FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Riek, R
Eisenberg, DS
AF Riek, Roland
Eisenberg, David S.
TI The activities of amyloids from a structural perspective
SO NATURE
LA English
DT Review
ID ATOMIC-RESOLUTION STRUCTURE; CREUTZFELDT-JAKOB-DISEASE; ALPHA-SYNUCLEIN
FIBRILS; REGISTER BETA-SHEETS; HUMAN PRION PROTEIN; X-RAY-DIFFRACTION;
ALZHEIMERS-DISEASE; MUTANT P53; IN-VITRO; HUMAN TRANSTHYRETIN
AB The aggregation of proteins into structures known as amyloids is observed in many neurodegenerative diseases, including Alzheimer's disease. Amyloids are composed of pairs of tightly interacting, many stranded and repetitive intermolecular beta-sheets, which form the cross-beta-sheet structure. This structure enables amyloids to grow by recruitment of the same protein and its repetition can transform a weak biological activity into a potent one through cooperativity and avidity. Amyloids therefore have the potential to self-replicate and can adapt to the environment, yielding cell-to-cell transmissibility, prion infectivity and toxicity.
C1 [Riek, Roland] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Phys Chem Lab, CH-8093 Zurich, Switzerland.
[Eisenberg, David S.] UCLA DOE Inst, Los Angeles, CA 90095 USA.
[Eisenberg, David S.] Howard Hughes Med Inst, Los Angeles, CA 90095 USA.
RP Riek, R (reprint author), Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Phys Chem Lab, CH-8093 Zurich, Switzerland.; Eisenberg, DS (reprint author), UCLA DOE Inst, Los Angeles, CA 90095 USA.; Eisenberg, DS (reprint author), Howard Hughes Med Inst, Los Angeles, CA 90095 USA.
EM roland.riek@phys.chem.ethz.ch; david@mbi.ucla.edu
FU Swiss National Science Foundation (SNSF); US National Institutes of
Health; Howard Hughes Medical Institute; SNSF Sinergia grant
FX We thank K. Comiotto and M. Sawaya for making figures and the Swiss
National Science Foundation (SNSF), the US National Institutes of Health
and the Howard Hughes Medical Institute for continuing support of our
research, including an SNSF Sinergia grant to R.R.
NR 137
TC 2
Z9 2
U1 44
U2 44
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD NOV 10
PY 2016
VL 539
IS 7628
BP 227
EP 235
DI 10.1038/nature20416
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EB4CZ
UT WOS:000387318500033
PM 27830791
ER
PT J
AU Ruffing, AM
Jensen, TJ
Strickland, LM
AF Ruffing, Anne M.
Jensen, Travis J.
Strickland, Lucas M.
TI Genetic tools for advancement of Synechococcus sp PCC 7002 as a
cyanobacterial chassis
SO MICROBIAL CELL FACTORIES
LA English
DT Article
DE Synechococcus; Synechococcus sp PCC 7002; Synechococcus 7002;
Cyanobacterial chassis; Cyanobacterial genetic engineering;
Cyanobacterial host; Cyanobacterial cell factories
ID GREEN FLUORESCENT PROTEIN; TIME QUANTITATIVE PCR; FATTY-ACID PRODUCTION;
SYNTHETIC BIOLOGY; PHOTOSYNTHETIC CONVERSION; ESCHERICHIA-COLI;
CARBON-DIOXIDE; EXPRESSION; TEMPERATURE; CO2
AB Background: Successful implementation of modified cyanobacteria as hosts for industrial applications requires the development of a cyanobacterial chassis. The cyanobacterium Synechococcus sp. PCC 7002 embodies key attributes for an industrial host, including a fast growth rate and high salt, light, and temperature tolerances. This study addresses key limitations in the advancement of Synechococcus sp. PCC 7002 as an industrial chassis.
Results: Tools for genome integration were developed and characterized, including several putative neutral sites for genome integration. The minimum homology arm length for genome integration in Synechococcus sp. PCC 7002 was determined to be approximately 250 bp. Three fluorescent protein reporters (hGFP, Ypet, and mOrange) were characterized for gene expression, microscopy, and flow cytometry applications in Synechococcus sp. PCC 7002. Of these three proteins, the yellow fluorescent protein (Ypet) had the best optical properties for minimal interference with the native photosynthetic pigments and for detection using standard microscopy and flow cytometry optics. Twenty-five native promoters were characterized as tools for recombinant gene expression in Synechococcus sp. PCC 7002 based on previous RNA-seq results. This characterization included comparisons of protein and mRNA levels as well as expression under both continuous and diurnal light conditions. Promoters A2520 and A2579 were found to have strong expression in Synechococcus sp. PCC 7002 while promoters A1930, A1961, A2531, and A2813 had moderate expression. Promoters A2520 and A2813 showed more than twofold increases in gene expression under light conditions compared to dark, suggesting these promoters may be useful tools for engineering diurnal regulation.
Conclusions: The genome integration, fluorescent protein, and promoter tools developed in this study will help to advance Synechococcus sp. PCC 7002 as a cyanobacterial chassis. The long minimum homology arm length for Synechococcus sp. PCC 7002 genome integration indicates native exonuclease activity or a low efficiency of homologous recombination. Low correlation between transcript and protein levels in Synechococcus sp. PCC 7002 suggests that transcriptomic data are poor selection criteria for promoter tool development. Lastly, the conventional strategy of using promoters from photosynthetic operons as strong promoter tools is debunked, as promoters from hypothetical proteins (A2520 and A2579) were found to have much higher expression levels.
C1 [Ruffing, Anne M.; Jensen, Travis J.; Strickland, Lucas M.] Sandia Natl Labs, Dept Bioenergy & Def Technol, POB 5800,MS 1413, Albuquerque, NM 87185 USA.
RP Ruffing, AM (reprint author), Sandia Natl Labs, Dept Bioenergy & Def Technol, POB 5800,MS 1413, Albuquerque, NM 87185 USA.
EM aruffin@sandia.gov
FU Laboratory Directed Research and Development funds at Sandia National
Laboratories; United States Department of Energy [DE-ACO4-94AL85000]
FX This work was supported by Laboratory Directed Research and Development
funds at Sandia National Laboratories. Sandia is a multi-program
laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract
DE-ACO4-94AL85000.
NR 51
TC 0
Z9 0
U1 6
U2 6
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1475-2859
J9 MICROB CELL FACT
JI Microb. Cell. Fact.
PD NOV 10
PY 2016
VL 15
AR 190
DI 10.1186/s12934-016-0584-6
PG 14
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA EB8KS
UT WOS:000387640500003
PM 27832791
ER
PT J
AU Hayami, S
Lin, SZ
Kamiya, Y
Batista, CD
AF Hayami, Satoru
Lin, Shi-Zeng
Kamiya, Yoshitomo
Batista, Cristian D.
TI Vortices, skyrmions, and chirality waves in frustrated Mott insulators
with a quenched periodic array of impurities
SO PHYSICAL REVIEW B
LA English
DT Article
ID NEUTRON-DIFFRACTION; MAGNETIC PHASE; BERRY PHASE; STATES; UNI4B; SPINS;
HOLES
AB Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impurity array with small quenched randomness. Alternative realizations of impurity superlattices are briefly discussed.
C1 [Hayami, Satoru] Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan.
[Lin, Shi-Zeng] Los Alamos Natl Lab, Theoret Div, T 4, Los Alamos, NM 87545 USA.
[Lin, Shi-Zeng] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA.
[Kamiya, Yoshitomo] RIKEN, Condensed Matter Theory Lab, Wako, Saitama 3510198, Japan.
[Batista, Cristian D.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA.
[Batista, Cristian D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[Batista, Cristian D.] Oak Ridge Natl Lab, Shull Wollan Ctr, Oak Ridge, TN 37831 USA.
RP Hayami, S (reprint author), Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan.
RI Lin, Shi-Zeng/B-2906-2008; Kamiya, Yoshitomo/B-6307-2012
OI Lin, Shi-Zeng/0000-0002-4368-5244; Kamiya, Yoshitomo/0000-0002-0758-0234
FU U.S. DOE through the LDRD program [DE-AC52-06NA25396]; RIKEN iTHES
project
FX Computer resources for numerical calculations were supported by the
Institutional Computing Program at LANL. This work was carried out under
the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396 through the
LDRD program. Y.K. acknowledges the financial supports from the RIKEN
iTHES project.
NR 64
TC 0
Z9 0
U1 14
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 10
PY 2016
VL 94
IS 17
AR 174420
DI 10.1103/PhysRevB.94.174420
PG 19
WC Physics, Condensed Matter
SC Physics
GA EB6YZ
UT WOS:000387532900002
ER
PT J
AU Denis-Petit, D
Roig, O
Meot, V
Morillon, B
Romain, P
Jandel, M
Kawano, T
Vieira, DJ
Bond, EM
Bredeweg, TA
Couture, AJ
Haight, RC
Keksis, AL
Rundberg, RS
Ullmann, JL
AF Denis-Petit, D.
Roig, O.
Meot, V.
Morillon, B.
Romain, P.
Jandel, M.
Kawano, T.
Vieira, D. J.
Bond, E. M.
Bredeweg, T. A.
Couture, A. J.
Haight, R. C.
Keksis, A. L.
Rundberg, R. S.
Ullmann, J. L.
TI Isomeric ratio measurements for the radiative neutron capture Lu-176(n,
gamma) at the LANL DANCE facility
SO PHYSICAL REVIEW C
LA English
DT Article
ID CROSS-SECTION RATIOS; RESONANCES; SIMULATION; NUCLEI; DETECTOR; N,GAMMA
AB The isomeric ratios for the neutron capture reaction Lu-176(n,gamma) to the J(pi) = 5/2(-), 761.7 keV, T-1/2 = 32.8 ns and the J(pi) = 15/2(+), 1356.9 keV, T-1/2 = 11.1 ns levels of Lu-177 have been measured for the first time. The experiment was carried out with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. Measured isomeric ratios are compared with TALYS calculations using different models for photon strength functions, level densities, and optical potentials. In order to reproduce the experimental. gamma-ray spectra, a low-energy resonance must be added in the photon strength function used in our Hauser-Feshbach calculations.
C1 [Denis-Petit, D.; Roig, O.; Meot, V.; Morillon, B.; Romain, P.] CEA DAM DIF, F-91297 Arpajon, France.
[Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Denis-Petit, D (reprint author), CEA DAM DIF, F-91297 Arpajon, France.
EM david.denis-petit@cea.fr
NR 50
TC 0
Z9 0
U1 5
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 10
PY 2016
VL 94
IS 5
AR 054612
DI 10.1103/PhysRevC.94.054612
PG 12
WC Physics, Nuclear
SC Physics
GA EB7BD
UT WOS:000387539100002
ER
PT J
AU Jaiswal, A
Egami, T
Kelton, KF
Schweizer, KS
Zhang, Y
AF Jaiswal, Abhishek
Egami, Takeshi
Kelton, K. F.
Schweizer, Kenneth S.
Zhang, Yang
TI Correlation between Fragility and the Arrhenius Crossover Phenomenon in
Metallic, Molecular, and Network Liquids
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GLASS-FORMING LIQUIDS; SUPERCOOLED LIQUIDS; TRANSITION TEMPERATURE;
THERMOPHYSICAL PROPERTIES; HETEROGENEOUS DYNAMICS; STRUCTURAL
RELAXATION; KINETIC FRAGILITY; ENERGY LANDSCAPE; BETA-RELAXATION;
POISSONS RATIO
AB We report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature theta(A) = T-A/T-g in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately theta(A) approximate to 2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower theta(A) approximate to 1.4 and usually in their supercooled states. The theta(A) values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E-infinity is universally found to be similar to 11k(B)T(g) and uncorrelated with the fragility or the reduced crossover temperature theta(A) for metallic and molecular liquids. These observations provide a way to estimate the low-temperature glassy characteristics (T-g and m) from the high-temperature liquid quantities (E-infinity and theta(A)).
C1 [Jaiswal, Abhishek; Zhang, Yang] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA.
[Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Kelton, K. F.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Kelton, K. F.] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA.
[Schweizer, Kenneth S.; Zhang, Yang] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
RP Zhang, Y (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA.; Zhang, Y (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
EM zhyang@illinois.edu
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division [DE-SC-0014804]
FX This work is supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division, under Award No. DE-SC-0014804.
NR 91
TC 0
Z9 0
U1 36
U2 36
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 10
PY 2016
VL 117
IS 20
AR 205701
DI 10.1103/PhysRevLett.117.205701
PG 6
WC Physics, Multidisciplinary
SC Physics
GA EB7CV
UT WOS:000387544200010
PM 27886481
ER
PT J
AU Naumov, II
Hemley, RJ
AF Naumov, Ivan I.
Hemley, Russell J.
TI Topological Surface States in Dense Solid Hydrogen
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID METALLIZATION; SPECTROSCOPY; POLARIZATION; BE(0001); PHASE; BANDS
AB Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (similar to 300 GPa) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen.
C1 [Naumov, Ivan I.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA.
[Hemley, Russell J.] George Washington Univ, Dept Civil & Environm Engn, Washington, DC 20052 USA.
[Hemley, Russell J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Naumov, II (reprint author), Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA.
FU EFree, an Energy Frontier Research Center - U.S. DOE, Office of Science,
Basic Energy Sciences [DE-SC0001057]; U.S. DOE/NNSA [DE-NA-0002006]; DOE
[DE-AC52-07NA27344]
FX This research was supported by EFree, an Energy Frontier Research Center
funded by the U.S. DOE, Office of Science, Basic Energy Sciences (Award
No. DE-SC0001057). The infrastructure and facilities used were supported
by the U.S. DOE/NNSA (Award No. DE-NA-0002006, CDAC). Work at LLNL was
performed under the auspices of the DOE (Contract No.
DE-AC52-07NA27344).
NR 44
TC 0
Z9 0
U1 18
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 10
PY 2016
VL 117
IS 20
AR 206403
DI 10.1103/PhysRevLett.117.206403
PG 5
WC Physics, Multidisciplinary
SC Physics
GA EB7CV
UT WOS:000387544200012
PM 27886502
ER
PT J
AU Ai, G
Wang, ZH
Dai, YL
Mao, WF
Zhao, H
Fu, YB
En, YF
Battaglia, V
Liu, G
AF Ai, Guo
Wang, Zhihui
Dai, Yiling
Mao, Wenfeng
Zhao, Hui
Fu, Yanbao
En, Yunfei
Battaglia, Vincent
Liu, Gao
TI Improving the over-all performance of Li-S batteries via electrolyte
optimization with consideration of loading condition
SO ELECTROCHIMICA ACTA
LA English
DT Article
DE Li-S battery; self-discharge; ionic liquid; over-all performance;
high-loading
ID LITHIUM-SULFUR BATTERIES; IONIC-LIQUID ELECTROLYTE; SELF-DISCHARGE;
CATHODE; CARBON; ETHER; CELL
AB Lithium sulfur (Li-S) batteries are very promising electrochemical storage system due to their high gravimetric energy density and low cost. Enormous efforts have been put on Li-S battery to achieve its commercialization. The function of electrolyte is a key issue in achieving the high performance of Li-S system, and several additives have been tried. But very few works have been working on the electrolyte optimization method with the consideration of over-all performance, including cycling stability, rate capability, especially self-discharge prevention ability, and the consideration of loading condition. In this work, we focus on the incorporation of room temperature ionic liquid (IL) as co-solvent, and the effect of IL in mitigating the polysulfide dissolution via systematical mechanism study of self-discharge phenomena. Moreover, the optimization of IL incorporation ratio is discussed for the sake of the better over-all electrochemical performance of Li-S cell by considering cycling stability, rate performance and self-discharge prevention ability, which is found to vary with loading condition. The improved understanding of the effect of IL on battery performance will help the development of electrolyte for Li-S batteries. Published by Elsevier Ltd.
C1 [Ai, Guo; Wang, Zhihui; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Battaglia, Vincent; Liu, Gao] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Energy Technol Area, Berkeley, CA 94720 USA.
[Ai, Guo; En, Yunfei] Minist Ind & Informat Technol, Sci & Technol Reliabil Phys & Applicat Elect Comp, Elect Res Inst 5, Guangzhou 510610, Guangdong, Peoples R China.
[Mao, Wenfeng] Guangzhou Automobile Grp Co Ltd, Guangzhou 511434, Guangdong, Peoples R China.
RP Liu, G (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Energy Technol Area, Berkeley, CA 94720 USA.
EM gliu@lbl.gov
FU Assistant Secretary for Energy Efficiency, Office of Vehicle
Technologies of the U.S. Department of Energy (U.S. DOE) under the
Advanced Battery Materials Research (BMR) program; National Center for
Electron Microscopy of the Molecular Foundry; Advanced Light Source at
the Lawrence Berkeley National Laboratory; U.S. Department of Energy
[DE-AC02-05 CH11231]; China Scholarship Council; National Natural
Science Foundation of China [51602058]; Distinguished Young Scientist
Program of Guangdong Province [2015A030306002]; Science and Technology
Research Project of Guangdong [2015B090912002]
FX This work is funded by the Assistant Secretary for Energy Efficiency,
Office of Vehicle Technologies of the U.S. Department of Energy (U.S.
DOE) under the Advanced Battery Materials Research (BMR) program, along
with the National Center for Electron Microscopy of the Molecular
Foundry and the Advanced Light Source at the Lawrence Berkeley National
Laboratory, which are supported by the U.S. Department of Energy under
Contract # DE-AC02-05 CH11231. Guo Ai and Wenfeng Mao are supported by
the China Scholarship Council. Guo Ai is supported by the National
Natural Science Foundation of China (No. 51602058), Distinguished Young
Scientist Program of Guangdong Province (2015A030306002) and Science and
Technology Research Project of Guangdong (2015B090912002).
NR 43
TC 0
Z9 0
U1 71
U2 71
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
EI 1873-3859
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD NOV 10
PY 2016
VL 218
BP 1
EP 7
DI 10.1016/j.electacta.2016.09.090
PG 7
WC Electrochemistry
SC Electrochemistry
GA DZ4PF
UT WOS:000385840100001
ER
PT J
AU Gandomi, YA
Aaron, DS
Mench, MM
AF Gandomi, Yasser Ashraf
Aaron, D. S.
Mench, M. M.
TI Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium
Redox Flow Batteries
SO ELECTROCHIMICA ACTA
LA English
DT Article
DE redox flow batteries; in-situ crossover measurement; UV/Vis
spectroscopy; osmosis; water transport
ID CATION-EXCHANGE MEMBRANES; HIGH-ENERGY DENSITY; WATER MANAGEMENT; NAFION
MEMBRANES; HALF-CELL; CROSSOVER; MODEL; STATE; ELECTROLYTE; CHARGE
AB One of the major sources of capacity loss in all-vanadium redox flow batteries (VRFBs) is the undesired transport of active vanadium species across the ion-exchange membrane, generically termed crossover. In this work, a novel system has been designed and built to investigate the concentration-and electrostatic potential gradient-driven crossover for all vanadium species through the membrane in real-time. For this study, a perfluorosulphonic acid membrane separator (Nafion (R) 117) was used. The test system utilizes ultraviolet/visible (UV/Vis) spectroscopy to differentiate vanadium ion species and separates contributions to crossover stemming from concentration and electrostatic potential gradients. It is shown that the rate of species transport through the ion-exchange membrane is state of charge dependent and, as a result, interaction coefficients have been deduced which can be used to better estimate expected crossover over a range of operating conditions. The electric field was shown to increase the negative-to-positive transport of V(II)/V(III) and suppress the positive-to-negative transport of V(IV)/V(V) during discharge, with an inverse trend during charging conditions. Electric-field-induced transport coefficients were deduced directly from experimental data. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Gandomi, Yasser Ashraf; Aaron, D. S.; Mench, M. M.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Electrochem Energy Storage & Convers Lab, Knoxville, TN 37996 USA.
[Mench, M. M.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
RP Mench, MM (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Electrochem Energy Storage & Convers Lab, Knoxville, TN 37996 USA.; Mench, MM (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
EM y.a.gandomi@gmail.com; mmench@utk.edu
FU University of Tennessee
FX Mr. Yasser Ashraf Gandomi would like to acknowledge University of
Tennessee for providing Chancellors Graduate Fellowship support.
NR 70
TC 2
Z9 2
U1 39
U2 39
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
EI 1873-3859
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD NOV 10
PY 2016
VL 218
BP 174
EP 190
DI 10.1016/j.electacta.2016.09.087
PG 17
WC Electrochemistry
SC Electrochemistry
GA DZ4PF
UT WOS:000385840100023
ER
PT J
AU Fang, GZ
Liang, CW
Zhou, J
Cai, GM
Liang, SQ
Liu, J
AF Fang, Guozhao
Liang, Caiwu
Zhou, Jiang
Cai, Gemei
Liang, Shuquan
Liu, Jun
TI Effect of crystalline structure on the electrochemical properties of
K0.25V2O5 nanobelt for fast Li insertion
SO ELECTROCHIMICA ACTA
LA English
DT Article
DE K0.25V2O5; nanobelt; hierarchical architecture; long-cycle-life;
electrochemical property
ID LITHIUM-ION BATTERIES; LONG CYCLE LIFE; CATHODE MATERIAL; FACILE
SYNTHESIS; ENERGY-STORAGE; INTERCALATION COMPOUND; VANADIUM PENTOXIDE;
GENERAL-SYNTHESIS; PERFORMANCE; NANOWIRES
AB Lithium vanadium oxides and vanadates have wide attention as cathode materials for Li ion battery applications, but there has been limited study on other cations substituted vanadium compounds, which could have favorable electrochemical properties. Here we report the synthesis and electrochemical properties of aggregated K0.25V2O5 nanobelts and the optimization of the crystalline structure for fast Li ion insertion. We propose a partial melting and self-alignment mechanism to produce the aggregated nanobelts. This material can deliver a high discharge capacity of 232 mA h(-1) at 100 mA g(-1) and high rate capability. It also exhibits superior long-term cycling performance with no capacity fading over 800 cycles at high current density of 1, 1.5, and 2 A g(-1). Remarkably, although some work has been devoted to potassium vanadates, there is little work introducing this class of materials with super long lifespan. The results demonstrate that the as-prepared K0.25V2O5 would be a potential candidate for LIBs. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Fang, Guozhao; Liang, Caiwu; Zhou, Jiang; Cai, Gemei; Liang, Shuquan] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China.
[Liu, Jun] Pacific Northwest Natl Lab, Richland, WA 99354 USA.
RP Zhou, J; Liang, SQ (reprint author), Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China.; Liu, J (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA.
EM zhou_jiang@csu.edu.cn; lsq@csu.edu.cn; Jun.Liu@pnnl.gov
OI Zhou, Jiang/0000-0003-0858-4533
FU National High Technology Research and Development Program of China (863
Program) [2013AA110106]; National Natural Science Foundation of China
[51374255, 51572299]; Fundamental Research Funds for Central
Universities of Central South University [2015zzts174, 160210001]; U.S.
Department of Energy (DOE), Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [KC020105-FWP12152]
FX This work was supported by National High Technology Research and
Development Program of China (863 Program) (Grant no. 2013AA110106),
National Natural Science Foundation of China (Grant no. 51374255 and
51572299) and the Fundamental Research Funds for the Central
Universities of Central South University (2015zzts174 and 160210001).
Dr. Jun Liu (PNNL) would like to acknowledge the support from the U.S.
Department of Energy (DOE), Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering, under Award KC020105-FWP12152> for
providing guidance on the synthesis, characterization and insights into
the crystalline structures.
NR 68
TC 0
Z9 0
U1 27
U2 27
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
EI 1873-3859
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD NOV 10
PY 2016
VL 218
BP 199
EP 207
DI 10.1016/j.electacta.2016.09.103
PG 9
WC Electrochemistry
SC Electrochemistry
GA DZ4PF
UT WOS:000385840100025
ER
PT J
AU Khachatryan, V
Sirunyan, AM
Tumasyan, A
Adam, W
Asilar, E
Bergauer, T
Brandstetter, J
Brondolin, E
Dragicevic, M
Ero, J
Flechl, M
Friedl, M
Fruhwirth, R
Ghete, VM
Hartl, C
Hormann, N
Hrubec, J
Jeitler, M
Knunz, V
Konig, A
Krammer, M
Kraetschmer, I
Liko, D
Mikulec, I
Rabady, D
Rahbaran, B
Rohringer, H
Schieck, J
Schofbeck, R
Strauss, J
Treberer-Treberspurg, W
Waltenberger, W
Wulz, CE
Mossolov, V
Shumeiko, N
Gonzalez, JS
Alderweireldt, S
Cornelis, T
De Wolf, EA
Janssen, X
Knutsson, A
Lauwers, J
Luyckx, S
Ochesanu, S
Rougny, R
De Klundert, MV
Van Haevermaet, H
Van Mechelen, P
Van Remortel, N
Van Spilbeeck, A
Abu Zeid, S
Blekman, F
D'Hondt, J
Daci, N
De Bruyn, I
Deroover, K
Heracleous, N
Keaveney, J
Lowette, S
Moreels, L
Olbrechts, A
Python, Q
Strom, D
Tavernier, S
Van Doninck, W
Van Mulders, P
Van Onsem, GP
Van Parijs, I
Barria, P
Caillol, C
Clerbaux, B
De Lentdecker, G
Delannoy, H
Dobur, D
Fasanella, G
Favart, L
Gay, APR
Grebenyuk, A
Leeonard, A
Mohammadi, A
Pernie, L
Randle-Conde, A
Reis, T
Seva, T
Thomas, L
Velde, CV
Vanlaer, P
Wang, J
Zenoni, F
Beernaert, K
Benucci, L
Cimmino, A
Crucy, S
Fagot, A
Garcia, G
Gul, M
Mccartin, J
Rios, AAO
Poyraz, D
Ryckbosch, D
Diblen, SS
Sigamani, M
Strobbe, N
Thyssen, F
Tytgat, M
Van Driessche, W
Yazgan, E
Zaganidis, N
Basegmez, S
Beluffi, C
Bondu, O
Bruno, G
Castello, R
Caudron, A
Ceard, L
Da Silveira, GG
Delaere, C
du Pree, T
Favart, D
Forthomme, L
Giammanco, A
Hollar, J
Jafari, A
Jez, P
Komm, M
Lemaitre, V
Mertens, A
Nuttens, C
Perrini, L
Pin, A
Piotrzkowski, K
Popov, A
Quertenmont, L
Selvaggi, M
Marono, MV
Beliy, N
Hammad, GH
Alda, WL
Alves, GA
Brito, L
Martins, MCM
Martins, TD
Hensel, C
Herrera, CM
Moraes, A
Pol, ME
Teles, PR
Chagas, EBBD
Carvalho, W
Chinellato, J
Custodio, A
Da Costa, EM
Damiao, DD
Martins, CD
De Souza, SF
Guativa, LMH
Malbouisson, H
Figueiredo, DM
Mundim, L
Nogima, H
Da Silva, WLP
Santaolalla, J
Santoro, A
Sznajder, A
Manganote, EJT
Pereira, AV
Ahuja, S
Bernardes, CA
Dogra, S
Tomei, TRFP
Gregores, EM
Mercadante, PG
Novaes, SF
Padula, SS
Abad, DR
Vargas, JCR
Aleksandrov, A
Genchev, V
Hadjiiska, R
Iaydjiev, P
Marinov, A
Piperov, S
Rodozov, M
Stoykova, S
Sultanov, G
Vutova, M
Dimitrov, A
Glushkov, I
Litov, L
Pavlov, B
Petkov, P
Ahmad, M
Bian, JG
Chen, GM
Chen, HS
Chen, M
Cheng, T
Du, R
Jiang, CH
Plestina, R
Romeo, F
Shaheen, SM
Tao, J
Wang, C
Wang, Z
Asawatangtrakuldee, C
Ban, Y
Chen, G
Li, Q
Liu, S
Mao, Y
Qian, SJ
Wang, D
Wang, M
Wang, Q
Xu, Z
Yang, D
Zhang, F
Zhang, L
Zhang, Z
Zou, W
Avila, C
Cabrera, A
Sierra, LFC
Florez, C
Gomez, JP
Moreno, BG
Sanabria, JC
Godinovic, N
Lelas, D
Polic, D
Puljak, I
Antunovic, Z
Kovac, M
Brigljevic, V
Kadija, K
Luetic, J
Sudic, L
Attikis, A
Mavromanolakis, G
Mousa, J
Nicolaou, C
Ptochos, F
Razis, PA
Rykaczewski, H
Bodlak, M
Finger, M
Finger, M
Ali, A
Aly, R
Aly, S
Elgammal, S
Kamel, AE
Lotfy, A
Mahmoud, MA
Masod, R
Radi, A
Calpas, B
Kadastik, M
Murumaa, M
Raidal, M
Tiko, A
Veelken, C
Eerola, P
Voutilainen, M
Harkonen, J
Karimaki, V
Kinnunen, R
Lampen, T
Lassila-Perini, K
Lehti, S
Linden, T
Luukka, P
Maenpaa, T
Peltola, T
Tuominen, E
Tuominiemi, J
Tuovinen, E
Wendland, L
Talvitie, J
Tuuva, T
Besancon, M
Couderc, F
Dejardin, M
Denegri, D
Fabbro, B
Faure, JL
Favaro, C
Ferri, F
Ganjour, S
Givernaud, A
Gras, P
de Monchenault, GH
Jarry, P
Locci, E
Malcles, J
Rander, J
Rosowsky, A
Titov, M
Zghiche, A
Baffioni, S
Beaudette, F
Busson, P
Cadamuro, L
Chapon, E
Charlot, C
Dahms, T
Davignon, O
Filipovic, N
Florent, A
de Cassagnac, RG
Mastrolorenzo, L
Mine, P
Naranjo, IN
Nguyen, M
Ochando, C
Ortona, G
Paganini, P
Regnard, S
Salerno, R
Sauvan, JB
Sirois, Y
Strebler, T
Yilmaz, Y
Zabi, A
Agram, JL
Andrea, J
Aubin, A
Bloch, D
Brom, JM
Buttignol, M
Chabert, EC
Chanon, N
Collard, C
Conte, E
Fontaine, JC
Gele, D
Goerlach, U
Goetzmann, C
Le Bihan, AC
Merlin, JA
Skovpen, K
Van Hove, P
Gadrat, S
Beauceron, S
Beaupere, N
Bernet, C
Boudoul, G
Bouvier, E
Brochet, S
Montoya, CAC
Chasserat, J
Chierici, R
Contardo, D
Courbon, B
Depasse, P
El Mamouni, H
Fan, J
Fay, J
Gascon, S
Gouzevitch, M
Ille, B
Laktineh, IB
Lethuillier, M
Mirabito, L
Pequegnot, AL
Perries, S
Alvarez, JDR
Sabes, D
Sgandurra, L
Sordini, V
Donckt, MV
Verdier, P
Viret, S
Xiao, H
Lomidze, D
Autermann, C
Beranek, S
Bontenackels, M
Edelhoff, M
Feld, L
Heister, A
Kiesel, MK
Klein, K
Lipinski, M
Ostapchuk, A
Preuten, M
Raupach, F
Sammet, J
Schael, S
Schulte, JF
Verlage, T
Weber, H
Wittmer, B
Zhukov, V
Ata, M
Brodski, M
Dietz-Laursonn, E
Duchardt, D
Endres, M
Erdmann, M
Erdweg, S
Esch, T
Fischer, R
Guth, A
Hebbeker, T
Heidemann, C
Hoepfner, K
Klingebiel, D
Knutzen, S
Kreuzer, P
Merschmeyer, M
Meyer, A
Millet, P
Olschewski, M
Padeken, K
Papacz, P
Pook, T
Radziej, M
Reithler, H
Rieger, M
Schmitz, SA
Sonnenschein, L
Teyssier, D
Thuer, S
Cherepanov, V
Erdogan, Y
Flugge, G
Geenen, H
Geisler, M
Ahmad, WH
Hoehle, F
Kargoll, B
Kress, T
Kuessel, Y
Kunsken, A
Lingemann, J
Nowack, A
Nugent, IM
Pistone, C
Pooth, O
Stahl, A
Martin, MA
Asin, I
Bartosik, N
Behnke, O
Behrens, U
Bell, AJ
Borras, K
Burgmeier, A
Cakir, A
Calligaris, L
Campbell, A
Choudhury, S
Costanza, F
Pardos, CD
Dolinska, G
Dooling, S
Dorland, T
Eckerlin, G
Eckstein, D
Eichhorn, T
Flucke, G
Garcia, JG
Geiser, A
Gizhko, A
Gunnellini, P
Hauk, J
Hempel, M
Jung, H
Kalogeropoulos, A
Karacheban, O
Kasemann, M
Katsas, P
Kieseler, J
Kleinwort, C
Korol, I
Lange, W
Leonard, J
Lipka, K
Lobanov, A
Mankel, R
Marfin, I
Melzer-Pellmann, IA
Meyer, AB
Mittag, G
Mnich, J
Mussgiller, A
Naumann-Emme, S
Nayak, A
Ntomari, E
Perrey, H
Pitzl, D
Placakyte, R
Raspereza, A
Cipriano, PMR
Roland, B
Sahin, MO
Salfeld-Nebgen, J
Saxena, P
Schoerner-Sadenius, T
Schroder, M
Seitz, C
Spannagel, S
Wissing, C
Blobel, V
Vignali, MC
Draeger, AR
Ere, J
Garutti, E
Goebel, K
Gonzalez, D
Gorner, M
Haller, J
Hoffmann, M
Hoing, RS
Junkes, A
Kirschenmann, H
Klanner, R
Kogler, R
Lapsien, T
Lenz, T
Marchesini, I
Marconi, D
Meyer, M
Nowatschin, D
Ott, J
Peiffer, T
Perieanu, A
Pietsch, N
Poehlsen, J
Rathjens, D
Sander, C
Schettler, H
Schleper, P
Schlieckau, E
Schmidt, A
Seidel, M
Sola, V
Stadie, H
Steinbruck, G
Tholen, H
Troendle, D
Usai, E
Vanelderen, L
Vanhoefer, A
Akbiyik, M
Barth, C
Baus, C
Berger, J
Boser, C
Butz, E
Chwalek, T
Colombo, F
De Boer, W
Descroix, A
Dierlamm, A
Feindt, M
Frensch, F
Giffels, M
Gilbert, A
Hartmann, F
Husemann, U
Katkov, I
Kornmayer, A
Pardo, PL
Mozer, MU
Muller, T
Muller, T
Plagge, M
Quast, G
Rabbertz, K
Rocker, S
Roscher, F
Simonis, HJ
Stober, FM
Ulrich, R
Wagner-Kuhr, J
Wayand, S
Weiler, T
Wohrmann, C
Wolf, R
Anagnostou, G
Daskalakis, G
Geralis, T
Giakoumopoulou, VA
Kyriakis, A
Loukas, D
Markou, A
Psallidas, A
Topsis-Giotis, I
Agapitos, A
Kesisoglou, S
Panagiotou, A
Saoulidou, N
Tziaferi, E
Evangelou, I
Flouris, G
Foudas, C
Kokkas, P
Loukas, N
Manthos, N
Papadopoulos, I
Paradas, E
Strologas, J
Bencze, G
Hajdu, C
Hazi, A
Hidas, P
Horvath, D
Sikler, F
Veszpremi, V
Vesztergombi, G
Zsigmond, AJ
Beni, N
Czellar, S
Karancsi, J
Molnar, J
Palinkas, J
Szillasi, Z
Bartok, M
Makovec, A
Raics, P
Trocsanyi, ZL
Mal, P
Mandal, K
Sahoo, N
Swain, SK
Bansal, S
Beri, SB
Bhatnagar, V
Chawla, R
Gupta, R
Bhawandeep, U
Kalsi, AK
Kaur, A
Kaur, M
Kumar, R
Mehta, A
Mittal, M
Nishu, N
Singh, JB
Kumar, A
Kumar, A
Bhardwaj, A
Choudhary, BC
Kumar, A
Malhotra, S
Naimuddin, M
Ranjan, K
Sharma, R
Sharma, V
Banerjee, S
Bhattacharya, S
Chatterjee, K
Dey, S
Dutta, S
Gomber, B
Jain, S
Jain, S
Khurana, R
Majumdar, N
Modak, A
Mondal, K
Mukherjee, S
Mukhopadhyay, S
Roy, A
Roy, D
Chowdhury, SR
Sarkar, S
Sharan, M
Abdulsalam, A
Dutta, D
Jha, V
Kumar, V
Mohanty, AK
Pant, LM
Shukla, P
Topkar, A
Aziz, T
Banerjee, S
Bhowmik, S
Chatterjee, RM
Dewanjee, RK
Dugad, S
Ganguly, S
Ghosh, S
Guchait, M
Gurtu, A
Kole, G
Kumar, S
Maity, M
Majumder, G
Mazumdar, K
Mohanty, GB
Parida, B
Sudhakar, K
Sur, N
Sutar, B
Wickramage, N
Sharma, S
Bakhshiansohi, H
Behnamian, H
Etesami, SM
Fahim, A
Goldouzian, R
Khakzad, M
Najafabadi, MM
Naseri, M
Mehdiabadi, SP
Hosseinabadi, FR
Safarzadeh, B
Zeinali, M
Felcini, M
Grunewald, M
Abbrescia, M
Calabria, C
Caputo, C
Chhibra, SS
Colaleo, A
Creanza, D
Cristella, L
De Filippis, N
De Palma, M
Fiore, L
Iaselli, G
Maggi, G
Maggi, M
Miniello, G
My, S
Nuzzo, S
Pompili, A
Pugliese, G
Radogna, R
Ranieri, A
Selvaggi, G
Sharma, A
Silvestris, L
Venditti, R
Verwilligen, P
Abbiendi, G
Battilana, C
Benvenuti, C
Bonacorsi, D
Braibant-Giacomelli, S
Brigliadori, L
Campanini, R
Capiluppi, P
Castro, A
Cavallo, FR
Codispoti, G
Cuffiani, M
Dallavalle, GM
Fabbri, F
Fanfani, A
Fasanella, D
Giacomelli, P
Grandi, C
Guiducci, L
Marcellini, S
Masetti, G
Montanari, A
Navarria, FL
Perrotta, A
Rossi, AM
Rovelli, T
Siroli, GP
Tosi, N
Travaglini, R
Cappello, G
Chiorboli, M
Costa, S
Giordano, F
Potenza, R
Tricomi, A
Tuve, C
Barbagli, G
Ciulli, V
Civinini, C
D'Alessandro, R
Focardi, E
Gallo, E
Gonzi, S
Gori, V
Lenzi, P
Meschini, M
Paoletti, S
Sguazzoni, G
Tropiano, A
Viliani, L
Benussi, L
Bianco, S
Fabbri, F
Piccolo, D
Calvelli, V
Ferro, F
Lo Vetere, M
Robutti, E
Tosi, S
Dinardo, ME
Fiorendi, S
Gennai, S
Gerosa, R
Ghezzi, A
Govoni, P
Lucchini, MT
Malvezzi, S
Manzoni, RA
Marzocchi, B
Menasce, D
Moroni, L
Paganoni, M
Pedrini, D
Ragazzi, S
Redaelli, N
de Fatis, TT
Buontempo, S
Cavallo, N
Di Guida, S
Esposito, M
Fabozzi, F
Iorio, AOM
Lanza, G
Lista, L
Meola, S
Merola, M
Paolucci, P
Sciacca, C
Azzi, P
Bacchetta, N
Bisello, D
Branca, A
Carlin, R
De Oliveira, ACA
Checchia, P
Dall'Osso, M
Dorigo, T
Gasparini, F
Gasparini, U
Gozzelino, A
Lacaprara, S
Margoni, M
Meneguzzo, AT
Montecassiano, F
Passaseo, M
Pazzini, J
Pozzobon, N
Ronchese, P
Simonetto, F
Torassa, E
Tosi, M
Zanetti, M
Zotto, P
Zucchetta, A
Zumerle, G
Gabusi, M
Magnani, A
Ratti, SP
Re, V
Riccardi, C
Salvini, P
Vai, I
Vitulo, P
Solestizi, LA
Biasini, M
Bilei, GM
Ciangottini, D
Fano, L
Lariccia, P
Mantovani, G
Menichelli, M
Saha, A
Santocchia, A
Spiezia, A
Androsov, K
Azzurri, P
Bagliesi, G
Bernardini, J
Boccali, T
Broccolo, G
Castaldi, R
Ciocci, MA
Dell'Orso, R
Donato, S
Fedi, G
Fiori, F
Foa, L
Giassi, A
Grippo, MT
Ligabue, F
Lomtadze, T
Martini, L
Messineo, A
Moon, CS
Palla, F
Rizzi, A
Savoy-Navarro, A
Serban, T
Spagnolo, P
Squillacioti, P
Tenchini, R
Tonelli, G
Venturi, A
Verdini, PG
Barone, L
Cavallari, F
D'imperio, G
Del Re, D
Diemoz, M
Gelli, S
Jorda, C
Longo, E
Margaroli, F
Meridiani, P
Micheli, F
Organtini, G
Paramatti, R
Preiato, F
Rahatlou, S
Rovelli, C
Santanastasio, F
Soffi, L
Traczyk, P
Amapane, N
Arcidiacono, R
Argiro, S
Arneodo, M
Bellan, R
Biino, C
Cartiglia, N
Casasso, S
Costa, M
Covarelli, R
De Remigis, P
Degano, A
Demaria, N
Finco, L
Kiani, B
Mariotti, C
Maselli, S
Migliore, E
Monaco, V
Musich, M
Obertino, MM
Pacher, L
Pastrone, N
Pelliccioni, M
Angioni, GLP
Romero, A
Ruspa, M
Sacchi, R
Solano, A
Staiano, A
Belforte, S
Candelise, V
Casarsa, M
Cossutti, F
Della Ricca, G
Gobbo, B
La Licata, C
Marone, M
Schizzi, A
Umer, T
Zanetti, A
Chang, S
Kropivnitskaya, A
Nam, SK
Kim, DH
Kim, GN
Kim, MS
Kong, DJ
Lee, S
Oh, YD
Park, H
Sakharov, A
Son, DC
Kim, H
Kim, TJ
Ryu, MS
Song, S
Choi, S
Go, Y
Gyun, D
Hong, B
Jo, M
Kim, H
Kim, Y
Lee, B
Lee, K
Lee, KS
Lee, S
Park, SK
Roh, Y
Yoo, HD
Choi, M
Kim, JH
Lee, JSH
Park, IC
Ryu, G
Choi, Y
Choi, YK
Goh, J
Kim, D
Kwon, E
Lee, J
Yu, I
Juodagalvis, A
Vaitkus, J
Ibrahim, ZA
Komaragiri, JR
Ali, MABM
Idris, FM
Abdullah, WATW
Linares, EC
Castilla-Valdez, H
De la Cruz-Burelo, E
Heredia-de La Cruz, I
Hernandez-Almada, A
Lopez-Fernandez, R
Sanchez, GR
Sanchez-Hernandez, A
Moreno, SC
Valencia, FV
Carpinteyro, S
Pedraza, I
Ibarguen, HAS
Pineda, AM
Krofcheck, D
Butler, PH
Reucroft, S
Ahmad, A
Ahmad, M
Hassan, Q
Hoorani, HR
Khan, WA
Khurshid, T
Shoaib, M
Bialkowska, H
Bluj, M
Boimska, B
Frueboes, T
Gorski, M
Kazana, M
Nawrocki, K
Romanowska-Rybinska, K
Szleper, M
Zalewski, P
Brona, G
Bunkowski, K
Doroba, K
Kalinowski, A
Konecki, M
Krolikowski, J
Misiura, M
Olszewski, M
Walczak, M
Bargassa, P
Silva, CBDE
Di Francesco, A
Faccioli, P
Parracho, PGF
Gallinaro, M
Iglesias, LL
Nguyen, F
Antunes, JR
Seixas, J
Toldaiev, O
Vadruccio, D
Varela, J
Vischia, P
Afanasiev, S
Bunin, P
Gavrilenko, M
Golutvin, I
Gorbunov, I
Kamenev, A
Karjavin, V
Konoplyanikov, V
Lanev, A
Malakhov, A
Matveev, V
Moisenz, P
Palichik, V
Perelygin, V
Shmatov, S
Shulha, S
Skatchkov, N
Smirnov, V
Toriashvili, T
Zarubin, A
Golovtsov, V
Ivanov, Y
Kim, V
Kuznetsova, E
Levchenko, P
Murzin, V
Oreshkin, V
Smirnov, I
Sulimov, V
Uvarov, L
Vavilov, S
Vorobyev, A
Andreev, Y
Dermenev, A
Gninenko, S
Golubev, N
Karneyeu, A
Kirsanov, M
Krasnikov, N
Pashenkov, A
Tlisov, D
Toropin, A
Epshteyn, V
Gavrilov, V
Lychkovskaya, N
Popov, V
Pozdnyakov, I
Safronov, G
Spiridonov, A
Vlasov, E
Zhokin, A
Andreev, V
Azarkin, M
Dremin, I
Kirakosyan, M
Leonidov, A
Mesyats, G
Rusakov, SV
Vinogradov, A
Baskakov, A
Belyaev, A
Boos, E
Dubinin, M
Dudko, L
Ershov, A
Gribushin, A
Klyukhin, V
Kodolova, O
Lokhtin, I
Myagkov, I
Obraztsov, S
Petrushanko, S
Savrin, V
Snigirev, A
Azhgirey, I
Bayshev, I
Bitioukov, S
Kachanov, V
Kalinin, A
Konstantinov, D
Krychkine, V
Petrov, V
Ryutin, R
Sobol, A
Tourtchanovitch, L
Troshin, S
Tyurin, N
Uzunian, A
Volkov, A
Adzic, P
Ekmedzic, M
Milosevic, J
Rekovic, V
Maestre, JA
Calvo, E
Cerrada, M
Llatas, MC
Colino, N
De la Cruz, B
Peris, AD
Vazquez, DD
Del Valle, AE
Bedoya, CF
Ramos, JPF
Flix, J
Fouz, MC
Garcia-Abia, P
Lopez, OG
Lopez, SG
Hernandez, JM
Josa, MI
De Martino, EN
Yzquierdo, APC
Pelayo, JP
Olmeda, A
Redondo, I
Romero, L
Soares, MS
Albajar, C
de Troconiz, JF
Missiroli, M
Moran, D
Brun, H
Cuevas, J
Menendez, JF
Folgueras, S
Caballero, IG
Cortezon, EP
Garcia, JM
Cifuentes, JAB
Cabrillo, IJ
Calderon, A
De Saa, JRC
Campderros, JD
Fernandez, M
Gomez, G
Graziano, A
Virto, AL
Marco, J
Marco, R
Rivero, CM
Matorras, F
Sanchez, FJM
Gomez, JP
Rodrigo, T
Rodriguez-Marrero, AY
Ruiz-Jimeno, A
Scodellaro, L
Vila, I
Cortabitarte, RV
Abbaneo, D
Auffray, E
Auzinger, G
Bachtis, M
Baillon, P
Ball, AH
Barney, D
Benaglia, A
Bendavid, J
Benhabib, L
Benitez, JF
Berruti, GM
Bloch, P
Bocci, A
Bonato, A
Botta, C
Breuker, H
Camporesi, T
Cerminara, G
Colafranceschi, S
D'Alfonso, M
d'Enterria, D
Dabrowski, A
Daponte, V
David, A
De Gruttola, M
De Guio, F
De Roeck, A
De Visscher, S
Di Marco, E
Dobson, M
Dordevic, M
Dupont-Sagorin, N
Elliott-Peisert, A
Franzoni, G
Funk, W
Gigi, D
Gill, K
Giordano, D
Girone, M
Glege, F
Guida, R
Gundacker, S
Guthoff, M
Hammer, J
Hansen, M
Harris, P
Hegeman, J
Innocente, V
Janot, P
Kortelainen, MJ
Kousouris, K
Krajczar, K
Lecoq, P
Lourenco, C
Magini, N
Malgeri, L
Mannelli, M
Marrouche, J
Martelli, A
Masetti, L
Meijers, F
Mersi, S
Meschi, E
Moortgat, F
Morovic, S
Mulders, M
Nemallapudi, MV
Neugebauer, H
Orfanelli, S
Orsini, L
Pape, L
Perez, E
Petrilli, A
Petrucciani, G
Pfeiffer, A
Piparo, D
Racz, A
Rolandi, G
Rovere, M
Ruan, M
Sakulin, H
Schafer, C
Schwick, C
Sharma, A
Silva, P
Simon, M
Sphicas, P
Spiga, D
Steggemann, J
Stieger, B
Stoye, M
Takahashi, Y
Treille, D
Tsirou, A
Veres, GI
Wardle, N
Wohri, HK
Zagozdzinska, A
Zeuner, WD
Bertl, W
Deiters, K
Erdmann, W
Horisberger, R
Ingram, Q
Kaestli, HC
Kotlinski, D
Langenegger, U
Rohe, T
Bachmair, F
Bani, L
Bianchini, L
Buchmann, MA
Casal, B
Dissertori, G
Dittmar, M
Donega, M
Dunser, M
Eller, P
Grab, C
Heidegger, C
Hits, D
Hoss, J
Kasieczka, G
Lustermann, W
Mangano, B
Marini, AC
Marionneau, M
del Arbol, PMR
Masciovecchio, M
Meister, D
Mohr, N
Musella, P
Nessi-Tedaldi, F
Pandolfi, F
Masciovecchio, M
Meister, D
Mohr, N
Musella, P
Nessi-Tedaldi, F
Fi, FP
Pata, J
Pauss, F
Perrozzi, L
Peruzzi, M
Quittnat, M
Rossini, M
Starodumov, A
Takahashi, M
Tavolaro, VR
Theofilatos, K
Wallny, R
Weber, HA
Aarrestad, TK
Amsler, C
Canelli, MF
Chiochia, V
De Cosa, A
Galloni, C
Hinzmann, A
Hreus, T
Kilminster, B
Lange, C
Ngadiuba, J
Pinna, D
Robmann, P
Ronga, FJ
Salerno, D
Taroni, S
Yang, Y
Cardaci, M
Chen, KH
Doan, TH
Ferro, C
Konyushikhin, M
Kuo, CM
Lin, W
Lu, YJ
Volpe, R
Yu, SS
Chang, P
Chang, YH
Chang, YW
Chao, Y
Chen, KF
Chen, PH
Dietz, C
Grundler, U
Hou, WS
Hsiung, Y
Liu, YF
Lu, RS
Moya, MM
Petrakou, E
Tsai, JF
Tzeng, YM
Wilken, R
Asavapibhop, B
Singh, G
Srimanobhas, N
Suwonjandee, N
Adiguzel, A
Cerci, S
Dozen, C
Girgis, S
Gokbulut, G
Guler, Y
Gurpinar, E
Hos, I
Kangal, EE
Topaksu, AK
Onengut, G
Ozdemir, K
Ozturk, S
Tali, B
Topakli, H
Vergili, M
Zorbilmez, C
Akin, IV
Bilin, B
Bilmis, S
Isildak, B
Karapinar, G
Surat, UE
Yalvac, M
Zeyrek, M
Albayrak, EA
Gumez, E
Kaya, M
Kaya, O
Yetkin, T
Cankocak, K
Gunaydin, YO
Vardarli, FI
Grynyov, B
Levchuk, L
Sorokin, P
Aggleton, R
Ball, F
Beck, L
Brooke, JJ
Clement, E
Cussans, D
Flacher, H
Goldstein, J
Grimes, M
Heath, GP
Heath, HF
Jacob, J
Kreczko, L
Lucas, C
Meng, Z
Newbold, DM
Paramesvaran, S
Poll, A
Sakuma, T
El Nasr-Storey, SS
Senkin, S
Smith, D
Smith, VJ
Bell, KW
Belyaev, A
Brew, C
Brown, RM
Cockerill, DJA
Coughlan, JA
Harder, K
Harper, S
Olaiya, E
Petyt, D
Shepherd-Themistocleous, CH
Thea, A
Tomalin, IR
Williams, T
Womersley, WJ
Worm, SD
Baber, M
Bainbridge, R
Buchmuller, O
Bundock, A
Burton, D
Citron, M
Colling, D
Corpe, L
Cripps, N
Dauncey, P
Davies, G
De Wit, A
Della Negra, M
Dunne, P
Elwood, A
Ferguson, W
Fulcher, J
Futyan, D
Hall, G
Iles, G
Karapostoli, G
Kenzie, M
Lane, R
Lucas, R
Lyons, L
Magnan, AM
Malik, S
Nash, J
Nikitenko, A
Pela, J
Pesaresi, M
Petridis, K
Raymond, DM
Richards, A
Rose, A
Seez, C
Sharp, P
Tapper, A
Uchida, K
Acosta, MV
Virdee, T
Zenz, SC
Cole, JE
Hobson, PR
Khan, A
Kyberd, P
Leggat, D
Leslie, D
Reid, ID
Symonds, P
Teodorescu, L
Turner, M
Dittmann, J
Hatakeyama, K
Kasmi, A
Liu, H
Pastika, N
Scarborough, T
Charaf, O
Cooper, SI
Henderson, C
Rumerio, P
Avetisyan, A
Bose, T
Fantasia, C
Gastler, D
Lawson, P
Rankin, D
Richardson, C
Rohlf, J
St John, J
Sulak, L
Zou, D
Alimena, J
Berry, E
Bhattacharya, S
Cutts, D
Demiragli, Z
Dhingra, N
Ferapontov, A
Garabedian, A
Heintz, U
Laird, E
Landsberg, G
Mao, Z
Narain, M
Sagir, S
Sinthuprasith, T
Breedon, R
Breto, G
Sanchez, MCD
Chauhan, S
Chertok, M
Conway, J
Conway, R
Cox, PT
Erbacher, R
Gardner, M
Ko, W
Lander, R
Mulhearn, M
Pellett, D
Pilot, J
Ricci-Tam, F
Shalhout, S
Smith, J
Squires, M
Stolp, D
Tripathi, M
Wilbur, S
Yohay, R
Cousins, R
Everaerts, P
Farrell, C
Hauser, J
Ignatenko, M
Rakness, G
Saltzberg, D
Takasugi, E
Valuev, V
Weber, M
Burt, K
Clare, R
Ellison, J
Gary, JW
Hanson, G
Heilman, J
Rikova, MI
Jandir, P
Kennedy, E
Lacroix, F
Long, OR
Luthra, A
Malberti, M
Negrete, MO
Shrinivas, A
Sumowidagdo, S
Wei, H
Wimpenny, S
Branson, JG
Cerati, GB
Cittolin, S
D'Agnolo, RT
Holzner, A
Kelley, R
Klein, D
Kovalskyi, D
Letts, J
Macneill, I
Olivito, D
Padhi, S
Palmer, C
Pieri, M
Sani, M
Sharma, V
Simon, S
Tadel, M
Tu, Y
Vartak, A
Wasserbaech, S
Welke, C
Wurthwein, F
Yagil, A
Della Porta, GZ
Barge, D
Bradmiller-Feld, J
Campagnari, C
Dishaw, A
Dutta, V
Flowers, K
Sevilla, MF
Geffert, P
George, C
Golf, F
Gouskos, L
Gran, J
Incandela, J
Justus, C
Mccoll, N
Mullin, SD
Richman, J
Stuart, D
To, W
West, C
Yoo, J
Anderson, D
Apresyan, A
Bornheim, A
Bunn, J
Chen, Y
Duarte, J
Mott, A
Newman, HB
Pena, C
Pierini, M
Spiropulu, M
Vlimant, JR
Xie, S
Zhu, RY
Azzolini, V
Calamba, A
Carlson, B
Ferguson, T
Iiyama, Y
Paulini, M
Russ, J
Sun, M
Vogel, H
Vorobiev, I
Cumalat, JP
Ford, WT
Gaz, A
Jensen, F
Johnson, A
Krohn, M
Mulholland, T
Nauenberg, U
Smith, JG
Stenson, K
Wagner, SR
Alexander, J
Chatterjee, A
Chaves, J
Chu, J
Dittmer, S
Eggert, N
Mirman, N
Kaufman, GN
Patterson, JR
Ryd, A
Skinnari, L
Sun, W
Tan, SM
Teo, WD
Thom, J
Thompson, J
Tucker, J
Weng, Y
Wittich, P
Abdullin, S
Albrow, M
Anderson, J
Apollinari, G
Bauerdick, LAT
Beretvas, A
Berryhill, J
Bhat, PC
Bolla, G
Burkett, K
Butler, JN
Cheung, HWK
Chlebana, F
Cihangir, S
Elvira, VD
Fisk, I
Freeman, J
Gottschalk, E
Gray, L
Green, D
Grunendahl, S
Gutsche, O
Hanlon, J
Hare, D
Harris, RM
Hirschauer, J
Hooberman, B
Hu, Z
Jindariani, S
Johnson, M
Joshi, U
Jung, AW
Klima, B
Kreis, B
Kwan, S
Lammel, S
Linacre, J
Lincoln, D
Lipton, R
Liu, T
De Sa, RL
Lykken, J
Maeshima, K
No, JMMF
Outschoorn, VIM
Maruyama, S
Mason, D
McBride, P
Merkel, P
Mishra, K
Mrenna, S
Nahn, S
Newman-Holmes, C
O'Dell, V
Prokofyev, O
Sexton-Kennedy, E
Soha, A
Spalding, WJ
Spiegel, L
Taylor, L
Tkaczyk, S
Tran, NV
Uplegger, L
Vaandering, EW
Vernieri, C
Verzocchi, M
Vidal, R
Whitbeck, A
Yang, F
Yin, H
Acosta, D
Avery, P
Bortignon, P
Bourilkov, D
Carnes, A
Carver, M
Curry, D
Das, S
Di Giovanni, GP
Field, RD
Fisher, M
Furic, IK
Hugon, J
Konigsberg, J
Korytov, A
Kypreos, T
Low, JF
Ma, P
Matchev, K
Mei, H
Milenovic, P
Mitselmakher, G
Muniz, L
Rank, D
Rinkevicius, A
Shchutska, L
Snowball, M
Sperka, D
Wang, SJ
Yelton, J
Hewamanage, S
Linn, S
Markowitz, P
Martinez, G
Rodriguez, JL
Ackert, A
Adams, JR
Adams, T
Askew, A
Bochenek, J
Diamond, B
Haas, J
Hagopian, S
Hagopian, V
Johnson, KF
Khatiwada, A
Prosper, H
Veeraraghavan, V
Weinberg, M
Bhopatkar, V
Hohlmann, M
Kalakhety, H
Mareskas-Palcek, D
Roy, T
Yumiceva, F
Adams, MR
Apanasevich, L
Berry, D
Betts, RR
Bucinskaite, I
Cavanaugh, R
Evdokimov, O
Gauthier, L
Gerber, CE
Hofman, DJ
Kurt, P
O'Brien, C
Gonzalez, IDS
Silkworth, C
Turner, P
Varelas, N
Wu, Z
Zakaria, M
Bilki, B
Clarida, W
Dilsiz, K
Gandrajula, RP
Haytmyradov, M
Khristenko, V
Merlo, JP
Mermerkaya, H
Mestvirishvili, A
Moeller, A
Nachtman, J
Ogul, H
Onel, Y
Ozok, F
Penzo, A
Sen, S
Snyder, C
Tan, P
Tiras, E
Wetzel, J
Yi, K
Anderson, I
Barnett, BA
Blumenfeld, B
Fehling, D
Feng, L
Gritsan, AV
Maksimovic, P
Martin, C
Nash, K
Osherson, M
Swartz, M
Xiao, M
Xin, Y
Baringer, P
Bean, A
Benelli, G
Bruner, C
Gray, J
Kenny, RP
Majumder, D
Malek, M
Murray, M
Noonan, D
Sanders, S
Stringer, R
Wang, Q
Wood, JS
Chakaberia, I
Ivanov, A
Kaadze, K
Khalil, S
Makouski, M
Maravin, Y
Saini, LK
Skhirtladze, N
Svintradze, I
Lange, D
Rebassoo, F
Wright, D
Anelli, C
Baden, A
Baron, O
Belloni, A
Calvert, B
Eno, SC
Gomez, JA
Hadley, NJ
Jabeen, S
Kellogg, RG
Kolberg, T
Lu, Y
Mignerey, AC
Pedro, K
Shin, YH
Skuja, A
Tonjes, MB
Tonwar, SC
Apyan, A
Barbieri, R
Baty, A
Bierwagen, K
Brandt, S
Busza, W
Cali, IA
Di Matteo, L
Ceballos, GG
Goncharov, M
Gulhan, D
Klute, M
Lai, YS
Lee, YJ
Levin, A
Luckey, PD
Mcginn, C
Niu, X
Paus, C
Ralph, D
Roland, C
Roland, G
Stephans, GSF
Sumorok, K
Varma, M
Velicanu, D
Veverka, J
Wang, J
Wang, TW
Wyslouch, B
Yang, M
Zhukova, V
Dahmes, B
Finkel, A
Gude, A
Kao, SC
Klapoetke, K
Kubota, Y
Mans, J
Nourbakhsh, S
Rusack, R
Tambe, N
Turkewitz, J
Acosta, JG
Oliveros, S
Avdeeva, E
Bloom, K
Bose, S
Claes, DR
Dominguez, A
Fangmeier, C
Suarez, RG
Kamalieddin, R
Keller, J
Knowlton, D
Kravchenko, I
Lazo-Flores, J
Meier, F
Monroy, J
Ratnikov, F
Siado, JE
Snow, GR
Alyari, M
Dolen, J
George, J
Godshalk, A
Iashvili, I
Kaisen, J
Kharchilava, A
Kumar, A
Rappoccio, S
Alverson, G
Barberis, E
Baumgartel, D
Chasco, M
Hortiangtham, A
Massironi, A
Morse, DM
Nash, D
Orimoto, T
De Lima, RT
Trocino, D
Wang, RJ
Wood, D
Zhang, J
Hahn, KA
Kubik, A
Mucia, N
Odell, N
Pollack, B
Pozdnyakov, A
Schmitt, M
Stoynev, S
Sung, K
Trovato, M
Velasco, M
Won, S
Brinkerhoff, A
Dev, N
Hildreth, M
Jessop, C
Karmgard, DJ
Kellams, N
Lannon, K
Lynch, S
Marinelli, N
Meng, F
Mueller, C
Musienko, Y
Pearson, T
Planer, M
Ruchti, R
Smith, G
Valls, N
Wayne, M
Wolf, M
Woodard, A
Antonelli, L
Brinson, J
Bylsma, B
Durkin, LS
Flowers, S
Hart, A
Hill, C
Hughes, R
Kotov, K
Ling, TY
Liu, B
Luo, W
Puigh, D
Rodenburg, M
Winer, BL
Wulsin, HW
Driga, O
Elmer, P
Hardenbrook, J
Hebda, P
Koay, SA
Lujan, P
Marlow, D
Medvedeva, T
Mooney, M
Olsen, J
Piroue, P
Quan, X
Saka, H
Stickland, D
Tully, C
Werner, JS
Zuranski, A
Barnes, VE
Benedetti, D
Bortoletto, D
Gutay, L
Jha, MK
Jones, M
Jung, K
Kress, M
Leonardo, N
Miller, DH
Neumeister, N
Primavera, F
Radburn-Smith, BC
Shi, X
Shipsey, I
Silvers, D
Sun, J
Svyatkovskiy, A
Wang, F
Xie, W
Xu, L
Zablocki, J
Parashar, N
Stupak, J
Adair, A
Akgun, B
Chen, Z
Ecklund, KM
Geurts, FJM
Li, W
Michlin, B
Northup, M
Padley, BP
Redjimi, R
Roberts, J
Rorie, J
Tu, Z
Zabel, J
Betchart, B
Bodek, A
de Barbaro, P
Demina, R
Eshaq, Y
Ferbel, T
Galanti, M
Garcia-Bellido, A
Goldenzweig, P
Han, J
Harel, A
Hindrichs, O
Khukhunaishvili, A
Petrillo, G
Verzetti, M
Vishnevskiy, D
Demortier, L
Arora, S
Barker, A
Chou, JP
Contreras-Campana, C
Contreras-Campana, E
Duggan, D
Ferencek, D
Gershtein, Y
Gray, R
Halkiadakis, E
Hidas, D
Hughes, E
Kaplan, S
Elayavalli, RK
Lath, A
Panwalkar, S
Park, M
Salur, S
Schnetzer, S
Sheffield, D
Somalwar, S
Stone, R
Thomas, S
Thomassen, P
Walker, M
Foerster, M
Rose, K
Spanier, S
York, A
Bouhali, O
Hernandez, AC
Dalchenko, M
De Mattia, M
Delgado, A
Dildick, S
Eusebi, R
Flanagan, W
Gilmore, J
Kamon, T
Krutelyov, V
Montalvo, R
Mueller, R
Osipenkov, I
Pakhotin, Y
Patel, R
Perloff, A
Roe, J
Rose, A
Safonov, A
Suarez, I
Tatarinov, A
Ulmer, KA
Akchurin, N
Cowden, C
Damgov, J
Dragoiu, C
Dudero, PR
Faulkner, J
Kovitanggoon, K
Kunori, S
Lamichhane, K
Lee, SW
Libeiro, T
Undleeb, S
Volobouev, I
Appelt, E
Delannoy, AG
Greene, S
Gurrola, A
Janjam, R
Johns, W
Maguire, C
Mao, Y
Melo, A
Sheldon, P
Snook, B
Tuo, S
Velkovska, J
Xu, Q
Arenton, MW
Boutle, S
Cox, B
Francis, B
Goodell, J
Hirosky, R
Ledovskoy, A
Li, H
Lin, C
Neu, C
Wolfe, E
Wood, J
Xia, F
Clarke, C
Harr, R
Karchin, PE
Don, CKK
Lamichhane, P
Sturdy, J
Belknap, DA
Carlsmith, D
Cepeda, M
Christian, A
Dasu, S
Dodd, L
Duric, S
Friis, E
Hall-Wilton, R
Herndon, M
Herve, A
Klabbers, P
Lanaro, A
Levine, A
Long, K
Loveless, R
Mohapatra, A
Ojalvo, I
Perry, T
Pierro, GA
Polese, G
Ross, I
Ruggles, T
Sarangi, T
Savin, A
Smith, N
Smith, WH
Taylor, D
Woods, N
AF Khachatryan, V.
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Asilar, E.
Bergauer, T.
Brandstetter, J.
Brondolin, E.
Dragicevic, M.
Eroe, J.
Flechl, M.
Friedl, M.
Fruehwirth, R.
Ghete, V. M.
Hartl, C.
Hoermann, N.
Hrubec, J.
Jeitler, M.
Knuenz, V.
Koenig, A.
Krammer, M.
Kraetschmer, I.
Liko, D.
Mikulec, I.
Rabady, D.
Rahbaran, B.
Rohringer, H.
Schieck, J.
Schoefbeck, R.
Strauss, J.
Treberer-Treberspurg, W.
Waltenberger, W.
Wulz, C. -E.
Mossolov, V.
Shumeiko, N.
Gonzalez, J. Suarez
Alderweireldt, S.
Cornelis, T.
De Wolf, E. A.
Janssen, X.
Knutsson, A.
Lauwers, J.
Luyckx, S.
Ochesanu, S.
Rougny, R.
De Klundert, M. Van
Van Haevermaet, H.
Van Mechelen, P.
Van Remortel, N.
Van Spilbeeck, A.
Abu Zeid, S.
Blekman, F.
D'Hondt, J.
Daci, N.
De Bruyn, I.
Deroover, K.
Heracleous, N.
Keaveney, J.
Lowette, S.
Moreels, L.
Olbrechts, A.
Python, Q.
Strom, D.
Tavernier, S.
Van Doninck, W.
Van Mulders, P.
Van Onsem, G. P.
Van Parijs, I.
Barria, P.
Caillol, C.
Clerbaux, B.
De Lentdecker, G.
Delannoy, H.
Dobur, D.
Fasanella, G.
Favart, L.
Gay, A. P. R.
Grebenyuk, A.
Leonard, A.
Mohammadi, A.
Pernie, L.
Randle-Conde, A.
Reis, T.
Seva, T.
Thomas, L.
Velde, C. Vander
Vanlaer, P.
Wang, J.
Zenoni, F.
Beernaert, K.
Benucci, L.
Cimmino, A.
Crucy, S.
Fagot, A.
Garcia, G.
Gul, M.
Mccartin, J.
Rios, A. A. Ocampo
Poyraz, D.
Ryckbosch, D.
Diblen, S. Salva
Sigamani, M.
Strobbe, N.
Thyssen, F.
Tytgat, M.
Van Driessche, W.
Yazgan, E.
Zaganidis, N.
Basegmez, S.
Beluffi, C.
Bondu, O.
Bruno, G.
Castello, R.
Caudron, A.
Ceard, L.
Da Silveira, G. G.
Delaere, C.
du Pree, T.
Favart, D.
Forthomme, L.
Giammanco, A.
Hollar, J.
Jafari, A.
