stipend from
the International Max Planck Research School (IMPRS) for Astronomy and
Astrophysics at the Universities of Bonn and Cologne. Chun Ly is
supported by an appointment to the NASA Postdoctoral Program at the
Goddard Space Flight Center, administered by Oak Ridge Associated
Universities and Universities Space Research Association through
contracts with NASA.
NR 24
TC 0
Z9 0
U1 0
U2 0
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2075-4434
J9 GALAXIES
JI Galaxies
PD DEC
PY 2016
VL 4
IS 4
AR 46
DI 10.3390/galaxies4040046
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG4HH
UT WOS:000391004000014
ER
PT J
AU Kurt, EG
Varma, AH
Sohn, YM
AF Kurt, Efe G.
Varma, Amit H.
Sohn, Young M.
TI Direct Shear Strength of Rebar-coupler Anchor Systems for Steel-plate
Composite (SC) Walls
SO INTERNATIONAL JOURNAL OF STEEL STRUCTURES
LA English
DT Article; Proceedings Paper
CT 8th International Symposium on Steel Structures (ISSS)
CY NOV 05-07, 2015
CL Jeju, SOUTH KOREA
SP Korean Soc Steel Construct
DE Composite; steel-plate composite; steel-concrete; direct shear strength;
rebar-coupler anchor
ID INPLANE SHEAR; DESIGN; BEHAVIOR; DATABASE
AB This paper focuses on the direct shear behavior of rebar-coupler anchor systems, and their use for anchorage of steel-plate composite (SC) walls to the concrete basemat of safety-related nuclear facilities. Large-scale rebar-coupler anchor specimens were tested under direct shear loading until failure. The results included the applied load-slip displacement responses of the specimens, the direct shear strength, and the observed failure mode. The American Concrete Institute (ACI) 349 code equation for calculating the direct shear strength of embedded anchors was compared with the direct shear strengths from the tests. The code equation underestimated the direct shear strength of the anchor system, because shear failure was assumed to occur in the rebars, whereas experimental observations indicated that shear fracture failure occurred in the couplers rather than the rebars. The design equation was updated to utilize the net shear area of the couplers instead of the rebars, after which the direct shear strengths from the tests could be calculated with reasonable accuracy. The experimental results were also used to propose an empirical model for the shear force vs. slip displacement response of rebar-coupler anchor systems.
C1 [Kurt, Efe G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Varma, Amit H.] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA.
[Sohn, Young M.] Cent Connecticut Univ, New Britain, CT USA.
RP Kurt, EG (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM efegkurt@gmail.com
NR 36
TC 0
Z9 0
U1 4
U2 4
PU KOREAN SOC STEEL CONSTRUCTION-KSSC
PI SEOUL
PA 106-18 MUNJUNG-DONG, SONGPA-KU, SEOUL, 138-200, SOUTH KOREA
SN 1598-2351
EI 2093-6311
J9 INT J STEEL STRUCT
JI Int. J. Steel Struct.
PD DEC
PY 2016
VL 16
IS 4
BP 1397
EP 1409
DI 10.1007/s13296-016-0096-6
PG 13
WC Construction & Building Technology; Engineering, Civil
SC Construction & Building Technology; Engineering
GA EG1XY
UT WOS:000390828900035
ER
PT J
AU Kwong, KS
Bennett, JP
AF Kwong, Kyei-Sing
Bennett, James P.
TI A Slag Management Toolset for Determining Optimal Coal Gasification
Temperatures
SO JOURNAL FOR MANUFACTURING SCIENCE AND PRODUCTION
LA English
DT Article
DE coal slag; similarity; slag viscosity; modeling
ID VISCOSITY
AB Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag's viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slag management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.
C1 [Kwong, Kyei-Sing; Bennett, James P.] US DOE, Natl Energy Technol Lab, 1450 SW Queen Ave, Albany, OR 97321 USA.
RP Kwong, KS (reprint author), US DOE, Natl Energy Technol Lab, 1450 SW Queen Ave, Albany, OR 97321 USA.
EM kyeising.kwong@netl.doe.gov; James.Bennett@netl.doe.gov
FU agency of the United States Government
FX This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
NR 22
TC 0
Z9 0
U1 0
U2 0
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
SN 2191-4184
EI 2191-0375
J9 J MANUF SCI PROD
JI J. Manuf. Sci. Prod.
PD DEC
PY 2016
VL 16
IS 4
BP 233
EP 241
DI 10.1515/jmsp-2016-0022
PG 9
WC Engineering, Manufacturing
SC Engineering
GA EG4ZF
UT WOS:000391052000004
ER
PT J
AU Hecker, SS
Braun, C
Lawrence, C
AF Hecker, Siegfried S.
Braun, Chaim
Lawrence, Chris
TI North Korea's Stockpiles of Fissile Material
SO KOREA OBSERVER
LA English
DT Article
DE North Korea; fissile material; nuclear weapons; plutonium; highly
enriched uranium (HEU); tritium; fuel cycle
AB North Korea has conducted five nuclear tests and is believed to be rapidly increasing the size and sophistication of its nuclear arsenal. Increased sophistication, particularly the ability to miniaturize nuclear devices, requires more nuclear tests. The size of the arsenal is limited primarily by the stockpile of fissile material - plutonium and highly enriched uranium (HEU). Current plutonium inventories are estimated with moderate confidence to be in the range of 20 to 40 kg, sufficient for the manufacture of 4 to 8 plutonium bombs. HEU inventories are estimated with much greater uncertainty to be in the range of 200 to 450 kg, sufficient for 10 to 25 HEU bombs. Annual production rates are estimated to be less than 6 kg of plutonium and similar to 150 kg HEU.
C1 [Hecker, Siegfried S.; Braun, Chaim] Stanford Univ, Ctr Int Secur & Cooperat, Stanford, CA 94305 USA.
[Hecker, Siegfried S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Lawrence, Chris] Harvards Kennedy Sch Govt, Program Sci Technol & Soc, Cambridge, MA USA.
RP Hecker, SS (reprint author), Stanford Univ, Ctr Int Secur & Cooperat, Stanford, CA 94305 USA.; Hecker, SS (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
EM shecker@stanford.edu
NR 21
TC 0
Z9 0
U1 2
U2 2
PU INST KOREAN STUDIES
PI SEOUL
PA CPO BOX 3410, SEOUL, 100-364, SOUTH KOREA
SN 0023-3919
J9 KOREA OBS
JI Korea Obs.
PD WIN
PY 2016
VL 47
IS 4
SI SI
BP 721
EP 749
PG 29
WC Area Studies; International Relations
SC Area Studies; International Relations
GA EG3VJ
UT WOS:000390972500003
ER
PT J
AU Bae, S
Kanematsu, M
Hernandez-Cruz, D
Moon, J
Kilcoyne, D
Monteiro, PJM
AF Bae, Sungchul
Kanematsu, Manabu
Hernandez-Cruz, Daniel
Moon, Juhyuk
Kilcoyne, David
Monteiro, Paulo J. M.
TI In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate
Hydration
SO MATERIALS
LA English
DT Article
DE hydration; tricalcium silicate; C-S-H; kinetics; spectromicroscopy
ID C-S-H; MICROSCOPY STXM; PORTLAND-CEMENT; C3S HYDRATION; ABSORPTION;
KINETICS; SPECTRA; XANES; EDGES; ALITE
AB The understanding and control of early hydration of tricalcium silicate (C3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (similar to 1 h) and acceleration (similar to 4 h) periods of up to similar to 8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C-S-H). The formation of C-S-H nanoseeds in the C3S solution and the development of a fibrillar C-S-H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C-S-H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C-S-H.
C1 [Bae, Sungchul] Hanyang Univ, Dept Architectural Engn, Seoul 04763, South Korea.
[Kanematsu, Manabu] Tokyo Univ Sci, Fac Sci & Technol, 2641 Yamazaki, Noda, Chiba 2788510, Japan.
[Hernandez-Cruz, Daniel] Univ Autonoma Chiapas, Fac Engn, Tuxtla Gutierrez 29050, Chiapas, Mexico.
[Moon, Juhyuk] Natl Univ Singapore, Dept Civil & Environm Engn, 1 Engn Dr 2, Singapore 117576, Singapore.
[Kilcoyne, David] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
RP Moon, J (reprint author), Natl Univ Singapore, Dept Civil & Environm Engn, 1 Engn Dr 2, Singapore 117576, Singapore.
EM sbae@hanyang.ac.kr; manabu@rs.noda.tus.ac.jp; dhernandezcruz@gmail.com;
ceemjh@nus.edu.sg; ALKilcoyne@lbl.gov; monteiro@berkeley.edu
RI Kilcoyne, David/I-1465-2013;
OI Bae, Sungchul/0000-0002-8511-6939; Hernandez Cruz,
Daniel/0000-0003-4950-7155
FU Basic Science Research Program through the National Research Foundation
of Korea (NRF) - Ministry of Science, ICT, and Future Planning
[NRF-2016R1C1B1014179]; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Republic
of Singapore's National Research Foundation; Technology Business
Innovation Program - Ministry of Land, Infrastructure and Transport of
the Korean government [16TBIP-C111710-01]
FX This research was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT, and Future Planning (NRF-2016R1C1B1014179).
The Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. This research is funded by
the Republic of Singapore's National Research Foundation through a grant
to the Berkeley Education Alliance for Research in Singapore (BEARS) for
the Singapore-Berkeley Building Efficiency and Sustainability in the
Tropics (SinBerBEST) Program. The research was also funded by a grant
(16TBIP-C111710-01) from the Technology Business Innovation Program
funded by the Ministry of Land, Infrastructure and Transport of the
Korean government.
NR 36
TC 1
Z9 1
U1 14
U2 14
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 1996-1944
J9 MATERIALS
JI Materials
PD DEC
PY 2016
VL 9
IS 12
AR 976
DI 10.3390/ma9120976
PG 16
WC Materials Science, Multidisciplinary
SC Materials Science
GA EG3OB
UT WOS:000390953400022
ER
PT J
AU Ma, E
Ding, J
AF Ma, E.
Ding, J.
TI Tailoring structural inhomogeneities in metallic glasses to enable
tensile ductility at room temperature
SO MATERIALS TODAY
LA English
DT Article
ID FRACTURE-TOUGHNESS; SHEAR BANDS; MECHANICAL-BEHAVIOR; AMORPHOUS-ALLOYS;
SIZE-REDUCTION; LOCAL ORDER; DEFORMATION; STRAIN; TRANSFORMATION; DAMAGE
AB Metallic glasses boast high strength, but their low ductility has been a major concern. Here, taking a structural perspective and citing selected examples, we advocate purposely enhanced structural inhomogeneities, in an otherwise compositionally uniform and single-phase amorphous alloy, to promote distributed plastic flow. Four current tactics (the four R's) to improve deformability are highlighted, from the standpoint of structural, and consequentially mechanical, heterogeneities that can be tailored in the monolithic glassy state. Highly rejuvenated glass structures, coupled with restrained shear banding instability, lead to tensile ductility and necking, which is unusual for glasses at room temperature. Possibilities of strain hardening and strain rate hardening that are needed to stabilize uniform elongation are discussed. Innovative design and processing of amorphous metals, with internal structures tuned to facilitate flow, offer new possibilities in pushing the envelope of ductility accessible to these high-strength materials.
C1 [Ma, E.; Ding, J.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA.
[Ding, J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Ma, E (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA.
EM ema@jhu.edu
RI Ding, Jun/K-1989-2012
OI Ding, Jun/0000-0002-4091-8663
FU National Science Foundation [NSF-DMR-1505621]; Department of Energy,
Basic Energy Sciences, Division of Materials Science and Engineering
[DE-FG02-13ER46056]
FX The authors acknowledge Dr. Lin Tian for her contributions and Prof.
Howard Sheng for developing the EAM potentials used in our MD
simulations, as well as the support by the National Science Foundation
under grant NSF-DMR-1505621 and by Department of Energy, Basic Energy
Sciences, Division of Materials Science and Engineering under
DE-FG02-13ER46056.
NR 91
TC 1
Z9 1
U1 10
U2 10
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1369-7021
EI 1873-4103
J9 MATER TODAY
JI Mater. Today
PD DEC
PY 2016
VL 19
IS 10
BP 568
EP 579
DI 10.1016/j.mattod.2016.04.001
PG 12
WC Materials Science, Multidisciplinary
SC Materials Science
GA EG6YK
UT WOS:000391192000018
ER
PT J
AU Ameen, MM
Kundu, P
Som, S
AF Ameen, Muhsin M.
Kundu, Prithwish
Som, Sibendu
TI Novel Tabulated Combustion Model Approach for Lifted Spray Flames with
Large Eddy Simulations
SO SAE INTERNATIONAL JOURNAL OF ENGINES
LA English
DT Article
ID ENGINE CONDITIONS
AB In this work, a turbulent combustion model is developed for large eddy simulation (LES) using a novel flamelet tabulation technique based on the framework of the multi-flamelet representative interactive flamelet (RIF) model. The overall aim is to develop a detailed model with elaborate chemistry mechanisms, LES turbulence models and highly resolved grids leveraging the computational cost advantage of a tabulated model. A novel technique of implementing unsteady flamelet libraries by using the residence time instead of the progress variables is proposed. In this study, LES of n-dodecane spray flame is performed using the tabulated turbulent combustion model along with a dynamic structure subgrid model. A high-resolution mesh is employed with a cell size of 62.5 microns in the entire spray and combustion regions. This model is then validated against igniting n-dodecane sprays under diesel engine conditions. For these constant volume combustion cases, 4-dimensional flamelet libraries based on scalar dissipation rate, residence time, mixture fraction variance and filtered mixture fraction are generated using a highly scalable parallel code. The flamelet libraries are generated using a 106-species and 420-reactions chemistry mechanism for n-dodecane. The transient flame development and the grid dependency shown by the tabulated model are analyzed. The results from the model show excellent agreement with the experimental measurements for ignition delay and flame liftoff across a wide range of ambient temperature conditions. The tabulated combustion modeling approach is also shown to have better agreements with the experiments than the homogenous reactor approach (typically used in the engine modeling community), while the computational expenses were significantly lower.
C1 [Ameen, Muhsin M.; Kundu, Prithwish; Som, Sibendu] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Ameen, MM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM mameen@anl.gov
FU Argonne, a U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]; U.S. DOE Office of Vehicle Technologies, Office of
Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (Argonne). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government. This research was funded by
U.S. DOE Office of Vehicle Technologies, Office of Energy Efficiency and
Renewable Energy under Contract No. DE-AC02-06CH11357. The authors wish
to thank Gurpreet Singh and Leo Breton, program managers at DOE, for
their support. We gratefully acknowledge the computing resources
provided on Fusion, a computing cluster operated by the Laboratory
Computing Resource Center at Argonne National Laboratory.
NR 22
TC 1
Z9 1
U1 0
U2 0
PU SAE INT
PI WARRENDALE
PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA
SN 1946-3936
EI 1946-3944
J9 SAE INT J ENGINES
JI SAE Int. J. Engines
PD DEC
PY 2016
VL 9
IS 4
BP 2056
EP 2065
DI 10.4271/2016-01-2194
PG 10
WC Transportation Science & Technology
SC Transportation
GA EF8RO
UT WOS:000390597200007
ER
PT J
AU Pamminger, M
Sevik, J
Scarcelli, R
Wallner, T
Wooldridge, S
Boyer, B
Hall, CM
AF Pamminger, Michael
Sevik, James
Scarcelli, Riccardo
Wallner, Thomas
Wooldridge, Steven
Boyer, Brad
Hall, Carrie M.
TI Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a
Light Duty Spark Ignited Engine
SO SAE INTERNATIONAL JOURNAL OF ENGINES
LA English
DT Article
AB The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas - gasoline blends show higher discrepancies comparing chemical and experimental knock onset.
C1 [Pamminger, Michael; Sevik, James; Scarcelli, Riccardo; Wallner, Thomas] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
[Wooldridge, Steven; Boyer, Brad] Ford Motor Co, Dearborn, MI 48121 USA.
[Hall, Carrie M.] IIT, Chicago, IL 60616 USA.
RP Wallner, T (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
EM twallner@anl.gov
FU Argonne, a U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]; DOE's Vehicle Technologies Program, Office of
Energy Efficiency and Renewable Energy [DE-FOA-0000991 (0991-1822)]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.; This research is funded by
DOE's Vehicle Technologies Program, Office of Energy Efficiency and
Renewable Energy through an award based on the FY 2014 Vehicle
Technologies Program Wide Funding Opportunity Announcement
DE-FOA-0000991 (0991-1822). The authors would like to express their
gratitude to Kevin Stork, program manager at DOE, for his support.
NR 14
TC 0
Z9 0
U1 1
U2 1
PU SAE INT
PI WARRENDALE
PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA
SN 1946-3936
EI 1946-3944
J9 SAE INT J ENGINES
JI SAE Int. J. Engines
PD DEC
PY 2016
VL 9
IS 4
BP 2153
EP 2165
DI 10.4271/2016-01-2293
PG 13
WC Transportation Science & Technology
SC Transportation
GA EF8RO
UT WOS:000390597200015
ER
PT J
AU Ji, CS
Dec, J
Dernotte, J
Cannella, W
AF Ji, Chunsheng
Dec, John
Dernotte, Jeremie
Cannella, William
TI Boosted Premixed-LTGC / HCCI Combustion of EHN-doped Gasoline for Engine
Speeds Up to 2400 rpm
SO SAE INTERNATIONAL JOURNAL OF ENGINES
LA English
DT Article
DE HCCI; LTGC; Autoignition Reactivity; Combustion Stability; Ignition
Improvers; 2-Ethylhexyl Nitrate
AB Previous work has shown that conventional diesel ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), can be used to enhance the autoignition of a regular-grade E10 gasoline in a well premixed low-temperature gasoline combustion (LTGC) engine, hereafter termed an HCCI engine, at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm and a 14: 1 compression ratio. In the current work the effect of EHN on boosted HCCI combustion is further investigated with a higher compression ratio (16: 1) piston and over a range of engine speeds (up to 2400 rpm). The results show that the higher compression ratio and engine speeds can make the combustion of a regular-grade E10 gasoline somewhat less stable. The addition of EHN improves the combustion stability by allowing combustion phasing to be more advanced for the same ringing intensity. The high-load limits of both the straight (unadditized) and additized fuels are determined, and the additized fuel is found to achieve a higher maximum load at all engine speeds and intake pressures tested, if it is not limited by lack of oxygen. The results reveal that the higher loads with EHN are the result of either reduced intake temperature requirements at naturally aspirated conditions or a reduction in heat release rate at higher intake pressures. Such effects are also found to increase the thermal efficiency, and a maximum indicated thermal efficiency of 50.1% is found for 0.15% EHN additized fuel at 1800 rpm and 180 kPa intake pressure. Similar to previous studies, the nitrogen in EHN increases NOx emissions, but they remain well below US-2010 standards. Higher engine speeds are found to have slightly lower NOx emissions for additized fuel at intake boosted conditions.
C1 [Ji, Chunsheng; Dec, John; Dernotte, Jeremie] Sandia Natl Labs, Livermore, CA 94550 USA.
[Cannella, William] Chevron Energy Technol Co, Houston, TX USA.
RP Ji, CS (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
FU Chevron under WFO [FI083070907-Z]; US Department of Energy's National
Nuclear Security Administration [DE-AC04-94AL85000]
FX Primary support for this investigation was provided by Chevron under WFO
contract FI083070907-Z, managed by William Cannella. The work was
performed at the Combustion Research Facility, Sandia National
Laboratories, Livermore, CA. Support for establishing the HCCI lab
facility was provided by the US Department of Energy, Office of Vehicle
Technologies, managed by Gurpreet Singh and Leo Breton. Sandia is a
multiprogram laboratory operated by the Sandia Corporation, a Lockheed
Martin Company, for the US Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 32
TC 0
Z9 0
U1 1
U2 1
PU SAE INT
PI WARRENDALE
PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA
SN 1946-3936
EI 1946-3944
J9 SAE INT J ENGINES
JI SAE Int. J. Engines
PD DEC
PY 2016
VL 9
IS 4
BP 2166
EP 2184
DI 10.4271/2016-01-2295
PG 19
WC Transportation Science & Technology
SC Transportation
GA EF8RO
UT WOS:000390597200016
ER
PT J
AU Sevik, J
Pamminger, M
Wallner, T
Scarcelli, R
Boyer, B
Wooldridge, S
Hall, C
Miers, S
AF Sevik, James
Pamminger, Michael
Wallner, Thomas
Scarcelli, Riccardo
Boyer, Brad
Wooldridge, Steven
Hall, Carrie
Miers, Scott
TI Influence of Injector Location on Part-Load Performance Characteristics
of Natural Gas Direct-Injection in a Spark Ignition Engine
SO SAE INTERNATIONAL JOURNAL OF ENGINES
LA English
DT Article
AB Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance.
A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario.
Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120 degrees CA BTDC can reduce the early flame development process by nearly 15 degrees CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best performance in terms of combustion metrics and efficiencies. For both systems, part-load dilution tolerance is affected by the injection timing, due to the induced turbulence from the gaseous injection event. CFD simulation results have shown that there is a fundamental difference in how the two injection locations affect the mixture formation process. Delayed injection timing increases the turbulence level in the cylinder at the time of the spark, but reduces the available time for proper mixing. Side injection delivers a gaseous jet that interacts more effectively with the intake induced flow field, and this improves the engine performance in terms of efficiency.