Jez, P.
Komm, M.
Lemaitre, V.
Mertens, A.
Nuttens, C.
Perrini, L.
Pin, A.
Piotrzkowski, K.
Popov, A.
Quertenmont, L.
Selvaggi, M.
Marono, M. Vidal
Beliy, N.
Hammad, G. H.
Alda Junior, W. L.
Alves, G. A.
Brito, L.
Correa Martins Junior, M.
Dos Reis Martins, T.
Hensel, C.
Mora Herrera, C.
Moraes, A.
Pol, M. E.
Rebello Teles, P.
Belchior Batista Das Chagas, E.
Carvalho, W.
Chinellato, J.
Custodio, A.
Da Costa, E. M.
De Jesus Damiao, D.
De Oliveira Martins, C.
Fonseca De Souza, S.
Huertas Guativa, L. M.
Malbouisson, H.
Matos Figueiredo, D.
Mundim, L.
Nogima, H.
Prado Da Silva, W. L.
Santaolalla, J.
Santoro, A.
Sznajder, A.
Tonelli Manganote, E. J.
Vilela Pereira, A.
Ahuja, S.
Bernardes, C. A.
Dogra, S.
Fernandez Perez Tomei, T. R.
Gregores, E. M.
Mercadante, P. G.
Novaes, S. F.
Padula, Sandra S.
Romero Abad, D.
Ruiz Vargas, J. C.
Aleksandrov, A.
Genchev, V.
Hadjiiska, R.
Iaydjiev, P.
Marinov, A.
Piperov, S.
Rodozov, M.
Stoykova, S.
Sultanov, G.
Vutova, M.
Dimitrov, A.
Glushkov, I.
Litov, L.
Pavlov, B.
Petkov, P.
Ahmad, M.
Bian, J. G.
Chen, G. M.
Chen, H. S.
Chen, M.
Cheng, T.
Du, R.
Jiang, C. H.
Plestina, R.
Romeo, F.
Shaheen, S. M.
Tao, J.
Wang, C.
Wang, Z.
Asawatangtrakuldee, C.
Ban, Y.
Chen, G.
Li, Q.
Liu, S.
Mao, Y.
Qian, S. J.
Wang, D.
Wang, M.
Wang, Q.
Xu, Z.
Yang, D.
Zhang, F.
Zhang, L.
Zhang, Z.
Zou, W.
Avila, C.
Cabrera, A.
Sierra, L. F. Chaparro
Florez, C.
Gomez, J. P.
Moreno, B. Gomez
Sanabria, J. C.
Godinovic, N.
Lelas, D.
Polic, D.
Puljak, I.
Antunovic, Z.
Kovac, M.
Brigljevic, V.
Kadija, K.
Luetic, J.
Sudic, L.
Attikis, A.
Mavromanolakis, G.
Mousa, J.
Nicolaou, C.
Ptochos, F.
Razis, P. A.
Rykaczewski, H.
Bodlak, M.
Finger, M.
Finger, M., Jr.
Ali, A.
Aly, R.
Aly, S.
Elgammal, S.
Kamel, A. Ellithi
Lotfy, A.
Mahmoud, M. A.
Masod, R.
Radi, A.
Calpas, B.
Kadastik, M.
Murumaa, M.
Raidal, M.
Tiko, A.
Veelken, C.
Eerola, P.
Voutilainen, M.
Harkonen, J.
Karimaki, V.
Kinnunen, R.
Lampen, T.
Lassila-Perini, K.
Lehti, S.
Linden, T.
Luukka, P.
Maenpaa, T.
Peltola, T.
Tuominen, E.
Tuominiemi, J.
Tuovinen, E.
Wendland, L.
Talvitie, J.
Tuuva, T.
Besancon, M.
Couderc, F.
Dejardin, M.
Denegri, D.
Fabbro, B.
Faure, J. L.
Favaro, C.
Ferri, F.
Ganjour, S.
Givernaud, A.
Gras, P.
de Monchenault, G. Hamel
Jarry, P.
Locci, E.
Malcles, J.
Rander, J.
Rosowsky, A.
Titov, M.
Zghiche, A.
Baffioni, S.
Beaudette, F.
Busson, P.
Cadamuro, L.
Chapon, E.
Charlot, C.
Dahms, T.
Davignon, O.
Filipovic, N.
Florent, A.
de Cassagnac, R. Granier
Mastrolorenzo, L.
Mine, P.
Naranjo, I. N.
Nguyen, M.
Ochando, C.
Ortona, G.
Paganini, P.
Regnard, S.
Salerno, R.
Sauvan, J. B.
Sirois, Y.
Strebler, T.
Yilmaz, Y.
Zabi, A.
Agram, J. -L.
Andrea, J.
Aubin, A.
Bloch, D.
Brom, J. -M.
Buttignol, M.
Chabert, E. C.
Chanon, N.
Collard, C.
Conte, E.
Fontaine, J. -C.
Gele, D.
Goerlach, U.
Goetzmann, C.
Le Bihan, A. -C.
Merlin, J. A.
Skovpen, K.
Van Hove, P.
Gadrat, S.
Beauceron, S.
Beaupere, N.
Bernet, C.
Boudoul, G.
Bouvier, E.
Brochet, S.
Montoya, C. A. Carrillo
Chasserat, J.
Chierici, R.
Contardo, D.
Courbon, B.
Depasse, P.
El Mamouni, H.
Fan, J.
Fay, J.
Gascon, S.
Gouzevitch, M.
Ille, B.
Laktineh, I. B.
Lethuillier, M.
Mirabito, L.
Pequegnot, A. L.
Perries, S.
Alvarez, J. D. Ruiz
Sabes, D.
Sgandurra, L.
Sordini, V.
Donckt, M. Vander
Verdier, P.
Viret, S.
Xiao, H.
Lomidze, D.
Autermann, C.
Beranek, S.
Bontenackels, M.
Edelhoff, M.
Feld, L.
Heister, A.
Kiesel, M. K.
Klein, K.
Lipinski, M.
Ostapchuk, A.
Preuten, M.
Raupach, F.
Sammet, J.
Schael, S.
Schulte, J. F.
Verlage, T.
Weber, H.
Wittmer, B.
Zhukov, V.
Ata, M.
Brodski, M.
Dietz-Laursonn, E.
Duchardt, D.
Endres, M.
Erdmann, M.
Erdweg, S.
Esch, T.
Fischer, R.
Gueth, A.
Hebbeker, T.
Heidemann, C.
Hoepfner, K.
Klingebiel, D.
Knutzen, S.
Kreuzer, P.
Merschmeyer, M.
Meyer, A.
Millet, P.
Olschewski, M.
Padeken, K.
Papacz, P.
Pook, T.
Radziej, M.
Reithler, H.
Rieger, M.
Schmitz, S. A.
Sonnenschein, L.
Teyssier, D.
Thueer, S.
Cherepanov, V.
Erdogan, Y.
Fluegge, G.
Geenen, H.
Geisler, M.
Ahmad, W. Haj
Hoehle, F.
Kargoll, B.
Kress, T.
Kuessel, Y.
Kuensken, A.
Lingemann, J.
Nowack, A.
Nugent, I. M.
Pistone, C.
Pooth, O.
Stahl, A.
Martin, M. Aldaya
Asin, I.
Bartosik, N.
Behnke, O.
Behrens, U.
Bell, A. J.
Borras, K.
Burgmeier, A.
Cakir, A.
Calligaris, L.
Campbell, A.
Choudhury, S.
Costanza, F.
Pardos, C. Diez
Dolinska, G.
Dooling, S.
Dorland, T.
Eckerlin, G.
Eckstein, D.
Eichhorn, T.
Flucke, G.
Garcia, J. Garay
Geiser, A.
Gizhko, A.
Gunnellini, P.
Hauk, J.
Hempel, M.
Jung, H.
Kalogeropoulos, A.
Karacheban, O.
Kasemann, M.
Katsas, P.
Kieseler, J.
Kleinwort, C.
Korol, I.
Lange, W.
Leonard, J.
Lipka, K.
Lobanov, A.
Mankel, R.
Marfin, I.
Melzer-Pellmann, I. -A.
Meyer, A. B.
Mittag, G.
Mnich, J.
Mussgiller, A.
Naumann-Emme, S.
Nayak, A.
Ntomari, E.
Perrey, H.
Pitzl, D.
Placakyte, R.
Raspereza, A.
Cipriano, P. M. Ribeiro
Roland, B.
Sahin, M. Oe.
Salfeld-Nebgen, J.
Saxena, P.
Schoerner-Sadenius, T.
Schroeder, M.
Seitz, C.
Spannagel, S.
Wissing, C.
Blobel, V.
Vignali, M. Centis
Draeger, A. R.
Ere, J.
Garutti, E.
Goebel, K.
Gonzalez, D.
Goerner, M.
Haller, J.
Hoffmann, M.
Hoeing, R. S.
Junkes, A.
Kirschenmann, H.
Klanner, R.
Kogler, R.
Lapsien, T.
Lenz, T.
Marchesini, I.
Marconi, D.
Meyer, M.
Nowatschin, D.
Ott, J.
Peiffer, T.
Perieanu, A.
Pietsch, N.
Poehlsen, J.
Rathjens, D.
Sander, C.
Schettler, H.
Schleper, P.
Schlieckau, E.
Schmidt, A.
Seidel, M.
Sola, V.
Stadie, H.
Steinbrueck, G.
Tholen, H.
Troendle, D.
Usai, E.
Vanelderen, L.
Vanhoefer, A.
Akbiyik, M.
Barth, C.
Baus, C.
Berger, J.
Boeser, C.
Butz, E.
Chwalek, T.
Colombo, F.
De Boer, W.
Descroix, A.
Dierlamm, A.
Feindt, M.
Frensch, F.
Giffels, M.
Gilbert, A.
Hartmann, F.
Husemann, U.
Katkov, I.
Kornmayer, A.
Pardo, P. Lobelle
Mozer, M. U.
Mueller, T.
Mueller, Th.
Plagge, M.
Quast, G.
Rabbertz, K.
Roecker, S.
Roscher, F.
Simonis, H. J.
Stober, F. M.
Ulrich, R.
Wagner-Kuhr, J.
Wayand, S.
Weiler, T.
Woehrmann, C.
Wolf, R.
Anagnostou, G.
Daskalakis, G.
Geralis, T.
Giakoumopoulou, V. A.
Kyriakis, A.
Loukas, D.
Markou, A.
Psallidas, A.
Topsis-Giotis, I.
Agapitos, A.
Kesisoglou, S.
Panagiotou, A.
Saoulidou, N.
Tziaferi, E.
Evangelou, I.
Flouris, G.
Foudas, C.
Kokkas, P.
Loukas, N.
Manthos, N.
Papadopoulos, I.
Paradas, E.
Strologas, J.
Bencze, G.
Hajdu, C.
Hazi, A.
Hidas, P.
Horvath, D.
Sikler, F.
Veszpremi, V.
Vesztergombi, G.
Zsigmond, A. J.
Beni, N.
Czellar, S.
Karancsi, J.
Molnar, J.
Palinkas, J.
Szillasi, Z.
Bartok, M.
Makovec, A.
Raics, P.
Trocsanyi, Z. L.
Mal, P.
Mandal, K.
Sahoo, N.
Swain, S. K.
Bansal, S.
Beri, S. B.
Bhatnagar, V.
Chawla, R.
Gupta, R.
Bhawandeep, U.
Kalsi, A. K.
Kaur, A.
Kaur, M.
Kumar, R.
Mehta, A.
Mittal, M.
Nishu, N.
Singh, J. B.
Kumar, Ashok
Kumar, Arun
Bhardwaj, A.
Choudhary, B. C.
Kumar, A.
Malhotra, S.
Naimuddin, M.
Ranjan, K.
Sharma, R.
Sharma, V.
Banerjee, S.
Bhattacharya, S.
Chatterjee, K.
Dey, S.
Dutta, S.
Gomber, B.
Jain, Sa.
Jain, Sh.
Khurana, R.
Majumdar, N.
Modak, A.
Mondal, K.
Mukherjee, S.
Mukhopadhyay, S.
Roy, A.
Roy, D.
Chowdhury, S. Roy
Sarkar, S.
Sharan, M.
Abdulsalam, A.
Dutta, D.
Jha, V.
Kumar, V.
Mohanty, A. K.
Pant, L. M.
Shukla, P.
Topkar, A.
Aziz, T.
Banerjee, S.
Bhowmik, S.
Chatterjee, R. M.
Dewanjee, R. K.
Dugad, S.
Ganguly, S.
Ghosh, S.
Guchait, M.
Gurtu, A.
Kole, G.
Kumar, S.
Maity, M.
Majumder, G.
Mazumdar, K.
Mohanty, G. B.
Parida, B.
Sudhakar, K.
Sur, N.
Sutar, B.
Wickramage, N.
Sharma, S.
Bakhshiansohi, H.
Behnamian, H.
Etesami, S. M.
Fahim, A.
Goldouzian, R.
Khakzad, M.
Najafabadi, M. Mohammadi
Naseri, M.
Mehdiabadi, S. Paktinat
Hosseinabadi, F. Rezaei
Safarzadeh, B.
Zeinali, M.
Felcini, M.
Grunewald, M.
Abbrescia, M.
Calabria, C.
Caputo, C.
Chhibra, S. S.
Colaleo, A.
Creanza, D.
Cristella, L.
De Filippis, N.
De Palma, M.
Fiore, L.
Iaselli, G.
Maggi, G.
Maggi, M.
Miniello, G.
My, S.
Nuzzo, S.
Pompili, A.
Pugliese, G.
Radogna, R.
Ranieri, A.
Selvaggi, G.
Sharma, A.
Silvestris, L.
Venditti, R.
Verwilligen, P.
Abbiendi, G.
Battilana, C.
Benvenuti, C.
Bonacorsi, D.
Braibant-Giacomelli, S.
Brigliadori, L.
Campanini, R.
Capiluppi, P.
Castro, A.
Cavallo, F. R.
Codispoti, G.
Cuffiani, M.
Dallavalle, G. M.
Fabbri, F.
Fanfani, A.
Fasanella, D.
Giacomelli, P.
Grandi, C.
Guiducci, L.
Marcellini, S.
Masetti, G.
Montanari, A.
Navarria, F. L.
Perrotta, A.
Rossi, A. M.
Rovelli, T.
Siroli, G. P.
Tosi, N.
Travaglini, R.
Cappello, G.
Chiorboli, M.
Costa, S.
Giordano, F.
Potenza, R.
Tricomi, A.
Tuve, C.
Barbagli, G.
Ciulli, V.
Civinini, C.
D'Alessandro, R.
Focardi, E.
Gallo, E.
Gonzi, S.
Gori, V.
Lenzi, P.
Meschini, M.
Paoletti, S.
Sguazzoni, G.
Tropiano, A.
Viliani, L.
Benussi, L.
Bianco, S.
Fabbri, F.
Piccolo, D.
Calvelli, V.
Ferro, F.
Lo Vetere, M.
Robutti, E.
Tosi, S.
Dinardo, M. E.
Fiorendi, S.
Gennai, S.
Gerosa, R.
Ghezzi, A.
Govoni, P.
Lucchini, M. T.
Malvezzi, S.
Manzoni, R. A.
Marzocchi, B.
Menasce, D.
Moroni, L.
Paganoni, M.
Pedrini, D.
Ragazzi, S.
Redaelli, N.
de Fatis, T. Tabarelli
Buontempo, S.
Cavallo, N.
Di Guida, S.
Esposito, M.
Fabozzi, F.
Iorio, A. O. M.
Lanza, G.
Lista, L.
Meola, S.
Merola, M.
Paolucci, P.
Sciacca, C.
Azzi, P.
Bacchetta, N.
Bisello, D.
Branca, A.
Carlin, R.
De Oliveira, A. Carvalho Antunes
Checchia, P.
Dall'Osso, M.
Dorigo, T.
Gasparini, F.
Gasparini, U.
Gozzelino, A.
Lacaprara, S.
Margoni, M.
Meneguzzo, A. T.
Montecassiano, F.
Passaseo, M.
Pazzini, J.
Pozzobon, N.
Ronchese, P.
Simonetto, F.
Torassa, E.
Tosi, M.
Zanetti, M.
Zotto, P.
Zucchetta, A.
Zumerle, G.
Gabusi, M.
Magnani, A.
Ratti, S. P.
Re, V.
Riccardi, C.
Salvini, P.
Vai, I.
Vitulo, P.
Solestizi, L. Alunni
Biasini, M.
Bilei, G. M.
Ciangottini, D.
Fano, L.
Lariccia, P.
Mantovani, G.
Menichelli, M.
Saha, A.
Santocchia, A.
Spiezia, A.
Androsov, K.
Azzurri, P.
Bagliesi, G.
Bernardini, J.
Boccali, T.
Broccolo, G.
Castaldi, R.
Ciocci, M. A.
Dell'Orso, R.
Donato, S.
Fedi, G.
Fiori, F.
Foa, L.
Giassi, A.
Grippo, M. T.
Ligabue, F.
Lomtadze, T.
Martini, L.
Messineo, A.
Moon, C. S.
Palla, F.
Rizzi, A.
Savoy-Navarro, A.
Serban, T.
Spagnolo, P.
Squillacioti, P.
Tenchini, R.
Tonelli, G.
Venturi, A.
Verdini, P. G.
Barone, L.
Cavallari, F.
D'imperio, G.
Del Re, D.
Diemoz, M.
Gelli, S.
Jorda, C.
Longo, E.
Margaroli, F.
Meridiani, P.
Micheli, F.
Organtini, G.
Paramatti, R.
Preiato, F.
Rahatlou, S.
Rovelli, C.
Santanastasio, F.
Soffi, L.
Traczyk, P.
Amapane, N.
Arcidiacono, R.
Argiro, S.
Arneodo, M.
Bellan, R.
Biino, C.
Cartiglia, N.
Casasso, S.
Costa, M.
Covarelli, R.
De Remigis, P.
Degano, A.
Demaria, N.
Finco, L.
Kiani, B.
Mariotti, C.
Maselli, S.
Migliore, E.
Monaco, V.
Musich, M.
Obertino, M. M.
Pacher, L.
Pastrone, N.
Pelliccioni, M.
Angioni, G. L. Pinna
Romero, A.
Ruspa, M.
Sacchi, R.
Solano, A.
Staiano, A.
Belforte, S.
Candelise, V.
Casarsa, M.
Cossutti, F.
Della Ricca, G.
Gobbo, B.
La Licata, C.
Marone, M.
Schizzi, A.
Umer, T.
Zanetti, A.
Chang, S.
Kropivnitskaya, A.
Nam, S. K.
Kim, D. H.
Kim, G. N.
Kim, M. S.
Kong, D. J.
Lee, S.
Oh, Y. D.
Park, H.
Sakharov, A.
Son, D. C.
Kim, H.
Kim, T. J.
Ryu, M. S.
Song, S.
Choi, S.
Go, Y.
Gyun, D.
Hong, B.
Jo, M.
Kim, H.
Kim, Y.
Lee, B.
Lee, K.
Lee, K. S.
Lee, S.
Park, S. K.
Roh, Y.
Yoo, H. D.
Choi, M.
Kim, J. H.
Lee, J. S. H.
Park, I. C.
Ryu, G.
Choi, Y.
Choi, Y. K.
Goh, J.
Kim, D.
Kwon, E.
Lee, J.
Yu, I.
Juodagalvis, A.
Vaitkus, J.
Ibrahim, Z. A.
Komaragiri, J. R.
Ali, M. A. B. Md
Idris, F. Mohamad
Abdullah, W. A. T. Wan
Linares, E. Casimiro
Castilla-Valdez, H.
De la Cruz-Burelo, E.
Heredia-de la Cruz, I.
Hernandez-Almada, A.
Lopez-Fernandez, R.
Sanchez, G. Ramirez
Sanchez-Hernandez, A.
Carrillo Moreno, S.
Vazquez Valencia, F.
Carpinteyro, S.
Pedraza, I.
Salazar Ibarguen, H. A.
Morelos Pineda, A.
Krofcheck, D.
Butler, P. H.
Reucroft, S.
Ahmad, A.
Ahmad, M.
Hassan, Q.
Hoorani, H. R.
Khan, W. A.
Khurshid, T.
Shoaib, M.
Bialkowska, H.
Bluj, M.
Boimska, B.
Frueboes, T.
Gorski, M.
Kazana, M.
Nawrocki, K.
Romanowska-Rybinska, K.
Szleper, M.
Zalewski, P.
Brona, G.
Bunkowski, K.
Doroba, K.
Kalinowski, A.
Konecki, M.
Krolikowski, J.
Misiura, M.
Olszewski, M.
Walczak, M.
Bargassa, P.
Beirao Da Cruz E Silva, C.
Di Francesco, A.
Faccioli, P.
Ferreira Parracho, P. G.
Gallinaro, M.
Lloret Iglesias, L.
Nguyen, F.
Rodrigues Antunes, J.
Seixas, J.
Toldaiev, O.
Vadruccio, D.
Varela, J.
Vischia, P.
Afanasiev, S.
Bunin, P.
Gavrilenko, M.
Golutvin, I.
Gorbunov, I.
Kamenev, A.
Karjavin, V.
Konoplyanikov, V.
Lanev, A.
Malakhov, A.
Matveev, V.
Moisenz, P.
Palichik, V.
Perelygin, V.
Shmatov, S.
Shulha, S.
Skatchkov, N.
Smirnov, V.
Toriashvili, T.
Zarubin, A.
Golovtsov, V.
Ivanov, Y.
Kim, V.
Kuznetsova, E.
Levchenko, P.
Murzin, V.
Oreshkin, V.
Smirnov, I.
Sulimov, V.
Uvarov, L.
Vavilov, S.
Vorobyev, A.
Andreev, Yu.
Dermenev, A.
Gninenko, S.
Golubev, N.
Karneyeu, A.
Kirsanov, M.
Krasnikov, N.
Pashenkov, A.
Tlisov, D.
Toropin, A.
Epshteyn, V.
Gavrilov, V.
Lychkovskaya, N.
Popov, V.
Pozdnyakov, I.
Safronov, G.
Spiridonov, A.
Vlasov, E.
Zhokin, A.
Andreev, V.
Azarkin, M.
Dremin, I.
Kirakosyan, M.
Leonidov, A.
Mesyats, G.
Rusakov, S. V.
Vinogradov, A.
Baskakov, A.
Belyaev, A.
Boos, E.
Dubinin, M.
Dudko, L.
Ershov, A.
Gribushin, A.
Klyukhin, V.
Kodolova, O.
Lokhtin, I.
Myagkov, I.
Obraztsov, S.
Petrushanko, S.
Savrin, V.
Snigirev, A.
Azhgirey, I.
Bayshev, I.
Bitioukov, S.
Kachanov, V.
Kalinin, A.
Konstantinov, D.
Krychkine, V.
Petrov, V.
Ryutin, R.
Sobol, A.
Tourtchanovitch, L.
Troshin, S.
Tyurin, N.
Uzunian, A.
Volkov, A.
Adzic, P.
Ekmedzic, M.
Milosevic, J.
Rekovic, V.
Maestre, J. Alcaraz
Calvo, E.
Cerrada, M.
Chamizo Llatas, M.
Colino, N.
De la Cruz, B.
Delgado Peris, A.
Dominguez Vazquez, D.
Escalante Del Valle, A.
Fernandez Bedoya, C.
Fernandez Ramos, J. P.
Flix, J.
Fouz, M. C.
Garcia-Abia, P.
Gonzalez Lopez, O.
Goy Lopez, S.
Hernandez, J. M.
Josa, M. I.
Navarro De Martino, E.
Perez-Calero Yzquierdo, A.
Puerta Pelayo, J.
Quintario Olmeda, A.
Redondo, I.
Romero, L.
Soares, M. S.
Albajar, C.
de Troconiz, J. F.
Missiroli, M.
Moran, D.
Brun, H.
Cuevas, J.
Fernandez Menendez, J.
Folgueras, S.
Gonzalez Caballero, I.
Palencia Cortezon, E.
Vizan Garcia, J. M.
Brochero Cifuentes, J. A.
Cabrillo, I. J.
Calderon, A.
Castineiras De Saa, J. R.
Duarte Campderros, J.
Fernandez, M.
Gomez, G.
Graziano, A.
Lopez Virto, A.
Marco, J.
Marco, R.
Martinez Rivero, C.
Matorras, F.
Munoz Sanchez, F. J.
Piedra Gomez, J.
Rodrigo, T.
Rodriguez-Marrero, A. Y.
Ruiz-Jimeno, A.
Scodellaro, L.
Vila, I.
Vilar Cortabitarte, R.
Abbaneo, D.
Auffray, E.
Auzinger, G.
Bachtis, M.
Baillon, P.
Ball, A. H.
Barney, D.
Benaglia, A.
Bendavid, J.
Benhabib, L.
Benitez, J. F.
Berruti, G. M.
Bloch, P.
Bocci, A.
Bonato, A.
Botta, C.
Breuker, H.
Camporesi, T.
Cerminara, G.
Colafranceschi, S.
D'Alfonso, M.
d'Enterria, D.
Dabrowski, A.
Daponte, V.
David, A.
De Gruttola, M.
De Guio, F.
De Roeck, A.
De Visscher, S.
Di Marco, E.
Dobson, M.
Dordevic, M.
Dupont-Sagorin, N.
Elliott-Peisert, A.
Franzoni, G.
Funk, W.
Gigi, D.
Gill, K.
Giordano, D.
Girone, M.
Glege, F.
Guida, R.
Gundacker, S.
Guthoff, M.
Hammer, J.
Hansen, M.
Harris, P.
Hegeman, J.
Innocente, V.
Janot, P.
Kortelainen, M. J.
Kousouris, K.
Krajczar, K.
Lecoq, P.
Lourenco, C.
Magini, N.
Malgeri, L.
Mannelli, M.
Marrouche, J.
Martelli, A.
Masetti, L.
Meijers, F.
Mersi, S.
Meschi, E.
Moortgat, F.
Morovic, S.
Mulders, M.
Nemallapudi, M. V.
Neugebauer, H.
Orfanelli, S.
Orsini, L.
Pape, L.
Perez, E.
Petrilli, A.
Petrucciani, G.
Pfeiffer, A.
Piparo, D.
Racz, A.
Rolandi, G.
Rovere, M.
Ruan, M.
Sakulin, H.
Schafer, C.
Schwick, C.
Sharma, A.
Silva, P.
Simon, M.
Sphicas, P.
Spiga, D.
Steggemann, J.
Stieger, B.
Stoye, M.
Takahashi, Y.
Treille, D.
Tsirou, A.
Veres, G. I.
Wardle, N.
Wohri, H. K.
Zagozdzinska, A.
Zeuner, W. D.
Bertl, W.
Deiters, K.
Erdmann, W.
Horisberger, R.
Ingram, Q.
Kaestli, H. C.
Kotlinski, D.
Langenegger, U.
Rohe, T.
Bachmair, F.
Bani, L.
Bianchini, L.
Buchmann, M. A.
Casal, B.
Dissertori, G.
Dittmar, M.
Donega, M.
Dunser, M.
Eller, P.
Grab, C.
Heidegger, C.
Hits, D.
Hoss, J.
Kasieczka, G.
Lustermann, W.
Mangano, B.
Marini, A. C.
Marionneau, M.
del Arbol, P. Martinez Ruiz
Masciovecchio, M.
Meister, D.
Mohr, N.
Musella, P.
Nessi-Tedaldi, F.
Pandolfi, F.
Masciovecchio, M.
Meister, D.
Mohr, N.
Musella, P.
Nessi-Tedaldi, F.
Fi, F. Pandol
Pata, J.
Pauss, F.
Perrozzi, L.
Peruzzi, M.
Quittnat, M.
Rossini, M.
Starodumov, A.
Takahashi, M.
Tavolaro, V. R.
Theofilatos, K.
Wallny, R.
Weber, H. A.
Aarrestad, T. K.
Amsler, C.
Canelli, M. F.
Chiochia, V.
De Cosa, A.
Galloni, C.
Hinzmann, A.
Hreus, T.
Kilminster, B.
Lange, C.
Ngadiuba, J.
Pinna, D.
Robmann, P.
Ronga, F. J.
Salerno, D.
Taroni, S.
Yang, Y.
Cardaci, M.
Chen, K. H.
Doan, T. H.
Ferro, C.
Konyushikhin, M.
Kuo, C. M.
Lin, W.
Lu, Y. J.
Volpe, R.
Yu, S. S.
Chang, P.
Chang, Y. H.
Chang, Y. W.
Chao, Y.
Chen, K. F.
Chen, P. H.
Dietz, C.
Grundler, U.
Hou, W. -S.
Hsiung, Y.
Liu, Y. F.
Lu, R. -S.
Moya, M. Minano
Petrakou, E.
Tsai, J. F.
Tzeng, Y. M.
Wilken, R.
Asavapibhop, B.
Singh, G.
Srimanobhas, N.
Suwonjandee, N.
Adiguzel, A.
Cerci, S.
Dozen, C.
Girgis, S.
Gokbulut, G.
Guler, Y.
Gurpinar, E.
Hos, I.
Kangal, E. E.
Topaksu, A. Kayis
Onengut, G.
Ozdemir, K.
Ozturk, S.
Tali, B.
Topakli, H.
Vergili, M.
Zorbilmez, C.
Akin, I. V.
Bilin, B.
Bilmis, S.
Isildak, B.
Karapinar, G.
Surat, U. E.
Yalvac, M.
Zeyrek, M.
Albayrak, E. A.
Gulmez, E.
Kaya, M.
Kaya, O.
Yetkin, T.
Cankocak, K.
Gunaydin, Y. O.
Vardarli, F. I.
Grynyov, B.
Levchuk, L.
Sorokin, P.
Aggleton, R.
Ball, F.
Beck, L.
Brooke, J. J.
Clement, E.
Cussans, D.
Flacher, H.
Goldstein, J.
Grimes, M.
Heath, G. P.
Heath, H. F.
Jacob, J.
Kreczko, L.
Lucas, C.
Meng, Z.
Newbold, D. M.
Paramesvaran, S.
Poll, A.
Sakuma, T.
El Nasr-Storey, S. Seif
Senkin, S.
Smith, D.
Smith, V. J.
Bell, K. W.
Belyaev, A.
Brew, C.
Brown, R. M.
Cockerill, D. J. A.
Coughlan, J. A.
Harder, K.
Harper, S.
Olaiya, E.
Petyt, D.
Shepherd-Themistocleous, C. H.
Thea, A.
Tomalin, I. R.
Williams, T.
Womersley, W. J.
Worm, S. D.
Baber, M.
Bainbridge, R.
Buchmuller, O.
Bundock, A.
Burton, D.
Citron, M.
Colling, D.
Corpe, L.
Cripps, N.
Dauncey, P.
Davies, G.
De Wit, A.
Della Negra, M.
Dunne, P.
Elwood, A.
Ferguson, W.
Fulcher, J.
Futyan, D.
Hall, G.
Iles, G.
Karapostoli, G.
Kenzie, M.
Lane, R.
Lucas, R.
Lyons, L.
Magnan, A. -M.
Malik, S.
Nash, J.
Nikitenko, A.
Pela, J.
Pesaresi, M.
Petridis, K.
Raymond, D. M.
Richards, A.
Rose, A.
Seez, C.
Sharp, P.
Tapper, A.
Uchida, K.
Acosta, M. Vazquez
Virdee, T.
Zenz, S. C.
Cole, J. E.
Hobson, P. R.
Khan, A.
Kyberd, P.
Leggat, D.
Leslie, D.
Reid, I. D.
Symonds, P.
Teodorescu, L.
Turner, M.
Dittmann, J.
Hatakeyama, K.
Kasmi, A.
Liu, H.
Pastika, N.
Scarborough, T.
Charaf, O.
Cooper, S. I.
Henderson, C.
Rumerio, P.
Avetisyan, A.
Bose, T.
Fantasia, C.
Gastler, D.
Lawson, P.
Rankin, D.
Richardson, C.
Rohlf, J.
St John, J.
Sulak, L.
Zou, D.
Alimena, J.
Berry, E.
Bhattacharya, S.
Cutts, D.
Demiragli, Z.
Dhingra, N.
Ferapontov, A.
Garabedian, A.
Heintz, U.
Laird, E.
Landsberg, G.
Mao, Z.
Narain, M.
Sagir, S.
Sinthuprasith, T.
Breedon, R.
Breto, G.
Sanchez, M. Calderon De la Barca
Chauhan, S.
Chertok, M.
Conway, J.
Conway, R.
Cox, P. T.
Erbacher, R.
Gardner, M.
Ko, W.
Lander, R.
Mulhearn, M.
Pellett, D.
Pilot, J.
Ricci-Tam, F.
Shalhout, S.
Smith, J.
Squires, M.
Stolp, D.
Tripathi, M.
Wilbur, S.
Yohay, R.
Cousins, R.
Everaerts, P.
Farrell, C.
Hauser, J.
Ignatenko, M.
Rakness, G.
Saltzberg, D.
Takasugi, E.
Valuev, V.
Weber, M.
Burt, K.
Clare, R.
Ellison, J.
Gary, J. W.
Hanson, G.
Heilman, J.
Rikova, M. Ivova
Jandir, P.
Kennedy, E.
Lacroix, F.
Long, O. R.
Luthra, A.
Malberti, M.
Negrete, M. Olmedo
Shrinivas, A.
Sumowidagdo, S.
Wei, H.
Wimpenny, S.
Branson, J. G.
Cerati, G. B.
Cittolin, S.
D'Agnolo, R. T.
Holzner, A.
Kelley, R.
Klein, D.
Kovalskyi, D.
Letts, J.
Macneill, I.
Olivito, D.
Padhi, S.
Palmer, C.
Pieri, M.
Sani, M.
Sharma, V.
Simon, S.
Tadel, M.
Tu, Y.
Vartak, A.
Wasserbaech, S.
Welke, C.
Wurthwein, F.
Yagil, A.
Della Porta, G. Zevi
Barge, D.
Bradmiller-Feld, J.
Campagnari, C.
Dishaw, A.
Dutta, V.
Flowers, K.
Sevilla, M. Franco
Geffert, P.
George, C.
Golf, F.
Gouskos, L.
Gran, J.
Incandela, J.
Justus, C.
Mccoll, N.
Mullin, S. D.
Richman, J.
Stuart, D.
To, W.
West, C.
Yoo, J.
Anderson, D.
Apresyan, A.
Bornheim, A.
Bunn, J.
Chen, Y.
Duarte, J.
Mott, A.
Newman, H. B.
Pena, C.
Pierini, M.
Spiropulu, M.
Vlimant, J. R.
Xie, S.
Zhu, R. Y.
Azzolini, V.
Calamba, A.
Carlson, B.
Ferguson, T.
Iiyama, Y.
Paulini, M.
Russ, J.
Sun, M.
Vogel, H.
Vorobiev, I.
Cumalat, J. P.
Ford, W. T.
Gaz, A.
Jensen, F.
Johnson, A.
Krohn, M.
Mulholland, T.
Nauenberg, U.
Smith, J. G.
Stenson, K.
Wagner, S. R.
Alexander, J.
Chatterjee, A.
Chaves, J.
Chu, J.
Dittmer, S.
Eggert, N.
Mirman, N.
Kaufman, G. Nicolas
Patterson, J. R.
Ryd, A.
Skinnari, L.
Sun, W.
Tan, S. M.
Teo, W. D.
Thom, J.
Thompson, J.
Tucker, J.
Weng, Y.
Wittich, P.
Abdullin, S.
Albrow, M.
Anderson, J.
Apollinari, G.
Bauerdick, L. A. T.
Beretvas, A.
Berryhill, J.
Bhat, P. C.
Bolla, G.
Burkett, K.
Butler, J. N.
Cheung, H. W. K.
Chlebana, F.
Cihangir, S.
Elvira, V. D.
Fisk, I.
Freeman, J.
Gottschalk, E.
Gray, L.
Green, D.
Grunendahl, S.
Gutsche, O.
Hanlon, J.
Hare, D.
Harris, R. M.
Hirschauer, J.
Hooberman, B.
Hu, Z.
Jindariani, S.
Johnson, M.
Joshi, U.
Jung, A. W.
Klima, B.
Kreis, B.
Kwan, S.
Lammel, S.
Linacre, J.
Lincoln, D.
Lipton, R.
Liu, T.
De Sa, R. Lopes
Lykken, J.
Maeshima, K.
No, J. M. Marra Ffi
Outschoorn, V. I. Martinez
Maruyama, S.
Mason, D.
McBride, P.
Merkel, P.
Mishra, K.
Mrenna, S.
Nahn, S.
Newman-Holmes, C.
O'Dell, V.
Prokofyev, O.
Sexton-Kennedy, E.
Soha, A.
Spalding, W. J.
Spiegel, L.
Taylor, L.
Tkaczyk, S.
Tran, N. V.
Uplegger, L.
Vaandering, E. W.
Vernieri, C.
Verzocchi, M.
Vidal, R.
Whitbeck, A.
Yang, F.
Yin, H.
Acosta, D.
Avery, P.
Bortignon, P.
Bourilkov, D.
Carnes, A.
Carver, M.
Curry, D.
Das, S.
Di Giovanni, G. P.
Field, R. D.
Fisher, M.
Furic, I. K.
Hugon, J.
Konigsberg, J.
Korytov, A.
Kypreos, T.
Low, J. F.
Ma, P.
Matchev, K.
Mei, H.
Milenovic, P.
Mitselmakher, G.
Muniz, L.
Rank, D.
Rinkevicius, A.
Shchutska, L.
Snowball, M.
Sperka, D.
Wang, S. J.
Yelton, J.
Hewamanage, S.
Linn, S.
Markowitz, P.
Martinez, G.
Rodriguez, J. L.
Ackert, A.
Adams, J. R.
Adams, T.
Askew, A.
Bochenek, J.
Diamond, B.
Haas, J.
Hagopian, S.
Hagopian, V.
Johnson, K. F.
Khatiwada, A.
Prosper, H.
Veeraraghavan, V.
Weinberg, M.
Bhopatkar, V.
Hohlmann, M.
Kalakhety, H.
Mareskas-Palcek, D.
Roy, T.
Yumiceva, F.
Adams, M. R.
Apanasevich, L.
Berry, D.
Betts, R. R.
Bucinskaite, I.
Cavanaugh, R.
Evdokimov, O.
Gauthier, L.
Gerber, C. E.
Hofman, D. J.
Kurt, P.
O'Brien, C.
Gonzalez, I. D. Sandoval
Silkworth, C.
Turner, P.
Varelas, N.
Wu, Z.
Zakaria, M.
Bilki, B.
Clarida, W.
Dilsiz, K.
Gandrajula, R. P.
Haytmyradov, M.
Khristenko, V.
Merlo, J. -P.
Mermerkaya, H.
Mestvirishvili, A.
Moeller, A.
Nachtman, J.
Ogul, H.
Onel, Y.
Ozok, F.
Penzo, A.
Sen, S.
Snyder, C.
Tan, P.
Tiras, E.
Wetzel, J.
Yi, K.
Anderson, I.
Barnett, B. A.
Blumenfeld, B.
Fehling, D.
Feng, L.
Gritsan, A. V.
Maksimovic, P.
Martin, C.
Nash, K.
Osherson, M.
Swartz, M.
Xiao, M.
Xin, Y.
Baringer, P.
Bean, A.
Benelli, G.
Bruner, C.
Gray, J.
Kenny, R. P., III
Majumder, D.
Malek, M.
Murray, M.
Noonan, D.
Sanders, S.
Stringer, R.
Wang, Q.
Wood, J. S.
Chakaberia, I.
Ivanov, A.
Kaadze, K.
Khalil, S.
Makouski, M.
Maravin, Y.
Saini, L. K.
Skhirtladze, N.
Svintradze, I.
Lange, D.
Rebassoo, F.
Wright, D.
Anelli, C.
Baden, A.
Baron, O.
Belloni, A.
Calvert, B.
Eno, S. C.
Gomez, J. A.
Hadley, N. J.
Jabeen, S.
Kellogg, R. G.
Kolberg, T.
Lu, Y.
Mignerey, A. C.
Pedro, K.
Shin, Y. H.
Skuja, A.
Tonjes, M. B.
Tonwar, S. C.
Apyan, A.
Barbieri, R.
Baty, A.
Bierwagen, K.
Brandt, S.
Busza, W.
Cali, I. A.
Di Matteo, L.
Ceballos, G. Gomez
Goncharov, M.
Gulhan, D.
Klute, M.
Lai, Y. S.
Lee, Y. -J.
Levin, A.
Luckey, P. D.
Mcginn, C.
Niu, X.
Paus, C.
Ralph, D.
Roland, C.
Roland, G.
Stephans, G. S. F.
Sumorok, K.
Varma, M.
Velicanu, D.
Veverka, J.
Wang, J.
Wang, T. W.
Wyslouch, B.
Yang, M.
Zhukova, V.
Dahmes, B.
Finkel, A.
Gude, A.
Kao, S. C.
Klapoetke, K.
Kubota, Y.
Mans, J.
Nourbakhsh, S.
Rusack, R.
Tambe, N.
Turkewitz, J.
Acosta, J. G.
Oliveros, S.
Avdeeva, E.
Bloom, K.
Bose, S.
Claes, D. R.
Dominguez, A.
Fangmeier, C.
Suarez, R. Gonzalez
Kamalieddin, R.
Keller, J.
Knowlton, D.
Kravchenko, I.
Lazo-Flores, J.
Meier, F.
Monroy, J.
Ratnikov, F.
Siado, J. E.
Snow, G. R.
Alyari, M.
Dolen, J.
George, J.
Godshalk, A.
Iashvili, I.
Kaisen, J.
Kharchilava, A.
Kumar, A.
Rappoccio, S.
Alverson, G.
Barberis, E.
Baumgartel, D.
Chasco, M.
Hortiangtham, A.
Massironi, A.
Morse, D. M.
Nash, D.
Orimoto, T.
De Lima, R. Teixeira
Trocino, D.
Wang, R. -J.
Wood, D.
Zhang, J.
Hahn, K. A.
Kubik, A.
Mucia, N.
Odell, N.
Pollack, B.
Pozdnyakov, A.
Schmitt, M.
Stoynev, S.
Sung, K.
Trovato, M.
Velasco, M.
Won, S.
Brinkerhoff, A.
Dev, N.
Hildreth, M.
Jessop, C.
Karmgard, D. J.
Kellams, N.
Lannon, K.
Lynch, S.
Marinelli, N.
Meng, F.
Mueller, C.
Musienko, Y.
Pearson, T.
Planer, M.
Ruchti, R.
Smith, G.
Valls, N.
Wayne, M.
Wolf, M.
Woodard, A.
Antonelli, L.
Brinson, J.
Bylsma, B.
Durkin, L. S.
Flowers, S.
Hart, A.
Hill, C.
Hughes, R.
Kotov, K.
Ling, T. Y.
Liu, B.
Luo, W.
Puigh, D.
Rodenburg, M.
Winer, B. L.
Wulsin, H. W.
Driga, O.
Elmer, P.
Hardenbrook, J.
Hebda, P.
Koay, S. A.
Lujan, P.
Marlow, D.
Medvedeva, T.
Mooney, M.
Olsen, J.
Piroue, P.
Quan, X.
Saka, H.
Stickland, D.
Tully, C.
Werner, J. S.
Zuranski, A.
Barnes, V. E.
Benedetti, D.
Bortoletto, D.
Gutay, L.
Jha, M. K.
Jones, M.
Jung, K.
Kress, M.
Leonardo, N.
Miller, D. H.
Neumeister, N.
Primavera, F.
Radburn-Smith, B. C.
Shi, X.
Shipsey, I.
Silvers, D.
Sun, J.
Svyatkovskiy, A.
Wang, F.
Xie, W.
Xu, L.
Zablocki, J.
Parashar, N.
Stupak, J.
Adair, A.
Akgun, B.
Chen, Z.
Ecklund, K. M.
Geurts, F. J. M.
Li, W.
Michlin, B.
Northup, M.
Padley, B. P.
Redjimi, R.
Roberts, J.
Rorie, J.
Tu, Z.
Zabel, J.
Betchart, B.
Bodek, A.
de Barbaro, P.
Demina, R.
Eshaq, Y.
Ferbel, T.
Galanti, M.
Garcia-Bellido, A.
Goldenzweig, P.
Han, J.
Harel, A.
Hindrichs, O.
Khukhunaishvili, A.
Petrillo, G.
Verzetti, M.
Vishnevskiy, D.
Demortier, L.
Arora, S.
Barker, A.
Chou, J. P.
Contreras-Campana, C.
Contreras-Campana, E.
Duggan, D.
Ferencek, D.
Gershtein, Y.
Gray, R.
Halkiadakis, E.
Hidas, D.
Hughes, E.
Kaplan, S.
Elayavalli, R. Kunnawalkam
Lath, A.
Panwalkar, S.
Park, M.
Salur, S.
Schnetzer, S.
Sheffield, D.
Somalwar, S.
Stone, R.
Thomas, S.
Thomassen, P.
Walker, M.
Foerster, M.
Rose, K.
Spanier, S.
York, A.
Bouhali, O.
Hernandez, A. Castaneda
Dalchenko, M.
De Mattia, M.
Delgado, A.
Dildick, S.
Eusebi, R.
Flanagan, W.
Gilmore, J.
Kamon, T.
Krutelyov, V.
Montalvo, R.
Mueller, R.
Osipenkov, I.
Pakhotin, Y.
Patel, R.
Perloff, A.
Roe, J.
Rose, A.
Safonov, A.
Suarez, I.
Tatarinov, A.
Ulmer, K. A.
Akchurin, N.
Cowden, C.
Damgov, J.
Dragoiu, C.
Dudero, P. R.
Faulkner, J.
Kovitanggoon, K.
Kunori, S.
Lamichhane, K.
Lee, S. W.
Libeiro, T.
Undleeb, S.
Volobouev, I.
Appelt, E.
Delannoy, A. G.
Greene, S.
Gurrola, A.
Janjam, R.
Johns, W.
Maguire, C.
Mao, Y.
Melo, A.
Sheldon, P.
Snook, B.
Tuo, S.
Velkovska, J.
Xu, Q.
Arenton, M. W.
Boutle, S.
Cox, B.
Francis, B.
Goodell, J.
Hirosky, R.
Ledovskoy, A.
Li, H.
Lin, C.
Neu, C.
Wolfe, E.
Wood, J.
Xia, F.
Clarke, C.
Harr, R.
Karchin, P. E.
Don, C. Kottachchi Kankanamge
Lamichhane, P.
Sturdy, J.
Belknap, D. A.
Carlsmith, D.
Cepeda, M.
Christian, A.
Dasu, S.
Dodd, L.
Duric, S.
Friis, E.
Hall-Wilton, R.
Herndon, M.
Herve, A.
Klabbers, P.
Lanaro, A.
Levine, A.
Long, K.
Loveless, R.
Mohapatra, A.
Ojalvo, I.
Perry, T.
Pierro, G. A.
Polese, G.
Ross, I.
Ruggles, T.
Sarangi, T.
Savin, A.
Smith, N.
Smith, W. H.
Taylor, D.
Woods, N.
CA CMS Collaboration
TI Search for third-generation scalar leptoquarks in the t tau channel in
proton-proton collisions at root s = 8 TeV (vol 7, 042, 2015)
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Correction
C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia.
[Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Knuenz, V.; Koenig, A.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria.
[Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium.
[Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium.
[Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Zenoni, F.; Zhang, F.] Univ Libre Bruxelles, Brussels, Belgium.
[Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium.
[Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, Louvain La Neuve, Belgium.
[Beliy, N.; Hammad, G. H.] Univ Mons, Mons, Belgium.
[Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
[Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil.
[Dogra, S.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil.
[Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil.
[Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria.
[Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, Sofia, Bulgaria.
[Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.] Inst High Energy Phys, Beijing, Peoples R China.
[Asawatangtrakuldee, C.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Wang, M.; Wang, Q.; Xu, Z.; Yang, D.; Zhang, F.; Zhang, L.; Zhang, Z.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China.
[Avila, C.; Cabrera, A.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia.
[Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia.
[Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia.
[Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia.
[Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus.
[Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic.
[Ali, A.; Aly, R.; Aly, S.; Elgammal, S.; Kamel, A. Ellithi; Lotfy, A.; Mahmoud, M. A.; Masod, R.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt.
[Giammanco, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia.
[Eerola, P.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland.
[Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland.
[Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France.
[Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Bernet, C.; Abdulsalam, A.] Ecole Polytech, Lab Leprince Ringuet, IN2P3, CNRS, Palaiseau, France.
[Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France.
[Gadrat, S.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, CNRS, IN2P3, Villeurbanne, France.
[Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, IN2P3,Inst Phys Nucl Lyon, Villeurbanne, France.
[Lomidze, D.; Toriashvili, T.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, Tbilisi, Rep of Georgia.
[Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany.
[Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany.
[Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Roland, B.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Wissing, C.] DESY, Hamburg, Germany.
[Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany.
[Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Woehrmann, C.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany.
[Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece.
[Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece.
[Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Abdulsalam, A.] Univ Ioannina, Ioannina, Greece.
[Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary.
[Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary.
[Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.] Univ Debrecen, Debrecen, Hungary.
[Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India.
[Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh, India.
[Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi, India.
[Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India.
[Abdulsalam, A.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay, Maharashtra, India.
[Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Bombay, Maharashtra, India.
[Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India.
[Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran.
[Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin, Ireland.
[Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy.
[Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Cristella, L.; De Palma, M.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy.
[Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy.
[Abbiendi, G.; Benvenuti, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy.
[Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy.
[Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy.
[Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy.
[Giordano, F.] CSFNSM, Catania, Italy.
[Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy.
[Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy.
[Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
[Calvelli, V.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy.
[Calvelli, V.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Univ Genoa, Genoa, Italy.
[Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy.
[Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy.
[Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy.
[Esposito, M.; Iorio, A. O. M.; Sciacca, C.] Univ Naples Federico II, Naples, Italy.
[Cavallo, N.; Fabozzi, F.] Univ Basilicata, Potenza, Italy.
[Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy.
[Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy.
[Bisello, D.; Branca, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy.
Univ Trento, Trento, Italy.
[Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy.
[Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, Pavia, Italy.
[Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy.
[Solestizi, L. Alunni; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, Perugia, Italy.
[Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy.
[Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy.
[Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Micheli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Roma, Rome, Italy.
[Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; De Remigis, P.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.
[Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Pacher, L.; Angioni, G. L. Pinna; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy.
[Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy.
[Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy.
[Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy.
[Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea.
[Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea.
[Kim, H.; Kim, T. J.; Ryu, M. S.] Chonbuk Natl Univ, Jeonju, South Korea.
[Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea.
[Lee, S.; Kim, H.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea.
[Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea.
[Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.] Univ Seoul, Seoul, South Korea.
[Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea.
[Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania.
[Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia.
[Linares, E. Casimiro; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez, G. Ramirez; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico.
[Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico.
[Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico.
[Krofcheck, D.] Univ Auckland, Auckland, New Zealand.
[Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch, New Zealand.
[Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan.
[Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland.
[Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland.
[Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Exp Particulas, Lisbon, Portugal.
[Finger, M., Jr.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Toriashvili, T.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia.
[Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Inst Nucl Res, Moscow, Russia.
[Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia.
[Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia.
[Popov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia.
[Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia.
[Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia.
[Maestre, J. Alcaraz; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, Madrid, Spain.
[Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain.
[Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain.
[Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santander, Spain.
[Rabady, D.; Genchev, V.; Sharma, A.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schafer, C.; Schwick, C.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wohri, H. K.; Zagozdzinska, A.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland.
[Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland.
[Bachmair, F.; Bani, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland.
[Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.] Univ Zurich, Zurich, Switzerland.
[Ferro, F.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan.
[Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei, Taiwan.
[Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand.
[Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey.
[Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle East Tech Univ, Dept Phys, Ankara, Turkey.
[Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey.
[Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.] Istanbul Tech Univ, Istanbul, Turkey.
[Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine.
[Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine.
[Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-Storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England.
[Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot, Oxon, England.
[Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Imperial Coll, London, England.
[Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England.
[Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA.
[Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA.
[Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA.
[Bhattacharya, S.; Alimena, J.; Berry, E.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.] Brown Univ, Providence, RI 02912 USA.
[Mulders, M.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA.
[Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA.
[Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wei, H.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wurthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Dubinin, M.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA.
[Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA.
[Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; No, J. M. Marra Ffi; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, S. J.; Yelton, J.] Univ Florida, Gainesville, FL USA.
[Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA.
[Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA.
[Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-Palcek, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA.
[Turner, M.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA.
[Bilki, B.; Clarida, W.; Dilsiz, K.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Sen, S.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA.
[Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.] Johns Hopkins Univ, Baltimore, MD USA.
[Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA.
[Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA.
[Wang, J.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA.
[Dahmes, B.; Finkel, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA.
[Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA.
[Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA.
[Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY USA.
[Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA.
[Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA.
[Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA.
[Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA.
[Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.] Purdue Univ, W Lafayette, IN 47907 USA.
[Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA.
[Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA.
[Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA.
[Demortier, L.] Rockefeller Univ, 1230 York Ave, New York, NY 10021 USA.
[Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA.
[Foerster, M.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA.
[Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA.
[Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Mao, Y.; Abdulsalam, A.; Ackert, A.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA.
[Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA.
[Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA.
[Abdulsalam, A.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA.
[Fruehwirth, R.; Krammer, M.; Schieck, J.; Wulz, C. -E.] Vienna Univ Technol, Vienna, Austria.
[Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil.
[Ali, A.; Masod, R.; Radi, A.] Ain Shams Univ, Cairo, Egypt.
[Ali, A.; Elgammal, S.; Radi, A.] British Univ Egypt, Cairo, Egypt.
[Aly, R.; Aly, S.] Helwan Univ, Cairo, Egypt.
[Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt.
[Lotfy, A.; Mahmoud, M. A.; Abdulsalam, A.] Fayoum Univ, Al Fayyum, Egypt.
[Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France.
[Karacheban, O.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany.
[Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary.
[Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India.
[Gurtu, A.] King Abdulaziz Univ, Jeddah, Saudi Arabia.
[Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka.
[Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran.
[Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran.
[Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran.
[Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, Siena, Italy.
[Moon, C. S.] CNRS, IN2P3, Paris, France.
[Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia.
[Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia.
[Azarkin, M.; Dremin, I.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia.
[Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy.
[Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy.
[Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland.
[Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Cerci, S.; Tali, B.] Adiyaman Univ, Adiyaman, Turkey.
[Kangal, E. E.] Mersin Univ, Mersin, Turkey.
[Onengut, G.] Cag Univ, Mersin, Turkey.
[Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey.
[Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey.
[Isildak, B.] Ozyegin Univ, Istanbul, Turkey.
[Karapinar, G.] Izmir Inst Technol, Izmir, Turkey.
[Albayrak, E. A.; Kaya, M.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey.
[Kaya, M.] Marmara Univ, Istanbul, Turkey.
[Kaya, O.] Kafkas Univ, Kars, Turkey.
[Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey.
[Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey.
[Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England.
[Wasserbaech, S.] Utah Valley Univ, Orem, UT USA.
[Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey.
[Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar.
RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan, Armenia.
RI Paulini, Manfred/N-7794-2014; Lokhtin, Igor/D-7004-2012; Manganote,
Edmilson/K-8251-2013; Goh, Junghwan/Q-3720-2016; TUVE',
Cristina/P-3933-2015; Della Ricca, Giuseppe/B-6826-2013; Tuominen,
Eija/A-5288-2017
OI Paulini, Manfred/0000-0002-6714-5787; Goh, Junghwan/0000-0002-1129-2083;
TUVE', Cristina/0000-0003-0739-3153; Della Ricca,
Giuseppe/0000-0003-2831-6982; Tuominen, Eija/0000-0002-7073-7767
NR 1
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD NOV 9
PY 2016
IS 11
AR 056
DI 10.1007/JHEP11(2016)056
PG 20
WC Physics, Particles & Fields
SC Physics
GA EC5LF
UT WOS:000388176100001
ER
PT J
AU Lee, JH
Han, KS
Lee, JS
Lee, AS
Park, SK
Hong, SY
Lee, JC
Mueller, KT
Hong, SM
Koo, CM
AF Lee, Jin Hong
Han, Kee Sung
Lee, Je Seung
Lee, Albert S.
Park, Seo Kyung
Hong, Sung Yun
Lee, Jong-Chan
Mueller, Karl T.
Hong, Soon Man
Koo, Chong Min
TI Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals
SO ADVANCED MATERIALS
LA English
DT Article
ID BICONTINUOUS CUBIC PHASES; SELF-ORGANIZATION; FIELD GRADIENT; DIFFUSION;
SALTS; ELECTROLYTES; CHALLENGES; CATIONS; ANIONS; FILMS
AB A novel ionic mixture of an imidazolium-based room-temperature ionic liquid containing ethylene-oxide-functionalized phosphite anions is fabricated, which, when doped with lithium salt, self-assembles into a smectic-ordered ionic liquid crystal through Coulombic interactions between the ion species. Interestingly, the smectic order in the ionic-liquid-crystal ionogel facilitates ionic transport.
C1 [Lee, Jin Hong; Lee, Albert S.; Hong, Soon Man; Koo, Chong Min] Korea Inst Sci & Technol, Mat Architecturing Res Ctr, Hwarang Ro 14 Gil 5, Seoul 136791, South Korea.
[Lee, Jin Hong; Lee, Jong-Chan] Seoul Natl Univ, Sch Chem & Biol Engn, 599 Gwanak Ro, Seoul 151742, South Korea.
[Lee, Je Seung; Lee, Jong-Chan] Seoul Natl Univ, Inst Chem Proc, 599 Gwanak Ro, Seoul 151742, South Korea.
[Han, Kee Sung] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA.
[Lee, Je Seung; Park, Seo Kyung; Hong, Sung Yun] Kyung Hee Univ, Dept Chem, 26 Kyungheedae Ro, Seoul 02447, South Korea.
[Mueller, Karl T.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA.
[Mueller, Karl T.] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA.
[Hong, Soon Man; Koo, Chong Min] Univ Sci & Technol, Nanomat Sci & Engn, Daejeon 305350, South Korea.
RP Koo, CM (reprint author), Korea Inst Sci & Technol, Mat Architecturing Res Ctr, Hwarang Ro 14 Gil 5, Seoul 136791, South Korea.; Lee, JS (reprint author), Seoul Natl Univ, Inst Chem Proc, 599 Gwanak Ro, Seoul 151742, South Korea.; Mueller, KT (reprint author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA.; Mueller, KT (reprint author), Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA.; Koo, CM (reprint author), Univ Sci & Technol, Nanomat Sci & Engn, Daejeon 305350, South Korea.
EM leejs70@khu.ac.kr; karl.mueller@pnnl.gov; koo@kist.re.kr
FU Fundamental RAMP;D Program for Core Technology of Materials; Industrial
Strategic Technology Development Program - Ministry of Knowledge
Economy, Republic of Korea; Materials Architecturing Research Center of
Korea Institute of Science and Technology (KIST); Disaster and Safety
Management Institute - Ministry of Public Safety and Security of Korea
government; DOE BER
FX J.H.L. and K.S.H. contributed equally to this work. This work was
financially supported by a grant from the Fundamental R&D Program for
Core Technology of Materials, and Industrial Strategic Technology
Development Program funded by the Ministry of Knowledge Economy,
Republic of Korea, and partially supported by Materials Architecturing
Research Center of Korea Institute of Science and Technology (KIST).
This research was also supported by a grant from the Disaster and Safety
Management Institute funded by the Ministry of Public Safety and
Security of Korea government. Synchrotron X-ray diffraction measurements
were performed at Pohang Light Source, South Korea, and NMR experiments
were performed at EMSL, a DOE Office of Science user facility sponsored
by the DOE BER and located at PNNL.
NR 43
TC 0
Z9 0
U1 17
U2 17
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD NOV 9
PY 2016
VL 28
IS 42
BP 9301
EP 9307
DI 10.1002/adma.201602702
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA EG6RV
UT WOS:000391174600004
PM 27604816
ER
PT J
AU Liao, WQ
Zhao, DW
Yu, Y
Grice, CR
Wang, CL
Cimaroli, AJ
Schulz, P
Meng, WW
Zhu, K
Xiong, RG
Yan, YF
AF Liao, Weiqiang
Zhao, Dewei
Yu, Yue
Grice, Corey R.
Wang, Changlei
Cimaroli, Alexander J.
Schulz, Philip
Meng, Weiwei
Zhu, Kai
Xiong, Ren-Gen
Yan, Yanfa
TI Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar
Cells Achieving Power Conversion Efficiencies up to 6.22%
SO ADVANCED MATERIALS
LA English
DT Article
ID ORGANOMETAL HALIDE PEROVSKITES; PHOTOVOLTAIC APPLICATIONS; SELECTIVE
LAYERS; CH3NH3PBI3; IODIDE; PERFORMANCE; RECOMBINATION; SEMICONDUCTORS;
FABRICATION; HYSTERESIS
AB Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI(3)) perovskite solar cells (PVSCs) are demonstrated. Our FASnI(3) PVSCs achieved average power conversion effi ciencies (PCEs) of 5.41% +/- 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state effi ciency of approximate to 6.00% for over 100 s.
C1 [Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R.; Wang, Changlei; Cimaroli, Alexander J.; Meng, Weiwei; Yan, Yanfa] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA.
[Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R.; Wang, Changlei; Cimaroli, Alexander J.; Meng, Weiwei; Yan, Yanfa] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA.
[Liao, Weiqiang; Xiong, Ren-Gen] Southeast Univ, Ordered Matter Sci Res Ctr, Nanjing 211189, Jiangsu, Peoples R China.
[Schulz, Philip; Zhu, Kai] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.
RP Zhao, DW; Yan, YF (reprint author), Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA.; Zhao, DW; Yan, YF (reprint author), Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA.; Xiong, RG (reprint author), Southeast Univ, Ordered Matter Sci Res Ctr, Nanjing 211189, Jiangsu, Peoples R China.
EM dewei.zhao@utoledo.edu; xiongrg@seu.edu.cn; yanfa.yan@utoledo.edu
OI Grice, Corey/0000-0002-0841-5943
FU U.S. Department of Energy (DOE) SunShot Initiative [DE-FOA-0000990];
National Science Foundation [CHE-1230246, DMR-1534686]; Ohio Research
Scholar Program; U.S. Department of Energy [DE-AC36-08-GO28308];
National Center for Photovoltaics - U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Solar Energy Technologies
Office; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]; National Natural Science Foundation of China (NSFC)
[91422301]
FX W.L. and D.Z. contributed equally to this work. This work was
financially supported by the U.S. Department of Energy (DOE) SunShot
Initiative under the Next Generation Photovoltaics 3 program
(DE-FOA-0000990), the National Science Foundation under Contract Nos.
CHE-1230246 and DMR-1534686, and the Ohio Research Scholar Program. The
work at the National Renewable Energy Laboratory was supported by the
U.S. Department of Energy under under Contract No. DE-AC36-08-GO28308.
P.S. acknowledges the support by the Hybrid Perovskite Solar Cell
program of the National Center for Photovoltaics funded by U.S.
Department of Energy, Office of Energy Efficiency and Renewable Energy,
Solar Energy Technologies Office. This research used the resources of
the Ohio Supercomputer Center and the National Energy Research
Scientific Computing Center, which was supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. The work at the Southeast University (P.R. China) was
supported by the National Natural Science Foundation of China (NSFC)
under Contract No. 91422301.
NR 67
TC 5
Z9 5
U1 71
U2 71
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD NOV 9
PY 2016
VL 28
IS 42
BP 9333
EP +
DI 10.1002/adma.201602992
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA EG6RV
UT WOS:000391174600009
PM 27571446
ER
PT J
AU Crable, BR
Sieber, JR
Mao, X
Alvarez-Cohen, L
Gunsalus, R
Loo, RRO
Nguyen, H
McInerney, MJ
AF Crable, Bryan R.
Sieber, Jessica R.
Mao, Xinwei
Alvarez-Cohen, Lisa
Gunsalus, Robert
Loo, Rachel R. Ogorzalek
Nguyen, Hong
McInerney, Michael J.
TI Membrane Complexes of Syntrophomonas wolfei Involved in Syntrophic
Butyrate Degradation and Hydrogen Formation
SO FRONTIERS IN MICROBIOLOGY
LA English
DT Article
DE syntrophy; methanogenesis; biohydrogen; hydrogenase; fatty acids
ID METHANOSPIRILLUM-HUNGATII; BACTERIAL NANOWIRES; SP-NOV; METABOLISM;
FATTY; MICROORGANISMS; METHANOGENS; COOPERATION; COCULTURES; TRANSPORT
AB Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in co-culture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and co-cultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS) oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic butyrate degradation.
C1 [Crable, Bryan R.; Sieber, Jessica R.; McInerney, Michael J.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Mao, Xinwei; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
[Gunsalus, Robert] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA USA.
[Loo, Rachel R. Ogorzalek; Nguyen, Hong] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90024 USA.
[Crable, Bryan R.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Sieber, Jessica R.] Univ Minnesota, Dept Biol, Duluth, MN 55812 USA.
[Mao, Xinwei] SUNY Stony Brook, Dept Civil Engn, Stony Brook, NY 11794 USA.
RP McInerney, MJ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
EM mcinerney@ou.edu
FU Department of Energy from the Chemical Sciences, Geosciences and
Biosciences Division, Office of Basic Energy Sciences
[DE-EG02-96ER20214]; National Institutes of Health [R01GM085402];
Department of Energy Office of Science (BER) [DE-FC-02-02ER63421]; U.S.
Department of Energy [DE-FG03-86ER13498]; National Institute of
Environmental Health and Safety [P42-ES04705-14]; National Science
Foundation [CBET-1336709]
FX Cultivation, gene expression and blue native gel analyses were supported
by Department of Energy contract DE-EG02-96ER20214 from the Chemical
Sciences, Geosciences and Biosciences Division, Office of Basic Energy
Sciences to MM. Proteomic analyses were supported by the National
Institutes of Health contract R01GM085402 to Joseph A. Loo and RO and
Department of Energy Office of Science (BER) contract DE-FC-02-02ER63421
for the UCLA-DOE Institute. Assistance in cloning and expression
provided by RG group was supported by U.S. Department of Energy contract
DE-FG03-86ER13498. Work on S. wolfei-D. mccarlyi was supported by the
National Institute of Environmental Health and Safety contract
P42-ES04705-14 and the National Science Foundation contract CBET-1336709
to I,A-C.
NR 34
TC 0
Z9 0
U1 7
U2 7
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 1664-302X
J9 FRONT MICROBIOL
JI Front. Microbiol.
PD NOV 9
PY 2016
VL 7
AR 1795
DI 10.3389/fmicb.2016.01795
PG 9
WC Microbiology
SC Microbiology
GA ED2SG
UT WOS:000388698400001
PM 27881975
ER
PT J
AU Xiao, LG
Chen, S
Gao, K
Peng, XB
Liu, F
Cao, Y
Wong, WY
Wong, WK
Zhu, XJ
AF Xiao, Liangang
Chen, Song
Gao, Ke
Peng, Xiaobin
Liu, Feng
Cao, Yong
Wong, Wai-Yeung
Wong, Wai-Kwok
Zhu, Xunjin
TI New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient
Organic Solar Cells
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE porphyrin; organic solar cells; terthiophene; peripheral substitutions;
molecular packing
ID POWER CONVERSION EFFICIENCY; SMALL-MOLECULE; PHOTOVOLTAIC CELLS; FILL
FACTOR; BULK; POLYMER; PERFORMANCE; DIKETOPYRROLOPYRROLE; UNIT; LENGTH
AB To mimic the natural photosynthetic systems utilizing chlorophylls to absorb light and store light energy, two new porphyrin-based small molecules of PTTR and PTTCNR have been developed for photovoltaic applications. The highest power conversion efficiency of 8.21% is achieved, corresponding to a short-circuit current of 14.30 mA cm(-2), open-circuit voltage of 0.82 V, and fill factor of 70.01%. The excellent device performances can be ascribed to the engineering of molecule structure and film morphology. The horizontal conjugation of 3,3 ''-dihexyl-terthiophene to porphyrin-core with the vertical aliphatic 2-octylundecyl peripheral substitutions, can not only effectively increase the solar flux coverage between the conventional Soret and Q bands of porphyrin unit, but also optimize molecular packing through polymorphism associated with side-chains and the linear pi-conjugated backbones. And the additive of 1,8-diiodooctane and subsequent chloroform solvent vapor annealing facilitate the formation of the blend films with [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) characteristics of bicontinuous, interpenetrating networks required for efficient charge separation and transportation.
C1 [Xiao, Liangang; Gao, Ke; Peng, Xiaobin; Cao, Yong] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China.
[Chen, Song; Wong, Wai-Kwok; Zhu, Xunjin] Hong Kong Baptist Univ, Dept Chem, Res Ctr Excellence Organ Elect, Inst Mol Funct Mat, Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China.
[Chen, Song; Wong, Wai-Kwok; Zhu, Xunjin] Hong Kong Baptist Univ, Inst Adv Mat, Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China.