C1 [Sevik, James; Pamminger, Michael; Wallner, Thomas; Scarcelli, Riccardo] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
[Boyer, Brad; Wooldridge, Steven] Ford Motor Co, Dearborn, MI 48121 USA.
[Hall, Carrie] IIT, Chicago, IL 60616 USA.
[Miers, Scott] Michigan Technol Univ, Houghton, MI 49931 USA.
RP Wallner, T (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
EM twallner@anl.gov
FU Argonne, a U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]; DOE's Vehicle Technologies Program, Office of
Energy Efficiency and Renewable Energy [DE-FOA-0000991 (0991-1822)]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.; This research is funded by
DOE's Vehicle Technologies Program, Office of Energy Efficiency and
Renewable Energy through an award based on the FY 2014 Vehicle
Technologies Program Wide Funding Opportunity Announcement
DE-FOA-0000991 (0991-1822). The authors would like to express their
gratitude to Kevin Stork, program manager at DOE, for his support.
NR 15
TC 0
Z9 0
U1 0
U2 0
PU SAE INT
PI WARRENDALE
PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA
SN 1946-3936
EI 1946-3944
J9 SAE INT J ENGINES
JI SAE Int. J. Engines
PD DEC
PY 2016
VL 9
IS 4
BP 2262
EP 2271
DI 10.4271/2016-01-2364
PG 10
WC Transportation Science & Technology
SC Transportation
GA EF8RO
UT WOS:000390597200024
ER
PT J
AU Lin, Z
McCreary, A
Briggs, N
Subramanian, S
Zhang, KH
Sun, YF
Li, XF
Borys, NJ
Yuan, HT
Fullerton-Shirey, SK
Chernikov, A
Zhao, H
McDonnell, S
Lindenberg, AM
Xiao, K
LeRoy, BJ
Drndic, M
Hwang, JCM
Park, J
Chhowalla, M
Schaak, RE
Javey, A
Hersam, MC
Robinson, J
Terrones, M
AF Lin, Zhong
McCreary, Amber
Briggs, Natalie
Subramanian, Shruti
Zhang, Kehao
Sun, Yifan
Li, Xufan
Borys, Nicholas J.
Yuan, Hongtao
Fullerton-Shirey, Susan K.
Chernikov, Alexey
Zhao, Hui
McDonnell, Stephen
Lindenberg, Aaron M.
Xiao, Kai
LeRoy, Brian J.
Drndic, Marija
Hwang, James C. M.
Park, Jiwoong
Chhowalla, Manish
Schaak, Raymond E.
Javey, Ali
Hersam, Mark C.
Robinson, Joshua
Terrones, Mauricio
TI 2D materials advances: from large scale synthesis and controlled
heterostructures to improved characterization techniques, defects and
applications
SO 2D MATERIALS
LA English
DT Review
DE 2D materials; transition metal dichalcogenides; review
ID TRANSITION-METAL DICHALCOGENIDES; FIELD-EFFECT TRANSISTORS; DER-WAALS
HETEROSTRUCTURES; MONOLAYER MOLYBDENUM-DISULFIDE; SINGLE-LAYER MOS2;
CHEMICAL-VAPOR-DEPOSITION; THIN-FILM TRANSISTORS; GIANT BANDGAP
RENORMALIZATION; FLEXIBLE PRINTED ELECTRONICS; HYDROGEN EVOLUTION
REACTION
AB The rise of two-dimensional (2D) materials research took place following the isolation of graphene in 2004. These new 2D materials include transition metal dichalcogenides, mono-elemental 2D sheets, and several carbide-and nitride-based materials. The number of publications related to these emerging materials has been drastically increasing over the last five years. Thus, through this comprehensive review, we aim to discuss the most recent groundbreaking discoveries as well as emerging opportunities and remaining challenges. This review starts out by delving into the improved methods of producing these new 2D materials via controlled exfoliation, metal organic chemical vapor deposition, and wet chemical means. We look into recent studies of doping as well as the optical properties of 2D materials and their heterostructures. Recent advances towards applications of these materials in 2D electronics are also reviewed, and include the tunnel MOSFET and ways to reduce the contact resistance for fabricating high-quality devices. Finally, several unique and innovative applications recently explored are discussed as well as perspectives of this exciting and fast moving field.
C1 [Lin, Zhong; McCreary, Amber; Terrones, Mauricio] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
[Lin, Zhong; McCreary, Amber; Briggs, Natalie; Subramanian, Shruti; Zhang, Kehao; Sun, Yifan; Schaak, Raymond E.; Robinson, Joshua; Terrones, Mauricio] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA.
[Briggs, Natalie; Subramanian, Shruti; Zhang, Kehao; Robinson, Joshua; Terrones, Mauricio] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Sun, Yifan; Schaak, Raymond E.; Terrones, Mauricio] Penn State Univ, Dept Chem, University Pk, PA 16802 USA.
[Li, Xufan; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Borys, Nicholas J.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Yuan, Hongtao] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
[Yuan, Hongtao] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
[Fullerton-Shirey, Susan K.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15213 USA.
[Chernikov, Alexey] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany.
[Chernikov, Alexey] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Chernikov, Alexey] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA.
[Zhao, Hui] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[McDonnell, Stephen] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA.
[Lindenberg, Aaron M.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
[Lindenberg, Aaron M.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[LeRoy, Brian J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Drndic, Marija] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Hwang, James C. M.] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA.
[Park, Jiwoong] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.
[Park, Jiwoong] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.
[Chhowalla, Manish] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA.
[Chhowalla, Manish] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA.
[Javey, Ali] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Javey, Ali] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Hersam, Mark C.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
[Robinson, Joshua; Terrones, Mauricio] Penn State Univ, Ctr Atomically Thin Multifunct Coatings ATOMIC, University Pk, PA 16802 USA.
RP Terrones, M (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.; Terrones, M (reprint author), Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA.; Terrones, M (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.; Terrones, M (reprint author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA.; Terrones, M (reprint author), Penn State Univ, Ctr Atomically Thin Multifunct Coatings ATOMIC, University Pk, PA 16802 USA.
EM mut11@psu.edu
RI Fullerton-Shirey, Susan/A-7188-2010; Li, Xufan/A-8292-2013
OI Fullerton-Shirey, Susan/0000-0003-2720-0400; Li,
Xufan/0000-0001-9814-0383
FU FEI; HORIBA scientific; Kurt J Lesker Company; Penn State Materials
Research Institute; Center for Nanoscale Science; AFOSR; DARPA; NSF;
ONR; DOE; DTRA; STARnet; ARO; Emmy Noether Programme
FX This review article was constructed based on the workshop 'Graphene and
Beyond: From Atoms to Applications', hosted by the Center for
2-Dimensional and Layered Materials on 9-10 May 2016 at Penn State with
sponsorship from FEI, HORIBA scientific, and Kurt J Lesker Company.
Support was also provided by the Penn State Materials Research Institute
and Center for Nanoscale Science. JAR and MT also acknowledge Rosemary
Bittel for logistical support. The authors acknowledge the following
funding agencies: AFOSR, DARPA, NSF, ONR, DOE, DTRA, STARnet, ARO, and
Emmy Noether Programme.
NR 328
TC 0
Z9 0
U1 160
U2 160
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2053-1583
J9 2D MATER
JI 2D Mater.
PD DEC
PY 2016
VL 3
IS 4
AR 042001
DI 10.1088/2053-1583/3/4/042001
PG 38
WC Materials Science, Multidisciplinary
SC Materials Science
GA EG1BW
UT WOS:000390767600001
ER
PT J
AU Cai, SL
Zhang, K
Tan, JB
Wang, S
Zheng, SR
Fan, J
Yu, Y
Zhang, WG
Liu, Y
AF Cai, Song-Liang
Zhang, Kai
Tan, Jing-Bo
Wang, Sha
Zheng, Sheng-Run
Fan, Jun
Yu, Ying
Zhang, Wei-Guang
Liu, Yi
TI Rationally Designed 2D Covalent Organic Framework with a Brick-Wall
Topology
SO ACS MACRO LETTERS
LA English
DT Article
ID TRIAZINE-BASED FRAMEWORKS; 2-DIMENSIONAL POLYMERS; DIFFERENT KINDS; CO2
CAPTURE; THIN-FILMS; CRYSTALLINE; CONSTRUCTION; STORAGE; HYDROGEN; PORES
AB We report the design and synthesis of an imine-based two-dimensional covalent organic framework (2D COF) with a novel brick wall topology by judiciously choosing a tritopic T-shaped building block and a ditopic linear linker. Unlike the main body of COF frameworks reported to-date, which consists of higher-symmetry 2D topologies, the unconventional layered brick-wall topology have only been proposed but never been realized experimentally. The brick-wall structure was characterized by powder X-ray diffraction analysis, FT-IR, solid state C-13 NMR spectroscopy, nitrogen, and carbon oxide adsorption-desorption measurements as well as theoretical simulations. Our present work opens the door to the design of novel 2D COFs and will broaden the scope of emerging COF materials.
C1 [Cai, Song-Liang; Zhang, Kai; Wang, Sha; Zheng, Sheng-Run; Fan, Jun; Yu, Ying; Zhang, Wei-Guang] South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China.
[Liu, Yi] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Tan, Jing-Bo] Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China.
RP Zheng, SR; Zhang, WG (reprint author), South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China.; Liu, Y (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
EM zhengsr@scnu.edu.cn; wgzhang@scnu.edu.cn; yliu@lbl.gov
FU NSFC [21603076, 21473062, 21575043, 21571070]; Natural Science
Foundation of Guangdong Province [2016A030310437]; SCNU Foundation for
Fostering Young Teachers [15KJ02]; Undergraduates' Innovating
Experimentation Project of SCNU [hx201602]; Guangdong Provincial Science
and Technology Project [2014A010101145, 2016B090921005]; Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX S.L.C. is grateful to the NSFC (Grant No. 21603076), the Natural Science
Foundation of Guangdong Province (Grant No. 2016A030310437), and the
SCNU Foundation for Fostering Young Teachers (Grant No. 15KJ02). S.W.
thanks the Undergraduates' Innovating Experimentation Project of SCNU
(Grant No. hx201602). J.F. is supported by the Guangdong Provincial
Science and Technology Project (Grant Nos. 2014A010101145 and
2016B090921005). S.R.Z., Y.Y., and W.G.Z. acknowledge the support from
the NSFC (Grant Nos. 21473062, 21575043, and 21571070, respectively).
Part of the work is carried out as a user project at the Molecular
Foundry, which is supported by the Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 57
TC 0
Z9 0
U1 34
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2161-1653
J9 ACS MACRO LETT
JI ACS Macro Lett.
PD DEC
PY 2016
VL 5
IS 12
BP 1348
EP 1352
DI 10.1021/acsmacrolett.6b00805
PG 5
WC Polymer Science
SC Polymer Science
GA EF8ZS
UT WOS:000390621100010
ER
PT J
AU Xu, WS
Douglas, JF
Freed, KF
AF Xu, Wen-Sheng
Douglas, Jack F.
Freed, Karl F.
TI Stringlike Cooperative Motion Explains the Influence of Pressure on
Relaxation in a Model Glass-Forming Polymer Melt
SO ACS MACRO LETTERS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; GENERALIZED ENTROPY THEORY; COHESIVE
ENERGY; LIQUIDS; VISCOSITY; TEMPERATURE; NUCLEATION; DIFFUSION
AB Numerous experiments reveal that the dynamics of glass forming polymer melts are profoundly influenced by the application of pressure, but a fundamental microscopic understanding of these observations remains incomplete. We explore the structural relaxation of a model glass forming polymer melt over a wide range of pressures (P) by molecular dynamics simulation. In accord with experiments for nonassociating polymer melts and the generalized entropy theory, we find that the P dependence of the structural relaxation time (tau(alpha)) can be described by a pressure analog of the Vogel-Fulcher-Tammann equation and that the characteristic temperatures of glass formation increase with P, while the fragility decreases with P. Further, we demonstrate that tau(alpha), for various P can quantitatively be described by the string model of glass formation, where the enthalpy and entropy of activation are found to be proportional, an effect that is expected to apply to polymeric materials under various applied fields.
C1 [Xu, Wen-Sheng; Freed, Karl F.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Freed, Karl F.] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.
[Freed, Karl F.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA.
[Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
[Xu, Wen-Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Xu, WS; Freed, KF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Freed, KF (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.; Freed, KF (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA.; Douglas, JF (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.; Xu, WS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM wsxu0312@gmail.com; jack.douglas@nist.gov; freed@uchicago.edu
OI Xu, Wensheng/0000-0002-5442-8569
FU National Science Foundation (NSF) [CHE-1363012]
FX We thank an anonymous reviewer for bringing ref 16 to our attention,
which motivates our more thorough analysis for the pressure dependence
of the structural relaxation time at fixed temperatures, as shown in
Figure 2. We are grateful for the support of the University of Chicago
Research Computing Center for assistance with the simulations carried
out in this work. This work is supported, in part, by the National
Science Foundation (NSF) Grant No. CHE-1363012.
NR 42
TC 1
Z9 1
U1 7
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2161-1653
J9 ACS MACRO LETT
JI ACS Macro Lett.
PD DEC
PY 2016
VL 5
IS 12
BP 1375
EP 1380
DI 10.1021/acsmacrolett.6b00795
PG 6
WC Polymer Science
SC Polymer Science
GA EF8ZS
UT WOS:000390621100015
ER
PT J
AU Boubanga-Tombet, S
Wright, JB
Lu, P
Williams, MRC
Li, CY
Wang, GT
Prasankumar, RP
AF Boubanga-Tombet, Stephane
Wright, Jeremy B.
Lu, Ping
Williams, Michael R. C.
Li, Changyi
Wang, George T.
Prasankumar, Rohit P.
TI Ultrafast Carrier Capture and Auger Recombination in Single GaN/InGaN
Multiple Quantum Well Nanowires
SO ACS PHOTONICS
LA English
DT Article
DE GaN/InGaN nanowires; ultrafast optical microscopy; Auger recombination;
carrier capture
ID LIGHT-EMITTING-DIODES; PUMP-PROBE MICROSCOPY; SEMICONDUCTOR
NANOCRYSTALS; RADIATIVE RECOMBINATION; OPTICAL MICROSCOPY; DYNAMICS;
LIFETIME; EXCITON; ARRAYS; SPECTROSCOPY
AB Ultrafast optical microscopy is an important tool for examining fundamental phenomena in semiconductor nanowires with high temporal and spatial resolution. Here, we used this technique to study carrier dynamics in single GaN/InGaN core-shell nonpolar multiple quantum well nanowires. We find that intraband carrier-carrier scattering is the main channel governing carrier capture, while subsequent carrier relaxation is dominated by three-carrier Auger recombination at higher densities and bimolecular recombination at lower densities. The Auger constants in these nanowires are approximately 2 orders of magnitude lower than in planar InGaN multiple quantum wells, highlighting their potential for future light-emitting devices.
C1 [Boubanga-Tombet, Stephane; Williams, Michael R. C.; Prasankumar, Rohit P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Wright, Jeremy B.; Lu, Ping; Li, Changyi; Wang, George T.] Sandia Natl Labs, POB 5800,MS-1086, Albuquerque, NM 87185 USA.
RP Boubanga-Tombet, S; Prasankumar, RP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
EM stephanealbon@hotmail.com; rpprasan@lanl.gov
RI Boubanga Tombet, Stephane/E-9985-2015
FU Department of Energy, Office of Basic Energy Sciences, Division of
Materials Science; U.S. Department of Energy [DE-AC52-06NA25396]; U.S.
Department of Energy National Nuclear Security Administration
[DE-AC04-94Al85000]
FX We thank Igal Brener and Sheng Liu for help with PL measurements and
Dmitry Turchinovich for helpful discussions. This work was supported by
the Department of Energy, Office of Basic Energy Sciences, Division of
Materials Science, and performed in part at the Center for Integrated
Nano technologies, a U.S. Department of Energy, Office of Basic Energy
Sciences user facility, under user proposal U2014B0089. Los Alamos
National Laboratory, an affirmative action equal opportunity employer,
is operated by Los Alamos National Security, LLC, for the National
Nuclear Security administration of the U.S. Department of Energy under
contract no. DE-AC52-06NA25396. Sandia is a multi-mission laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the U.S.
Department of Energy National Nuclear Security Administration under
contract no. DE-AC04-94Al85000.
NR 64
TC 1
Z9 1
U1 13
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2330-4022
J9 ACS PHOTONICS
JI ACS Photonics
PD DEC
PY 2016
VL 3
IS 12
BP 2237
EP 2242
DI 10.1021/acsphotonics.6b00622
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Optics; Physics, Applied; Physics, Condensed Matter
SC Science & Technology - Other Topics; Materials Science; Optics; Physics
GA EG0OI
UT WOS:000390731700005
ER
PT J
AU Campione, S
Liu, S
Basilio, LI
Warne, LK
Langston, WL
Luk, TS
Wendt, JR
Reno, JL
Keeler, GA
Brener, I
Sinclair, MB
AF Campione, Salvatore
Liu, Sheng
Basilio, Lorena I.
Warne, Larry K.
Langston, William L.
Luk, Ting S.
Wendt, Joel R.
Reno, John L.
Keeler, Gordon A.
Brener, Igal
Sinclair, Michael B.
TI Broken Symmetry Dielectric Resonators for High Quality Factor Fano
Metasurfaces
SO ACS PHOTONICS
LA English
DT Article
DE all-dielectric metasurfaces; Fano resonances; symmetry breaking; high
quality factor
ID DIRECTIONAL SCATTERING; TRANSMISSION; POLARIZATION; RESONANCES
AB We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple "bright" dipole modes to "dark" dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurface that achieves a quality factor of similar to 1300 at similar to 10.8 pm. Then, we present two experimental demonstrations operating in the infrared (similar to 1 mu m): a silicon-based implementation that achieves a quality factor of similar to 350; and a gallium arsenide-based structure that achieves a quality factor of similar to 600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. We envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices. near-
C1 [Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.; Warne, Larry K.; Langston, William L.; Luk, Ting S.; Wendt, Joel R.; Reno, John L.; Keeler, Gordon A.; Brener, Igal; Sinclair, Michael B.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Campione, Salvatore; Liu, Sheng; Luk, Ting S.; Reno, John L.; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA.
RP Campione, S; Sinclair, MB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Campione, S (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA.
EM sncampi@sandia.gov; mbsincl@sandia.gov
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; Laboratory Directed Research and
Development program at Sandia National Laboratories; U.S. Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
FX The authors acknowledge fruitful discussions with Prof. Edward Kuester,
University of Colorado-Boulder. Parts of this work were supported by the
U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering and performed, in part, at the Center
for Integrated Nanotechnologies, an Office of Science User Facility
operated for the U.S. Department of Energy (DOE), Office of Science.
Portions of this work were supported by the Laboratory Directed Research
and Development program at Sandia National Laboratories. Sandia National
Laboratories is a multiprogram laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security
Administration under Contract DE-AC04-94AL85000.
NR 27
TC 0
Z9 0
U1 16
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2330-4022
J9 ACS PHOTONICS
JI ACS Photonics
PD DEC
PY 2016
VL 3
IS 12
BP 2362
EP 2367
DI 10.1021/acsphotonics.6b00556
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Optics; Physics, Applied; Physics, Condensed Matter
SC Science & Technology - Other Topics; Materials Science; Optics; Physics
GA EG0OI
UT WOS:000390731700024
ER
PT J
AU Boulesbaa, A
Babicheva, VE
Wang, K
Kravchenko, II
Lin, MW
Mahjouri-Samani, M
Jacobs, CB
Puretzky, AA
Xiao, K
Ivanov, I
Rouleau, CM
Geohegan, DB
AF Boulesbaa, Abdelaziz
Babicheva, Viktoriia E.
Wang, Kai
Kravchenko, Ivan I.
Lin, Ming-Wei
Mahjouri-Samani, Masoud
Jacobs, Christopher B.
Puretzky, Alexander A.
Xiao, Kai
Ivanov, Ilia
Rouleau, Christopher M.
Geohegan, David B.
TI Ultrafast Dynamics of Metal Plasmons Induced by 2D Semiconductor
Excitons in Hybrid Nanostructure Arrays
SO ACS PHOTONICS
LA English
DT Article
DE plasmons; excitons; 2D materials; ultrafast; energy transfer; hot
electrons
ID MONO LAYER; MONOLAYER; MOS2; ENHANCEMENT; PHOTOLUMINESCENCE;
DICHALCOGENIDES; RECOMBINATION; SPECTROSCOPY; ELECTRONS; RESONANCE
AB With the advanced progress achieved in the field of nanotechnology, localized surface plasmon resonances are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within similar to 830 fs after photoexcitation of the 2D-WS2 semiconductor energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfer back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2Dexciton transition energies at later time delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from similar to 15 ps to similar to 58 ps in the absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. The demonstrated ability to generate exciton-plasmon coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.
C1 [Boulesbaa, Abdelaziz; Wang, Kai; Kravchenko, Ivan I.; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Jacobs, Christopher B.; Puretzky, Alexander A.; Xiao, Kai; Ivanov, Ilia; Rouleau, Christopher M.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Babicheva, Viktoriia E.] Georgia State Univ, Ctr Nanoopt, POB 3965, Atlanta, GA 30302 USA.