[Liu, Feng] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Wong, Wai-Yeung] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hong Kong, Hong Kong, Peoples R China.
RP Peng, XB (reprint author), South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China.; Zhu, XJ (reprint author), Hong Kong Baptist Univ, Dept Chem, Res Ctr Excellence Organ Elect, Inst Mol Funct Mat, Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China.; Zhu, XJ (reprint author), Hong Kong Baptist Univ, Inst Adv Mat, Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China.; Liu, F (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Wong, WY (reprint author), Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hong Kong, Hong Kong, Peoples R China.
EM chxbpeng@scut.edu.cn; iamfengliu@gmail.com; ywywong@hkbu.edu.hk;
xjzhu@hkbu.edu.hk
RI Gao, Ke/B-3412-2017; Liu, Feng/J-4361-2014
OI Liu, Feng/0000-0002-5572-8512
FU International Science & Technology Cooperation Program of China
[2013DFG52740, 2010DFAS2150]; National Natural Science Foundation of
China [51473053, 51073060, 91222201, 91333206]; Hong Kong Research
Grants Council [HKBU 22304115-ECS, HKBU 203011]; Hong Kong Baptist
University [FRG1/14-15/058, FRG2/13-14/083, RC-ICRS/15-16/02]; Areas of
Excellence Scheme [AoE/P-03/08]; Hong Kong Polytechnic University; U.S.
Department of Energy, Office of Basic Energy Sciences [DE-SC0001087]
FX This work was financially supported by International Science &
Technology Cooperation Program of China (2013DFG52740, 2010DFAS2150) and
the National Natural Science Foundation of China (51473053, 51073060,
91222201, 91333206). X.Z., W.-K.W., and W.-Y.W. thank Hong Kong Research
Grants Council (HKBU 22304115-ECS, HKBU 203011), Hong Kong Baptist
University (FRG1/14-15/058, FRG2/13-14/083, and RC-ICRS/15-16/02) and
Areas of Excellence Scheme ([AoE/P-03/08]) for the financial support.
W.-Y.W. also acknowledges the Hong Kong Polytechnic University for the
financial support. F.L. was financially supported by the U.S. Department
of Energy, Office of Basic Energy Sciences (DE-SC0001087). Specifically,
X.Z. and X.B.P. thank Chang Liu, Junbiao Peng (SCUT), and Ben Ong (HKBU)
for their help and discussions in this work.
NR 42
TC 3
Z9 3
U1 35
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 9
PY 2016
VL 8
IS 44
BP 30176
EP 30183
DI 10.1021/acsami.6b09790
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA EB9SK
UT WOS:000387737200038
PM 27731985
ER
PT J
AU Jia, L
Wu, TP
Lu, J
Ma, L
Zhu, WT
Qiu, XP
AF Jia, Lei
Wu, Tianpin
Lu, Jun
Ma, Lu
Zhu, Wentao
Qiu, Xinping
TI Polysulfides Capture-Copper Additive for Long Cycle Life Lithium Sulfur
Batteries
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE sulfur utilization; polysulfides capture; shuttle effect free; in situ
generation; Coulombic efficiency; lithium sulfur battery
ID S BATTERIES; CARBON NANOTUBES; PERFORMANCE; COMPOSITE; CATHODE;
ELECTRODE
AB Copper powder was introduced into the lithium sulfur battery system to capture intermediate polysulfides and CuxS (x = 1 or 2) species was generated depending on the chain length of polysulfides. This phenomenon was verified by X-ray absorption near edge structure technique. The results indicated that copper can be oxidized to CuS by Li2Sx (x >= 6), and a mixture of Cu2S and CuS was obtained when x ranges from 3 to 6. While Cu2S is eventually formed in the presence of Li2S3. After several cycles activation, the polysulfide-shuttle effect and self-discharge phenomenon which hinder the application of lithium sulfur batteries are found nearly eliminated Further experiments demonstrated that in the case of Cu2S generation, a high specific sulfur capacity of 1300 mAh g(-1) could be delivered, corresponding to 77.6% sulfur utilization, while the Coulombic efficiency approximates around 100%. Self-discharge experiment further demonstrated that polysulfides almost disappear in the electrolyte, which verified the polysulfide-capture capability of copper.
C1 [Jia, Lei; Zhu, Wentao; Qiu, Xinping] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China.
[Wu, Tianpin] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Lu, Jun; Ma, Lu] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Qiu, XP (reprint author), Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China.
EM qiuxp@mail.tsinghua.edu.cn
FU National Key Project on Basic Research [2015CB251104]; China-US Electric
Vehicle Project [S2016G9004]; National Natural Science Foundation of
China [51361130151]; Beijing Science Foundation [2120001]; U.S. DOE
[DE-AC02-06CH11357]
FX The authors appreciate the support from National Key Project on Basic
Research (2015CB251104), China-US Electric Vehicle Project (S2016G9004),
National Natural Science Foundation of China (51361130151), and Beijing
Science Foundation (2120001). Use of the Advanced Photon Source, an
Office of Science User Facility operated for the U.S. Department of
Energy (DOE) Office of Science by Argonne National Laboratory, was
supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.
NR 31
TC 0
Z9 0
U1 42
U2 42
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 9
PY 2016
VL 8
IS 44
BP 30248
EP 30255
DI 10.1021/acsami.6b10366
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA EB9SK
UT WOS:000387737200046
PM 27753479
ER
PT J
AU Wardrip, NC
Dsouza, M
Urgun-Demirtas, M
Snyder, SW
Gilbert, JA
Arnusch, CJ
AF Wardrip, Nathaniel C.
Dsouza, Melissa
Urgun-Demirtas, Meltem
Snyder, Seth W.
Gilbert, Jack A.
Arnusch, Christopher J.
TI Printing-Assisted Surface Modifications of Patterned Ultrafiltration
Membranes
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE 3D printing; maskless lithography; ultrafiltration membranes;
UV-initiated graft polymerization; fouling; microbial community analysis
ID WASTE-WATER TREATMENT; FILM COMPOSITE MEMBRANES; CROSS-FLOW FILTRATION;
NANOFILTRATION MEMBRANES; POLYMER BRUSHES; FABRICATION; COPOLYMER;
BIOREACTORS; DIVERSITY; SEQUENCES
AB Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a masidess lithographic patterning technique for the generation of patterned polymer coatings, on ultrafiltration membranes. Polyethylene glycol, zwitterionic, Or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89);which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. This study broadens the tools for sulfate modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.
C1 [Wardrip, Nathaniel C.; Arnusch, Christopher J.] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Dept Desalinat & Water Treatment, Sede Boqer Campus, IL-84990 Sede Boqer, Israel.
[Urgun-Demirtas, Meltem; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Lemont, IL 60439 USA.
[Gilbert, Jack A.] Argonne Natl Lab, BioSci Div, 9700 S Cass Ave, Lemont, IL 60439 USA.
[Dsouza, Melissa; Gilbert, Jack A.] Univ Chicago, Dept Surg, 5841 S Maryland Ave, Chicago, IL 60637 USA.
[Dsouza, Melissa; Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA.
RP Arnusch, CJ (reprint author), Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Dept Desalinat & Water Treatment, Sede Boqer Campus, IL-84990 Sede Boqer, Israel.
EM arnusch@bgu.ac.il
FU Ben Gurion University of the Negev - University of Chicago Institute for
Molecular Engineering - Argonne National Laboratory Collaborative
Program on Molecular Engineering of Water Resources; Israel Science
Foundation [1474-13]
FX We acknowledge financial support provided by the Ben Gurion University
of the Negev - University of Chicago Institute for Molecular Engineering
- Argonne National Laboratory Collaborative Program on Molecular
Engineering of Water Resources, and the Israel Science Foundation (Grant
1474-13) to C.J.A.
NR 49
TC 0
Z9 0
U1 25
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 9
PY 2016
VL 8
IS 44
BP 30271
EP 30280
DI 10.1021/acsami.6b11331
PG 10
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA EB9SK
UT WOS:000387737200049
PM 27749035
ER
PT J
AU Rudd, ND
Wang, H
Fuentes-Fernandez, EMA
Teat, SJ
Chen, F
Hall, G
Chabal, YJ
Li, J
AF Rudd, Nathan D.
Wang, Hao
Fuentes-Fernandez, Erika M. A.
Teat, Simon J.
Chen, Feng
Hall, Gene
Chabal, Yves J.
Li, Jing
TI Highly Efficient Luminescent Metal-Organic Framework for the
Simultaneous Detection and Removal of Heavy Metals from Water
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE luminescent metal-organic framework; heavy metal detection; heavy metal
adsorption; ligand-based emission; isoreticular series
ID AQUEOUS-SOLUTION; SELECTIVE DETECTION; ENHANCED REMOVAL; ELECTROCHEMICAL
DETECTION; ULTRASENSITIVE DETECTION; GOLD NANOPARTICLES; MERCURY(II)
IONS; HG2+ REMOVAL; FLUORESCENT; SENSOR
AB We have designed and synthesized an isoreticular series of luminescent metal-organic frameworks (LMOFs) by incorporating a strongly emissive molecular fluorophore and functionally diverse colinkers into Zn-based structures. The three-dimensional porous networks of LMOF-261,-262, and-263 represent a unique/new type of nets, classified as a 2-nodal, (4,4)-c net (mot-e type) with 4-fold, class ilia interpenetration. All compounds crystallize in a body-centered tetragonal crystal system (space group I4(1)/a). A systematic study has been implemented to analyze their interactions with heavy metals. LMOF-263 exhibits impressive water stability, high porosity, and strong luminescence, making it an excellent candidate as a fluorescent chemical sensor and adsorbent for aqueous contaminants. It is extremely responsive to toxic heavy metals at a parts per billion level (3.3 ppb Hg2+, 19.7 ppb Pb2+) and demonstrates high selectivity for heavy metals over light metals, with detection ratios of 167.4 and 209.5 for Hg2+/Ca2+ and Hg2+/Mg2+, respectively. Mixed-metal adsorption experiments also show that LMOF-263 selectively adsorbs Hg2+ over other heavy metal ions in addition to light metals. The Pb2+ K-SV value for LMOF-263 (55,017 M-1) is the highest among LMOFs reported to date, and the Hg2+ K-SV value is the second highest (459,4-46 M-1). LMOF-263 exhibits a maximum adsorption capacity of 380 mg Hg2+/g. The Hg2+ adsorption process follows pseudo-second-order kinetics, removing 99.1% of the metal within 30 min. An in situ XPS study provides insight to help understand the interaction mechanism between Hg2+ and LMOF-263. No other MOFs have demonstrated such a high performance in both the detection and the capture of Hg2+ from aqueous solution.
C1 [Rudd, Nathan D.; Wang, Hao; Hall, Gene; Li, Jing] Rutgers State Univ, Dept Chem & Chem Biol, 610 Taylor Rd, Piscataway, NJ 08854 USA.
[Fuentes-Fernandez, Erika M. A.; Chabal, Yves J.] Univ Texas Dallas, Dept Mat Sci & Engn, 800 West Campbell Rd, Dallas, TX 75080 USA.
[Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Chen, Feng] Rider Univ, Dept Chem Biochem & Phys, 2083 Lawrenceville Rd, Lawrenceville, NJ 08648 USA.
RP Li, J (reprint author), Rutgers State Univ, Dept Chem & Chem Biol, 610 Taylor Rd, Piscataway, NJ 08854 USA.
EM jingli@rutgers.edu
FU Department of Energy, Basic Energy Sciences, Division of Materials
Sciences and Engineering [DE-FG02-08ER-46491]; Office of Science, Office
of Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX We are grateful for the financial support from the Department of Energy,
Basic Energy Sciences, Division of Materials Sciences and Engineering
through Grant No. DE-FG02-08ER-46491. The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. We would also like to thank Horiba Scientific for the
loan of the XGT-1000WR EDXRF spectrometer. N.R. would like to especially
thank Ben Deibert and Baiyan Li for their extensive and valued
discussions.
NR 70
TC 4
Z9 4
U1 90
U2 90
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 9
PY 2016
VL 8
IS 44
BP 30294
EP 30303
DI 10.1021/acsami.6b10890
PG 10
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA EB9SK
UT WOS:000387737200052
PM 27736058
ER
PT J
AU Abgrall, N
Aduszkiewicz, A
Ajaz, M
Ali, Y
Andronov, E
Anticic, T
Antoniou, N
Baatar, B
Bay, F
Blondel, A
Blumer, J
Bogomilov, M
Brandin, A
Bravar, A
Brzychczyk, J
Bunyatov, SA
Busygina, O
Christakoglou, P
Cirkovic, M
Czopowicz, T
Davis, N
Debieux, S
Dembinski, H
Deveaux, M
Diakonos, F
Di Luise, S
Dominik, W
Dumarchez, J
Dynowski, K
Engel, R
Ereditato, A
Feofilov, GA
Fodor, Z
Garibov, A
Gazdzicki, M
Golubeva, M
Grebieszkow, K
Grzeszczuk, A
Guber, F
Haesler, A
Hasegawa, T
Herve, AE
Hierholzer, M
Igolkin, S
Ivashkin, A
Johnson, SR
Kadija, K
Kapoyannis, A
Kaptur, E
Kisiel, J
Kobayashi, T
Kolesnikov, VI
Kolev, D
Kondratiev, VP
Korzenev, A
Kowalik, K
Kowalski, S
Koziel, M
Krasnoperov, A
Kuich, M
Kurepin, A
Larsen, D
Laszlo, A
Lewicki, M
Lyubushkin, VV
Mackowiak-Pawlowska, M
Maksiak, B
Malakhov, AI
Manic, D
Marcinek, A
Marino, AD
Marton, K
Mathes, HJ
Matulewicz, T
Matveev, V
Melkumov, GL
Messerly, B
Mills, GB
Morozov, S
Mrowczynski, S
Nagai, Y
Nakadaira, T
Naskret, M
Nirkko, M
Nishikawa, K
Panagiotou, AD
Paolone, V
Pavin, M
Petukhov, O
Pistillo, C
Planeta, R
Popov, BA
Posiadala-Zezula, M
Pulawski, S
Puzovic, J
Rauch, W
Ravonel, M
Redij, A
Renfordt, R
Richter-Was, E
Robert, A
Rohrich, D
Rondio, E
Roth, M
Rubbia, A
Rumberger, BT
Rustamov, A
Rybczynski, M
Sadovsky, A
Sakashita, K
Sarnecki, R
Schmidt, K
Sekiguchi, T
Selyuzhenkov, I
Seryakov, A
Seyboth, P
Sgalaberna, D
Shibata, M
Slodkowski, M
Staszel, P
Stefanek, G
Stepaniak, J
Strobele, H
Susa, T
Szuba, M
Tada, M
Taranenko, A
Tefelska, A
Tefelski, D
Tereshchenko, V
Tsenov, R
Turko, L
Ulrich, R
Unger, M
Vassiliou, M
Veberic, D
Vechernin, VV
Vesztergombi, G
Vinogradov, L
Wilczek, A
Wlodarczyk, Z
Wojtaszek-Szwarc, A
Wyszynski, O
Yarritu, K
Zambelli, L
Zimmerman, ED
Friend, M
Galymov, V
Hartz, M
Hiraki, T
Ichikawa, A
Kubo, H
Matsuoka, K
Murakami, A
Nakaya, T
Suzuki, K
Tzanov, M
Yu, M
AF Abgrall, N.
Aduszkiewicz, A.
Ajaz, M.
Ali, Y.
Andronov, E.
Anticic, T.
Antoniou, N.
Baatar, B.
Bay, F.
Blondel, A.
Bluemer, J.
Bogomilov, M.
Brandin, A.
Bravar, A.
Brzychczyk, J.
Bunyatov, S. A.
Busygina, O.
Christakoglou, P.
Cirkovic, M.
Czopowicz, T.
Davis, N.
Debieux, S.
Dembinski, H.
Deveaux, M.
Diakonos, F.
Di Luise, S.
Dominik, W.
Dumarchez, J.
Dynowski, K.
Engel, R.
Ereditato, A.
Feofilov, G. A.
Fodor, Z.
Garibov, A.
Gazdzicki, M.
Golubeva, M.
Grebieszkow, K.
Grzeszczuk, A.
Guber, F.
Haesler, A.
Hasegawa, T.
Herve, A. E.
Hierholzer, M.
Igolkin, S.
Ivashkin, A.
Johnson, S. R.
Kadija, K.
Kapoyannis, A.
Kaptur, E.
Kisiel, J.
Kobayashi, T.
Kolesnikov, V. I.
Kolev, D.
Kondratiev, V. P.
Korzenev, A.
Kowalik, K.
Kowalski, S.
Koziel, M.
Krasnoperov, A.
Kuich, M.
Kurepin, A.
Larsen, D.
Laszlo, A.
Lewicki, M.
Lyubushkin, V. V.
Mackowiak-Pawlowska, M.
Maksiak, B.
Malakhov, A. I.
Manic, D.
Marcinek, A.
Marino, A. D.
Marton, K.
Mathes, H. -J.
Matulewicz, T.
Matveev, V.
Melkumov, G. L.
Messerly, B.
Mills, G. B.
Morozov, S.
Mrowczynski, S.
Nagai, Y.
Nakadaira, T.
Naskret, M.
Nirkko, M.
Nishikawa, K.
Panagiotou, A. D.
Paolone, V.
Pavin, M.
Petukhov, O.
Pistillo, C.
Planeta, R.
Popov, B. A.
Posiadala-Zezula, M.
Pulawski, S.
Puzovic, J.
Rauch, W.
Ravonel, M.
Redij, A.
Renfordt, R.
Richter-Was, E.
Robert, A.
Rohrich, D.
Rondio, E.
Roth, M.
Rubbia, A.
Rumberger, B. T.
Rustamov, A.
Rybczynski, M.
Sadovsky, A.
Sakashita, K.
Sarnecki, R.
Schmidt, K.
Sekiguchi, T.
Selyuzhenkov, I.
Seryakov, A.
Seyboth, P.
Sgalaberna, D.
Shibata, M.
Slodkowski, M.
Staszel, P.
Stefanek, G.
Stepaniak, J.
Stroebele, H.
Susa, T.
Szuba, M.
Tada, M.
Taranenko, A.
Tefelska, A.
Tefelski, D.
Tereshchenko, V.
Tsenov, R.
Turko, L.
Ulrich, R.
Unger, M.
Vassiliou, M.
Veberic, D.
Vechernin, V. V.
Vesztergombi, G.
Vinogradov, L.
Wilczek, A.
Wlodarczyk, Z.
Wojtaszek-Szwarc, A.
Wyszynski, O.
Yarritu, K.
Zambelli, L.
Zimmerman, E. D.
Friend, M.
Galymov, V.
Hartz, M.
Hiraki, T.
Ichikawa, A.
Kubo, H.
Matsuoka, K.
Murakami, A.
Nakaya, T.
Suzuki, K.
Tzanov, M.
Yu, M.
CA NA61 SHINE Collaboration
TI Measurements of pi(+/-) differential yields from the surface of the T2K
replica target for incoming 31 GeV/c protons with the NA61/SHINE
spectrometer at the CERN SPS
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID FLUKA CODE
AB Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of pi(+/-)-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.
C1 [Garibov, A.; Rustamov, A.] Natl Ctr Nucl Res, Baku, Azerbaijan.
[Bogomilov, M.; Kolev, D.; Tsenov, R.] Univ Sofia, Fac Phys, Sofia, Bulgaria.
[Anticic, T.; Kadija, K.; Pavin, M.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia.
[Dumarchez, J.; Pavin, M.; Popov, B. A.; Robert, A.; Zambelli, L.] Univ Paris VI & VII, LPNHE, Paris, France.
[Bluemer, J.; Dembinski, H.; Engel, R.; Herve, A. E.; Mathes, H. -J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D.] Karlsruhe Inst Technol, Karlsruhe, Germany.
[Rauch, W.] Fachhsch Frankfurt, Frankfurt, Germany.
[Deveaux, M.; Gazdzicki, M.; Koziel, M.; Renfordt, R.; Rustamov, A.; Stroebele, H.] Goethe Univ Frankfurt, Frankfurt, Germany.
[Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A. D.; Vassiliou, M.] Univ Athens, Athens, Greece.
[Fodor, Z.; Laszlo, A.; Marton, K.; Vesztergombi, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary.
[Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M.; Zambelli, L.; Friend, M.] Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan.
[Rohrich, D.] Univ Bergen, Bergen, Norway.
[Gazdzicki, M.; Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.] Jan Kochanowski Univ Humanities & Sci, Kielce, Poland.
[Kowalik, K.; Rondio, E.; Stepaniak, J.] Natl Ctr Nucl Res, Warsaw, Poland.
[Ali, Y.; Brzychczyk, J.; Larsen, D.; Marcinek, A.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O.] Jagiellonian Univ, Krakow, Poland.
[Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A.] Univ Silesia, Katowice, Poland.
[Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala-Zezula, M.] Univ Warsaw, Warsaw, Poland.
[Fodor, Z.; Lewicki, M.; Marcinek, A.; Naskret, M.; Turko, L.] Univ Wroclaw, Wroclaw, Poland.
[Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D.] Warsaw Univ Technol, Warsaw, Poland.
[Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Morozov, S.; Petukhov, O.; Sadovsky, A.] Inst Nucl Res, Moscow, Russia.
[Baatar, B.; Bunyatov, S. A.; Kolesnikov, V. I.; Krasnoperov, A.; Lyubushkin, V. V.; Malakhov, A. I.; Matveev, V.; Melkumov, G. L.; Popov, B. A.; Tereshchenko, V.] Joint Inst Nucl Res, Dubna, Russia.
[Brandin, A.; Morozov, S.; Petukhov, O.; Selyuzhenkov, I.; Taranenko, A.] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Moscow, Russia.
[Andronov, E.; Feofilov, G. A.; Igolkin, S.; Kondratiev, V. P.; Seryakov, A.; Vechernin, V. V.; Vinogradov, L.] St Petersburg State Univ, St Petersburg, Russia.
[Cirkovic, M.; Manic, D.; Puzovic, J.] Univ Belgrade, Belgrade, Serbia.
[Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D.] ETH, Zurich, Switzerland.
[Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A.] Univ Bern, Bern, Switzerland.
[Abgrall, N.; Ajaz, M.; Blondel, A.; Bravar, A.; Debieux, S.; Haesler, A.; Korzenev, A.; Ravonel, M.] Univ Geneva, Geneva, Switzerland.
[Mills, G. B.; Yarritu, K.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Johnson, S. R.; Marino, A. D.; Rumberger, B. T.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA.
[Messerly, B.; Nagai, Y.; Paolone, V.] Univ Pittsburgh, Pittsburgh, PA USA.
[Galymov, V.] Univ Lyon, IPNL, Villeurbanne, France.
[Hartz, M.] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba, Japan.
[Hartz, M.] TRIUMF, Vancouver, BC, Canada.
[Hiraki, T.; Ichikawa, A.; Kubo, H.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K.] Kyoto Univ, Dept Phys, Kyoto, Japan.
[Tzanov, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
[Yu, M.] York Univ, Dept Phys & Astron, Toronto, ON, Canada.
[Ali, Y.] COMSATS Inst Informat Technol, Dept Phys, Islamabad 44000, Pakistan.
RP Korzenev, A (reprint author), Univ Geneva, Geneva, Switzerland.
EM alexander.korzenev@cern.ch
RI Grebieszkow, Katarzyna/F-2640-2012; Vechernin, Vladimir/J-5832-2013;
Seryakov, Andrey/D-8376-2017; Andronov, Evgeny/G-2325-2015
OI Vechernin, Vladimir/0000-0003-1458-8055; Seryakov,
Andrey/0000-0002-5759-5485; Andronov, Evgeny/0000-0003-0437-9292
FU Hungarian Scientific Research Fund [OTKA68506, 71989]; Hungarian Academy
of Sciences; Polish Ministry of Science and Higher Education
[667/N-CERN/2010/0, NN202 48 4339, NN202 23 1837]; Polish National
Center for Science [2011/03/N/ST2/03691, 2012/04/M/ST2/00816,
2013/11/N/ST2/03879]; Foundation for Polish Science - MPD program -
European Union within the European Regional Development Fund; Federal
Agency of Education of the Ministry of Education and Science of the
Russian Federation [11.38.193.2014]; Russian Academy of Science; Russian
Foundation for Basic Research [08-02-00018, 09-02-00664,
12-02-91503-CERN]; Ministry of Education, Culture, Sports, Science and
Technology, Japan [18071005, 19034011, 19740162, 20740160, 20039012];
German Research Foundation [GA1480/2-2]; U.S. Department of Energy; EU
[PIOF-GA-2013-624803]; Bulgarian Nuclear Regulatory Agency; Joint
Institute for Nuclear Research, Dubna [4418-1-15/17]; Ministry of
Education and Science of the Republic of Serbia [OI171002]; Swiss
Nationalfonds Foundation [206621_117734, 20FL20_154223]; ETH [TH-01
07-3]
FX We would like to thank the CERN PH, BE and EN Departments for the strong
support of NA61/SHINE. This work was supported by the Hungarian
Scientific Research Fund (Grants OTKA68506 and 71989), the Janos Bolyai
Research Scholarship of the Hungarian Academy of Sciences, the Polish
Ministry of Science and Higher Education (Grants 667/N-CERN/2010/0,
NN202 48 4339 and NN202 23 1837), the Polish National Center for Science
(Grants 2011/03/N/ST2/03691, 2012/04/M/ST2/00816 and
2013/11/N/ST2/03879), the Foundation for Polish Science - MPD program,
co-financed by the European Union within the European Regional
Development Fund, the Federal Agency of Education of the Ministry of
Education and Science of the Russian Federation (SPbSU Research Grant
11.38.193.2014), the Russian Academy of Science and the Russian
Foundation for Basic Research (Grants 08-02-00018, 09-02-00664 and
12-02-91503-CERN), the Ministry of Education, Culture, Sports, Science
and Technology, Japan, Grant-in-Aid for Scientific Research (Grants
18071005, 19034011, 19740162, 20740160 and 20039012), the German
Research Foundation (Grant GA1480/2-2), the U.S. Department of Energy,
the EU-funded Marie Curie Outgoing Fellowship, Grant
PIOF-GA-2013-624803, the Bulgarian Nuclear Regulatory Agency and the
Joint Institute for Nuclear Research, Dubna (bilateral contract No.
4418-1-15/17), Ministry of Education and Science of the Republic of
Serbia (Grant OI171002), Swiss Nationalfonds Foundation (Grants
206621_117734 and 20FL20_154223) and ETH Research Grant TH-01 07-3.
NR 24
TC 0
Z9 0
U1 19
U2 19
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD NOV 9
PY 2016
VL 76
IS 11
AR 617
DI 10.1140/epjc/s10052-016-4440-y
PG 27
WC Physics, Particles & Fields
SC Physics
GA EB8WZ
UT WOS:000387673400005
ER
PT J
AU Alioli, S
Bauer, CW
Guns, S
Tackmann, FJ
AF Alioli, Simone
Bauer, Christian W.
Guns, Sam
Tackmann, Frank J.
TI Underlying-event sensitive observables in Drell-Yan production using
GENEVA
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID ATLAS DETECTOR; PP COLLISIONS; ROOT-S=7 TEV; SCATTERING; LHC
AB We present an extension of the Geneva Monte Carlo framework to include multiple parton interactions (MPI) provided by Pythia8. This allows us to obtain predictions for underlying-event sensitive measurements in Drell-Yan production, in conjunction with Geneva's fully differential NNLO calculation, NNLL' resummation for the 0-jet resolution variable (beam thrust), and NLL resummation for the 1-jet resolution variable. We describe the interface with the parton-shower algorithm and MPI model of Pythia8, which preserves both the precision of the partonic N-jet cross sections in Geneva as well as the shower accuracy and good description of soft hadronic physics of Pythia8. We present results for several underlying-event sensitive observables and compare to data from ATLAS and CMS as well as to standalone Pythia8 predictions. This includes a comparison with the recent ATLAS measurement of the beam thrust spectrum, which provides a potential avenue to fully disentangle the physical effects from the primary hard interaction, primary soft radiation, multiple parton interactions, and nonperturbative hadronization.
C1 [Alioli, Simone] CERN Theory Div, CH-1211 Geneva 23, Switzerland.
[Bauer, Christian W.; Guns, Sam] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Tackmann, Frank J.] Deutsch Elektronen Synchrotron DESY, Theory Grp, D-22607 Hamburg, Germany.
RP Alioli, S (reprint author), CERN Theory Div, CH-1211 Geneva 23, Switzerland.
EM simone.alioli@cern.ch; cwbauer@lbl.gov; sguns@lbl.gov;
frank.tackmann@desy.de
OI Alioli, Simone/0000-0001-8234-2247
FU KITP in Santa Barbara; Office of Science, Office of High Energy Physics
of the U.S. Department of Energy [DE-AC02-05CH11231]; DFG [TA867/1-1];
COFUND Fellowship [PCOFUND-GA-2012-600377]; Belgian American Educational
Foundation; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX We thank J. Lindert and P. Maierhoefer for help and support in
interfacing GENEVA to OPENLOOPS. CWB would like the thank the KITP in
Santa Barbara for financial support during the final stages of this
project. This work was supported by the Director, Office of Science,
Office of High Energy Physics of the U.S. Department of Energy under the
Contract No. DE-AC02-05CH11231 (CWB, SG), the DFG Emmy-Noether Grant No.
TA867/1-1 (FT), the COFUND Fellowship under grant agreement
PCOFUND-GA-2012-600377 (SA), and a fellowship from the Belgian American
Educational Foundation (SG). This research used resources of the
National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.
NR 70
TC 0
Z9 0
U1 2
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD NOV 9
PY 2016
VL 76
IS 11
AR 614
DI 10.1140/epjc/s10052-016-4458-1
PG 17
WC Physics, Particles & Fields
SC Physics
GA EB8WZ
UT WOS:000387673400002
ER
PT J
AU Ruiz Vargas, JC
Khachatryan, V
Sirunyan, AM
Tumasyan, A
Adam, W
Asilar, E
Bergauer, T
Brandstetter, J
Brondolin, E
Dragicevic, M
Ero, J
Mossolov, V
Shumeiko, N
Gonzalez, JS
Alderweireldt, S
De Wolf, EA
Janssen, X
Lauwers, J
Van de Klundert, M
Van Haevermaet, H
Van Mechelen, P
Van Remortel, N
Van Spilbeeck, A
Abu Zeid, S
Blekman, F
D'Hondt, J
Daci, N
De Bruyn, I
Deroover, K
Heracleous, N
Brun, H
Caillol, C
Clerbaux, B
De Lentdecker, G
Delannoy, H
Fasanella, G
Favart, L
Cimmino, A
Cornelis, T
Dobur, D
Fagot, A
Garcia, G
Gul, M
Poyraz, D
Salva, S
Bakhshiansohi, H
Beluffi, C
Bondu, O
Brochet, S
Bruno, G
Caudron, A
De Visscher, S
Beliy, N
Alda, WL
Alves, FL
Alves, GA
Brito, L
Hensel, C
Moraes, A
Pol, ME
Teles, PR
Das Chagas, EBB
Carvalho, W
Chinellato, J
Custodio, A
Da Costa, EM
Battilana, C
Pigazzini, S
De Nardo, G
Thyssen, F
Zanetti, M
Fedi, G
Giassi, A
Grippo, MT
Ligabue, F
Lomtadze, T
Martini, L
Messineo, A
Palla, F
Rizzi, A
Savoy-Navarro, A
Spagnolo, P
Tenchini, R
Tonelli, G
Venturi, A
Verdini, PG
Barone, L
Cavallari, F
Cipriani, M
D'imperio, G
Del Re, D
Diemoz, M
Gelli, S
Jorda, C
Longo, E
Margaroli, F
Meridiani, P
Organtini, G
Paramatti, R
Preiato, F
Rahatlou, S
Rovelli, C
Santanastasio, F
Amapane, N
Arcidiacono, R
Argiro, S
Arneodo, M
Bartosik, N
Bellan, R
Biino, C
Cartiglia, N
Cenna, F
Costa, M
Covarelli, R
Degano, A
Demaria, N
Finco, L
Kiani, B
Mariotti, C
Maselli, S
Migliore, E
Monaco, V
Monteil, E
Obertino, MM
Pacher, L
Pastrone, N
Pelliccioni, M
Angioni, GLP
Ravera, F
Romero, A
Ruspa, M
Sacchi, R
Shchelina, K
Sola, V
Solano, A
Staiano, A
Traczyk, P
Belforte, S
Casarsa, M
Cossutti, F
Della Ricca, G
La Licata, C
Schizzi, A
Zanetti, A
Kim, DH
Kim, GN
Kim, MS
Lee, S
Lee, SW
Oh, YD
Sekmen, S
Son, DC
Yang, YC
Lee, A
Brochero Cifuentes, JA
Kim, TJ
Cho, S
Choi, S
Go, Y
Gyun, D
Ha, S
Hong, B
Jo, Y
Kim, Y
Lee, B
Lee, K
Lee, KS
Lee, S
Lim, J
Park, SK
Roh, Y
Almond, J
Kim, J
Oh, SB
Seo, SH
Yang, UK
Yoo, HD
Yu, GB
Choi, M
Kim, H
Kim, H
Kim, JH
Lee, JSH
Park, IC
Ryu, G
Ryu, MS
Choi, Y
Goh, J
Hwang, C
Lee, J
Yu, I
Dudenas, V
Juodagalvis, A
Vaitkus, J
Ahmed, I
Ibrahim, ZA
Komaragiri, JR
Md Ali, MAB
Mohamad Idris, F
Wan Abdullah, WAT
Yusli, MN
Zolkapli, Z
Castilla-Valdez, H
De La Cruz-Burelo, E
Heredia-De La Cruz, I
Hernandez-Almada, A
Lopez-Fernandez, R
Magaa Villalba, R
Mejia Guisao, J
Sanchez-Hernandez, A
Carrillo Moreno, S
Oropeza Barrera, C
Vazquez Valencia, F
Carpinteyro, S
Pedraza, I
Salazar Ibarguen, HA
Uribe Estrada, C
Morelos Pineda, A
Krofcheck, D
Butler, PH
Ahmad, A
Ahmad, M
Hassan, Q
Hoorani, HR
Khan, WA
Shah, MA
Shoaib, M
Waqas, M
Bialkowska, H
Bluj, M
Boimska, B
Frueboes, T
Groski, M
Kazana, M
Nawrocki, K
Romanowska-Rybinska, K
Szleper, M
Zalewski, P
Bunkowski, K
Byszuk, A
Doroba, K
Kalinowski, A
Konecki, M
Krolikowski, J
Misiura, M
Olszewski, M
Walczak, M
Bargassa, P
Beiro Da Cruz E Silva, C
Di Francesco, A
Faccioli, P
Ferreira Parracho, PG
Gallinaro, M
Hollar, J
Leonardo, N
Lloret Iglesias, L
Nemallapudi, MV
Rodrigues Antunes, J
Seixas, J
Toldaiev, O
Vadruccio, D
Varela, J
Vischia, P
Afanasiev, S
Bunin, P
Golutvin, I
Kamenev, A
Karjavin, V
Korenkov, V
Lanev, A
Malakhov, A
Matveev, V
Mitsyn, VV
Moisenz, P
Palichik, V
Perelygin, V
Shmatov, S
Skatchkov, N
Smirnov, V
Tikhonenko, E
Yuldashev, BS
Zarubin, A
Chtchipounov, L
Golovtsov, V
Ivanov, Y
Kim, V
Kuznetsova, E
Murzin, V
Oreshkin, V
Sulimov, V
Vorobyev, A
Andreev, Y
Dermenev, A
Gninenko, S
Golubev, N
Karneyeu, A
Kirsanov, M
Krasnikov, N
Pashenkov, A
Tlisov, D
Toropin, A
Epshteyn, V
Gavrilov, V
Lychkovskaya, N
Popov, V
Pozdnyakov, I
Safronov, G
Spiridonov, A
Toms, M
Vlasov, E
Zhokin, A
Bylinkin, A
Chistov, R
Danilov, M
Rusinov, V
Andreev, V
Azarkin, M
Dremin, I
Kirakosyan, M
Leonidov, A
Rusakov, SV
Terkulov, A
Baskakov, A
Belyaev, A
Boos, E
Demiyanov, A
Ershov, A
Gribushin, A
Kodolova, O
Korotkikh, V
Lokhtin, I
Miagkov, I
Obraztsov, S
Petrushanko, S
Savrin, V
Snigirev, A
Vardanyan, I
Blinov, V
Skovpen, Y
Azhgirey, I
Bayshev, I
Bitioukov, S
Elumakhov, D
Kachanov, V
Kalinin, A
Konstantinov, D
Krychkine, V
Petrov, V
Ryutin, R
Sobol, A
Troshin, S
Tyurin, N
Uzunian, A
Volkov, A
Adzic, P
Cirkovic, P
Devetak, D
Dordevic, M
Milosevic, J
Rekovic, V
Alcaraz Maestre, J
Barrio Luna, M
Calvo, E
Cerrada, M
Chamizo Llatas, M
Colino, N
De La Cruz, B
Delgado Peris, A
Escalante Del Valle, A
Fernandez Bedoya, C
Fernandez Ramos, JP
Flix, J
Fouz, MC
Garcia-Abia, P
Gonzalez Lopez, O
Goy Lopez, S
Hernandez, JM
Josa, MI
Navarro De Martino, E
Perez-Calero Yzquierdo, A
Puerta Pelayo, J
Quintario Olmeda, A
Redondo, I
Romero, L
Soares, MS
de Trocniz, JF
Missiroli, M
Moran, D
Cuevas, J
Fernandez Menendez, J
Gonzalez Caballero, I
Gonzalez Fernandez, JR
Palencia Cortezon, E
Sanchez Cruz, S
Suarez Andres, I
Garcia, JMV
Cabrillo, IJ
Calderon, A
Castieiras De Saa, JR
Curras, E
Fernandez, M
Garcia-Ferrero, J
Gomez, G
Lopez Virto, A
Marco, J
Martinez Rivero, C
Matorras, F
Piedra Gomez, J
Rodrigo, T
Ruiz-Jimeno, A
Scodellaro, L
Trevisani, N
Vila, I
Vilar Cortabitarte, R
Abbaneo, D
Auffray, E
Auzinger, G
Bachtis, M
Baillon, P
Ball, AH
Barney, D
Bloch, P
Bocci, A
Bonato, A
Botta, C
Camporesi, T
Castello, R
Cepeda, M
Cerminara, G
D'Alfonso, M
d'Enterria, D
Dabrowski, A
Daponte, V
David, A
De Gruttola, M
De Guio, F
De Roeck, A
Di Marco, E
Dobson, M
Dorney, B
du Pree, T
Duggan, D
Dunser, M
Dupont, N
Elliott-Peisert, A
Fartoukh, S
Franzoni, G
Fulcher, J
Funk, W
Gigi, D
Gill, K
Girone, M
Glege, F
Gulhan, D
Gundacker, S
Guthoff, M
Hammer, J
Harris, P
Hegeman, J
Innocente, V
Janot, P
Kirschenmann, H
Knunz, V
Kornmayer, A
Kortelainen, MJ
Kousouris, K
Krammer, M
Lecoq, P
Lourenco, C
Lucchini, MT
Malgeri, L
Mannelli, M
Martelli, A
Meijers, F
Mersi, S
Meschi, E
Moortgat, F
Morovic, S
Mulders, M
Neugebauer, H
Orfanelli, S
Orsini, L
Pape, L
Perez, E
Peruzzi, M
Petrilli, A
Petrucciani, G
Pfeiffer, A
Pierini, M
Racz, A
Reis, T
Rolandi, G
Rovere, M
Ruan, M
Sakulin, H
Sauvan, JB
Schafer, C
Schwick, C
Seidel, M
Sharma, A
Silva, P
Simon, M
Sphicas, P
Steggemann, J
Stoye, M
Takahashi, Y
Tosi, M
Treille, D
Triossi, A
Tsirou, A
Veckalns, V
Veres, GI
Wardle, N
Zagozdzinska, A
Zeuner, WD
Bertl, W
Deiters, K
Erdmann, W
Horisberger, R
Ingram, Q
Kaestli, HC
Kotlinski, D
Langenegger, U
Rohe, T
Bachmair, F
Bani, L
Bianchini, L
Casal, B
Dissertori, G
Dittmar, M
Donega , M
Eller, P
Grab, C
Heidegger, C
Hits, D
Hoss, J
Kasieczka, G
Lecomte, P
Lustermann, W
Mangano, B
Marionneau, M
Martinez Ruiz del Arbol, P
Masciovecchio, M
Meinhard, MT
Meister, D
Micheli, F
Musella, P
Nessi-Tedaldi, F
Pandolfi, F
Pata, J
Pauss, F
Perrin, G
Perrozzi, L
Quittnat, M
Rossini, M
Schonenberger, M
Starodumov, A
Tavolaro, VR
Theofilatos, K
Wallny, R
Aarrestad, TK
Amsler, C
Caminada, L
Canelli, MF
De Cosa, A
Galloni, C
Hinzmann, A
Hreus, T
Kilminster, B
Lange, C
Ngadiuba, J
Pinna, D
Rauco, G
Robmann, P
Salerno, D
Yang, Y
Candelise, V
Doan, TH
Jain, S
Khurana, R
Konyushikhin, M
Kuo, CM
Lin, W
Lu, YJ
Pozdnyakov, A
Yu, SS
Kumar, A
Chang, P
Chang, YH
Chang, YW
Chao, Y
Chen, KF
Chen, PH
Dietz, C
Fiori, F
Hou, WS
Hsiung, Y
Liu, YF
Lu, RS
Miano Moya, M
Paganis, E
Psallidas, A
Tsai, JF
Tzeng, YM
Asavapibhop, B
Singh, G
Srimanobhas, N
Suwonjandee, N
Adiguzel, A
Cerci, S
Damarseckin, S
Demiroglu, ZS
Dozen, C
Dumanoglu, I
Girgis, S
Gokbulut, G
Guler, Y
Gurpinar, E
Hos, I
Kangal, EE
Kara, O
Kayis Topaksu, A
Kiminsu, U
Oglakci, M
Onengut, G
Ozdemir, K
Sunar Cerci, D
Topakli, H
Turkcapar, S
Zorbakir, IS
Zorbilmez, C
Bilin, B
Bilmis, S
Isildak, B
Karapinar, G
Yalvac, M
Zeyrek, M
Gulmez, E
Kaya, M
Kaya, O
Yetkin, EA
Yetkin, T
Cakir, A
Cankocak, K
Sen, S
Grynyov, B
Levchuk, L
Sorokin, P
Aggleton, R
Ball, F
Beck, L
Brooke, JJ
Burns, D
Clement, E
Cussans, D
Flacher, H
Goldstein, J
Grimes, M
Heath, GP
Heath, HF
Jacob, J
Kreczko, L
Lucas, C
Newbold, DM
Paramesvaran, S
Poll, A
Sakuma, T
Seif El Nasr-storey, S
Smith, D
Smith, VJ
Barducci, D
Belyaev, A
Brew, C
Brown, RM
Calligaris, L
Cieri, D
Cockerill, DJA
Coughlan, JA
Harder, K
Harper, S
Olaiya, E
Petyt, D
Shepherd-Themistocleous, CH
Thea, A
Tomalin, IR
Williams, T
Baber, M
Bainbridge, R
Buchmuller, O
Bundock, A
Burton, D
Casasso, S
Citron, M
Colling, D
Corpe, L
Dauncey, P
Davies, G
De Wit, A
Della Negra, M
Di Maria, R
Dunne, P
Elwood, A
Futyan, D
Haddad, Y
Hall, G
Iles, G
James, T
Lane, R
Laner, C
Lucas, R
Lyons, L
Magnan, AM
Malik, S
Mastrolorenzo, L
Nash, J
Nikitenko, A
Pela, J
Penning, B
Pesaresi, M
Raymond, DM
Richards, A
Rose, A
Seez, C
Summers, S
Tapper, A
Uchida, K
Vazquez Acosta, M
Virdee, T
Wright, J
Zenz, SC
Cole, JE
Hobson, PR
Khan, A
Kyberd, P
Leslie, D
Reid, ID
Symonds, P
Teodorescu, L
Turner, M
Borzou, A
Call, K
Dittmann, J
Hatakeyama, K
Liu, H
Pastika, N
Charaf, O
Cooper, SI
Henderson, C
Rumerio, P
Arcaro, D
Avetisyan, A
Bose, T
Gastler, D
Rankin, D
Richardson, C
Rohlf, J
Sulak, L
Zou, D
Benelli, G
Berry, E
Cutts, D
Garabedian, A
Hakala, J
Heintz, U
Hogan, JM
Jesus, O
Laird, E
Landsberg, G
Mao, Z
Narain, M
Piperov, S
Sagir, S
Spencer, E
Syarif, R
Breedon, R
Breto, G
Burns, D
Calderon De La Barca Sanchez, M
Chauhan, S
Chertok, M
Conway, J
Conway, R
Cox, PT
Erbacher, R
Flores, C
Funk, G
Gardner, M
Ko, W
Lander, R
Mclean, C
Mulhearn, M
Pellett, D
Pilot, J
Ricci-Tam, F
Shalhout, S
Smith, J
Squires, M
Stolp, D
Tripathi, M
Wilbur, S
Yohay, R
Cousins, R
Everaerts, P
Florent, A
Hauser, J
Ignatenko, M
Saltzberg, D
Takasugi, E
Valuev, V
Weber, M
Burt, K
Clare, R
Ellison, J
Gary, JW
Hanson, G
Heilman, J
Jandir, P
Kennedy, E
Lacroix, F
Long, OR
Malberti, M
Olmedo Negrete, M
Paneva, MI
Shrinivas, A
Wei, H
Wimpenny, S
Yates, BR
Branson, JG
Cerati, GB
Cittolin, S
Derdzinski, M
Gerosa, R
Holzner, A
Klein, D
Krutelyov, V
Letts, J
Macneill, I
Olivito, D
Padhi, S
Pieri, M
Sani, M
Sharma, V
Simon, S
Tadel, M
Vartak, A
Wasserbaech, S
Welke, C
Wood, J
Wurthwein, F
Yagil, A
Zevi Della Porta, G
Bhandari, R
Bradmiller-Feld, J
Campagnari, C
Dishaw, A
Dutta, V
Flowers, K
Franco Sevilla, M
Geffert, P
George, C
Golf, F
Gouskos, L
Gran, J
Heller, R
Incandela, J
Mccoll, N
Mullin, SD
Ovcharova, A
Richman, J
Stuart, D
Suarez, I
West, C
Yoo, J
Anderson, D
Apresyan, A
Bendavid, J
Bornheim, A
Bunn, J
Chen, Y
Duarte, J
Lawhorn, JM
Mott, A
Newman, HB
Pena, C
Spiropulu, M
Vlimant, JR
Xie, S
Zhu, RY
Andrews, MB
Azzolini, V
Ferguson, T
Paulini, M
Russ, J
Sun, M
Vogel, H
Vorobiev, I
Cumalat, JP
Ford, WT
Jensen, F
Johnson, A
Krohn, M
Mulholland, T
Stenson, K
Wagner, SR
Alexander, J
Chaves, J
Chu, J
Dittmer, S
Mcdermott, K
Mirman, N
Nicolas Kaufman, G
Patterson, J
Rinkevicius, A
Ryd, A
Skinnari, L
Soffi, L
Tan, SM
Tao, Z
Thom, J
Tucker, J
Wittich, P
Zientek, M
Winn, D
Abdullin, S
Albrow, M
Apollinari, G
Banerjee, S
Bauerdick, LAT
Beretvas, A
Berryhill, J
Bhat, PC
Bolla, G
Burkett, K
Butler, JN
Cheung, HWK
Chlebana, F
Cihangir, S
Cremonesi, M
Elvira, VD
Fisk, I
Freeman, J
Gottschalk, E
Gray, L
Green, D
Grunendahl, S
Gutsche, O
Hare, D
Harris, RM
Hasegawa, S
Hirschauer, J
Hu, Z
Jayatilaka, B
Jindariani, S
Johnson, M
Joshi, U
Klima, B
Kreis, B
Lammel, S
Linacre, J
Lincoln, D
Lipton, R
Liu, T
Lopes De Sa, R
Lykken, J
Maeshima, K
Magini, N
Marraffino, JM
Maruyama, S
Mason, D
McBride, P
Merkel, P
Mrenna, S
Nahn, S
Newman-Holmes, C
O'Dell, V
Pedro, K
Prokofyev, O
Rakness, G
Ristori, L
Sexton-Kennedy, E
Soha, A
Spalding, WJ
Spiegel, L
Stoynev, S
Strobbe, N
Taylor, L
Tkaczyk, S
Tran, NV
Uplegger, L
Vaandering, EW
Vernieri, C
Verzocchi, M
Vidal, R
Wang, M
Weber, HA
Whitbeck, A
Acosta, D
Avery, P
Bortignon, P
Bourilkov, D
Brinkerhoff, A
Carnes, A
Carver, M
Curry, D
Das, S
Field, RD
Furic, IK
Konigsberg, J
Korytov, A
Ma, P
Matchev, K
Mei, H
Milenovic, P
Mitselmakher, G
Rank, D
Shchutska, L
Sperka, D
Thomas, L
Wang, J
Wang, S
Yelton, J
Linn, S
Markowitz, P
Martinez, G
Rodriguez, JL
Ackert, A
Adams, JR
Adams, T
Askew, A
Bein, S
Diamond, B
Hagopian, S
Hagopian, V
Johnson, KF
Khatiwada, A
Prosper, H
Santra, A
Weinberg, M
Baarmand, MM
Bhopatkar, V
Colafranceschi, S
Hohlmann, M
Noonan, D
Roy, T
Yumiceva, F
Adams, MR
Apanasevich, L
Berry, D
Betts, RR
Bucinskaite, I
Cavanaugh, R
Evdokimov, O
Gauthier, L
Gerber, CE
Hofman, DJ
Kurt, P
O'Brien, C
Gonzalez, IDS
Trauger, H
Turner, P
Varelas, N
Wang, H
Wu, Z
Zakaria, M
Zhang, J
Bilki, B
Clarida, W
Dilsiz, K
Durgut, S
Gandrajula, RP
Haytmyradov, M
Khristenko, V
Merlo, JP
Mermerkaya, H
Mestvirishvili, A
Moeller, A
Nachtman, J
Ogul, H
Onel, Y
Ozok, F
Penzo, A
Snyder, C
Tiras, E
Wetzel, J
Yi, K
Anderson, I
Blumenfeld, B
Cocoros, A
Eminizer, N
Fehling, D
Feng, L
Gritsan, AV
Maksimovic, P
Osherson, M
Roskes, J
Sarica, U
Swartz, M
Xiao, M
Xin, Y
You, C
Al-bataineh, A
Baringer, P
Bean, A
Bowen, J
Bruner, C
Castle, J
Kenny, RP
Kropivnitskaya, A
Majumder, D
Mcbrayer, W
Murray, M
Sanders, S
Stringer, R
Tapia Takaki, JD
Wang, Q
Ivanov, A
Kaadze, K
Khalil, S
Makouski, M
Maravin, Y
Mohammadi, A
Saini, LK
Skhirtladze, N
Toda, S
Rebassoo, F
Wright, D
Anelli, C
Baden, A
Baron, O
Belloni, A
Calvert, B
Eno, SC
Ferraioli, C
Gomez, JA
Hadley, NJ
Jabeen, S
Kellogg, RG
Kolberg, T
Kunkle, J
Lu, Y
Mignerey, AC
Shin, YH
Skuja, A
Tonjes, MB
Tonwar, SC
Abercrombie, D
Allen, B
Apyan, A
Barbieri, R
Baty, A
Bi, R
Bierwagen, K
Brandt, S
Busza, W
Cali, I
Demiragli, Z
Di Matteo, L
Gomez Ceballos, G
Goncharov, M
Hsu, D
Iiyama, Y
Innocenti, GM
Klute, M
Kovalskyi, D
Krajczar, K
Lai, YS
Lee, YJ
Levin, A
Luckey, PD
Marini, AC
Mcginn, C
Mironov, C
Narayanan, S
Niu, X
Paus, C
Roland, C
Roland, G
Salfeld-Nebgen, J
Stephans, GSF
Sumorok, K
Tatar, K
Varma, M
Velicanu, D
Veverka, J
Wang, J
Wang, TW
Wyslouch, B
Yang, M
Zhukova, V
Benvenuti, AC
Chatterjee, RM
Evans, A
Finkel, A
Gude, A
Hansen, P
Kalafut, S
Kao, SC
Kubota, Y
Lesko, Z
Mans, J
Nourbakhsh, S
Ruckstuhl, N
Rusack, R
Tambe, N
Turkewitz, J
Acosta, JG
Oliveros, S
Avdeeva, E
Bartek, R
Bloom, K
Claes, DR
Dominguez, A
Fangmeier, C
Gonzalez Suarez, R
Kamalieddin, R
Kravchenko, I
Malta Rodrigues, A
Meier, F
Monroy, J
Siado, J
Snow, GR
Stieger, B
Alyari, M
Dolen, J
George, J
Godshalk, A
Harrington, C
Iashvili, I
Kaisen, J
Kharchilava, A
Kumar, A
Parker, A
Rappoccio, S
Roozbahani, B
Alverson, G
Barberis, E
Baumgartel, D
Hortiangtham, A
Knapp, B
Massironi, A
Morse, D
Nash, D
Orimoto, T
Teixeira De Lima, R
Trocino, D
Wang, RJ
Wood, D
Bhattacharya, S
Hahn, KA
Kubik, A
Kumar, A
Low, JF
Mucia, N
Odell, N
Pollack, B
Schmitt, MH
Sung, K
Trovato, M
Velasco, M
Dev, N
Hildreth, M
Hurtado Anampa, K
Jessop, C
Karmgard, DJ
Kellams, N
Lannon, K
Marinelli, N
Meng, F
Mueller, C
Musienko, Y
Planer, M
Reinsvold, A
Ruchti, R
Smith, G
Taroni, S
Valls, N
Wayne, M
Wolf, M
Woodard, A
Alimena, J
Antonelli, L
Brinson, J
Bylsma, B
Durkin, LS
Flowers, S
Francis, B
Hart, A
Hill, C
Hughes, R
Ji, W
Liu, B
Luo, W
Puigh, D
Winer, BL
Wulsin, HW
Cooperstein, S
Driga, O
Elmer, P
Hardenbrook, J
Hebda, P
Lange, D
Luo, J
Marlow, D
Medvedeva, T
Mei, K
Mooney, M
Olsen, J
Palmer, C
Piroue, P
Stickland, D
Tully, C
Zuranski, A
Malik, S
Barker, A
Barnes, VE
Folgueras, S
Gutay, L
Jha, MK
Jones, M
Jung, AW
Jung, K
Miller, DH
Neumeister, N
Radburn-Smith, BC
Shi, X
Sun, J
Svyatkovskiy, A
Wang, F
Xie, W
Xu, L
Parashar, N
Stupak, J
Adair, A
Akgun, B
Chen, Z
Ecklund, KM
Geurts, FJM
Guilbaud, M
Li, W
Michlin, B
Northup, M
Padley, BP
Redjimi, R
Roberts, J
Rorie, J
Tu, Z
Zabel, J
Betchart, B
Bodek, A
de Barbaro, P
Demina, R
Duh, YT
Ferbel, T
Galanti, M
Garcia-Bellido, A
Han, J
Hindrichs, O
Khukhunaishvili, A
Lo, KH
Tan, P
Verzetti, M
Chou, JP
Contreras-Campana, E
Gershtein, Y
Gmez Espinosa, TA
Halkiadakis, E
Heindl, M
Hidas, D
Hughes, E
Kaplan, S
Kunnawalkam Elayavalli, R
Kyriacou, S
Lath, A
Nash, K
Saka, H
Salur, S
Schnetzer, S
Sheffield, D
Somalwar, S
Stone, R
Thomas, S
Thomassen, P
Walker, M
Foerster, M
Heideman, J
Riley, G
Rose, K
Spanier, S
Thapa, K
Bouhali, O
Celik, A
Dalchenko, M
De Mattia, M
Delgado, A
Dildick, S
Eusebi, R
Gilmore, J
Huang, T
Juska, E
Kamon, T
Mueller, R
Pakhotin, Y
Patel, R
Perloff, A
Pernis, L
Rathjens, D
Rose, A
Safonov, A
Tatarinov, A
Ulmer, K
Akchurin, N
Cowden, C
Damgov, J
Dragoiu, C
Dudero, PR
Faulkner, J
Kunori, S
Lamichhane, K
Lee, SW
Libeiro, T
Undleeb, S
Volobouev, I
Wang, Z
Delannoy, AG
Greene, S
Gurrola, A
Janjam, R
Johns, W
Maguire, C
Melo, A
Ni, H
Sheldon, P
Tuo, S
Velkovska, J
Xu, Q
Arenton, MW
Barria, P
Cox, B
Goodell, J
Hirosky, R
Ledovskoy, A
Li, H
Neu, C
Sinthuprasith, T
Sun, X
Wang, Y
Wolfe, E
Xia, F
Clarke, C
Harr, R
Karchin, PE
Lamichhane, P
Sturdy, J
Belknap, DA
Dasu, S
Dodd, L
Duric, S
Gomber, B
Grothe, M
Herndon, M
Herve, A
Klabbers, P
Lanaro, A
Levine, A
Long, K
Loveless, R
Ojalvo, I
Perry, T
Pierro, GA
Polese, G
Ruggles, T
Savin, A
Sharma, A
Smith, N
Smith, WH
Taylor, D
Woods, N
AF Ruiz Vargas, J. C.
Khachatryan, V.
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Asilar, E.
Bergauer, T.
Brandstetter, J.
Brondolin, E.
Dragicevic, M.
Ero, J.
Mossolov, V.
Shumeiko, N.
Gonzalez, J. Suarez
Alderweireldt, S.
De Wolf, E. A.
Janssen, X.
Lauwers, J.
Van de Klundert, M.
Van Haevermaet, H.
Van Mechelen, P.
Van Remortel, N.
Van Spilbeeck, A.
Abu Zeid, S.
Blekman, F.
D'Hondt, J.
Daci, N.
De Bruyn, I.
Deroover, K.
Heracleous, N.
Brun, H.
Caillol, C.
Clerbaux, B.
De Lentdecker, G.
Delannoy, H.
Fasanella, G.
Favart, L.
Cimmino, A.
Cornelis, T.
Dobur, D.
Fagot, A.
Garcia, G.
Gul, M.
Poyraz, D.
Salva, S.
Bakhshiansohi, H.
Beluffi, C.
Bondu, O.
Brochet, S.
Bruno, G.
Caudron, A.
De Visscher, S.
Beliy, N.
Alda Junior, W. L.
Alves, F. L.
Alves, G. A.
Brito, L.
Hensel, C.
Moraes, A.
Pol, M. E.
Rebello Teles, P.
Belchior Batista Das Chagas, E.
Carvalho, W.
Chinellato, J.
Custodio, A.
Da Costa, E. M.
Battilana, C.
Pigazzini, S.
De Nardo, G.
Thyssen, F.
Zanetti, M.
Fedi, G.
Giassi, A.
Grippo, M. T.
Ligabue, F.
Lomtadze, T.
Martini, L.
Messineo, A.
Palla, F.
Rizzi, A.
Savoy-Navarro, A.
Spagnolo, P.
Tenchini, R.
Tonelli, G.
Venturi, A.
Verdini, P. G.
Barone, L.
Cavallari, F.
Cipriani, M.
D'imperio, G.
Del Re, D.
Diemoz, M.
Gelli, S.
Jorda, C.
Longo, E.
Margaroli, F.
Meridiani, P.
Organtini, G.
Paramatti, R.
Preiato, F.
Rahatlou, S.
Rovelli, C.
Santanastasio, F.
Amapane, N.
Arcidiacono, R.
Argiro, S.
Arneodo, M.
Bartosik, N.
Bellan, R.
Biino, C.
Cartiglia, N.
Cenna, F.
Costa, M.
Covarelli, R.
Degano, A.
Demaria, N.
Finco, L.
Kiani, B.
Mariotti, C.
Maselli, S.
Migliore, E.
Monaco, V.
Monteil, E.
Obertino, M. M.
Pacher, L.
Pastrone, N.
Pelliccioni, M.
Pinna Angioni, G. L.
Ravera, F.
Romero, A.
Ruspa, M.
Sacchi, R.
Shchelina, K.
Sola, V.
Solano, A.
Staiano, A.
Traczyk, P.
Belforte, S.
Casarsa, M.
Cossutti, F.
Della Ricca, G.
La Licata, C.
Schizzi, A.
Zanetti, A.
Kim, D. H.
Kim, G. N.
Kim, M. S.
Lee, S.
Lee, S. W.
Oh, Y. D.
Sekmen, S.
Son, D. C.
Yang, Y. C.
Lee, A.
Brochero Cifuentes, J. A.
Kim, T. J.
Cho, S.
Choi, S.
Go, Y.
Gyun, D.
Ha, S.
Hong, B.
Jo, Y.
Kim, Y.
Lee, B.
Lee, K.
Lee, K. S.
Lee, S.
Lim, J.
Park, S. K.
Roh, Y.
Almond, J.
Kim, J.
Oh, S. B.
Seo, S. H.
Yang, U. K.
Yoo, H. D.
Yu, G. B.
Choi, M.
Kim, H.
Kim, H.
Kim, J. H.
Lee, J. S. H.
Park, I. C.
Ryu, G.
Ryu, M. S.
Choi, Y.
Goh, J.
Hwang, C.
Lee, J.
Yu, I.
Dudenas, V.
Juodagalvis, A.
Vaitkus, J.
Ahmed, I.
Ibrahim, Z. A.
Komaragiri, J. R.
Md Ali, M. A. B.
Mohamad Idris, F.
Wan Abdullah, W. A. T.
Yusli, M. N.
Zolkapli, Z.
Castilla-Valdez, H.
De La Cruz-Burelo, E.
Heredia-De La Cruz, I.
Hernandez-Almada, A.
Lopez-Fernandez, R.
Magaa Villalba, R.
Mejia Guisao, J.
Sanchez-Hernandez, A.
Carrillo Moreno, S.
Oropeza Barrera, C.
Vazquez Valencia, F.
Carpinteyro, S.
Pedraza, I.
Salazar Ibarguen, H. A.
Uribe Estrada, C.
Morelos Pineda, A.
Krofcheck, D.
Butler, P. H.
Ahmad, A.
Ahmad, M.
Hassan, Q.
Hoorani, H. R.
Khan, W. A.
Shah, M. A.
Shoaib, M.
Waqas, M.
Bialkowska, H.
Bluj, M.
Boimska, B.
Frueboes, T.
Groski, M.
Kazana, M.
Nawrocki, K.
Romanowska-Rybinska, K.
Szleper, M.
Zalewski, P.
Bunkowski, K.
Byszuk, A.
Doroba, K.
Kalinowski, A.
Konecki, M.
Krolikowski, J.
Misiura, M.
Olszewski, M.
Walczak, M.
Bargassa, P.
Beiro Da Cruz E Silva, C.
Di Francesco, A.
Faccioli, P.
Ferreira Parracho, P. G.
Gallinaro, M.
Hollar, J.
Leonardo, N.
Lloret Iglesias, L.
Nemallapudi, M. V.
Rodrigues Antunes, J.
Seixas, J.
Toldaiev, O.
Vadruccio, D.
Varela, J.
Vischia, P.
Afanasiev, S.
Bunin, P.
Golutvin, I.
Kamenev, A.
Karjavin, V.
Korenkov, V.
Lanev, A.
Malakhov, A.
Matveev, V.
Mitsyn, V. V.
Moisenz, P.
Palichik, V.
Perelygin, V.
Shmatov, S.
Skatchkov, N.
Smirnov, V.
Tikhonenko, E.
Yuldashev, B. S.
Zarubin, A.
Chtchipounov, L.
Golovtsov, V.
Ivanov, Y.
Kim, V.
Kuznetsova, E.
Murzin, V.
Oreshkin, V.
Sulimov, V.
Vorobyev, A.
Andreev, Yu.
Dermenev, A.
Gninenko, S.
Golubev, N.
Karneyeu, A.
Kirsanov, M.
Krasnikov, N.
Pashenkov, A.
Tlisov, D.
Toropin, A.
Epshteyn, V.
Gavrilov, V.
Lychkovskaya, N.
Popov, V.
Pozdnyakov, I.
Safronov, G.
Spiridonov, A.
Toms, M.
Vlasov, E.
Zhokin, A.
Bylinkin, A.
Chistov, R.
Danilov, M.
Rusinov, V.
Andreev, V.
Azarkin, M.
Dremin, I.
Kirakosyan, M.
Leonidov, A.
Rusakov, S. V.
Terkulov, A.
Baskakov, A.
Belyaev, A.
Boos, E.
Demiyanov, A.
Ershov, A.
Gribushin, A.
Kodolova, O.
Korotkikh, V.
Lokhtin, I.
Miagkov, I.
Obraztsov, S.
Petrushanko, S.
Savrin, V.
Snigirev, A.
Vardanyan, I.
Blinov, V.
Skovpen, Y.
Azhgirey, I.
Bayshev, I.
Bitioukov, S.
Elumakhov, D.
Kachanov, V.
Kalinin, A.
Konstantinov, D.
Krychkine, V.
Petrov, V.
Ryutin, R.
Sobol, A.
Troshin, S.
Tyurin, N.
Uzunian, A.
Volkov, A.
Adzic, P.
Cirkovic, P.
Devetak, D.
Dordevic, M.
Milosevic, J.
Rekovic, V.
Alcaraz Maestre, J.
Barrio Luna, M.
Calvo, E.
Cerrada, M.
Chamizo Llatas, M.
Colino, N.
De La Cruz, B.
Delgado Peris, A.
Escalante Del Valle, A.
Fernandez Bedoya, C.
Fernandez Ramos, J. P.
Flix, J.
Fouz, M. C.
Garcia-Abia, P.
Gonzalez Lopez, O.
Goy Lopez, S.
Hernandez, J. M.
Josa, M. I.
Navarro De Martino, E.
Perez-Calero Yzquierdo, A.
Puerta Pelayo, J.
Quintario Olmeda, A.
Redondo, I.
Romero, L.
Soares, M. S.
de Trocniz, J. F.
Missiroli, M.
Moran, D.
Cuevas, J.
Fernandez Menendez, J.
Gonzalez Caballero, I.
Gonzalez Fernandez, J. R.
Palencia Cortezon, E.
Sanchez Cruz, S.
Suarez Andres, I.
Vizan Garcia, J. M.
Cabrillo, I. J.
Calderon, A.
Castieiras De Saa, J. R.
Curras, E.
Fernandez, M.
Garcia-Ferrero, J.
Gomez, G.
Lopez Virto, A.
Marco, J.
Martinez Rivero, C.
Matorras, F.
Piedra Gomez, J.
Rodrigo, T.
Ruiz-Jimeno, A.
Scodellaro, L.
Trevisani, N.
Vila, I.
Vilar Cortabitarte, R.
Abbaneo, D.
Auffray, E.
Auzinger, G.
Bachtis, M.
Baillon, P.
Ball, A. H.
Barney, D.
Bloch, P.
Bocci, A.
Bonato, A.
Botta, C.
Camporesi, T.
Castello, R.
Cepeda, M.
Cerminara, G.
D'Alfonso, M.
d'Enterria, D.
Dabrowski, A.
Daponte, V.
David, A.
De Gruttola, M.
De Guio, F.
De Roeck, A.
Di Marco, E.
Dobson, M.
Dorney, B.
du Pree, T.
Duggan, D.
Dunser, M.
Dupont, N.
Elliott-Peisert, A.
Fartoukh, S.
Franzoni, G.
Fulcher, J.
Funk, W.
Gigi, D.
Gill, K.
Girone, M.
Glege, F.
Gulhan, D.
Gundacker, S.
Guthoff, M.
Hammer, J.
Harris, P.
Hegeman, J.
Innocente, V.
Janot, P.
Kirschenmann, H.
Knunz, V.
Kornmayer, A.
Kortelainen, M. J.
Kousouris, K.
Krammer, M.
Lecoq, P.
Lourenco, C.
Lucchini, M. T.
Malgeri, L.
Mannelli, M.
Martelli, A.
Meijers, F.
Mersi, S.
Meschi, E.
Moortgat, F.
Morovic, S.
Mulders, M.
Neugebauer, H.
Orfanelli, S.
Orsini, L.
Pape, L.
Perez, E.
Peruzzi, M.
Petrilli, A.
Petrucciani, G.
Pfeiffer, A.
Pierini, M.
Racz, A.
Reis, T.
Rolandi, G.
Rovere, M.
Ruan, M.
Sakulin, H.
Sauvan, J. B.
Schafer, C.
Schwick, C.
Seidel, M.
Sharma, A.
Silva, P.
Simon, M.
Sphicas, P.
Steggemann, J.
Stoye, M.
Takahashi, Y.
Tosi, M.
Treille, D.
Triossi, A.
Tsirou, A.
Veckalns, V.
Veres, G. I.
Wardle, N.
Zagozdzinska, A.
Zeuner, W. D.
Bertl, W.
Deiters, K.
Erdmann, W.
Horisberger, R.
Ingram, Q.
Kaestli, H. C.
Kotlinski, D.
Langenegger, U.
Rohe, T.
Bachmair, F.
Bani, L.
Bianchini, L.
Casal, B.
Dissertori, G.
Dittmar, M.
Donega, M.
Eller, P.
Grab, C.
Heidegger, C.
Hits, D.
Hoss, J.
Kasieczka, G.
Lecomte, P.
Lustermann, W.
Mangano, B.
Marionneau, M.
Martinez Ruiz del Arbol, P.
Masciovecchio, M.
Meinhard, M. T.
Meister, D.
Micheli, F.
Musella, P.
Nessi-Tedaldi, F.
Pandolfi, F.
Pata, J.
Pauss, F.
Perrin, G.
Perrozzi, L.
Quittnat, M.
Rossini, M.
Schonenberger, M.
Starodumov, A.
Tavolaro, V. R.
Theofilatos, K.
Wallny, R.
Aarrestad, T. K.
Amsler, C.
Caminada, L.
Canelli, M. F.
De Cosa, A.
Galloni, C.
Hinzmann, A.
Hreus, T.
Kilminster, B.
Lange, C.
Ngadiuba, J.
Pinna, D.
Rauco, G.
Robmann, P.
Salerno, D.
Yang, Y.
Candelise, V.
Doan, T. H.
Jain, Sh.
Khurana, R.
Konyushikhin, M.
Kuo, C. M.
Lin, W.
Lu, Y. J.
Pozdnyakov, A.
Yu, S. S.
Kumar, Arun
Chang, P.
Chang, Y. H.
Chang, Y. W.
Chao, Y.
Chen, K. F.
Chen, P. H.
Dietz, C.
Fiori, F.
Hou, W. -S.
Hsiung, Y.
Liu, Y. F.
Lu, R. -S.
Miano Moya, M.
Paganis, E.
Psallidas, A.
Tsai, J. F.
Tzeng, Y. M.
Asavapibhop, B.
Singh, G.
Srimanobhas, N.
Suwonjandee, N.
Adiguzel, A.
Cerci, S.
Damarseckin, S.
Demiroglu, Z. S.
Dozen, C.
Dumanoglu, I.
Girgis, S.
Gokbulut, G.
Guler, Y.
Gurpinar, E.
Hos, I.
Kangal, E. E.
Kara, O.
Kayis Topaksu, A.
Kiminsu, U.
Oglakci, M.
Onengut, G.
Ozdemir, K.
Sunar Cerci, D.
Topakli, H.
Turkcapar, S.
Zorbakir, I. S.
Zorbilmez, C.
Bilin, B.
Bilmis, S.
Isildak, B.
Karapinar, G.
Yalvac, M.
Zeyrek, M.
Gulmez, E.
Kaya, M.
Kaya, O.
Yetkin, E. A.
Yetkin, T.
Cakir, A.
Cankocak, K.
Sen, S.
Grynyov, B.
Levchuk, L.
Sorokin, P.
Aggleton, R.
Ball, F.
Beck, L.
Brooke, J. J.
Burns, D.
Clement, E.
Cussans, D.
Flacher, H.
Goldstein, J.
Grimes, M.
Heath, G. P.
Heath, H. F.
Jacob, J.
Kreczko, L.
Lucas, C.
Newbold, D. M.
Paramesvaran, S.
Poll, A.
Sakuma, T.
Seif El Nasr-storey, S.
Smith, D.
Smith, V. J.
Barducci, D.
Belyaev, A.
Brew, C.
Brown, R. M.
Calligaris, L.
Cieri, D.
Cockerill, D. J. A.
Coughlan, J. A.
Harder, K.
Harper, S.
Olaiya, E.
Petyt, D.
Shepherd-Themistocleous, C. H.
Thea, A.
Tomalin, I. R.
Williams, T.
Baber, M.
Bainbridge, R.
Buchmuller, O.
Bundock, A.
Burton, D.
Casasso, S.
Citron, M.
Colling, D.
Corpe, L.
Dauncey, P.
Davies, G.
De Wit, A.
Della Negra, M.
Di Maria, R.
Dunne, P.
Elwood, A.
Futyan, D.
Haddad, Y.
Hall, G.
Iles, G.
James, T.
Lane, R.
Laner, C.
Lucas, R.
Lyons, L.
Magnan, A. -M.
Malik, S.
Mastrolorenzo, L.
Nash, J.
Nikitenko, A.
Pela, J.
Penning, B.
Pesaresi, M.
Raymond, D. M.
Richards, A.
Rose, A.
Seez, C.
Summers, S.
Tapper, A.
Uchida, K.
Vazquez Acosta, M.
Virdee, T.
Wright, J.
Zenz, S. C.
Cole, J. E.
Hobson, P. R.
Khan, A.
Kyberd, P.
Leslie, D.
Reid, I. D.
Symonds, P.
Teodorescu, L.
Turner, M.
Borzou, A.
Call, K.
Dittmann, J.
Hatakeyama, K.
Liu, H.
Pastika, N.
Charaf, O.
Cooper, S. I.
Henderson, C.
Rumerio, P.
Arcaro, D.
Avetisyan, A.
Bose, T.
Gastler, D.
Rankin, D.
Richardson, C.
Rohlf, J.
Sulak, L.
Zou, D.
Benelli, G.
Berry, E.
Cutts, D.
Garabedian, A.
Hakala, J.
Heintz, U.
Hogan, J. M.
Jesus, O.
Laird, E.
Landsberg, G.
Mao, Z.
Narain, M.
Piperov, S.
Sagir, S.
Spencer, E.
Syarif, R.
Breedon, R.
Breto, G.
Burns, D.
Calderon De La Barca Sanchez, M.
Chauhan, S.
Chertok, M.
Conway, J.
Conway, R.
Cox, P. T.
Erbacher, R.
Flores, C.
Funk, G.
Gardner, M.
Ko, W.
Lander, R.
Mclean, C.
Mulhearn, M.
Pellett, D.
Pilot, J.
Ricci-Tam, F.
Shalhout, S.
Smith, J.
Squires, M.
Stolp, D.
Tripathi, M.
Wilbur, S.
Yohay, R.
Cousins, R.
Everaerts, P.
Florent, A.
Hauser, J.
Ignatenko, M.
Saltzberg, D.
Takasugi, E.
Valuev, V.
Weber, M.
Burt, K.
Clare, R.
Ellison, J.
Gary, J. W.
Hanson, G.
Heilman, J.
Jandir, P.
Kennedy, E.
Lacroix, F.
Long, O. R.
Malberti, M.
Olmedo Negrete, M.
Paneva, M. I.
Shrinivas, A.
Wei, H.
Wimpenny, S.
Yates, B. R.
Branson, J. G.
Cerati, G. B.
Cittolin, S.
Derdzinski, M.
Gerosa, R.
Holzner, A.
Klein, D.
Krutelyov, V.
Letts, J.
Macneill, I.
Olivito, D.
Padhi, S.
Pieri, M.
Sani, M.
Sharma, V.
Simon, S.
Tadel, M.
Vartak, A.
Wasserbaech, S.
Welke, C.
Wood, J.
Wurthwein, F.
Yagil, A.
Zevi Della Porta, G.
Bhandari, R.
Bradmiller-Feld, J.
Campagnari, C.
Dishaw, A.
Dutta, V.
Flowers, K.
Franco Sevilla, M.
Geffert, P.
George, C.
Golf, F.
Gouskos, L.
Gran, J.
Heller, R.
Incandela, J.
Mccoll, N.
Mullin, S. D.
Ovcharova, A.
Richman, J.
Stuart, D.
Suarez, I.
West, C.
Yoo, J.
Anderson, D.
Apresyan, A.
Bendavid, J.
Bornheim, A.
Bunn, J.
Chen, Y.
Duarte, J.
Lawhorn, J. M.
Mott, A.
Newman, H. B.
Pena, C.
Spiropulu, M.
Vlimant, J. R.
Xie, S.
Zhu, R. Y.
Andrews, M. B.
Azzolini, V.
Ferguson, T.
Paulini, M.
Russ, J.
Sun, M.
Vogel, H.
Vorobiev, I.
Cumalat, J. P.
Ford, W. T.
Jensen, F.
Johnson, A.
Krohn, M.
Mulholland, T.
Stenson, K.
Wagner, S. R.
Alexander, J.
Chaves, J.
Chu, J.
Dittmer, S.
Mcdermott, K.
Mirman, N.
Nicolas Kaufman, G.
Patterson, J. R.
Rinkevicius, A.
Ryd, A.
Skinnari, L.
Soffi, L.
Tan, S. M.
Tao, Z.
Thom, J.
Tucker, J.
Wittich, P.
Zientek, M.
Winn, D.
Abdullin, S.
Albrow, M.
Apollinari, G.
Banerjee, S.
Bauerdick, L. A. T.
Beretvas, A.
Berryhill, J.
Bhat, P. C.
Bolla, G.
Burkett, K.
Butler, J. N.
Cheung, H. W. K.
Chlebana, F.
Cihangir, S.
Cremonesi, M.
Elvira, V. D.
Fisk, I.
Freeman, J.
Gottschalk, E.
Gray, L.
Green, D.
Grunendahl, S.
Gutsche, O.
Hare, D.
Harris, R. M.
Hasegawa, S.
Hirschauer, J.
Hu, Z.
Jayatilaka, B.
Jindariani, S.
Johnson, M.
Joshi, U.
Klima, B.
Kreis, B.
Lammel, S.
Linacre, J.
Lincoln, D.
Lipton, R.
Liu, T.
Lopes De Sa, R.
Lykken, J.
Maeshima, K.
Magini, N.
Marraffino, J. M.
Maruyama, S.
Mason, D.
McBride, P.
Merkel, P.
Mrenna, S.
Nahn, S.
Newman-Holmes, C.
O'Dell, V.
Pedro, K.
Prokofyev, O.
Rakness, G.
Ristori, L.
Sexton-Kennedy, E.
Soha, A.
Spalding, W. J.
Spiegel, L.
Stoynev, S.
Strobbe, N.
Taylor, L.
Tkaczyk, S.
Tran, N. V.
Uplegger, L.
Vaandering, E. W.
Vernieri, C.
Verzocchi, M.
Vidal, R.
Wang, M.
Weber, H. A.
Whitbeck, A.
Acosta, D.
Avery, P.
Bortignon, P.
Bourilkov, D.
Brinkerhoff, A.
Carnes, A.
Carver, M.
Curry, D.
Das, S.
Field, R. D.
Furic, I. K.
Konigsberg, J.
Korytov, A.
Ma, P.
Matchev, K.
Mei, H.
Milenovic, P.
Mitselmakher, G.
Rank, D.
Shchutska, L.
Sperka, D.
Thomas, L.
Wang, J.
Wang, S.
Yelton, J.
Linn, S.
Markowitz, P.
Martinez, G.
Rodriguez, J. L.
Ackert, A.
Adams, J. R.
Adams, T.
Askew, A.
Bein, S.
Diamond, B.
Hagopian, S.
Hagopian, V.
Johnson, K. F.
Khatiwada, A.
Prosper, H.
Santra, A.
Weinberg, M.
Baarmand, M. M.
Bhopatkar, V.
Colafranceschi, S.
Hohlmann, M.
Noonan, D.
Roy, T.
Yumiceva, F.
Adams, M. R.
Apanasevich, L.
Berry, D.
Betts, R. R.
Bucinskaite, I.
Cavanaugh, R.
Evdokimov, O.
Gauthier, L.
Gerber, C. E.
Hofman, D. J.
Kurt, P.
O'Brien, C.
Sandoval Gonzalez, I. D.
Trauger, H.
Turner, P.
Varelas, N.
Wang, H.
Wu, Z.
Zakaria, M.
Zhang, J.
Bilki, B.
Clarida, W.
Dilsiz, K.
Durgut, S.
Gandrajula, R. P.
Haytmyradov, M.
Khristenko, V.
Merlo, J. -P.
Mermerkaya, H.
Mestvirishvili, A.
Moeller, A.
Nachtman, J.
Ogul, H.
Onel, Y.
Ozok, F.
Penzo, A.
Snyder, C.
Tiras, E.
Wetzel, J.
Yi, K.
Anderson, I.
Blumenfeld, B.
Cocoros, A.
Eminizer, N.
Fehling, D.
Feng, L.
Gritsan, A. V.
Maksimovic, P.
Osherson, M.
Roskes, J.
Sarica, U.
Swartz, M.
Xiao, M.
Xin, Y.
You, C.
Al-bataineh, A.
Baringer, P.
Bean, A.
Bowen, J.
Bruner, C.
Castle, J.
Kenny, R. P., III
Kropivnitskaya, A.
Majumder, D.
Mcbrayer, W.
Murray, M.
Sanders, S.
Stringer, R.
Tapia Takaki, J. D.
Wang, Q.
Ivanov, A.
Kaadze, K.
Khalil, S.
Makouski, M.
Maravin, Y.
Mohammadi, A.
Saini, L. K.
Skhirtladze, N.
Toda, S.
Rebassoo, F.
Wright, D.
Anelli, C.
Baden, A.
Baron, O.
Belloni, A.
Calvert, B.
Eno, S. C.
Ferraioli, C.
Gomez, J. A.
Hadley, N. J.
Jabeen, S.
Kellogg, R. G.
Kolberg, T.
Kunkle, J.
Lu, Y.
Mignerey, A. C.
Shin, Y. H.
Skuja, A.
Tonjes, M. B.
Tonwar, S. C.
Abercrombie, D.
Allen, B.
Apyan, A.
Barbieri, R.
Baty, A.
Bi, R.
Bierwagen, K.
Brandt, S.
Busza, W.
Cali, I. A.
Demiragli, Z.
Di Matteo, L.
Gomez Ceballos, G.
Goncharov, M.
Hsu, D.
Iiyama, Y.
Innocenti, G. M.
Klute, M.
Kovalskyi, D.
Krajczar, K.
Lai, Y. S.
Lee, Y. -J.
Levin, A.
Luckey, P. D.
Marini, A. C.
Mcginn, C.
Mironov, C.
Narayanan, S.
Niu, X.
Paus, C.
Roland, C.
Roland, G.
Salfeld-Nebgen, J.
Stephans, G. S. F.
Sumorok, K.
Tatar, K.
Varma, M.
Velicanu, D.
Veverka, J.
Wang, J.
Wang, T. W.
Wyslouch, B.
Yang, M.
Zhukova, V.
Benvenuti, A. C.
Chatterjee, R. M.
Evans, A.
Finkel, A.
Gude, A.
Hansen, P.
Kalafut, S.
Kao, S. C.
Kubota, Y.
Lesko, Z.
Mans, J.
Nourbakhsh, S.
Ruckstuhl, N.
Rusack, R.
Tambe, N.
Turkewitz, J.
Acosta, J. G.
Oliveros, S.
Avdeeva, E.
Bartek, R.
Bloom, K.
Claes, D. R.
Dominguez, A.
Fangmeier, C.
Gonzalez Suarez, R.
Kamalieddin, R.
Kravchenko, I.
Malta Rodrigues, A.
Meier, F.
Monroy, J.
Siado, J. E.
Snow, G. R.
Stieger, B.
Alyari, M.
Dolen, J.
George, J.
Godshalk, A.
Harrington, C.
Iashvili, I.
Kaisen, J.
Kharchilava, A.
Kumar, A.
Parker, A.
Rappoccio, S.
Roozbahani, B.
Alverson, G.
Barberis, E.
Baumgartel, D.
Hortiangtham, A.
Knapp, B.
Massironi, A.
Morse, D. M.
Nash, D.
Orimoto, T.
Teixeira De Lima, R.
Trocino, D.
Wang, R. -J.
Wood, D.
Bhattacharya, S.
Hahn, K. A.
Kubik, A.
Kumar, A.
Low, J. F.
Mucia, N.
Odell, N.
Pollack, B.
Schmitt, M. H.
Sung, K.
Trovato, M.
Velasco, M.
Dev, N.
Hildreth, M.
Hurtado Anampa, K.
Jessop, C.
Karmgard, D. J.
Kellams, N.
Lannon, K.
Marinelli, N.
Meng, F.
Mueller, C.
Musienko, Y.
Planer, M.
Reinsvold, A.
Ruchti, R.
Smith, G.
Taroni, S.
Valls, N.
Wayne, M.
Wolf, M.
Woodard, A.
Alimena, J.
Antonelli, L.
Brinson, J.
Bylsma, B.
Durkin, L. S.
Flowers, S.
Francis, B.
Hart, A.
Hill, C.
Hughes, R.
Ji, W.
Liu, B.
Luo, W.
Puigh, D.
Winer, B. L.
Wulsin, H. W.
Cooperstein, S.
Driga, O.
Elmer, P.
Hardenbrook, J.
Hebda, P.
Lange, D.
Luo, J.
Marlow, D.
Medvedeva, T.
Mei, K.
Mooney, M.
Olsen, J.
Palmer, C.
Piroue, P.
Stickland, D.
Tully, C.
Zuranski, A.
Malik, S.
Barker, A.
Barnes, V. E.
Folgueras, S.
Gutay, L.
Jha, M. K.
Jones, M.
Jung, A. W.
Jung, K.
Miller, D. H.
Neumeister, N.
Radburn-Smith, B. C.
Shi, X.
Sun, J.
Svyatkovskiy, A.
Wang, F.
Xie, W.
Xu, L.
Parashar, N.
Stupak, J.
Adair, A.
Akgun, B.
Chen, Z.
Ecklund, K. M.
Geurts, F. J. M.
Guilbaud, M.
Li, W.
Michlin, B.
Northup, M.
Padley, B. P.
Redjimi, R.
Roberts, J.
Rorie, J.
Tu, Z.
Zabel, J.
Betchart, B.
Bodek, A.
de Barbaro, P.
Demina, R.
Duh, Y. T.
Ferbel, T.
Galanti, M.
Garcia-Bellido, A.
Han, J.
Hindrichs, O.
Khukhunaishvili, A.
Lo, K. H.
Tan, P.
Verzetti, M.
Chou, J. P.
Contreras-Campana, E.
Gershtein, Y.
Gmez Espinosa, T. A.
Halkiadakis, E.
Heindl, M.
Hidas, D.
Hughes, E.
Kaplan, S.
Kunnawalkam Elayavalli, R.
Kyriacou, S.
Lath, A.
Nash, K.
Saka, H.
Salur, S.
Schnetzer, S.
Sheffield, D.
Somalwar, S.
Stone, R.
Thomas, S.
Thomassen, P.
Walker, M.
Foerster, M.
Heideman, J.
Riley, G.
Rose, K.
Spanier, S.
Thapa, K.
Bouhali, O.
Celik, A.
Dalchenko, M.
De Mattia, M.
Delgado, A.
Dildick, S.
Eusebi, R.
Gilmore, J.
Huang, T.
Juska, E.
Kamon, T.
Mueller, R.
Pakhotin, Y.
Patel, R.
Perloff, A.
Pernis, L.
Rathjens, D.
Rose, A.
Safonov, A.
Tatarinov, A.
Ulmer, K. A.
Akchurin, N.
Cowden, C.
Damgov, J.
Dragoiu, C.
Dudero, P. R.
Faulkner, J.
Kunori, S.
Lamichhane, K.
Lee, S. W.
Libeiro, T.
Undleeb, S.
Volobouev, I.
Wang, Z.
Delannoy, A. G.
Greene, S.
Gurrola, A.
Janjam, R.
Johns, W.
Maguire, C.
Melo, A.
Ni, H.
Sheldon, P.
Tuo, S.
Velkovska, J.
Xu, Q.
Arenton, M. W.
Barria, P.
Cox, B.
Goodell, J.
Hirosky, R.
Ledovskoy, A.
Li, H.
Neu, C.
Sinthuprasith, T.
Sun, X.
Wang, Y.
Wolfe, E.
Xia, F.
Clarke, C.
Harr, R.
Karchin, P. E.
Lamichhane, P.
Sturdy, J.
Belknap, D. A.
Dasu, S.
Dodd, L.
Duric, S.
Gomber, B.
Grothe, M.
Herndon, M.
Herve, A.
Klabbers, P.
Lanaro, A.
Levine, A.
Long, K.
Loveless, R.
Ojalvo, I.
Perry, T.
Pierro, G. A.
Polese, G.
Ruggles, T.
Savin, A.
Sharma, A.
Smith, N.
Smith, W. H.
Taylor, D.
Woods, N.
CA CMS Collaboration
TI Decomposing transverse momentum balance contributions for quenched jets
in PbPb collisions at root s(NN)=2.76 TeV
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Jet substructure; Heavy Ion Experiments; Heavy-ion collision; Quark
gluon plasma
AB Interactions between jets and the quark-gluon plasma produced in heavy ion collisions are studied via the angular distributions of summed charged-particle transverse momenta (p(T)) with respect to both the leading and subleading jet axes in high-p(T) dijet events. The contributions of charged particles in different momentum ranges to the overall event p(T) balance are decomposed into short-range jet peaks and a long-range azimuthal asymmetry in charged-particle p(T). The results for PbPb collisions are compared to those in pp collisions using data collected in 2011 and 2013, at collision energy root s(NN) = 2.76 TeV with integrated luminosities of 166 mu b(-1) and 5.3 pb(-1), respectively, by the CMS experiment at the LHC. Measurements are presented as functions of PbPb collision centrality, charged-particle p(T), relative azimuth, and radial distance from the jet axis for balanced and unbalanced dijets.
C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia.
[Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Ero, J.] OeAW, Inst Hochenergiephys, Vienna, Austria.
[Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van de Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium.
[Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.] Vrije Univ Brussel, Brussels, Belgium.
[Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.] Univ Libre Bruxelles, Brussels, Belgium.
[Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.] Univ Ghent, Ghent, Belgium.
[Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.] Catholic Univ Louvain, Louvain, Belgium.
[Beliy, N.] Univ Mons, Mons, Belgium.
[Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
[Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.] Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil.
[Ruiz Vargas, J. C.] Univ Estadual Paulista, Sao Paulo, Brazil.
Univ Fed ABC, Sao Paulo, Brazil.
Inst Nucl Energy Res, Sofia, Bulgaria.
Univ Sofia, Sofia, Bulgaria.
Beihang Univ, Beijing, Peoples R China.
Inst High Energy Phys, Beijing, Peoples R China.
Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China.
Univ Los Andes, Bogota, Colombia.
Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia.
Univ Split, Fac Sci, Split, Croatia.
Inst Rudjer Boskov, Zagreb, Croatia.
Univ Cyprus, Nicosia, Cyprus.
Charles Univ Prague, Prague, Czech Republic.
Univ San Francisco Quito, Quito, Ecuador.
Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt.
NICPB, Tallinn, Estonia.
Univ Helsinki, Dept Phys, Helsinki, Finland.
Helsinki Inst Phys, Helsinki, Finland.
Lappeenranta Univ Technol, Lappeenranta, Finland.
Univ Paris Saclay, IRFU, CEA, Gif Sur Yvette, France.
Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France.
Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France.
Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Villeurbanne, France.
Univ Claude Bernard Lyon 1, Inst Phys Nucl, Univ Lyon, CNRS,IN2P3, Villeurbanne, France.
Georgian Tech Univ, Tbilisi, Rep of Georgia.
Tbilisi State Univ, Tbilisi, Rep of Georgia.
Rhein Westfal TH Aachen, Inst Phys, Aachen, Germany.
Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany.
Rhein Westfal TH Aachen, Phys Inst B3, Aachen, Germany.
DESY, Hamburg, Germany.
Univ Hamburg, Hamburg, Germany.
Inst Expt Kernphys, Karlsruhe, Germany.
NCSR Demokritos, Inst Nucl & Particle Phys INPP, Aghia Paraskevi, Greece.
Univ Athens, Athens, Greece.
Univ Ioannina, Ioannina, Greece.
Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grp, Budapest, Hungary.
Wigner Res Ctr Phys, Budapest, Hungary.
Inst Nucl Res ATOMKI, Debrecen, Hungary.
Univ Debrecen, Debrecen, Hungary.
Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India.
Panjab Univ, Chandigarh, India.
Univ Delhi, Delhi, India.
Saha Inst Nucl Phys, Kolkata, India.
Indian Inst Technol Madras, Madras, Tamil Nadu, India.
Bhabha Atom Res Ctr, Mumbai, Maharashtra, India.
Tata Inst Fundamental Res, Mumbai, Maharashtra, India.
Indian Inst Sci Educ & Res IISER, Pune, Maharashtra, India.
Inst Res Fundamental Sci IPM, Tehran, Iran.
Univ Coll Dublin, Dublin, Ireland.
INFN, Sez Bari, Bari, Italy.
Univ Bari, Bari, Italy.
Politecn Bari, Bari, Italy.
INFN, Sez Bologna, Bologna, Italy.
Univ Bologna, Bologna, Italy.
INFN, Sez Catania, Catania, Italy.
Univ Catania, Catania, Italy.
INFN, Sez Firenze, Florence, Italy.
Univ Firenze, Florence, Italy.
INFN, Lab Nazl Frascati, Frascati, Italy.
INFN, Sez Genova, Genoa, Italy.
Univ Genoa, Genoa, Italy.
INFN, Sez Milano Bicocca, Milan, Italy.
Univ Milano Bicocca, Milan, Italy.
INFN, Sez Napoli, Naples, Italy.
Univ Napoli Federico II, Naples, Italy.
Univ Basilicata, Potenza, Italy.
Univ G Marconi, Rome, Italy.
INFN, Sez Padova, Padua, Italy.
Univ Padua, Padua, Italy.
Univ Trento, Trento, Italy.
INFN, Sez Pavia, Pavia, Italy.
Univ Pavia, Pavia, Italy.
INFN, Sez Perugia, Perugia, Italy.
Univ Perugia, Perugia, Italy.
[Giassi, A.; Lomtadze, T.; Palla, F.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.] INFN, Sez Pisa, Pisa, Italy.
[Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy.
[Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy.
[Cavallari, F.; Diemoz, M.; Jorda, C.; Meridiani, P.; Paramatti, R.; Rovelli, C.] INFN, Sez Roma, Rome, Italy.
[Barone, L.; Cipriani, M.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.] Univ Roma, Rome, Italy.
[Bartosik, N.; Biino, C.; Cartiglia, N.; Demaria, N.; Mariotti, C.; Maselli, S.; Pastrone, N.; Pelliccioni, M.; Sola, V.; Staiano, A.] INFN, Sez Torino, Turin, Italy.
[Amapane, N.; Argiro, S.; Bellan, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Sacchi, R.; Shchelina, K.; Solano, A.; Traczyk, P.] Univ Torino, Turin, Italy.
[Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy.
[Belforte, S.; Casarsa, M.; Cossutti, F.; Zanetti, A.] INFN, Sez Trieste, Trieste, Italy.
[Della Ricca, G.; La Licata, C.; Schizzi, A.] Univ Trieste, Trieste, Italy.
[Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.] Kyungpook Natl Univ, Seoul, South Korea.
[Lee, A.] Chonbuk Natl Univ, Jeonju, South Korea.
[Brochero Cifuentes, J. A.; Kim, T. J.] Hanyang Univ, Seoul, South Korea.
[Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea.
[Almond, J.; Kim, J.; Oh, S. B.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.] Seoul Natl Univ, Seoul, South Korea.
[Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea.
[Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea.
[Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania.
[Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia.
[Castilla-Valdez, H.; De La Cruz-Burelo, E.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaa Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.] IPN, Ctr Invest Estudios Avanzados, Mexico City, DF, Mexico.
[Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico.
[Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Morelos Pineda, A.] Univ Autnoma San Luis Potosi, San Luis Potosi, Mexico.
[Krofcheck, D.] Univ Auckland, Auckland, New Zealand.
[Butler, P. H.] Univ Canterbury, Christchurch, New Zealand.
[Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan.
[Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Groski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland.
[Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland.
[Bargassa, P.; Beiro Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumenta Fis Expt Particulas, Lisbon, Portugal.
[Afanasiev, S.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia.
[Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.] St Petersburg Nucl Phys Inst, Gatchina, Russia.
[Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia.
[Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow, Russia.
Moscow Inst Phys & Technol, Moscow, Russia.
[Matveev, V.; Bylinkin, A.; Rusinov, V.] Natl Res Nucl Univ Moscow Engn Phys Inst MEPhI, Moscow, Russia.
[Chistov, R.; Danilov, M.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow, Russia.
[Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
Novosibirsk State Univ NSU, Novosibirsk, Russia.
[Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia.
[Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, Madrid, Spain.
[de Trocniz, J. F.; Missiroli, M.; Moran, D.] Univ Autnoma Madrid, Madrid, Spain.
[Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Gonzalez Fernandez, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suarez Andres, I.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain.
[Cabrillo, I. J.; Calderon, A.; Castieiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] CSIC Univ Cantabria, Inst Fis Cantabria IFCA, Santander, Spain.
[D'imperio, G.; Del Re, D.; Arcidiacono, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dunser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knunz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schafer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland.
[Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland.
[Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schonenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland.
[Aarrestad, T. K.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland.
[Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan.
[Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Miano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ NTU, Taipei, Taiwan.
[Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Dept Phys, Fac Sci, Bangkok, Thailand.
[Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey.
[Bilin, B.; Bilmis, S.; Yalvac, M.; Zeyrek, M.] Middle East Tech Univ, Dept Phys, Ankara, Turkey.
[Gulmez, E.] Bogazici Univ, Istanbul, Turkey.
[Cakir, A.; Cankocak, K.] Istanbul Tech Univ, Istanbul, Turkey.
[Grynyov, B.] Inst Scintillat Mat Natl Acad Sci Ukraine, Kharkov, Ukraine.
[Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine.
[Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England.
[Newbold, D. M.; Barducci, D.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.] Rutherford Appleton Lab, Didcot, Oxon, England.
[Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Virdee, T.; Wright, J.; Zenz, S. C.] Imperial Coll, London, England.
[Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England.
[Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA.
[Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA.
[Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA.
[Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.] Brown Univ, Providence, RI 02912 USA.
[Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA.
[Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA.
[Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Welke, C.; Wood, J.; Wurthwein, F.; Yagil, A.; Zevi Della Porta, G.] Univ Calif San Diego, San Diego, CA 92103 USA.
[Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA.
[Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.] Univ Colorado Boulder, Boulder, CO USA.
[Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.] Cornell Univ, Ithaca, NY USA.
[Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA.
[Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sa, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Kuznetsova, E.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA.
[Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA.
[Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA.
[Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA.
[Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Trauger, H.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.] Univ Illinois, Chicago, IL USA.
[Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA.
[Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA.
[Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA.
[Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA.
[Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD USA.
[Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA.
[Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA.
[Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.] Univ Nebraska Lincoln, Lincoln, NE USA.
[Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY USA.
[Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Knapp, B.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R. -J.; Wood, D.] Northeastern Univ, Boston, MA 02115 USA.
[Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA.
[Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA.
[Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA.
[Malik, S.] Univ Puerto Rico, Mayaguez, PR USA.
[Savoy-Navarro, A.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA.
[Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA.
[Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA.
[Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, MN USA.
[Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gmez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA.
[Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.] Univ Tennessee, Knoxville, TN USA.
[Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Pernis, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA.
[Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA.
[Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.] Univ Virginia, Charlottesville, VA USA.
[Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA.
[Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin Madison, Madison, WI USA.
[Krammer, M.] Vienna Univ Technol, Vienna, Austria.
Univ Estadual Campinas, Campinas, SP, Brazil.
Univ Fed Pelotas, Pelotas, Brazil.
Cairo Univ, Cairo, Egypt.
Fayoum Univ, Al Fayyum, Egypt.
British Univ Egypt, Cairo, Egypt.
Ain Shams Univ, Cairo, Egypt.
Univ Haute Alsace, Mulhouse, France.
Brandenburg Tech Univ Cottbus, Cottbus, Germany.
Indian Inst Sci Educ & Res, Bhopal, India.
Inst Phys, Bhubaneswar, Orissa, India.
Visva Bharati Univ, Santini Ketan, W Bengal, India.
Univ Ruhuna, Matara, Sri Lanka.
Isfahan Univ Technol, Esfahan, Iran.
Univ Tehran, Dept Engn Sci, Tehran, Iran.
Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran.
[Grippo, M. T.] Univ Siena, Siena, Italy.
[Md Ali, M. A. B.] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia.
[Mohamad Idris, F.] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia.
[Heredia-De La Cruz, I.] Consejo Nacl Ciencia Tecnol, Mexico City, DF, Mexico.
[Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland.
[Yuldashev, B. S.] Uzbek Acad Sci, Inst Nucl Phys, Tashkent, Uzbekistan.
[Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia.
[Blinov, V.; Skovpen, Y.] Budker Inst Nucl Phys, Novosibirsk, Russia.
[Adzic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia.
[Di Marco, E.] Univ Roma, INFN, Sez Roma, Rome, Italy.
[Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale Super Pisa, Pisa, Italy.
[Veckalns, V.] Riga Tech Univ, Riga, Latvia.
[Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Cerci, S.; Sunar Cerci, D.] Adiyaman Univ, Adiyaman, Turkey.
[Kangal, E. E.] Mersin Univ, Mersin, Turkey.
[Onengut, G.] Cag Univ, Mersin, Turkey.
[Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey.
[Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey.
[Isildak, B.] Ozyegin Univ, Istanbul, Turkey.
[Karapinar, G.] Izmir Inst Technol, Izmir, Turkey.
[Kaya, M.] Marmara Univ, Istanbul, Turkey.
[Kaya, O.] Kafkas Univ, Kars, Turkey.
[Yetkin, E. A.] Istanbul Bilgi Univ, Istanbul, Turkey.
[Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey.
[Sen, S.] Hacettepe Univ, Ankara, Turkey.
[Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England.
[Vazquez Acosta, M.] Inst Astrofis Canarias, San Cristobal la Laguna, Spain.
[Wasserbaech, S.] Utah Valley Univ, Orem, UT USA.
[Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy.
[Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey.
[Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey.
[Bouhali, O.] Texas A&M Univ, Doha, Qatar.
[CMS Collaboration] CERN, CH-1211 Geneva 23, Switzerland.
RP Vargas, JCR (reprint author), Univ Estadual Paulista, Sao Paulo, Brazil.
RI Danilov, Mikhail/C-5380-2014; Kirakosyan, Martin/N-2701-2015; Della
Ricca, Giuseppe/B-6826-2013; Goh, Junghwan/Q-3720-2016; Azarkin,
Maxim/N-2578-2015; Lokhtin, Igor/D-7004-2012; Konecki,
Marcin/G-4164-2015; Chistov, Ruslan/B-4893-2014; Da Silveira, Gustavo
Gil/N-7279-2014; Andreev, Vladimir/M-8665-2015; Leonidov,
Andrey/M-4440-2013; Paulini, Manfred/N-7794-2014; Terkulov,
Adel/M-8581-2015; Smirnov, Vitaly/B-5001-2017; Moraes,
Arthur/F-6478-2010; Ogul, Hasan/S-7951-2016; Dremin, Igor/K-8053-2015
OI Danilov, Mikhail/0000-0001-9227-5164; Della Ricca,
Giuseppe/0000-0003-2831-6982; Goh, Junghwan/0000-0002-1129-2083;
Konecki, Marcin/0000-0001-9482-4841; Chistov,
Ruslan/0000-0003-1439-8390; Da Silveira, Gustavo
Gil/0000-0003-3514-7056; Paulini, Manfred/0000-0002-6714-5787; Moraes,
Arthur/0000-0002-5157-5686; Ogul, Hasan/0000-0002-5121-2893;
FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq
(Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES
(Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); SENESCYT
(Ecuador); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of
Finland (Finland); MEC (Finland); HIP (Finland); CEA (France);
CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT
(Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM
(Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF
(Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia);
BUAP (Mexico); CINVESTAV (Mexico); CONACYT (Mexico); LNS (Mexico); SEP
(Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE
(Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia);
RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI
(Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST
(Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA
(Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR
(Ukraine); STFC (United Kingdom); DOE (U.S.A.); NSF (U.S.A.);
Marie-Curie programme and the European Research Council and EPLANET
(European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander
von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds
pour la Formation a a la Recherche dans l'Industrie et dans
l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap
en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports
(MEYS) of the Czech Republic; Council of Science and Industrial
Research, India; HOMING PLUS programme of the Foundation for Polish
Science; European Union; Regional Development Fund; Mobility Plus
programme of the Ministry of Science and Higher Education; National
Science Center (Poland) [2014/14/M/ST2/00428, 2013/11/B/ST2/04202,
2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2012/07/E/ST2/01406]; Thalis
and Aristeia programmes - EU-ESF; Greek NSRF; National Priorities
Research Program by Qatar National Research Fund; Programa Clarin-COFUND
del Principado de Asturias; Rachadapisek Sompot Fund for Postdoctoral
Fellowship, Chulalongkorn University; Chulalongkorn Academic into Its
2nd Century Project Advancement Project (Thailand); Welch Foundation
[C-1845]
FX We congratulate our colleagues in the CERN accelerator departments for
the excellent performance of the LHC and thank the technical and
administrative staffs at CERN and at other CMS institutes for their
contributions to the success of the CMS effort. In addition, we
gratefully acknowledge the computing centres and personnel of the
Worldwide LHC Computing Grid for delivering so effectively the computing
infrastructure essential to our analyses. Finally, we acknowledge the
enduring support for the construction and operation of the LHC and the
CMS detector provided by the following funding agencies: BMWFW and FWF
(Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP
(Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS
(Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador);
MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP
(Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany);
GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran);
SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS
(Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP,
and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and
NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR
(Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies
(Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA
(Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC
(United Kingdom); DOE and NSF (U.S.A.).; IIndividuals have received
support from the Marie-Curie programme and the European Research Council
and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan
Foundation; the Alexander von Humboldt Foundation; the Belgian Federal
Science Policy Office; the Fonds pour la Formation a a la Recherche dans
l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor
Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of
Education, Youth and Sports (MEYS) of the Czech Republic; the Council of
Science and Industrial Research, India; the HOMING PLUS programme of the
Foundation for Polish Science, cofinanced from European Union, Regional
Development Fund, the Mobility Plus programme of the Ministry of Science
and Higher Education, the National Science Center (Poland), contracts
Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202,
2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis
2012/07/E/ST2/01406; the Thalis and Aristeia programmes cofinanced by
EU-ESF and the Greek NSRF; the National Priorities Research Program by
Qatar National Research Fund; the Programa Clarin-COFUND del Principado
de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship,
Chulalongkorn University and the Chulalongkorn Academic into Its 2nd
Century Project Advancement Project (Thailand); and the Welch
Foundation, contract C-1845.
NR 31
TC 0
Z9 0
U1 28
U2 28
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD NOV 9
PY 2016
IS 11
AR 055
DI 10.1007/JHEP11(2016)055
PG 43
WC Physics, Particles & Fields
SC Physics
GA EC0TP
UT WOS:000387813900001
ER
PT J
AU Hu, L
Chen, J
Xu, JL
Wang, N
Han, F
Ren, Y
Pan, Z
Rong, YC
Huang, RJ
Deng, JX
Li, LF
Xing, XR
AF Hu, Lei
Chen, Jun
Xu, Jiale
Wang, Na
Han, Fei
Ren, Yang
Pan, Zhao
Rong, Yangchun
Huang, Rongjin
Deng, Jinxia
Li, Laifeng
Xing, Xianran
TI Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive
Thermal Expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn)
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CUBIC SCF3; TEMPERATURE; FERROMAGNETISM; MECHANISMS; DEPENDENCE;
BEHAVIOR; CAZRF6; ZRW2O8
AB The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (-6.69 to +18.23 X 10(-6)/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF6, which is one of the rarely documented high-temperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal center dot center dot center dot F atomic linkages in MZrF6 plays a critical role in distinct thermal expansions. The flexible metal center dot center dot center dot F atomic linkages induce negative thermal expansion (NTE) for CaZrF6, whereas the stiff ones bring positive thermal expansion (PTE) for NiZrF6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal center dot center dot center dot F atomic linkages by substitution with a series of cations on M sites of MZrF6. The present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.
C1 [Hu, Lei; Chen, Jun; Xu, Jiale; Wang, Na; Han, Fei; Pan, Zhao; Rong, Yangchun; Deng, Jinxia; Xing, Xianran] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
[Ren, Yang] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Huang, Rongjin; Li, Laifeng] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Cryogen, Beijing 100190, Peoples R China.
RP Chen, J (reprint author), Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
EM junchen@ustb.edu.cn
FU National Natural Science Foundation of China [21322102, 91422301,
21231001, 21590793]; Changjiang Young Scholars Award; National Program
for Support of Top-Notch Young Professionals; Fundamental Research Funds
for the Central Universities, China [FRF-TP-14-012C1]; DOE Office of
Science [DE-AC02-06CH11357]
FX This work was supported by the National Natural Science Foundation of
China (grant nos. 21322102, 91422301, 21231001, and 21590793), the
Changjiang Young Scholars Award. National Program for Support of
Top-Notch Young Professionals, the Fundamental Research Funds for the
Central Universities, China (FRF-TP-14-012C1). This research used
resources of the Advanced Photon Source, a U.S. Department of Energy
(DOE) Office of Science User Facility operated for the DOE Office of
Science by Argonne National Laboratory under Contract No.
DE-AC02-06CH11357. We acknowledge the discussions on PDF analysis with
Dr. R.Z. Yu and Dr. E. Bozin, and theoretical calculation with Dr. X.X.
Jiang and Prof. Z.S. Lin.
NR 32
TC 4
Z9 4
U1 34
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 9
PY 2016
VL 138
IS 44
BP 14530
EP 14533
DI 10.1021/jacs.6b08746
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB8EW
UT WOS:000387625300003
PM 27783492
ER
PT J
AU White, MA
Miller, GJ
Vela, J
AF White, Miles A.
Miller, Gordon J.
Vela, Javier
TI Polytypism and Unique Site Preference in LiZnSb: A Superior
Thermoelectric Reveals Its True Colors
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID MGAGAS-TYPE COMPOUNDS; SEMICONDUCTORS
AB The first example of polytypism in the I II-V semiconductors has been demonstrated with the synthesis of cubic LiZnSb by a low-temperature solution phase method. This phase exhibits a unique coloring pattern that is novel for this class of compounds. The choice of site configuration has a considerable impact on the band structure of these materials, which in turn affects the transport properties. While the hexagonal polytype has been suggested as a promising n-type and extremely poor p-type thermoelectric material, the cubic analogue is calculated to have high efficiencies for both the n- and p-type derivatives (1.64 and 1.43, respectively, at 600 K). Furthermore, the cubic phase is found to be the energetically favored polytype. This surprising result provides a rationale for the lack of success in synthesizing the hexagonal polytype in either stoichiometric or n-type compositions.
C1 [White, Miles A.; Miller, Gordon J.; Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Miller, Gordon J.; Vela, Javier] US DOE, Ames Lab, Ames, IA 50011 USA.
RP Miller, GJ; Vela, J (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.; Miller, GJ; Vela, J (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
EM gmiller@iastate.edu; vela@iastate.edu
RI Vela, Javier/I-4724-2014
OI Vela, Javier/0000-0001-5124-6893
FU U.S. National Science Foundation [1253058]; College of Liberal Arts and
Sciences Computational Advisory Committee (LASCAC) at Iowa State
University [202-04-36-03-1000]; Chemistry Department
FX J.V. thanks the U.S. National Science Foundation for a CAREER Grant from
the Division of Chemistry, Macro molecular, Supramolecular, and
Nanochemistry Program (1253058). Computations were performed on cluster
funded by the College of Liberal Arts and Sciences Computational
Advisory Committee (LASCAC) at Iowa State University
(202-04-36-03-1000), with additional support from the Chemistry
Department.
NR 22
TC 1
Z9 1
U1 10
U2 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 9
PY 2016
VL 138
IS 44
BP 14574
EP 14577
DI 10.1021/jacs.6b10054
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB8EW
UT WOS:000387625300014
PM 27766839
ER
PT J
AU Yu, CJ
Graham, MJ
Zadrozny, JM
Niklas, J
Krzyaniak, MD
Wasielewski, MR
Poluektov, OG
Freedman, DE
AF Yu, Chung-Jui
Graham, Michael J.
Zadrozny, Joseph M.
Niklas, Jens
Krzyaniak, Matthew D.
Wasielewski, Michael R.
Poluektov, Oleg G.
Freedman, Danna E.
TI Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID LATTICE-RELAXATION RATES; CRYSTAL-STRUCTURE; NITROXYL RADICALS; QUANTUM
COHERENCE; MOLECULAR QUBITS; GLASSY SOLVENTS; COMPLEXES; TRANSITIONS;
TEMPERATURE; RESONANCE
AB Quantum information processing (QIP) offers the potential to create new frontiers in fields ranging from quantum biology to cryptography. Two key figures of merit for electronic spin qubits, the smallest units of QIP, are the coherence time (T-2), the lifetime of the qubit, and the spin lattice relaxation time (T-1), the thermally defined upper limit of T-2. To achieve QIP, processable qubits with long coherence times are required. Recent studies on (Ph4P-d(20))(2)[V(C8S8)(3)], a vanadium-based qubit, demonstrate that millisecond T-2 times are achievable in transition metal complexes with nuclear spin free environments. Applying these principles to vanadyl complexes offers a route to combine the previously established surface compatibility of the flatter vanadyl structures with a long T-2. Toward those ends, we investigated a series of four qubits, (Ph4P)(2)[VO(C8S8)(2)] (1), (Ph4P)(2)[VO(beta-C3S5)(2)] (2), (Ph4P)(2)[VO(alpha-C3S5)(2)] (3), and (Ph4P)(2)[VO(C3S4O)(2)] (4), by pulsed electron paramagnetic resonance (EPR) spectroscopy and compared the performance of these species with our recently reported set of vanadium tris(dithiolene) complexes. Crucially we demonstrate that solutions of 1-4 in SO2, a uniquely polar nuclear spin free solvent, reveal T-2 values of up to 152(6) mu s, comparable to the best molecular qubit candidates. Upon transitioning to vanadyl species from the tris(dithiolene) analogues, we observe a remarkable order of magnitude increase in T-1 attributed to stronger solute solvent interactions with the polar vanadium-oxo moiety. Simultaneously, we detect a small decrease in T-2 for the vanadyl analogues relative to the tris(dithiolene) complexes. We attribute this decrease to the absence of one nuclear spin free ligand, which served to shield the vanadium centers against solvent nuclear spins. Our results highlight new design principles for long T-1 and T-2 times by demonstrating the efficacy of ligand-based tuning of solute-solvent interactions.
C1 [Yu, Chung-Jui; Graham, Michael J.; Zadrozny, Joseph M.; Krzyaniak, Matthew D.; Wasielewski, Michael R.; Freedman, Danna E.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
[Niklas, Jens; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Krzyaniak, Matthew D.; Wasielewski, Michael R.] Northwestern Univ, Argonne Northwestern Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA.
RP Freedman, DE (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM danna.freedman@northwestern.edu
RI Zadrozny, Joseph/A-1429-2017; Niklas, Jens/I-8598-2016
OI Zadrozny, Joseph/0000-0002-1309-6545; Niklas, Jens/0000-0002-6462-2680
FU Northwestern University; State of Illinois; National Science Foundation
[CHE-1455017, CHE-1565925]; NSF GRFP fellowship [DGE-1324585]; U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences at
Argonne National Laboratory [DE-AC02-06CH11357]
FX We thank M. S. Fataftah and M. L. Kelty for experimental assistance, and
C. Stern for helpful discussions. We acknowledge support from
Northwestern University, the State of Illinois, and the National Science
Foundation for CAREER Award No. CHE-1455017 (C.-J.Y., M.J.G., J.M.Z.,
and D.E.F.) and Award No. CHE-1565925 (M.R.W.). M.J.G. acknowledges an
NSF GRFP fellowship (DGE-1324585). This material is based upon work
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences, under Contract DE-AC02-06CH11357 at Argonne National
Laboratory (J.N. and O.G.P.).
NR 65
TC 5
Z9 5
U1 15
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 9
PY 2016
VL 138
IS 44
BP 14678
EP 14685
DI 10.1021/jacs.6b08467
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB8EW
UT WOS:000387625300027
PM 27797487
ER
PT J
AU Malliakas, CD
Chung, DY
Claus, H
Kanatzidis, MG
AF Malliakas, Christos D.
Chung, Duck Young
Claus, Helmut
Kanatzidis, Mercouri G.
TI Superconductivity in the Narrow Gap Semiconductor RbBi11/3Te6
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID STRUCTURAL EVOLUTION; PHASE HOMOLOGIES; TEMPERATURE; DESIGN
AB Superconductivity was discovered in the layered compound RbBi11/3Te6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. A sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi11/3-ySbySexTe6-x, revealed a dependence of the superconducting transition on composition that can increase the T-c up to similar to 10%. The RbBi11/3Te6 system is the first member of the new homologous series Rb[Bi2n+11/3Te3n+6] with infinite Bi2Te3-like layers. The large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors.
C1 [Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
EM m-kanatzidis@northwestern.edu
FU U.S. Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX This work is supported by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Materials Sciences and Engineering
Division. Use of the Advanced Photon Source at Argonne National
Laboratory was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357.
NR 25
TC 0
Z9 0
U1 8
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 9
PY 2016
VL 138
IS 44
BP 14694
EP 14698
DI 10.1021/jacs.6b08732
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB8EW
UT WOS:000387625300029
PM 27744685
ER
PT J
AU Boulesbaa, A
Wang, K
Mahjouri-Samani, M
Tian, M
Puretzky, AA
Ivanov, I
Rouleau, CM
Xiao, K
Sumpter, BG
Geohegan, DB
AF Boulesbaa, Abdelaziz
Wang, Kai
Mahjouri-Samani, Masoud
Tian, Mengkun
Puretzky, Alexander A.
Ivanov, Ilia
Rouleau, Christopher M.
Xiao, Kai
Sumpter, Bobby G.
Geohegan, David B.
TI Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D
Heterostructures
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID TRANSITION-METAL DICHALCOGENIDES; ELECTRON-HOLE RECOMBINATION; CDSE
QUANTUM DOTS; ENERGY-TRANSFER; SEMICONDUCTOR NANOCRYSTALS; LAYER MOS2;
DYNAMICS; ABSORPTION; MONOLAYERS
AB Photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors, i.e., monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions has attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge-transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure for optoelectronic applications. Here, we incorporate femtosecond pump probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/OD heterostructure composed of tungsten disulfide monolayers (2D-WS2) and a single layer of cadmium selenide/zinc sulfide core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that, following electron transfer from the 2D to the OD, hybrid excitons, wherein the electron resides in the OD and the hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of similar to 140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.
C1 [Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud; Tian, Mengkun; Puretzky, Alexander A.; Ivanov, Ilia; Rouleau, Christopher M.; Xiao, Kai; Sumpter, Bobby G.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Boulesbaa, A (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM boulesbaaa@ornl.gov
RI Sumpter, Bobby/C-9459-2013
OI Sumpter, Bobby/0000-0001-6341-0355
FU Materials Science and Engineering Division, Office of Basic Energy
Sciences, U.S. Department of Energy
FX This research was conducted at the Center for Nanophase Materials
Sciences, which is a DOE Office of Science User Facility. Synthesis of
the two-dimensional materials was supported by the Materials Science and
Engineering Division, Office of Basic Energy Sciences, U.S. Department
of Energy.
NR 33
TC 0
Z9 0
U1 89
U2 89
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 9
PY 2016
VL 138
IS 44
BP 14713
EP 14719
DI 10.1021/jacs.6b08883
PG 7
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB8EW
UT WOS:000387625300032
PM 27754655
ER
PT J
AU Bellora, N
Moline, M
David-Palma, M
Coelho, MA
Hittinger, CT
Sampaio, JP
Goncalves, P
Libkind, D
AF Bellora, Nicolas
Moline, Martin
David-Palma, Marcia
Coelho, Marco A.
Hittinger, Chris Todd
Sampaio, Jose P.
Goncalves, Paula
Libkind, Diego
TI Comparative genomics provides new insights into the diversity,
physiology, and sexuality of the only industrially exploited
tremellomycete: Phaffia rhodozyma
SO BMC GENOMICS
LA English
DT Article
DE Xanthophyllomyces dendrorhous; Mycosporines; Aquaculture; Phylogenomics;
Basidiomycete; Mating type; Photoprotection; Yeast; Type strain
ID MYCOSPORINE-GLUTAMINOL-GLUCOSIDE; MULTIPLE SEQUENCE ALIGNMENT;
ASTAXANTHIN BIOSYNTHESIS; SUNSCREEN BIOSYNTHESIS; SINGLET OXYGEN; YEAST;
EVOLUTION; IDENTIFICATION; CAROTENOIDS; ANNOTATION
AB Background: The class Tremellomycete (Agaricomycotina) encompasses more than 380 fungi. Although there are a few edible Tremella spp., the only species with current biotechnological use is the astaxanthin-producing yeast Phaffia rhodozyma (Cystofilobasidiales). Besides astaxanthin, a carotenoid pigment with potent antioxidant activity and great value for aquaculture and pharmaceutical industries, P. rhodozyma possesses multiple exceptional traits of fundamental and applied interest. The aim of this study was to obtain, and analyze two new genome sequences of representative strains from the northern (CBS 7918(T), the type strain) and southern hemispheres (CRUB 1149) and compre them to a previously published genome sequence (strain CBS 6938). Photoprotection and antioxidant related genes, as well as genes involved in sexual reproduction were analyzed.
Results: Both genomes had ca. 19 Mb and 6000 protein coding genes, similar to CBS 6938. Compared to other fungal genomes P. rhodozyma strains and other Cystofilobasidiales have the highest number of intron-containing genes and highest number of introns per gene. The Patagonian strain showed 4.4 % of nucleotide sequence divergence compared to the European strains which differed from each other by only 0.073 %. All known genes related to the synthesis of astaxanthin were annotated. A hitherto unknown gene cluster potentially responsible for photoprotection (mycosporines) was found in the newly sequenced P. rhodozyma strains but was absent in the non-mycosporinogenic strain CBS 6938. A broad battery of enzymes that act as scavengers of free radical oxygen species were detected, including catalases and superoxide dismutases (SODs). Additionally, genes involved in sexual reproduction were found and annotated.
Conclusions: A draft genome sequence of the type strain of P. rhodozyma is now available, and comparison with that of the Patagonian population suggests the latter deserves to be assigned to a distinct variety. An unexpected genetic trait regarding high occurrence of introns in P. rhodozyma and other Cystofilobasidiales was revealed. New genomic insights into fungal homothallism were also provided. The genetic basis of several additional photoprotective and antioxidant strategies were described, indicating that P. rhodozyma is one of the fungi most well-equipped to cope with environmental oxidative stress, a factor that has probably contributed to shaping its genome.
C1 [Bellora, Nicolas; Moline, Martin; Libkind, Diego] CONICET UNComahue, Inst Andino Patag nico Tecnologias Biol gicas Geo, Lab Microbiol Aplicada Biotecnol & Bioinformat Le, Inst Andinopatagon Tecnol Biol & Geoambientales I, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
[David-Palma, Marcia; Coelho, Marco A.; Sampaio, Jose P.; Goncalves, Paula] Univ Nova Lisboa, Dept Ciencias Vida, UCIBIO REQUIMTE, Fac Ciencias & Tecnol, Caparica, Portugal.
[Hittinger, Chris Todd] Univ Wisconsin, Genet Lab, Genome Ctr Wisconsin,JF Crow Inst Study Evolut, DOE Great Lakes Bioenergy Res Ctr,Wisconsin Energ, Madison, WI 53706 USA.
RP Libkind, D (reprint author), CONICET UNComahue, Inst Andino Patag nico Tecnologias Biol gicas Geo, Lab Microbiol Aplicada Biotecnol & Bioinformat Le, Inst Andinopatagon Tecnol Biol & Geoambientales I, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
EM libkindfd@comahue-conicet.gob.ar
OI Coelho, Marco/0000-0002-5716-0561
FU ANPCYT [PICT 1814, PICT 2542]; CONICET [PIP 424]; UNComahue [B171];
Unidade de Ciencias Biomoleculares Aplicadas-UCIBIO; FCT/MEC
[UID/Multi/04378/2013]; ERDF [POCI-01-0145-FEDER-007728]; National
Science Foundation [DEB-1253634, DEB-1442148]; DOE Great Lakes Bioenergy
Research Center (DOE Office of Science BER) [DE-FC02-07ER64494]; Pew
Charitable Trusts; Alexander von Humboldt Foundation; Fundacao para a
Ciencia e a Tecnologia, Portugal [SFRH/BPD/79198/2011,
SFRH/BD/81895/2011]; [PTDC/BIA-GEN/112799/2009]
FX This work was partially funded in Argentina by grants PICT 1814 and PICT
2542 (ANPCYT), PIP 424 (CONICET) and B171 (UNComahue), in Portugal by
grant PTDC/BIA-GEN/112799/2009 and by the Unidade de Ciencias
Biomoleculares Aplicadas-UCIBIO, which is financed by national funds
from FCT/MEC (UID/Multi/04378/2013) and co-financed by the ERDF under
the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728), and in USA
by the National Science Foundation under grants DEB-1253634 and
DEB-1442148 and funded in part by the DOE Great Lakes Bioenergy Research
Center (DOE Office of Science BER DE-FC02-07ER64494). CTH is a Pew
Scholar in the Biomedical Sciences and an Alfred Toepfer Faculty Fellow,
supported by the Pew Charitable Trusts and the Alexander von Humboldt
Foundation, respectively. MAC and MD-P hold, respectively, grants
SFRH/BPD/79198/2011 and SFRH/BD/81895/2011 from Fundacao para a Ciencia
e a Tecnologia, Portugal. We thank Jim Dover for technical support and
Mark Johnston for providing access to an Illumina GAIIx instrument at
the University of Colorado School of Medicine. To Dr. Cifuentes (U.N.
Chile) for providing a set of mRNAs for annotation and quality checks.
We thank Laurie Connell, Christina Cuomo, Ratan Gachhui, and Joseph
Heitman for the authorization of use of their genome sequences.
NR 77
TC 0
Z9 0
U1 20
U2 20
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD NOV 9
PY 2016
VL 17
AR 901
DI 10.1186/s12864-016-3244-7
PG 16
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA EB5PH
UT WOS:000387428000005
PM 27829365
ER
PT J
AU Gofryk, K
Griveau, JC
Riseborough, PS
Durakiewicz, T
AF Gofryk, K.
Griveau, J. -C.
Riseborough, P. S.
Durakiewicz, T.
TI Thermoelectric power as a probe of density of states in correlated
actinide materials: The case of PuCoGa5 superconductor
SO PHYSICAL REVIEW B
LA English
DT Article
ID HEAVY-FERMION COMPOUNDS; ELECTRONIC-STRUCTURE; KONDO LATTICES;
HIGH-PRESSURE; TRANSITION; CERIUM; TEMPERATURE; DEPENDENCE; SYSTEMS;
METALS
AB We present measurements of the thermoelectric power of the plutonium-based unconventional superconductor PuCoGa5. The data is interpreted within a phenomenological model for the quasiparticle density of states of intermediate valence systems, and the results are compared with results obtained from photoemission spectroscopy. The results are consistent with the intermediate valence nature of 5f electrons; furthermore, we propose that measurements of the Seebeck coefficient can be used as a probe of density of states in this material, thereby providing a link between transport measurements and photoemission in strongly correlated materials. We discuss these results and their implications for the electronic structure determination of other strongly correlated systems, especially actinide materials.
C1 [Gofryk, K.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Griveau, J. -C.] European Commiss, Joint Res Ctr, Directorate Nucl Safety & Secur, Postfach 2340, D-76125 Karlsruhe, Germany.
[Riseborough, P. S.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA.
[Durakiewicz, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Durakiewicz, T.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland.
RP Gofryk, K (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM krzysztof.gofryk@inl.gov
RI Riseborough, Peter/D-4689-2011
FU Department of Energy, Office of Basic Energy Sciences, Materials
Sciences, and Engineering Division [DOE FG02-01ER45872]
FX This work was supported by the Department of Energy, Office of Basic
Energy Sciences, Materials Sciences, and Engineering Division and
through Grant No. DOE FG02-01ER45872. We are grateful to J. Rebizant for
sample preparation and characterization. High purity Pu metal was made
available through a loan agreement between Lawrence Livermore National
Laboratory and ITU, in the frame of a collaboration involving LLNL, Los
Alamos National Laboratory, and the US Department of Energy.
NR 43
TC 0
Z9 0
U1 9
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 9
PY 2016
VL 94
IS 19
AR 195117
DI 10.1103/PhysRevB.94.195117
PG 5
WC Physics, Condensed Matter
SC Physics
GA EB7AJ
UT WOS:000387537100002
ER
PT J
AU Doux, C
Schaan, E
Aubourg, E
Ganga, K
Lee, KG
Spergel, DN
Treguer, J
AF Doux, Cyrille
Schaan, Emmanuel
Aubourg, Eric
Ganga, Ken
Lee, Khee-Gan
Spergel, David N.
Treguer, Julien
TI First detection of cosmic microwave background lensing and Lyman-alpha
forest bispectrum
SO PHYSICAL REVIEW D
LA English
DT Article
ID OSCILLATION SPECTROSCOPIC SURVEY; BARYON ACOUSTIC-OSCILLATIONS; DATA
RELEASE 9; POWER SPECTRUM; DARK-MATTER; BOSS; MASS; QUASARS;
REIONIZATION; DENSITY
AB We present the first detection of a correlation between the Lyman-alpha forest and cosmic microwave background gravitational lensing. For each Lyman-a forest in SDSS-III/BOSS DR12, we correlate the one-dimensional power spectrum with the cosmic microwave background lensing convergence on the same line of sight from Planck. This measurement constitutes a position-dependent power spectrum, or a squeezed bispectrum, and quantifies the nonlinear response of the Lyman-alpha forest power spectrum to a large-scale overdensity. The signal is measured at 5 sigma and is consistent with the expectation of the standard Lambda CDM cosmological model. We measure the linear bias of the Lyman-a forest with respect to the dark matter distribution and constrain a combination of nonlinear terms including the nonlinear bias. This new observable provides a consistency check for the Lyman-alpha forest as a large-scale structure probe and tests our understanding of the relation between intergalactic gas and dark matter. In the future, it could be used to test hydrodynamical simulations and calibrate the relation between the Lyman-a forest and dark matter.
C1 [Doux, Cyrille; Aubourg, Eric; Ganga, Ken; Treguer, Julien] Univ Paris Diderot, AstroParticule & Cosmol, CNRS, Sorbonne Paris Cite,CEA,Observ Paris, Batiment Condorcet, F-75205 Paris 13, France.
[Schaan, Emmanuel; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Lee, Khee-Gan] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Doux, C (reprint author), Univ Paris Diderot, AstroParticule & Cosmol, CNRS, Sorbonne Paris Cite,CEA,Observ Paris, Batiment Condorcet, F-75205 Paris 13, France.
EM cdoux@apc.in2p3.fr
FU Centre National de la Recherche Scientifique (CNRS) grant PICS
APC-Princeton; NSF [AST-1311756]; NASA through Hubble Fellowship - Space
Telescope Science Institute [HF2-51361]; NASA [NAS5-26555]; Alfred P.
Sloan Foundation; National Science Foundation; U.S. Department of Energy
Office of Science; University of Arizona; Brazilian Participation Group;
Brookhaven National Laboratory; Carnegie Mellon University; University
of Florida; French Participation Group; German Participation Group;
Harvard University; Instituto de Astrofisica de Canarias; Michigan
State/Notre Dame/Joint Institute for Nuclear Astrophysics (JINA)
Participation Group; Johns Hopkins University; Lawrence Berkeley
National Laboratory; Max Planck Institute for Astrophysics; Max Planck
Institute for Extraterrestrial Physics; New Mexico State University; New
York University; Ohio State University; Pennsylvania State University;
University of Portsmouth; Princeton University; University of Tokyo;
University of Utah; Vanderbilt University; University of Virginia;
University of Washington; Yale University; Spanish Participation Group
FX The authors warmly thank the referee for interesting and useful
questions and comments. C. D., E. S., and E. A. acknowledge support from
Centre National de la Recherche Scientifique (CNRS) grant PICS
APC-Princeton. C. D., E. S., and D. N. S. acknowledge support from NSF
Grant No. AST-1311756. K.-G. L. acknowledges support for this work by
NASA through Hubble Fellowship Grant No. HF2-51361 awarded by the Space
Telescope Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Inc., for NASA, under Contract
No. NAS5-26555. Funding for SDSS-III has been provided by the Alfred P.
Sloan Foundation, the Participating Institutions, the National Science
Foundation, and the U.S. Department of Energy Office of Science. The
SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the
Astrophysical Research Consortium for the Participating Institutions of
the SDSS-III Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Laboratory, Carnegie
Mellon University, University of Florida, the French Participation
Group, the German Participation Group, Harvard University, the Instituto
de Astrofisica de Canarias, the Michigan State/Notre Dame/Joint
Institute for Nuclear Astrophysics (JINA) Participation Group, Johns
Hopkins University, Lawrence Berkeley National Laboratory, Max Planck
Institute for Astrophysics, Max Planck Institute for Extraterrestrial
Physics, New Mexico State University, New York University, Ohio State
University, Pennsylvania State University, University of Portsmouth,
Princeton University, the Spanish Participation Group, University of
Tokyo, University of Utah, Vanderbilt University, University of
Virginia, University of Washington, and Yale University.
NR 44
TC 0
Z9 0
U1 2
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 9
PY 2016
VL 94
IS 10
AR 103506
DI 10.1103/PhysRevD.94.103506
PG 8
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA EB5DA
UT WOS:000387392400002
ER
PT J
AU Fu, Q
Wheaton, BR
Geisinger, KL
Credle, AJ
Wang, J
AF Fu, Qiang
Wheaton, Bryan R.
Geisinger, Karen L.
Credle, Allen J.
Wang, Jie
TI Crystallization, Microstructure, and Viscosity Evolutions in Lithium
Aluminosilicate Glass-Ceramics
SO FRONTIERS IN MATERIALS
LA English
DT Article
DE lithium aluminosilicate glass-ceramics; crystallization; viscosity;
microstructure; phase assemblage
ID X-RAY-DIFFRACTION; DIFFERENTIAL THERMAL-ANALYSIS; LI2O-AL2O3-SIO2
GLASSES; DISILICATE GLASS; SILICATE GLASS; NUCLEATION; TIO2; SPODUMENE;
GROWTH
AB Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming) process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high-temperature X-ray diffraction (HTXRD), beam bending viscometry (BBV), and transmission electron microscopy (TEM). Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation, and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (>10(9) Pa s) throughout the whole thermal treatment.
C1 [Fu, Qiang; Wheaton, Bryan R.; Geisinger, Karen L.; Credle, Allen J.] Corning Inc, Div Sci & Technol, Corning, NY 14831 USA.
[Wang, Jie] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL USA.
RP Fu, Q (reprint author), Corning Inc, Div Sci & Technol, Corning, NY 14831 USA.
EM fuq2@corning.com
NR 38
TC 0
Z9 0
U1 0
U2 0
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 2296-8016
J9 FRONT MATER
JI Front. Mater.
PD NOV 8
PY 2016
VL 3
AR UNSP 49
DI 10.3389/fmats.2016.00049
PG 8
WC Materials Science, Multidisciplinary
SC Materials Science
GA EK0VP
UT WOS:000393645500001
ER
PT J
AU Diamanti, E
Lo, HK
Qi, B
Yuan, ZL
AF Diamanti, Eleni
Lo, Hoi-Kwong
Qi, Bing
Yuan, Zhiliang
TI Practical challenges in quantum key distribution
SO NPJ QUANTUM INFORMATION
LA English
DT Review
ID SINGLE-PHOTON DETECTORS; CONTINUOUS-VARIABLES; SIGNAL DISTURBANCE;
COHERENT STATES; OPTICAL-FIBER; UP-CONVERSION; HIGH-SPEED; CRYPTOGRAPHY;
SECURITY; COMMUNICATION
AB Quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them.
C1 [Diamanti, Eleni] Univ Paris Saclay, Telecom ParisTech, CNRS, Lab Traitement & Commun Informat, Paris, France.
[Lo, Hoi-Kwong] Univ Toronto, Ctr Quantum Informat & Quantum Control, Dept Phys, Toronto, ON, Canada.
[Lo, Hoi-Kwong] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada.
[Qi, Bing] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN USA.
[Qi, Bing] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Yuan, Zhiliang] Toshiba Res Europe Ltd, Cambridge, England.
[Yuan, Zhiliang] Toshiba Co Ltd, Corp Res & Dev Ctr, Kawasaki, Kanagawa, Japan.
RP Lo, HK (reprint author), Univ Toronto, Ctr Quantum Informat & Quantum Control, Dept Phys, Toronto, ON, Canada.; Lo, HK (reprint author), Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada.