RP Boulesbaa, A (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM boulesbaaa@ornl.gov
RI Kravchenko, Ivan/K-3022-2015; Babicheva, Viktoriia/C-7234-2013
OI Jacobs, Christopher/0000-0001-7906-6368; Xiao, Kai /0000-0002-0402-8276;
Kravchenko, Ivan/0000-0003-4999-5822; Babicheva,
Viktoriia/0000-0002-0789-5738
FU Materials Science and Engineering Division, Office of Basic Energy
Sciences, U.S. Department of Energy
FX This research was conducted at the Center for Nanophase Materials
Sciences, which is a DOE Office of Science User Facility. Synthesis of
the two-dimensional materials was supported by the Materials Science and
Engineering Division, Office of Basic Energy Sciences, U.S. Department
of Energy. The authors thank Dr. Benjamin Lawrie from the Computational
Sciences and Engineering Division at ORNL for the fruitful discussions.
NR 33
TC 0
Z9 0
U1 36
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2330-4022
J9 ACS PHOTONICS
JI ACS Photonics
PD DEC
PY 2016
VL 3
IS 12
BP 2389
EP 2395
DI 10.1021/acsphotonics.6b00618
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Optics; Physics, Applied; Physics, Condensed Matter
SC Science & Technology - Other Topics; Materials Science; Optics; Physics
GA EG0OI
UT WOS:000390731700028
ER
PT J
AU Gong, Y
Joly, AG
El-Khoury, PZ
Hess, WP
AF Gong, Y.
Joly, Alan G.
El-Khoury, Patrick Z.
Hess, Wayne P.
TI Enhanced Propagating Surface Plasmon Signal Detection
SO ACS PHOTONICS
LA English
DT Article
DE propagating surface plasmon; plasmon coupling; plasmon imaging; homodyne
detection; inteferometric transient photoemission electron microscopy
ID SCATTERING; REFRACTION; LIGHT; GOLD
AB Overcoming the dissipative nature of propagating surface plasmons (PSPs) is a prerequisite to realizing functional plasmonic circuitry, in which large-bandwidth signals can be manipulated over length scales far below the diffraction limit of light. To this end, we report on a novel PSP-enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatiotemporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved nonlinear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from a hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 pm in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10x enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a nonlinear scheme. Larger readout trenches achieve higher readout levels; however reduced transmission through the trench limits the trench size to 6 pm for maximum readout levels. In addition, the use of an array of trenches increases the maximum enhancement to near 30x. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry.
C1 [Gong, Y.; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.] Pacific Northwest Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA.
RP Hess, WP (reprint author), Pacific Northwest Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA.
EM wayne.hess@pnnl.gov
FU U.S. Department of Energy (DOE), Office of Science, Office of Basic
Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences;
DOE's Office of Biological and Environmental Research
FX The authors acknowledge support from the U.S. Department of Energy
(DOE), Office of Science, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences & Biosciences. This work was performed in
EMSL, a national scientific user facility sponsored by the DOE's Office
of Biological and Environmental Research and located at PNNL. PNNL is
operated by Battelle Memorial Institute for the United States Department
of Energy.
NR 23
TC 0
Z9 0
U1 9
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2330-4022
J9 ACS PHOTONICS
JI ACS Photonics
PD DEC
PY 2016
VL 3
IS 12
BP 2413
EP 2419
DI 10.1021/acsphotonics.6b00636
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Optics; Physics, Applied; Physics, Condensed Matter
SC Science & Technology - Other Topics; Materials Science; Optics; Physics
GA EG0OI
UT WOS:000390731700031
ER
PT J
AU Dickie, DA
Kemp, RA
AF Dickie, Diane A.
Kemp, Richard A.
TI Crystal structure of catena-poly[diammonium [di-mu-oxalato-cuprate(II)]]
SO ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS
LA English
DT Article
DE crystal structure; copper; oxalate; hydrogen bonding; ammonium
ID METAL OXALATES; COMPLEXES; LAYER; CHAIN
AB The structure of the title compound, {(NH4)(2)[Cu(C2O4)(2)]}(n), at 100 K has monoclinic (P2(1)/c) symmetry with the Cu II atom on an inversion center. The compound has a polymeric structure due to long Cu center dot center dot center dot O interactions which create [Cu(C2O4)(2)] chains along the a axis. The structure also displays intermolecular N-H center dot center dot center dot O hydrogen bonding, which links these chains into a three-dimensional network.
C1 [Dickie, Diane A.; Kemp, Richard A.] 1 Univ New Mexico, Dept Chem & Chem Biol, MSC03 2060, Albuquerque, NM 87131 USA.
[Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA.
RP Kemp, RA (reprint author), 1 Univ New Mexico, Dept Chem & Chem Biol, MSC03 2060, Albuquerque, NM 87131 USA.; Kemp, RA (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA.
EM rakemp@unm.edu
OI Dickie, Diane/0000-0003-0939-3309
FU National Science Foundation [CHE12-13529]; National Science Foundation
CRIF:MU award [CHE04-43580]; US Department of Energy's National Nuclear
Security Administration [DE-AC04-94-AL85000]
FX This work was supported financially by the National Science Foundation
(grant CHE12-13529). The Bruker X-ray diffractometer was purchased by a
National Science Foundation CRIF:MU award to the University of New
Mexico (CHE04-43580). Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the US Department of
Energy's National Nuclear Security Administration under Contract
DE-AC04-94-AL85000.
NR 25
TC 0
Z9 0
U1 1
U2 1
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 2056-9890
J9 ACTA CRYSTALLOGR E
JI Acta Crystallogr. Sect. E.-Crystallogr. Commun.
PD DEC
PY 2016
VL 72
BP 1780
EP +
DI 10.1107/S2056989016017631
PN 12
PG 6
WC Crystallography
SC Crystallography
GA EF4PV
UT WOS:000390315400022
PM 27980829
ER
PT J
AU Holland, SC
Artier, J
Miller, NT
Cano, M
Yu, JP
Ghirardi, ML
Burnapa, RL
AF Holland, Steven C.
Artier, Juliana
Miller, Neil T.
Cano, Melissa
Yu, Jianping
Ghirardi, Maria L.
Burnapa, Robert L.
TI Impacts of genetically engineered alterations in carbon sink pathways on
photosynthetic performance
SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
LA English
DT Article
DE Chlorophyll fluorescence; Cyclic electron flow; Ethylene; Glycogen;
Cyclic electron flow; Homeostasis; Metabolic sink; NADPH; Photosystem;
Plastoquinone
ID CYANOBACTERIUM SYNECHOCYSTIS SP; SP PCC 6803; INORGANIC CARBON;
CHLOROPHYLL FLUORESCENCE; PHOTORESPIRATORY MUTANTS; NADPH FLUORESCENCE;
CO2; LIMITATION; DEHYDROGENASE; PRODUCTIVITY
AB Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the Delta glgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringae ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, Delta glgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of Q(A)-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs. (C) 2016 Published by Elsevier B.V.
C1 [Holland, Steven C.; Artier, Juliana; Miller, Neil T.; Burnapa, Robert L.] Oklahoma State Univ, Dept Microbiol & Mol Genet, Stillwater, OK 74078 USA.
[Cano, Melissa; Yu, Jianping; Ghirardi, Maria L.] Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA.
RP Burnapa, RL (reprint author), Oklahoma State Univ, 307 Life Sci East, Stillwater, OK 74078 USA.
EM robert.burnap@okstate.edu
FU U.S. Department of Energy, Office of Science, Basic Energy Sciences at
OSU [DE-FG02-08ER15968]; U.S. Department of Energy, Office of Science,
Basic Energy Sciences; U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy, Bioenergy Technologies Office
FX This work was supported by the grant no. DE-FG02-08ER15968 funded by the
U.S. Department of Energy, Office of Science, Basic Energy Sciences at
OSU (SCH, JA, NTM and RLB, physiological and spectroscopic
measurements). Work at NREL was supported by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences (MC, JY and MLG,
glycogen mutant studies), and by the U.S. Department of Energy, Office
of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office
(JY, ethylene-producing mutants studies).
NR 54
TC 0
Z9 0
U1 10
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-9264
J9 ALGAL RES
JI Algal Res.
PD DEC
PY 2016
VL 20
BP 87
EP 99
DI 10.1016/j.algal.2016.09.021
PG 13
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA EF8DX
UT WOS:000390560000012
ER
PT J
AU Xu, YW
Kim, SW
Kim, D
Alexoff, D
Schueller, MJ
Fowler, JS
AF Xu, Youwen
Kim, Sung Won
Kim, Dohyun
Alexoff, David
Schueller, Michael J.
Fowler, Joanna S.
TI A mild, rapid synthesis of freebase [C-11]nicotine from [C-11]methyl
triflate
SO APPLIED RADIATION AND ISOTOPES
LA English
DT Article
DE Freebase [C-11]nicotine; [C-11]methyl triflate
ID POSITRON-EMISSION-TOMOGRAPHY; C-11 METHYL TRIFLATE; HUMAN BRAIN; PET;
NICOTINE; CIGARETTES; KINETICS; BINDING; INVIVO
AB A rapid, mild radiosynthesis of freebase [C-11]nicotine was developed by the methylation of freebase nornicotine with [C-11]methyl triflate in acetone (5 min, 45 degrees C). A basic (pH 10.5-11.0) HPLC system reproducibly yielded freebase [C-11]nicotine as a well-defined single peak. The freebase [C-11]nicotine was concentrated by solid phase extraction and formulated in 50 mu L ethanol (370 MBq/50 mu L) without evaporative loss suitable for a cigarette spiking study. A radiochemical yield of 60.4 +/- 4.7% (n=3), radiochemical purity >= 99.9% and specific activity of 648 GBq/mu mol at EOB for 5 min beams were achieved. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Xu, Youwen; Kim, Sung Won; Kim, Dohyun; Alexoff, David; Schueller, Michael J.; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Fowler, JS (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
EM fowler@bnl.gov
FU Brookhaven National Laboratory [DE-AC02-98CH10886]; Department of Health
and Human Services [AAA12001002]; Centers for Disease Control and
Prevention [CDC-12FED1204064]; National of Alcohol Abuse and Alcoholism
Intramural Program
FX This study was carried out in part at Brookhaven National Laboratory
under contract DE-AC02-98CH10886 with the U.S. Department of Energy and
with infrastructure support from its Office of Biological and
Environmental Research. We also thank the Department of Health and Human
Services (AAA12001002) and Centers for Disease Control and Prevention
(CDC-12FED1204064) for partial support of this work and National of
Alcohol Abuse and Alcoholism Intramural Program for salary support for
Sung Won Kim. We also thank Marielle Brinkman, Herbert Bresler, Clifford
Watson and Wenchao Qu for helpful discussions.
NR 17
TC 0
Z9 0
U1 1
U2 1
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0969-8043
J9 APPL RADIAT ISOTOPES
JI Appl. Radiat. Isot.
PD DEC
PY 2016
VL 118
BP 62
EP 66
DI 10.1016/j.apradiso.2016.08.020
PG 5
WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology,
Nuclear Medicine & Medical Imaging
SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA EG0QA
UT WOS:000390736100010
PM 27611082
ER
PT J
AU Griswold, JR
Medvedev, DG
Engle, JW
Copping, R
Fitzsimmons, JM
Radchenko, V
Cooley, JC
Fassbender, ME
Denton, DL
Murphy, KE
Owens, AC
Birnbaum, ER
John, KD
Nortier, FM
Stracener, DW
Heilbronn, LH
Mausner, LF
Mirzadeh, S
AF Griswold, J. R.
Medvedev, D. G.
Engle, J. W.
Copping, R.
Fitzsimmons, J. M.
Radchenko, V.
Cooley, J. C.
Fassbender, M. E.
Denton, D. L.
Murphy, K. E.
Owens, A. C.
Birnbaum, E. R.
John, K. D.
Nortier, F. M.
Stracener, D. W.
Heilbronn, L. H.
Mausner, L. F.
Mirzadeh, S.
TI Large scale accelerator production of (225)AC: Effective cross sections
for 78-192 MeV protons incident on Th-232 targets
SO APPLIED RADIATION AND ISOTOPES
LA English
DT Article
DE (225)AC; (226)Ae; (227)AC; Th-227; Th-228; (MO)-M-99; Ba-140; Ce-139;
Ce-141; Ce-145; (144)ce; Actinium; Alpha-emitting; Radiotherapy; Proton
irradiation; Thorium
ID NUCLEAR-DATA SHEETS; ALPHA-THERAPY; THORIUM; FISSION; AC-225; ENERGY;
ACTINIUM; RA-223
AB Actinium-225 and Bi-213 have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of (225)AC. The highenergy proton spallation reaction on natural thorium metal targets has been utilized to produce millicurie quantities of Ac-225. The results of sixteen irradiation experiments of thorium metal at beam energies between 78 and 192 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes, as well as for some of the fission products, are presented. The cross sections for production of (225)AC range from 3.6 to 16.7 mb in the incident proton energy range of 78-192 MeV. Based on these data, production of curie quantities of Ac-223 is possible by irradiating a 5.0 g cm(-2) Th-232 target for 10 days in either BNL or LANL proton irradiation facilities.
C1 [Griswold, J. R.; Copping, R.; Denton, D. L.; Murphy, K. E.; Owens, A. C.; Mirzadeh, S.] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Oak Ridge, TN 37831 USA.
[Griswold, J. R.; Heilbronn, L. H.] Univ Tennessee, Dept Nucl Engn, Knoxville, IN 37996 USA.
[Medvedev, D. G.; Fitzsimmons, J. M.; Mausner, L. F.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA.
[Engle, J. W.; Radchenko, V.; Cooley, J. C.; Fassbender, M. E.; Birnbaum, E. R.; John, K. D.; Nortier, F. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Stracener, D. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Griswold, JR (reprint author), Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Oak Ridge, TN 37831 USA.
OI John, Kevin/0000-0002-6181-9330
FU U.S. Department of Energy [DE-AC05-00OR22725]; Isotope Program, Office
of Nuclear Physics of the U.S. Department of Energy
FX The authors acknowledge Drs. Tim S. Bigelow and Paul E. Mueller for
their critical review of the manuscript. The authors thank the LANL
Metallurgy group and the BNL machine shop teams for their efforts
related to the fabrication of the targets used in this study. This
research is supported by the Isotope Program, Office of Nuclear Physics
of the U.S. Department of Energy. ORNL is managed by UT-Battelle, LLC,
for the U.S. Department of Energy under contract DE-AC05-00OR22725.
NR 46
TC 0
Z9 0
U1 5
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0969-8043
J9 APPL RADIAT ISOTOPES
JI Appl. Radiat. Isot.
PD DEC
PY 2016
VL 118
BP 366
EP 374
DI 10.1016/j.apradiso.2016.09.026
PG 9
WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology,
Nuclear Medicine & Medical Imaging
SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA EG0QA
UT WOS:000390736100056
PM 27776333
ER
PT J
AU Akiyama, E
Hashimoto, J
Liu, HB
Li, JIH
Bonnefoy, M
Dong, RB
Hasegawa, Y
Henning, T
Sitko, ML
Janson, M
Feldt, M
Wisniewski, J
Kudo, T
Kusakabe, N
Tsukagoshi, T
Momose, M
Muto, T
Taki, T
Kuzuhara, M
Satoshi, M
Takami, M
Ohashi, N
Grady, CA
Kwon, J
Thalmann, C
Abe, L
Brandner, W
Brandt, TD
Carson, JC
Egner, S
Goto, M
Guyon, O
Hayano, Y
Hayashi, M
Hayashi, SS
Hodapp, KW
Ishii, M
Iye, M
Knapp, GR
Kandori, R
Matsuo, T
Mcelwain, MW
Miyama, S
Morino, JI
Moro-Martin, A
Nishimura, T
Pyo, TS
Serabyn, E
Suenaga, T
Suto, H
Suzuki, R
Takahashi, YH
Takato, N
Terada, H
Tomono, D
Turner, EL
Watanabe, M
Yamada, T
Takami, H
Usuda, T
Tamura, M
AF Akiyama, Eiji
Hashimoto, Jun
Liu, Hauyu Baobabu
Li, Jennifer I-Hsiu
Bonnefoy, Michael
Dong, Ruobing
Hasegawa, Yasuhiro
Henning, Thomas
Sitko, Michael L.
Janson, Markus
Feldt, Markus
Wisniewski, John
Kudo, Tomoyuki
Kusakabe, Nobuhiko
Tsukagoshi, Takashi
Momose, Munetake
Muto, Takayuki
Taki, Tetsuo
Kuzuhara, Masayuki
Satoshi, Mayama
Takami, Michihiro
Ohashi, Nagayoshi
Grady, Carol A.
Kwon, Jungmi
Thalmann, Christian
Abe, Lyu
Brandner, Wolfgang
Brandt, Timothy D.
Carson, Joseph C.
Egner, Sebastian
Goto, Miwa
Guyon, Olivier
Hayano, Yutaka
Hayashi, Masahiko
Hayashi, Saeko S.
Hodapp, Klaus W.
Ishii, Miki
Iye, Masanori
Knapp, Gillian R.
Kandori, Ryo
Matsuo, Taro
Mcelwain, Michael W.
Miyama, Shoken
Morino, Jun-Ichi
Moro-Martin, Amaya
Nishimura, Tetsuo
Pyo, Tae-Soo
Serabyn, Eugene
Suenaga, Takuya
Suto, Hiroshi
Suzuki, Ryuji
Takahashi, Yasuhiro H.
Takato, Naruhisa
Terada, Hiroshi
Tomono, Daigo
Turner, Edwin L.
Watanabe, Makoto
Yamada, Toru
Takami, Hideki
Usuda, Tomonori
Tamura, Motohide
TI SPIRAL STRUCTURE AND DIFFERENTIAL DUST SIZE DISTRIBUTION IN THE LkH
alpha 330 DISK
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE planetary systems; stars: pre-main sequence; stars: individual (LkH
alpha 330); techniques: interferometric
ID PROTOPLANETARY DISKS; TRANSITIONAL DISKS; GRAIN-GROWTH; CIRCUMSTELLAR
DISKS; TAURUS-AURIGA; HD 142527; MWC 758; PLANETS; STARS; SPECTROSCOPY
AB Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 mu m) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH alpha 330. As a. result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure. and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7(-0.4)(+0.5), indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.
C1 [Akiyama, Eiji; Hashimoto, Jun; Hasegawa, Yasuhiro; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Morino, Jun-Ichi; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
[Liu, Hauyu Baobabu] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany.
[Liu, Hauyu Baobabu; Li, Jennifer I-Hsiu; Takami, Michihiro] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10167, Taiwan.
[Li, Jennifer I-Hsiu] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Bonnefoy, Michael] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.
[Bonnefoy, Michael] CNRS, F-38000 Grenoble, France.
[Bonnefoy, Michael; Henning, Thomas; Feldt, Markus; Brandner, Wolfgang] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
[Dong, Ruobing] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Hasegawa, Yasuhiro; Serabyn, Eugene] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Sitko, Michael L.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA.
[Sitko, Michael L.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA.
[Janson, Markus] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden.
[Wisniewski, John] Univ Oklahoma, Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA.
[Kudo, Tomoyuki; Egner, Sebastian; Guyon, Olivier; Hayano, Yutaka; Hayashi, Saeko S.; Nishimura, Tetsuo; Pyo, Tae-Soo; Takato, Naruhisa; Terada, Hiroshi; Tomono, Daigo] Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA.
[Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Tamura, Motohide] NINS, Astrobiol Ctr, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
[Tsukagoshi, Takashi; Momose, Munetake] Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan.
[Muto, Takayuki] Kogakuin Univ, Div Liberal Arts, Shinjuku Ku, 1-24-2 Nishi Shinjuku, Tokyo 1638677, Japan.
[Taki, Tetsuo] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan.
[Satoshi, Mayama; Hayashi, Masahiko] Grad Univ Adv Studies, Ctr Promot Integrated Sci, Hayama Cho, Miura, Kanagawa 2400115, Japan.
[Grady, Carol A.; Mcelwain, Michael W.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA.
[Grady, Carol A.] Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA.
[Kwon, Jungmi] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan.
[Thalmann, Christian] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
[Abe, Lyu] Univ Nice Sophia Antipolis, Lab Hippolyte Fizeau, UMR6525, 28 Ave Valrose, F-06108 Nice 02, France.
[Brandt, Timothy D.; Knapp, Gillian R.; Turner, Edwin L.] Princeton Univ, Dept Astrophys Sci, Peyton Hall,Ivy Lane, Princeton, NJ 08544 USA.
[Carson, Joseph C.] Coll Charleston, Dept Phys & Astron, 66 George St, Charleston, SC 29424 USA.
[Goto, Miwa] Univ Munich, 12 Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany.
[Hodapp, Klaus W.] Univ Hawaii, Inst Astron, 640 North Aohoku Pl, Hilo, HI 96720 USA.
[Matsuo, Taro] Kyoto Univ, Dept Astron, Sakyo Ku, Kita Shirakawa Oiwake Cho, Kyoto 6068502, Japan.
[Miyama, Shoken] Hiroshima Univ, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 7398511, Japan.
[Moro-Martin, Amaya] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Moro-Martin, Amaya] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA.
[Suenaga, Takuya] Grad Univ Adv Studies SOKENDAI, Sch Phys Sci, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan.
[Turner, Edwin L.] Univ Tokyo, Kavli Inst Phys & Math Univ, 5-1-1 Kashiwanoha, Kashiwa, Chiba 2278568, Japan.
[Watanabe, Makoto] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan.
[Yamada, Toru] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan.
RP Akiyama, E (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.
EM eiji.akiyama@nao.ac.jp
RI MIYAMA, Shoken/A-3598-2015
FU Ministry of Science and Technology (MoST) of Taiwan
[103-2112-M-001-029]; JPL/Caltech under NASA; MEXT KAKENHI [23103004]
FX M.T. is supported by the Ministry of Science and Technology (MoST) of
Taiwan (grant No. 103-2112-M-001-029). Y.H. is currently supported by
JPL/Caltech under a contract from NASA. This work is supported by MEXT
KAKENHI No. 23103004.
NR 50
TC 0
Z9 0
U1 2
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD DEC
PY 2016
VL 152
IS 6
AR 222
DI 10.3847/1538-3881/152/6/222
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1ED
UT WOS:000390773800002
ER
PT J
AU Crawford, TM
Chown, R
Holder, GP
Aird, KA
Benson, BA
Bleem, LE
Carlstrom, JE
Chang, CL
Cho, HM
Crites, AT
de Haan, T
Dobbs, MA
George, EM
Halverson, NW
Harrington, NL
Holzapfel, WL
Hou, Z
Hrubes, JD
Keisler, R
Knox, L
Lee, AT
Leitch, EM
Luong-Van, D
Marrone, DP
McMahon, JJ
Meyer, SS
Mocanu, LM
Mohr, JJ
Natoli, T
Padin, S
Pryke, C
Reichardt, CL
Ruhl, JE
Sayre, JT
Schaffer, KK
Shirokoff, E
Staniszewski, Z
Stark, AA
Story, KT
Vanderlinde, K
Vieira, JD
Williamson, R
AF Crawford, T. M.
Chown, R.
Holder, G. P.
Aird, K. A.
Benson, B. A.
Bleem, L. E.
Carlstrom, J. E.
Chang, C. L.
Cho, H-M.
Crites, A. T.
de Haan, T.
Dobbs, M. A.
George, E. M.
Halverson, N. W.
Harrington, N. L.
Holzapfel, W. L.
Hou, Z.
Hrubes, J. D.
Keisler, R.
Knox, L.
Lee, A. T.
Leitch, E. M.
Luong-Van, D.
Marrone, D. P.
McMahon, J. J.
Meyer, S. S.
Mocanu, L. M.
Mohr, J. J.
Natoli, T.
Padin, S.
Pryke, C.
Reichardt, C. L.
Ruhl, J. E.
Sayre, J. T.
Schaffer, K. K.
Shirokoff, E.
Staniszewski, Z.
Stark, A. A.
Story, K. T.
Vanderlinde, K.
Vieira, J. D.
Williamson, R.
TI MAPS OF THE MAGELLANIC CLOUDS FROM COMBINED SOUTH POLE TELESCOPE AND
PLANCK DATA
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE Magellanic Clouds; methods: data analysis
ID SOURCE CATALOG; RESULTS. VI.; EMISSION; RADIO; SKY; HFI; SUBMILLIMETER;
SPECTRUM; FIELD; DUST
AB We present maps of the Large and Small Magellanic Clouds from combined South Pole Telescope (SPT) and Planck data. The Planck satellite observes in nine bands, while the SPT data used in this work were taken with the three-band SPT-SZ camera, The SPT-SZ bands correspond closely to three of the nine Planck bands, namely those centered at 1.4, 2.1, and 3.0 mm. The angular resolution of the Planck data ranges from 5 to 10 arcmin, while the SPT resolution ranges from 1.0 to 1.7 arcmin. The combined maps take advantage of the high resolution of the SPT data and the long-timescale stability of the space-based Planck observations to deliver robust brightness measurements on scales from the size of the maps down to similar to 1 arcmin. In each band, we first calibrate and color-correct the SPT data to match the Planck data, then we use noise estimates from each instrument and knowledge of each instrument's beam to make the inverse-variance-weighted combination of the two instruments' data as a function of angular scale. We create maps assuming a range of underlying emission spectra and at a range of final resolutions. We perform several consistency tests on the combined maps and estimate the expected noise in measurements of features in them. We compare maps from this work to those from the Herschel HERITAGE survey, finding general consistency between the data sets. All data products described in this paper are available for download from the NASA Legacy Archive for Microwave Background Data Analysis server.
C1 [Crawford, T. M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Hou, Z.; Keisler, R.; Leitch, E. M.; Meyer, S. S.; Mocanu, L. M.; Natoli, T.; Padin, S.; Schaffer, K. K.; Shirokoff, E.; Story, K. T.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Crawford, T. M.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Hou, Z.; Leitch, E. M.; Meyer, S. S.; Mocanu, L. M.; Padin, S.; Shirokoff, E.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Chown, R.; Holder, G. P.; de Haan, T.; Dobbs, M. A.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA.
[Benson, B. A.] Fermilab Natl Accelerator Lab, MS209,POB 500, Batavia, IL 60510 USA.
[Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K. T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Carlstrom, J. E.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Cho, H-M.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
[Crites, A. T.] CALTECH, Pasadena, CA 91125 USA.
[de Haan, T.; George, E. M.; Harrington, N. L.; Holzapfel, W. L.; Lee, A. T.; Reichardt, C. L.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[George, E. M.; Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
[Keisler, R.; Story, K. T.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Lee, A. T.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Marrone, D. P.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA.
[McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Mohr, J. J.] Ludwig Maximilians Univ Munchen, Fac Phys, D-81679 Munich, Germany.
[Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany.
[Natoli, T.; Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada.
[Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA.
[Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia.
[Ruhl, J. E.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Dept Phys, Cleveland, OH 44106 USA.
[Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA.
[Staniszewski, Z.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Stark, A. A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
[Story, K. T.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.
[Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada.
[Vieira, J. D.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Vieira, J. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
RP Crawford, TM (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.; Crawford, TM (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA.
EM tcrawfor@kicp.uchicago.edu
OI Stark, Antony/0000-0002-2718-9996
FU National Science Foundation [PLR-1248097]; NSF Physics Frontier Center
[PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF
947]; National Sciences and Engineering Research Council of Canada;
Canada Research Chairs program; Canadian Institute for Advanced
Research; U.S. Department of Energy [DE-AC02-06CH11357]
FX The South Pole Telescope is supported by the National Science Foundation
through grant PLR-1248097. Partial support is also provided by the NSF
Physics Frontier Center grant PHY-1125897 to the Kavli Institute of
Cosmological Physics at the University of Chicago, the Kavli Foundation
and the Gordon and Betty Moore Foundation grant GBMF 947. The McGill
group acknowledges funding from the National Sciences and Engineering
Research Council of Canada, Canada Research Chairs program, and the
Canadian Institute for Advanced Research. Argonne National Laboratory
work was supported under U.S. Department of Energy contract
DE-AC02-06CH11357. We thank M. Meixner and the HERITAGE team for making
their data publicly available and K. Ganga for helpful discussion on
Planck map properties.
NR 28
TC 1
Z9 1
U1 3
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD DEC
PY 2016
VL 227
IS 2
AR 23
DI 10.3847/1538-4365/227/2/23
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EG1MF
UT WOS:000390795900003
ER
PT J
AU Pavlak, GS
Henze, GP
Hirsch, AI
Florita, AR
Dodier, RH
AF Pavlak, Gregory S.
Henze, Gregor P.
Hirsch, Adam I.
Florita, Anthony R.
Dodier, Robert H.
TI Experimental verification of an energy consumption signal tool for
operational decision support in an office building
SO AUTOMATION IN CONSTRUCTION
LA English
DT Article
DE Decision support; Operational building energy modeling; Bayesian
updating
ID MODEL
AB This paper demonstrates an energy signal tool to assess the system-level and whole-building energy use of an office building in downtown Denver, Colorado. The energy signal tool uses a traffic light visualization to alert a building operator to energy use which is substantially different from expected. The tool selects which light to display for a given energy end-use by comparing measured energy use to expected energy use, accounting for uncertainty. A red light is only displayed when a fault is likely enough, and abnormal operation costly enough, that taking action will yield the lowest cost result. While the theoretical advances and tool development were reported previously, it has only been tested using a basic building model and has not, until now, been experimentally verified. Expected energy use for the field demonstration is provided by a compact reduced-order representation of the Alliance Center, generated from a detailed DOE-2.2 energy model. Actual building energy consumption data is taken from the summer of 2014 for the office building immediately after a significant renovation project. The purpose of this paper is to demonstrate a first look at the building following its major renovation compared to the design intent. The tool indicated strong under-consumption in lighting and plug loads and strong over-consumption in HVAC energy consumption, which prompted several focused actions for follow-up investigation. In addition, this paper illustrates the application of Bayesian inference to the estimation of posterior parameter probability distributions to measured data. Practical discussion of the application is provided, along with additional findings from further investigating the significant difference between expected and actual energy consumption. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Pavlak, Gregory S.; Henze, Gregor P.; Florita, Anthony R.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA.
[Henze, Gregor P.; Hirsch, Adam I.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Dodier, Robert H.] 1325 NE Going St, Portland, OR 97211 USA.
RP Henze, GP (reprint author), Univ Colorado Boulder, CEAE Dept, 428 UCB, Boulder, CO 80309 USA.
EM gregor.henze@colorado.edu
OI Dodier, Robert/0000-0003-0994-2929
FU National Renewable Energy Laboratory [DE-AC36-08GO2830]
FX The authors would like to acknowledge the support of the Alliance Center
in committing time and resources to this project and the National
Renewable Energy Laboratory (Contract No. DE-AC36-08GO2830) for partial
funding of this work.
NR 15
TC 0
Z9 0
U1 6
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0926-5805
EI 1872-7891
J9 AUTOMAT CONSTR
JI Autom. Constr.
PD DEC
PY 2016
VL 72
BP 75
EP 92
DI 10.1016/j.autcon.2016.08.034
PN 2
PG 18
WC Construction & Building Technology; Engineering, Civil
SC Construction & Building Technology; Engineering
GA EG0KQ
UT WOS:000390722100002
ER
PT J
AU Chen, Y
Treado, SJ
Messner, JI
AF Chen, Yan
Treado, Stephen J.
Messner, John I.
TI Building HVAC control knowledge data schema - Towards a unified
representation of control system knowledge
SO AUTOMATION IN CONSTRUCTION
LA English
DT Article
DE Building control; Modularization; Knowledge; Representation; BIM; HVAC
AB Building control systems for heating, ventilation, and air conditioning (HVAC) play a key role in realizing the functionality and operation of building systems and components. Building control knowledge (BCK) is the logic and algorithms embedded throughout building control system. There are different methods to represent the BCK. These methods differ in the selection of BCK representing elements and the format of those elements. There is a lack of standard data schema, for storing, retrieving, and reusing structured BCK. In this study, a modular data schema is created for BCK representation. The data schema contains eleven representing elements, i.e., control module name, operation mode, system schematic, control flow diagram, data point, alarm, parameter, control sequence, function, and programming code. Each element is defined with specific attributes. This data schema is evaluated through a case study demonstration. The demonstration shows a new way to represent the BCK with standard formats. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Chen, Yan] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA.
[Treado, Stephen J.; Messner, John I.] Penn State Univ, Dept Architectural Engn, 104 Engn Unit A, University Pk, PA 16802 USA.
RP Chen, Y (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA.
EM yan.chen@pnnl.gov; streado@engr.psu.edu; jmessner@engr.psu.edu
FU Energy Efficient Buildings Hub - U.S. Department of Energy
[DE-EE0004261]; Pennsylvania State University
FX This material is based upon work supported by the Energy Efficient
Buildings Hub primarily sponsored by the U.S. Department of Energy
(Grant No. DE-EE0004261) along with matching funding from The
Pennsylvania State University. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.
NR 20
TC 0
Z9 0
U1 6
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0926-5805
EI 1872-7891
J9 AUTOMAT CONSTR
JI Autom. Constr.
PD DEC
PY 2016
VL 72
BP 174
EP 186
DI 10.1016/j.autcon.2016.08.036
PN 2
PG 13
WC Construction & Building Technology; Engineering, Civil
SC Construction & Building Technology; Engineering
GA EG0KQ
UT WOS:000390722100010
ER
PT J
AU Besmann, TM
McMurray, JW
Simunovic, S
AF Besmann, Theodore M.
McMurray, Jacob W.
Simunovic, Srdjan
TI Application of thermochemical modeling to assessment/evaluation of
nuclear fuel behavior
SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
LA English
DT Article
DE Nuclear fuel; Oxygen potential; Fission product; Thermodynamic modeling
ID COMPOUND ENERGY FORMALISM; INDUCED STRESS-CORROSION; FISSION-PRODUCTS;
OXIDE FUELS; HIGH-BURNUP; O SYSTEM; UO2 FUEL; THERMODYNAMIC ASSESSMENT;
CHEMICAL-STATE; OXYGEN DIFFUSION
AB The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Besmann, Theodore M.] Univ South Carolina, Nucl Engn Program, Columbia, SC 29208 USA.
[McMurray, Jacob W.; Simunovic, Srdjan] Oak Ridge Natl Lab, Oak Ridge, TN USA.
RP Besmann, TM (reprint author), Univ South Carolina, Nucl Engn Program, Columbia, SC 29208 USA.
OI McMurray, Jacob/0000-0001-5111-3054
FU U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy
Advanced Modeling and Simulation Program; U.S. Department of Energy,
Office of Nuclear Energy, Fuel Cycle RD Program
FX The authors wish to acknowledge the U.S. Department of Energy, Office of
Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation Program
and Fuel Cycle R&D Program for their support of this research.
NR 50
TC 0
Z9 0
U1 3
U2 3
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0364-5916
EI 1873-2984
J9 CALPHAD
JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
PD DEC
PY 2016
VL 55
BP 47
EP 51
DI 10.1016/j.calphad.2016.04.004
PN 1
PG 5
WC Thermodynamics; Chemistry, Physical; Materials Science,
Multidisciplinary; Metallurgy & Metallurgical Engineering
SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical
Engineering
GA EG1WS
UT WOS:000390825300007
ER
PT J
AU Duong, TC
Hackenberg, RE
Landa, A
Honarmandi, P
Talapatra, A
Volz, HM
Llobet, A
Smith, AI
King, G
Bajaj, S
Ruban, A
Vitos, L
Turchi, PEA
Arroyave, R
AF Duong, Thien C.
Hackenberg, Robert E.
Landa, Alex
Honarmandi, Pejman
Talapatra, Anjana
Volz, Heather M.
Llobet, Anna
Smith, Alice I.
King, Graham
Bajaj, Saurabh
Ruban, Andrei
Vitos, Levente
Turchi, Patrice E. A.
Arroyave, Raymundo
TI Revisiting thermodynamics and kinetic diffusivities of uranium-niobium
with Bayesian uncertainty analysis
SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
LA English
DT Article
DE DFT; CALPHAD; Bayesian; Uncertainty analysis; Metallic fuels; U-Nb;
Thermodynamics; Kinetic diffusivity
ID INITIO MOLECULAR-DYNAMICS; QUASI-RANDOM STRUCTURES; U-NB ALLOYS;
PHASE-TRANSFORMATIONS; SYSTEM; MICROSTRUCTURE; DECOMPOSITION;
ENVIRONMENT; SIMULATION; GENERATION
AB In this work, thermodynamic and kinetic diffusivities of uranium-niobium (U-Nb) are re-assessed by means of the CALPHAD (CALculation of PHAse Diagram) methodology. In order to improve the consistency and reliability of the assessments, first-principles calculations are coupled with CALPHAD. In particular, heats of formation of gamma-U-Nb are estimated and verified using various density-functional theory (DFT) approaches. These thermochemistry data are then used as constraints to guide the thermodynamic optimization process in such a way that the mutual-consistency between first-principles calculations and CALPHAD assessment is satisfactory. In addition, long-term aging experiments are conducted in order to generate new phase equilibria data at the gamma(2)/alpha + gamma(2) boundary. These data are meant to verify the thermodynamic model. Assessment results are generally in good agreement with experiments and previous calculations, without showing the artifacts that were observed in previous modeling. The mutual-consistent thermodynamic description is then used to evaluate atomic mobility and diffusivity of gamma-U-Nb. Finally, Bayesian analysis is conducted to evaluate the uncertainty of the thermodynamic model and its impact on the system's phase stability. Published by Elsevier Ltd.
C1 [Duong, Thien C.; Honarmandi, Pejman; Talapatra, Anjana; Arroyave, Raymundo] Texas A&M Univ, Mat Sci & Engn, College Stn, TX 77843 USA.
[Bajaj, Saurabh] Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA.
[Hackenberg, Robert E.; Volz, Heather M.; Llobet, Anna; Smith, Alice I.; King, Graham] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
[Landa, Alex; Turchi, Patrice E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Ruban, Andrei; Vitos, Levente] Royal Inst Technol, Valhallavagen 79, Stockholm, Sweden.
RP Duong, TC (reprint author), Texas A&M Univ, Mat Sci & Engn, College Stn, TX 77843 USA.
EM terryduong84@tamu.edu
FU United States Department of Energy by the Lawrence Livermore National
Laboratory [DE-AC52-07NA27344]; United States Department of Energy by
the Los Alamos National Laboratory [DE-AC52-06NA25396]; NSF
[DMR-1410983, CMMI-1534534]
FX This work was performed under the auspices of the United States
Department of Energy by the Lawrence Livermore National Laboratory and
Los Alamos National Laboratory under contract Nos. DE-AC52-07NA27344 and
DE-AC52-06NA25396, respectively. TCD acknowledges the partial support of
NSF through grant DMR-1410983. RA also acknowledges partial support of
NSF through grant CMMI-1534534. TCD specially thanks Prof. I. Steinbach,
Dr. O. Shchyglo, Dr. R.D. Kamachali, M. Stratmann, A.A. Giessmann, and
E. Borukhovic for helpful discussions regarding phase-field theory and
the interface dissipation model. R.E.H., H.M.V., A.L., A.I. S., and G.K.
acknowledges experimental assistance from T.J. Tucker and P.A. Papin.
First-principles calculations were carried out in the Chemical
Engineering Cluster and the Texas A&M Supercomputing Facility at Texas
A&M University as well as in the Ranger Cluster at the Texas Advanced
Computing Center at University of Texas, Austin.
NR 71
TC 0
Z9 0
U1 2
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0364-5916
EI 1873-2984
J9 CALPHAD
JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
PD DEC
PY 2016
VL 55
BP 219
EP 230
DI 10.1016/j.calphad.2016.09.006
PN 2
PG 12
WC Thermodynamics; Chemistry, Physical; Materials Science,
Multidisciplinary; Metallurgy & Metallurgical Engineering
SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical
Engineering
GA EG0MF
UT WOS:000390726200012
ER
PT J
AU Wang, X
Luo, M
Huang, HW
Chi, MF
Howe, J
Xie, ZX
Xia, YA
AF Wang, Xue
Luo, Ming
Huang, Hongwen
Chi, Miaofang
Howe, Jane
Xie, Zhaoxiong
Xia, Younan
TI Facile Synthesis of Pt-Pd Alloy Nanocages and Pt Nanorings by Templating
with Pd Nanoplates
SO CHEMNANOMAT
LA English
DT Article
DE nanocage; nanoplate; nanoring; platinum catalyst; template-directed
synthesis
ID OXYGEN REDUCTION REACTION; BY-LAYER DEPOSITION; ENHANCED ACTIVITY;
PLATINUM NANOCRYSTALS; NANOFRAMES; DURABILITY; CATALYSTS; FACETS; SHAPE;
ICOSAHEDRA
AB We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 degrees C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates with a larger thickness on the side face than on the top/bottom face in the water-based system due to the use of a low reaction temperature of 80 degrees C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. The wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1nm and 1.8nm, respectively, without breaking the hollow structures.
C1 [Wang, Xue; Luo, Ming; Huang, Hongwen; Xia, Younan] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA.
[Wang, Xue; Luo, Ming; Huang, Hongwen; Xia, Younan] Emory Univ, Atlanta, GA 30332 USA.
[Wang, Xue; Xie, Zhaoxiong] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Collaborat Innovat Ctr Chem Energy Mat, Xiamen 361005, Peoples R China.
[Wang, Xue; Xie, Zhaoxiong] Xiamen Univ, Dept Chem, Xiamen 361005, Peoples R China.
[Chi, Miaofang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Howe, Jane] Hitachi Hightechnol Canada, Toronto, ON M9W6A4, Canada.
[Xia, Younan] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.
[Xia, Younan] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
RP Xia, YA (reprint author), Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA.; Xia, YA (reprint author), Emory Univ, Atlanta, GA 30332 USA.; Xia, YA (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.; Xia, YA (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
EM younan.xia@bme.gatech.edu
OI Wang, Xue/0000-0002-6298-1858
FU NSF [CHE 1505441]; Georgia Tech; China Scholarship Council; ORNL's
Center for Nanophase Materials Sciences
FX This work was supported in part by a grant from the NSF (CHE 1505441)
and start-up funds from Georgia Tech. As visiting Ph.D. students, X.W.,
M.L., and H.H. also received partial support from the China Scholarship
Council. Part of the electron microscopy work was performed through a
user project supported by the ORNL's Center for Nanophase Materials
Sciences, which is a U.S. DOE Office of Science User Facility (M.C.).