EM hklo@ece.utoronto.ca
FU NSERC; CFI; ORF; US Office of Naval Research (ONR); Laboratory Directed
Research and Development (LDRD) Program of Oak Ridge National
Laboratory; City of Paris; French National Research Agency;
Ile-de-France Region; France-USA Partner University Fund; Commissioned
Research of National Institute of Information and Communications
Technology (NICT), Japan
FX We acknowledge helpful comments from many colleagues including Romain
Alleaume, Hoi-Fung Chau, Marcos Curty, Philippe Grangier, Anthony
Leverrier, Charles Ci Wen Lim, Marco Lucamarini, Xiongfeng Ma, Joyce
Poon, Li Qian, Kiyoshi Tamaki and Feihu Xu. We thank our colleagues
including Ping Koy Lam, Vikas Anant, Jessie Qin-Dregely, Chris Erven,
Masato Koashi, Philip Sibson, Mark Thompson and Qiang Zhang for allowing
us to reproduce some of their figures. We thank Warren Raye of Nature
Partner Journals for securing the permission for reproductions of
figures from various publishers. We acknowledge financial support from
NSERC, CFI, ORF, the US Office of Naval Research (ONR), the Laboratory
Directed Research and Development (LDRD) Program of Oak Ridge National
Laboratory (managed by UT-Battelle LLC for the US Department of Energy),
the City of Paris, the French National Research Agency, the
Ile-de-France Region, the France-USA Partner University Fund, and the
Commissioned Research of National Institute of Information and
Communications Technology (NICT), Japan.
NR 180
TC 1
Z9 1
U1 15
U2 15
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2056-6387
J9 NPJ QUANTUM INFORM
PD NOV 8
PY 2016
VL 2
AR 16025
DI 10.1038/npjqi.2016.25
PG 12
WC Physics, Applied; Physics, Atomic, Molecular & Chemical; Physics,
Condensed Matter
SC Physics
GA EI1YP
UT WOS:000392283100001
ER
PT J
AU Wu, F
Xing, Y
Zeng, XQ
Yuan, YF
Zhang, XY
Shahbazian-Yassar, R
Wen, JG
Miller, DJ
Li, L
Chen, RJ
Lu, J
Amine, K
AF Wu, Feng
Xing, Yi
Zeng, Xiaoqiao
Yuan, Yifei
Zhang, Xiaoyi
Shahbazian-Yassar, Reza
Wen, Jianguo
Miller, Dean J.
Li, Li
Chen, Renjie
Lu, Jun
Amine, Khalil
TI Platinum-Coated Hollow Graphene Nanocages as Cathode Used in
Lithium-Oxygen Batteries
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
ID RECHARGEABLE LI-O-2 BATTERIES; AIR BATTERIES; ELECTRODE MATERIALS;
CARBON NANOCAGES; POROUS GRAPHENE; LONG-LIFE; CATALYST; PERFORMANCE;
NANOPARTICLE; MORPHOLOGY
AB One of the formidable challenges facing aprotic lithium-oxygen (Li-O-2) batteries is the high charge overpotential, which induces the formation of byproducts, loss in efficiency, and poor cycling performance. Herein, the synthesis of the ultrasmall Pt-coated hollow graphene nano cages as cathode in Li-O-2 batteries is reported. The charge voltage plateau can reduce to 3.2 V at the current density of 100 mA g(-1), even maintain below 3.5 V when the current density increased to 500 mA g(-1). The unique hollow graphene nanocages matrix can not only provide numerous nanoscale tri-phase regions as active sites for efficient oxygen reduction, but also offer sufficient amount of mesoscale pores for rapid oxygen diffusion. Furthermore, with strong atomic-level oxygen absorption into its subsurface, ultrasmall Pt catalytically serves as the nucleation site for Li2O2 growth. The Li2O2 is subsequently induced into a favorable form with small size and amorphous state, decomposed more easily during recharge. Meanwhile, the conductive hollow graphene substrate can enhance the catalytic activity of noble metal Pt catalysts due to the graphene-metal interfacial interaction. Benefiting from the above synergistic effects between the hollow graphene nanocages and the nanosized Pt catalysts, the ultrasmall Pt-decorated graphene nanocage cathode exhibits enhanced electrochemical performances.
C1 [Wu, Feng; Xing, Yi; Li, Li; Chen, Renjie] Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
[Wu, Feng; Li, Li; Chen, Renjie] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China.
[Zeng, Xiaoqiao; Yuan, Yifei; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA.
[Yuan, Yifei; Shahbazian-Yassar, Reza] Michigan Technol Univ, Dept Mat Sci & Engn, 1400 Townsend Dr, Houghton, MI 49931 USA.
[Zhang, Xiaoyi] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, Div Mat Sci, 9700 S Cass Ave, Lemont, IL 60439 USA.
RP Chen, RJ (reprint author), Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.; Chen, RJ (reprint author), Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA.
EM chenrj@bit.edu.cn; junlu@anl.gov
FU Major Achievements Transformation Project for Central University in
Beijing; National Natural Science Foundation of China [21373028];
National Key Program for Basic Research of China [2015CB251100]; Beijing
Science and Technology Project [D151100003015001]; U. S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX F.W. and Y.X. contributed equally to this work. This work was supported
by Major Achievements Transformation Project for Central University in
Beijing, the National Natural Science Foundation of China (21373028),
National Key Program for Basic Research of China (2015CB251100), and
Beijing Science and Technology Project (D151100003015001). The authors
also acknowledge the use of the Advanced Photon Source (APS) and the
Center for Nanoscale Materials (CNM) that are supported by the U. S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 52
TC 2
Z9 2
U1 59
U2 59
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1616-301X
EI 1616-3028
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD NOV 8
PY 2016
VL 26
IS 42
BP 7626
EP 7633
DI 10.1002/adfm.201602246
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA EC5IC
UT WOS:000388166700009
ER
PT J
AU Liu, PF
Li, YJ
Wang, Y
Gilles, MK
Zaveri, RA
Bertram, AK
Martin, ST
AF Liu, Pengfei
Li, Yong Jie
Wang, Yan
Gilles, Mary K.
Zaveri, Rahul A.
Bertram, Allan K.
Martin, Scot T.
TI Lability of secondary organic particulate matter
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE atmospheric chemistry; secondary organic aerosol; evaporation
ID COMPLEX REFRACTIVE-INDEXES; PARTICLE-PHASE CHEMISTRY; ALPHA-PINENE
OZONOLYSIS; VOLATILITY BASIS-SET; AEROSOL FORMATION; RELATIVE-HUMIDITY;
EVAPORATION KINETICS; SOA PARTICLES; M-XYLENE; PHOTOOXIDATION
AB The energy flows in Earth's natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate D-org for the biogenic case is at least 103 times greater than that of the anthropogenic case. These differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PMin Earth's atmosphere.
C1 [Liu, Pengfei; Li, Yong Jie; Wang, Yan; Martin, Scot T.] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Li, Yong Jie] Univ Macau, Fac Sci & Technol, Dept Civil & Environm Engn, Macau 999078, Peoples R China.
[Wang, Yan] Harvard Univ, TH Chan Sch Publ Hlth, Boston, MA 02115 USA.
[Gilles, Mary K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Zaveri, Rahul A.] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA.
[Bertram, Allan K.] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada.
[Martin, Scot T.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
RP Martin, ST (reprint author), Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA.; Martin, ST (reprint author), Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
EM scot_martin@harvard.edu
RI Martin, Scot/G-1094-2015; Li, Yongjie/D-2856-2009
OI Martin, Scot/0000-0002-8996-7554; Li, Yongjie/0000-0002-7631-9136
FU Radiation Science Program of the National Aeronautics and Space
Administration; Atmospheric System Research Program of the Office of
Science of the Department of Energy; Geosciences Directorate of the
National Science Foundation; Earth and Space Science Fellowship Program;
Condensed Phase Interfacial Molecular Science Program of the Department
of Energy Basic Energy Sciences
FX We acknowledge Liuhua Shi, Yingjun Liu, Onye Ahanotu, Jiaxi Cui, and
Christopher Johnson for fruitful discussions and assistance with the
experiments. This research was funded by the Radiation Science Program
of the National Aeronautics and Space Administration, the Atmospheric
System Research Program of the Office of Science of the Department of
Energy, and the Geosciences Directorate of the National Science
Foundation. P.L. was supported by an Earth and Space Science Fellowship
Program. M.K.G. acknowledges support from the Condensed Phase
Interfacial Molecular Science Program of the Department of Energy Basic
Energy Sciences. The QCM experiments were performed at the Wyss
Institute for Biologically Inspired Engineering-Material
Characterization Core of Harvard University.
NR 56
TC 2
Z9 2
U1 29
U2 29
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 8
PY 2016
VL 113
IS 45
BP 12643
EP 12648
DI 10.1073/pnas.1603138113
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EC4CL
UT WOS:000388073300045
ER
PT J
AU Mesaros, A
Fujita, K
Edkins, SD
Hamidian, MH
Eisaki, H
Uchida, SI
Davis, JCS
Lawler, MJ
Kim, EA
AF Mesaros, Andrej
Fujita, Kazuhiro
Edkins, Stephen D.
Hamidian, Mohammad H.
Eisaki, Hiroshi
Uchida, Shin-ichi
Davis, J. C. Saemus
Lawler, Michael J.
Kim, Eun-Ah
TI Commensurate 4a(0)-period charge density modulations throughout the
Bi2Sr2CaCu2O8+x pseudogap regime
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE CuO2 pseudogap; commensurate charge density modulation; phase
discommensuration
ID DOPED MOTT INSULATOR; ELECTRONIC NEMATICITY; LONG-RANGE; ORDER; PHASE;
SUPERCONDUCTIVITY; TRANSITION; MODEL; WAVE; DISCOMMENSURATIONS
AB Theories based upon strong real space (r-space) electron-electron interactions have long predicted that unidirectional charge density modulations (CDMs) with four-unit-cell (4a(0)) periodicity should occur in the hole-doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector Q(A) of the CDM to evolve continuously as if driven primarily by momentum-space (k-space) effects. Here we introduce phase-resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this technique reveals a virtually doping-independent locking of the local CDM wavevector at vertical bar Q(0)vertical bar= 2 pi/4a(0) throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8. These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi-surface)-based picture of the cuprate CDMs but are consistent with strong-coupling r-space-based theories. Our findings imply that it is the latter that provides the intrinsic organizational principle for the cuprate CDM state.
C1 [Mesaros, Andrej; Edkins, Stephen D.; Davis, J. C. Saemus; Lawler, Michael J.; Kim, Eun-Ah] Cornell Univ, Dept Phys, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA.
[Fujita, Kazuhiro; Davis, J. C. Saemus] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Edkins, Stephen D.; Davis, J. C. Saemus] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland.
[Hamidian, Mohammad H.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Hamidian, Mohammad H.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Eisaki, Hiroshi; Uchida, Shin-ichi] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Superconducting Elect Grp, Tsukuba, Ibaraki 3058568, Japan.
[Uchida, Shin-ichi] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan.
[Davis, J. C. Saemus] Univ Coll Cork, Tyndall Natl Inst, T12R5C, Cork, Ireland.
[Lawler, Michael J.] SUNY Binghamton, Dept Phys, Binghamton, NY 13902 USA.
RP Davis, JCS; Kim, EA (reprint author), Cornell Univ, Dept Phys, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA.; Davis, JCS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.; Davis, JCS (reprint author), Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland.; Davis, JCS (reprint author), Univ Coll Cork, Tyndall Natl Inst, T12R5C, Cork, Ireland.
EM jcseamusdavis@gmail.com; eun-ah.kim@cornell.edu
FU US Department of Energy, Office of Basic Energy Sciences, Division of
Materials Science and Engineering [DE-SC0010313]; Engineering and
Physical Sciences Research Council [EP/G03673X/1, EP/1031014/1]; Moore
Foundation's Emergent Phenomena in Quantum Systems Initiative Grant
[GBMF4544]; Ministry of Science and Education (Japan); Global Centers of
Excellence Program; Tyndall National Institute, University College Cork;
Center for Emergent Superconductivity, an Energy Frontier Research
Center; US Department of Energy [DE-2009-BNL-PM015]; [392182]
FX A.M. acknowledges support from the US Department of Energy, Office of
Basic Energy Sciences, Division of Materials Science and Engineering,
under Award DE-SC0010313; E.-A.K. acknowledges Simons Fellow in
Theoretical Physics Award 392182; S.D.E. acknowledges funding from
Engineering and Physical Sciences Research Council Grants EP/G03673X/1
and EP/1031014/1; M.H.H. acknowledges support from the Moore
Foundation's Emergent Phenomena in Quantum Systems Initiative Grant
GBMF4544; S.-i.U. and H.E. acknowledge support from a Grant-in-Aid for
Scientific Research from the Ministry of Science and Education (Japan)
and the Global Centers of Excellence Program for the Japan Society for
the Promotion of Science. J.C.S.D. acknowledges gratefully the
hospitality and support of the Tyndall National Institute, University
College Cork. Experimental studies were supported by the Center for
Emergent Superconductivity, an Energy Frontier Research Center,
headquartered at Brookhaven National Laboratory and funded by US
Department of Energy Grant DE-2009-BNL-PM015.
NR 53
TC 4
Z9 4
U1 7
U2 7
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 8
PY 2016
VL 113
IS 45
BP 12661
EP 12666
DI 10.1073/pnas.1614247113
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EC4CL
UT WOS:000388073300048
ER
PT J
AU Yu, F
Hirschberger, M
Loew, T
Li, G
Lawson, BJ
Asaba, T
Kemper, JB
Liang, T
Porras, J
Boebinger, GS
Singleton, J
Keimer, B
Li, L
Ong, NP
AF Yu, Fan
Hirschberger, Max
Loew, Toshinao
Li, Gang
Lawson, Benjamin J.
Asaba, Tomoya
Kemper, J. B.
Liang, Tian
Porras, Juan
Boebinger, Gregory S.
Singleton, John
Keimer, Bernhard
Li, Lu
Ong, N. Phuan
TI Magnetic phase diagram of underdoped YBa2Cu3Oy inferred from torque
magnetization and thermal conductivity
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE cuprate superconductivity; high-field phase diagram; vortex liquid;
torque magnetometry; thermal conductivity
ID HIGH-TEMPERATURE SUPERCONDUCTOR; DENSITY-WAVE ORDER; T-C SUPERCONDUCTOR;
FERMI-SURFACE; CHARGE ORDER; VORTEX STATE; FIELD
AB Strong evidence for charge-density correlation in the underdoped phase of the cuprate YBa2Cu3Oy was obtained by NMR and resonant X-ray scattering. The fluctuations were found to be enhanced in strong magnetic fields. Recently, 3D charge-density-wave (CDW) formation with long-range order (LRO) was observed by X-ray diffraction in H> 15 T. To elucidate how the CDW transition impacts the pair condensate, we have used torque magnetization to 45 T and thermal conductivity kappa(xx) to construct the magnetic phase diagram in untwinned crystals with hole density p = 0.11. We show that the 3D CDW transitions appear as sharp features in the susceptibility and kappa(xx) at the fields H-K and H-p, which define phase boundaries in agreement with spectroscopic techniques. From measurements of the melting field H-m(T) of the vortex solid, we obtain evidence for two vortex solid states below 8 K. At 0.5 K, the pair condensate appears to adjust to the 3D CDW by a sharp transition at 24 T between two vortex solids with very different shear moduli. At even higher H (41 T), the second vortex solid melts to a vortex liquid which survives to fields well above 41 T. de Haas-van Alphen oscillations appear at fields 24-28 T, below the lower bound for the upper critical field Hc(2).
C1 [Yu, Fan; Li, Gang; Lawson, Benjamin J.; Asaba, Tomoya; Li, Lu] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Hirschberger, Max; Liang, Tian; Ong, N. Phuan] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Loew, Toshinao; Porras, Juan; Keimer, Bernhard] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany.
[Kemper, J. B.; Boebinger, Gregory S.] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA.
[Kemper, J. B.; Boebinger, Gregory S.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA.
[Singleton, John] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA.
[Kemper, J. B.] Gonzaga Univ, Dept Phys, Spokane, WA 99258 USA.
RP Ong, NP (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
EM npo@princeton.edu
RI Li, Gang/E-3033-2015
FU US Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-SC0008110]; National Science
Foundation (NSF)-MRSEC (Materials Research Science and Engineering
Centers) [DMR 1420541]; Gordon and Betty Moore Foundations EPiQS
(Emergent Phenomena in Quantum Systems) Initiative [GBMF4539]; NSF
[DMR-1157490]; State of Florida; US Department of Energy
FX The research of L.L. is supported by the US Department of Energy, Office
of Basic Energy Sciences, Division of Materials Sciences and Engineering
under Award DE-SC0008110 (high-field magnetization). M.H. and N.P.O.
were supported by National Science Foundation (NSF)-MRSEC (Materials
Research Science and Engineering Centers) Grant DMR 1420541 and the
Gordon and Betty Moore Foundations EPiQS (Emergent Phenomena in Quantum
Systems) Initiative through Grant GBMF4539 (thermal conductivity and
analysis). The experiments were performed at the National High Magnetic
Field Laboratory, which is supported by NSF Cooperative Agreement
DMR-1157490, the State of Florida, and the US Department of Energy.
NR 28
TC 0
Z9 0
U1 8
U2 8
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 8
PY 2016
VL 113
IS 45
BP 12667
EP 12672
DI 10.1073/pnas.1612591113
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EC4CL
UT WOS:000388073300049
ER
PT J
AU Ong, RG
Higbee, A
Bottoms, S
Dickinson, Q
Xie, D
Smith, SA
Serate, J
Pohlmann, E
Jones, AD
Coon, JJ
Sato, TK
Sanford, GR
Eilert, D
Oates, LG
Piotrowski, JS
Bates, DM
Cavalier, D
Zhang, YP
AF Ong, Rebecca Garlock
Higbee, Alan
Bottoms, Scott
Dickinson, Quinn
Xie, Dan
Smith, Scott A.
Serate, Jose
Pohlmann, Edward
Jones, Arthur Daniel
Coon, Joshua J.
Sato, Trey K.
Sanford, Gregg R.
Eilert, Dustin
Oates, Lawrence G.
Piotrowski, Jeff S.
Bates, Donna M.
Cavalier, David
Zhang, Yaoping
TI Inhibition of microbial biofuel production in drought-stressed
switchgrass hydrolysate
SO BIOTECHNOLOGY FOR BIOFUELS
LA English
DT Article
DE Biofuel; Corn stover; Drought; Fermentation inhibition; Lignocellulose;
Saccharomyces cerevisiae; Switchgrass
ID MISCANTHUS-X-GIGANTEUS; CELLULOSIC ETHANOL; SACCHAROMYCES-CEREVISIAE;
BIOENERGY CROPS; UNITED-STATES; CORN STOVER; EXPANSION; RESPONSES;
PROFILES; SOFTWARE
AB Background: Interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strains of Saccharomyces cerevisiae and Zymomonas mobilis. A chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates.
Results: While most corn stover and switchgrass hydrolysates were readily fermented, growth of S. cerevisiae was completely inhibited in hydrolysate generated from drought-stressed switchgrass. Based on chemical genomics analysis, yeast strains deficient in genes related to protein trafficking within the cell were significantly more resistant to the drought-year switchgrass hydrolysate. Detailed biomass and hydrolysate characterization revealed that switchgrass accumulated greater concentrations of soluble sugars in response to the drought and these sugars were subsequently degraded to pyrazines and imidazoles during ammonia-based pretreatment. When added ex situ to normal switchgrass hydrolysate, imidazoles and pyrazines caused anaerobic growth inhibition of S. cerevisiae.
Conclusions: In response to the osmotic pressures experienced during drought stress, plants accumulate soluble sugars that are susceptible to degradation during chemical pretreatments. For ammonia-based pretreatment, these sugars degrade to imidazoles and pyrazines. These compounds contribute to S. cerevisiae growth inhibition in drought-year switchgrass hydrolysate. This work discovered that variation in environmental conditions during the growth of bioenergy crops could have significant detrimental effects on fermentation organisms during biofuel production. These findings are relevant to regions where climate change is predicted to cause an increased incidence of drought and to marginal lands with poor water-holding capacity, where fluctuations in soil moisture may trigger frequent drought stress response in lignocellulosic feedstocks.
C1 [Ong, Rebecca Garlock; Cavalier, David] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[Ong, Rebecca Garlock] Michigan Technol Univ, Dept Chem Engn, E Lansing, MI 48824 USA.
[Ong, Rebecca Garlock] Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA.
[Higbee, Alan; Coon, Joshua J.] Univ Wisconsin Madison, Dept Chem, Madison, WI USA.
[Bottoms, Scott; Dickinson, Quinn; Xie, Dan; Serate, Jose; Pohlmann, Edward; Sato, Trey K.; Sanford, Gregg R.; Eilert, Dustin; Oates, Lawrence G.; Piotrowski, Jeff S.; Bates, Donna M.; Zhang, Yaoping] Univ Wisconsin Madison, DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA.
[Smith, Scott A.; Jones, Arthur Daniel] Michigan State Univ, RTSF Mass Spectrometry & Metabol Core, E Lansing, MI 48824 USA.
[Jones, Arthur Daniel] Michigan State Univ, Dept Biochem & Molecu Biol, E Lansing, MI 48824 USA.
[Jones, Arthur Daniel] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA.
[Coon, Joshua J.] Univ Wisconsin Madison, Dept Biomol Chem, Madison, WI USA.
[Coon, Joshua J.] Univ Wisconsin Madison, Genome Ctr Wisconsin, Madison, WI USA.
[Sanford, Gregg R.; Oates, Lawrence G.] Univ Wisconsin Madison, Dept Agron, Madison, WI USA.
RP Ong, RG (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.; Ong, RG (reprint author), Michigan Technol Univ, Dept Chem Engn, E Lansing, MI 48824 USA.; Ong, RG (reprint author), Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA.
EM rgong1@mtu.edu
OI Jones, A. Daniel/0000-0002-7408-6690
FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science)
[DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable
Energy [DE-AC05-76RL01830]
FX This work was funded by the DOE Great Lakes Bioenergy Research Center
(DOE BER Office of Science DE-FC02-07ER64494). Additional funding for
L.G.O. is under DOE OBP Office of Energy Efficiency and Renewable Energy
(DE-AC05-76RL01830). AFEX is a trademark of MBI, International (Lansing,
MI).
NR 50
TC 0
Z9 0
U1 9
U2 9
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1754-6834
J9 BIOTECHNOL BIOFUELS
JI Biotechnol. Biofuels
PD NOV 8
PY 2016
VL 9
AR 237
DI 10.1186/s13068-016-0657-0
PG 14
WC Biotechnology & Applied Microbiology; Energy & Fuels
SC Biotechnology & Applied Microbiology; Energy & Fuels
GA EC0YT
UT WOS:000387830400001
PM 27826356
ER
PT J
AU Zhang, YM
Kirshenbaum, KC
Marschilok, AC
Takeuchi, ES
Takeuchi, KJ
AF Zhang, Yiman
Kirshenbaum, Kevin C.
Marschilok, Amy C.
Takeuchi, Esther S.
Takeuchi, Kenneth J.
TI Battery Relevant Electrochemistry of Ag7Fe3(P2O7)(4): Contrasting
Contributions from the Redox Chemistries of Ag+ and Fe3+
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID SODIUM-ION BATTERIES; POSITIVE ELECTRODE MATERIAL; CATHODE MATERIAL;
RECHARGEABLE BATTERIES; PYROPHOSPHATE CATHODES; IRON PYROPHOSPHATE;
LITHIUM BATTERIES; PHOSPHATE CATHODE; NA2FEP2O7; COMPOSITE
AB Ag7Fe3(P2O7)(4) is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag+) forms metallic silver nanoparticles external to the crystals of Ag7Fe3(P2O7)(4) via an electrochemical reduction displacement reaction, while the other cation (Fe3+) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag7Fe3(P2O7)(4) is employed as cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this paper, a bimetallic pyrophosphate material Ag7Fe3(P2O7)(4) is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag7Fe3(P2O7)(4) is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge-charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag7Fe3(P2O7)(4). Ag7Fe3(P2O7)(4) exhibits good reversibility at the iron centers indicated by similar to 80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by similar to 70% capacity retention upon a 4-fold increase in current.
C1 [Zhang, Yiman; Marschilok, Amy C.; Takeuchi, Esther S.; Takeuchi, Kenneth J.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Kirshenbaum, Kevin C.; Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA.
[Marschilok, Amy C.; Takeuchi, Esther S.; Takeuchi, Kenneth J.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.
RP Marschilok, AC; Takeuchi, ES; Takeuchi, KJ (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Takeuchi, ES (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA.; Marschilok, AC; Takeuchi, ES; Takeuchi, KJ (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.
EM amy.marschilok@stonybrook.edu; esther.takeuchi@stonybrook.edu;
kenneth.takeuchi.1@stonybrook.edu
FU Department of Energy, Basic Energy Sciences [DE-SC0008512]; Center for
Mesoscale Transport Properties, an Energy Frontier Research Center -
U.S. Department of Energy, Office of Science, Basic Energy Sciences
[DE-SC0012673]; U.S. Department of Energy [DE-AC02-98CH10886];
Brookhaven National Laboratory; Gertrude and Maurice Goldhaber
Distinguished Fellowship
FX Funds for synthesis of the material were provided by the Department of
Energy, Basic Energy Sciences, under grant DE-SC0008512.
Characterization and electrochemical evaluation was supported by the
Center for Mesoscale Transport Properties, an Energy Frontier Research
Center supported by the U.S. Department of Energy, Office of Science,
Basic Energy Sciences, under award #DE-SC0012673. Utilization of the
National Synchrotron Light Source (NSLS) beamline X17B1 was supported by
U.S. Department of Energy Contract DE-AC02-98CH10886. K.C.K.
acknowledges postdoctoral support from Brookhaven National Laboratory
and the Gertrude and Maurice Goldhaber Distinguished Fellowship.
NR 56
TC 0
Z9 0
U1 15
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 8
PY 2016
VL 28
IS 21
BP 7619
EP 7628
DI 10.1021/acs.chemmater.6b02343
PG 10
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA EB6TM
UT WOS:000387518500010
ER
PT J
AU Bikowski, A
Holder, A
Peng, HW
Siol, S
Norman, A
Lany, S
Zakutayev, A
AF Bikowski, Andre
Holder, Aaron
Peng, Haowei
Siol, Sebastian
Norman, Andrew
Lany, Stephan
Zakutayev, Andriy
TI Synthesis and Characterization of (Sn,Zn)O Alloys
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID SNO THIN-FILMS; SOLAR-CELLS; PHOTOVOLTAICS; PHOTOANODES; SCATTERING;
EVOLUTION; MOBILITY; DEVICES
AB SnO exhibits electrical properties that render it promising for solar energy conversion applications, but it also has a strongly indirect band gap. Recent theoretical calculations predict that this disadvantage can be mitigated by isovalent alloying with other group II oxides, such as ZnO. Here, we have synthesized new metastable isovalent (Sn,Zn)O alloy thin films by combinatorial reactive co-sputtering and characterized their structural, optical, and electrical properties. The alloying of ZnO into SnO leads to a change of the valence state of the tin from Sn-0 via Sn2+ to Sn4+, which can be counteracted by reducing the oxygen partial pressure during the deposition. The optical characterization of the smooth <10 at. % Sn1-xZnxO thin films showed an increase in the absorption coefficient in the range from 1 eV to 2 eV, which is consistent with the theoretical predictions for the isovalent alloying. However, the experimentally observed alloying effect may be convoluted with the effect of local variations of the Sn oxidation state. This effect would have to be minimized to improve the (Sn,Zn)O optical and electrical properties for their use as absorbers in solar energy conversion applications.
C1 [Bikowski, Andre; Holder, Aaron; Peng, Haowei; Siol, Sebastian; Norman, Andrew; Lany, Stephan; Zakutayev, Andriy] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
RP Zakutayev, A (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM Andriy.Zakutayev@nrel.gov
RI Norman, Andrew/F-1859-2010;
OI Norman, Andrew/0000-0001-6368-521X; Siol, Sebastian/0000-0002-0907-6525
FU U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory, as a
part of the SunShot initiative
FX This work was supported by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, under Contract No.
DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, as a
part of the SunShot initiative.
NR 41
TC 0
Z9 0
U1 9
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 8
PY 2016
VL 28
IS 21
BP 7765
EP 7772
DI 10.1021/acs.chemmater.6b02968
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA EB6TM
UT WOS:000387518500026
ER
PT J
AU Mao, LL
Tsai, H
Nie, WY
Ma, L
Im, J
Stoumpos, CC
Malliakas, CD
Hao, F
Wasielewski, MR
Mohite, AD
Kanatzidis, MG
AF Mao, Lingling
Tsai, Hsinhan
Nie, Wanyi
Ma, Lin
Im, Jino
Stoumpos, Constantinos C.
Malliakas, Christos D.
Hao, Feng
Wasielewski, Michael R.
Mohite, Aditya D.
Kanatzidis, Mercouri G.
TI Role of Organic Counterion in Lead- and Tin-Based Two-Dimensional
Semiconducting Iodide Perovskites and Application in Planar Solar Cells
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID ORGANOMETAL HALIDE PEROVSKITES; LIGHT-EMITTING-DIODES;
OPTICAL-PROPERTIES; SOLID-STATE; CRYSTAL-STRUCTURE; HIGH-EFFICIENCY;
BAND-GAP; INORGANIC PEROVSKITES; HYBRID PEROVSKITE; THIN-FILMS
AB Hybrid halide perovskites are emerging semiconducting materials, with a diverse set of remarkable optoelectronic properties. Besides the widely studied three-dimensional (3D) perovskites, two-dimensional (2D) perovskites show significant potential as photovoltaic (PV) active layers while exhibiting high moisture resistance. Here, we report two series of new 2D halide perovskite solid solutions: (HA)Pb1-xSnxI4 and (BZA)(2)Pb1-xSnxI4 (x = 1, 0.75, 0.5, 0.25, 0), where HA stands for the organic spacer histammonium and BZA stands for benzylammonium cations. These compounds are assembled by corner-sharing octahedral [MI6](4-) units stabilizing single-layered, anionic, inorganic perovskite sheets with organic cations filled in between. The optical band gaps are heavily affected by the M-I-M perovksite angles with the band gap steadily decreasing when the angle approaches 180 degrees, ranging from 2.18 eV for (BZA)(2)PbI4 to 2.05 eV for (HA)PbI4. We find an anomalous trend in electronic band gap in the mixed compositions (HA)Pb1-xSnxI4 and (BZA)(2)Pb1-xSnxI4. When Sn substitutes for Pb to form a solid solution, the band gap further decreases to 1.67 eV for (HA)SnI4. The minimum band gap is at x = 0.75 at 1.74 eV. For BZA, the irregular trend is more intense, as all the intermediate compounds (BZA)(2)Pb(1-x)SnxI(4) (x = 0.75, 0.5, 0.25) have even slightly lower band gaps than (BZA)(2)SnI4 (1.89 eV). DFT calculations confirm the pure Pb and Sn compounds are direct band gap semiconductors. Relatively shorter photoluminescence (PL) lifetime in (BZA)2PbI4 than (HA)PbI4 is observed, suggesting faster recombination rates of the carriers. Solution deposited thin films of (HA)PbI4 and (BZA)2PbI4 show drastically different orientations with (HA)PbI4 displaying a perpendicular rather than parallel growth orientation with respect to the substrate, which is more favorable for PV devices. The higher potential in PV applications of the HA system is indicated by device performance, as the champion air stable planar device with the structure ITO/PEDOT:PSS/2D-perovskite/PCBM/Al of (HA)PbI4 achieves a preliminary power conversion efficiency (PCE) of 1.13%, featuring an open-circuit voltage (VOC) of 0.91 V.
C1 [Mao, Lingling; Ma, Lin; Stoumpos, Constantinos C.; Malliakas, Christos D.; Hao, Feng; Wasielewski, Michael R.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
[Ma, Lin; Hao, Feng; Wasielewski, Michael R.; Kanatzidis, Mercouri G.] Northwestern Univ, Argonne Northwestern Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA.
[Tsai, Hsinhan; Nie, Wanyi; Mohite, Aditya D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Tsai, Hsinhan] Rice Univ, Mat Sci & Nano Engn, Houston, TX 77005 USA.
[Im, Jino] Korea Res Inst Chem Technol, Ctr Mol Modeling & Simulat, Daejeon 34114, South Korea.
RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Kanatzidis, MG (reprint author), Northwestern Univ, Argonne Northwestern Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA.
OI Stoumpos, Constantinos/0000-0001-8396-9578
FU Department of Energy, Office of Science, Basic Energy Sciences
[SC0012541]; Argonne-Northwestern Solar Energy Research (MRW, ANSER)
Center, an Energy Frontier Research Center - U.S. Department of Energy
(DOE), Office of Science, Office of Basic Energy Sciences
[DE-SC0001059]; Soft and Hybrid Nanotechnology Experimental (SHyNE)
Resource (NSF) [NNCI-1542205]; MRSEC program (NSF) at the Materials
Research Center [DMR-1121262]; International Institute for
Nanotechnology (IIN); Keck Foundation; State of Illinois through IIN
FX This work was supported by the Department of Energy, Office of Science,
Basic Energy Sciences, under Grant SC0012541 (synthesis and
characterization of materials, M.G.K.). The photoexcitation
time-resolved studies were supported by the Argonne-Northwestern Solar
Energy Research (MRW, ANSER) Center, an Energy Frontier Research Center
funded by the U.S. Department of Energy (DOE), Office of Science, Office
of Basic Energy Sciences, under award number DE-SC0001059 (M.R.W.). The
solar cell work (A.D.M.) acknowledges the LDRD Program at Los Alamos
National Laboratory (LANL). This work made use of the (EPIC, Keck-II,
and/or SPID) facility(ies) of the NUANCE Center at Northwestern
University, which has received support from the Soft and Hybrid
Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the
MRSEC program (NSF DMR-1121262) at the Materials Research Center; the
International Institute for Nanotechnology (IIN); the Keck Foundation;
the State of Illinois, through the IIN. We thank Prof. Joseph Hupp and
Prof. Omar Farha for use of the TGA instrument.
NR 76
TC 3
Z9 3
U1 59
U2 59
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 8
PY 2016
VL 28
IS 21
BP 7781
EP 7792
DI 10.1021/acs.chemmater.6b03054
PG 12
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA EB6TM
UT WOS:000387518500028
ER
PT J
AU Shi, QR
Zhu, CZ
Li, YJ
Xia, HB
Engelhard, MH
Fu, SF
Du, D
Lin, YH
AF Shi, Qiurong
Zhu, Chengzhou
Li, Yijing
Xia, Haibing
Engelhard, Mark H.
Fu, Shaofang
Du, Dan
Lin, Yuehe
TI A Facile Method for Synthesizing Dendritic Core-Shell Structured Ternary
Metallic Aerogels and Their Enhanced Electrochemical Performances
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID OXYGEN REDUCTION REACTION; DENSITY-FUNCTIONAL THEORY; PEM FUEL-CELLS;
ELECTROCATALYTIC ACTIVITY; CATALYTIC PERFORMANCE; GOLD NANOPARTICLES;
CITRATE REDUCTION; ALLOY NANOWIRES; PARTICLE-SIZE; AU
AB Currently, three-dimensional self-supported metallic structures are attractive for their unique properties of high porosity, low density, excellent conductivity, etc., that promote their wide application in fuel cells. Here, for the first time, we report a facile synthesis of Au@Pt3Pd ternary metallic aerogels with a unique dendritic core-shell structure via a one-pot self-assembly gelation strategy. This strategy is simple and saves time without any concentration or destabilizer steps. The as-prepared Au@Pt3Pd ternary metallic aerogels demonstrated enhanced electrochemical performance toward the oxygen reduction reaction compared to that of commercial Pt/C. The unique dendritic core-shell structures, Pt3Pd alloyed shells, and cross-linked network structures are beneficial for the electrochemical oxygen reduction reaction via the electronic effect, geometric effect, and synergistic effect. This strategy of fabrication of metallic hydrogels and aerogels as well as their exceptional properties holds great promise in a variety of applications.
C1 [Shi, Qiurong; Zhu, Chengzhou; Fu, Shaofang; Du, Dan; Lin, Yuehe] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
[Li, Yijing; Xia, Haibing] Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China.
[Engelhard, Mark H.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Zhu, CZ; Lin, YH (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
EM chengzhou.zhu@wsu.edu; yuehe.lin@wsu.edu
RI Xia, Haibing/A-8711-2008; FU, SHAOFANG/D-2328-2016
OI Xia, Haibing/0000-0003-2262-7958; FU, SHAOFANG/0000-0002-7871-6573
FU Washington State University; China Scholarship Council; Department of
Energy's Office of Biological and Environmental Research
FX This work was supported by start-up funds from Washington State
University. We thank the Franceschi Microscopy & Image Center at
Washington State University for TEM and SEM measurement. Q.S. thanks the
China Scholarship Council for the financial support. XPS measurements
were performed using EMSL, a national scientific user facility sponsored
by the Department of Energy's Office of Biological and Environmental
Research located at Pacific Northwest National Laboratory.
NR 54
TC 0
Z9 0
U1 27
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 8
PY 2016
VL 28
IS 21
BP 7928
EP 7934
DI 10.1021/acs.chemmater.6b03549
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA EB6TM
UT WOS:000387518500043
ER
PT J
AU Liu, J
Amit, Y
Li, YY
Plonka, AM
Ghose, S
Zhang, LH
Stach, EA
Banin, U
Frenkel, AI
AF Liu, Jing
Amit, Yorai
Li, Yuanyuan
Plonka, Anna M.
Ghose, Sanjit
Zhang, Lihua
Stach, Eric A.
Banin, Uri
Frenkel, Anatoly I.
TI Reversed Nanoscale Kirkendall Effect in Au-InAs Hybrid Nanoparticles
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID FERMI-LEVEL EQUILIBRATION; EXCITON-PLASMON INTERACTIONS; CORE-SHELL
NANOCRYSTALS; METAL NANOPARTICLES; CHARGE SEPARATION; HOLLOW
NANOCRYSTALS; SURFACE-DIFFUSION; SELF-DIFFUSION; GROWTH; NANOSTRUCTURES
AB Metal-semiconductor hybrid nanoparticles (NPs) offer interesting synergistic properties, leading to unique behaviors that have already been exploited in photocatalysis, electrical, and optoelectronic applications. A fundamental aspect in the synthesis of metal-semiconductor hybrid NPs is the possible diffusion of the metal species through the semiconductor lattice. The importance of understanding and controlling the co-diffusion of different constituents is demonstrated in the synthesis of various hollow-structured NPs via the Kirkendall effect. Here, we used a postsynthesis room-temperature reaction between AuCl3 and InAs nano crystals (NCs) to form metal-semiconductor core-shell hybrid NPs through the "reversed Kirkendall effect". In the presented system, the diffusion rate of the inward diffusing species (Au) is faster than that of the outward diffusing species (InAs), which results in the formation of a crystalline metallic Au core surrounded by an amorphous, oxidized InAs shell containing nanoscale voids. We used time-resolved X-ray absorption fine structure (XAFS) spectroscopy to monitor the diffusion process and found that both the size of the Au core and the extent of the disorder of the InAs shell depend strongly on the Au-to-NC ratio. We have determined, based on multielement fit analysis, that Au diffuses into the NC via the kick-out mechanism, substituting for In host atoms; this compromises the structural stability of the lattice and triggers the formation of In-O bonds. These bonds were used as markers to follow the diffusion process and indicate the extent of degradation of the NC lattice. Time-resolved X-ray diffraction (XRD) was used to measure the changes in the crystal structures of InAs and the nanoscale Au phases. By combining the results of XAFS, XRD, and electron microscopy, we correlated the changes in the local structure around Au, As, and In atoms and the changes in the overall InAs crystal structure. This correlative analysis revealed a co-dependence of different structural consequences when introducing Au into the InAs NCs. Therefore, this study of diffusion effects in nanocrystals has relevance to powerful concepts in solid-state nanochemistry related to processes of cation exchange, doping reactions, and diffusion mechanisms.
C1 [Liu, Jing; Li, Yuanyuan; Plonka, Anna M.; Frenkel, Anatoly I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA.
[Amit, Yorai; Banin, Uri] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel.
[Amit, Yorai; Banin, Uri] Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel.
[Ghose, Sanjit] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
[Zhang, Lihua; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Frenkel, Anatoly I.] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA.
RP Frenkel, AI (reprint author), Yeshiva Univ, Dept Phys, New York, NY 10016 USA.; Banin, U (reprint author), Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel.; Banin, U (reprint author), Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel.; Frenkel, AI (reprint author), SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA.
EM uri.banin@mail.huji.ac.il; anatoly.frenkel@stonybrook.edu
RI Stach, Eric/D-8545-2011; Frenkel, Anatoly/D-3311-2011
OI Stach, Eric/0000-0002-3366-2153; Frenkel, Anatoly/0000-0002-5451-1207
FU NSF-BSF International Collaboration in Chemistry program; NSF
[CHE-1413937]; BSF [2013/610]; DOE Office of Science by Brookhaven
National Laboratory [DE-SC0012704]
FX The research leading to these results received funding through the
NSF-BSF International Collaboration in Chemistry program. J.L., Y.A.,
A.I.F., and U.B. acknowledge support of this work by NSF Grant No.
CHE-1413937 and BSF Grant No. 2013/610. U.B. thanks the Alfred and Erica
Larisch Memorial Chair. This research used Hitachi 2700C of the Center
for Functional Nanomaterials for STEM/EELS studies and X-rays from the
XPD beamline of National Synchrotron Light Source II, both of which are
U.S. Department of Energy (DOE) Office of Science User Facilities
operated for the DOE Office of Science by Brookhaven National Laboratory
under Contract No. DE-SC0012704.
NR 84
TC 0
Z9 0
U1 18
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD NOV 8
PY 2016
VL 28
IS 21
BP 8032
EP 8043
DI 10.1021/acs.chemmater.6b03779
PG 12
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA EB6TM
UT WOS:000387518500055
ER
PT J
AU Shang, J
Hong, KL
Wang, T
Zhu, D
Shen, J
AF Shang, Jing
Hong, Kunlun
Wang, Tao
Zhu, Dan
Shen, Jian
TI Dielectric and Mechanical Investigations on the Hydrophilicity and
Hydrophobicity of Polyethylene Oxide Modified on a Silicon Surface
SO LANGMUIR
LA English
DT Article
ID GRAFTED POLY(ETHYLENE GLYCOL); SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE
MICROSCOPY; POLYMER BRUSHES; SPECTROSCOPY; PROTEINS; GOLD; ADSORPTION;
RESONANCE; CELLS
AB Polyethylene oxide (PEO) has been widely used in biomedical fields. The antibiofouling property of the PEO-modified surface has been extensively investigated but is far from being fully understood. A series of PEOs with narrowly distributed molecular weight (M-w), synthesized with the technique of high vacuum anionic polymerization, have been successfully grafted onto the surface of silicon wafers. The power-law relationship between the thickness of the monolayer versus the M-w of the grafted PEO shows a scaling of 0.3, indicating compact condensing of the chains. The static contact angles show higher hydrophobicity for the layer of PEO with higher 4, which can be attributed to the closely packed conformation of the chains with high density. The frequency shift of the contact resonance indicates that the Young's modulus decreases and the loss factor increases with the increase in the M-w, of PEO and the thickness of the PEO layers. Dielectric spectroscopy of bare or PEO-grafted wafers in the aqueous solutions reveals an interfacial polarization, which results from compositional and structural changes in the interface layer and depends on temperatures and salt concentrations. At a given grafting density, the PEO chains are swollen in pure water, demonstrating hydrophilic behavior, whereas they collapse in salt solutions, showing hydrophobic characteristics.
C1 [Shang, Jing; Zhu, Dan; Shen, Jian] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Jiangsu, Peoples R China.
[Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Wang, Tao] Univ Sci & Technol China, Dept Chem Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China.
RP Zhu, D (reprint author), Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Jiangsu, Peoples R China.; Hong, KL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM hongkq@ornl.gov; zhudan@njnu.edu.cn
RI Hong, Kunlun/E-9787-2015
OI Hong, Kunlun/0000-0002-2852-5111
FU National Natural Science Foundation of China [21204037, 51273091]
FX Project was supported by the National Natural Science Foundation of
China (Grant No. 21204037 and 51273091). The functionalized PEOs were
synthesized at the Center for Nanophase Materials Sciences, which is a
DOE Office of the Science User Facility. We appreciate the helpful
discussions from Prof. Guangming Liu, University of Science and
Technology of China, and Prof. Chi Wu, The Chinese University of Hong
Kong.
NR 53
TC 0
Z9 0
U1 7
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 8
PY 2016
VL 32
IS 44
BP 11395
EP 11404
DI 10.1021/acs.langmuir.6b02436
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA EB6TR
UT WOS:000387519000006
PM 27690462
ER
PT J
AU Liu, QQ
Qin, HL
Boscoboinik, JA
Zhou, GW
AF Liu, Qianqian
Qin, Hailang
Boscoboinik, Jorge Anibal
Zhou, Guangwen
TI Comparative Study of the Oxidation of NiAl(100) by Molecular Oxygen and
Water Vapor Using Ambient-Pressure X-ray Photoelectron Spectroscopy
SO LANGMUIR
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; THIN-FILM AL2O3/NIAL(100); ALUMINUM-OXIDE
FILMS; HYDROXYL-GROUPS; CHEMICAL-STATE; GROWTH; SURFACE; NIAL(001);
AL2O3; NANOCLUSTERS
AB The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O-2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 degrees C. By contrast, H2O exposure results in the selective oxidation of Al at 40 and 200 C, and increasing the oxidation temperature above 300 degrees C leads to simultaneous formation of both Al and Ni oxides. These results demonstrate that the O-2 oxidation forms a nearly stoichiometric Al2O3 structure that provides improved protection to the metallic substrate by barring the outward diffusion of metals. By contrast, the H2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.
C1 [Liu, Qianqian; Qin, Hailang; Zhou, Guangwen] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA.
[Liu, Qianqian; Qin, Hailang; Zhou, Guangwen] SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA.
[Boscoboinik, Jorge Anibal] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Zhou, GW (reprint author), SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA.; Zhou, GW (reprint author), SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA.
EM gzhou@binghamton.edu
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-SC0001135]; U.S. Department of
Energy, Office of Basic Energy Sciences [DE-SC0012704]
FX This work was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering
under Award No. DE-SC0001135. The research was carried out in part at
the Center for Functional Nanomaterials and the National Synchrotron
Light Source, which are supported by the U.S. Department of Energy,
Office of Basic Energy Sciences, under Contract No. DE-SC0012704.
NR 41
TC 0
Z9 0
U1 4
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 8
PY 2016
VL 32
IS 44
BP 11414
EP 11421
DI 10.1021/acs.langmuir.6b02752
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA EB6TR
UT WOS:000387519000008
PM 27728766
ER
PT J
AU Zhang, SL
Perez-Page, M
Guan, K
Yu, E
Tringe, J
Castro, RHR
Faller, R
Stroeve, P
AF Zhang, Shenli
Perez-Page, Maria
Guan, Kelly
Yu, Erick
Tringe, Joseph
Castro, Ricardo H. R.
Faller, Roland
Stroeve, Pieter
TI Response to Extreme Temperatures of Mesoporous Silica MCM-41: Porous
Structure Transformation Simulation and Modification of Gas Adsorption
Properties
SO LANGMUIR
LA English
DT Article
ID MOLECULAR SIMULATION; THERMAL-STABILITY; DYNAMICS; CHEMISTRY; ZEOLITES;
MIXTURES; NITROGEN; SYSTEMS; MODEL; N-2
AB Molecular dynamics (MD) and Monte Carlo (MC) simulations were applied together for the first time to reveal the porous structure transformation mechanisms of mesoporous silica MCM-41 subjected to temperatures up to 2885 K. Silica was experimentally characterized to inform the models and enable prediction of changes in gas adsorption/separation properties. MD simulations suggest that the pore closure process is activated by a collective diffusion of matrix atoms into the porous region, accompanied by bond reformation at the surface. Degradation is kinetically limited, such that complete pore closure is postponed at high heating rates. We experimentally observe decreased gas adsorption with increasing temperature in mesoporous silica heated at fixed rates, due to pore closure and structural degradation consistent with simulation predictions. Applying the Kissinger equation, we find a strong correlation between the simulated pore collapse temperatures and the experimental values which implies an activation energy of 416 +/- 17 kJ/mol for pore closure. MC simulations give the adsorption and selectivity for thermally treated MCM-41, for N-2, Ar, Kr, and Xe at room temperature within the 1-10 000 kPa pressure range. Relative to pristine MCM-41, we observe that increased surface roughness due to decreasing pore size amplifies the difference of the absolute adsorption amount differently for different adsorbate molecules. In particular, we find that adsorption of strongly interacting molecules can be enhanced in the low-pressure region while adsorption of weakly interacting molecules is inhibited. This then results in higher selectivity in binary mixture adsorption in mesoporous silica.
C1 [Zhang, Shenli; Perez-Page, Maria; Guan, Kelly; Yu, Erick; Faller, Roland; Stroeve, Pieter] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA.
[Zhang, Shenli; Perez-Page, Maria; Guan, Kelly; Yu, Erick; Castro, Ricardo H. R.] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA.
[Tringe, Joseph] Lawrence Livermore Lab, Livermore, CA 94550 USA.
RP Faller, R; Stroeve, P (reprint author), Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA.
EM rfaller@ucdavis.edu; pstroeve@ucdavis.edu
FU U.S. Department of Energy Nuclear Energy University program
[DE-NE0000704]; U.S. Department of Energy by Lawrence Livermore National
Laboratory [DE-AC52-07NA27344]
FX This work was supported by the U.S. Department of Energy Nuclear Energy
University program under Grant DE-NE0000704. Some parts of this work
were performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC.
NR 32
TC 0
Z9 0
U1 12
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 8
PY 2016
VL 32
IS 44
BP 11422
EP 11431
DI 10.1021/acs.langmuir.6b02814
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA EB6TR
UT WOS:000387519000009
PM 27749080
ER
PT J
AU Rock, W
Oruc, ME
Ellis, RJ
Uysal, A
AF Rock, William
Oruc, Muhammed E.
Ellis, Ross J.
Uysal, Ahmet
TI Molecular Scale Description of Anion Competition on Amine-Functionalized
Surfaces
SO LANGMUIR
LA English
DT Article
ID X-RAY REFLECTIVITY; SOLVENT-EXTRACTION SYSTEM; CHLORO-COMPLEXES; WATER
INTERFACES; HYDRATION; IONS; LANTHANIDE; SEPARATION; DYNAMICS; METALS
AB Many industrial and biological processes involve the competitive adsorption of ions with different valencies and sizes at charged surfaces; heavy and precious metal ions are separated on the basis of their propensity to adsorb onto interfaces, often as anionic ion clusters (e.g., [MClx](n-)). However, very little is known, both theoretically and experimentally, about the competition of factors that drive preferential adsorption, such as charge density or valence, at interfaces in technologically relevant systems. There are even contradictory pictures described by interfacial studies and real life applications, such as chlorometalate extractions, in which charge diffuse chlorometalate ions are extracted efficiently even though charge dense chloride ions present in the background are expected to occupy the interface. We studied the competition between divalent chlorometalate anions (PtCl62- and PdCl42-) and monovalent chloride anions on positively charged aminefunctionalized surfaces using in situ specular X-ray reflectivity. Chloride anions were present in vast excess to simulate the conditions used in the commercial separation of heavy and precious metal ions. Our results suggest that divalent chlorometalate adsorption is a two-step process and that the divalent anions preferentially adsorb at the interface despite having a charge/volume ratio lower than that of chloride. These results provide fundamental insight into the structural mechanisms that underpin transport in phases that are relevant to heavy and precious metal ion separations, explaining the high efficiency of low charge density ion transport processes in the presence of charge dense anions.
C1 [Rock, William; Ellis, Ross J.; Uysal, Ahmet] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Oruc, Muhammed E.] Yildiz Tech Univ, Dept Chem Engn, Istanbul, Turkey.
RP Uysal, A (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ahmet@anl.gov
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Biosciences and Geosciences
[DE-AC02-06CH11357]
FX XR experiments were conducted at Sector 12-IDD and Sector 33-IDD of the
Advanced Photon Source at Argonne National Laboratory. This work and the
use of the Advanced Photon Source are supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, Division
of Chemical Sciences, Biosciences and Geosciences, under Contract
DE-AC02-06CH11357. We thank Lynda Soderholm for her comments on the
manuscript. We also thank Paul Fenter and Sang Soo Lee for fruitful
discussions and access to their atomic force microscope.
NR 44
TC 0
Z9 0
U1 5
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 8
PY 2016
VL 32
IS 44
BP 11532
EP 11539
DI 10.1021/acs.langmuir.6b03479
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA EB6TR
UT WOS:000387519000022
PM 27715067
ER
PT J
AU Cordeiro, MAL
Leite, ER
Stach, EA
AF Cordeiro, Marco A. L.
Leite, Edson R.
Stach, Eric A.
TI Controlling the Formation and Structure of Nanoparticle Superlattices
through Surface Ligand Behavior
SO LANGMUIR
LA English
DT Article
ID STERIC STABILIZATION; METAL NANOPARTICLES; SILVER NANOCRYSTALS; ENTROPY
DIFFERENCE; FORCES; PARTICLES; STABILITY; NANOCUBES; POLYMER;
SUPERCRYSTALS
AB The tailoring of nanoparticle superlattices is fundamental to the design of novel nanostructured materials and devices. To obtain specific collective properties of these nanoparticle superlattices, reliable protocols for their self assembly are required. This study provides insight into the self assembly process by using oleate-covered CeO2 nanoparticles (cubic and polyhedral shapes) through the correlation of experimental and theoretical investigations. The self-assembly of CeO2 nanoparticles is controlled by tuning the colloid deposition parameters (temperature and evaporation rate), and the ordered structures so obtained were correlated to the Gibbs free energy variation of the system. The analysis of the interparticle force contributions for each structure showed the importance of both the effective ligand mean size and its Flory Huggins parameter in determining the total potential energies. Additionally, the roles of ligand solubility and effective mean size were used to understand the formation of specific superlattice phases as a function of temperature and ligand accommodation in the arrangement. Furthermore, the face-to-face interactions between nanoparticles were correlated to the type of exposed crystallographic facet in each particle.
C1 [Cordeiro, Marco A. L.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Leite, Edson R.] Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil.
RP Cordeiro, MAL (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM mcordeiro@bnl.gov
RI Stach, Eric/D-8545-2011; FAPESP, CDMF/J-3591-2015; Leite,
Edson/B-7741-2012
OI Stach, Eric/0000-0002-3366-2153;
FU Center for Functional Nanomaterials, a U.S. DOE Office of Science User
Facility, at Brookhaven National Laboratory [DE-SC0012704]
FX This research used resources of the Center for Functional Nanomaterials,
which is a U.S. DOE Office of Science User Facility, at Brookhaven
National Laboratory under contract no. DE-SC0012704. We thank Dr. Eli A.
Sutter for suggesting the sandwich method described herein.
NR 52
TC 0
Z9 0
U1 16
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD NOV 8
PY 2016
VL 32
IS 44
BP 11606
EP 11614
DI 10.1021/acs.langmuir.6b03026
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA EB6TR
UT WOS:000387519000030
PM 27673391
ER
PT J
AU Brady, MA
Ku, SY
Perez, LA
Cochran, JE
Schmidt, K
Weiss, TM
Toney, MF
Ade, H
Hexemer, A
Wang, C
Hawker, CJ
Kramer, EJ
Chabinyc, ML
AF Brady, Michael A.
Ku, Sung-Yu
Perez, Louis A.
Cochran, Justin E.
Schmidt, Kristin
Weiss, Thomas M.
Toney, Michael F.
Ade, Harald
Hexemer, Alexander
Wang, Cheng
Hawker, Craig J.
Kramer, Edward J.
Chabinyc, Michael L.
TI Role of Solution Structure in Self-Assembly of Conjugated Block
Copolymer Thin Films
SO MACROMOLECULES
LA English
DT Article
ID POLYMER SOLAR-CELLS; FIELD-EFFECT TRANSISTORS; X-RAY SCATTERING;
BICONTINUOUS DONOR/ACCEPTOR MORPHOLOGIES; 25TH ANNIVERSARY ARTICLE;
ONE-POT SYNTHESIS; DIBLOCK COPOLYMERS; HIGH-EFFICIENCY; SEMICONDUCTING
POLYMERS; MICROPHASE SEPARATION
AB Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)-block-poly(diketopyrrolopyrrole-terthiophene) (P3HT-b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT-b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering. In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. These results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.
C1 [Brady, Michael A.; Ku, Sung-Yu; Perez, Louis A.; Hawker, Craig J.; Kramer, Edward J.; Chabinyc, Michael L.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA.
[Cochran, Justin E.; Hawker, Craig J.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA.
[Kramer, Edward J.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA.
[Schmidt, Kristin; Weiss, Thomas M.; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Ade, Harald] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Hexemer, Alexander; Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Brady, Michael A.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Ku, Sung-Yu] Dow Chem Co USA, Freeport, TX USA.
[Perez, Louis A.] Apeel Sci, Santa Barbara, CA USA.
RP Chabinyc, ML (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA.
EM mchabinyc@engineering.ucsb.edu
RI Wang, Cheng/A-9815-2014
FU National Science Foundation; California NanoSystems Institute Graduate
Research Fellowships; Advanced Light Source Doctoral Fellowship; NSF
[DMR 1207549, 1207032]; MRSEC Program of the National Science Foundation
[DMR 1121053]; Office of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy [DE-AC02-76SF00515]; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX M.A.B. acknowledges support from National Science Foundation and
California NanoSystems Institute Graduate Research Fellowships and an
Advanced Light Source Doctoral Fellowship. M.L.C. and H.A. were
supported by NSF DMR 1207549 and 1207032. The authors thank the
SAXS/WAXS team at Beamline 7.3.3, including Dr. Eric Schaible, Dr. Ilja
Gunkel, and Dr. Chenhui Zhu, and the Soft X-ray Scattering team at
Beamline 11.0.1.2, including Dr. Anthony Young, of the Advanced Light
Source at Lawrence Berkeley National Lab for their help with the GIWAXS,
GISAXS, RSoXS, and NEXAFS measurements; Dr. Cherno Jaye and Dr. Dan
Fischer of Beamline U7A at the National Synchrotron Light Source at
Brookhaven National Laboratory for their assistance with NEXAFS
experiments; Dr. Charles Troxel, Jr., and Dr. Badri Shyam of Beamline
2-1, Ron Marks of Beamline 7-2, Dr. Chris Tassone, Dr. Alex Ayzner, Dr.
Chad Miller, and Dr. Stefan Mannsfeld of Beamline 11-3 at the Stanford
Synchrotron Radiation Lightsource at SLAC National Accelerator
Laboratory for their assistance with GIWAXS and XRD measurements. This
work made use of the UCSB Materials Research Laboratory Central
Facilities, supported by the MRSEC Program of the National Science
Foundation under Award DMR 1121053. Use of the Advanced Light Source,
Lawrence Berkeley National Laboratory, was supported by the Director,
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy, under Contract DE-AC02-05CH11231. Use of the
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator
Laboratory, was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract
DE-AC02-76SF00515. Use of the National Synchrotron Light Source,
Brookhaven National Laboratory, was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract DE-AC02-98CH10886. Prof. Karen Winey is gratefully thanked for
valuable discussions.
NR 79
TC 0
Z9 0
U1 22
U2 22
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD NOV 8
PY 2016
VL 49
IS 21
BP 8187
EP 8197
DI 10.1021/acs.macromol.6b01686
PG 11
WC Polymer Science
SC Polymer Science
GA EB6TT
UT WOS:000387519200016
ER
PT J
AU Wang, X
Chintapalli, M
Newstein, MC
Balsara, NP
Garetz, BA
AF Wang, Xin
Chintapalli, Mahati
Newstein, Maurice C.
Balsara, Nitash P.
Garetz, Bruce A.
TI Characterization of a Block Copolymer with a Wide Distribution of Grain
Sizes
SO MACROMOLECULES
LA English
DT Article
ID DEPOLARIZED LIGHT-SCATTERING; ORDER-DISORDER TRANSITION;
IONIC-CONDUCTIVITY; DIBLOCK COPOLYMER; MICROPHASE SEPARATION;
GROWTH-KINETICS; ELECTROLYTES; PHASE; SALT; THERMODYNAMICS
AB Block copolymer/lithium salt mixtures are an emerging class of lithium battery electrolytes. Previous studies have shown that the ionic conductivity of these materials is a sensitive function of grain size. Both depolarized light scattering (DPLS) and small-angle X-ray scattering (SAXS) have proven to be effective techniques for elucidating the grain structure of block copolymer (BCP) materials. DPLS is particularly useful for the characterization of samples with grain sizes larger than 1 mu m, whereas SAXS is particularly well suited for samples with grain sizes smaller than 0.1 mu m. We present the results of both DPLS and SAXS measurements of grain structure in a BCP/lithium salt mixture that was annealed after being initially prepared by freeze-drying from solution. The combination of the two techniques demonstrates that our sample is characterized by an extremely wide distribution of grain sizes. In particular, the sample has a large population of small sub-micrometer-sized grains that cannot be detected optically. A bimodal grain distribution model is presented to support this interpretation of the experimental data. The presence of both large grains and regions of undetectable small grains was confirmed by polarized optical microscopy (POM). Two-wavelength DPLS measurements provide an additional approach for characterizing block copolymer samples with a broad distribution of grain sizes.
C1 [Wang, Xin; Garetz, Bruce A.] NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, Brooklyn, NY 11201 USA.
[Newstein, Maurice C.] NYU, Tandon Sch Engn, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA.
[Chintapalli, Mahati] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Chintapalli, Mahati; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.
RP Garetz, BA (reprint author), NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, Brooklyn, NY 11201 USA.
EM bgaretz@nyu.edu
FU National Science Foundation [DMR-1505444, DMR-1505476]
FX The authors acknowledge the generous support of the National Science
Foundation through Awards DMR-1505444 and DMR-1505476. Any opinions,
findings and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.
NR 45
TC 0
Z9 0
U1 9
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD NOV 8
PY 2016
VL 49
IS 21
BP 8198
EP 8208
DI 10.1021/acs.macromol.6b01380
PG 11
WC Polymer Science
SC Polymer Science
GA EB6TT
UT WOS:000387519200017
ER
PT J
AU Xu, WS
Douglas, JF
Freed, KF
AF Xu, Wen-Sheng
Douglas, Jack F.
Freed, Karl F.
TI Influence of Cohesive Energy on the Thermodynamic Properties of a Model
Glass-Forming Polymer Melt
SO MACROMOLECULES
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; GENERALIZED ENTROPY THEORY;
CROSS-SECTIONAL AREA; LIQUID-STATE; TEMPERATURE-DEPENDENCE; AMORPHOUS
POLYMERS; CHAIN STIFFNESS; IONIC POLYMERS; TRANSITION-TEMPERATURES;
INTERMOLECULAR FORCES
AB Monomer chemical structure and architecture represent the most important characteristics of polymers that affect basic molecular parameters (such as the microscopic cohesive energy parameter epsilon and chain persistence length) and that correspondingly govern the bulk physical properties of polymer materials. Here, we focus on elucidating how the microscopic parameter e influences the bulk thermodynamic properties of polymer melts by using molecular dynamics simulations for a standard coarse grained bead-spring model of unentangled polymer melts under both constant volume and constant pressure conditions. Basic dimensionless thermodynamic properties, such as the cohesive energy density, thermal expansion coefficient, isothermal compressibility, and surface tension, are found to be universal functions of the temperature scaled by e, and thermodynamic signatures for the onset and end of glass formation are identified based on observable features from the static structure factor. We also find that general trends in the thermodynamics and the characteristic temperatures of glass formation determined from our simulations qualitatively accord with the predictions of the generalized entropy theory of polymer glass formation.
C1 [Xu, Wen-Sheng; Freed, Karl F.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Freed, Karl F.] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.
[Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
[Xu, Wen-Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Xu, WS; Freed, KF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Freed, KF (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.; Douglas, JF (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.; Xu, WS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM wsxu0312@gmail.com; jack.douglas@nist.gov; freed@uchicago.edu
FU University of Chicago Research Computing Center; U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering [DE-SC0008631]
FX We thank Prof. Salvatore Torquato (Princeton University) for helpful
discussions on hyperuniformity and valuable comments on the manuscript,
Prof. Francis Starr (Wesleyan University) for helpful conversations, and
Dr. Alexandros Chremos (NIST) for useful comments on the manuscript.
W.-S.X. is grateful to Prof. Juan J. de Pablo and his group members for
providing the opportunity to attend their group meeting while working at
the University of Chicago, from which the present work has greatly
benefited. We are grateful for the support of the University of Chicago
Research Computing Center for assistance with the simulations carried
out in this work. This work is supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering under Award DE-SC0008631.
NR 103
TC 4
Z9 4
U1 12
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD NOV 8
PY 2016
VL 49
IS 21
BP 8341
EP 8354
DI 10.1021/acs.macromol.6b01503
PG 14
WC Polymer Science
SC Polymer Science
GA EB6TT
UT WOS:000387519200032
ER
PT J
AU Xu, WS
Douglas, JF
Freed, KF
AF Xu, Wen-Sheng
Douglas, Jack F.
Freed, Karl F.
TI Influence of Cohesive Energy on Relaxation in a Model Glass Forming
Polymer Melt
SO MACROMOLECULES
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; GENERALIZED ENTROPY THEORY; COOPERATIVE
MOTION; IONIC POLYMERS; FREE-VOLUME; TEMPERATURE-DEPENDENCE;
VISCOUS-FLOW; LIQUIDS; VISCOSITY; TRANSITION
AB The wide range of chemical compositions exhibited by polymers enables the fabrication of materials having highly tunable cohesive energy strength epsilon, and many of the properties that make polymers so useful as structural and responsive materials in both manufacturing and living systems derive from the variability of this basic property. The design and characterization of polymer materials then inevitably leads to a consideration of how e impacts the thermodynamic and relaxation properties of polymer liquids. Our prior paper uses molecular dynamics simulations of a model coarse-grained polymer melt to systematically investigate the dependence of commonly measured thermodynamic properties on e, while the present work focuses on the relaxation dynamics of the same molecular model. After demonstrating, as expected, that e greatly influences the segmental relaxation time, we obtain a universal reduction of all our data for relaxation in terms of an activated transport model in which the activation free energy is increased from its high temperature value by a factor precisely determined by the average extent of the cooperative motion of monomers in the polymer liquid. This data reduction is consistent with the recently developed string model of glass formation, as well as with the assumptions of the generalized entropy theory of glass formation derived from a combination of the classical Adam-Gibbs model with a statistical mechanical model of polymer melts. In addition to providing firm observational data facilitating the development of improved theories of polymer glass formation, our results also yield insights into the molecular origin of particular thermodynamic and relaxation properties of polymers, insights that should aid in the design of polymer materials.
C1 [Xu, Wen-Sheng; Freed, Karl F.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Freed, Karl F.] Univ Chicago, Dept Chem, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
[Xu, Wen-Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Xu, WS; Freed, KF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Freed, KF (reprint author), Univ Chicago, Dept Chem, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Douglas, JF (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.; Xu, WS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM wsxu0312@gmail.com; jack.douglas@nist.gov; freed@uchicago.edu
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-SC0008631]
FX We thank Prof. Salvatore Torquato (Princeton University) for helpful
discussions on hyperuniformity and valuable comments on the manuscript,
Prof. Francis Starr (Wesleyan University) for helpful conversations, and
Dr. Alexandros Chremos (NIST) for useful comments on the manuscript.
W.-S.X. is grateful to Prof. Juan J. de Pablo and his group members for
providing the opportunity to attend their group meeting while working at
the University of Chicago, from which the present work has greatly
benefited. We are grateful for the support of the University of Chicago
Research Computing Center for assistance with the simulations carried
out in this work. This work is supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering under Award DE-SC0008631.
NR 83
TC 4
Z9 4
U1 9
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD NOV 8
PY 2016
VL 49
IS 21
BP 8355
EP 8370
DI 10.1021/acs.macromol.6b01504
PG 16
WC Polymer Science
SC Polymer Science
GA EB6TT
UT WOS:000387519200033
ER
PT J
AU Dickinson, GD
Ellefsen, KL
Dawson, SP
Pearson, JE
Parker, I
AF Dickinson, George D.
Ellefsen, Kyle L.
Dawson, Silvina Ponce
Pearson, John E.