NR 31
TC 0
Z9 0
U1 23
U2 23
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 2199-692X
J9 CHEMNANOMAT
JI ChemNanoMat
PD DEC
PY 2016
VL 2
IS 12
BP 1086
EP 1091
DI 10.1002/cnma.201600238
PG 6
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EF8RX
UT WOS:000390598200004
ER
PT J
AU Yue, YF
Li, YC
Bridges, CA
Rother, G
Zhang, JS
Chen, JH
Hensley, DK
Kidder, MK
Richardson, BC
Paranthaman, MP
Dai, S
AF Yue, Yanfeng
Li, Yunchao
Bridges, Craig A.
Rother, Gernot
Zhang, Jinshui
Chen, Jihua
Hensley, Dale K.
Kidder, Michelle K.
Richardson, Bruce C.
Paranthaman, Mariappan Parans
Dai, Sheng
TI Hierarchically Superstructured Metal Sulfides: Facile
Perturbation-Assisted Nanofusion Synthesis and Visible Light
Photocatalytic Characterizations
SO CHEMNANOMAT
LA English
DT Article
DE hierarchical superstructure; mesopores; metal sulfide;
perturbation-assisted nanofusion; photocatalysis
ID MESOPOROUS MOLECULAR-SIEVES; HYDROGEN-EVOLUTION ACTIVITY; SENSITIZED
SOLAR-CELLS; CARBON NITRIDE; ORGANIC FRAMEWORKS; CDS; FUNCTIONALIZATION;
INTERFACE; REDUCTION; RELEASE
AB A novel and simple perturbation-assisted nanofusion (PNF) synthetic strategy was developed for the synthesis of stable hierarchically superstructured metal sulfides with controlled morphology. This promising approach is based on a kinetically controlled precipitation to simultaneously condense and re-dissolve polymorphic nanocrystallites, and provides the resultant samples with a unique mesoporous framework. The PNF approach is environmentally friendly, produces gram-scale products in a matter of hours, and is complimentary to the traditional hard or soft templating methods for the construction of mesoporous metal sulfides. PNF-derived hierarchical porous CdS exhibited a vastly improved photocatalytic performance over its commercial bulk counterparts under visible light irradiation, demonstrating the advantage of the porous morphology for photocatalysis resulting from the enlarged surface area and the easy accessibility of the mesopores.
C1 [Yue, Yanfeng; Li, Yunchao; Bridges, Craig A.; Rother, Gernot; Zhang, Jinshui; Kidder, Michelle K.; Paranthaman, Mariappan Parans; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Yue, Yanfeng; Richardson, Bruce C.] Sul Ross State Univ, Dept Biol Geol & Phys Sci, Alpine, TX 79832 USA.
[Li, Yunchao; Paranthaman, Mariappan Parans] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA.
[Chen, Jihua; Hensley, Dale K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
RP Yue, YF; Zhang, JS; Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.; Yue, YF (reprint author), Sul Ross State Univ, Dept Biol Geol & Phys Sci, Alpine, TX 79832 USA.; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM yanfeng.yue@sulross.edu; jinshui.zhang@gmail.com; dais@ornl.gov
RI zhang, Jinshui/D-9749-2016; Rother, Gernot/B-7281-2008
OI zhang, Jinshui/0000-0003-4649-6526; Rother, Gernot/0000-0003-4921-6294
FU U.S. Department of Energy, Office of Science, Basic Energy Sciences,
Chemical Sciences, Geosciences, and Biosciences Division
[DE-AC05-00OR22725]; Oak Ridge National Laboratory; U.S. Department of
Energy, Office of Science, Basic Energy Sciences, Materials Science and
Engineering Division
FX This research was sponsored by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and
Biosciences Division, under Contract No. DE-AC05-00OR22725 with Oak
Ridge National Laboratory, which is managed and operated by UT-Battelle,
LLC. M.K.K conducted solid UV/Vis experiments. EM experiments (J.C. and
D.K.H.) experiments were conducted at the Center for Nanophase Materials
Sciences, which is a DOE Office of Science User Facility, Office of
Science, Basic Energy Sciences, Scientific User Facility Division.
Photocatalytic properties testing (YL, MPP) and small angle X-ray
scattering (CB) were supported by the U.S. Department of Energy, Office
of Science, Basic Energy Sciences, Materials Science and Engineering
Division.
NR 58
TC 0
Z9 0
U1 7
U2 7
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 2199-692X
J9 CHEMNANOMAT
JI ChemNanoMat
PD DEC
PY 2016
VL 2
IS 12
BP 1104
EP 1110
DI 10.1002/cnma.201600292
PG 7
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EF8RX
UT WOS:000390598200007
ER
PT J
AU Choi, S
Seong, H
AF Choi, Seungmok
Seong, Heeje
TI Lube oil-dependent ash chemistry on soot oxidation reactivity in a
gasoline direct-injection engine
SO COMBUSTION AND FLAME
LA English
DT Article
DE Gasoline direct-injection (GDI) engine; Gasoline particulate filter
(GPF); Soot oxidation reactivity; Lube oil additives; Ash
ID METAL-OXIDES; SPECTROSCOPY; XPS; SURFACES; INHIBITION; PHOSPHORUS;
MORPHOLOGY; CATALYSTS
AB Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation. It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
C1 [Choi, Seungmok; Seong, Heeje] Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave, Argonne, IL 60439 USA.
RP Seong, H (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM hseong@anl.gov
FU U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]; Advanced Combustion Engines Program at the US
Department of Energy, Office of Vehicle Technologies; Hyundai Motor
Company [C1200101]; U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract no. DE-AC02-06CH11357. This work was supported by the Advanced
Combustion Engines Program at the US Department of Energy, Office of
Vehicle Technologies, and Hyundai Motor Company under Contract no.
C1200101. Also, Corning Inc. provided GPF substrates to support this
project. The use of the facilities at the Center for Nanoscale Materials
and the Advanced Photon Source (APS) was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences. The authors thank Dr. Richard T. Haasch in Materials Research
Laboratory, University of Illinois Urbana-Champaign for obtaining XPS
spectra.
NR 35
TC 0
Z9 0
U1 4
U2 4
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0010-2180
EI 1556-2921
J9 COMBUST FLAME
JI Combust. Flame
PD DEC
PY 2016
VL 174
BP 68
EP 76
DI 10.1016/j.combustflame.2016.09.019
PG 9
WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary;
Engineering, Chemical; Engineering, Mechanical
SC Thermodynamics; Energy & Fuels; Engineering
GA EF8XF
UT WOS:000390614600006
ER
PT J
AU Maes, N
Meijer, M
Dam, N
Somers, B
Toda, HB
Bruneaux, G
Skeen, SA
Pickett, LM
Manin, J
AF Maes, Noud
Meijer, Maarten
Dam, Nico
Somers, Bart
Toda, Hubert Baya
Bruneaux, Gilles
Skeen, Scott A.
Pickett, Lyle M.
Manin, Julien
TI Characterization of Spray A flame structure for parametric variations in
ECN constant-volume vessels using chemiluminescence and laser-induced
fluorescence
SO COMBUSTION AND FLAME
LA English
DT Article
DE Engine Combustion Network (ECN); Constant-volume vessel; Laser-induced
fluorescence; Chemiluminescence; Flame structures; Spray A
ID COMBUSTION NETWORK ECN; DUTY DIESEL-ENGINE; AROMATIC-HYDROCARBONS;
N-DODECANE; SOOT; FORMALDEHYDE; TEMPERATURE; PRESSURE; IGNITION; JET
AB The transient and quasi-steady flame structure of reacting fuel sprays produced by single-hole injectors has been studied using chemiluminescence imaging and Planar Laser-Induced Fluorescence (PLIF) in various constant-volume facilities at different research institutes participating in the Engine Combustion Network (ECN). The evolution of the high-temperature flame has been followed based on chemiluminescence imaging of the excited-state hydroxyl radical (OH*), and PLIF of ground-state OH. Regions associated with low-temperature chemical reactions are visualized using formaldehyde (CH2O) PLIF with 355-nm excitation. We compare the results obtained by different research institutes under nominally identical experimental conditions and fuel injectors. In spite of design differences among the various experimental facilities, the results are consistent. This lends confidence to studies of transient behavior and parameter variations performed by individual research groups. We present results of the transient flame structures at Spray A reference conditions, and include parametric variations around this baseline, involving ambient temperature, oxygen concentration and injection pressure. Key results are the observed influence of an entrainment wave on the transient flame behavior, model-substantiated explanations for the high intensity OH* lobes at the lift-off length and differences with OH PLIF, and a general analogy of the flame structures with a spray cone along which the flame tends to locate for the applied parametric variations. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
C1 [Maes, Noud; Meijer, Maarten; Dam, Nico; Somers, Bart] Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands.
[Toda, Hubert Baya; Bruneaux, Gilles] IFP Energies Nouvelles, F-92852 Rueil Malmaison, France.
[Skeen, Scott A.; Pickett, Lyle M.; Manin, Julien] Sandia Natl Labs, Combust Res Facil, POB 969,MS 9053, Livermore, CA 94551 USA.
RP Maes, N (reprint author), Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands.
EM n.c.j.maes@tue.nl
RI Moteur, Direction TAE/C-1458-2013; IFPEN, Publications/A-8028-2008;
OI Somers, Bart/0000-0003-2969-6745
FU U.S. Department of Energy, Office of Vehicle Technologies; U.S.
Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Experiments presented by TU/e were conducted at the Combustion
Technology facility of the Eindhoven University of Technology. The loan
of optical filters by IFPEn is highly appreciated, and we thank Hans van
Griensven and Theo de Groot for their technical support. For the
experiments conducted at IFPEn, we thank Laurent Hermant for his
technical assistance. The experiments presented by Sandia were conducted
at the Combustion Research Facility, Sandia National Laboratories,
Livermore, CA. Support was provided by the U.S. Department of Energy,
Office of Vehicle Technologies. Sandia National Laboratories is a
multi-mission laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000.
NR 61
TC 0
Z9 0
U1 9
U2 9
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0010-2180
EI 1556-2921
J9 COMBUST FLAME
JI Combust. Flame
PD DEC
PY 2016
VL 174
BP 138
EP 151
DI 10.1016/j.combustflame.2016.09.005
PG 14
WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary;
Engineering, Chemical; Engineering, Mechanical
SC Thermodynamics; Energy & Fuels; Engineering
GA EF8XF
UT WOS:000390614600012
ER
PT J
AU Fulton, JA
Edwards, JR
Cutler, A
McDaniel, J
Goyne, C
AF Fulton, Jesse A.
Edwards, Jack R.
Cutler, Andrew
McDaniel, Jim
Goyne, Christopher
TI Turbulence/chemistry interactions in a ramp-stabilized supersonic
hydrogen-air diffusion flame
SO COMBUSTION AND FLAME
LA English
DT Article
DE Supersonic combustion; Large-eddy simulation
ID DUAL-MODE SCRAMJET; LARGE-EDDY SIMULATION; NAVIER-STOKES SIMULATIONS;
DIODE-LASER ABSORPTION; TURBULENT COMBUSTION; FLOW; SPECTROSCOPY;
DISSIPATION
AB Hybrid large-eddy / Reynolds-averaged Navier-Stokes simulations of turbulence / chemistry interactions occurring within a ramp-injected, hydrogen-fueled scramjet combustor are presented in this work. The experimental geometry is one of several studied at the Universty of Virginia as part of the National Center for Hypersonic Combined Cycle Propulsion and consists of an isolator, a combustor, and an extender section. Data collected includes coherent anti-Stokes Raman spectroscopy (CARS) measurements of major species composition and temperature at several streamwise planes, stereoscopic particle image velocimetry (PIV) measurements, hydroxyl planar-induced fluorescence (OH-PLIF) imagery, wall pressure distributions, and line-of-sight profiles of temperature and water concentration obtained using tunable diode laser spectroscopy (TDLAS). This paper focuses on an equivalence ratio of 0.17, which does not produce enough heat release to force a shock train into the isolator. The computational methods utilize a hybrid fourth-order central-difference / upwind strategy to enable accurate resolution of turbulent structures and employ a nine-species hydrogen oxidation mechanism. Generally accurate predictions of temperature, velocity, and nitrogen mole fraction are achieved through a 'laminar chemistry' assumption for the filtered species production rates, though results do improve slightly with the use of a simple turbulence / chemistry subgrid closure model. The predictions are most sensitive to the choice of isolator inflow boundary condition, with the use of a recycling / rescaling technique to sustain turbulent fluctuations resulting in an 'over-mixing' effect immediately downstream of the fuel injector. Turbulence-chemistry interactions in the flameholding region are examined from the standpoint of laminar flamelet theory. A region of high scalar dissipation rate, coincident with the breakdown of the fuel plume and the interaction of a reflected shock wave with the plume, inhibits flame propagation, forming a 'hole' in the flame. Advection of cooler fluid downstream into regions of moderate scalar dissipation enlarges the 'hole', but eventually the flame reconnects. These results point to one potential disadvantage of fuel-air mixing technologies that enhance axial vorticity-even if conditions for combustion are favorable, high strain rates generated by the interaction and breakdown of vortex pairs can lead to flame suppression. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
C1 [Fulton, Jesse A.] Sandia Natl Labs, Albuquerque, NM 87114 USA.
[Edwards, Jack R.] North Carolina State Univ, Mech & Aerosp Engn, Raleigh, NC 27695 USA.
[Cutler, Andrew] George Washington Univ, Newport News, VA 23602 USA.
[McDaniel, Jim; Goyne, Christopher] Univ Virginia, Mech & Aerosp Engn, Charlottesville, VA 22904 USA.
RP Edwards, JR (reprint author), North Carolina State Univ, Mech & Aerosp Engn, Raleigh, NC 27695 USA.
EM jredward@eos.ncsu.edu
FU National Center for Hypersonic Combined-Cycle Propulsion (NCHCCP) [FA
9550-09-1-0611]
FX This work was sponsored by the National Center for Hypersonic
Combined-Cycle Propulsion (NCHCCP), grant FA 9550-09-1-0611, with
technical monitors Chiping Li (AFOSR) and Rick Gaffney (NASA). Computing
time was obtained from NASA's NAS supercomputing resource and the DoD's
HPC modernization program.
NR 42
TC 0
Z9 0
U1 3
U2 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0010-2180
EI 1556-2921
J9 COMBUST FLAME
JI Combust. Flame
PD DEC
PY 2016
VL 174
BP 152
EP 165
DI 10.1016/j.combustflame.2016.09.017
PG 14
WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary;
Engineering, Chemical; Engineering, Mechanical
SC Thermodynamics; Energy & Fuels; Engineering
GA EF8XF
UT WOS:000390614600013
ER
PT J
AU Ravaioli, E
Auchmann, B
Maciejewski, M
ten Kate, HHJ
Verweij, AP
AF Ravaioli, E.
Auchmann, B.
Maciejewski, M.
ten Kate, H. H. J.
Verweij, A. P.
TI Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet
SO CRYOGENICS
LA English
DT Article; Proceedings Paper
CT CHATS on Applied Superconductivity Workshop (CHAT-AS)
CY SEP 14-16, 2015
CL Dept Elect, Elect & Informat Engn, Bologna, ITALY
SP Univ Bologna
HO Dept Elect, Elect & Informat Engn
DE Circuit modeling; Coupling losses; Quench protection; Simulation;
Superconducting coil
ID RESISTANCE
AB Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model.
A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence ofinter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates.
Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands.
The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well. Published by Elsevier Ltd.
C1 [Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.] CERN, European Ctr Nucl Res, CH-1211 Geneva 23, Switzerland.
[Ravaioli, E.; ten Kate, H. H. J.] Univ Twente, Enschede, Netherlands.
[Maciejewski, M.] Tech Univ Lodz, Inst Automat Control, 18-22 Stefanowskiego St, Lodz, Poland.
[Ravaioli, E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Ravaioli, E (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
NR 31
TC 4
Z9 4
U1 2
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0011-2275
EI 1879-2235
J9 CRYOGENICS
JI Cryogenics
PD DEC
PY 2016
VL 80
BP 346
EP 356
DI 10.1016/j.cryogenics.2016.04.004
PN 3
PG 11
WC Thermodynamics; Physics, Applied
SC Thermodynamics; Physics
GA EG0LZ
UT WOS:000390725600011
ER
PT J
AU Beckham, GT
Johnson, CW
Karp, EM
Salvachua, D
Vardon, DR
AF Beckham, Gregg T.
Johnson, Christopher W.
Karp, Eric M.
Salvachua, Davinia
Vardon, Derek R.
TI Opportunities and challenges in biological lignin valorization
SO CURRENT OPINION IN BIOTECHNOLOGY
LA English
DT Review
ID RHODOCOCCUS-JOSTII RHA1; 2-PYRONE-4,6-DICARBOXYLIC ACID PDC;
SPHINGOMONAS-PAUCIMOBILIS SYK-6; COMPLETE GENOME SEQUENCE; SP STRAIN
SYK-6; PSEUDOMONAS-PUTIDA; AROMATIC-COMPOUNDS; BIOFUEL PRODUCTION;
ADIPIC ACID; BIOTECHNOLOGICAL PRODUCTION
AB Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via 'upper pathways' into central intermediates, which can then be funneled through 'lower pathways' into central carbon metabolism in a process we dubbed 'biological funneling'. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme-microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.
C1 [Beckham, Gregg T.; Johnson, Christopher W.; Karp, Eric M.; Salvachua, Davinia; Vardon, Derek R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80403 USA.
RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80403 USA.
EM gregg.beckham@nrel.gov
RI Vardon, Derek/B-8249-2017
OI Vardon, Derek/0000-0002-0199-4524
FU US Department of Energy Bioenergy Technologies Office; Direct Catalytic
Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research
Center - U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences [DE-SC0000997]; BioEnergy Science Center, a U.S.
Department of Energy Bioenergy Research Center - Office of Biological
and Environmental Research in the DOE Office of Science
FX We acknowledge funding from the US Department of Energy Bioenergy
Technologies Office. GTB and DRV also acknowledge funding from the
Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy
Frontier Research Center funded by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences, Award Number DE-SC0000997.
GTB also acknowledges funding from the BioEnergy Science Center, a U.S.
Department of Energy Bioenergy Research Center supported by the Office
of Biological and Environmental Research in the DOE Office of Science.
We thank our many colleagues and collaborators for helpful discussions
around the topic of microbial lignin valorization.
NR 124
TC 23
Z9 23
U1 44
U2 44
PU CURRENT BIOLOGY LTD
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0958-1669
EI 1879-0429
J9 CURR OPIN BIOTECH
JI Curr. Opin. Biotechnol.
PD DEC
PY 2016
VL 42
BP 40
EP 53
DI 10.1016/j.copbio.2016.02.030
PG 14
WC Biochemical Research Methods; Biotechnology & Applied Microbiology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology
GA EG0JO
UT WOS:000390718900008
PM 26974563
ER
PT J
AU Zhu, XQ
Gao, WJ
Zhou, N
Kammen, DM
Wu, YQ
Zhang, Y
Chen, W
AF Zhu, Xiaoqing
Gao, Weijun
Zhou, Nan
Kammen, Daniel M.
Wu, Yiqun
Zhang, Yao
Chen, Wei
TI The inhabited environment, infrastructure development and advanced
urbanization in China's Yangtze River Delta Region
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE energy consumption; advanced urbanization; Yangtze River Delta region;
inhabited environment; infrastructure development
ID ENERGY-CONSUMPTION; CO2 EMISSIONS; URBAN FORM; IMPACT; DEMAND;
INDUSTRIALIZATION; CITIES
AB This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China's heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities' differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and midsize cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and midsize cities.
C1 [Zhu, Xiaoqing] Zhejiang Univ Technol, Urban Rural Dev & Habitat Environm Res Ctr, Hangzhou, Zhejiang, Peoples R China.
[Zhu, Xiaoqing; Gao, Weijun; Zhang, Yao; Chen, Wei] Univ Kitakyushu, Fac Environm Engn, Kitakyushu, Fukuoka, Japan.
[Zhou, Nan] Lawrence Berkeley Natl Lab, China Energy Grp, Berkeley, CA USA.
[Kammen, Daniel M.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA.
[Kammen, Daniel M.] Univ Calif Berkeley, Goldman Sch Publ Policy, Berkeley, CA 94720 USA.
[Kammen, Daniel M.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
[Wu, Yiqun] Zhejiang Univ, Dept Architecture, Hangzhou, Zhejiang, Peoples R China.
RP Zhu, XQ (reprint author), Zhejiang Univ Technol, Urban Rural Dev & Habitat Environm Res Ctr, Hangzhou, Zhejiang, Peoples R China.; Zhu, XQ (reprint author), Univ Kitakyushu, Fac Environm Engn, Kitakyushu, Fukuoka, Japan.
EM arc_zxq@163.com
FU National Natural Science Fund of China [51208466, 51238011]; Science and
Technology Research Program of Chinese Ministry of Housing and
Urban-rural Development [2014-R2-036]; Natural Science Fund of Zhejiang
Province [LY16E08011]; Social Sciences Planning Project of Zhejiang
Province [12JCSH02YB]
FX This paper is the result of the research supported by the National
Natural Science Fund of China (No. 51208466, No. 51238011), Science and
Technology Research Program of Chinese Ministry of Housing and
Urban-rural Development (No. 2014-R2-036), the Natural Science Fund of
Zhejiang Province (No. LY16E08011), Social Sciences Planning Project of
Zhejiang Province (No. 12JCSH02YB).