Parker, Ian
TI Hindered cytoplasmic diffusion of inositol trisphosphate restricts its
cellular range of action
SO SCIENCE SIGNALING
LA English
DT Article
ID CA2+ SIGNALS; 1,4,5-TRISPHOSPHATE RECEPTORS; CHANNEL ACTIVITY; XENOPUS
OOCYTES; CALCIUM SIGNALS; PUFFS; CELLS; WAVES; LOCALIZATION; STIMULATION
AB The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca2+-liberating second messenger inositol trisphosphate (IP3) diffuses with a coefficient(similar to 280 mu m(2) s(-1)) similar to that in water, corresponding to a range of action of similar to 25 mm. Consequently, IP3 is generally considered a "global" cellular messenger. We reexamined this issue by measuring local IP3-evoked Ca2+ puffs to monitor IP3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficient (<= 10 mu m(2) s-1) about 30-fold slower than that previously reported. We propose that diffusion of IP3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP3 (< 5 mu m) is thus smaller than the size of typical mammalian cells, indicating that IP3 should better be considered as a local rather than a global cellular messenger.
C1 [Dickinson, George D.; Ellefsen, Kyle L.; Parker, Ian] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA.
[Dawson, Silvina Ponce] FCEN UBA, Dept Fis, Buenos Aires, DF, Argentina.
[Dawson, Silvina Ponce] Consejo Nacl Invest Cient & Tecn, IFIBA, Buenos Aires, DF, Argentina.
[Pearson, John E.] Los Alamos Natl Lab, Theoret Biol & Biophys, T-10 MS K710, Los Alamos, NM 87545 USA.
[Parker, Ian] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA.
RP Dickinson, GD (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA.
EM dickinsg@uci.edu
FU NIH [R37 GM048071, RO1 GM065830, F31 GM119330-01]; UBA; FONCyT
(Argentina) [UBACyT 20020130100480BA, PICT 2013-1301]
FX This work was supported by the NIH through grants R37 GM048071 (to
I.P.), RO1 GM065830 (to J.E.P. and I.P.), and F31 GM119330-01 (to K.E.);
and by UBA and FONCyT (Argentina) through grants UBACyT 20020130100480BA
and PICT 2013-1301 (to S.D.).
NR 37
TC 2
Z9 2
U1 0
U2 0
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 1945-0877
EI 1937-9145
J9 SCI SIGNAL
JI Sci. Signal.
PD NOV 8
PY 2016
VL 9
IS 453
AR ra108
DI 10.1126/scisignal.aag1625
PG 10
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA EC3GG
UT WOS:000388013500002
PM 27919026
ER
PT J
AU Frazier, TP
Palmer, NA
Xie, FL
Tobias, CM
Donze-Reiner, TJ
Bombarely, A
Childs, KL
Shu, SQ
Jenkins, JW
Schmutz, J
Zhang, BH
Sarath, G
Zhao, BY
AF Frazier, Taylor P.
Palmer, Nathan A.
Xie, Fuliang
Tobias, Christian M.
Donze-Reiner, Teresa J.
Bombarely, Aureliano
Childs, Kevin L.
Shu, Shengqiang
Jenkins, Jerry W.
Schmutz, Jeremy
Zhang, Baohong
Sarath, Gautam
Zhao, Bingyu
TI Identification, characterization, and gene expression analysis of
nucleotide binding site (NB)-type resistance gene homologues in
switchgrass
SO BMC GENOMICS
LA English
DT Article
DE Biofuel; Disease resistance; Gene expression; NB-LRR; Panicum virgatum
(switchgrass); RNA-seq; SNP
ID NBS-LRR GENES; GENOME-WIDE ANALYSIS; RICH REPEAT GENES;
DISEASE-RESISTANCE; PUCCINIA-EMACULATA; SEQUENCE ALIGNMENTS; DEFENSE
RESPONSES; NETWORK ANALYSIS; PROTEIN DOMAIN; HOST-DEFENSE
AB Background: Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass.
Results: In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from 'Alamo', a rust-resistant switchgrass cultivar, and 'Dacotah', a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar 'Summer' plants indicated that the expression of some of these RGHs was developmentally regulated.
Conclusions: Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop.
C1 [Frazier, Taylor P.; Bombarely, Aureliano; Zhao, Bingyu] Virginia Tech, Dept Hort, Blacksburg, VA 24061 USA.
[Palmer, Nathan A.; Sarath, Gautam] USDA ARS, Grain Forage & Bioenergy Res Unit, Lincoln, NE 68583 USA.
[Xie, Fuliang; Zhang, Baohong] East Carolina Univ, Dept Biol, Greenville, NC 27858 USA.
[Tobias, Christian M.] USDA ARS, Crop Improvement & Genet Res, Albany, CA 94710 USA.
[Donze-Reiner, Teresa J.] West Chester Univ Penn, Dept Biol, Wester Chester, PA 19382 USA.
[Childs, Kevin L.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.
[Shu, Shengqiang] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94595 USA.
[Jenkins, Jerry W.; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA.
[Zhao, Bingyu] 407 Latham Hall,220 Ag Quad Lane, Blacksburg, VA 24061 USA.
RP Zhao, BY (reprint author), Virginia Tech, Dept Hort, Blacksburg, VA 24061 USA.; Zhao, BY (reprint author), 407 Latham Hall,220 Ag Quad Lane, Blacksburg, VA 24061 USA.
EM bzhao07@vt.edu
OI Bombarely, Aureliano/0000-0001-6257-8914
FU USDA-NIFA [2011-67009-30133, 2011-67009-30096]; Virginia Tech CALS
integrative grant; Virginia Agricultural Experiment Station [VA135872];
Office of Science (BER), U. S. Department of Energy [DE-AI02-09ER64829];
USDA-ARS CRIS project [3042-21000-030-00D]; Office of Science of the US
Department of Energy [DE-AC02-05CH11231]
FX The project was supported by USDA-NIFA Grant Number 2011-67009-30133.
The project was also partially supported by a Virginia Tech CALS
integrative grant and the Virginia Agricultural Experiment Station
(VA135872). Work performed by the ARS was supported in part by the
Office of Science (BER), U. S. Department of Energy Grant Number
DE-AI02-09ER64829, USDA-NIFA Grant Number 2011-67009-30096, and by the
USDA-ARS CRIS project 3042-21000-030-00D. The U. S. Department of
Agriculture, Agricultural Research Service, is an equal
opportunity/affirmative action employer and all agency services are
available without discrimination. Mention of commercial products and
organizations in this manuscript is solely to provide specific
information. It does not constitute endorsement by USDA-ARS over other
products and organizations not mentioned. The work conducted by the US
Department of Energy Joint Genome Institute is supported by the Office
of Science of the US Department of Energy under contract number
DE-AC02-05CH11231.
NR 75
TC 0
Z9 0
U1 11
U2 11
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD NOV 8
PY 2016
VL 17
AR 892
DI 10.1186/s12864-016-3201-5
PG 17
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA EB2IQ
UT WOS:000387183300002
PM 27821048
ER
PT J
AU Keenan, TF
Prentice, IC
Canadell, JG
Williams, CA
Wang, H
Raupach, M
Collatz, GJ
AF Keenan, Trevor F.
Prentice, I. Colin
Canadell, Josep G.
Williams, Christopher A.
Wang, Han
Raupach, Michael
Collatz, G. James
TI Recent pause in the growth rate of atmospheric CO2 due to enhanced
terrestrial carbon uptake
SO NATURE COMMUNICATIONS
LA English
DT Article
ID CLIMATE-CHANGE; SOIL RESPIRATION; LAND; SINK; DROUGHT; MODEL;
PHOTOSYNTHESIS; FORESTS; DIOXIDE; TRENDS
AB Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.
C1 [Keenan, Trevor F.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94709 USA.
[Keenan, Trevor F.; Prentice, I. Colin; Wang, Han] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia.
[Prentice, I. Colin] Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England.
[Canadell, Josep G.; Raupach, Michael] CSIRO Oceans & Atmosphere, Global Carbon Project, Canberra, ACT 2601, Australia.
[Williams, Christopher A.] Clark Univ, Grad Sch Geog, Dept Biol, Worcester, MA 01610 USA.
[Wang, Han] Northwest A&F Univ, Coll Forestry, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Peoples R China.
[Collatz, G. James] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Keenan, TF (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94709 USA.; Keenan, TF (reprint author), Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia.
EM trevorkeenan@lbl.gov
RI Keenan, Trevor/B-2744-2010; Canadell, Josep/E-9419-2010; collatz,
george/D-5381-2012
OI Keenan, Trevor/0000-0002-3347-0258; Canadell, Josep/0000-0002-8788-3218;
FU Laboratory Directed Research and Development Program of Lawrence
Berkeley National Laboratory under U.S. Department of Energy
[DE-AC02-05CH11231]; Macquarie University Research Fellowship;
Australian Climate Change Science Program; U.S. Department of Energy,
Biological and Environmental Research, Terrestrial Carbon Program
[DE-FG02-04ER63917, DE-FG02-04ER63911, DE-SC0006708]; CFCAS; NSERC;
BIOCAP; Environment Canada; NRCan; CarboEuropeIP; FAO-GTOS-TCO; iLEAPS;
Max Planck Institute for Biogeochemistry; National Science Foundation;
University of Tuscia; Universite Laval and Environment Canada; US
Department of Energy
FX T.F.K. acknowledges support from the Laboratory Directed Research and
Development Program of Lawrence Berkeley National Laboratory under U.S.
Department of Energy Contract No. DE-AC02-05CH11231, and a Macquarie
University Research Fellowship. This research contributes to the AXA
Chair Programme in Biosphere and Climate Impacts and the Imperial
College initiative on Grand Challenges in Ecosystems and the
Environment. J.G.C. thanks the support from the Australian Climate
Change Science Program. Eddy covariance data used was acquired by the
FLUXNET community and in particular by the following networks: AmeriFlux
(U.S. Department of Energy, Biological and Environmental Research,
Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911,
DE-SC0006708)), CarboEuropeIP, Fluxnet-Canada (supported by CFCAS,
NSERC, BIOCAP, Environment Canada and NRCan). We acknowledge the
financial support to the eddy covariance data harmonization provided by
CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for
Biogeochemistry, National Science Foundation, University of Tuscia,
Universite Laval and Environment Canada and US Department of Energy and
the database development and technical support from Lawrence Berkeley
National Laboratory, Berkeley Water Center, Microsoft Research eScience,
Oak Ridge National Laboratory, University of California-Berkeley,
University of Virginia. We thank Ranga Myneni and Zaichun Zhu for the
provision of the fAPAR data set, the Max Planck Institute for
Biogeochemistry Department of Biogeochemical Integration for the
provision of the upscaled GPP data and Miguel Mahecha for advice on the
S.S.A. We thank the TRENDY team, Stephen Sitch, Pierre Friedlingstein,
Chris Huntingford, Ben Poulter, Anders Ahlstrom, Mark Lomas, Peter Levy,
Sam Levis, Sonke Zaehle, Nicolas Viovy, Ning Zeng and Phillipe Peylin
for the provision of the DGVM simulations, and the researchers of the
Global Carbon Project for making their data available.
NR 69
TC 1
Z9 1
U1 50
U2 50
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD NOV 8
PY 2016
VL 7
AR 13428
DI 10.1038/ncomms13428
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EB3JI
UT WOS:000387260000001
PM 27824333
ER
PT J
AU Butterfield, CN
Li, Z
Andeer, PF
Spaulding, S
Thomas, BC
Singh, A
Hettich, RL
Suttle, KB
Probst, AJ
Tringe, SG
Northen, T
Pan, C
Banfield, JF
AF Butterfield, Cristina N.
Li, Zhou
Andeer, Peter F.
Spaulding, Susan
Thomas, Brian C.
Singh, Andrea
Hettich, Robert L.
Suttle, Kenwyn B.
Probst, Alexander J.
Tringe, Susannah G.
Northen, Trent
Pan, Chongle
Banfield, Jillian F.
TI Proteogenomic analyses indicate bacterial methylotrophy and archaeal
heterotrophy are prevalent below the grass root zone
SO PEERJ
LA English
DT Article
DE Genome-resolved metagenomics; Methanol dehydrogenase; Soil bacteria;
Soil archaea; Proteomics; Metabolomics
ID SOIL MICROBIAL COMMUNITY; MULTIPLE SEQUENCE ALIGNMENT; CARBON-DIOXIDE
PULSES; 16S RIBOSOMAL-RNA; METHANOL DEHYDROGENASE; MARINE-SEDIMENTS;
HIGH-THROUGHPUT; FOREST SOIL; GENES; POPULATIONS
AB Annually, half of all plant-derived carbon is added to soil where it is microbially respired to CO2. However, understanding of the microbiology of this process is limited because most culture-independent methods cannot link metabolic processes to the organisms present, and this link to causative agents is necessary to predict the results of perturbations on the system. We collected soil samples at two sub-root depths (10-20 cm and 30-40 cm) before and after a rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a Mediterranean climate, From ten samples, we reconstructed 198 metagenome-assembled genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed that after the rain event the concentrations of many sugars and amino acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for methylotrophy. We infer that these abundant organisms contribute substantially to carbon turnover in the soil, given that methylotrophy proteins were among the most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino acid degradation. Many of the other bacteria appear to breakdown other components of plant biomass, as evidenced by the prevalence of various sugar and amino acid transporters and corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-resolved insight into he spatial distribution. bacteria. and archaea whose activities. combine. to degrade plant-derived. organics, limiting the transport. of methanol, amino acids and sugars into underlying weathered rock. The new insights.into the soil carbon cycle during. intense period of an including carbon turnover, including biogeochemical roles to previously little known soil microbes,made possible via the combination of metagenomics, proteomics, and metabolomics.
C1 [Butterfield, Cristina N.; Spaulding, Susan; Thomas, Brian C.; Singh, Andrea; Probst, Alexander J.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Hettich, Robert L.; Pan, Chongle] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA.
[Andeer, Peter F.; Northen, Trent; Banfield, Jillian F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Suttle, Kenwyn B.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA.
[Tringe, Susannah G.] DOE Joint Genome Inst, Walnut Creek, CA USA.
RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.; Banfield, JF (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM jbanfield@berkeley.edu
OI Northen, Trent/0000-0001-8404-3259
FU Office of Science of the US Department of Energy [DOE-SC10010566]; US
Department of Energy Joint Genome Institute, a DOE Office of Science
User Facility, and Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]; Office of Biological and Environmental Research of
the US Department of Energy [DOE-SC10010566]
FX This work is supported by the Office of Science, Office of Biological
and Environmental Research, of the US Department of Energy Grant
DOE-SC10010566. The sequencing was conducted by the US Department of
Energy Joint Genome Institute, a DOE Office of Science User Facility,
and Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.
NR 99
TC 1
Z9 1
U1 25
U2 25
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
SN 2167-8359
J9 PEERJ
JI PeerJ
PD NOV 8
PY 2016
VL 4
AR e2687
DI 10.7717/peerj.2687
PG 28
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EB2EZ
UT WOS:000387171900011
PM 27843720
ER
PT J
AU Fauseweh, B
Groitl, F
Keller, T
Rolfs, K
Tennant, DA
Habicht, K
Uhrig, GS
AF Fauseweh, B.
Groitl, F.
Keller, T.
Rolfs, K.
Tennant, D. A.
Habicht, K.
Uhrig, G. S.
TI Time-dependent correlations in quantum magnets at finite temperature
SO PHYSICAL REVIEW B
LA English
DT Article
ID HEISENBERG ANTIFERROMAGNETS; SPIN-LIQUID; DYNAMICS; WAVES
AB In this Rapid Communication we investigate the time dependence of the gap mode of copper nitrate at various temperatures. We combine state-of-the-art theoretical calculations with high precision neutron resonance spin-echo measurements to understand the anomalous decoherence effects found previously in this material. It is shown that the time domain offers a complementary view on this phenomenon, which allows us to directly compare experimental data and theoretical predictions without the need of further intensive data analysis, such as (de)convolution.
C1 [Fauseweh, B.; Uhrig, G. S.] Tech Univ Dortmund, Lehrstuhl Theoret Phys 1, Otto Hahn Str 4, Dortmund, Germany.
[Groitl, F.] Ecole Polytech Fed Lausanne, Lab Quantum Magnetism, CH-1015 Lausanne, Switzerland.
[Groitl, F.] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland.
[Keller, T.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany.
[Keller, T.] FRM II, Max Planck Soc Outstn, D-85748 Garching, Germany.
[Rolfs, K.] Paul Scherrer Inst, Lab Sci Dev & Novel Mat, CH-5232 Villigen, Switzerland.
[Tennant, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Habicht, K.] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany.
RP Fauseweh, B (reprint author), Tech Univ Dortmund, Lehrstuhl Theoret Phys 1, Otto Hahn Str 4, Dortmund, Germany.
EM benedikt.fauseweh@tu-dortmund.de; felix.groitl@psi.ch;
goetz.uhrig@tu-dortmund.de
RI Tennant, David/Q-2497-2015; Habicht, Klaus/K-3636-2013
OI Tennant, David/0000-0002-9575-3368; Habicht, Klaus/0000-0002-9915-7221
FU Helmholtz Virtual Institute "New states of matter and their
excitations"; Fakultat Physik of TU Dortmund University
FX We acknowledge financial support of the Helmholtz Virtual Institute "New
states of matter and their excitations." B.F. acknowledges the Fakultat
Physik of TU Dortmund University for funding in the context of the
"Bestenforderung."
NR 43
TC 0
Z9 0
U1 11
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 8
PY 2016
VL 94
IS 18
AR 180404
DI 10.1103/PhysRevB.94.180404
PG 6
WC Physics, Condensed Matter
SC Physics
GA EB6ZJ
UT WOS:000387534000001
ER
PT J
AU Hardy, F
Bohmer, AE
de' Medici, L
Capone, M
Giovannetti, G
Eder, R
Wang, L
He, M
Wolf, T
Schweiss, P
Heid, R
Herbig, A
Adelmann, P
Fisher, RA
Meingast, C
AF Hardy, F.
Boehmer, A. E.
de' Medici, L.
Capone, M.
Giovannetti, G.
Eder, R.
Wang, L.
He, M.
Wolf, T.
Schweiss, P.
Heid, R.
Herbig, A.
Adelmann, P.
Fisher, R. A.
Meingast, C.
TI Strong correlations, strong coupling, and s-wave superconductivity in
hole-doped BaFe2As2 single crystals
SO PHYSICAL REVIEW B
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON PNICTIDES; IMPURITY SCATTERING;
PRESSURE-DEPENDENCE; OVERLAPPING BANDS; HEAT; STATES; GAP;
CHALCOGENIDES; PARAMETERS
AB We present a comprehensive study of the low-temperature heat capacity and thermal expansion of single crystals of the hole-doped Ba1-xKxFe2As2 series (0 < x < 1) and the end-members RbFe2As2 and CsFe2As2. A large increase of the Sommerfeld coefficient gamma(n) is observed with both decreasing band filling and isovalent substitution (K, Rb, and Cs) revealing a strong enhancement of electron correlations and the possible proximity of these materials to a Mott insulator. This trend is well reproduced theoretically by our density functional theory + slave-spin (DFT+SS) calculations, confirming that 122-iron pnictides are effectively Hund metals, in which sizable Hund's coupling and orbital selectivity are the key ingredients for tuning correlations. We also find direct evidence for the existence of a coherence-incoherence crossover between a low-temperature heavy Fermi liquid and a highly incoherent high-temperature regime similar to heavy fermion systems. In the superconducting state, clear signatures of multiband superconductivity are observed with no evidence for nodes in the energy gaps, ruling out the existence of a doping-induced change of symmetry (from s to d wave). We argue that the disappearance of the electron band in the range 0.4 < x < 1.0 is accompanied by a strong-to-weak coupling crossover and that this shallow band remains involved in the superconducting pairing, although its contribution to the normal state fades away. Differences between hole-and electron-doped BaFe2As2 series are emphasized and discussed in terms of strong pair breaking by potential scatterers beyond the Born limit.
C1 [Hardy, F.; Boehmer, A. E.; Eder, R.; Wang, L.; He, M.; Wolf, T.; Schweiss, P.; Heid, R.; Herbig, A.; Adelmann, P.; Meingast, C.] Inst Festkorperphys, Karlsruher Inst Technol, D-76021 Karlsruhe, Germany.
[de' Medici, L.] European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble 9, France.
[Capone, M.; Giovannetti, G.] CNR IOM Democritos Natl Simulat Ctr, Via Bonomea 265, I-34136 Trieste, Italy.
[Capone, M.; Giovannetti, G.] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy.
[Fisher, R. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Hardy, F (reprint author), Inst Festkorperphys, Karlsruher Inst Technol, D-76021 Karlsruhe, Germany.
EM frederic.hardy@kit.edu
RI Capone, Massimo/A-7762-2008;
OI Capone, Massimo/0000-0002-9811-5089; He, Mingquan/0000-0003-4890-3332
NR 137
TC 3
Z9 3
U1 20
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 8
PY 2016
VL 94
IS 20
AR 205113
DI 10.1103/PhysRevB.94.205113
PG 18
WC Physics, Condensed Matter
SC Physics
GA EB7AR
UT WOS:000387537900003
ER
PT J
AU Lindsay, L
AF Lindsay, L.
TI Isotope scattering and phonon thermal conductivity in light atom
compounds: LiH and LiF
SO PHYSICAL REVIEW B
LA English
DT Article
ID LITHIUM-FLUORIDE; ALKALI-HALIDES; GRUNEISEN PARAMETERS;
LATTICE-DYNAMICS; LOW-TEMPERATURES; EXPANSION; HEAT; CRYSTALS; HYDRIDE;
DIAMOND
AB Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (.) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements, isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach, the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance via modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where. values of isotopically pure systems ((LiH)-Li-6, (LiH)-Li-7-H-2, and (LiF)-Li-6) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these. differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated. are also discussed. This paper provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.
C1 [Lindsay, L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Lindsay, L (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RI Lindsay, Lucas/C-9221-2012
OI Lindsay, Lucas/0000-0001-9645-7993
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division; National Energy
Research Scientific Computing Center (NERSC), a DOE Office of Science
User Facility - Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX L.L. acknowledges support from the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division and the National Energy Research Scientific
Computing Center (NERSC), a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 64
TC 2
Z9 2
U1 4
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 8
PY 2016
VL 94
IS 17
AR 174304
DI 10.1103/PhysRevB.94.174304
PG 10
WC Physics, Condensed Matter
SC Physics
GA EB6YT
UT WOS:000387532300002
ER
PT J
AU Wang, ZT
Barros, K
Chern, GW
Maslov, DL
Batista, CD
AF Wang, Zhentao
Barros, Kipton
Chern, Gia-Wei
Maslov, Dmitrii L.
Batista, Cristian D.
TI Resistivity Minimum in Highly Frustrated Itinerant Magnets
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TRANSPORT; ALLOYS; RESISTANCE; ANOMALIES
AB We study the transport properties of frustrated itinerant magnets comprising localized classical moments, which interact via exchange with the conduction electrons. Strong frustration stabilizes a liquidlike spin state, which extends down to temperatures well below the effective Ruderman-Kittel-Kasuya-Yosida interaction scale. The crossover into this state is characterized by spin structure factor enhancement at wave vectors smaller than twice the Fermi wave vector magnitude. The corresponding enhancement of electron scattering generates a resistivity upturn at decreasing temperatures.
C1 [Wang, Zhentao] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Wang, Zhentao; Batista, Cristian D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Barros, Kipton; Batista, Cristian D.] Los Alamos Natl Lab, Theoret Div, T 4, Los Alamos, NM 87545 USA.
[Barros, Kipton; Batista, Cristian D.] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA.
[Chern, Gia-Wei] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA.
[Maslov, Dmitrii L.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
[Batista, Cristian D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[Batista, Cristian D.] Oak Ridge Natl Lab, Shull Wollan Ctr, Oak Ridge, TN 37831 USA.
RP Wang, ZT (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.; Wang, ZT (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RI Wang, Zhentao/F-8328-2016;
OI Wang, Zhentao/0000-0001-7442-2933; Barros, Kipton/0000-0002-1333-5972
FU CNLS summer student program; Welch Foundation [C-1818]; Institutional
Computing Program at LANL; NNSA of the U.S. DOE at LANL
[DE-AC52-06NA25396]; U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering; National
Science Foundation [NSF DMR-1308972]; Stanislaw Ulam Scholarship at the
CNLS, LANL
FX We thank A. Chubukov, S. Maiti, F. Ronning, E. V. Sampathkumaran, and J.
D. Thompson for useful discussions. Z. W. acknowledges support from the
CNLS summer student program and Welch Foundation Grant No. C-1818.
Computer resources for numerical calculations were supported by the
Institutional Computing Program at LANL. This work was carried out under
the auspices of the NNSA of the U.S. DOE at LANL under Contract No.
DE-AC52-06NA25396, and was supported by the U.S. Department of Energy,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering. D. L. M. acknowledges support from the National Science
Foundation via Grant No. NSF DMR-1308972 and a Stanislaw Ulam
Scholarship at the CNLS, LANL.
NR 27
TC 0
Z9 0
U1 6
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 8
PY 2016
VL 117
IS 20
AR 206601
DI 10.1103/PhysRevLett.117.206601
PG 5
WC Physics, Multidisciplinary
SC Physics
GA EB5GH
UT WOS:000387401600010
PM 27886479
ER
PT J
AU Boehm-Cagen, A
Bar, R
Harats, D
Shaish, A
Levkovitz, H
Bielicki, JK
Johansson, JO
Michaelson, DM
AF Boehm-Cagen, Anat
Bar, Roni
Harats, Dror
Shaish, Aviv
Levkovitz, Hana
Bielicki, John K.
Johansson, Jan O.
Michaelson, Daniel M.
TI Differential Effects of apoE4 and Activation of ABCA1 on Brain and
Plasma Lipoproteins
SO PLOS ONE
LA English
DT Article
ID HIGH-DENSITY-LIPOPROTEINS; CENTRAL-NERVOUS-SYSTEM; SPORADIC
ALZHEIMERS-DISEASE; APOLIPOPROTEIN-E; TRANSGENIC MICE;
CARDIOVASCULAR-DISEASE; CHOLESTEROL TRANSPORT; TARGETED REPLACEMENT;
MOUSE MODEL; WILD-TYPE
AB Apolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer's disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p. injections of the ATP-binding cassette A1 (ABCA1) agonist peptide CS-6253 to apoE mice reverse the hypolipidation of apoE4 and the associated brain pathology and behavioral deficits. While in the brain apoE is the main cholesterol transporter, in the periphery apoE and apoA-I both serve as the major cholesterol transporters. We presently investigated the extent to which apoE genotype and CS-6253 treatment to apoE3 and apoE4-targeted replacement mice affects the plasma levels and lipid particle distribution of apoE, and those of plasma and brain apoA-I and apoJ. This revealed that plasma levels of apoE4 were lower and eluted faster following FPLC than plasma apoE3. Treatment with CS-6253 increased the levels of plasma apoE4 and rendered the elution profile of apoE4 similar to that of apoE3. Similarly, the levels of plasma apoA-I were lower in the apoE4 mice compared to apoE3 mice, and this effect was partially reversed by CS-6253. Conversely, the levels of apoA-I in the brain which were higher in the apoE4 mice, were unaffected by CS-6253. The plasma levels of apoJ were higher in apoE4 mice than apoE3 mice and this effect was abolished by CS-6253. Similar but less pronounced effects were obtained in the brain. In conclusion, these results suggest that apoE4 affects the levels of apoA-I and apoJ and that the anti-apoE4 beneficial effects of CS-6253 may be related to both central and peripheral mechanisms.
C1 [Boehm-Cagen, Anat; Bar, Roni; Michaelson, Daniel M.] Tel Aviv Univ, Sagol Sch Neurosci, George S Wise Fac Life Sci, Dept Neurobiol, IL-6997801 Tel Aviv, Israel.
[Harats, Dror] Tel Aviv Univ, Sackler Fac Med, IL-6997801 Tel Aviv, Israel.
[Harats, Dror; Shaish, Aviv; Levkovitz, Hana] Bert W Strassburger Lipid Ctr, Sheba Med Ctr, IL-5265601 Tel Hashomer, Israel.
[Bielicki, John K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Johansson, Jan O.] Artery Therapeut Inc, San Ramon, CA USA.
RP Michaelson, DM (reprint author), Tel Aviv Univ, Sagol Sch Neurosci, George S Wise Fac Life Sci, Dept Neurobiol, IL-6997801 Tel Aviv, Israel.
EM dmichael@post.tau.ac.il
FU Legacy Heritage Bio-Medical Program of the Israel Science Foundation
[1575/14]; Joseph K. and Inez Eichenbaum Foundation; Harold and Eleanore
Foonberg Foundation; Teva Pharmaceutical Industries Ltd., Israeli
National Network of Excellence in Neuroscience (NNE); Artery
Therapeutics, Inc.
FX This research was supported in part by grants from the Legacy Heritage
Bio-Medical Program of the Israel Science Foundation (grant No.
1575/14), from the Joseph K. and Inez Eichenbaum Foundation, from the
Harold and Eleanore Foonberg Foundation, and from Teva Pharmaceutical
Industries Ltd., as part of the Israeli National Network of Excellence
in Neuroscience (NNE). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript. Artery Therapeutics, Inc. provided support in the form of
salaries for author JOJ, but did not have any additional role in the
study design, data collection and analysis, decision to publish, or
preparation of the manuscript. The specific role of this authors is
articulated in the 'author contributions' section.; We thank Alex Smolar
for his technical assistance. This research was supported in part by
grants from the Legacy Heritage Bio-Medical Program of the Israel
Science Foundation (grant No. 1575/14), from the Joseph K. and Inez
Eichenbaum Foundation, from the Harold and Eleanore Foonberg Foundation,
and from Teva Pharmaceutical Industries Ltd., as part of the Israeli
National Network of Excellence in Neuroscience (NNE). DMM is the
incumbent of the Myriam Lebach Chair in Molecular Neurodegeneration.
NR 70
TC 1
Z9 1
U1 6
U2 6
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 8
PY 2016
VL 11
IS 11
AR e0166195
DI 10.1371/journal.pone.0166195
PG 17
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EB8BE
UT WOS:000387615200070
PM 27824936
ER
PT J
AU Vesselinova, N
Alexandrov, BS
Wall, ME
AF Vesselinova, Neda
Alexandrov, Boian S.
Wall, Michael E.
TI Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis
and Experimentally Testable Predictions
SO PLOS ONE
LA English
DT Article
ID ESCHERICHIA-COLI; EFFLUX; RESISTANCE; PERMEABILITY; SPECIFICITY; AGENTS
AB We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time courses in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.
C1 [Vesselinova, Neda; Alexandrov, Boian S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Vesselinova, Neda] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Wall, Michael E.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA.
RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA.
EM mewall@lanl.gov
OI Alexandrov, Ludmil/0000-0003-3596-4515; Alexandrov,
Boian/0000-0001-8636-4603
FU US Department of Energy [DE-AC52-06NA25396]
FX This study was supported by the US Department of Energy under Contract
DE-AC52-06NA25396 through the Laboratory-Directed Research and
Development Program at Los Alamos National Laboratory. The funders had
no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.; We are grateful to the
reviewers for their comments, which led to substantial improvements in
the paper. This study was performed under the auspices of the
Laboratory-Directed Research and Development Program at Los Alamos
National Laboratory, which is managed for the US Department of Energy by
Los Alamos National Security, LLC under contract DE-AC52-06NA25396.
NR 29
TC 0
Z9 0
U1 1
U2 1
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 8
PY 2016
VL 11
IS 11
AR e0165899
DI 10.1371/journal.pone.0165899
PG 20
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EB8BE
UT WOS:000387615200041
PM 27824914
ER
PT J
AU Duan, XZ
Zhang, R
Zhang, Y
Ding, MM
Shi, TF
An, LJ
Huang, QR
Xu, WS
AF Duan, Xiaozheng
Zhang, Ran
Zhang, Yang
Ding, Mingming
Shi, Tongfei
An, Lijia
Huang, Qingrong
Xu, Wen-Sheng
TI Monte Carlo study on a complex of cationic polymers and anionic lipid
monolayer
SO POLYMER
LA English
DT Article
DE Cationic polymers; Anionic lipid; Membrane; Anchoring; Sequestration;
Monte Carlo
ID OPPOSITELY CHARGED SURFACES; POLYELECTROLYTE ADSORPTION; ORDERED MEDIA;
PLASMA-MEMBRANE; HYDROPHOBIC POLYELECTROLYTES; ELECTROSTATIC
INTERACTIONS; PROTEIN LOCALIZATION; CHAIN RIGIDITY; MACROMOLECULES;
SIMULATIONS
AB We develop a coarse-grained Monte Carlo model for the anchoring of cationic polymers onto a phosphatidyl-choline (PC) lipid monolayer, doped with univalent phosphatidylserine (PS) and tetravalent phosphatidylinositol 4, 5-bisphosphate (PIP2) anionic lipids. Using this model, we extensively explore the effects of important factors on the structural alterations of the polymers/monolayer complex, including the polymer concentration, the polymer ionization fraction and the ionic concentration of the salt solution. We find the substantial disparity in the scaling of the anchoring/dissociation transition for polymers/monolayer complex and polyelectrolyte/surface system, which demonstrates that the mobile anionic monolayer exerts stronger attraction on cationic polymers than uniformly charged surface, thereby illustrating the significant predominance of PIP2 lipids in the anchoring procedure. In the polymer anchoring regime, increasing the polymer ionization fraction drastically strengthens the attractions between polymers and the monolayer at low polymer concentrations, which in turn results in the transformation of individual polymer chains from a brush-like structure to a pancake-like structure and leads to the enhancement of PIP2 sequestration. Elevating the polymer concentration strengthens the competition of the anchoring between individual polymers, and the fraction of anchored polymers can even saturate at sufficiently high polymer concentrations. At high polymer concentrations, this competition forces both weakly and strongly charged polymers to anchor onto the membrane in the brush-like conformation, thereby sequestering smaller PIP2 clusters. The PS lipids cluster around the polymer/PIP2 complexes when the amount of tetravalent PIP2 lipids is insufficient to neutralize the anchored cationic polymers. We also observe that the monolayer can be overcharged due to the anchoring of polymers at high polymer concentrations. Our work thus approaches an improved understanding of the anchoring processes from a fundamental perspective based on the estimates of the stability and the structural variations of the polymers/monolayer complex with important molecular factors. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Duan, Xiaozheng; Zhang, Ran; Ding, Mingming; Shi, Tongfei; An, Lijia] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.
[Zhang, Yang] Northeast Normal Univ, Changchun 130024, Peoples R China.
[Huang, Qingrong] Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901 USA.
[Xu, Wen-Sheng] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Xu, Wen-Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Ding, MM; Shi, TF (reprint author), Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.; Xu, WS (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Xu, WS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM mmding@ciac.ac.cn; tfshi@ciac.ac.cn; wsxu0312@gmail.com
FU National Natural Science Foundation of China [21234007, 21404103,
21604086, 51473168]; Special Program for Applied Research on Super
Computation of the NSFC-Guangdong Joint Fund
FX This work is supported by the National Natural Science Foundation of
China (Nos. 21234007, 21404103, 21604086 and 51473168) and the Special
Program for Applied Research on Super Computation of the NSFC-Guangdong
Joint Fund (the second phase). We are grateful to the Computing Center
of Jilin Province for the essential support.
NR 60
TC 0
Z9 0
U1 9
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0032-3861
EI 1873-2291
J9 POLYMER
JI Polymer
PD NOV 8
PY 2016
VL 104
BP 138
EP 148
DI 10.1016/j.polymer.2016.10.007
PG 11
WC Polymer Science
SC Polymer Science
GA EA8ZA
UT WOS:000386927700015
ER
PT J
AU Jambovane, SR
Nune, SK
Kelly, RT
McGrail, BP
Wang, ZM
Nandasiri, MI
Katipamula, S
Trader, C
Schaef, HT
AF Jambovane, Sachin R.
Nune, Satish K.
Kelly, Ryan T.
McGrail, B. Peter
Wang, Zheming
Nandasiri, Manjula I.
Katipamula, Shanta
Trader, Cameron
Schaef, Herbert T.
TI Continuous, One-pot Synthesis and Post-Synthetic Modification of
NanoMOFs Using Droplet Nanoreactors
SO SCIENTIFIC REPORTS
LA English
DT Article
ID METAL-ORGANIC FRAMEWORKS; POROUS COORDINATION POLYMERS; COLLOIDAL
NANOCRYSTALS; MICROFLUIDIC APPROACH; SCALABLE PRODUCTION; ADSORPTION;
STABILITY; CRYSTALS; MOFS; FUNCTIONALIZATION
AB Metal-organic frameworks (MOFs); also known as porous coordination polymers (PCP) are a class of porous crystalline materials constructed by connecting metal clusters via organic linkers. The possibility of functionalization leads to virtually infinite MOF designs using generic modular methods. Functionalized MOFs can exhibit interesting physical and chemical properties including accelerated adsorption kinetics and catalysis. Although there are discrete methods to synthesize well-defined nanoscale MOFs, rapid and flexible methods are not available for continuous, one-pot synthesis and post-synthetic modification (functionalization) of MOFs. Here, we show a continuous, scalable nanodroplet-based microfluidic route that not only facilitates the synthesis of MOFs at a nanoscale, but also offers flexibility for direct functionalization with desired functional groups (e.g., -COCH3, fluorescein isothiocyanate; FITC). In addition, the presented route of continuous manufacturing of functionalized nanosized MOFs takes significantly less time compared to state-of-the-art batch methods currently available (1 hr vs. several days). We envisage our approach to be a breakthrough method for synthesizing complex functionalized nanomaterials (metal, metal oxides, quantum dots and MOFs) that are not accessible by direct batch processing and expand the range of a new class of functionalized MOF-based functional nanomaterials.
C1 [Jambovane, Sachin R.; Kelly, Ryan T.; Wang, Zheming; Nandasiri, Manjula I.; Katipamula, Shanta; Trader, Cameron] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA.
[Nune, Satish K.; McGrail, B. Peter] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
[Schaef, Herbert T.] Pacific Northwest Natl Lab, Fundamental Chem Sci Directorate, Richland, WA 99354 USA.
RP Nune, SK (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
EM satish.nune@pnnl.gov
RI Wang, Zheming/E-8244-2010;
OI Wang, Zheming/0000-0002-1986-4357; Jambovane, Sachin/0000-0002-5063-6969
FU U.S. Department of Energy (DOE), Office of Energy Efficiency and
Renewable Energy's Geothermal Technologies Program under Funding
Opportunity Announcement [DE-PS36-09GO99017]; U.S. Department of Energy
[DE-AC05-76RL01830]; Department of Energy's Office of Biological and
Environmental Research
FX The U.S. Department of Energy (DOE), Office of Energy Efficiency and
Renewable Energy's Geothermal Technologies Program under Funding
Opportunity Announcement DE-PS36-09GO99017 supported this work. The
Pacific Northwest National Laboratory is a multi-program national
laboratory operated for the U.S. Department of Energy by Battelle
Memorial Institute under Contract DE-AC05-76RL01830. IR, Fluorescence
and SEM characterizations were performed at EMSL, a national scientific
user facility sponsored by the Department of Energy's Office of
Biological and Environmental Research, located at PNNL.
NR 64
TC 0
Z9 0
U1 52
U2 52
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD NOV 8
PY 2016
VL 6
AR 36657
DI 10.1038/srep36657
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EB4ES
UT WOS:000387323300001
PM 27821866
ER
PT J
AU Ban, CM
George, SM
AF Ban, Chunmei
George, Steven M.
TI Molecular Layer Deposition for Surface Modification of Lithium-Ion
Battery Electrodes
SO ADVANCED MATERIALS INTERFACES
LA English
DT Review
ID CHEMICAL-VAPOR-DEPOSITION; POLYMER-FILMS; ELECTROCHEMICAL PERFORMANCE;
SILICON NANOWIRES; ETHYLENE-GLYCOL; ANODE MATERIALS; AL2O3 FILMS;
GROWTH; TRIMETHYLALUMINUM; LITHIATION
AB Inspired by recent successes in applying molecular layer deposition (MLD) to stabilize lithium-ion (Li-ion) electrodes, this review presents the MLD process and its outstanding attributes for electrochemical applications. The review discusses various MLD materials and their implementation in Li-ion electrodes. The rationale behind these emerging uses of MLD is examined to motivate future efforts on the fundamental understanding of interphase chemistry and the development of new materials for enhanced electrochemical performance.
C1 [Ban, Chunmei] Natl Renewable Energy Lab, Ctr Chem & Nanosci, Golden, CO 80401 USA.
[George, Steven M.] Univ Colorado Boulder, Dept Chem & Biochem, Boulder, CO 80309 USA.
[George, Steven M.] Univ Colorado Boulder, Dept Mech Engn, Boulder, CO 80309 USA.
RP Ban, CM (reprint author), Natl Renewable Energy Lab, Ctr Chem & Nanosci, Golden, CO 80401 USA.; George, SM (reprint author), Univ Colorado Boulder, Dept Chem & Biochem, Boulder, CO 80309 USA.; George, SM (reprint author), Univ Colorado Boulder, Dept Mech Engn, Boulder, CO 80309 USA.
EM chunmei.ban@nrel.gov; steven.george@colorado.edu
FU Energy Efficiency and Renewable Energy, Office of Vehicle Technologies,
U.S. Department of Energy under Applied Batteries Research (ABR) Program
[DE-AC-36-08GO28308]
FX Financial support is greatly appreciated from Energy Efficiency and
Renewable Energy, Office of Vehicle Technologies, U.S. Department of
Energy under Contract No. DE-AC-36-08GO28308 under the Applied Batteries
Research (ABR) Program.
NR 76
TC 0
Z9 0
U1 8
U2 8
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2196-7350
J9 ADV MATER INTERFACES
JI Adv. Mater. Interfaces
PD NOV 7
PY 2016
VL 3
IS 21
SI SI
AR 1600762
DI 10.1002/admi.201600762
PG 12
WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA EK2QS
UT WOS:000393772400016
ER
PT J
AU Ma, L
Nuwayhid, RB
Wu, TP
Lei, Y
Amine, K
Lu, J
AF Ma, Lu
Nuwayhid, Ramsay B.
Wu, Tianpin
Lei, Yu
Amine, Khalil
Lu, Jun
TI Atomic Layer Deposition for Lithium-Based Batteries
SO ADVANCED MATERIALS INTERFACES
LA English
DT Review
ID LI-ION BATTERY; ENHANCED ELECTROCHEMICAL PERFORMANCE;
LINI0.5CO0.2MN0.3O2 CATHODE MATERIAL; CHEMICAL-VAPOR-DEPOSITION; THIN
OXIDE COATINGS; SULFUR BATTERIES; HIGH-CAPACITY; SURFACE MODIFICATION; S
BATTERIES; CYCLING PERFORMANCE
AB With the increasing demand for energy at a low cost and minimal environmental impact, the development of next-generation high-performance batteries has drawn considerable attention. Owing to the capability of forming conformal coatings of thin films and nanoparticles, atomic layer deposition (ALD) has shown great potential in deposition and surface modification of electrode materials with various nanostructures, deposition of solid-state electrolyte, and fabrication of electrochemical catalysts. This paper reviews the recent development and applications of ALD in Li-based batteries, especially beyond Li-ion systems, and provides suggestions for further development of ALD techniques for these batteries.
C1 [Ma, Lu] Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA.
[Ma, Lu; Wu, Tianpin] Argonne Natl Lab, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Nuwayhid, Ramsay B.; Lei, Yu] Univ Alabama Huntsville, Dept Chem & Mat Engn, 301 Sparkman Dr, Huntsville, AL 35899 USA.
[Amine, Khalil; Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA.
RP Wu, TP (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA.; Lei, Y (reprint author), Univ Alabama Huntsville, Dept Chem & Mat Engn, 301 Sparkman Dr, Huntsville, AL 35899 USA.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM twu@aps.anl.gov; yu.lei@uah.edu; junlu@anl.gov
FU U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies
Office, Department of Energy (DOE) Office of Energy Efficiency and
Renewable Energy (EERE)
FX This work was supported by the U.S. Department of Energy under Contract
DE-AC0206CH11357 with the main support provided by the Vehicle
Technologies Office, Department of Energy (DOE) Office of Energy
Efficiency and Renewable Energy (EERE).
NR 143
TC 0
Z9 0
U1 20
U2 20
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2196-7350
J9 ADV MATER INTERFACES
JI Adv. Mater. Interfaces
PD NOV 7
PY 2016
VL 3
IS 21
SI SI
AR 1600564
DI 10.1002/admi.201600564
PG 15
WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA EK2QS
UT WOS:000393772400014
ER
PT J
AU Neupane, M
Alidoust, N
Hosen, MM
Zhu, JX
Dimitri, K
Xu, SY
Dhakal, N
Sankar, R
Belopolski, I
Sanchez, DS
Chang, TR
Jeng, HT
Miyamoto, K
Okuda, T
Lin, H
Bansil, A
Kaczorowski, D
Chou, FC
Hasan, MZ
Durakiewicz, T
AF Neupane, Madhab
Alidoust, Nasser
Hosen, M. Mofazzel
Zhu, Jian-Xin
Dimitri, Klauss
Xu, Su-Yang
Dhakal, Nagendra
Sankar, Raman
Belopolski, Ilya
Sanchez, Daniel S.
Chang, Tay-Rong
Jeng, Horng-Tay
Miyamoto, Koji
Okuda, Taichi
Lin, Hsin
Bansil, Arun
Kaczorowski, Dariusz
Chou, Fangcheng
Hasan, M. Zahid
Durakiewicz, Tomasz
TI Observation of the spin-polarized surface state in a noncentrosymmetric
superconductor BiPd
SO NATURE COMMUNICATIONS
LA English
DT Article
ID TOPOLOGICAL INSULATORS; DISCOVERY; SEMIMETAL; FERMION; METALS
AB Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of such spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.
C1 [Neupane, Madhab; Hosen, M. Mofazzel; Dimitri, Klauss; Dhakal, Nagendra] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA.
[Alidoust, Nasser; Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S.; Hasan, M. Zahid] Princeton Univ, Joseph Henry Lab, Princeton, NJ 08544 USA.
[Alidoust, Nasser; Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S.; Hasan, M. Zahid] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Sankar, Raman; Chou, Fangcheng] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan.
[Chang, Tay-Rong; Jeng, Horng-Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan.
[Jeng, Horng-Tay] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Miyamoto, Koji; Okuda, Taichi] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, 2-313 Kagamiyama, Higashihiroshima 7390046, Japan.
[Lin, Hsin] Natl Univ Singapore, Ctr Adv Mat & Graphene Res Ctr 2D, Singapore 117546, Singapore.
[Lin, Hsin] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore.
[Bansil, Arun] Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
[Kaczorowski, Dariusz] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
[Durakiewicz, Tomasz] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA.
[Durakiewicz, Tomasz] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland.
RP Neupane, M (reprint author), Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA.
EM Madhab.Neupane@ucf.edu
RI Chang, Tay-Rong/K-3943-2015
OI Chang, Tay-Rong/0000-0003-1222-2527
FU University of Central Florida; LANL LDRD Program; NSF IR/D program;
National Science Centre (Poland) [2015/18/A/ST3/00057]; Center for
Integrated Nanotechnologies; U.S. DOE Office of Basic Energy Sciences;
LANL Institutional Computing Program for computational resources; Office
of Basic Energy Sciences, US Department of Energy (DOE)
[DE-FG-02-40105ER46200]; DOE, Office of Science, Basic Energy Sciences
[DE-FG02-07ER46352]; NERSC supercomputing center through DOE
[DE-AC02-05CH11231]; Singapore National Research Foundation under NRF
[NRF-NRFF2013-03]; National Science Council, Taiwan
FX M.N. is supported by the start-up fund from University of Central
Florida and LANL LDRD Program. T.D. was supported by NSF IR/D program.
D.K. was supported by the National Science Centre (Poland) under
research grant 2015/18/A/ST3/00057. J.-X.Z. is supported by the Center
for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy
Sciences user facility, in partnership with the LANL Institutional
Computing Program for computational resources. The work at Princeton and
synchrotron X-ray-based measurements are supported by the Office of
Basic Energy Sciences, US Department of Energy (DOE) grant no.
DE-FG-02-40105ER46200. The work at Northeastern University is supported
by the DOE, Office of Science, Basic Energy Sciences grant number
DE-FG02-07ER46352, and benefited from Northeastern University's Advanced
Scientific Computation Center (ASCC) and the NERSC supercomputing center
through DOE grant number DE-AC02-05CH11231. H.L. acknowledges the
Singapore National Research Foundation for the support under NRF award
no. NRF-NRFF2013-03. T.R.C. and H.T.J. were supported by the National
Science Council, Taiwan. We also thank NCHC, CINC-NTU and NCTS, Taiwan,
for technical support. The measurements at HiSOR were performed with the
approval of the Proposal Assessing Committee of HSRC (Proposal No.
15-A-66). We thank Sung-Kwan Mo and Makoto Hashimoto for beamline
assistance at the LBNL and the SSRL.
NR 38
TC 0
Z9 0
U1 18
U2 18
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD NOV 7
PY 2016
VL 7
AR 13315
DI 10.1038/ncomms13315
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EH6MV
UT WOS:000391888100001
PM 27819655
ER
PT J
AU Amsbury, S
Hunt, L
Elhaddad, N
Baillie, A
Lundgren, M
Verhertbruggen, Y
Scheller, HV
Knox, JP
Fleming, AJ
Gray, JE
AF Amsbury, Sam
Hunt, Lee
Elhaddad, Nagat
Baillie, Alice
Lundgren, Marjorie
Verhertbruggen, Yves
Scheller, Henrik V.
Knox, J. Paul
Fleming, Andrew J.
Gray, Julie E.
TI Stomatal Function Requires Pectin De-methyl-esterification of the Guard
Cell Wall
SO CURRENT BIOLOGY
LA English
DT Article
ID GENETIC MANIPULATION; TRANSCRIPTION FACTOR; SIGNAL-TRANSDUCTION;
CARBON-DIOXIDE; ABSCISIC-ACID; ARABIDOPSIS; MECHANICS; DENSITY; GROWTH;
TOLERANCE
AB Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomata! function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomata! opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomata! function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomata! function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomata! function and plant physiology.
C1 [Amsbury, Sam; Baillie, Alice; Lundgren, Marjorie; Fleming, Andrew J.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England.
[Hunt, Lee; Elhaddad, Nagat; Gray, Julie E.] Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England.
[Elhaddad, Nagat] Univ Omar Al Mukhtar, Dept Bot, Al Baida, Libya.
[Verhertbruggen, Yves; Scheller, Henrik V.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA.
[Verhertbruggen, Yves; Scheller, Henrik V.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA.
[Knox, J. Paul] Univ Leeds, Fac Biol Sci, Ctr Plant Sci, Leeds LS2 9JT, W Yorkshire, England.
RP Fleming, AJ (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England.; Gray, JE (reprint author), Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England.
EM a.fleming@sheffield.ac.uk; j.e.gray@sheffield.ac.uk
RI Scheller, Henrik/A-8106-2008;
OI Scheller, Henrik/0000-0002-6702-3560; Amsbury, Sam/0000-0002-2767-9768
FU White Rose BBSRC-DTP award; BBSRC [BB/I002154/1]; Gatsby Foundation;
U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]; Leverhulme Research
Fellowship
FX The work reported here was funded by a White Rose BBSRC-DTP award (to
S.A. and A.J.F.); BBSRC grant BB/I002154/1 (to L.H. and J.E.G.); the
Gatsby Foundation (to A.B.), the U.S. Department of Energy, Office of
Science, Office of Biological and Environmental Research, through
Contract DE-AC02-05CH11231 between the Lawrence Berkeley National Lab
and the U.S. Department of Energy (to Y.V. and H.V.S.); and a Leverhulme
Research Fellowship (to A.J.F.). Ray Wightman (SLCU, Cambridge) assisted
with SEM. The Microscopy Facility at the Sainsbury Laboratory is
supported by the Gatsby Charitable Foundation.
NR 32
TC 0
Z9 0
U1 18
U2 18
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0960-9822
EI 1879-0445
J9 CURR BIOL
JI Curr. Biol.
PD NOV 7
PY 2016
VL 26
IS 21
BP 2899
EP 2906
DI 10.1016/j.cub.2016.08.021
PG 8
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA EC1AK
UT WOS:000387835700025
PM 27720618
ER
PT J
AU Hempel, H
Redinger, A
Repins, I
Moisan, C
Larramona, G
Dennler, G
Handwerg, M
Fischer, SF
Eichberger, R
Unold, T
AF Hempel, Hannes
Redinger, Alex
Repins, Ingrid
Moisan, Camille
Larramona, Gerardo
Dennler, Gilles
Handwerg, Martin
Fischer, Saskia F.
Eichberger, Rainer
Unold, Thomas
TI Intragrain charge transport in kesterite thin films-Limits arising from
carrier localization
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID RESOLVED TERAHERTZ SPECTROSCOPY; CU2ZNSNS4; DYNAMICS; CONDUCTIVITY;
MOBILITY; DISORDER; BULKS; CZTS
AB Intragrain charge carrier mobilities measured by time-resolved terahertz spectroscopy in state of the art Cu2ZnSn(S,Se)(4) kesterite thin films are found to increase from 32 to 140 cm(2) V-1 s(-1) with increasing Se content. The mobilities are limited by carrier localization on the nanometer-scale, which takes place within the first 2 ps after carrier excitation. The localization strength obtained from the Drude-Smith model is found to be independent of the excited photocarrier density. This is in accordance with bandgap fluctuations as a cause of the localized transport. Charge carrier localization is a general issue in the probed kesterite thin films, which were deposited by co-evaporation, colloidal inks, and sputtering followed by annealing with varying Se/S contents and yield 4.9%-10.0% efficiency in the completed device. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
C1 [Hempel, Hannes; Redinger, Alex; Unold, Thomas] Helmholtz Zentrum Berlin Mat & Energie GmbH, Dept Struct & Dynam Energy Mat, Hahn Meitner Pl 1, D-14109 Berlin, Germany.
[Repins, Ingrid] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
[Moisan, Camille; Larramona, Gerardo; Dennler, Gilles] IMRA Europe SAS, 220 Rue Albert Caquot BP213, F-06904 Sophia Antipolis, France.
[Handwerg, Martin; Fischer, Saskia F.] Humboldt Univ, Novel Mat Grp, D-12489 Berlin, Germany.
[Eichberger, Rainer] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Solar Fuels, Hahn Meitner Pl 1, D-14109 Berlin, Germany.
RP Hempel, H (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Dept Struct & Dynam Energy Mat, Hahn Meitner Pl 1, D-14109 Berlin, Germany.
EM hannes.hempel@helmholtz-berlin.de; unold@helmholtz-berlin.de
FU Helmholtz Association Initiative and Network Fund (HNSEI-Project); Fonds
national de la recherche [7842175]
FX The authors gratefully acknowledge the Helmholtz Association Initiative
and Network Fund (HNSEI-Project) and the Fonds national de la recherche,
Project No. 7842175 for the financial support of this work.
NR 48
TC 0
Z9 0
U1 14
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 7
PY 2016
VL 120
IS 17
AR 175302
DI 10.1063/1.4965868
PG 6
WC Physics, Applied
SC Physics
GA EC4JV
UT WOS:000388095800030
ER
PT J
AU Quirinale, DG
Rustan, GE
Kreyssig, A
Lapidus, SH
Kramer, MJ
Goldman, AI
AF Quirinale, D. G.
Rustan, G. E.
Kreyssig, A.
Lapidus, S. H.
Kramer, M. J.
Goldman, A. I.
TI The solidification products of levitated Fe83B17 studied by high-energy
x-ray diffraction
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID GAMMA-FE FILMS; MAGNETIC-PROPERTIES; AMORPHOUS-ALLOYS; METALLIC GLASSES;
PSEUDOMORPHIC GROWTH; THIN-FILMS; B ALLOYS; PHASE; IRON; LIQUID
AB Detailed high-energy x-ray diffraction studies were performed to gain insight into the evolution of phase formation in undercooled Fe83B17 and the mechanism for the stabilization of face-centered cubic (fcc) Fe in the presence of Fe23B6 center dot Fe83B17 solidifies directly into either the equilibrium Fe2B + Fe phases or the metastable Fe23B6 + Fe phases. When formed, the metastable Fe23B6 phase either rapidly transforms into the equilibrium Fe2B phase within the solidification plateau or can persist down to ambient temperature. Here, we detail these different solidification behaviors in a set of thermal cycles taken from one sample and demonstrate the absence of a direct correlation with cooling rate and thermal history. We show that the coherent growth of Fe23B6 and fcc Fe suppresses the allotropic transition from fcc Fe to bcc Fe. The temperature evolution of the phase fractions and lattice parameters is also presented. Published by AIP Publishing.
C1 [Quirinale, D. G.; Rustan, G. E.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Kreyssig, A.; Kramer, M. J.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA.
[Lapidus, S. H.] US DOE, Argonne Natl Lab, Argonne, IL 60439 USA.
RP Quirinale, DG (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
FU National Science Foundation [DMR-1308099]; U.S. Department of Energy,
Basic Energy Sciences, of Materials Science and Engineering Division
[DE-AC02-07CH11358]
FX This material is based upon work supported by the National Science
Foundation under Grant No. DMR-1308099. The work at Ames Laboratory was
supported by the U.S. Department of Energy, Basic Energy Sciences, of
Materials Science and Engineering Division, under Contract No.
DE-AC02-07CH11358. The authors wish to acknowledge the assistance of K.
F. Kelton, M. Johnson, C. Pueblo, M. Blodgett, A. Vogt, N. Mauro, K.
Derendorf, M. Besser, T. Cullinan, E. Simsek, A. Meiszberg, and D. S.
Robinson with the high-energy x-ray measurements, and L. Jones at the
Materials Preparation Center at the Ames Laboratory for providing the
samples in this study. We also wish to acknowledge useful discussions
with P. C. Canfield.
NR 47
TC 0
Z9 0
U1 5
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 7
PY 2016
VL 120
IS 17
AR 175104
DI 10.1063/1.4966596
PG 10
WC Physics, Applied
SC Physics
GA EC4JV
UT WOS:000388095800026
ER
PT J
AU Garcia, A
Evans, JW
AF Garcia, Andres
Evans, James W.
TI Catalytic conversion in nanoporous materials: Concentration oscillations
and spatial correlations due to inhibited transport and intermolecular
interactions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID SINGLE-FILE DIFFUSION; ZEOLITE; SYSTEMS; PERMEATION; SIMULATION;
KINETICS; LATTICE; MODELS; PORES
AB We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. This work elucidates unconventional chemical kinetics in interacting confined systems. Published by AIP Publishing.
C1 [Evans, James W.] US DOE, Div Chem & Biol Sci, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Evans, JW (reprint author), US DOE, Div Chem & Biol Sci, Ames Lab, Ames, IA 50011 USA.
EM evans@ameslab.gov
OI Evans, James/0000-0002-5806-3720
FU U.S. Department of Energy (USDOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences through Ames
Laboratory Chemical Physics program; USDOE by Iowa State University
[DE-AC02-07CH11358]
FX We acknowledge discussions with Igor Slowing and Marek Pruski motivating
this study. We thank Tiago Oliveira for discussions on the theoretical
formulation. This work was supported by the U.S. Department of Energy
(USDOE), Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences through the Ames Laboratory Chemical
Physics program. The work was performed at Ames Laboratory which is
operated for the USDOE by Iowa State University under Contract No.
DE-AC02-07CH11358.
NR 29
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 7
PY 2016
VL 145
IS 17
AR 174705
DI 10.1063/1.4966543
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA EC4MJ
UT WOS:000388105100034
PM 27825244
ER
PT J
AU Johnson, GE
Moser, T
Engelhard, M
Browning, ND
Laskin, J
AF Johnson, Grant E.
Moser, Trevor
Engelhard, Mark
Browning, Nigel D.
Laskin, Julia
TI Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering
and ion soft landing
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GAS AGGREGATION SOURCE; MASS-SELECTED IONS; OXYGEN-REDUCTION
ELECTROCATALYSTS; PHASE SYNTHESIS; HETEROGENEOUS CATALYSIS; SILVER
NANOPARTICLES; TUNGSTEN CARBIDE; METAL-CLUSTERS; GOLD CLUSTERS;
THIN-FILMS
AB About 40 years ago, it was shown that tungsten carbide exhibits similar catalytic behavior to Pt for certain commercially relevant reactions, thereby suggesting the possibility of cheaper and earth-abundant substitutes for costly and rare precious metal catalysts. In this work, reactive magnetron sputtering of Ta in the presence of three model hydrocarbons (2-butanol, heptane, and m-xylene) combined with gas aggregation and ion soft landing was employed to prepare organic-inorganic hybrid nanoparticles (NPs) on surfaces for evaluation of catalytic activity and durability. The electrocatalytic behavior of the NPs supported on glassy carbon was evaluated in acidic aqueous solution by cyclic voltammetry. The Ta-heptane and Ta-xylene NPs were revealed to be active and robust toward promotion of the oxygen reduction reaction, an important process occurring at the cathode in fuel cells. In comparison, pure Ta and Ta-butanol NPs were essentially unreactive. Characterization techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were applied to probe how different sputtering conditions such as the flow rates of gases, sputtering current, and aggregation length affect the properties of the NPs. AFM images reveal the focused size of the NPs as well as their preferential binding along the step edges of graphite surfaces. In comparison, TEM images of the same NPs on carbon grids show that they bind randomly to the surface with some agglomeration but little coalescence. The TEM images also reveal morphologies with crystalline cores surrounded by amorphous regions for NPs formed in the presence of 2-butanol and heptane. In contrast, NPs formed in the presence of m-xylene are amorphous throughout. XPS spectra indicate that while the percentage of Ta, C, and O in the NPs varies depending on the sputtering conditions and hydrocarbon employed, the electron binding energies of the elements are similar for all of the NPs. The difference in reactivity between the NPs is attributed to their Ta/C ratios. Collectively, the findings presented herein indicate that reactive magnetron sputtering and gas aggregation combined with ion soft landing offer a promising physical approach for the synthesis of organic-inorganic hybrid NPs that have potential as low-cost durable substitutes for precious metals in catalysis. Published by AIP Publishing.
C1 [Johnson, Grant E.; Browning, Nigel D.; Laskin, Julia] Pacific Northwest Natl Lab, Phys Sci Div, POB 999,MSIN K8-88, Richland, WA 99352 USA.
[Moser, Trevor] Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA.
[Engelhard, Mark] Pacific Northwest Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA.
RP Johnson, GE (reprint author), Pacific Northwest Natl Lab, Phys Sci Div, POB 999,MSIN K8-88, Richland, WA 99352 USA.
EM Grant.Johnson@pnnl.gov
RI Laskin, Julia/H-9974-2012
OI Laskin, Julia/0000-0002-4533-9644
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of
the U.S. Department of Energy (DOE); Department of Energy's Office of
Biological and Environmental Research
FX The research described in this paper is part of the Chemical Imaging
Initiative, at Pacific Northwest National Laboratory (PNNL). It was
conducted under the Laboratory Directed Research and Development Program
at PNNL. G.E.J. and J.L. acknowledge support from the US Department of
Energy, Office of Science, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences of the U.S. Department
of Energy (DOE). This work was performed using EMSL, a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research and located at PNNL. PNNL is
operated by Battelle for the U.S. DOE.
NR 97
TC 0
Z9 0
U1 17
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 7
PY 2016
VL 145
IS 17
AR 174701
DI 10.1063/1.4966199
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA EC4MJ
UT WOS:000388105100030
PM 27825213
ER
PT J
AU Lincoff, J
Sasmal, S
Head-Gordon, T
AF Lincoff, James
Sasmal, Sukanya
Head-Gordon, Teresa
TI Comparing generalized ensemble methods for sampling of systems with many
degrees of freedom
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID EXCHANGE MOLECULAR-DYNAMICS; AMYLOID-BETA PEPTIDES; BIOMOLECULES;
SIMULATIONS; WATER
AB We compare two standard replica exchange methods using temperature and dielectric constant as the scaling variables for independent replicas against two new corresponding enhanced sampling methods based on non-equilibrium statistical cooling (temperature) or descreening (dielectric). We test the four methods on a rough 1D potential as well as for alanine dipeptide in water, for which their relatively small phase space allows for the ability to define quantitative convergence metrics. We show that both dielectric methods are inferior to the temperature enhanced sampling methods, and in turn show that temperature cool walking (TCW) systematically outperforms the standard temperature replica exchange (TREx) method. We extend our comparisons of the TCW and TREx methods to the 5 residue met-enkephalin peptide, in which we evaluate the Kullback-Leibler divergence metric to show that the rate of convergence between two independent trajectories is faster for TCW compared to TREx. Finally we apply the temperature methods to the 42 residue amyloid-beta peptide in which we find non-negligible differences in the disordered ensemble using TCW compared to the standard TREx. All four methods have been made available as software through the OpenMM Omnia software consortium(http://www.omnia.md/). Published by AIP Publishing.
C1 [Lincoff, James; Sasmal, Sukanya; Head-Gordon, Teresa] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Head-Gordon, Teresa] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Head-Gordon, Teresa] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Head-Gordon, Teresa] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA.
RP Head-Gordon, T (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Head-Gordon, T (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Head-Gordon, T (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.; Head-Gordon, T (reprint author), Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA.
EM thg@berkeley.edu
FU NSF [CHE-1363320]; NIH Molecular Biophysics TG [T32-GM008295]; Office of
Science of the U.S. Department of Energy [DE-AC02-05CH11231]
FX T.H.G. acknowledges support from the NSF under Grant No. CHE-1363320.
J.L. acknowledges partial support under the NIH Molecular Biophysics TG,
T32-GM008295. This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 23
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 7
PY 2016
VL 145
IS 17
AR 174107
DI 10.1063/1.4965439
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA EC4MJ
UT WOS:000388105100010
PM 27825215
ER
PT J
AU Whitmore, MD
Grest, GS
Douglas, JF
Kent, MS
Suo, TC
AF Whitmore, Mark D.
Grest, Gary S.
Douglas, Jack F.
Kent, Michael S.
Suo, Tongchuan
TI End-anchored polymers in good solvents from the single chain limit to
high anchoring densities
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID DIBLOCK COPOLYMER MONOLAYERS; SELF-CONSISTENT-FIELD; ADSORBED
BLOCK-COPOLYMERS; TETHERED CHAINS; MOLECULAR-DYNAMICS; MONTE-CARLO;
BRUSH; INTERFACE; LAYERS
AB An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, sigma, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of sigma. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h similar to N sigma(1/3), for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and sigma, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions. Published by AIP Publishing.
C1 [Whitmore, Mark D.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada.
[Grest, Gary S.; Kent, Michael S.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
[Suo, Tongchuan] Tianjin Univ Tradit Chinese Med, Coll Pharmaceut Engn Tradit Chinese Med, Tianjin 300193, Peoples R China.
RP Whitmore, MD (reprint author), Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada.
EM mark.whitmore@umanitoba.ca
OI Suo, Tongchuan/0000-0003-4603-0339
FU Natural Sciences and Engineering Research Council of Canada; Sandia
Laboratory Directed Research and Development Program; U.S. Department of
Energy [DE-AC04-94AL85000]
FX We thank Dr. Marc Pepin for discussions and early contributions. The
work was supported in part by the Natural Sciences and Engineering
Research Council of Canada and the Sandia Laboratory Directed Research
and Development Program. Research was carried out, in part, at the
Center for Integrated Nanotechnologies, a U.S. Department of Energy,
Office of Basic Energy Sciences user facility. Sandia National
Laboratories is a multiprogram laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energys National Nuclear Security
Administration under Contract No. DE-AC04-94AL85000.
NR 32
TC 0
Z9 0
U1 7
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 7
PY 2016
VL 145
IS 17
AR 174904
DI 10.1063/1.4966576
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA EC4MJ
UT WOS:000388105100042
PM 27825206
ER
PT J
AU Enriquez, E
Zhang, YY
Chen, AP
Bi, ZX
Wang, YQ
Fu, EG
Harrell, Z
Lu, XJ
Dowden, P
Wang, HY
Chen, CL
Jia, QX
AF Enriquez, Erik
Zhang, Yingying
Chen, Aiping
Bi, Zhenxing
Wang, Yongqiang
Fu, Engang
Harrell, Zachary
Lu, Xujie
Dowden, Paul
Wang, Haiyan
Chen, Chonglin
Jia, Quanxi
TI Epitaxial growth and physical properties of ternary nitride thin films
by polymer-assisted deposition (vol 109, 081907, 2016)
SO APPLIED PHYSICS LETTERS
LA English
DT Correction
C1 [Enriquez, Erik; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Lu, Xujie; Dowden, Paul; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA.
[Zhang, Yingying] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.
[Harrell, Zachary; Chen, Chonglin] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA.
[Wang, Haiyan] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA.
RP Enriquez, E (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA.