NR 40
TC 0
Z9 0
U1 16
U2 16
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD DEC
PY 2016
VL 11
IS 12
AR 124020
DI 10.1088/1748-9326/11/12/124020
PG 16
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA EG1AL
UT WOS:000390763700001
ER
PT J
AU Bodenheimer, AM
Meilleur, F
AF Bodenheimer, Annette M.
Meilleur, Flora
TI Crystal structures of wild-type Trichoderma reesei Cel7A catalytic
domain in open and closed states
SO FEBS LETTERS
LA English
DT Article
DE Cel7A; cellulase; closed state; processivity; product-binding site;
Trichoderma reesei
ID FAMILY 7 CELLOBIOHYDROLASE; MOLECULAR-DYNAMICS; GLYCOSIDE HYDROLASES;
LIMITED PROTEOLYSIS; PRODUCT INHIBITION; C-TERMINUS; PROTEIN; BINDING;
PROCESSIVITY; FLEXIBILITY
AB Trichoderma reesei Cel7A efficiently hydrolyses cellulose. We report here the crystallographic structures of the wild-type TrCel7A catalytic domain (CD) in an open state and, for the first time, in a closed state. Molecular dynamics (MD) simulations indicate that the loops along the CD tunnel move in concerted motions. Together, the crystallographic and MD data suggest that the CD cycles between the tense and relaxed forms that are characteristic of work producing enzymes. Analysis of the interactions formed by R251 provides a structural rationale for the concurrent decrease in product inhibition and catalytic efficiency measured for product-binding site mutants.
C1 [Bodenheimer, Annette M.; Meilleur, Flora] North Carolina State Univ, Mol & Struct Biochem Dept, Raleigh, NC USA.
[Bodenheimer, Annette M.; Meilleur, Flora] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN USA.
RP Meilleur, F (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37932 USA.
EM flora_meilleur@ncsu.edu
FU USDA National Institute of Food and Agriculture; Hatch project [211001];
National Science Foundation IGERT award [1069091]; Graduate Opportunity
(GO!) Program at Oak Ridge National Laboratory; Office of Biological and
Environmental Research Project [ERKP291]; U.S. Department of Energy
[DE-AC05-00OR22725]; U. S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [W-31-109-Eng-38]
FX This work was supported by the USDA National Institute of Food and
Agriculture, Hatch project 211001, the National Science Foundation IGERT
award #1069091 and the Graduate Opportunity (GO!) Program at Oak Ridge
National Laboratory. Part of this work was conducted in the Center for
Structural Molecular Biology supported by the Office of Biological and
Environmental Research Project ERKP291, using facilities supported by
the U.S. Department of Energy, managed by UT-Battelle, LLC under
contract No. DE-AC05-00OR22725. Data were collected at Southeast
Regional Collaborative Access Team (SER-CAT) beamlines at the Advanced
Photon Source, Argonne National Laboratory. Use of the Advanced Photon
Source was supported by the U. S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
W-31-109-Eng-38. AMB purified and crystallized protein, collected X-ray
data, refined and analyzed the X-ray structures, and wrote the paper. FM
conceived the project, analyzed the X-ray structures, and wrote the
paper. Both authors approved the final version of the manuscript.
NR 52
TC 0
Z9 0
U1 8
U2 8
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0014-5793
EI 1873-3468
J9 FEBS LETT
JI FEBS Lett.
PD DEC
PY 2016
VL 590
IS 23
BP 4429
EP 4438
DI 10.1002/1873-3468.12464
PG 10
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA EF5ST
UT WOS:000390390600027
PM 27943301
ER
PT J
AU Oya, Y
Hatano, Y
Shimada, M
Buchenauer, D
Kolasinski, R
Merrill, B
Kondo, S
Hinoki, T
Alimov, VK
AF Oya, Yasuhisa
Hatano, Yuji
Shimada, Masashi
Buchenauer, Dean
Kolasinski, Robert
Merrill, Brad
Kondo, Sosuke
Hinoki, Tatsuya
Alimov, Vladimir Kh.
TI Recent progress of hydrogen isotope behavior studies for neutron or
heavy ion damaged W
SO FUSION ENGINEERING AND DESIGN
LA English
DT Article; Proceedings Paper
CT 1st Asia-Pacific Symposium on Tritium Science (APSOT)
CY NOV 01-05, 2015
CL Mianyang, PEOPLES R CHINA
SP China Acad Engn Phys, Inst Nucl Phys & Chem
DE Hydrogen isotope behavior in damaged W; Neutron irradiation; Heavy ion
irradiation; Plasma wall interactions
ID THERMAL-DESORPTION; TUNGSTEN; DEUTERIUM; IRRADIATION; RETENTION
AB This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Oya, Yasuhisa] Shizuoka Univ, Suruga Ku, 836 Ohya, Shizuoka 4228529, Japan.
[Hatano, Yuji; Alimov, Vladimir Kh.] Toyama Univ, 3190 Gofuku, Toyama 9398555, Japan.
[Shimada, Masashi; Merrill, Brad] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Buchenauer, Dean; Kolasinski, Robert] Sandia Natl Labs, Livermore, CA 94551 USA.
[Kondo, Sosuke; Hinoki, Tatsuya] Kyoto Univ, Uji, Kyoto 6110011, Japan.
RP Oya, Y (reprint author), Shizuoka Univ, Suruga Ku, 836 Ohya, Shizuoka 4228529, Japan.
EM syoya@ipc.shizuoka.ac.jp
OI Oya, Yasuhisa/0000-0002-1765-5623
NR 23
TC 0
Z9 0
U1 10
U2 10
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0920-3796
EI 1873-7196
J9 FUSION ENG DES
JI Fusion Eng. Des.
PD DEC
PY 2016
VL 113
BP 211
EP 215
DI 10.1016/j.fusengdes.2016.08.004
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA EG0OX
UT WOS:000390733200032
ER
PT J
AU Shen, XX
Zhou, XF
Kominek, J
Kurtzman, CP
Hittinger, CT
Rokas, A
AF Shen, Xing-Xing
Zhou, Xiaofan
Kominek, Jacek
Kurtzman, Cletus P.
Hittinger, Chris Todd
Rokas, Antonis
TI Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny
Using Genome-Scale Data
SO G3-GENES GENOMES GENETICS
LA English
DT Article
DE phylogenomics; maximum likelihood; incongruence; genome completeness;
nuclear markers
ID SPECIES TREE ESTIMATION; MISSING DATA; DNA-SEQUENCES; FUNGAL TREE; GEN.
NOV; EVOLUTIONARY; COALESCENT; MODEL; TOOL; INCONGRUENCE
AB Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeast fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. However, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast.
C1 [Shen, Xing-Xing; Zhou, Xiaofan; Rokas, Antonis] Vanderbilt Univ, Dept Biol Sci, VU Stn B 351634, Nashville, TN 37235 USA.
[Kominek, Jacek; Hittinger, Chris Todd] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, JF Crow Inst Study Evolut, Lab Genet,Genome Ctr Wisconsin,Wisconsin Energy I, Madison, WI 53706 USA.
[Kurtzman, Cletus P.] ARS, Mycotoxin Prevent & Appl Microbiol Res Unit, Natl Ctr Agr Utilizat Res, USDA, Peoria, IL 61604 USA.
RP Rokas, A (reprint author), Vanderbilt Univ, Dept Biol Sci, VU Stn B 351634, Nashville, TN 37235 USA.; Hittinger, CT (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, JF Crow Inst Study Evolut, Lab Genet,Genome Ctr Wisconsin,Wisconsin Energy I, Madison, WI 53706 USA.; Kurtzman, CP (reprint author), ARS, Mycotoxin Prevent & Appl Microbiol Res Unit, Natl Ctr Agr Utilizat Res, USDA, Peoria, IL 61604 USA.
EM cletus.kurtzman@ars.usda.gov; cthittinger@wisc.edu;
antonis.rokas@vanderbilt.edu
FU National Science Foundation [DEB-1442113, DEB-1442148]; DOE Great Lakes
Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-
07ER64494]; USDA National Institute of Food and Agriculture (Hatch
project) [1003258]; National Institutes of Health (NIAID) [AI105619];
Alexander von Humboldt Foundation; Pew Charitable Trusts
FX We thank Thomas W. Jeffries, Meredith Blackwell, and the Department of
Energy (DOE) Joint Genome Institute for releasing several genome
sequences through MycoCosm prior to their formal publication (Riley et
al. 2016) and Abigail Lind for help with the GO term enrichment
analysis. Mention of trade names or commercial products in this
publication is solely for the purpose of providing specific information
and does not imply recommendation or endorsement by the United States
Department of Agriculture (USDA). USDA is an equal opportunity provider
and employer. This work was conducted in part using the resources of the
Advanced Computing Center for Research and Education (ACCRE) at
Vanderbilt University and of the UW-Madison Center for High Throughput
Computing. This work was supported by the National Science Foundation
(DEB-1442113 to A.R.; DEB-1442148 to C.T.H.), in part by the DOE Great
Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-
07ER64494), the USDA National Institute of Food and Agriculture (Hatch
project 1003258 to C.T.H.), and the National Institutes of Health (NIAID
AI105619 to A.R.). C.T.H. is an Alfred Toepfer Faculty Fellow, supported
by the Alexander von Humboldt Foundation. C.T.H. is a Pew Scholar in the
Biomedical Sciences, supported by the Pew Charitable Trusts.
NR 90
TC 0
Z9 0
U1 3
U2 3
PU GENETICS SOCIETY AMERICA
PI BETHESDA
PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA
SN 2160-1836
J9 G3-GENES GENOM GENET
JI G3-Genes Genomes Genet.
PD DEC
PY 2016
VL 6
IS 12
BP 3927
EP 3939
DI 10.1534/g3.116.034744
PG 13
WC Genetics & Heredity
SC Genetics & Heredity
GA EF8PN
UT WOS:000390591400014
PM 27672114
ER
PT J
AU Cadwallader, L
AF Cadwallader, Lee
TI Reliability and Maintainability Data for Lead Lithium Cooling Systems
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Reliability
ID CORROSION; PB-17LI; STEELS; DEMO
AB This paper presents component failure rate data for use in assessment of lead lithium cooling systems. Best estimate data applicable to this liquid metal coolant are presented. Repair times for similar components are also referenced in this paper. These data support probabilistic safety assessment and reliability, availability, maintainability, and inspectability analyses.
C1 [Cadwallader, Lee] Idaho Natl Lab, Idaho Falls, ID 83402 USA.
RP Cadwallader, L (reprint author), Idaho Natl Lab, Idaho Falls, ID 83402 USA.
EM lee.cadwallader@inl.gov
OI Cadwallader, Lee/0000-0003-0399-7400
NR 27
TC 0
Z9 0
U1 2
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD DEC
PY 2016
VL 44
IS 12
BP 3439
EP 3444
DI 10.1109/TPS.2016.2624631
PN 3
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA EF9TA
UT WOS:000390672000028
ER
PT J
AU Soukhanovskii, VA
Allen, SL
Fenstermacher, ME
Lasnier, CJ
Makowski, MA
McLean, AG
Meier, ET
Meyer, WH
Rognlien, TD
Ryutov, DD
Scotti, F
Kolemen, E
Bell, RE
Diallo, A
Gerhardt, S
Kaita, R
Kaye, S
LeBlanc, BP
Maingi, R
Menard, JE
Podesta, M
Roquemore, AL
Groebner, RJ
Hyatt, AW
Leonard, AW
Osborne, TH
Petrie, TW
Ahn, JW
Raman, R
Watkins, JG
AF Soukhanovskii, V. A.
Allen, S. L.
Fenstermacher, M. E.
Lasnier, C. J.
Makowski, M. A.
McLean, A. G.
Meier, E. T.
Meyer, W. H.
Rognlien, T. D.
Ryutov, D. D.
Scotti, F.
Kolemen, E.
Bell, R. E.
Diallo, A.
Gerhardt, S.
Kaita, R.
Kaye, S.
LeBlanc, B. P.
Maingi, R.
Menard, J. E.
Podesta, M.
Roquemore, A. L.
Groebner, R. J.
Hyatt, A. W.
Leonard, A. W.
Osborne, T. H.
Petrie, T. W.
Ahn, J. -W.
Raman, R.
Watkins, J. G.
TI Snowflake Divertor Experiments in the DIII-D, NSTX, and NSTX-U Tokamaks
Aimed at the Development of the Divertor Power Exhaust Solution
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Divertors; plasma materials interactions; tokamaks
ID SCRAPE-OFF LAYER; PLASMAS; PHYSICS
AB Experimental results from the National Spherical Torus Experiment (NSTX), a medium-size spherical tokamak with a compact divertor, and DIII-D, a large conventional aspect ratio tokamak, demonstrate that the snowflake (SF) divertor configuration may provide a promising solution for mitigating divertor heat loads and target plate erosion compatible with core H-mode confinement in the future fusion devices, where the standard radiative divertor solution may be inadequate. In NSTX, where the initial high-power SF experiment was performed, the SF divertor was compatible with H-mode confinement, and led to the destabilization of large Edge Localized Modes (ELMs). However, a stable partial detachment of the outer strike point was also achieved where inter-ELM peak heat flux was reduced by factors 3-5, and peak ELM heat flux was reduced by up to 80% (see standard divertor). The DIII-D studies show the SF divertor enables significant power spreading in attached and radiative divertor conditions. Results include: compatibility with the core and pedestal, peak inter-ELM divertor heat flux reduction due to geometry at lower n(e), and ELM energy and divertor peak heat flux reduction, especially prominent in radiative D-2-seeded SF divertor, and nearly complete power detachment and broader radiated power distribution in the radiative D-2-seeded SF divertor at P-SOL = 3 - 4 MW. A variety of SF configurations can be supported by the divertor coil set in NSTX Upgrade. Edge transport modeling with the multifluid edge transport code UEDGE shows that the radiative SF divertor can successfully reduce peak divertor heat flux for the projected P-SOL similar or equal to 9 MW case. The radiative SF divertor with carbon impurity provides a wider n(e) operating window, 50% less argon is needed in the impurity-seeded SF configuration to achieve similar qpeak reduction factors (see standard divertor).
C1 [Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meier, E. T.; Meyer, W. H.; Rognlien, T. D.; Ryutov, D. D.; Scotti, F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Kolemen, E.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaita, R.; Kaye, S.; LeBlanc, B. P.; Maingi, R.; Menard, J. E.; Podesta, M.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.] Gen Atom, San Diego, CA 92186 USA.
[Ahn, J. -W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Raman, R.] Univ Washington, Seattle, WA 98195 USA.
[Watkins, J. G.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Soukhanovskii, VA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
NR 42
TC 0
Z9 0
U1 10
U2 10
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD DEC
PY 2016
VL 44
IS 12
BP 3445
EP 3455
DI 10.1109/TPS.2016.2625325
PN 3
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA EF9TA
UT WOS:000390672000029
ER
PT J
AU Rapp, J
Biewer, TM
Bigelow, TS
Caughman, JBO
Duckworth, RC
Ellis, RJ
Giuliano, DR
Goulding, RH
Hillis, DL
Howard, RH
Lessard, TL
Lore, JD
Lumsdaine, A
Martin, EJ
McGinnis, WD
Meitner, SJ
Owen, LW
Ray, HB
Shaw, GC
Varma, VK
AF Rapp, Juergen
Biewer, T. M.
Bigelow, T. S.
Caughman, J. B. O.
Duckworth, R. C.
Ellis, R. J.
Giuliano, D. R.
Goulding, R. H.
Hillis, D. L.
Howard, R. H.
Lessard, T. L.
Lore, J. D.
Lumsdaine, A.
Martin, E. J.
McGinnis, W. D.
Meitner, S. J.
Owen, L. W.
Ray, H. B.
Shaw, G. C.
Varma, V. K.
TI The Development of the Material Plasma Exposure Experiment
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Component; plasma-facing components (PFCs); plasma-material
interactions; power plants; research and development facilities
ID HYDROGEN HELICON PLASMA; ION-CYCLOTRON FREQUENCY; EROSION; PHYSICS;
FUTURE; DESIGN; WAVES
AB The availability of future fusion devices, such as a fusion nuclear science facility or demonstration fusion power station, greatly depends on long operating lifetimes of plasma facing components in their divertors. ORNL is designing the Material Plasma Exposure eXperiment (MPEX), a superconducting magnet, steady-state device to address the plasma material interactions of fusion reactors. MPEX will utilize a new high-intensity plasma source concept based on RF technology. This source concept will allow the experiment to cover the entire expected plasma conditions in the divertor of a future fusion reactor. It will be able to study erosion and redeposition for relevant geometries with relevant electric and magnetic fields in-front of the target. MPEX is being designed to allow for the exposure of a priori neutron-irradiated samples. The target exchange chamber has been designed to undock from the linear plasma generator such that it can be transferred to diagnostics stations for more detailed surface analysis. MPEX is being developed in a staged approach with successively increased capabilities. After the initial development step of the helicon source and electron cyclotron heating system, the source concept is being tested in the Proto-MPEX device. Proto-MPEX has achieved electron densities of more than 4x10(19) m(-3) with a large diameter (13 cm) helicon antenna at 100 kW power. First heating with microwaves resulted in a higher ionization represented by higher electron densities on axis, when compared with the helicon plasma only without microwave heating.
C1 [Rapp, Juergen; Biewer, T. M.; Bigelow, T. S.; Caughman, J. B. O.; Duckworth, R. C.; Ellis, R. J.; Giuliano, D. R.; Goulding, R. H.; Hillis, D. L.; Howard, R. H.; Lessard, T. L.; Lore, J. D.; Lumsdaine, A.; Martin, E. J.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Ray, H. B.; Shaw, G. C.; Varma, V. K.] Oak Ridge Natl Lab, Fus & Mat Nucl Syst Div, Oak Ridge, TN 37830 USA.
RP Rapp, J (reprint author), Oak Ridge Natl Lab, Fus & Mat Nucl Syst Div, Oak Ridge, TN 37830 USA.
EM rappj@ornl.gov
OI Rapp, Juergen/0000-0003-2785-9280
NR 20
TC 0
Z9 0
U1 10
U2 10
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD DEC
PY 2016
VL 44
IS 12
BP 3456
EP 3464
DI 10.1109/TPS.2016.2628326
PN 3
PG 9
WC Physics, Fluids & Plasmas
SC Physics
GA EF9TA
UT WOS:000390672000030
ER
PT J
AU Foley, BT
Leitner, T
Paraskevis, D
Peeters, M
AF Foley, Brian T.
Leitner, Thomas
Paraskevis, Dimitrios
Peeters, Martine
TI Primate immunodeficiency virus classification and nomenclature: Review
SO INFECTION GENETICS AND EVOLUTION
LA English
DT Review
DE Immunodeficiency; HIV; Lentivirus; Nomenclature; Classification
ID CIRCULATING RECOMBINANT FORM; CROSS-SPECIES TRANSMISSION; AFRICAN-GREEN
MONKEYS; DESIGNATED SUBTYPE-I; INJECTING DRUG-USERS; FULL-LENGTH GENOME;
MOLECULAR CHARACTERIZATION; EVOLUTIONARY HISTORY; NUCLEOTIDE-SEQUENCE;
GENETIC DIVERSITY
AB The International Committee for the Taxonomy and Nomenclature of Viruses does not rule on virus classifications below the species level. The definition of species for viruses cannot be clearly defined for all types of viruses. The complex and interesting epidemiology of Human Immunodeficiency Viruses demands a detailed and informative nomenclature system, while at the same time it presents challenges such that many of the rules need to be flexibly applied or modified over time. This review outlines the nomenclature system for primate lentiviruses and provides an update on new findings since the last review was written in 2000. Published by Elsevier B.V.
C1 [Foley, Brian T.; Leitner, Thomas] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, T-6 Mail Stop K710, Los Alamos, NM 87545 USA.
[Paraskevis, Dimitrios] Univ Athens, Dept Hyg Epidemiol & Med Stat, Sch Med, Athens, Greece.
[Peeters, Martine] Univ Montpellier, INSERM U1175, IRD, TransVIHMI UMI233, Montpellier, France.
[Peeters, Martine] IBC, Computat Biol Inst, F-34095 Montpellier, France.
RP Foley, BT (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, T-6 Mail Stop K710, Los Alamos, NM 87545 USA.
EM btf@lanl.gov
FU National Institutes of Health, NIH [AAI12007 -001 -01001]
FX This work was supported by the National Institutes of Health, NIH
Contract AAI12007 -001 -01001.
NR 84
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1567-1348
EI 1567-7257
J9 INFECT GENET EVOL
JI Infect. Genet. Evol.
PD DEC
PY 2016
VL 46
BP 150
EP 158
DI 10.1016/j.meegid.2016.10.018
PG 9
WC Infectious Diseases
SC Infectious Diseases
GA EF6QP
UT WOS:000390456000023
PM 27789390
ER
PT J
AU Pineda-Pena, AC
Varanda, J
Sousa, JD
Theys, K
Brtolo, I
Leitner, T
Taveira, N
Vandamme, AM
Abecasis, AB
AF Pineda-Pena, Andrea-Clemencia
Varanda, Jorge
Sousa, Joao Dinis
Theys, Kristof
Brtolo, Ines
Leitner, Thomas
Taveira, Nuno
Vandamme, Anne-Mieke
Abecasis, Ana B.
TI On the contribution of Angola to the initial spread of HIV-1
SO INFECTION GENETICS AND EVOLUTION
LA English
DT Article
DE Angola; HIV-1; Origin; Group M; Phylogeography
ID HUMAN-IMMUNODEFICIENCY-VIRUS; DRUG-RESISTANCE MUTATIONS;
POPULATION-DYNAMICS; SEQUENCE ALIGNMENT; GENETIC DIVERSITY; TYPE-1;
ORIGIN; INFERENCE; EPIDEMIC; KINSHASA
AB Angola borders and has long-term links with Democratic Republic of Congo (DRC) as well as high levels of Human Immunodeficiency Virus (HIV) genetic diversity, indicating a potential role in the initial spread of the HIV-1 pandemic. Herein, we analyze 564 C2V3 and 354 pol publicly available sequences from DRC, Republic of Congo (RC) and Angola to better understand the initial spread of the virus in this region. Phylogeographic analyses were performed with the BEAST software. While our results pinpoint the origin of the pandemic to Kinshasa (DRC) around 1906, the introduction of HIV-1 to Angola could have occurred early between the 1910s and 1940s. Furthermore, most of the HIV-1 migrations out of Kinshasa were directed not only to Lubumbashi and Mbuji-Mayi (DRC), but also to Luanda and Brazzaville. Kinshasa census records corroborate these findings, indicating that the early exportation of the virus to Angola might be related to the high number of Angolans in Kinshasa at that time, originated mostly from the North of Angola. In summary, our results place Angola at the epicenter of the early HIV dissemination, together with DRC and RC. (C) 2016 Elsevier B. V. All rights reserved.
C1 [Pineda-Pena, Andrea-Clemencia; Varanda, Jorge; Sousa, Joao Dinis; Vandamme, Anne-Mieke; Abecasis, Ana B.] Univ Nova Lisboa, IHMT, GHTM, Lisbon, Portugal.
[Pineda-Pena, Andrea-Clemencia] Univ Rosario, Dept Basic Sci, Fdn Inst Inmunol Colombia FIDIC, Mol Biol & Immunol Dept, Bogota, Colombia.
[Varanda, Jorge] Univ Coimbra, Dept Life Sci, Coimbra, Portugal.
[Varanda, Jorge] Univ Coimbra, Ctr Res Anthropol, Coimbra, Portugal.
[Sousa, Joao Dinis; Theys, Kristof; Vandamme, Anne-Mieke; Abecasis, Ana B.] KU Leuven Univ Leuven, Dept Microbiol & Immunol, Rega Inst Med Res Clin & Epidemiol Virol, B-3000 Leuven, Belgium.
[Leitner, Thomas] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
[Taveira, Nuno] Inst Super Ciencias Saude Egas Moniz, Ctr Invest Interdisciplinar Egas Moniz, Monte De Caparica, Portugal.
RP Abecasis, AB (reprint author), Rua Junqueira 100, P-1349008 Lisbon, Portugal.
EM ana.abecasis@ihmt.unl.pt
RI iMed.ULisboa, EEPHIV /B-4222-2014;
OI Bartolo, Ines/0000-0002-2022-8921; Pineda-Pena,
Andrea-Clemencia/0000-0003-1937-0506; Vandamme,
Anne-Mieke/0000-0002-6594-2766
FU European Funds through HIVERA: Harmonizing Integrating Vitalizing
European Research on HIV/Aids [249697]; L'Oreal Portugal Medals of Honor
for Women in Science through L'Oreal Portugal; L'Oreal Portugal Medals
of Honor for Women in Science through Comissao Nacional da Unesco;
L'Oreal Portugal Medals of Honor for Women in Science through Fundacao
para a Ciencia e Tecnologia (FCT); FCT [GHTM-UID/Multi/04413/2013,
PTDC/SAU-EPI/122400/2010, VIH/SAU/0029/2011, PTDC/AFR/100646/2008,
SFRH/BPD/76225/2011]; Fonds voor Wetenschappelijk Onderzoek - Flanders
(FWO) [G.0692.14, G.0611.09N]; National Institutes of Health (NIH)
[AI087520]; National Endowment for the Humanities Collaborative Research
Grant [RZ5152313]; FWO; [CRIA/ANT/04038/2013]
FX This study was supported by European Funds through grant 'Bio-Molecular
and Epidemiological Surveillance of HIV Transmitted Drug Resistance,
Hepatitis Co-Infections and Ongoing Transmission Patterns in Europe -
BEST HOPE - (project funded through HIVERA: Harmonizing Integrating
Vitalizing European Research on HIV/Aids, grant 249697)'; by L'Oreal
Portugal Medals of Honor for Women in Science 2012 (financed through
L'Oreal Portugal, Comissao Nacional da Unesco and Fundacao para a
Ciencia e Tecnologia (FCT - http://www.fct.pt)); by FCT for funds to
GHTM-UID/Multi/04413/2013; by the Fonds voor Wetenschappelijk Onderzoek
- Flanders (FWO) grant G.0692.14 and G.0611.09N; by a National
Institutes of Health (NIH) grant AI087520; by FCT (grants
PTDC/SAU-EPI/122400/2010, VIH/SAU/0029/2011 and PTDC/AFR/100646/2008);
and by CRIA/ANT/04038/2013; and by National Endowment for the Humanities
Collaborative Research Grant No. RZ5152313, "An International
Collaboration on the Political, Social, and Cultural History of the
Emergence of HIV/AIDS." The computational resources and services used in
this work were provided by the Hercules Foundation and the Flemish
Government - department EWI-FWO Krediet aan Navorsers (Theys, KAN2012
1.5.249.12.). I. B. is supported by a post-doc fellowship
(SFRH/BPD/76225/2011) from FCT. K.T. is supported by a postdoctoral
grant from FWO.
NR 29
TC 0
Z9 0
U1 5
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1567-1348
EI 1567-7257
J9 INFECT GENET EVOL
JI Infect. Genet. Evol.
PD DEC
PY 2016
VL 46
BP 219
EP 222
DI 10.1016/j.meegid.2016.08.009
PG 4
WC Infectious Diseases
SC Infectious Diseases
GA EF6QP
UT WOS:000390456000030
PM 27521160
ER
PT J
AU Bull, D
Jenne, DS
Smith, CS
Copping, AE
Copeland, G
AF Bull, Diana
Jenne, D. Scott
Smith, Christopher S.
Copping, Andrea E.
Copeland, Guild
TI Levelized cost of energy for a Backward Bent Duct Buoy
SO INTERNATIONAL JOURNAL OF MARINE ENERGY
LA English
DT Article
DE Wave energy converter; Oscillating water column; Levelized cost of
energy; Backward Bent Duct Buoy; Reference Model Project; Marine
Hydro-Kinetic
ID WELLS TURBINE; PERFORMANCE
AB The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Bull, Diana; Copeland, Guild] Sandia Natl Labs, Water Power Technol, POB 5800, Albuquerque, NM 87185 USA.
[Jenne, D. Scott] Natl Renewable Energy Lab, Wind & Water Power Program, Boulder, CO 80303 USA.
[Smith, Christopher S.] Penn State Univ, Appl Res Lab, State Coll, PA 16804 USA.
[Copping, Andrea E.] Pacific Northwest Natl Labs, Seattle, WA 98109 USA.
RP Bull, D (reprint author), Sandia Natl Labs, Water Power Technol, POB 5800, Albuquerque, NM 87185 USA.
EM dlbull@sandia.gov; Dale.Jenne@nrel.gov; css27@arl.psu.edu;
Andrea.Copping@pnnl.gov; gcopel@sandia.gov
FU U.S. Department of Energy's Wind and Water Power Technologies Office;
Reference Model Project; U.S. Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX This work was funded by the U.S. Department of Energy's Wind and Water
Power Technologies Office. The research was in support of the Reference
Model Project. The staff at HMRC were instrumental in obtaining the
experimental data presented here. Sandia National Laboratories is a
multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000.
NR 29
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2214-1669
J9 INT J MAR ENERGY
JI INT. J. MAR. ENERGY
PD DEC
PY 2016
VL 16
BP 220
EP 234
DI 10.1016/j.ijome.2016.07.002
PG 15
WC Energy & Fuels
SC Energy & Fuels
GA EG1SN
UT WOS:000390812600017
ER
PT J
AU Uriostegui, SH
Bibby, RK
Esser, BK
Clark, JF
AF Uriostegui, Stephanie H.
Bibby, Richard K.
Esser, Bradley K.
Clark, Jordan F.
TI Quantifying groundwater travel time near managed recharge operations
using S-35 as an intrinsic tracer
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Hydrologic tracers; Travel time; Retention time; Sulfur-35; Montebello
Forebay; Orange County Recharge Operation
ID COSMOGENIC S-35; SULFUR-HEXAFLUORIDE; AQUIFER TREATMENT; WATER;
SNOWMELT; COLORADO; SULFATE; RATES; PONDS; FLOW
AB Identifying groundwater retention, times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. To protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2-6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (S-35). The 87.5 day half-life of S-35 is ideal for investigating groundwater travel times on the <1 year timescale of interest to MAR managers. Natural concentrations of S-35 found in water as dissolved sulfate ((SO4)-S-35) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. (SO4)-S-35 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that (SO4)-S-35 in MAR source water can vary seasonally and therefore careful characterization of (SO4)-S-35 is needed to accurately quantify groundwater travel time. More data is needed to fully assess whether or not this tracer could become a valuable tool for managers. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Uriostegui, Stephanie H.; Clark, Jordan F.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA.
[Bibby, Richard K.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA.
RP Uriostegui, SH (reprint author), Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA.
EM stephanieuriostegui@umail.ucsb.edu
FU WateReuse Research Foundation [WRRF-09-11]; Water Replenishment District
of Southern California; Orange County Water District; State of
California Groundwater Ambient Monitoring & Assessment (GAMA) Special
Studies Program; U.S. Department of Energy by Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]; Lawrence Graduate Scholarship
Program at the Lawrence Livermore National Laboratory
FX This work was supported by the WateReuse Research Foundation
(WRRF-09-11) in cooperation with the Water Replenishment District of
Southern California, the Orange County Water District, the State of
California Groundwater Ambient Monitoring & Assessment (GAMA) Special
Studies Program, and the Lawrence Graduate Scholarship Program at the
Lawrence Livermore National Laboratory.; We thank Theodore Johnson,
Peter Piestrzeniewicz, and Benny Chong from WRD for their assistance at
the Montebello Forebay Spreading Grounds. We would also like to thank
Jason Dadakis, Roy Herndon, Nira Yamchika, Adam Hutchinson, Greg
Woodside, Patrick Versluis, and Mike Wehner from OCWD for their
encouragement and project support. Alex Cruz and Bronson Cabalitasan
from UCSB assisted in 35S analyses. The original idea for
using 35S as an intrinsic tracer near MAR came from a
conservation between JFC and Dr. Andrew L. Herczeg (CSIRO, Land and
Water, Adelaide, South Australia) while both were visiting the Water
Resources Programme, International Atomic Energy Agency. Contributions
by Stephanie Uriostegui, Richard Bibby, and Brad Esser were performed
under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 33
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD DEC
PY 2016
VL 543
SI SI
BP 145
EP 154
DI 10.1016/j.jhydrol.2016.04.036
PN A
PG 10
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA EF9CO
UT WOS:000390628500012
ER
PT J
AU Green, CT
Jurgens, BC
Zhang, Y
Starn, JJ
Singleton, MJ
Esser, BK
AF Green, Christopher T.
Jurgens, Bryant C.
Zhang, Yong
Starn, J. Jeffrey
Singleton, Michael J.
Esser, Bradley K.
TI Regional oxygen reduction and denitrification rates in groundwater from
multi-model residence time distributions, San Joaquin Valley, USA
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Oxygen reduction; Denitrification; Groundwater Residence time;
Multi-model analysis; Regional water quality
ID NON-FICKIAN TRANSPORT; WATER-QUALITY TRENDS; PUBLIC-SUPPLY WELLS;
UNITED-STATES; NITRATE CONTAMINATION; BREAKTHROUGH CURVES; SHALLOW
GROUNDWATER; UNSATURATED ZONES; ALLUVIAL SETTINGS; CONCEPTUAL-MODEL
AB Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of ground-water. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O-2 reduction and denitrification (NO3- reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, H-3, He from H-3 (tritiogenic He), C-14, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi model RTDs was used in combination with NO3- and dissolved gas data to estimate zero order and first order rates of O-2 reduction and denitrification. Results indicated that O-2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O-2 and NO3- reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O-2 reduction rates. Estimated historical NO3- trends were similar to historical measurements. Results show that the multi model approach can improve estimation of age distributions, and that relatively easily measured O-2 rates can provide information about trends in denitrification rates, which are more difficult to estimate. Published by Elsevier B.V.
C1 [Green, Christopher T.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA.
[Jurgens, Bryant C.] US Geol Survey, Sacramento, CA USA.
[Zhang, Yong] Univ Alabama, Tuscaloosa, AL USA.
[Starn, J. Jeffrey] US Geol Survey, E Hartford, CT USA.
[Singleton, Michael J.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA USA.
RP Green, CT (reprint author), US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA.
EM ctgreen@usgs.gov
FU National Water-Quality Assessment (NAWQA) program; National Research
Program (NRP); USGS Toxic Substances Hydrology Program; National Science
Foundation [DMS-1460319]
FX Funding was provided by the National Water-Quality Assessment (NAWQA)
program, National Research Program (NRP), USGS Toxic Substances
Hydrology Program, and the National Science Foundation under Grant
DMS-1460319, Thanks to Karen Burow for assistance with well information
and observed decadal trends and to Matthew Landon for help with datasets
and geochemical information. Discussions with Ate Visser contributed to
the improvement of this study.
NR 96
TC 2
Z9 2
U1 6
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD DEC
PY 2016
VL 543
SI SI
BP 155
EP 166
DI 10.1016/j.jhydrol.2016.05.018
PN A
PG 12
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA EF9CO
UT WOS:000390628500013
ER
PT J
AU Alikhani, J
Deinhart, AL
Visser, A
Bibby, RK
Purtschert, R
Moran, JE
Massoudieh, A
Esser, BK
AF Alikhani, Jamal
Deinhart, Amanda L.
Visser, Ate
Bibby, Richard K.
Purtschert, Roland
Moran, Jean E.
Massoudieh, Arash
Esser, Bradley K.
TI Nitrate vulnerability projections from Bayesian inference of multiple
groundwater age tracers
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Nitrate vulnerability; Age tracers; Bayesian inference; Uncertainty
analysis; Lumped parameter models; Residence time distribution
ID ATLANTIC COASTAL-PLAIN; RESIDENCE TIME; WATER-QUALITY; SHALLOW
GROUNDWATER; MASS-SPECTROMETRY; ISOTOPE RATIOS; CHALK AQUIFER;
UNITED-STATES; TRENDS; MODELS
AB Nitrate is a major source of contamination of groundwater in the United States and around the world. We tested the applicability of multiple groundwater age tracers (H-3, He-3, He-4, C-14, C-13, and Kr-85) in projecting future trends of nitrate concentration in 9 long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit. Very low Kr-85 concentrations and apparent H-3/He-3 ages point to a relatively old modern fraction (40-50 years), diluted with pre-modern groundwater, corroborated by the onset and slope of increasing nitrate concentrations. An inverse Gaussian-Dirac model was chosen to represent the age distribution of the sampled groundwater at each well. Model parameters were estimated using a Bayesian inference, resulting in the posterior probability distribution - including the associated uncertainty - of the parameters and projected nitrate concentrations. Three scenarios were considered, including combined historic nitrate and age tracer data, the sole use of nitrate and the sole use of age tracer data. Each scenario was evaluated based on the ability of the model to reproduce the data and the level of reliability of the nitrate projections. The tracer-only scenario closely reproduced tracer concentrations, but not observed trends in the nitrate concentration. Both cases that included nitrate data resulted in good agreement with historical nitrate trends. Use of combined tracers and nitrate data resulted in a narrower range of projections of future nitrate levels. However, use of combined tracer and nitrate resulted in a larger discrepancy between modeled and measured tracers for some of the tracers. Despite nitrate trend slopes between 0.56 and 1.73 mg/L/year in 7 of the 9 wells, the probability that concentrations will increase to levels above the MCL by 2040 are over 95% for only two of the wells, and below 15% in the other wells, due to a leveling off of reconstructed historical nitrate loadings to groundwater since about 1990. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Alikhani, Jamal; Massoudieh, Arash] Catholic Univ Amer, Dept Civil Engn, Washington, DC 20064 USA.
[Deinhart, Amanda L.; Visser, Ate; Bibby, Richard K.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Deinhart, Amanda L.; Moran, Jean E.] Calif State Univ Hayward, Dept Earth & Environm Sci, Hayward, CA 94542 USA.
[Purtschert, Roland] Univ Bern, Climate & Environm Phys, Inst Phys, Bern, Switzerland.
[Purtschert, Roland] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland.
RP Massoudieh, A (reprint author), Catholic Univ Amer, Dept Civil Engn, Washington, DC 20064 USA.
RI Alikhani, Jamal/C-9322-2017;
OI Alikhani, Jamal/0000-0003-2955-5870; Massoudieh,
Arash/0000-0003-0200-2141
FU California State Water Resources Control Board Groundwater Ambient
Monitoring and Assessment (GAMA) Special Studies program; U.S.
Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Groundwater Ambient Monitoring and assessment
Program [LLNL-JRNL-677921]
FX Funding for the project came from the California State Water Resources
Control Board Groundwater Ambient Monitoring and Assessment (GAMA)
Special Studies program. The researchers are also grateful for the
enthusiastic participation of the City of Turlock. Laboratory support
from Michael Singleton, Sarah Roberts, and Stephanie Uriostegui is
gratefully acknowledged. This work performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. This data was collected in
collaboration with the U.S. Geological Survey, and funded by the
Groundwater Ambient Monitoring and assessment Program. LLNL-JRNL-677921.
NR 91
TC 4
Z9 4
U1 2
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD DEC
PY 2016
VL 543
SI SI
BP 167
EP 181
DI 10.1016/j.jhydrol.2016.04.028
PN A
PG 15
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA EF9CO
UT WOS:000390628500014
ER
PT J
AU Li, JX
Wang, YX
Xie, XJ
DePaolo, DJ
AF Li, Junxia
Wang, Yanxin
Xie, Xianjun
DePaolo, Donald J.
TI Effects of water-sediment interaction and irrigation practices on iodine
enrichment in shallow groundwater
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Vertical mixing; Water-sediment interaction; Groundwater; Iodine; Datong
basin
ID STRONTIUM ISOTOPE COMPOSITION; DATONG BASIN; NORTHERN CHINA;
STABLE-ISOTOPES; HYDROGEOCHEMICAL PROCESSES; MARINE-SEDIMENTS;
ORGANIC-MATTER; DRINKING-WATER; HANFORD SITE; RIVER
AB High iodine concentrations in groundwater have caused serious health problems to the local residents in the Datong basin, northern China. To determine the impact of water-sediment interaction and irrigation practices on iodine mobilization in aquifers, isotope (H-2, O-18 and Sr-87/Sr-86) and hydrogeochemical studies were conducted. The results show that groundwater iodine concentrations vary from 14.4 to 2180 mu g/L, and high iodine groundwater (>150 mu g/L) mainly occurs in the central area of the Datong basin. Sediment iodine content is between <0.01 and 1.81 mg/kg, and the co-occurrence of high iodine and high DOC/TOC concentrations of groundwater and sediment samples in the deeper aquifer indicates that the sediment enriched in iodine and organic matter acts as the main source of groundwater iodine. The Sr-87/Sr-86 values and groundwater chemistry suggest that aluminosilicate hydrolysis is the dominant process controlling hydrochemical evolution along groundwater flowpath, and the degradation of TOC/iodine-rich sediment mediated by microbes potentially triggers the iodine release from the sediment into groundwater in the discharge area. The vertical stratification of groundwater O-18 and H-2 isotope reflects the occurrence of a vertical mixing process driven by periodic surface irrigation. The vertical mixing could change the redox potential of shallow groundwater from sub-reducing to oxidizing condition, thereby affecting the iodine mobilization in shallow groundwater. It is postulated that the extra introduction of organic matter and O-2/NO3/SO4 could accelerate the microbial activity due to the supplement of high ranking electron acceptors and promote the iodine release from the sediment into shallow groundwater. (C) 2016 Published by Elsevier B.V.
C1 [Li, Junxia; Wang, Yanxin; Xie, Xianjun] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China.
[Li, Junxia; Wang, Yanxin; Xie, Xianjun] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China.
[DePaolo, Donald J.] Univ Calif Berkeley, Earth & Planetary Sci, Berkeley, CA 94720 USA.
[DePaolo, Donald J.] Lawrence Berkeley Natl Lab, Energy Geosci Div, Berkeley, CA 94720 USA.
RP Wang, YX (reprint author), China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China.; Wang, YX (reprint author), China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China.
EM yx.wang@cug.edu.cn
FU National Natural Science Foundation of China [41120124003, 41502230,
41521001]; Ministry of Science and Technology of China [2012AA062602];
Ministry of Education of China (111 project and Priority Development
Projects of SRFDP) [20120145130001]; U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences, Chemical Sciences,
Geosciences, and Biosciences Division [DE-AC02-05CH11231]
FX We would like to thank Thomas L. Owens (University of California,
Berkeley) and Lanping Feng (State Key Laboratory of Geological Processes
and Mineral Resources, China University of Geosciences, Wuhan) for their
assistance in Sr isotope analysis in laboratory. The research work was
financially supported by National Natural Science Foundation of China
(Nos. 41120124003, 41502230 and 41521001), the Ministry of Science and
Technology of China (2012AA062602), and the Ministry of Education of
China (111 project and Priority Development Projects of SRFDP
(20120145130001)). The Berkeley laboratory facilities are supported by
the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Chemical Sciences, Geosciences, and Biosciences Division,
under Award Number DE-AC02-05CH11231. We thank the anonymous reviewers
and the editor for their great help in improving the quality of the
manuscript.