EM emenriquez@lanl.gov; yingyingzhang@mail.tsinghua.edu.cn; qxjia@lanl.gov
NR 1
TC 0
Z9 0
U1 6
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 7
PY 2016
VL 109
IS 19
AR 199901
DI 10.1063/1.4967441
PG 1
WC Physics, Applied
SC Physics
GA EC3BN
UT WOS:000387999600074
ER
PT J
AU Hu, GL
Ma, CR
Wei, W
Sun, ZX
Lu, L
Mi, SB
Liu, M
Ma, BH
Wu, J
Jia, CL
AF Hu, Guangliang
Ma, Chunrui
Wei, Wei
Sun, Zixiong
Lu, Lu
Mi, Shao-Bo
Liu, Ming
Ma, Beihai
Wu, Judy
Jia, Chun-lin
TI Enhanced energy density with a wide thermal stability in epitaxial
Pb0.92La0.08Zr0.52Ti0.48O3 thin films
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SOL-GEL PROCESS; FERROELECTRIC PROPERTIES; STORAGE; CAPACITORS; TITANATE
AB High-quality epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films of thickness of similar to 880 nm were fabricated using pulsed laser deposition on (001) Nb doped SrTiO3 (Nb: STO) substrates. Besides a confirmation of the epitaxial relationship [100](PLZT)//[100](Nb:STO) and (001)(PLZT)//(001)(Nb:STO) using X-ray diffraction, a transmission electron microscopy study has revealed a columnar structure across the film thickness. The recoverable energy density (W-rec) of the epitaxial PLZT thin film capacitors increases linearly with the applied electric field and the best value of similar to 31 J/cm(3) observed at 2.27 MV/cm is considerably higher by 41% than that of the polycrystalline PLZT film of a comparable thickness. In addition to the high W-rec value, an excellent thermal stability as illustrated in a negligible temperature dependence of the W-rec in the temperature range from room temperature to 180 degrees C is achieved. The enhanced W-rec and the thermal stability are attributed to the reduced defects and grain boundaries in epitaxial PLZT thin films, making them promising for energy storage applications that require both high energy density, power density, and wide operation temperatures. Published by AIP Publishing.
C1 [Hu, Guangliang; Ma, Chunrui; Mi, Shao-Bo] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.
[Hu, Guangliang; Wei, Wei; Sun, Zixiong; Lu, Lu; Liu, Ming; Jia, Chun-lin] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China.
[Hu, Guangliang; Wu, Judy] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Ma, Beihai] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Ma, CR (reprint author), Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.; Liu, M (reprint author), Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China.
EM chunrui.ma@mail.xjtu.edu.cn; m.liu@mail.xjtu.edu.cn
FU China Postdoctoral Science Foundation [2015M582649]; National "973"
projects of China [2015CB654903]; Natural Science Foundation of China
[51202185, 51390472]; Shaaxi Province Postdoctoral Science Foundation;
Fundamental Research Funds for the Central Universities; NASA
[NNX13AD42A]; NSF [NSF-DMR1509484]
FX This research was supported by the China Postdoctoral Science Foundation
(No. 2015M582649), National "973" projects of China (No. 2015CB654903),
Natural Science Foundation of China (Nos. 51202185 and 51390472), Shaaxi
Province Postdoctoral Science Foundation, and the Fundamental Research
Funds for the Central Universities. J.W. acknowledges the support in
part by NASA Contract NNX13AD42A and NSF Contract NSF-DMR1509484.
NR 34
TC 1
Z9 1
U1 22
U2 22
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 7
PY 2016
VL 109
IS 19
AR 193904
DI 10.1063/1.4967223
PG 5
WC Physics, Applied
SC Physics
GA EC3BN
UT WOS:000387999600066
ER
PT J
AU Wang, SM
Antonakos, C
Bordel, C
Bouma, DS
Fischer, P
Hellman, F
AF Wang, Siming
Antonakos, C.
Bordel, C.
Bouma, D. S.
Fischer, P.
Hellman, F.
TI Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates
and sub-50 nm membranes
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID BEAM-ASSISTED DEPOSITION; THIN-FILMS; CONDUCTORS; TEMPLATE; SILICON;
LAYERS; PDP
AB A fabrication process has been developed for high energy ion beam assisted deposition (IBAD) biaxial texturing of ultrathin (similar to 1 nm) MgO films, using a high ion-to-atom ratio and post-deposition annealing instead of a homoepitaxial MgO layer. These films serve as the seed layer for epitaxial growth of materials on amorphous substrates such as electron/X-ray transparent membranes or nanocalorimetry devices. Stress measurements and atomic force microscopy of the MgO films reveal decreased stress and surface roughness, while X-ray diffraction of epitaxial overlayers demonstrates the improved crystal quality of films grown epitaxially on IBAD MgO. The process simplifies the synthesis of IBAD MgO, fundamentally solves the "wrinkle" issue induced by the homoepitaxial layer on sub-50 nm membranes, and enables studies of epitaxial materials in electron/X-ray transmission and nanocalorimetry. Published by AIP Publishing.
C1 [Wang, Siming; Bordel, C.; Bouma, D. S.; Fischer, P.; Hellman, F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Wang, Siming; Bordel, C.; Bouma, D. S.; Hellman, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Antonakos, C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Bordel, C.] Univ Rouen, CNRS, UMR 6634, GPM, F-76801 St Etienne, France.
[Fischer, P.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 94056 USA.
RP Hellman, F (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Hellman, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM fhellman@lbl.gov
RI Fischer, Peter/A-3020-2010
OI Fischer, Peter/0000-0002-9824-9343
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division of the U.S. Department of Energy within
Nonequilibrium Magnetic Materials Program [DE-AC02-05-CH11231, KC2204];
NSF Graduate Fellowship
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231
within the Nonequilibrium Magnetic Materials Program (KC2204). C.A.
acknowledges the support from an NSF Graduate Fellowship.
NR 29
TC 0
Z9 0
U1 7
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 7
PY 2016
VL 109
IS 19
AR 191603
DI 10.1063/1.4966956
PG 5
WC Physics, Applied
SC Physics
GA EC3BN
UT WOS:000387999600010
ER
PT J
AU Zhang, YW
Krishnamoorthy, S
Akyol, F
Allerman, AA
Moseley, MW
Armstrong, AM
Rajan, S
AF Zhang, Yuewei
Krishnamoorthy, Sriram
Akyol, Fatih
Allerman, Andrew A.
Moseley, Michael W.
Armstrong, Andrew M.
Rajan, Siddharth
TI Design of p-type cladding layers for tunnel-injected UV-A light emitting
diodes
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ALGAN
AB We discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be used to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range. Published by AIP Publishing.
C1 [Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Rajan, Siddharth] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.
[Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Rajan, Siddharth] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19th Ave, Columbus, OH 43210 USA.
RP Zhang, YW; Rajan, S (reprint author), Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.; Rajan, S (reprint author), Ohio State Univ, Dept Mat Sci & Engn, 116 W 19th Ave, Columbus, OH 43210 USA.
EM zhang.3789@osu.edu; rajan@ece.osu.edu
RI Krishnamoorthy, Sriram/B-2258-2012;
OI Krishnamoorthy, Sriram/0000-0002-4682-1002; Zhang, Yuewei
/0000-0002-4192-1442
FU National Science Foundation [ECCS-1408416]; U.S. Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]
FX We acknowledge the funding from the National Science Foundation
(ECCS-1408416). Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under Contract
DE-AC04-94AL85000.
NR 34
TC 1
Z9 1
U1 19
U2 19
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 7
PY 2016
VL 109
IS 19
AR 191105
DI 10.1063/1.4967698
PG 5
WC Physics, Applied
SC Physics
GA EC3BN
UT WOS:000387999600005
ER
PT J
AU Cole, JM
Cheng, X
Payne, MC
AF Cole, Jacqueline M.
Cheng, Xie
Payne, Michael C.
TI Modeling Pair Distribution Functions of Rare-Earth Phosphate Glasses
Using Principal Component Analysis
SO INORGANIC CHEMISTRY
LA English
DT Article
ID LOSS OPTICAL-FIBERS; X-RAY-DIFFRACTION; SCATTERING FACTORS; ND;
FABRICATION; (R2O3)(X)(P2O5)(1-X); LASERS; EXAFS; EU; CE
AB The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, codoped with two rare-earth ions (R and R') of different sizes and optical properties, are of interest to the laser industry. The determination of structure property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of codoped REPGs presents significant challenges relative to their singly doped counterparts; specifically, R and R' are difficult to distinguish in terms of establishing relative material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown codoped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are prevalidated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. While this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials and be exploited in large-scale data-mining efforts that probe many t(r) functions.
C1 [Cole, Jacqueline M.; Cheng, Xie; Payne, Michael C.] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England.
[Cole, Jacqueline M.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Cole, Jacqueline M.] STFC Rutherford Appleton Lab, ISIS Neutron & Muon Source, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England.
[Cole, Jacqueline M.] Univ Cambridge, Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0FS, England.
RP Cole, JM (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England.; Cole, JM (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.; Cole, JM (reprint author), STFC Rutherford Appleton Lab, ISIS Neutron & Muon Source, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England.; Cole, JM (reprint author), Univ Cambridge, Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0FS, England.
EM jmc61@cam.ac.uk
RI Cole, Jacqueline/C-5991-2008
FU EPSRC Collaborative Computational Project, CCP9 [EP/J010057/1];
Fulbright Commission; Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-AC02-06CH11357]
FX J.M.C. and M.C.P. acknowledge the EPSRC Collaborative Computational
Project, CCP9, (Grant No. EP/J010057/1) for funding. J.M.C. is also
indebted to the Fulbright Commission for a U.K.-U.S. Fulbright Scholar
Award, and to Argonne National Laboratory, where work done was supported
by the Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 41
TC 0
Z9 0
U1 11
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 7
PY 2016
VL 55
IS 21
BP 10870
EP 10880
DI 10.1021/acs.inorgchem.6b00907
PG 11
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA EB5PJ
UT WOS:000387428200009
PM 27753490
ER
PT J
AU Sadeghi, O
Falaise, C
Molina, PI
Hufschmid, R
Campana, CF
Noll, BC
Browning, ND
Nyman, M
AF Sadeghi, Omid
Falaise, Clement
Molina, Pedro I.
Hufschmid, Ryan
Campana, Charles F.
Noll, Bruce C.
Browning, Nigel D.
Nyman, May
TI Chemical Stabilization and Electrochemical Destabilization of the Iron
Keggin Ion in Water
SO INORGANIC CHEMISTRY
LA English
DT Article
ID SMALL-ANGLE SCATTERING; X-RAY-SCATTERING; STRUCTURAL-CHARACTERIZATION;
CRYSTAL-STRUCTURE; CLUSTERS; METAL; COMPLEXES; CRYSTALLOGRAPHY;
NANOPARTICLES; NUCLEATION
AB The iron Keggin ion is identified as a structural building block in both magnetite and ferrihydrite, two important iron oxide phases in nature and in technology. Discrete molecular forms of the iron Keggin ion that can be both manipulated in water and chemically converted to the related metal oxides are important for understanding growth mechanisms, in particular, nonclassical nucleation in which cluster building units are preserved in the aggregation and condensation processes. Here we describe two iron Keggin ion structures, formulated as [Bi6FeO4Fe12O12(OH)(12)- (CF3COO)(10)(H2O)(2)](3+) (Kegg-1) and [Bi6FeO4Fe12O12-(OH)(12)(CF3COO)(12)](1+) (Kegg-2). Experimental and simulated Xray scattering studies show indefinite stability of these clusters in water from pH 1-3. The tridecameric iron Keggin-ion core is protected from hydrolysis by a synergistic effect of the capping Bi3+ cations and the trifluoroacetate ligands that, respectively, bond to the iron and bridge to the bismuth. By introducing electrons to the aqueous solution of clusters, we achieve complete separation of bismuth from the cluster, and the iron Keggin ion rapidly converts to magnetite and/or ferrihydrite, depending on the mechanism of reduction. In this strategy, we take advantage of the easily accessible reduction potential and crystallization energy of bismuth. Reduction was executed in bulk by chemical means, by voltammetry, and by secondary effects of transmission electron microscopy imaging of solutions. Prior, we showed a less stable analogue of the iron Keggin cluster converted to ferrihydrite simply upon dissolution. The prior and currently studied clusters with a range of reactivity provide a chemical system to study molecular cluster to metal oxide conversion processes in detail.
C1 [Sadeghi, Omid; Falaise, Clement; Molina, Pedro I.; Nyman, May] Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA.
[Hufschmid, Ryan; Browning, Nigel D.] Univ Washington, Dept Mat Sci & Engn, Box 352120, Seattle, WA 98195 USA.
[Campana, Charles F.; Noll, Bruce C.] Bruker AXS Inc, Madison, WI 53711 USA.
[Browning, Nigel D.] Pacific Northwest Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Nyman, M (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA.
EM may.nyman@oregonstate.edu
OI Molina Sanchez, Pedro/0000-0002-4491-3739
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering [DE-SC0010802]; DOE
[DE-AC05-76RL01830]; DOE's Office of Biological and Environmental
Research
FX The work led by and performed at Oregon State University was supported
by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering, under Award No.
DE-SC0010802. A portion of this work was done as part of the Chemical
Imaging Initiative conducted under the Laboratory Directed Research and
Development program at Pacific Northwest National Laboratory (PNNL).
PNNL is operated by Battelle for DOE under Contract No.
DE-AC05-76RL01830. This work was performed in part using the William R.
Wiley Environmental Molecular Sciences Laboratory, a U.S. DOE national
scientific user facility sponsored by the DOE's Office of Biological and
Environmental Research and located at PNNL.
NR 51
TC 1
Z9 1
U1 8
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 7
PY 2016
VL 55
IS 21
BP 11078
EP 11088
DI 10.1021/acs.inorgchem.6b01694
PG 11
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA EB5PJ
UT WOS:000387428200031
PM 27753497
ER
PT J
AU Chen, Z
Pan, YX
Xi, LQ
Pang, R
Huang, SM
Liu, GK
AF Chen, Zhen
Pan, Yuexiao
Xi, Luqing
Pang, Ran
Huang, Shaoming
Liu, Guokui
TI Tunable Yellow-Red Photoluminescence and Persistent Afterglow in
Phosphors Ca4LaO(BO3)(3):Eu3+ and Ca4EuO(BO3)(3)
SO INORGANIC CHEMISTRY
LA English
DT Article
ID LONG-LASTING PHOSPHORESCENCE; LUMINESCENCE PROPERTIES; ENERGY; DY3+
AB In most Eu3+ activated phosphors, only red luminescence from the D-5(0) is obtainable, and efficiency is limited by concentration quenching. Herein we report a new phosphor of Ca4LaO(BO3)(3):Eu-3 (CLBO:Eu) with advanced photoluminescence properties. The yellow luminescence emitted from the D-5(1,2) states is not thermally quenched at room temperature. The relative intensities of the yellow and red emission bands depend strongly on the Eu3+ doping concentration. More importantly, concentration quenching of Eu3+ photoluminescence is absent in this phosphor, and the stoichiometric compound of Ca4EuO(BO3)(3) emits stronger luminescence than the Eu3+ doped compounds of CLBO:Eu; it is three times stronger than that of a commercial red phosphor of Y2O3:Eu3+. Another beneficial phenomenon is that ligand-to-metal charge transfer (CT) transitions occur in the long UV region with the lowest charge transfer band (CTB) stretched down to about 3.67 eV (similar to 30 nm). The CT transitions significantly enhance Eu3+ excitation, and thus result in stronger photoluminescence and promote trapping of excitons for persistent afterglow emission. Along with structure characterization, optical spectra and luminescence dynamics measured under various conditions as a function of Eu3+ doping, temperature, and excitation wavelength are analyzed for a fundamental understanding of electronic interactions and for potential applications.
C1 [Chen, Zhen; Pan, Yuexiao; Xi, Luqing; Huang, Shaoming] Wenzhou Univ, Coll Chem & Mat Engn, Key Lab Carbon Mat Zhejiang Prov, Wenzhou 325035, Peoples R China.
[Liu, Guokui] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Pang, Ran] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China.
RP Pan, YX (reprint author), Wenzhou Univ, Coll Chem & Mat Engn, Key Lab Carbon Mat Zhejiang Prov, Wenzhou 325035, Peoples R China.; Liu, GK (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
EM yxpan8@gmail.com; gkliu@anl.gov
FU National Natural Science Foundation of China [51572200, 51102185];
Zhejiang Province [Y16E020041]; Public Industrial Technology Research
Project of Zhejiang Province [2015C33142]; Public Industrial Technology
Research Project of Wenzhou City [G20140040]
FX This research was jointly supported by the National Natural Science
Foundation of China (51572200, 51102185) and Zhejiang Province
(Y16E020041), and the Public Industrial Technology Research Projects of
Zhejiang Province (2015C33142) and Wenzhou City (G20140040).
NR 31
TC 0
Z9 0
U1 16
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 7
PY 2016
VL 55
IS 21
BP 11249
EP 11257
DI 10.1021/acs.inorgchem.6b01786
PG 9
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA EB5PJ
UT WOS:000387428200047
PM 27782399
ER
PT J
AU Khatri, NM
Pablico-Lansigan, MH
Boncher, WL
Mertzman, JE
Labatete, AC
Grande, LM
Wunder, D
Prushan, MJ
Zhang, WG
Halasyamani, PS
Monteiro, JHSK
de Bettencourt-Dias, A
Stoll, SL
AF Khatri, Natasha M.
Pablico-Lansigan, Michele H.
Boncher, William L.
Mertzman, Julie E.
Labatete, Aura C.
Grande, Laura M.
Wunder, Donald
Prushan, Michael J.
Zhang, Weiguo
Halasyamani, P. Shiv
Monteiro, Jorge H. S. K.
de Bettencourt-Dias, Ana
Stoll, Sarah L.
TI Luminescence and Nonlinear Optical Properties in Copper(I) Halide
Extended Networks
SO INORGANIC CHEMISTRY
LA English
DT Article
ID LIGHT-EMITTING-DIODES; ACTIVATED DELAYED FLUORESCENCE; 2-DIMENSIONAL
COORDINATION POLYMER; CRYSTAL-STRUCTURE; PHOTOLUMINESCENCE PROPERTIES;
SUBSTITUTED PYRIDINE; STRUCTURAL MOTIFS; IODIDE-PYRIDINE; COMPLEXES;
LIGANDS
AB The syntheses, structures, and luminescence properties of a series of copper(I) halide coordination polymers, prepared with mono- and bidentate N-heteroaromatic ligands, are reported. These metal organic coordination networks form [Cu2I2L](n) for bidentate ligands (where L = pyrazine (1), quinazoline (2)) and [CULL](n) for monodentate ligands (where L = 3-benzoylpyridine (3) and 4-benzoylpyridine(4)). Both sets of compounds exhibit a double-stranded stair-Cu2I2-polymer, or "ladder" structure with the ligand coordinating to the metal in a bidentate (bridging two stairs) or monodentate mode. The copper bromide analogues for the bidentate ligands were also targeted, [Cu2Br2L](n) for L = pyrazine (5) with the same stair structure, as well as compositions of [CuBr(L)](n) for L = pyrazine (6) and quinazoline (7), which have a different structure type, where the -Cu-Br- forms a single-stranded "zigzag" chain. These copper halide polymers were found to be luminescent at room temperature, with emission peaks ranging from,similar to 550 to 680 nm with small shifts at low temperature. The structure (stair or chain), the halide (I or Br), as well as the ligand play an important role in determining the position and intensity of emission. Lifetime measurements at room and low temperatures confirm the presence of thermally activated delayed fluorescence, or singlet harvesting for compounds 1, 2, and 7. We also investigated the nonlinear optical properties and found that, of this series, [CuBr(quinazoline)](n) shows a very strong second harmonic generating response that is,similar to 150 times greater than that of alpha-SiO2.
C1 [Khatri, Natasha M.; Pablico-Lansigan, Michele H.; Boncher, William L.; Mertzman, Julie E.; Labatete, Aura C.; Grande, Laura M.; Wunder, Donald; Prushan, Michael J.; Zhang, Weiguo; Halasyamani, P. Shiv; Monteiro, Jorge H. S. K.; de Bettencourt-Dias, Ana; Stoll, Sarah L.] Georgetown Univ, Dept Chem, 3700 O St NW, Washington, DC 20057 USA.
[Pablico-Lansigan, Michele H.] Amer Univ, Dept Chem, Washington, DC 20016 USA.
[Boncher, William L.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
[Grande, Laura M.; Prushan, Michael J.] La Salle Univ, Dept Chem, Philadelphia, PA 19141 USA.
[Zhang, Weiguo; Halasyamani, P. Shiv] Univ Houston, Dept Chem, Univ Pk, Houston, TX 77204 USA.
[Monteiro, Jorge H. S. K.; de Bettencourt-Dias, Ana] Univ Nevada, Dept Chem, Reno, NV 89557 USA.
RP Stoll, SL (reprint author), Georgetown Univ, Dept Chem, 3700 O St NW, Washington, DC 20057 USA.
EM sls55@georgetown.edu
FU National Science Foundation [CHE-1156788, CHE-1112387, CHE-136325]; MRI
program at NSF [CHE-0959546]; REU Program [CHE-1156788, CHE-0552586,
CHE-0851581]; CNPq (Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico Brazil) for a Postdoctoral Fellowship [232574/2014-6]
FX We thank the National Science Foundation for funding this work
(CHE-1112387) and (CHE-1156788). X-ray powder diffraction was obtained
using an instrument purchased from the MRI program at NSF (CHE-0959546).
Gaussian calculations were performed on the Medusa cluster maintained by
UIS Georgetown. The authors also thank J. Bertke for assistance with the
crystal structures. P.S.H. acknowledges DMR-1503573. S.L.S. thanks the
REU Program (CHE-0552586, CHE-0851581, CHE-1156788), which supported L.
Grande, A. Labatete, and D. Wunder. Ad.B.D. acknowledges financial
support through the National Science Foundation (CHE-136325). J.H.S.K.M.
thanks CNPq (Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico-Brazil) for a Postdoctoral Fellowship (Grant No.
232574/2014-6).
NR 56
TC 2
Z9 2
U1 24
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 7
PY 2016
VL 55
IS 21
BP 11408
EP 11417
DI 10.1021/acs.inorgchem.6b01879
PG 10
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA EB5PJ
UT WOS:000387428200065
PM 27735188
ER
PT J
AU AbdulHalim, LG
Hooshmand, Z
Parida, MR
Aly, SM
Le, D
Zhang, X
Rahman, TS
Pelton, M
Losovyj, Y
Dowben, PA
Bakr, OM
Mohammed, OF
Katsiev, K
AF AbdulHalim, Lina G.
Hooshmand, Zahra
Parida, Manas R.
Aly, Shawkat M.
Le, Duy
Zhang, Xin
Rahman, Talat S.
Pelton, Matthew
Losovyj, Yaroslav
Dowben, Peter A.
Bakr, Osman M.
Mohammed, Omar F.
Katsiev, Khabiboulakh
TI pH-Induced Surface Modification of Atomically Precise Silver
Nanoclusters: An Approach for Tunable Optical and Electronic Properties
SO INORGANIC CHEMISTRY
LA English
DT Article
ID SELF-ASSEMBLED MONOLAYERS; LIGAND-EXCHANGE; QUANTUM-DOT;
MASS-SPECTROMETRY; CHARGE-TRANSFER; GOLD CLUSTERS; COLLOIDAL
NANOCRYSTALS; METAL NANOCLUSTERS; NANOPARTICLES; INTERFACE
AB Noble metal nanoclusters (NCs) play a pivotal role in bridging the gap between molecules and quantum dots. Fundamental understanding of the evolution of the structural, optical, and electronic properties of these materials in various environments is of paramount importance for many applications. Using state-of-the-art spectroscopy, we provide the first decisive experimental evidence that the structural, electronic, and optical properties of Ag-44(MNBA)(30) NCs can now be tailored by controlling the chemical environment. Infrared and photoelectron spectroscopies clearly indicate that there is a dimerization between two adjacent ligands capping the NCs that takes place upon lowering the pH from 13 to 7.
C1 [AbdulHalim, Lina G.; Parida, Manas R.; Aly, Shawkat M.; Bakr, Osman M.; Mohammed, Omar F.; Katsiev, Khabiboulakh] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Solar & Photovolta Engn Res Ctr, Thuwal 239556900, Saudi Arabia.
[Hooshmand, Zahra; Le, Duy; Rahman, Talat S.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA.
[Zhang, Xin; Dowben, Peter A.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA.
[Pelton, Matthew] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA.
[Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Losovyj, Yaroslav] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA.
RP Mohammed, OF; Katsiev, K (reprint author), King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Solar & Photovolta Engn Res Ctr, Thuwal 239556900, Saudi Arabia.
EM omar.abdelsaboor@kaust.edu.sa; katsievk@sabic.com
FU King Abdullah University of Science and Technology (KAUST); Saudi Arabia
Basic Industries Corporation (SABIC) [RGC/3/2470-01]; U. S. Department
of Energy [DE-FG02-07ER15842]; U.S. Department of Energy Office of
Science User Facility [DE-AC02-06CH11357]; NSF [CHE-1310327]
FX This work was supported by King Abdullah University of Science and
Technology (KAUST), and part of this work was supported by Saudi Arabia
Basic Industries Corporation (SABIC) grant RGC/3/2470-01. The work at U
Nebraska was partly supported by the U. S. Department of Energy through
grant #DE-FG02-07ER15842. This work was performed, in part, at the
Center for Nanoscale Materials, a U.S. Department of Energy Office of
Science User Facility under Contract No. DE-AC02-06CH11357. DFT
calculations (ZH, DL, and TSR) were performed at the UCF Advanced
Research Computing Center and partially supported by NSF grant
CHE-1310327. We thank Sampyo Hong for fruitful discussions.
NR 61
TC 0
Z9 0
U1 16
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 7
PY 2016
VL 55
IS 21
BP 11522
EP 11528
DI 10.1021/acs.inorgchem.6b02067
PG 7
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA EB5PJ
UT WOS:000387428200079
PM 27775334
ER
PT J
AU Heathman, CR
Grimes, TS
Zalupski, PR
AF Heathman, Colt R.
Grimes, Travis S.
Zalupski, Peter R.
TI Coordination Chemistry and f-Element Complexation by
Diethylenetriamine-N,N ''-bis(acetylglycine)-N,N ',N ''-triacetic Acid
SO INORGANIC CHEMISTRY
LA English
DT Article
ID DTPA-BISAMIDE COMPLEXES; DIETHYLENETRIAMINEPENTAACETIC ACID;
STABILITY-CONSTANTS; CONTRAST AGENTS; EQUILIBRIUM-CONSTANTS; TALSPEAK
SEPARATIONS; CARBOXYLIC-ACIDS; AQUEOUS-SOLUTION; THERMODYNAMICS;
LANTHANIDES
AB Potentiometric and spectroscopic techniques were used to evaluate the coordination behavior and thermodynamic features of trivalent f-element complexation by diethylenetriamine-N,N ''-bis(acetylglycine)-N,N',N ''-triacetic acid (DTTA-DAG) and its di(acetylglycine ethyl ester) analogue [diethylenetriamine-N,N"-bis(acetylglycine ethyl ester)-N,N',N ''-triacetic acid (DTTA-DAGEE)]. Protonation constants and stability constants of trivalent lanthanide complexes (except Pm3+) were determined by potentiometry. Six protonation sites and three metal-ligand complexes [ML2-, MHL-, and MH2L(aq)] were quantified for DTTA-DAG. Four protonation sites and one metal-ligand complex [ML(aq)] were observed for DTTA-DAGEE, consistent with the presence of two ester groups. Absorption spectroscopy was utilized to measure the stability constants for complexation of trivalent neodymium and americium by DTTA-DAG and trivalent neodymium by DTTA-DAGEE. The coordination environment of trivalent europium in the presence of DTTA-DAG was investigated at various acidities by luminescence lifetime measurements. Decay constants indicate one water molecule in the inner coordination sphere across the 1.0 < pH < 5.5 range, presumably due to octadentate coordination by DTTA-DAG. A trans-lanthanide pattern of complex stabilities for DTTA-DAG was found to be analogous to that observed for DTPA, with a similar to 10(6) reduction of the complex stability. The lessened strength of complexation, relative to DTPA, was attributed to significant reduction of the total ligand basicity for DTTA-DAG due to the electronic influence of amide functionalization. When DTTA-DAG is used as an aqueous holdback complexant in liquid-liquid distribution experiments, the preferential coordination of Am3+ in the aqueous environment offers efficient An/Ln differentiation. The separation extends to pH 2 conditions, where the kinetics of phase transfer in such liquid-liquid systems are aided by the acid-catalyzed dissociation of a metal/aminopolycarboxylate complex.
C1 [Heathman, Colt R.; Grimes, Travis S.; Zalupski, Peter R.] Idaho Natl Lab, Aqueous Separat & Radiochem, Idaho Falls, ID 83415 USA.
RP Heathman, CR; Zalupski, PR (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem, Idaho Falls, ID 83415 USA.
EM colt.heathman@inl.gov; peter.zalupski@inl.gov
RI Heathman, Colt/B-4783-2017
OI Heathman, Colt/0000-0001-9436-5972
FU U.S. Department of Energy, Office of Nuclear Energy, DOE Idaho
Operations Office [DE-AC07-05ID14517]
FX All experimental work was conducted at the. Idaho National Laboratory
and supported by the U.S. Department of Energy, Office of Nuclear
Energy, DOE Idaho Operations Office, under Contract DE-AC07-05ID14517.
NR 46
TC 1
Z9 1
U1 4
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD NOV 7
PY 2016
VL 55
IS 21
BP 11600
EP 11611
DI 10.1021/acs.inorgchem.6b02158
PG 12
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA EB5PJ
UT WOS:000387428200087
PM 27787988
ER
PT J
AU Jiang, GM
Huang, YX
Zhang, S
Zhu, HY
Wu, ZB
Sun, SH
AF Jiang, Guangming
Huang, Yuxi
Zhang, Sen
Zhu, Huiyuan
Wu, Zhongbiao
Sun, Shouheng
TI Controlled synthesis of Au-Fe heterodimer nanoparticles and their
conversion into Au-Fe3O4 heterostructured nanoparticles
SO NANOSCALE
LA English
DT Article
ID COLLOIDAL HYBRID NANOPARTICLES; SURFACE-PLASMON RESONANCE; OXYGEN
REDUCTION REACTION; CHEMICAL TRANSFORMATION; SEEDED GROWTH; DUMBBELL;
NANOSTRUCTURES; HETEROTRIMERS; NANOCRYSTALS; PARTICLES
AB We report a facile synthesis of Au-Fe heterodimer nanoparticles (NPs) with tunable Au/Fe sizes and their sequential oxidations to Au-Fe3O4 heterostructured NPs with controllable morphologies. The size of Au in Au-Fe heterodimer NPs was tuned to be 4, 7 and 10 nm, while the Fe crystal structure was maintained as single-crystal bcc. Further oxidation of the as-synthesized Au-Fe NPs led to the formation of Au-hollow Fe3O4 yolk-shell, Au-hollow Fe3O4 heterodimer NPs and Au-porous hollow Fe3O4 yolk-shell NPs, depending on the size of the Au-Fe NPs and the oxidation conditions used. Our study has provided not only a variety of bifunctional NPs with tunable surface plasmon absorption and magnetic properties, but also a new general approach to design and synthesize multicomponent NPs with multiple heterostructures.
C1 [Jiang, Guangming] Chongqing Technol & Business Univ, Engn Res Ctr Waste Oil Recovery Technol & Equipme, Minist Educ, Chongqing 400067, Peoples R China.
[Jiang, Guangming; Huang, Yuxi; Zhu, Huiyuan; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA.
[Zhang, Sen] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA.
[Wu, Zhongbiao] Zhejiang Univ, Dept Environm Engn, Hangzhou 310058, Zhejiang, Peoples R China.
[Zhu, Huiyuan] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Sun, SH (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA.; Wu, ZB (reprint author), Zhejiang Univ, Dept Environm Engn, Hangzhou 310058, Zhejiang, Peoples R China.
EM zbwu@zju.edu.cn; ssun@brown.edu
RI WU, Zhongbiao/D-2634-2009
FU U.S. Army Research Office [W911NF-15-1-0147]; National Natural Science
Foundation of China [51508055]; Natural Science Foundation of Chongqing
Science & Technology Commission [cstc2016jcyjA0154]
FX This work was supported in part by the U.S. Army Research Office (Grant
W911NF-15-1-0147), the National Natural Science Foundation of China
(Project 51508055) and the Natural Science Foundation of Chongqing
Science & Technology Commission (cstc2016jcyjA0154).
NR 31
TC 2
Z9 2
U1 36
U2 36
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
EI 2040-3372
J9 NANOSCALE
JI Nanoscale
PD NOV 7
PY 2016
VL 8
IS 41
BP 17947
EP 17952
DI 10.1039/c6nr06395k
PG 6
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA EB4HI
UT WOS:000387331100028
PM 27731449
ER
PT J
AU Butch, NP
Ran, S
Jeon, I
Kanchanavatee, N
Huang, K
Breindel, A
Maple, MB
Stillwell, RL
Zhao, Y
Harriger, L
Lynn, JW
AF Butch, Nicholas P.
Ran, Sheng
Jeon, Inho
Kanchanavatee, Noravee
Huang, Kevin
Breindel, Alexander
Maple, M. Brian
Stillwell, Ryan L.
Zhao, Yang
Harriger, Leland
Lynn, Jeffrey W.
TI Distinct magnetic spectra in the hidden order and antiferromagnetic
phases in URu2-xFexSi2
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRON SUPERCONDUCTOR URU2SI2; NEUTRON-SCATTERING; SPECTROMETER;
EXCITATIONS; PRESSURE; LATTICE; SYSTEM
AB We use neutron scattering to compare the magnetic excitations in the hidden order (HO) and antiferromagnetic (AFM) phases in URu2-xFexSi2 as a function of Fe concentration. The magnetic excitation spectra change significantly between x = 0.05 and x = 0.10, following the enhancement of the AFM ordered moment, in good analogy to the behavior of the parent compound under applied pressure. Prominent lattice-commensurate low-energy excitations characteristic of the HO phase vanish in the AFM phase. The magnetic scattering is dominated by strong excitations along the Brillouin zone edges, underscoring the important role of electron hybridization to both HO and AFM phases and the similarity of the underlying electronic structure. The stability of the AFM phase is correlated with enhanced local-itinerant electron hybridization.
C1 [Butch, Nicholas P.; Zhao, Yang; Harriger, Leland; Lynn, Jeffrey W.] NIST, NIST Ctr Neutron Res, 100 Bur Dr, Gaithersburg, MD 20899 USA.
[Butch, Nicholas P.] Univ Maryland, Ctr Nanophys & Adv Mat, Dept Phys, College Pk, MD 20742 USA.
[Ran, Sheng; Kanchanavatee, Noravee; Breindel, Alexander; Maple, M. Brian] Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA.
[Ran, Sheng; Jeon, Inho; Kanchanavatee, Noravee; Huang, Kevin; Breindel, Alexander; Maple, M. Brian] Univ Calfornia San Diego, Ctr Adv Nanosci, 9500 Gilman Dr, La Jolla, CA 92093 USA.
[Jeon, Inho; Huang, Kevin; Maple, M. Brian] Univ Calfornia San Diego, Mat Sci & Engn Program, 9500 Gilman Dr, La Jolla, CA 92093 USA.
[Stillwell, Ryan L.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
[Zhao, Yang] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Kanchanavatee, Noravee] Chulalongkorn Univ, Dept Phys, Pathumwan, Thailand.
[Huang, Kevin] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai, Peoples R China.
RP Butch, NP (reprint author), NIST, NIST Ctr Neutron Res, 100 Bur Dr, Gaithersburg, MD 20899 USA.; Butch, NP (reprint author), Univ Maryland, Ctr Nanophys & Adv Mat, Dept Phys, College Pk, MD 20742 USA.
EM nicholas.butch@nist.gov
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DEFG02-04-ER46105]; National Science
Foundation [DMR 1206553]
FX We thank M. Janoschek and J. S. Helton for helpful discussions, and T.
J. Williams and H.-H. Kung for sharing their unpublished data. Single-
crystal growth and characterization at UCSD were supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering, under Grant No. DEFG02-04-ER46105.
Low-temperature measurements at UCSD were sponsored by the National
Science Foundation under Grant No. DMR 1206553.
NR 42
TC 1
Z9 1
U1 8
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 7
PY 2016
VL 94
IS 20
AR 201102
DI 10.1103/PhysRevB.94.201102
PG 5
WC Physics, Condensed Matter
SC Physics
GA EB7AP
UT WOS:000387537700001
ER
PT J
AU Enamullah
Johnson, DD
Suresh, KG
Alam, A
AF Enamullah
Johnson, D. D.
Suresh, K. G.
Alam, Aftab
TI Half-metallic Co-based quaternary Heusler alloys for spintronics:
Defect- and pressure-induced transitions and properties
SO PHYSICAL REVIEW B
LA English
DT Article
ID CO2FESI/GAAS(001) HYBRID STRUCTURES; TOTAL-ENERGY CALCULATIONS; WAVE
BASIS-SET; FERROMAGNETISM; FILMS
AB Heusler compounds offer potential as spintronic devices due to their spin polarization and half-metallicity properties, where electron spin-majority (minority) manifold exhibits states (band gap) at the electronic chemical potential, yielding full spin polarization in a single manifold. Yet, Heuslers often exhibit intrinsic disorder that degrades its half-metallicity and spin polarization. Using density-functional theory, we analyze the electronic and magnetic properties of equiatomic Heusler (L2(1)) CoMnCrAl and CoFeCrGe alloys for effects of hydrostatic pressure and intrinsic disorder (thermal antisites, binary swaps, and vacancies). Under pressure, CoMnCrAl undergoes a metallic transition, while half-metallicity in CoFeCrGe is retained for a limited range. Antisite disorder between Cr-Al pair in CoMnCrAl alloy is energetically the most favorable, and retains half-metallic character in Cr-excess regime. However, Co-deficient samples in both alloys undergo a transition from half-metallic to metallic, with a discontinuity in the saturation magnetization. For binary swaps, configurations that compete with the ground state are identified and show no loss of half-metallicity; however, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. For single binary swaps, there is a significant energy cost in CoMnCrAl but with no loss of half-metallicity. Although a few configurations in CoFeCrGe energetically compete with the ground state, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. This information should help in controlling these potential spintronic materials.
C1 [Enamullah; Suresh, K. G.; Alam, Aftab] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India.
[Johnson, D. D.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.
[Johnson, D. D.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Enamullah (reprint author), Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India.
EM enamullah@phy.iitb.ac.in; ddj@ameslab.gov; aftab@phy.iitb.ac.in
FU IIT Bombay; U.S. Department of Energy (DOE), Office of Science, Basic
Energy Sciences, Materials Science and Engineering Division; U.S. DOE
[DE-AC02-07CH11358]
FX Enamullah (an institute post-doctoral fellow) acknowledges IIT Bombay
for funding to support this research. Work at Ames Lab was supported by
the U.S. Department of Energy (DOE), Office of Science, Basic Energy
Sciences, Materials Science and Engineering Division. Ames Laboratory is
operated for the U.S. DOE by Iowa State University under Contract No.
DE-AC02-07CH11358.
NR 38
TC 0
Z9 0
U1 19
U2 19
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 7
PY 2016
VL 94
IS 18
AR 184102
DI 10.1103/PhysRevB.94.184102
PG 10
WC Physics, Condensed Matter
SC Physics
GA EB6ZD
UT WOS:000387533400005
ER
PT J
AU Li, LL
Wang, LH
Li, RF
Zhao, HY
Qu, DD
Chapman, KW
Chupas, PJ
Liu, HZ
AF Li, Liangliang
Wang, Luhong
Li, Renfeng
Zhao, Haiyan
Qu, Dongdong
Chapman, Karena W.
Chupas, Peter J.
Liu, Haozhe
TI Constant real-space fractal dimensionality and structure evolution in
Ti62Cu38 metallic glass under high pressure
SO PHYSICAL REVIEW B
LA English
DT Article
ID MEDIUM-RANGE ORDER; POWER-LAW; ATOMIC PACKING; LIQUIDS; PROGRAM; ALLOYS;
DECAY
AB The structure of binary Ti62Cu38 metallic glass is investigated under pressures up to 33.8 GPa using the pair distribution function analysis based on high-energy x-ray scattering and reverse Monte Carlo (RMC) simulations. At a global scale, its relative volume shows a continuously smooth curve as a function of pressure. The isothermal bulk modulus of Ti62Cu38 metallic glass is estimated as B-0 = 132(3) GPa with B-0' = 5.8(0.4). At a local scale, the atomic packing structure under compression conditions, which is extracted from RMC simulations, shows that the topological short-range order is dominated by the deformed icosahedron polyhedra and basically maintains stable. From the relationship between the relative volume and changing ratio of the atomic separation distances, the real-space fractal dimensionality of this metallic glass is determined as about 2.5 for all of the first four peaks. This experimental result reveals the consistent nature of the fractal feature on the degree of self-similarity in this sample within the entire experimental pressure range.
C1 [Li, Liangliang; Wang, Luhong; Li, Renfeng; Liu, Haozhe] Harbin Inst Technol, Harbin 150080, Peoples R China.
[Li, Liangliang; Li, Renfeng; Liu, Haozhe] Ctr High Pressure Sci & Technol Adv Res, Changchun 130015, Peoples R China.
[Zhao, Haiyan] Univ Idaho, Ctr Adv Energy Studies, Idaho Falls, ID 83406 USA.
[Zhao, Haiyan; Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Qu, Dongdong] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia.
RP Wang, LH (reprint author), Harbin Inst Technol, Harbin 150080, Peoples R China.
EM luhong1@hit.edu.cn; haozhe.liu@hpstar.ac.cn
RI Liu, Haozhe/E-6169-2011
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; Natural Science Foundation of China
[U1530402, 11374075]; Heilongjiang Province Science Fund for
Distinguished Young Scholars [JC201005]; Heilongjiang Natural Science
Foundation [E200948]; Fundamental Research Funds for the Central
Universities [HIT.BRET1.2010002, HIT.IBRSEM.A.201403]; HIT-Argonne
Overseas Collaborative Base Project; Chinese Scholarship Council
FX This work was performed at Argonne National Laboratory and use of the
Advanced Photon Source was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. This work was partially supported by Natural Science
Foundation of China (Grants No. U1530402 and No. 11374075), Heilongjiang
Province Science Fund for Distinguished Young Scholars (Grant No.
JC201005), Heilongjiang Natural Science Foundation (Grant No. E200948),
Longjiang Scholar, the Fundamental Research Funds for the Central
Universities (Grants No. HIT.BRET1.2010002 and No. HIT.IBRSEM.A.201403),
HIT-Argonne Overseas Collaborative Base Project, and Chinese Scholarship
Council.
NR 31
TC 1
Z9 1
U1 15
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 7
PY 2016
VL 94
IS 18
AR 184201
DI 10.1103/PhysRevB.94.184201
PG 6
WC Physics, Condensed Matter
SC Physics
GA EB6ZD
UT WOS:000387533400007
ER
PT J
AU Shafer, T
Engel, J
Frohlich, C
McLaughlin, GC
Mumpower, M
Surman, R
AF Shafer, T.
Engel, J.
Frohlich, C.
McLaughlin, G. C.
Mumpower, M.
Surman, R.
TI beta decay of deformed r-process nuclei near A=80 and A=160, including
odd-A and odd-odd nuclei, with the Skyrme finite-amplitude method
SO PHYSICAL REVIEW C
LA English
DT Article
ID ATOMIC MASS EVALUATION; NEUTRON-STAR MERGERS; GAMOW-TELLER STRENGTH;
PROCESS NUCLEOSYNTHESIS; GROSS THEORY; DRIVEN WINDS; TEMPERATURE;
ELEMENT; APPROXIMATION; EQUATIONS
AB After identifying the nuclei in the A similar or equal to 80 and A similar or equal to 160 regions for which beta-decay rates have the greatest effect on weak and main r-process abundance patterns, we apply the finite-amplitude method (FAM) with Skyrme energy-density functionals (EDFs) to calculate beta-decay half-lives of those nuclei in the quasiparticle random-phase approximation (QRPA). We use the equal filling approximation to extend our implementation of the charge-changing FAM, which incorporates pairing correlations and allows axially symmetric deformation, to odd-A and odd-odd nuclei. Repeated calculations with A similar or equal to 160 nuclei and multiple EDFs show a spread of 1.9-3.3 in beta-decay half-lives, with differences in calculated Q values playing an important role. We compare our results with those of previous work and investigate their implications for r-process simulations.
C1 [Shafer, T.; Engel, J.] Univ N Carolina, Dept Phys & Astron, CB 3255, Chapel Hill, NC 27599 USA.
[Frohlich, C.; McLaughlin, G. C.] North Carolina State Univ, Dept Phys, Box 8202, Raleigh, NC 27695 USA.
[Mumpower, M.; Surman, R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Mumpower, M.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87544 USA.
RP Shafer, T (reprint author), Univ N Carolina, Dept Phys & Astron, CB 3255, Chapel Hill, NC 27599 USA.
EM tom@tshafer.com; engelj@physics.unc.edu
FU US Department of Energy [DE-SC0004142, SC0010263, DE-FG02-97ER41019,
DE-FG02-02ER41216, DE-SC0013039]; National Science Foundation through
the Joint Institute for Nuclear Astrophysics [PHY0822648, PHY1419765];
National Nuclear Security Administration of the US Department of Energy
at Los Alamos National Laboratory [DE-AC52-06NA25396]; National Science
Foundation [ACI-1053575]
FX T.S. gratefully acknowledges many helpful conversations with M. T.
Mustonen, clarifying notes on SV-min from P.-G. Reinhardt, a useful HFB
fitting program from N. Schunck, and discussions with D. L. Fang. This
work was supported by the US Department of Energy through the Topical
Collaboration in Nuclear Science "Neutrinos and Nucleosynthesis in Hot
and Dense Matter," under Contract No. DE-SC0004142; through Early Career
Award Grant No. SC0010263 (C.F.); and under individual Contracts No.
DE-FG02-97ER41019 (J.E.), No. DE-FG02-02ER41216 (G.C.M.), and No.
DE-SC0013039 (R.S.). M. M. was supported by the National Science
Foundation through the Joint Institute for Nuclear Astrophysics Grants
No. PHY0822648 and No. PHY1419765 and under the auspices of the National
Nuclear Security Administration of the US Department of Energy at Los
Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We
carried out some of our calculations in the Extreme Science and
Engineering Discovery Environment (XSEDE) [89], which is supported by
National Science Foundation Grant No. ACI-1053575, and with HPC
resources provided by the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin.
NR 90
TC 1
Z9 1
U1 4
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 7
PY 2016
VL 94
IS 5
AR 055802
DI 10.1103/PhysRevC.94.055802
PG 18
WC Physics, Nuclear
SC Physics
GA EB5BL
UT WOS:000387388000008
ER
PT J
AU Niu, KY
Fang, L
Ye, R
Nordlund, D
Doeff, MM
Lin, F
Zheng, HM
AF Niu, Kai-Yang
Fang, Liang
Ye, Rong
Nordlund, Dennis
Doeff, Marca M.
Lin, Feng
Zheng, Haimei
TI Tailoring Transition-Metal Hydroxides and Oxides by Photon-Induced
Reactions
SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
LA English
DT Article
DE nanostructures; photochemistry; reaction pathways; transition-metal
hydroxides; vibrational excitation
ID LASER-ABLATION; ABSORPTION-SPECTROSCOPY; ALLOY NANOPARTICLES;
INFRARED-SPECTRA; CHEMISTRY; WATER; NANOCRYSTALS; LIQUID;
NANOSTRUCTURES; IRRADIATION
AB Controlled synthesis of transition-metal hydroxides and oxides with earth-abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition-metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion-containing aqueous solution undergoes photo-induced reactions and produces hollow metal-oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core-shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)(2)](NO3)(0.2)center dot H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo-induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon-induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.
C1 [Niu, Kai-Yang; Fang, Liang; Zheng, Haimei] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Fang, Liang] Chongqing Univ, Coll Phys, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China.
[Ye, Rong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Nordlund, Dennis] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Doeff, Marca M.; Lin, Feng] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Lin, Feng] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA.
[Zheng, Haimei] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Zheng, HM (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Zheng, HM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM hmzheng@lbl.gov
OI Ye, Rong/0000-0002-4171-5964; Doeff, Marca/0000-0002-2148-8047; Niu,
Kaiyang/0000-0003-3289-1322
FU U.S. Department of Energy Office of Basic Energy Sciences
[DE-AC02-05CH11231]; National Natural Science Foundation of China (NSFC)
[11544010, 11547305]; Virginia Tech; DOE Office of Science Early Career
Research Program
FX We used Tecnai and TitanX microscopes for structural analysis at
National Center for Electron Microscopy of Lawrence Berkeley National
Laboratory (LBNL), which is supported by the U.S. Department of Energy
Office of Basic Energy Sciences under contract number DE-AC02-05CH11231.
The synchrotron X-ray portions of this research were carried out at the
Stanford Synchrotron Radiation Lightsource (Beam Lines 10-1 and 8-2), a
Directorate of SLAC National Accelerator Laboratory and an Office of
Science User Facility operated for the U.S. Department of Energy Office
of Science by Stanford University. K.N. thanks Dr. Xin Liu for the help
on the UV/Vis absorption spectra. L.F. acknowledges the support of
National Natural Science Foundation of China (NSFC) under numbers
11544010 and 11547305. F.L. acknowledges the support from Virginia Tech.
F.L. and D.N. thank Dr. Jun-Sik Lee and Glen Kerr for the help at SSRL
Beam Line 8-2. H.Z. acknowledges the SinBeRise program of BEARS at
University of California, Berkeley for travel support. She thanks the
support of DOE Office of Science Early Career Research Program.
NR 44
TC 1
Z9 1
U1 37
U2 37
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1433-7851
EI 1521-3773
J9 ANGEW CHEM INT EDIT
JI Angew. Chem.-Int. Edit.
PD NOV 7
PY 2016
VL 55
IS 46
BP 14270
EP 14274
DI 10.1002/anie.201606775
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB0IR
UT WOS:000387028000010
PM 27754583
ER
PT J
AU Page, K
Siewenie, JE
Quadrelli, P
Malavasi, L
AF Page, Katharine
Siewenie, Joan E.
Quadrelli, Paolo
Malavasi, Lorenzo
TI Short-Range Order of Methylammonium and Persistence of Distortion at the
Local Scale in MAPbBr(3) Hybrid Perovskite
SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
LA English
DT Article
DE hybrid perovskites; methylammonium lead bromide; neutron scattering;
pair distribution function; photovoltaics
ID LEAD IODIDE; PHASE; BR; CL
AB Short-range investigation by means of variable-temperature neutron total scattering and pair distribution function analysis revealed that the local environment around the methylammonium (MA) cation in MAPbBr(3) hybrid perovskite is maintained through the different phase transitions observed as a function of temperature. In addition, the orthorhombic distortion of the lattice is present at any temperature. Local structure around MA changes from static to configurationally averaged or dynamic with temperature but the local structure of the low-temperature orthorhombic phase is preserved.
C1 [Page, Katharine] Oak Ridge Natl Lab, Spallat Neutron Source, Chem & Engn Mat Div, Oak Ridge, TN USA.
[Siewenie, Joan E.] Oak Ridge Natl Lab, Instruments & Source Div, Spallat Neutron Source, Oak Ridge, TN USA.
[Quadrelli, Paolo; Malavasi, Lorenzo] Univ Pavia, Dept Chem, I-27100 Pavia, Italy.
[Quadrelli, Paolo; Malavasi, Lorenzo] Univ Pavia, INSTM, I-27100 Pavia, Italy.
RP Malavasi, L (reprint author), Univ Pavia, Dept Chem, I-27100 Pavia, Italy.; Malavasi, L (reprint author), Univ Pavia, INSTM, I-27100 Pavia, Italy.
EM lorenzo.malavasi@unipv.it
OI Malavasi, Lorenzo/0000-0003-4724-2376
FU Scientific User Facilities Division, Office of Basic Energy Sciences, US
Department of Energy
FX Research conducted at ORNL's Spallation Neutron Source was sponsored by
the Scientific User Facilities Division, Office of Basic Energy
Sciences, US Department of Energy. Giuseppe Amoroso and Ambra Pisanu are
acknowledged for samples' preparation. Prof. Chiara Milanese is
acknowledged for DSC mesaurements.
NR 12
TC 1
Z9 1
U1 16
U2 16
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1433-7851
EI 1521-3773
J9 ANGEW CHEM INT EDIT
JI Angew. Chem.-Int. Edit.
PD NOV 7
PY 2016
VL 55
IS 46
BP 14318
EP 14322
DI 10.1002/anie.201608602
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB0IR
UT WOS:000387028000020
PM 27735122
ER
PT J
AU Stack, AG
Borreguero, JM
Prisk, TR
Mamontov, E
Wang, HW
Vlcek, L
Wesolowski, DJ
AF Stack, Andrew G.
Borreguero, Jose M.
Prisk, Timothy R.
Mamontov, Eugene
Wang, Hsiu-Wen
Vlcek, Lukas
Wesolowski, David J.
TI Precise determination of water exchanges on a mineral surface
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID ELASTIC NEUTRON-SCATTERING; MOLECULAR-DYNAMICS SIMULATIONS;
AQUEOUS-SOLUTION; GROWTH-KINETICS; HYDRATION WATER; IONIC SOLUTION;
METAL-IONS; DISSOLUTION; CRYSTALS; RATES
AB Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. We probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but as temperature is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Ba-aq(2+) is 208 ps and SO4aq2- is 5.8 ps. This work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements.
C1 [Stack, Andrew G.; Prisk, Timothy R.; Wesolowski, David J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Borreguero, Jose M.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN USA.
[Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN USA.
[Wang, Hsiu-Wen] Oak Ridge Natl Lab, UTK ORNL Shull Wollan Ctr, Oak Ridge, TN USA.
[Vlcek, Lukas] UTK ORNL Joint Inst Computat Sci, Oak Ridge, TN USA.
[Prisk, Timothy R.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
RP Stack, AG (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM stackag@ornl.gov
RI Mamontov, Eugene/Q-1003-2015; Vlcek, Lukas/N-7090-2013;
OI Mamontov, Eugene/0000-0002-5684-2675; Vlcek, Lukas/0000-0003-4782-7702;
Prisk, Timothy/0000-0002-7943-5175
FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences, U.S. Department of Energy; Center for
Accelerating Materials Modeling (CAMM) - U.S. Department of Energy,
Basic Energy Sciences, Materials Sciences and Engineering Division under
FWP-3ERKCSNL; U.S. Department of Energy, Office of Basic Energy Sciences
FX This material is primarily based upon work supported by the Division of
Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy
Sciences, U.S. Department of Energy. Research by J. M. B. is supported
by the Center for Accelerating Materials Modeling (CAMM), funded by U.S.
Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division under FWP-3ERKCSNL. QENS measurements were made at
Oak Ridge National Laboratory's Spallation Neutron Source, sponsored by
the U.S. Department of Energy, Office of Basic Energy Sciences.
NR 48
TC 0
Z9 0
U1 19
U2 19
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
EI 1463-9084
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PD NOV 7
PY 2016
VL 18
IS 41
BP 28819
EP 28828
DI 10.1039/c6cp05836a
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA EA5NR
UT WOS:000386668200042
PM 27722503
ER
PT J
AU Borin, VA
Matveev, SM
Budkina, DS
El-Khoury, PZ
Tarnovsky, AN
AF Borin, Veniamin A.
Matveev, Sergey M.
Budkina, Darya S.
El-Khoury, Patrick Z.
Tarnovsky, Alexander N.
TI Direct photoisomerization of CH2I2 vs. CHBr3 in the gas phase: a joint
50 fs experimental and multireference resonance-theoretical study
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; PHOTODISSOCIATION DYNAMICS; AB-INITIO;
CONICAL INTERSECTIONS; METHYLENE IODIDE; ULTRAVIOLET PHOTODISSOCIATION;
CYCLOPROPANATION REACTIONS; RAMAN OBSERVATION; ALKYL-HALIDES; 300 NM
AB Femtosecond transient absorption measurements powered by 40 fs laser pulses reveal that ultrafast isomerization takes place upon S-1 excitation of both CH2I2 and CHBr3 in the gas phase. The photochemical conversion process is direct and intramolecular, i.e., it proceeds without caging media that have long been implicated in the photo-induced isomerization of polyhalogenated alkanes in condensed phases. Using multistate complete active space second order perturbation theory (MS-CASPT2) calculations, we investigate the structure of the photochemical reaction paths connecting the photoexcited species to their corresponding isomeric forms. Unconstrained minimum energy paths computed starting from the S1 Franck-Condon points lead to S-1/S-0 conical intersections, which directly connect the parent CHBr3 and CH2I2 molecules to their isomeric forms. Changes in the chemical bonding picture along the S-1/S-0 isomerization reaction path are described using multireference average coupled pair functional (MRACPF) calculations in conjunction with natural resonance theory (NRT) analysis. These calculations reveal a complex interplay between covalent, radical, ylidic, and ion-pair dominant resonance structures throughout the nonadiabatic photochemical isomerization processes described in this work.
C1 [Borin, Veniamin A.; Matveev, Sergey M.; Budkina, Darya S.; Tarnovsky, Alexander N.] Bowling Green State Univ, Dept Chem, Ctr Photochem Sci, Bowling Green, OH 43403 USA.
[El-Khoury, Patrick Z.] Pacific Northwest Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA.
RP Tarnovsky, AN (reprint author), Bowling Green State Univ, Dept Chem, Ctr Photochem Sci, Bowling Green, OH 43403 USA.
EM atarnov@bgsu.edu
FU NSF [CAREER CHE-0847707, CHE-0923360, DMR-1006761]; Laboratory Directed
Research and Development Program at Pacific Northwest National
Laboratory (PNNL)
FX This work was supported by the NSF (CAREER CHE-0847707, CHE-0923360 and
DMR-1006761). An allocation of computer time from the Ohio Supercomputer
Center (PCS0204-7) is gratefully acknowledged. We thank R. Marshall
Wilson, Carlos E. Crespo-Hernandez, and Massimo Olivucci for many useful
discussions. We thank Dr Jose-Luis Alvarez for making the TOC graphic.
PZE acknowledges support by the Laboratory Directed Research and
Development Program at Pacific Northwest National Laboratory (PNNL).
NR 105
TC 0
Z9 0
U1 13
U2 13
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
EI 1463-9084
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PD NOV 7
PY 2016
VL 18
IS 41
BP 28883
EP 28892
DI 10.1039/c6cp05129d
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA EA5NR
UT WOS:000386668200048
PM 27722308
ER
PT J
AU Migdisov, A
Williams-Jones, AE
Brugger, J
Caporuscio, FA
AF Migdisov, A.
Williams-Jones, A. E.
Brugger, J.
Caporuscio, F. A.
TI Hydrothermal transport, deposition, and fractionation of the REE:
Experimental data and thermodynamic calculations
SO CHEMICAL GEOLOGY
LA English
DT Review
DE Rare earth elements; Hydrothermal; Transport; Deposition; Fractionation
ID RARE-EARTH-ELEMENTS; INITIO MOLECULAR-DYNAMICS; FLUID-ROCK INTERACTION;
NB-FE DEPOSIT; 500 DEGREES-C; AQUEOUS-SOLUTIONS; IONIC-STRENGTH;
HEAT-CAPACITY; ELEVATED-TEMPERATURES; CHLORIDE SOLUTIONS
AB For many years, our understanding of the behavior of the REE in hydrothermal systems was based on semi empirical estimates involving extrapolation of thermodynamic data obtained at 25 degrees C (Haas et al., 1995; Wood, 1990a). Since then, a substantial body of experimental data has accumulated on the stability of aqueous complexes of the REE. These data have shown that some of the predictions of Haas et al. (1995) are accurate, but others may be in error by several orders of magnitude. However, application of the data in modeling hydrothermal transport and deposition of the REE has been severely hampered by the lack of data on the thermodynamic properties of even the most common REE minerals. The discrepancies between the predictions of Haas et al. (1995) and experimental determinations of the thermodynamic properties of aqueous REE species, together with the paucity of data on the stability of REE minerals, raise serious questions about the reliability of some models that have been proposed for the hydrothermal mobility of these critical metals.
In this contribution, we review a body of high-temperature experimental data collected over the past 15 years on the stability of REE aqueous species and minerals. Using this new thermodynamic dataset, we re-evaluate the mechanisms responsible for hydrothermal transport and deposition of the REE. We also discuss the mechanisms that can result in REE fractionation during their hydrothermal transport and deposition. Our calculations suggest that in hydrothermal solutions, the main REE transporting ligands are chloride and sulfate, whereas fluoride, carbonate, and phosphate likely play an important role as depositional ligands. In addition to crystallographic fractionation, which is based on the differing affinity of mineral structures for the REE, our models suggest that the REE can be fractionated hydrothermally due to the differences in the stability of the LREE and HREE as aqueous chloride complexes. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Migdisov, A.; Caporuscio, F. A.] Los Alamos Natl Lab, Earth & Environm Div, POB 1663,MS J535, Los Alamos, NM 87545 USA.
[Williams-Jones, A. E.] McGill Univ, Dept Earth & Planetary Sci, 3450 Univ St, Montreal, PQ H3A 0E8, Canada.
[Brugger, J.] Monash Univ, Sch Earth Atmosphere & Environm, 9 Rainforest Walk, Clayton, Vic 3800, Australia.
RP Migdisov, A (reprint author), Los Alamos Natl Lab, Earth & Environm Div, POB 1663,MS J535, Los Alamos, NM 87545 USA.
EM artas@lanl.gov
RI Brugger, Joel/C-7113-2008;
OI Brugger, Joel/0000-0003-1510-5764; Migdisov,
Artaches/0000-0001-7734-2082
NR 146
TC 6
Z9 6
U1 44
U2 45
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2541
EI 1878-5999
J9 CHEM GEOL
JI Chem. Geol.
PD NOV 7
PY 2016
VL 439
BP 13
EP 42
DI 10.1016/j.chemgeo.2016.06.005
PG 30
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DU6ST
UT WOS:000382345600002
ER
PT J
AU Zahr, MJ
Persson, PO
Wilkening, J
AF Zahr, M. J.
Persson, P. -O.
Wilkening, J.
TI A fully discrete adjoint method for optimization of flow problems on
deforming domains with time-periodicity constraints
SO COMPUTERS & FLUIDS
LA English
DT Article
DE Time-periodic solutions; Shooting methods; Fully discrete adjoint
equations; PDE-constrained optimization; Energetically optimal flapping
flight; Time-periodicity constraints
ID PARTIAL-DIFFERENTIAL-EQUATIONS; PLANE COUETTE TURBULENCE; NAVIER-STOKES
EQUATIONS; OPTIMUM-SHAPE DESIGN; RIGHT-HAND SIDES; INCOMPRESSIBLE LIMIT;
FLAPPING AIRFOILS; STANDING WAVES; DEEP-WATER; UNSTEADY
AB A variety of shooting methods for computing fully discrete time-periodic solutions of partial differential equations, including Newton-Krylov and optimization-based methods, are discussed and used to determine the periodic, compressible, viscous flow around a 2D flapping airfoil. The Newton-Krylov method uses matrix-free GMRES to solve the linear systems of equations that arise in the nonlinear iterations, with matrix-vector products computed via the linearized sensitivity evolution equations. The adjoint method is used to compute gradients for the gradient-based optimization shooting methods. The Newton-Krylov method is shown to exhibit superior convergence to the optimal solution for these fluid problems, and fully leverages quality starting data.
The central contribution of this work is the derivation of the adjoint equations and the corresponding adjoint method for fully discrete, time-periodically constrained partial differential equations. These adjoint equations constitute a linear, two-point boundary value problem that is provably solvable. The periodic adjoint method is used to compute gradients of quantities of interest along the manifold of time-periodic solutions of the discrete partial differential equation, which is verified against a second order finite difference approximation. These gradients are then used in a gradient-based optimization framework to determine the energetically optimal flapping motion of a 2D airfoil in compressible, viscous flow over a single cycle, such that the time-averaged thrust is identically zero. In less than 20 optimization iterations, the flapping energy was reduced nearly an order of magnitude and the thrust constraint satisfied to 5 digits of accuracy. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Zahr, M. J.] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94035 USA.
[Persson, P. -O.; Wilkening, J.] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA.
[Persson, P. -O.; Wilkening, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Zahr, MJ (reprint author), Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94035 USA.
EM mzahr@stanford.edu; persson@berkeley.edu; wilken@math.berkeley.edu
FU Department of Energy Computational Science Graduate Fellowship Program
of the Office of Science; National Nuclear Security Administration in
the Department of Energy [DE-FG02-97ER25308]; U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was supported in part by the Department of Energy
Computational Science Graduate Fellowship Program of the Office of
Science and National Nuclear Security Administration in the Department
of Energy under contract DE-FG02-97ER25308 (MZ), and by the Director,
Office of Science, Computational and Technology Research, U.S.
Department of Energy under contract number DE-AC02-05CH11231 (PP and
JW). The content of this publication does not necessarily reflect the
position or policy of any of these supporters, and no official
endorsement should be inferred.
NR 83
TC 0
Z9 0
U1 0
U2 0
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0045-7930
EI 1879-0747
J9 COMPUT FLUIDS
JI Comput. Fluids
PD NOV 5
PY 2016
VL 139
SI SI
BP 130
EP 147
DI 10.1016/j.compfluid.2016.05.021
PG 18
WC Computer Science, Interdisciplinary Applications; Mechanics
SC Computer Science; Mechanics
GA EB3WC
UT WOS:000387298600012
ER
PT J
AU Zhang, C
Zhang, F
Diao, HY
Gao, MC
Tang, Z
Poplawsky, JD
Liaw, PK
AF Zhang, Chuan
Zhang, Fan
Diao, Haoyan
Gao, Michael C.
Tang, Zhi
Poplawsky, Jonathan D.
Liaw, Peter K.
TI Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys
SO MATERIALS & DESIGN
LA English
DT Article
DE High-entropy alloy; Phase stability; CALPHAD; Phase diagram; Atom probe
tomography (APT)
ID MECHANICAL-PROPERTIES; MICROSTRUCTURE; BEHAVIOR; ELEMENTS; DESIGN; FCC
AB The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. The phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Zhang, Chuan; Zhang, Fan] CompuTherm LLC, 8401 Greenway Blvd,Suite248, Middleton, WI 53562 USA.
[Diao, Haoyan; Tang, Zhi; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Gao, Michael C.] Natl Energy Technol Lab AECOM, 1450 Queen Ave SW, Albany, OR 97321 USA.
[Poplawsky, Jonathan D.] Oak Ridge Natl Lab, Ctr Nanophases Mat Sci, 1 Bethel Valle Rd, Oak Ridge, TN 37831 USA.
RP Zhang, C (reprint author), CompuTherm LLC, 8401 Greenway Blvd,Suite248, Middleton, WI 53562 USA.
EM czhang.wisc@gmail.com
FU U.S. Army Office Project [W911NF-13-1-0438]; U.S. Department of Energy
(DOE) Office of Fossil Energy, National Energy Technology Laboratory
(NETL) [DE-FE-0008855, DE-FE-0024054]; Cross-Cutting Technologies
Program at NETL under the RES [DE-FE-0004000]
FX The authors very much appreciate the financial support from the U.S.
Army Office Project (W911NF-13-1-0438), and U.S. Department of Energy
(DOE) Office of Fossil Energy, National Energy Technology Laboratory
(NETL) (DE-FE-0008855 and DE-FE-0024054). M.C.G. acknowledges the
support by the Cross-Cutting Technologies Program at NETL under the RES
contract DE-FE-0004000. APT was conducted at ORNL's Center for Nanophase
Materials Sciences (CNMS), which is a U.S. DOE Office of Science User
Facility. U.S. DOE Office of Science User Facility.
NR 38
TC 5
Z9 5
U1 70
U2 70
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-1275
EI 1873-4197
J9 MATER DESIGN
JI Mater. Des.
PD NOV 5
PY 2016
VL 109
BP 425
EP 433
DI 10.1016/j.matdes.2016.07.073
PG 9
WC Materials Science, Multidisciplinary
SC Materials Science
GA DX1DE
UT WOS:000384105000046
ER
PT J
AU Jiang, P
Li, YB
Liu, GL
Yang, GD
Lagos, L
Yin, YG
Gu, BH
Jiang, GB
Cai, Y
AF Jiang, Ping
Li, Yanbin
Liu, Guangliang
Yang, Guidi
Lagos, Leonel
Yin, Yongguang
Gu, Baohua
Jiang, Guibin
Cai, Yong
TI Evaluating the role of re-adsorption of dissolved Hg2+ during cinnabar
dissolution using isotope tracer technique
SO JOURNAL OF HAZARDOUS MATERIALS
LA English
DT Article
DE Cinnabar dissolution; Hg re-adsorption on cinnabar surface; Isotope
tracer technique; Isotope dilution; Redox condition
ID NATURAL ORGANIC-MATTER; PLASMA-MASS SPECTROMETRY; METACINNABAR BETA-HGS;
MERCURIC SULFIDE; OXIDATIVE DISSOLUTION; ENHANCED DISSOLUTION; FLORIDA
EVERGLADES; ALPHA-HGS; ICP-MS; KINETICS
AB Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked 202Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred mu g L-1, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Jiang, Ping; Liu, Guangliang; Cai, Yong] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA.