NR 56
TC 0
Z9 0
U1 19
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD DEC
PY 2016
VL 543
BP 293
EP 304
DI 10.1016/j.jhydrol.2016.10.002
PN B
PG 12
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA EG0PY
UT WOS:000390735900009
ER
PT J
AU Shang, HM
Wang, WK
Dai, ZX
Duan, L
Zhao, YQ
Zhang, J
AF Shang, Haimin
Wang, Wenke
Dai, Zhenxue
Duan, Lei
Zhao, Yaqian
Zhang, Jing
TI An ecology-oriented exploitation mode of groundwater resources in the
northern Tianshan Mountains, China
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Arid and semiarid regions; Groundwater resources; Ecological evaluation;
Exploitation mode; Supergene ecological type; Tianshan Mountains
ID LOWER TARIM RIVER; WATER-TABLE; VEGETATION INTERACTIONS; RIPARIAN
VEGETATION; NORTHWEST CHINA; AQUIFER SYSTEMS; ARID REGION; BASIN; AREAS;
MANAGEMENT
AB In recent years, ecological degradation caused by irrational groundwater exploitation has been of growing concern in arid and semiarid regions. To address the groundwater-ecological issues, this paper proposes a groundwater-resource exploitation mode to evaluate the tradeoff between groundwater development and ecological environment in the northern Tianshan Mountains, northwest China's Xinjiang Uygur Autonomous Region. Field surveys and remote sensing studies were conducted to analyze the relation between the distribution of hydrological conditions and the occurrence of ecological types. The results show that there is a good correlation between groundwater depth and the supergene ecological type. Numerical simulations and ecological assessment models were applied to develop an ecology oriented exploitation mode of groundwater resources. The mode allows the groundwater levels in different zones to be regulated by optimizing groundwater exploitation modes. The prediction results show that the supergene ecological quality will be better in 2020 and even more groundwater can be exploited in this mode. This study provides guidance for regional groundwater management, especially in regions with an obvious water scarcity. (C) 2016 Published by Elsevier B.V.
C1 [Shang, Haimin; Wang, Wenke; Duan, Lei; Zhang, Jing] Changan Univ, Key Lab Subsurface Hydrol & Ecol Arid Areas, Minist Educ, Xian 710054, Shaanxi, Peoples R China.
[Dai, Zhenxue] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Zhao, Yaqian] Univ Coll Dublin, Sch Civil Struct & Environm Engn, UCD Dooge Ctr Water Resources Res, Dublin 4, Ireland.
RP Wang, WK (reprint author), Changan Univ, Key Lab Subsurface Hydrol & Ecol Arid Areas, Minist Educ, Xian 710054, Shaanxi, Peoples R China.; Dai, ZX (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
EM wenkew@chd.edu.cn; daiz@lanl.gov
OI Zhao, Yaqian/0000-0002-2449-4370
FU National Natural Science Foundation of China [41230314]
FX The authors acknowledge the financial support of the study by the
projects of National Natural Science Foundation of China (No. 41230314).
NR 67
TC 1
Z9 1
U1 8
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD DEC
PY 2016
VL 543
BP 386
EP 394
DI 10.1016/j.jhydrol.2016.10.012
PN B
PG 9
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA EG0PY
UT WOS:000390735900017
ER
PT J
AU Boudon, V
Sears, T
Coheur, PF
AF Boudon, Vincent
Sears, Trevor
Coheur, Pierre-Francois
TI Call for papers for special issue of Journal of Molecular Spectroscopy
focusing on "Molecular Spectroscopy, Atmospheric Composition and Climate
Change"
SO JOURNAL OF MOLECULAR SPECTROSCOPY
LA English
DT Editorial Material
C1 [Boudon, Vincent] Univ Bourgogne Franche Comte, CNRS, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303, 9 Av A Savary,BP 47870, F-21078 Dijon, France.
[Sears, Trevor] Brookhaven Natl Lab, Dept Energy & Photon Sci, Div Chem, Upton, NY 11973 USA.
[Coheur, Pierre-Francois] Univ Libre Bruxelles, Quantum Chem & Photophys, CP160-09,Ave FD Roosevelt 50, B-1050 Brussels, Belgium.
RP Boudon, V (reprint author), Univ Bourgogne Franche Comte, CNRS, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303, 9 Av A Savary,BP 47870, F-21078 Dijon, France.
EM Vincent.Boudon@u-bourgogne.fr; trevor.sears@stonybrook.edu;
pfcoheur@ulb.ac.be
NR 0
TC 0
Z9 0
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-2852
EI 1096-083X
J9 J MOL SPECTROSC
JI J. Mol. Spectrosc.
PD DEC
PY 2016
VL 330
SI SI
BP 250
EP 250
DI 10.1016/j.jms.2016.11.012
PG 1
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA EF9EX
UT WOS:000390634600033
ER
PT J
AU Gandhi, U
Sebastian, D
Kunc, V
Song, YY
AF Gandhi, Umesh
Sebastian, De Boodt
Kunc, Vlastimil
Song, YuYang
TI Method to measure orientation of discontinuous fiber embedded in the
polymer matrix from computerized tomography scan data
SO JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS
LA English
DT Article
DE Fiber; anisotropy; microstructures; optical properties; techniques
ID SIMPLE INJECTION MOLDINGS; REINFORCED POLYPROPYLENE; ELASTIC PROPERTIES;
COMPOSITES; MICROSTRUCTURE; THERMOPLASTICS; MODULUS; LENGTH
AB Usage of discontinuous glass fibers in injection- and compression-molded resin components is rapidly increasing to improve their mechanical properties. Since added fiber contributes to more strength along the fiber direction compared with transverse direction, the mechanical properties of such components strongly depend on the fiber orientation. Therefore, it is important to estimate the fiber orientation distribution in such materials. In this article, we are presenting a recently developed method to estimate fiber orientation using micro computerized tomography (CT) scan-generated three-dimensional (3-D) image of fibers. However, the large size of the CT scan-generated 3-D image often makes it difficult to separate each fiber and extract end point information. In this article, a novel method to address this challenge is presented. The micro-CT images were broken into finite volume, reducing data size, and then each fiber was reduced to its own centerline, using Mimics((R)) Innovation Suite (Materialise NV), further reducing the data size. These 3-D centerlines were then used to quantify the second-order orientation tensor. The results from the proposed method are compared with the measurements using well-established industry standard approach called the method of ellipses for validation. The key challenges in estimating the fiber orientation are identified and future improvements are proposed.
C1 [Gandhi, Umesh; Song, YuYang] Toyota Res Inst North Amer, 1555 Woodridge, Ann Arbor, MI 48331 USA.
[Sebastian, De Boodt] Materialice NV, Technol Laan, Leuven, Belgium.
[Kunc, Vlastimil] Oak Ridge Natl Lab, Oak Ridge, TN USA.
RP Gandhi, U (reprint author), Toyota Res Inst North Amer, 1555 Woodridge, Ann Arbor, MI 48331 USA.
EM umesh.gandhi@tema.toyota.com
RI Kunc, Vlastimil/E-8270-2017
OI Kunc, Vlastimil/0000-0003-4405-7917
FU Oak Ridge National Laboratory's High Temperature Materials Laboratory;
US Department of Energy, Office of Energy Efficiency and Renewable
Energy, Vehicle Technologies Program
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This
research was partially funded by Oak Ridge National Laboratory's High
Temperature Materials Laboratory; User Program was sponsored by the US
Department of Energy, Office of Energy Efficiency and Renewable Energy,
Vehicle Technologies Program. The fiber-reinforced plaques used in this
study were built by Magana Corporation.
NR 21
TC 0
Z9 0
U1 2
U2 2
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0892-7057
EI 1530-7980
J9 J THERMOPLAST COMPOS
JI J. Thermoplast. Compos. Mater.
PD DEC
PY 2016
VL 29
IS 12
BP 1696
EP 1709
DI 10.1177/0892705715584411
PG 14
WC Materials Science, Composites
SC Materials Science
GA EF8DO
UT WOS:000390559000008
ER
PT J
AU Xing, CH
Jensen, C
Folsom, C
Ban, H
Kennedy, JR
AF Xing, Changhu
Jensen, Colby
Folsom, Charles
Ban, Heng
Kennedy, J. Rory
TI A thermal conductivity and electromotive force measurement system for
nuclear fuels and materials
SO MEASUREMENT
LA English
DT Article
DE Electromotive force; Material structure; Phase transition; Thermopower
ID THERMOELECTRIC-POWER; PRESSURE; PHASE
AB The development of advanced nuclear fuels requires detailed understanding of their transmutation and Micro-structural evolution. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this work was to develop an experimental system, integrated with thermal conductivity measurement capability to measure the thermodynamic properties of solid materials, from which an understanding of their phase change(s) can be determined. With the coupled system, both thermal conductivity and electromotive force (EMF) may be measured. In order to validate the system, the apparatus was employed to measure the EMF of several materials. As an initial calibration test, the EMF of Chromel was measured from 100 degrees C to 800 degrees C and compared with theoretical values. Subsequent EMF measurements were made for pure iron, iron-nickel alloy, and ANSI 1018 carbon steel rods. The measured phase transition temperatures were compared with the corresponding alloy equilibrium phase diagrams. The results indicate that the system is able to determine material phase change based on EMF measurement. In the future, this prototype system is to be adapted for hot-cell use on irradiated samples. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Xing, Changhu; Folsom, Charles; Ban, Heng] Utah State Univ, Mech & Aerosp Engn Dept, Logan, UT 84322 USA.
[Jensen, Colby; Kennedy, J. Rory] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Xing, CH; Ban, H (reprint author), Utah State Univ, Mech & Aerosp Engn Dept, Logan, UT 84322 USA.
EM changhu.xing@aggiemail.usu.edu; heng.ban@usu.edu
OI Jensen, Colby/0000-0001-8925-7758
FU U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho
Operations Office [DEA-C0705ID14517]; Department of Energy Nuclear
Energy University Programs Graduate Fellowship
FX The work is supported by U.S. Department of Energy, Office of Nuclear
Energy, under DOE Idaho Operations Office, contract DEA-C0705ID14517.
Work performed by Colby Jensen is supported under a Department of Energy
Nuclear Energy University Programs Graduate Fellowship.
NR 24
TC 0
Z9 0
U1 5
U2 5
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0263-2241
EI 1873-412X
J9 MEASUREMENT
JI Measurement
PD DEC
PY 2016
VL 94
BP 333
EP 337
DI 10.1016/j.measurement.2016.08.011
PG 5
WC Engineering, Multidisciplinary; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA EF7LW
UT WOS:000390512100036
ER
PT J
AU Ferguson, JO
Jablonowski, C
Johansen, H
McCorquodale, P
Colella, P
Ullrich, PA
AF Ferguson, Jared O.
Jablonowski, Christiane
Johansen, Hans
McCorquodale, Peter
Colella, Phillip
Ullrich, Paul A.
TI Analyzing the Adaptive Mesh Refinement (AMR) Characteristics of a
High-Order 2D Cubed-Sphere Shallow-Water Model
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID DISCONTINUOUS GALERKIN METHOD; VARIABLE-RESOLUTION MESHES; CYCLONE-SCALE
VORTICES; FINITE-VOLUME METHOD; ATMOSPHERIC FLOWS; GRID REFINEMENT;
VORTEX MERGER; EQUATIONS; SIMULATION; ADAPTATION
AB Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This paper aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interaction of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse-fine interfaces. Furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.
C1 [Ferguson, Jared O.; Jablonowski, Christiane] Univ Michigan, Dept Climate & Space Sci & Engn, 2455 Hayward, Ann Arbor, MI 48109 USA.
[Johansen, Hans; McCorquodale, Peter; Colella, Phillip] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Ullrich, Paul A.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA.
RP Ferguson, JO (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, 2455 Hayward, Ann Arbor, MI 48109 USA.
EM joferg@umich.edu
RI Jablonowski, Christiane/I-9068-2012
OI Jablonowski, Christiane/0000-0003-0407-0092
FU Office of Science, U.S. Department of Energy [DE-SC0003990]; Office of
Science, Office of Advanced Scientific Computing Research of the U.S.
Department of Energy as part of their Mathematical, Computational, and
Computer Sciences Research/Computational Partnerships Program
[DE-AC02-05CH11231]; National Science Foundation
FX Support for this work has been provided by the Office of Science, U.S.
Department of Energy, Award DE-SC0003990 and by the Director, Office of
Science, Office of Advanced Scientific Computing Research of the U.S.
Department of Energy under Contract DE-AC02-05CH11231 as part of their
Mathematical, Computational, and Computer Sciences
Research/Computational Partnerships Program. We would like to
acknowledge high-performance computing support from Yellowstone provided
by NCAR's Computational and Information Systems Laboratory, sponsored by
the National Science Foundation. We thank the reviewers for their
helpful comments and suggestions.
NR 59
TC 0
Z9 0
U1 1
U2 1
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD DEC
PY 2016
VL 144
IS 12
BP 4641
EP 4666
DI 10.1175/MWR-D-16-0197.1
PG 26
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EF9YK
UT WOS:000390687200008
ER
PT J
AU Kalesse, H
de Boer, G
Solomon, A
Oue, M
Ahlgrimm, M
Zhang, DM
Shupe, MD
Luke, E
Protat, A
AF Kalesse, Heike
de Boer, Gijs
Solomon, Amy
Oue, Mariko
Ahlgrimm, Maike
Zhang, Damao
Shupe, Matthew D.
Luke, Edward
Protat, Alain
TI Understanding Rapid Changes in Phase Partitioning between Cloud Liquid
and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID RADAR DOPPLER SPECTRA; IN-SITU DATA; CLIMATE MODELS; SEA-ICE;
REFLECTIVITY MEASUREMENTS; THERMODYNAMIC STRUCTURE; AIR-TEMPERATURE;
BOUNDARY-LAYER; PART I; SURFACE
AB Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. In high latitudes, these cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to be caused by several main factors. Major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11-12 March 2013). For an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.
C1 [Kalesse, Heike] Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany.
[de Boer, Gijs; Solomon, Amy; Shupe, Matthew D.] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
[de Boer, Gijs; Solomon, Amy; Shupe, Matthew D.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Oue, Mariko] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA.
[Ahlgrimm, Maike] European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
[Zhang, Damao] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA.
[Luke, Edward] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA.
[Protat, Alain] Bur Meteorol, Melbourne, Vic, Australia.
RP Kalesse, H (reprint author), Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany.
EM kalesse@tropos.de
RI Shupe, Matthew/F-8754-2011
OI Shupe, Matthew/0000-0002-0973-9982
FU DFG project COMPoSE [GZ: KA 4162/1-1]; U.S. Department of Energy's
(DOE's) Atmospheric System Research (ASR) program [DE-SC0008794,
DE-SC0013306]; U.S. National Science Foundation [ARC 1203902]; DOE-ASR
[DE-SC0011918, DE-SC0005259, DE-SC00112704, DE-SC0013953, DE-SC0006974,
DE-SC0014239]
FX Thanks to Janek Zimmer for help in analyzing the synoptic situation and
to Kara Sulia as well as Stefan Kneifel for fruitful discussions in the
early phase of this case study analysis. All remote-sensing data is from
the ARM data archive. Soundings at 0000 and 1200 UTC are from the
National Weather Service in Barrow, the remaining ones are from the ARM
data archive. Aerosol measurements are provided and supported by the
NOAA/Global Monitoring Division (GMD). The authors gratefully
acknowledge the NOAA/Air Resources Laboratory (ARL) for the provision of
the HYSPLIT transport and dispersion model and the READY website
(http://www.ready.noaa.gov) used in this publication. The High Spectral
Resolution Lidar data in Fig. 1 were obtained from the University of
Wisconsin Lidar Group homepage (http://lidar.ssec.wisc.edu/index.htm).
H. Kalesse conducted this study within the framework of the DFG project
COMPoSE, GZ: KA 4162/1-1. G. de Boer contributed to this research under
funding from the U.S. Department of Energy's (DOE's) Atmospheric System
Research (ASR) program (Projects: DE-SC0008794 and DE-SC0013306) as well
as the U.S. National Science Foundation (ARC 1203902). M. Shupe was
supported by DOE-ASR Grant DE-SC0011918. M. Ahlgrimm's contribution to
this work was supported by DOE-ASR Grant DE-SC0005259. Furthermore, this
research was also supported in part under DOE ASR Grant DE-SC00112704
(E. Luke), DE-SC0013953 (M. Oue), DE-SC0006974 (D Zhang), and
DE-SC0014239 (D. Zhang).
NR 92
TC 0
Z9 0
U1 10
U2 10
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
EI 1520-0493
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD DEC
PY 2016
VL 144
IS 12
BP 4805
EP 4826
DI 10.1175/MWR-D-16-0155.1
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA EF9YK
UT WOS:000390687200016
ER
PT J
AU Gao, K
Deng, WY
Xiao, LG
Hu, Q
Kan, YY
Chen, XB
Wang, C
Huang, F
Peng, JB
Wu, HB
Peng, XB
Cao, Y
Russelle, TP
Liu, F
AF Gao, Ke
Deng, Wanyuan
Xiao, Liangang
Hu, Qin
Kan, Yuanyuan
Chen, Xuebin
Wang, Cheng
Huang, Fei
Peng, Junbiao
Wu, Hongbin
Peng, Xiaobin
Cao, Yong
Russelle, Thomas P.
Liu, Feng
TI New insight of molecular interaction, crystallization and phase
separation in higher performance small molecular solar cells via solvent
vapor annealing
SO NANO ENERGY
LA English
DT Article
DE Organic solar cells; Solvent vapor annealing; Non-equilibrium
morphology; Physical processes
ID PROCESSED SMALL-MOLECULE; IMPEDANCE SPECTROSCOPY; ORGANIC PHOTOVOLTAICS;
BENZODITHIOPHENE UNIT; LENGTH-SCALE; FILL FACTOR; BULK; EFFICIENCY;
PHOTOCURRENT; MORPHOLOGIES
AB Solvent vapor annealing (SVA) studies on the morphology and performance of a porphyrin-based deep absorption organic solar cells consisting of a strongly segregated bulk heterojunction (BHJ) blend, are presented. It is seen that the solvent vapor annealing of a well-mixed BHJ blends induces molecular motion, leading to a phase separated morphology governed by a spinodal decomposition mechanism. The earlier stage of solvent vapor swelling (< 10 s) led to an obvious phase separation but not device performance. The device performance showed a dramatic increase in short circuit current and fill factor between 15 and 20 s of SVA. Thus, phase purity is a critical parameter in determining the performance of this binary blend. SVA on a thermally annealed BHJ thin film showed two distinctive processes, a crystal dissolution and a recrystallization, accompanied by phase mixing and then phase separation. The final morphology of SVA films that were initially thermally annealed showed a reduced length scale of phase separation, in comparison to SVA on as-cast films. Thus preformed donor crystallites appear to lock-in the morphology, even in a small molecule blend setting. The best performing device was obtained by a slight SVA (10 s) of films that were initially thermally annealed, reaching a power conversion efficiency of 8.48%. This suggests that the localized morphological optimization and domain size reduction are most important factors in dictating organic photovoltaic device efficiencies.
C1 [Gao, Ke; Liu, Feng] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China.
[Gao, Ke; Deng, Wanyuan; Xiao, Liangang; Kan, Yuanyuan; Chen, Xuebin; Huang, Fei; Peng, Junbiao; Wu, Hongbin; Peng, Xiaobin; Cao, Yong] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China.
[Russelle, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA.
[Russelle, Thomas P.; Liu, Feng] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Liu, F (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China.; Wu, HB; Peng, XB (reprint author), South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China.; Russelle, TP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA.
EM hbwu@scut.edu.cn; chxbpeng@scut.edu.cn; russell@mail.pse.umass.edu;
fengliu82@sjtu.edu.cn
RI Gao, Ke/B-3412-2017; Wang, Cheng/A-9815-2014; Hu, Qin/N-3493-2014; Liu,
Feng/J-4361-2014
OI Hu, Qin/0000-0003-3089-1070; Liu, Feng/0000-0002-5572-8512
FU International Science & Technology Cooperation Program of China
[2013DFG52740, 2010DFA52150]; Ministry of Science and Technology
[2014CB643500]; National Natural Science Foundation of China [51473053,
51073060, 51225301, 91333206]; U.S. Office of Naval Research
[N00014-15-1-2244]; DOE, Office of Science; DOE, Office of Basic Energy
Sciences
FX K. Gao, W. Deng and L. Xiao contributed equally to this work. XBP and
HBW was financially supported by the grants from International Science &
Technology Cooperation Program of China (2013DFG52740, 2010DFA52150),
the Ministry of Science and Technology (2014CB643500), and the National
Natural Science Foundation of China (51473053, 51073060, 51225301,
91333206). FL and TPR were supported by the U.S. Office of Naval
Research under contract N00014-15-1-2244. Portions of this research were
carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source,
Molecular Foundry, and National Center for Electron Micoscopy, Lawrence
Berkeley National Laboratory, which was supported by the DOE, Office of
Science, and Office of Basic Energy Sciences.
NR 43