[Liu, Guangliang; Cai, Yong] Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA.
[Li, Yanbin] Ocean Univ China, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Minist Educ, Key Lab Marine Chem Theory & Technol, Qjngdao 266100, Peoples R China.
[Lagos, Leonel] Florida Int Univ, Appl Res Ctr, Miami, FL 33199 USA.
[Yin, Yongguang; Jiang, Guibin] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Lab Environm Chem & Ecotoxicol, Beijing 100085, Peoples R China.
[Yang, Guidi] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou 350002, Peoples R China.
[Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
RP Cai, Y (reprint author), Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA.
EM cai@fiu.edu
FU National Basic Research Program of China [2013CB430002]; National
Natural Science Foundation of China [21120102040, 21577134]; US
Department of Energy [DE-FG01-05EW07033]
FX This research was partially supported by the National Basic Research
Program of China (2013CB430002), National Natural Science Foundation of
China (21120102040, 21577134), and US Department of Energy
(DE-FG01-05EW07033). This is contribution number 798 of the Southeast
Environmental Research Center at Florida International University.
NR 47
TC 0
Z9 0
U1 24
U2 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3894
EI 1873-3336
J9 J HAZARD MATER
JI J. Hazard. Mater.
PD NOV 5
PY 2016
VL 317
BP 466
EP 475
DI 10.1016/j.jhazmat.2016.05.084
PG 10
WC Engineering, Environmental; Engineering, Civil; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA DT5OV
UT WOS:000381533400050
PM 27322904
ER
PT J
AU Li, D
Egodawatte, S
Kaplan, DI
Larsen, SC
Serkiz, SM
Seaman, JC
AF Li, Dien
Egodawatte, Shani
Kaplan, Daniel I.
Larsen, Sarah C.
Serkiz, Steven M.
Seaman, John C.
TI Functionalized magnetic mesoporous silica nanoparticles for U removal
from low and high pH groundwater
SO JOURNAL OF HAZARDOUS MATERIALS
LA English
DT Article
DE Magnetic mesoporous silica nanoparticles; Surface functionalization with
organic molecules; Uranium removal; Acidic and alkaline groundwater
ID SELF-ASSEMBLED MONOLAYERS; AQUEOUS-SOLUTION; SUPPORTS SAMMS; ACTINIDE
SEQUESTRATION; URANIUM EXTRACTION; EFFICIENT SORPTION; ADSORPTION;
U(VI); SBA-15; PHOSPHONATE
AB U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N-2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), C-13 cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100-200 nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of 3.0 nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38 mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133 mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Li, Dien; Kaplan, Daniel I.; Serkiz, Steven M.] Savannah River Natl Lab, Aiken, SC 29808 USA.
[Egodawatte, Shani; Larsen, Sarah C.] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA.
[Serkiz, Steven M.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA.
[Seaman, John C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
RP Li, D (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA.
EM dien.li@srs.gov
FU Laboratory Directed Research and Development (LDRD) program within the
Savannah River National Laboratory (SRNL) [LDRD-2014-00028,
LDRD-2015-00014]; SRNL under the U.S. Department of Energy
[DE-AC09-96SR18500]; U.S. Department of Energy [DE-FC09-07SR22506]
FX This work was supported by the Laboratory Directed Research and
Development (LDRD) program (Grant Nos.: LDRD-2014-00028 and
LDRD-2015-00014) within the Savannah River National Laboratory (SRNL).
Work was conducted at SRNL under the U.S. Department of Energy Contract
DE-AC09-96SR18500. Dr. Seaman's participation was supported by the U.S.
Department of Energy under Award Numbers DE-FC09-07SR22506 to the
University of Georgia Research Foundation.
NR 53
TC 2
Z9 2
U1 76
U2 89
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3894
EI 1873-3336
J9 J HAZARD MATER
JI J. Hazard. Mater.
PD NOV 5
PY 2016
VL 317
BP 494
EP 502
DI 10.1016/j.jhazmat.2016.05.093
PG 9
WC Engineering, Environmental; Engineering, Civil; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA DT5OV
UT WOS:000381533400053
PM 27341378
ER
PT J
AU Novikov, VV
Zhemoedov, NA
Matovnikov, AV
Mitroshenkov, NV
Ueland, BG
Bud'ko, SL
AF Novikov, V. V.
Zhemoedov, N. A.
Matovnikov, A. V.
Mitroshenkov, N. V.
Ueland, B. G.
Bud'ko, S. L.
TI The influence of crystal electric field on thermal properties of
non-stoichiometric ErB50 boride at low temperatures
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Rare earth alloys and compounds; Crystal and ligand fields; Heat
capacity; Thermal expansion; X-ray diffraction
ID RARE-EARTH HEXABORIDES; RANGE 5-300 K; HEAT-CAPACITY; THERMODYNAMIC
FUNCTIONS; NEODYMIUM HEXABORIDE; LATTICE-DYNAMICS; EXPANSION;
CONDUCTIVITY; POTENTIALS; ANOMALIES
AB The temperature dependences of heat capacity, C-p(T), and lattice parameters, a(T), b(T), c(T), of ErB50 in the temperature range of 2-300 K were experimentally studied. Two features in C-p(T) were observed: a maximum at T-m1 = 3.12 K, that is associated with a magnetic ordering (transition to an antiferromagnetic state), and a broad anomaly at about T-m2 = 27 K that is due to the effects of the crystal electric field (CEF) on the boride heat capacity. Based on these data a scheme of splitting of Er3+ ions f-levels by the crystal field was suggested. Comparison of the temperature dependence of unit cell volume V(T) for ErB50 with the literature data for LuB50 revealed an excess contribution into the thermal expansion of erbium boride at low temperatures. It was determined that this contribution is due to the CEF effects on ErB50 thermal expansion. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.] Petrovsky Bryansk State Univ, Bryansk Phys Lab, Training Res Ctr, 14 Bezhitskaya St, Bryansk 241036, Russia.
[Ueland, B. G.; Bud'ko, S. L.] Iowa State Univ, Ames Lab US DOE, Dept Phys & Astron, Ames, IA 50011 USA.
RP Novikov, VV (reprint author), Petrovsky Bryansk State Univ, Bryansk Phys Lab, Training Res Ctr, 14 Bezhitskaya St, Bryansk 241036, Russia.
EM vvnovikov@mail.ru
RI Ueland, Benjamin/B-2312-2008; Novikov, Vladimir/D-3413-2011;
Mitroshenkov, Nikolay/E-1912-2017; Zhemoedov, Nikolay/E-8013-2017
OI Ueland, Benjamin/0000-0001-9784-6595; Novikov,
Vladimir/0000-0003-2081-6691; Mitroshenkov, Nikolay/0000-0002-4418-9613;
Zhemoedov, Nikolay/0000-0003-2225-2228
FU Russian Science Foundation [16-12-00004]
FX The research was done at the expense of the grant of the Russian Science
Foundation (Project No16-12-00004).
NR 34
TC 1
Z9 1
U1 11
U2 20
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
EI 1873-4669
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD NOV 5
PY 2016
VL 684
BP 714
EP 718
DI 10.1016/j.jallcom.2016.05.113
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA DR3HD
UT WOS:000379792800099
ER
PT J
AU Fitzgerald, TJ
Kang, Y
Bridges, CB
Talbert, T
Vagi, SJ
Lamont, B
Graitcer, SB
AF Fitzgerald, Thomas J.
Kang, Yoonjae
Bridges, Carolyn B.
Talbert, Todd
Vagi, Sara J.
Lamont, Brock
Graitcer, Samuel B.
TI Integrating pharmacies into public health program planning for pandemic
influenza vaccine response
SO VACCINE
LA English
DT Article
ID WILLINGNESS; EMERGENCIES; CARE
AB Background: During an influenza pandemic, to achieve early and rapid vaccination coverage and maximize the benefit of an immunization campaign, partnerships between public health agencies and vaccine providers are essential. Immunizing pharmacists represent an important group for expanding access to pandemic vaccination. However, little is known about nationwide coordination between public health programs and pharmacies for pandemic vaccine response planning.
Methods: To assess relationships and planning activities between public health programs and pharmacies, we analyzed data from Centers for Disease Control and Prevention assessments of jurisdictions that received immunization and emergency preparedness funding from 2012 to 2015.
Results: Forty-seven (88.7%) of 53 jurisdictions reported including pharmacies in pandemic vaccine distribution plans, 24 (45.3%) had processes to recruit pharmacists to vaccinate, and 16 (30.8%) of 52 established formal relationships with pharmacies. Most jurisdictions plan to allocate less than 10% of pandemic vaccine supply to pharmacies.
Discussion: While most jurisdictions plan to include pharmacies as pandemic vaccine providers, work is needed to establish formalized agreements between public health departments and pharmacies to improve pandemic preparedness coordination and ensure that vaccinating pharmacists are fully utilized during a pandemic. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Fitzgerald, Thomas J.] IHRC Inc, Atlanta, GA USA.
[Fitzgerald, Thomas J.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA.
[Fitzgerald, Thomas J.; Kang, Yoonjae; Bridges, Carolyn B.; Lamont, Brock; Graitcer, Samuel B.] Ctr Dis Control & Prevent, Natl Ctr Immunizat & Resp Dis, Immunizat Serv Div, Atlanta, GA USA.
[Talbert, Todd; Vagi, Sara J.] Ctr Dis Control & Prevent, Div State & Local Readiness, Off Publ Hlth Preparedness & Response, Atlanta, GA USA.
RP Fitzgerald, TJ (reprint author), Ctr Dis Control & Prevent, Immunizat Serv Div, 1600 Clifton Rd,MS A19, Atlanta, GA 30329 USA.
EM ymi8@cdc.gov
FU Intramural CDC HHS [CC999999]
NR 23
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-410X
EI 1873-2518
J9 VACCINE
JI Vaccine
PD NOV 4
PY 2016
VL 34
IS 46
BP 5643
EP 5648
DI 10.1016/j.vaccine.2016.09.020
PG 6
WC Immunology; Medicine, Research & Experimental
SC Immunology; Research & Experimental Medicine
GA EA9TT
UT WOS:000386988300026
PM 27686834
ER
PT J
AU Frew, PM
Fisher, AK
Basket, MM
Chung, YM
Schamel, J
Weiner, JL
Mullen, J
Omer, SB
Orenstein, WA
AF Frew, Paula M.
Fisher, Allison Kennedy
Basket, Michelle M.
Chung, Yunmi
Schamel, Jay
Weiner, Judith L.
Mullen, Jennifer
Omer, Saad B.
Orenstein, Walter A.
TI Changes in childhood immunization decisions in the United States:
Results froth 2012 & 2014 National Parental Surveys
SO VACCINE
LA English
DT Article
DE Vaccine acceptability; Vaccine delay; Vaccine refusal; Immunization
coverage; Vaccine hesitancy
ID AREA VACCINATION COVERAGE; AGED 19-35 MONTHS; PERTUSSIS-VACCINE;
CHILDREN; REFUSAL; HESITANCY; DELAY; ASSOCIATION; RISK; CONSEQUENCES
AB Objective: Understanding the current status of parents' vaccine decision making is crucial to inform public policy. We sought to assess changes in vaccine decisions among parents of young children.
Methods: We conducted a web-based national poll of parents of children <7 years in 2012 and 2014. Participants reported vaccine decisions for their youngest child. We calculated survey-weighted population estimates of overall immunizations decisions, and delay/refusal rates for specific vaccines.
Results: In 2012, 89.2% (95% CI, 87.3-90.8%)-reported accepting or planning to accept all recommended non-influenza childhood vaccines, 5.5% (4.5-6.6%) reported intentionally delaying one or more, and 5.4% (4.1-6.9%) reported refusing one or more vaccines. In 2014, the acceptance, delay, and refusal rates were 90.8% (89.3-92.1%), 5.6% (4.6-6.9%), and 3.6% (2.8-4.5%), respectively. Between 2012 and 2014, intentional vaccine refusal decreased slightly among parents of older children (2-6 years) but not younger children (0-1 years). The proportion of parents working to catch up on all vaccines increased while those refusing some but not all vaccines decreased. The South experienced a significant increase in estimated acceptance (90.1-94.1%) and a significant decrease in intentional ongoing refusal (5.0-2.1%). Vaccine delay increased in the Northeast (3.2-8.8%).
Conclusions: Nationally, acceptance and ongoing intentional delay of recommended non-influenza childhood vaccines were stable. These findings suggest that more effort is warranted to counter persistent vaccine hesitancy, particularly at the local level. Longitudinal monitoring of immunization attitudes is also warranted to evaluate temporal shifts over time and geographically. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Frew, Paula M.; Omer, Saad B.; Orenstein, Walter A.] Emory Univ, Sch Med, 1760 Haygood Rd, Atlanta, GA 30322 USA.
[Frew, Paula M.; Omer, Saad B.; Orenstein, Walter A.] Emory Univ, Rollins Sch Publ Hlth, 1518 Clifton Rd, Atlanta, GA 30322 USA.
[Frew, Paula M.; Fisher, Allison Kennedy; Basket, Michelle M.; Mullen, Jennifer] Natl Ctr Immunizat & Resp Dis, US Ctr Dis Control & Prevent, 1600 Clifton Rd, Atlanta, GA 30333 USA.
[Chung, Yunmi; Schamel, Jay] ORISE, POB 117 MS-36, Oak Ridge, TN 37831 USA.
[Weiner, Judith L.] Northrop Grumman, 2800 Century Pkwy NE, Chamblee, GA 30345 USA.
RP Frew, PM (reprint author), Emory Univ, Sch Med, Dept Med, Div Infect Dis, 1760 Haygood Rd,Suite W327, Atlanta, GA 30322 USA.
EM pfrew@emory.edu
FU U.S. Centers for Disease Control and Prevention (CDC)
FX This research was supported in part by a grant from the U.S. Centers for
Disease Control and Prevention (CDC) and an appointment to the Research
Participation Program at the CDC administered by the Oak Ridge Institute
for Science and Education through an interagency agreement between the
US Department of Energy and CDC. The findings and conclusions in this
article are those of the authors and do not necessarily represent the
official position of the Centers for Disease Control and Prevention.
NR 55
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-410X
EI 1873-2518
J9 VACCINE
JI Vaccine
PD NOV 4
PY 2016
VL 34
IS 46
BP 5689
EP 5696
DI 10.1016/j.vaccine.2016.08.001
PG 8
WC Immunology; Medicine, Research & Experimental
SC Immunology; Research & Experimental Medicine
GA EA9TT
UT WOS:000386988300032
PM 27720447
ER
PT J
AU Rulbel, O
Dougherty, M
Prabhat
Denes, P
Conant, D
Chang, EF
Bouchard, K
AF Rulbel, Oliver
Dougherty, Max
Prabhat
Denes, Peter
Conant, David
Chang, Edward F.
Bouchard, Kristofer
TI Methods for Specifying Scientific Data Standards and Modeling
Relationships with Applications to Neuroscience
SO FRONTIERS IN NEUROINFORMATICS
LA English
DT Article
DE data format specification; relationship modeling; electrophysiology;
neuroscience
ID FORMAT
AB Neuroscience continues to experience a tremendous growth in data; in terms of the volume and variety of data, the velocity at which data is acquired, and in turn the veracity of data. These challenges are a serious impediment to sharing of data, analyses, and tools within and across labs. Here, we introduce BRAINformat, a novel data standardization framework for the design and management of scientific data formats. The BRAINformat library defines application independent design concepts and modules that together create a general framework for standardization of scientific data. We describe the formal specification of scientific data standards, which facilitates sharing and verification of data and formats. We introduce the concept of Managed Objects, enabling semantic components of data formats to be specified as self-contained units, supporting modular and reusable design of data format components and file storage. We also introduce the novel concept of Relationship Attributes for modeling and use of semantic relationships between data objects. Based on these concepts we demonstrate the application of our framework to design and implement a standard format for electrophysiology data and show how data standardization and relationship-modeling facilitate data analysis and sharing. The format uses HDF5, enabling portable, scalable, and self-describing data storage and integration with modern high-performance computing for data-driven discovery. The BRAINformat library is open source, easy-to-use, and provides detailed user and developer documentation and is freely available at: https://bitbucket.org/oruebel/brainformat.
C1 [Rulbel, Oliver] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Dougherty, Max; Bouchard, Kristofer] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA.
[Prabhat] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA USA.
[Denes, Peter] Lawrence Berkeley Natl Lab, Div Phys Sci, Berkeley, CA USA.
[Conant, David; Chang, Edward F.] Univ Calif San Francisco, Med Ctr, Neurosci, San Francisco, CA USA.
RP Rulbel, O (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.; Bouchard, K (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA.
EM oruebel@lbl.gov; kebouchard@fbi.gov
FU Laboratory Directed Research and Development (LDRD) from Berkeley Lab;
Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231];
Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by Laboratory Directed Research and Development
(LDRD) finding from Berkeley Lab, provided by the Director, Office of
Science, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. We thank Katherine Louie,
Michael Balamotis, Ben Bowen, and Trent Northen for the MSI dataset used
in this manuscript that they have made accessible via OpenMSI at
https://openmsi.nersc.gov. We would like to thank Fritz Sommer, Jeff
Teeters, Annette Greiner for helpful discussions. We would like to thank
the members of the Chang Lab (UCSF), Bouchard Lab (LBNL), and Denes Lab
(LBNL) for helpful discussions, data, and support.
NR 19
TC 0
Z9 0
U1 1
U2 1
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 1662-5196
J9 FRONT NEUROINFORM
JI Front. Neuroinformatics
PD NOV 4
PY 2016
VL 10
AR 48
DI 10.3389/fninf.2016.00048
PG 16
WC Mathematical & Computational Biology; Neurosciences
SC Mathematical & Computational Biology; Neurosciences & Neurology
GA EA9JQ
UT WOS:000386959900001
ER
PT J
AU Gorchon, J
Wilson, RB
Yang, Y
Pattabi, A
Chen, JY
He, L
Wang, JP
Li, M
Bokor, J
AF Gorchon, J.
Wilson, R. B.
Yang, Y.
Pattabi, A.
Chen, J. Y.
He, L.
Wang, J. P.
Li, M.
Bokor, J.
TI Role of electron and phonon temperatures in the helicity-independent
all-optical switching of GdFeCo
SO PHYSICAL REVIEW B
LA English
DT Article
ID ULTRAFAST; FILMS; DYNAMICS; REVERSAL
AB Ultrafast optical heating of the electrons in ferrimagnetic metals can result in all-optical switching (AOS) of the magnetization. Here we report quantitative measurements of the temperature rise of GdFeCo thin films during helicity-independent AOS. Critical switching fluences are obtained as a function of the initial temperature of the sample and for laser pulse durations from 55 fs to 15 ps. We conclude that nonequilibrium phenomena are necessary for helicity-independent AOS, although the peak electron temperature does not play a critical role. Pump-probe time-resolved experiments show that the switching time increases as the pulse duration increases, with 10 ps pulses resulting in switching times of similar to 13 ps. These results raise new questions about the fundamental mechanism of helicity-independent AOS.
C1 [Gorchon, J.; Wilson, R. B.; Bokor, J.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Gorchon, J.; Wilson, R. B.; Pattabi, A.; Bokor, J.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Wilson, R. B.] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA.
[Wilson, R. B.] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA.
[Yang, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Chen, J. Y.; He, L.; Wang, J. P.; Li, M.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA.
RP Gorchon, J (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Gorchon, J (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
EM jgorchon@lbl.gov; rwilson@engr.ucr.edu
RI Chen, Junyang/B-8732-2012
OI Chen, Junyang/0000-0002-5258-9035
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy within the
Nonequilibrium Magnetic Materials Program (MSMAG) [DE-AC02-05-CH11231];
C-SPIN: one of the six SRC STARnet Centers - MARCO; C-SPIN: one of the
six SRC STARnet Centers - DARPA; National Sciences Foundation Center for
Energy Efficient Electronics Science [0939514]
FX This work was primarily supported by the Director, Office of Science,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division, of the U.S. Department of Energy under Contract No.
DE-AC02-05-CH11231 within the Nonequilibrium Magnetic Materials Program
(MSMAG). Sample fabrication was supported by C-SPIN: one of the six SRC
STARnet Centers, sponsored by MARCO and DARPA. We also acknowledge the
National Sciences Foundation Center for Energy Efficient Electronics
Science (Award No. 0939514) for providing most of the experimental
equipment and partially supporting operation of the experiments.
NR 37
TC 0
Z9 0
U1 15
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 4
PY 2016
VL 94
IS 18
AR 184406
DI 10.1103/PhysRevB.94.184406
PG 7
WC Physics, Condensed Matter
SC Physics
GA EA8OF
UT WOS:000386895000008
ER
PT J
AU Vlasko-Vlasov, VK
Colauto, F
Buzdin, AA
Carmo, D
Andrade, AMH
Oliveira, AAM
Ortiz, WA
Rosenmann, D
Kwok, WK
AF Vlasko-Vlasov, V. K.
Colauto, F.
Buzdin, A. A.
Carmo, D.
Andrade, A. M. H.
Oliveira, A. A. M.
Ortiz, W. A.
Rosenmann, D.
Kwok, W. -K.
TI Crossing fields in thin films of isotropic superconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID FLUX; STABILITY; LATTICE
AB We study interactions of perpendicular and longitudinal magnetic fields in niobium films of different thickness in a wide range of temperatures below the superconducting transition temperature (T-C). In 100-nm Nb film at all temperatures the longitudinal field H-parallel to practically does not influence the dynamics of the normal flux. However, in 200-nm Nb film, a considerable anisotropy in the vortex motion is found with advanced propagation of the normal flux along H-parallel to atT > T-C/2 and the preferential jumpwise growth of the thermomagnetic flux dendrites across H-parallel to atT < T-C. Appearance of the in-plane vortices and their cutting reconnection with tilted vortices induced by the normal field H-perpendicular to is the reason for the observed anisotropy in the thicker film. Absence of the in-plane vortices and much smaller tilt of vortices generated by H. explain the isotropic normal flux dynamics in the thinner film. Our results open an alternative way of manipulating both slow vortex motion and fast thermomagnetic avalanches.
C1 [Vlasko-Vlasov, V. K.; Colauto, F.; Rosenmann, D.; Kwok, W. -K.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Colauto, F.; Carmo, D.; Ortiz, W. A.] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
[Buzdin, A. A.] Univ Bordeaux, LOMA, CNRS, UMR 5798, F-33405 Talence, France.
[Andrade, A. M. H.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
[Oliveira, A. A. M.] Inst Fed Educ Ciencia & Tecnol Sao Paulo, Campus Sao Carlos, BR-13565905 Sao Carlos, SP, Brazil.
RP Vlasko-Vlasov, VK (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
FU U.S. Department of Energy, Office of Science, Materials Sciences and
Engineering Division; Sao Paulo Research Foundation FAPESP
[2015/06.085-3]; U.S. DOE, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX This work was supported by the U.S. Department of Energy, Office of
Science, Materials Sciences and Engineering Division. The work of F.
Colauto at Argonne National Laboratory was supported by the Sao Paulo
Research Foundation FAPESP (Grant No. 2015/06.085-3). We used sample
manufacturing facilities of Laboratorio de Conformacao Nanometrica,
Laboratorio de Microfabricacao, and Center for Nanoscale Materials,
supported by the U.S. DOE, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 27
TC 0
Z9 0
U1 8
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 4
PY 2016
VL 94
IS 18
AR 184502
DI 10.1103/PhysRevB.94.184502
PG 10
WC Physics, Condensed Matter
SC Physics
GA EA8OF
UT WOS:000386895000009
ER
PT J
AU Duke, DL
Tovesson, F
Laptev, AB
Mosby, S
Hambsch, FJ
Brys, T
Vidali, M
AF Duke, D. L.
Tovesson, F.
Laptev, A. B.
Mosby, S.
Hambsch, F. -J.
Brys, T.
Vidali, M.
TI Fission-fragment properties in U-238(n, f) between 1 and 30 MeV
SO PHYSICAL REVIEW C
LA English
DT Article
ID NEUTRON-INDUCED FISSION; ENERGY-DEPENDENCE; YIELDS; PLUTONIUM; PU-239
AB The fragment mass and kinetic energy in neutron-induced fission of U-238 has been measured for incident energies from 1 to 30 MeV at the Los Alamos Neutron Science Center. The change in mass distributions over this energy range were studied, and the transition from highly asymmetric to more symmetric mass distributions is observed. A decrease in average total kinetic energy ((TKE) over bar) with increasing excitation energy is observed, consistent with previous experimental work. Additional structure at multichance fission thresholds is present in the (TKE) over bar data. The correlations between fragment masses and total kinetic energy and how that changes with excitation energy of the fissioning compound nucleus were also measured. The fission mass yields and average total kinetic energy are important for fission-based technologies such as nuclear reactors to understand nuclear waste generation and energy output when developing new and advanced concepts. The correlations between fragment mass and kinetic energy are needed both as input for theoretical calculations of the deexcitation process in fission fragments by prompt radiation emission and for validating advanced theoretical fission models describing the formation of the primordial fragments.
C1 [Duke, D. L.; Tovesson, F.; Laptev, A. B.; Mosby, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Hambsch, F. -J.; Brys, T.; Vidali, M.] EC Joint Res Ctr, Retiseweg 111, B-2440 Geel, Belgium.
RP Duke, DL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RI Laptev, Alexander/D-4686-2009
OI Laptev, Alexander/0000-0002-9759-9907
NR 27
TC 0
Z9 0
U1 5
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 4
PY 2016
VL 94
IS 5
AR 054604
DI 10.1103/PhysRevC.94.054604
PG 11
WC Physics, Nuclear
SC Physics
GA EA8OP
UT WOS:000386896200005
ER
PT J
AU Fossez, K
Rotureau, J
Michel, N
Liu, Q
Nazarewicz, W
AF Fossez, K.
Rotureau, J.
Michel, N.
Liu, Quan
Nazarewicz, W.
TI Single-particle and collective motion in unbound deformed Mg-39
SO PHYSICAL REVIEW C
LA English
DT Article
ID RESONANT STATES; SHELL-MODEL; NUCLEI; HALOS; NORMALIZATION; EXPANSIONS;
SCATTERING; ISOTOPES; MATRIX; LIMITS
AB Background: Deformed neutron-rich magnesium isotopes constitute a fascinating territory where the interplay between collective rotation and single-particle motion is strongly affected by the neutron continuum. The unbound fp-shell nucleus Mg-39 is an ideal candidate to study this interplay.
Purpose: In this work, we predict the properties of low-lying resonant states of Mg-39, using a suite of realistic theoretical approaches rooted in the open quantum system framework.
Method: To describe the spectrum and decay modes of Mg-39 we use the conventional shell model, Gamow shell model, resonating group method, density matrix renormalization group method, and the nonadiabatic particle-plus-rotor model formulated in the Berggren basis.
Results: The unbound ground state of Mg-39 is predicted to be either a J(pi) = 7/2(-) state or a 3/2(-) state. A narrow J(pi) = 7/2(-) ground-state candidate exhibits a resonant structure reminiscent of that of its one-neutron halo neighbor Mg-37, which is dominated by the f(7/2) partial wave at short distances and a p(3/2) component at large distances. A J(pi) = 3/2(-) ground-state candidate is favored by the large deformation of the system. It can be associated with the 1/2(-)[321] Nilsson orbital dominated by the l = 1 wave; hence its predicted width is large. The excited J(pi) = 1/2(-) and 5/2(-) states are expected to be broad resonances, while the J(pi) = 9/2(-) and 11/2(-) members of the ground-state rotational band are predicted to have very small neutron decay widths.
Conclusion: We demonstrate that the subtle interplay between deformation, shell structure, and continuum coupling can result in a variety of excitations in an unbound nucleus just outside the neutron drip line.
C1 [Fossez, K.; Rotureau, J.; Michel, N.; Liu, Quan; Nazarewicz, W.] Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA.
[Rotureau, J.] Oak Ridge Natl Lab, JINPA, Oak Ridge, TN 37831 USA.
[Liu, Quan] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Peoples R China.
[Nazarewicz, W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Nazarewicz, W.] Univ Warsaw, Fac Phys, Inst Theoret Phys, Warsaw, Poland.
RP Fossez, K (reprint author), Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA.
RI rotureau, jimmy/B-2365-2013
FU US Department of Energy, Office of Science, Office of Nuclear Physics
[DE-SC0013365, DE-SC0008511]; National Science Foundation [PHY-1403906]
FX Useful discussions with Augusto Macchiavelli and Heather Crawford are
gratefully acknowledged. We are grateful to Erik Olsen for carefully
reading the manuscript. This work was supported by the US Department of
Energy, Office of Science, Office of Nuclear Physics under Grants No.
DE-SC0013365 (Michigan State University) and No. DE-SC0008511 (NU-CLEI
SciDAC-3 collaboration), and by the National Science Foundation under
Grant No. PHY-1403906. An award of computer time was provided by the
Institute for Cyber-Enabled Research at Michigan State University and by
Chalmers Centre for Computational Science and Engineering (C3SE) through
the Swedish National Infrastructure for Computing (SNIC).
NR 63
TC 0
Z9 0
U1 4
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 4
PY 2016
VL 94
IS 5
AR 054302
DI 10.1103/PhysRevC.94.054302
PG 9
WC Physics, Nuclear
SC Physics
GA EA8OP
UT WOS:000386896200001
ER
PT J
AU Jiang, Y
Liao, JF
AF Jiang, Yin
Liao, Jinfeng
TI Pairing Phase Transitions of Matter under Rotation
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HEAVY-ION COLLISIONS; QUANTUM-FIELD-THEORY; MAGNETIC-FIELD;
CHROMODYNAMICS; VIOLATION
AB The phases and properties of matter under global rotation have attracted much interest recently. In this Letter we investigate the pairing phenomena in a system of fermions under the presence of rotation. We find that there is a generic suppression effect on pairing states with zero angular momentum. We demonstrate this effect with the chiral condensation and the color superconductivity in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase diagram in the temperature-rotation parameter space is found, with a nontrivial critical point.
C1 [Jiang, Yin; Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.
[Jiang, Yin; Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.
[Liao, Jinfeng] Brookhaven Natl Lab, RIKEN, Res Ctr, Bldg 510A, Upton, NY 11973 USA.
RP Jiang, Y (reprint author), Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.; Jiang, Y (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.
EM jiangyin@indiana.edu; liaoji@indiana.edu
FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics,
within the framework of the Beam Energy Scan Theory (BEST) Topical
Collaboration; National Science Foundation [PHY-1352368]; RIKEN BNL
Research Center
FX The authors thank K. Fukushima, X.-G. Huang, D. Kharzeev, L. McLerran,
M. Stephanov, H.-U. Yee, and P. Zhuang for discussions. This material is
based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics, within the framework of the Beam
Energy Scan Theory (BEST) Topical Collaboration. The work is also
supported in part by the National Science Foundation under Grant No.
PHY-1352368. J. L. is grateful to the RIKEN BNL Research Center for
partial support.
NR 43
TC 1
Z9 1
U1 10
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 4
PY 2016
VL 117
IS 9
AR 192302
DI 10.1103/PhysRevLett.117.192302
PG 5
WC Physics, Multidisciplinary
SC Physics
GA EA8QS
UT WOS:000386903400009
PM 27858435
ER
PT J
AU Alexandrov, LB
Ju, YS
Haase, K
Van Loo, P
Martincorena, I
Nik-Zainal, S
Totoki, Y
Fujimoto, A
Nakagawa, H
Shibata, T
Campbell, PJ
Vineis, P
Phillips, DH
Stratton, MR
AF Alexandrov, Ludmil B.
Ju, Young Seok
Haase, Kerstin
Van Loo, Peter
Martincorena, Inigo
Nik-Zainal, Serena
Totoki, Yasushi
Fujimoto, Akihiro
Nakagawa, Hidewaki
Shibata, Tatsuhiro
Campbell, Peter J.
Vineis, Paolo
Phillips, David H.
Stratton, Michael R.
TI Mutational signatures associated with tobacco smoking in human cancer
SO SCIENCE
LA English
DT Article
ID LUNG-CANCER; PROTEIN ADDUCTS; HUMAN TISSUES; DNA; CARCINOGENS;
LANDSCAPE; PATTERNS; EXPOSURE; HOTSPOTS; GENOMES
AB Tobacco smoking increases the risk of at least 17 classes of human cancer. We analyzed somatic mutations and DNA methylation in 5243 cancers of types for which tobacco smoking confers an elevated risk. Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, which contribute to different extents in different cancers. One of these signatures, mainly found in cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA editing by APOBEC cytidine deaminases and of an endogenous clocklike mutational process. Smoking is associated with limited differences in methylation. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence for this mechanism is lacking in some smoking-related cancer types.
C1 [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Theoret Biol & Biophys T 6, Los Alamos, NM 87545 USA.
[Alexandrov, Ludmil B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Alexandrov, Ludmil B.] Univ New Mexico, Ctr Comprehens Canc, Albuquerque, NM 87102 USA.
[Ju, Young Seok] Korea Adv Inst Sci & Technol, Grad Sch Med Sci & Engn, Daejeon 34141, South Korea.
[Haase, Kerstin; Van Loo, Peter] Francis Crick Inst, 1 Midland Rd, London NW1 1AT, England.
[Van Loo, Peter] Univ Leuven, Dept Human Genet, B-3000 Louvain, Belgium.
[Martincorena, Inigo; Nik-Zainal, Serena; Campbell, Peter J.; Stratton, Michael R.] Wellcome Trust Sanger Inst, Canc Genome Project, Hinxton CB10 1SA, Cambs, England.
[Nik-Zainal, Serena] Addenbrookes Hosp Natl Hlth Serv Trust, Dept Med Genet, Cambridge, England.
[Totoki, Yasushi] Natl Canc Ctr, Res Inst, Div Canc Genom, Chuo Ku, Tokyo, Japan.
[Fujimoto, Akihiro; Nakagawa, Hidewaki] RIKEN, Ctr Integrat Med Sci, Lab Genome Sequencing Anal, Tokyo, Japan.
[Fujimoto, Akihiro] Kyoto Univ, Grad Sch Med, Dept Drug Discovery Med, Kyoto 6068507, Japan.
[Shibata, Tatsuhiro] Univ Tokyo, Ctr Human Genome, Inst Med Sci, Lab Mol Med,Minato Ku, Tokyo, Japan.
[Campbell, Peter J.] Univ Cambridge, Dept Haematol, Cambridge CB2 0XY, England.
[Vineis, Paolo] Human Genet Fdn, I-10126 Turin, Italy.
[Vineis, Paolo] Imperial Coll London, Ctr Environm & Hlth, Sch Publ Hlth, PHE,MRC,Dept Epidemiol & Biostat, Norfolk Pl, London W2 1PG, England.
[Phillips, David H.] Kings Coll London, MRC PHE Ctr Environm & Hlth, Analyt & Environm Sci Div, Franklin Wilkins Bldg,150 Stamford St, London SE1 9NH, England.
RP Alexandrov, LB (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys T 6, Los Alamos, NM 87545 USA.; Alexandrov, LB (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.; Alexandrov, LB (reprint author), Univ New Mexico, Ctr Comprehens Canc, Albuquerque, NM 87102 USA.; Stratton, MR (reprint author), Wellcome Trust Sanger Inst, Canc Genome Project, Hinxton CB10 1SA, Cambs, England.
EM lba@lanl.gov; mrs@sanger.ac.uk
OI Ju, Young Seok/0000-0002-5514-4189; Alexandrov,
Ludmil/0000-0003-3596-4515
FU Wellcome Trust [098051, WT100183MA, WT088340MA, FC001202, 101126/Z/13/Z,
101126/B/13/Z]; GRAIL; J. Robert Oppenheimer Fellowship at Los Alamos
National Laboratory; U.S. Department of Energy (DOE) National Nuclear
Security Administration [DE-AC52-06NA25396]; National Nuclear Security
Administration of the DOE; Francis Crick Institute - Cancer Research UK
[FC001202]; UK MRC [FC001202]; Cancer Research UK [C313/A14329];
National Institute for Health Research (NIHR) Health Protection Research
Unit in Health Impact of Environmental Hazards at King's College London;
PHE; European Commission [308610-FP7]; Practical Research for Innovative
Cancer Control from Japan Agency for Medical Research and Development
[15ck0106094h0002]; National Cancer Center Research and Development
Funds [26-A-5]
FX This work was supported by the Wellcome Trust (grant 098051). S.N.-Z. is
a Wellcome-Beit Prize Fellow and is supported through a Wellcome Trust
Intermediate Fellowship (grant WT100183MA). P.J.C. is personally funded
through a Wellcome Trust Senior Clinical Research Fellowship (grant
WT088340MA). M.R.S. is a paid advisor for GRAIL, a company developing
technologies for sequencing of circulating tumor DNA for the purpose of
early cancer detection. L.B.A. is personally supported through a J.
Robert Oppenheimer Fellowship at Los Alamos National Laboratory. This
research used resources provided by the Los Alamos National Laboratory
Institutional Computing Program, which is supported by the U.S.
Department of Energy (DOE) National Nuclear Security Administration
under contract no. DE-AC52-06NA25396. Research performed at Los Alamos
National Laboratory was carried out under the auspices of the National
Nuclear Security Administration of the DOE. This work was supported by
the Francis Crick Institute, which receives its core funding from Cancer
Research UK (grant FC001202), the UK MRC (grant FC001202), and the
Wellcome Trust (grant FC001202). P.V.L. is a Winton Group Leader in
recognition of the Winton Charitable Foundation's support toward the
establishment of The Francis Crick Institute. D.H.P. is funded by Cancer
Research UK (grant C313/A14329), the Wellcome Trust (grants
101126/Z/13/Z and 101126/B/13/Z), the National Institute for Health
Research (NIHR) Health Protection Research Unit in Health Impact of
Environmental Hazards at King's College London in partnership with PHE
[the views expressed are those of the author(s) and not necessarily
those of the NHS, the NIHR, the Department of Health, or PHE], and by
the project EXPOSOMICS (grant agreement 308610-FP7) (European
Commission). P.V. was partially supported by the project EXPOSOMICS
(grant agreement 308610-FP7) (European Commission). Y.T. and T.S. are
supported by the Practical Research for Innovative Cancer Control from
Japan Agency for Medical Research and Development (grant
15ck0106094h0002) and National Cancer Center Research and Development
Funds (26-A-5). We thank The Cancer Genome Atlas, the International
Cancer Genome Consortium, and the authors of all studies cited in table
S1 for providing free access to their somatic mutational data.
NR 31
TC 4
Z9 4
U1 35
U2 35
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD NOV 4
PY 2016
VL 354
IS 6312
BP 618
EP 622
DI 10.1126/science.aag0299
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EA8FD
UT WOS:000386869800049
PM 27811275
ER
PT J
AU Boyle, TJ
Neville, ML
Sears, JM
Cramer, RE
Rodriguez, MA
Alam, TM
Bingham, SP
AF Boyle, Timothy J.
Neville, Michael L.
Sears, Jeremiah M.
Cramer, Roger E.
Rodriguez, Mark A.
Alam, Todd M.
Bingham, Samuel P.
TI Synthesis, X-ray structures, and characterization of
hexafluoro-iso-propoxide group 3 and lanthanide precursors
SO POLYHEDRON
LA English
DT Article
DE Alkoxide; Fluorinated; Lanthanides; Hexafluoro-iso-propoxide; Lanthanide
ID TERTIARY-ALKOXIDES; COMPLEXES; LIGANDS; YTTRIUM; Y(OCME(CF3)2)3(THF)3;
CLUSTER; OXIDES; SERIES
AB A series of hydrated hexafluoro-iso-propoxide (hfip) lanthanide complexes was synthesized from the amide-alkoxide exchange reaction of the lanthanide bis-trimethylsilyl amide dissolved in toluene and an excess amount of H-hfip. The products were isolated and identified by single crystal X-ray diffraction as: [cis-(H2O)(2)(hfip)(2)Ln(mu-hfip)](2) (Ln = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y), [trans-(H2O)(2)(hfip)(2)Sc(mu-hfip)](2) (Sc), [(H2O)(2)(hfip)(2)La-2(mu-hfip)(3)(mu(3)-OH)](2) (La-OH), and [(H2O)(hfip)(2)Sc(mu-hfip) (mu-OH)(mu(3)-OH)Sc(H2O)(hfip)](2) (Sc-OH). All species were found to have bound H2O molecules thought to be present in the hfip. For the non-oxo species, dinuclear species were formed with one bridging and two terminal hfip ligands. The waters were cis-oriented for all samples but the smallest derivative, Sc, where they were located in trans arrangement. Oxo species were formed by 'aged' hfip and generated tetranuclear species (La-OH and Sc-OH) that possessed different ligand sets. Initial efforts to determine these compounds utility for LnF(3) nanomaterial production were undertaken using amine solvent in solvothermal (SOLVO) or solution precipitation (SPPT) routes. LnF(3) phases were noted but often this was mixed with the Ln(O,F) or Ln(2)O(3) phases. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Cramer, Roger E.] Univ Hawaii Manoa, Dept Chem, 2545 McCarthy Mall, Honolulu, HI 96822 USA.
[Rodriguez, Mark A.; Alam, Todd M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah M.; Bingham, Samuel P.] Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA.
RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA.
EM tjboyle@Sandia.gov
FU Geothermal Technologies Office of the Office of Efficient Energy &
Reliable Energy of the Department of Energy; United States Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
FX This work was supported by Geothermal Technologies Office of the Office
of Efficient Energy & Reliable Energy of the Department of Energy. The
Bruker X-ray diffractometer used for some crystal solutions was
purchased via a National Science Foundation CRIF: MU award to the
University of New Mexico (CHE04-43580). Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security
Administration under Contract DE-AC04-94AL85000.
NR 52
TC 0
Z9 0
U1 15
U2 15
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0277-5387
J9 POLYHEDRON
JI Polyhedron
PD NOV 4
PY 2016
VL 118
BP 52
EP 60
DI 10.1016/j.poly.2016.07.030
PG 9
WC Chemistry, Inorganic & Nuclear; Crystallography
SC Chemistry; Crystallography
GA DZ1KD
UT WOS:000385596400007
ER
PT J
AU Scheer, AM
Eskola, AJ
Osborn, DL
Sheps, L
Taatjes, CA
AF Scheer, Adam M.
Eskola, Arkke J.
Osborn, David L.
Sheps, Leonid
Taatjes, Craig A.
TI Resonance Stabilization Effects on Ketone Autoxidation: Isomer-Specific
Cyclic Ether and Ketohydroperoxide Formation in the Low-Temperature
(400-625 K) Oxidation of Diethyl Ketone
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID GAS-PHASE OXIDATION; PHOTOIONIZATION MASS-SPECTROMETRY;
NORMAL-HEXADECANE AUTOXIDATION; SET MODEL CHEMISTRY;
ELEVATED-TEMPERATURES; COMBUSTION CHEMISTRY; AUTOIGNITION CHEMISTRY;
ORGANIC-COMPOUNDS; MOLECULAR-OXYGEN; PRODUCTS
AB The pulsed photolytic chlorine-initiated oxidation of diethyl ketone [DEK; (CH3CH2)(2)C=O], 2,2,4,4-d(4)-DEK [d(4)-DEK; (CH3CD2)(2)C=O], and 1,1,1,5,5,5-d(6)-DEK [d(6)-DEK; (CD3CH2)(2)C=O] is studied at 8 torr and 1-2 atm and from 400-625 K. Cl atoms produced by laser photolysis react with diethyl ketone to form either primary (3-pentan-on-1-yl, R-P) or secondary (3-pentan-on-2-yl, R-s) radicals, which in turn react with O-2. Multiplexed time-of-flight mass spectrometry, coupled to either a hydrogen discharge lamp or tunable-synchrotron photoionizing radiation, is used to detect products as a function of mass, time, and photon energy. At 8 torr, the nature of the chain propagating cyclic ether + OH channel changes as a function of temperature. At 450 K, the production of OH is mainly in conjunction with formation of 2,4-dimethyloxetan-3-one, resulting from reaction of the resonance-stabilized secondary R-s with O-2. In contrast, at 550 K and 8 torr, 2-methyl-tetrahydrofuran-3-one, originating from oxidation of the primary radical (R-P), is observed as the dominant cyclic ether product. Formation of both of these cyclic ether production channels proceeds via a resonance-stabilized hydroperoxy alkyl (QOOH) intermediate. Little or no ketohydroperoxide (KHP) is observed under the low-pressure conditions. At higher O-2 concentrations and higher pressures (1-2 atm), a strong KHP signal appears as the temperature is increased above 450 K. Definitive isomeric identification from measurements on the deuterated DEK isotopologiles indicates the favored pathway produces a gamma-KHP via resonance-stabilized alkyl, QOOH, and HOOPOOH radicals. Time-resolved measurements reveal the KHP formation becomes faster and signal more intense upon increasing temperature from 450 to 575 K before intensity drops significantly at 625 K. The KHP time profile also shows a peak followed by a gradual depletion for the extent of experiment. Several tertiary products exhibit a slow accumulation in coincidence with the observed KHP decay. These products can be associated with decomposition of KHP by beta-scission pathways or via isomerization of a gamma-KHP into a cyclic peroxide intermediate (Korcek mechanism). The oxidation of d(4)-DEK, where kinetic isotope effects disfavor gamma-KHP formation, shows greatly reduced KHP formation and associated signatures from KHP decomposition products.
C1 [Scheer, Adam M.; Eskola, Arkke J.; Osborn, David L.; Sheps, Leonid; Taatjes, Craig A.] Sandia Natl Labs, Combust Res Facil, MS 9055, Livermore, CA 94551 USA.
RP Taatjes, CA (reprint author), Sandia Natl Labs, Combust Res Facil, MS 9055, Livermore, CA 94551 USA.
EM cataatj@sandia.gov
FU Division of Chemical Sciences, Geosciences and Biosciences, Office of
Basic Energy Sciences (BES), United States Department of Energy (USDOE);
development of the high-pressure multiplexed photoionization mass
spectrometry capability; Argonne-Sandia Consortium on High-Pressure
Combustion Chemistry; USDOE's National Nuclear Security Administration
[DEAC04-94AL85000]; Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]; USDOE [DE-AC02-05CH11231]
FX This material is based upon work supported by the Division of Chemical
Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences
(BES), United States Department of Energy (USDOE); the development of
the high-pressure multiplexed photoionization mass spectrometry
capability and the work of L.S. were funded as part of the
Argonne-Sandia Consortium on High-Pressure Combustion Chemistry. Sandia
National Laboratories is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the USDOE's National Nuclear
Security Administration under Contract No. DEAC04-94AL85000. This
research used resources of the Advanced Light Source of Lawrence
Berkeley National Laboratory, which is a USDOE Office of Science User
Facility. The Advanced Light Source is supported by the Director, Office
of Science, BES/USDOE, under Contract No. DE-AC02-05CH11231 between
Lawrence Berkeley National Laboratory and the USDOE.
NR 37
TC 0
Z9 0
U1 15
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 3
PY 2016
VL 120
IS 43
BP 8625
EP 8636
DI 10.1021/acs.jpca.6b07370
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA EB2NH
UT WOS:000387198600016
PM 27726367
ER
PT J
AU Jacobs, MI
Xu, B
Kostko, O
Heine, N
Ahmed, M
Wilson, KR
AF Jacobs, Michael I.
Xu, Bo
Kostko, Oleg
Heine, Nadja
Ahmed, Musahid
Wilson, Kevin R.
TI Probing the Heterogeneous Ozonolysis of Squalene Nanoparticles by
Photoemission
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID SECONDARY ORGANIC AEROSOL; OH-INITIATED OXIDATION; HYDROXYL RADICALS;
OLEIC-ACID; PHOTOELECTRON EMISSION; NACL NANOPARTICLES; MODEL SYSTEM;
K-EDGE; PARTICLES; OZONE
AB The heterogeneous reaction of ozone (O-3) with 200 nm squalene nanoparticles is studied using near-edge X-ray absorption fine structure (NEXAFS) and ultraviolet (UPS) and X-ray photoelectron spectroscopy (XPS). Photoelectrons are detected from free nanoparticle beams using a velocity map imaging (VMI) spectrometer capable of detecting photoelectrons with up to 40 eV of kinetic energy. Heterogeneous kinetics are quantified using changes in the UPS, XPS, and NEXAFS spectrum, yielding uptake coefficients for the decay of the double bonds in squalene of (3.1 +/- 0.7) x 10(-4), (2.6 +/- 0.6) x 10(-4), and (2.9 +/- 0.7) x 10(-4), respectively. When comparing these values with the uptake coefficient, (1.0 +/- 0.2) x 10(-3), determined by the molecular decay of squalene measured with aerosol mass spectrometry, it is found that on average 1.6 +/- 0.2 double bonds are removed for each ozone-squalene reactive collision, suggesting the importance of evaporation of small molecular weight reaction products from the aerosol. From further analysis of the nanoparticle XPS spectrum, it is found that ozonolysis increases the oxygen-to-carbon (O:C) ratio of the aerosol to 0.43 +/- 0.03 and produces 16 +/- 4% and 84 +/- 4% secondary ozonides and carbonyls, respectively. The methods developed here show how aerosol photoemission can be used to quantify heterogeneous reaction on free nanoparticles.
C1 [Jacobs, Michael I.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Jacobs, Michael I.; Xu, Bo; Kostko, Oleg; Heine, Nadja; Ahmed, Musahid; Wilson, Kevin R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Wilson, KR (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM krwilson@lbl.gov
FU Office of Energy Research, Office of Basic Energy Science of the U.S.
Department of Energy [DE-AC02-05CH11231]; NSF [DGE-1106400]; Department
of Energy, Office of Science Early Career Research Program
FX This work and the Advanced Light Source were supported by the Director,
Office of Energy Research, Office of Basic Energy Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. M.I.J. thanks
the NSF for an NSF Graduate Research Fellowship under DGE-1106400.
K.R.W. was supported by the Department of Energy, Office of Science
Early Career Research Program. We thank Lena Trotochaud, Osman
Karslioglu, and Hendrik Bluhm for discussions about XPS fitting. We also
thank Royce Lam for discussions about NEXAFS data interpretations.
NR 68
TC 2
Z9 2
U1 16
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD NOV 3
PY 2016
VL 120
IS 43
BP 8645
EP 8656
DI 10.1021/acs.jpca.6b09061
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA EB2NH
UT WOS:000387198600018
PM 27748598
ER
PT J
AU Zeno, WF
Johnson, KE
Sasaki, DY
Risbud, SH
Longo, ML
AF Zeno, Wade F.
Johnson, Kaitlin E.
Sasaki, Darryl Y.
Risbud, Subhash H.
Longo, Marjorie L.
TI Dynamics of Crowding-Induced Mixing in Phase Separated Lipid Bilayers
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID SUPPORTED BILAYERS; TAGGED PROTEINS; MEMBRANES; DIFFUSION; PATTERNS;
BEHAVIOR; NANODISCS; VESICLES; SILICA; LAYERS
AB We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L.)-liquid disordered (L-d) phase separated lipid bilayers when the following particles of increasing size bind to either the L-o or Ld phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu2+ chelating mechanism, of lipids that specifically partition into either the L-o phase or L-d phase. The degree of steric pressure was controlled by varying the size of the bound particle (10-240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed L. phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.
C1 [Zeno, Wade F.; Johnson, Kaitlin E.; Longo, Marjorie L.] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA.
[Sasaki, Darryl Y.] Sandia Natl Labs, POB 969, Livermore, CA 94551 USA.
[Risbud, Subhash H.] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA.
RP Longo, ML (reprint author), Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA.
EM mllongo@ucdavis.edu
FU National Science Foundation [DMR-1500275]; NIGMS-NIH [T32-GM008799];
Blacutt-Underwood Endowed Chair funds; US Department of Energy, Office
of Basic Energy Sciences, Division of Materials Science and Engineering;
U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX M.L.L., S.H.R, W.F.Z., and K.E.J. acknowledge partial support from the
National Science Foundation under award number DMR-1500275. W.F.Z. was
partially supported by Grant Number T32-GM008799 from NIGMS-NIH. S.H.R.
also acknowledges partial support derived from his Blacutt-Underwood
Endowed Chair funds. D.Y.S. was supported by the US Department of
Energy, Office of Basic Energy Sciences, Division of Materials Science
and Engineering. Sandia National Laboratories is a multiprogram
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 40
TC 0
Z9 0
U1 4
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 3
PY 2016
VL 120
IS 43
BP 11180
EP 11190
DI 10.1021/acs.jpcb.6b07119
PG 11
WC Chemistry, Physical
SC Chemistry
GA EB2NG
UT WOS:000387198500011
PM 27723342
ER
PT J
AU Petit, S
Melissen, STAG
Duclaux, L
Sougrati, MT
Le Bahers, T
Sautet, P
Dambournet, D
Borkiewicz, O
Laberty-Robert, C
Durupthy, O
AF Petit, Sarah
Melissen, Sigismund T. A. G.
Duclaux, Loraine
Sougrati, Moulay T.
Le Bahers, Tangui
Sautet, Philippe
Dambournet, Damien
Borkiewicz, Olaf
Laberty-Robert, Christel
Durupthy, Olivier
TI How Should Iron and Titanium be Combined in Oxides to Improve
Photoelectrochemical Properties?
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MICROWAVE-HYDROTHERMAL SYNTHESIS; TIO2 ANATASE NANOPARTICLES; ENHANCED
CHARGE SEPARATION; PHOTOCATALYTIC ACTIVITY; NANOSTRUCTURED ALPHA-FE2O3;
HEMATITE PHOTOANODES; MOLECULAR CLUSTERS; AQUEOUS-MEDIUM; THIN-FILMS;
SOL-GEL
AB We discuss here for the first time how to combine iron and titanium metal ions to achieve a high photoelectrochemical activity for TiO2-based photoanodes in water splitting devices. To do so, a wide range of photo electrode materials with tailored Ti/Fe ratio and element vicinity were synthesized by using the versatility of aqueous sol gel chemistry in combination with a microwave-assisted crystallization process. At low ferric concentrations, single phase TiO2 anatase doped with various Fe amounts were prepared. Strikingly, at higher ferric concentrations, we observed the concomitant crystallization of two polymorphs of Fe2TiO5. The as-synthesized compounds were tested as photoelectrodes and compared with pure nanoparticles of TiO2, Fe2TiO5, and alpha- or gamma-Fe2O3 and with corresponding nanocomposites. When TiO2 is slightly doped by Fe, the performance of this photoelectrode improves particularly in the low-bias region (<1.0 V vs reversible hydrogen electrode.) The photoanode exhibits a higher photocurrent than nanocomposite with TiO2/Fe2O3 and FeTi2O5 and more cathodic onset potential. The former can be partly explained by a lower bandgap and a hole with a longer lifetime. For the latter, we propose that the nature of the heterojunction impacts charge carrier recombination. The results presented herein not only answer whether iron and titanium should be combined in the same structure or into heterostructured systems but also on the importance of the arrangement of ions in the structure to improve the performances of the photoanode.
C1 [Petit, Sarah; Duclaux, Loraine; Laberty-Robert, Christel; Durupthy, Olivier] UPMC Univ Paris 06, Sorbonne Univ, CNRS, Coll France,Lab Chim Matiere Condensee Paris, 4 Pl Jussieu, F-75005 Paris, France.
[Melissen, Sigismund T. A. G.; Le Bahers, Tangui; Sautet, Philippe] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Ecole Normale Super Lyon,Lab Chim,UMR 5182, 46 Allee Italie, F-69342 Lyon, France.
[Sougrati, Moulay T.] Univ Montpellier 2, ICGM Equipe AIME UMR5253, 2 Pl Eugene Bataillon CC1502, F-34095 Montpellier 5, France.
[Dambournet, Damien] UPMC Univ Paris 06, Sorbonne Univ, CNRS, UMR 8234,PHENIX, F-75005 Paris, France.
[Borkiewicz, Olaf] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Sautet, Philippe] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA.
RP Durupthy, O (reprint author), UPMC Univ Paris 06, Sorbonne Univ, CNRS, Coll France,Lab Chim Matiere Condensee Paris, 4 Pl Jussieu, F-75005 Paris, France.
EM olivier.durupthy@upmc.fr
RI Sougrati, Moulay Tahar/B-6283-2011;
OI Sougrati, Moulay Tahar/0000-0003-3740-2807; Laberty-Robert,
christel/0000-0003-3230-3164
FU MATISSE; TOTAL; l'Institut du Developpement et des Ressources en
Informatique Scientifique (IDRIS) [x2015080609]; U.S. DOE
[DE-AC02-06CH11357]
FX S.P., C.L.R., and O.D. thank MATISSE for the financial support of LD and
TOTAL for the financial support of S.P. S.T.M. and T.L.B. gratefully
acknowledge the computational resources provided by l'Institut du
Developpement et des Ressources en Informatique Scientifique (IDRIS,
under project x2015080609) of the Centre Nationale de la Recherche
Scientifique (CNRS) and the Pole Scientifique de Modelisation Numerique
(PSMN) of Ecole Normale Superieure de Lyon. The work done at the
Advanced Photon Source, an Office of Science User Facility operated for
the U.S. Department of Energy (DOE) Office of Science by Argonne
National Laboratory, was supported by the U.S. DOE under Contract
DE-AC02-06CH11357.
NR 85
TC 1
Z9 1
U1 43
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 3
PY 2016
VL 120
IS 43
BP 24521
EP 24532
DI 10.1021/acs.jpcc.6b05794
PG 12
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EB2NF
UT WOS:000387198400003
ER
PT J
AU Oosterhout, SD
Ferguson, AJ
Larson, BW
Olson, DC
Kopidakis, N
AF Oosterhout, Stefan D.
Ferguson, Andrew J.
Larson, Bryon W.
Olson, Dana C.
Kopidakis, Nikos
TI Modeling the Free Carrier Recombination Kinetics in PTB7:PCBM Organic
Photovoltaics
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID POLYMER SOLAR-CELLS; POWER-CONVERSION EFFICIENCY; CONJUGATED POLYMERS;
CHARGE-CARRIERS; MICROWAVE CONDUCTIVITY; POLY(3-HEXYLTHIOPHENE);
TRANSPORT; MOBILITY; BLENDS; FILMS
AB Currently the exact recombination mechanism of free carriers in organic photovoltaic (OPV) devices is poorly understood. Often a reduced Langevin model is used to describe the decay behavior of electrons and holes. Here we propose a novel, simple kinetic model that accurately describes the decay behavior of free carriers in the PTB7:PCBM organic photovoltaic blend. This model needs to only take into account free and trapped holes in the polymer, and free electrons in the fullerene, to accurately describe the recombination behavior of free carriers as measured by time-resolved microwave conductivity (TRMC). The model is consistent for different PTB7:PCBM blend ratios and spans a light intensity range of over 3 orders of magnitude. The model demonstrates that dark carriers exist in the polymer and interact with photoinduced charge carriers, and that the trapping and detrapping rates of the holes are of high importance to the overall carrier lifetime.
C1 [Oosterhout, Stefan D.; Ferguson, Andrew J.; Larson, Bryon W.; Olson, Dana C.; Kopidakis, Nikos] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.
[Oosterhout, Stefan D.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd,Bldg 120, Menlo Pk, CA 94025 USA.
[Kopidakis, Nikos] Macquarie Univ, Dept Engn, N Ryde, NSW 2109, Australia.
RP Oosterhout, SD (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.; Oosterhout, SD (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd,Bldg 120, Menlo Pk, CA 94025 USA.
EM stefanoosterhout@gmail.com
OI Ferguson, Andrew/0000-0003-2544-1753
FU Solar Energy Technology Office (SETO), Office of Energy Efficiency and
Renewable Energy, U.S. Department of Energy (DOE); DOE
[DE-AC36-08GO28308]
FX This work was funded by the Solar Energy Technology Office (SETO),
Office of Energy Efficiency and Renewable Energy, U.S. Department of
Energy (DOE). NREL is supported by the DOE under contract no.
DE-AC36-08GO28308. The U.S. Government retains (and the publisher, by
accepting the article for publication, acknowledges that the U.S.
Government retains) a nonexclusive, paid up, irrevocable, worldwide
license to publish or reproduce the published form of this work, or
allow others to do so, for U.S. Government purposes.
NR 44
TC 0
Z9 0
U1 15
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 3
PY 2016
VL 120
IS 43
BP 24597
EP 24604
DI 10.1021/acs.jpcc.6b07614
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EB2NF
UT WOS:000387198400011
ER
PT J
AU Rimsza, JM
Yeon, J
van Duin, ACT
Du, JC
AF Rimsza, J. M.
Yeon, Jejoon
van Duin, A. C. T.
Du, Jincheng
TI Water Interactions with Nanoporous Silica: Comparison of ReaxFF and ab
lnitio based Molecular Dynamics Simulations
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID REACTIVE FORCE-FIELD; AMORPHOUS SILICA; COMPUTER-SIMULATION; VITREOUS
SILICA; ORTHOSILICIC ACID; FRACTURE SURFACES; INTERFACIAL WATER;
PROTON-TRANSFER; GLASS STRUCTURE; MAS-NMR
AB Detailed understanding of the reactions and processes which govern silicatewater interactions is critical to geological, materials, and environmental sciences. Interactions between water and nanoporous silica were studied using classical molecular dynamics with a Reactive Force Field (ReaxFF), and the results were compared with density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations. Two versions of ReaxFF Si/O/H parametrizations (Yeon et al. J. Phys. Chem. C 2016, 120, 305 and Fogarty et al. J. Chem. Phys. 2010, 132, 174704) were compared with AIMD results to identify differences in local structures, water dissociation mechanisms, energy barriers, and diffusion behaviors. Results identified reaction mechanisms consisting of two different intermediate structures involved in the removal of high energy two-membered ring (2-Ring) defects on complex nanoporous silica surfaces. Intermediate defects lifetimes affect hydroxylation and 2-Ring defect removal. Additionally, the limited internal volume of the nanoporous silica results in decreased water diffusion related to the development of nanoconfined water. Hydrogen atoms in the water diffused 1030% faster than the oxygen atoms, suggesting that increased hydrogen diffusion through hydrogen hopping mechanisms may be enhanced in nanoconfined conditions. Comparison of the two different ReaxFF parametrizations with AIMD data indicated that the Yeon et al. parameters resulted in reaction mechanisms, hydroxylation rates, defect concentrations, and activation energies more consistent with the AIMD simulations. Therefore, this ReaxFF parametrization is recommended for future studies of watersilica systems with high concentrations of surface defects and highly strained siloxane bonds such as in complex silica nanostructures.
C1 [Rimsza, J. M.; Du, Jincheng] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA.
[Yeon, Jejoon; van Duin, A. C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA.
[Rimsza, J. M.] Univ Calif Merced, Sch Engn, Merced, CA USA.
[Yeon, Jejoon] Sandia Natl Labs, Geochem Dept, Carlsbad, NM USA.
RP Du, JC (reprint author), Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA.
EM Jincheng.du@unt.edu
OI Rimsza, Jessica/0000-0003-0492-852X
FU US Department of Energy (DOE) Nuclear Energy University Project
[13-5494]; National Science Foundation (NSF) DMR Ceramics Program
[1508001]; National Science Foundation Graduate Research Fellowship
Program [DGE-114248]
FX This work is supported by the US Department of Energy (DOE) Nuclear
Energy University Project (Project No. 13-5494) and National Science
Foundation (NSF) DMR Ceramics Program (Project No. 1508001). J.M.R.
acknowledges that this material is based on work supported by the
National Science Foundation Graduate Research Fellowship Program under
Grant No. DGE-114248. Computational resources are provided by the
University of North Texas high performance computing cluster.
NR 89
TC 0
Z9 0
U1 26
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 3
PY 2016
VL 120
IS 43
BP 24803
EP 24816
DI 10.1021/acs.jpcc.6b07939
PG 14
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EB2NF
UT WOS:000387198400034
ER
PT J
AU Strand, MB
Leong, GJ
Tassone, CJ
Larsen, B
Neyerlin, KC
Gorman, B
Diercks, DR
Pylypenko, S
Pivovar, B
Richards, RM
AF Strand, Matthew B.
Leong, G. Jeremy
Tassone, Christopher J.
Larsen, Brian
Neyerlin, K. C.
Gorman, Brian
Diercks, David R.
Pylypenko, Svitlana
Pivovar, Bryan
Richards, Ryan M.
TI Mechanistic Study of Shape-Anisotropic Nanomaterials Synthesized via
Spontaneous Galvanic Displacement
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID OXYGEN REDUCTION REACTION; REPLACEMENT REACTION; HOLLOW NANOSTRUCTURES;
REACTION ELECTROCATALYSTS; CATALYTIC-PROPERTIES; ALLOY NANOPARTICLES;
AG; NANOWIRES; METAL; MONOLAYER
AB Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate the fundamental mechanisms of SGD. Characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.
C1 [Strand, Matthew B.; Leong, G. Jeremy; Richards, Ryan M.] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA.
[Gorman, Brian; Diercks, David R.; Pylypenko, Svitlana] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA.
[Leong, G. Jeremy; Larsen, Brian; Neyerlin, K. C.; Pivovar, Bryan; Richards, Ryan M.] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA.
[Tassone, Christopher J.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
RP Richards, RM (reprint author), Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA.; Richards, RM (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA.
EM rrichard@mines.edu
OI Strand, Matthew/0000-0001-8810-1743
FU Laboratory Directed Research and Development (LDRD) Program at the
National Renewable Energy Laboratory [UGA-0-41025-63]; U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-76SF00515]; NSF [1040456]
FX This work is funded by the Laboratory Directed Research and Development
(LDRD) Program at the National Renewable Energy Laboratory, under
contract award UGA-0-41025-63. NREL is a national laboratory of the U.S.
Department of Energy, Office of Energy Efficiency and Renewable Energy,
operated by the Alliance for Sustainable Energy, LLC. Use of the
Stanford Synchrotron Radiation Lightsource, SLAG National Accelerator
Laboratory, is supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences under contract no.
DE-AC02-76SF00515. The atom probe used in this work was funded through
the NSF by Major Research Instrumentation Grant No. 1040456.
NR 48
TC 0
Z9 0
U1 8
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD NOV 3
PY 2016
VL 120
IS 43
BP 25053
EP 25060
DI 10.1021/acs.jpcc.6b07363
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA EB2NF
UT WOS:000387198400062
ER
PT J
AU Berto, TF
Sanwald, KE
Byers, JP
Browning, ND
Gutierrez, OY
Lercher, JA
AF Berto, Tobias F.
Sanwald, Kai E.
Byers, J. Paige
Browning, Nigel D.
Gutierrez, Oliver Y.
Lercher, Johannes A.
TI Enabling Overall Water Splitting on Photocatalysts by CO-Covered Noble
Metal Co-catalysts
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID CARBON-MONOXIDE; DECOMPOSITION; CATALYSTS; OXIDE; ADSORPTION;
ELECTRODES; OXIDATION; HYDROGEN; PHOTODEPOSITION; NANOPARTICLES
AB Photocatalytic overall water splitting requires co-catalysts that efficiently promote the generation of H-2 but do not catalyze its reverse oxidation. We demonstrate that CO chemisorbed on metal co-catalysts (Rh, Pt, Pd) suppresses the back reaction while maintaining the rate of H-2 evolution. On Rh/GaN:ZnO, the highest H-2 production rates were obtained with 4-40 mbar of CO, the back reaction remaining suppressed below 7 mbar of O-2. The O-2 and H-2 evolution rates compete with CO oxidation and the back reaction. The rates of all reactions increased with increasing photon absorption. However, due to different dependencies on the rate of charge carrier generation, the selectivities for O-2 and H-2 formation increased in comparison to CO oxidation and the back reaction with increasing photon flux and/or quantum efficiency. Under optimum conditions, the impact of CO to prevent the back reaction is identical to that of a Cr2O3 layer covering the active metal particle.
C1 [Berto, Tobias F.; Sanwald, Kai E.; Gutierrez, Oliver Y.; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany.
[Berto, Tobias F.; Sanwald, Kai E.; Gutierrez, Oliver Y.; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany.
[Byers, J. Paige] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA.
[Browning, Nigel D.] Pacific Northwest Natl Lab, Fundamental & Computat Sci Directorate, POB 999, Richland, WA 99352 USA.
[Lercher, Johannes A.] Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA.
RP Gutierrez, OY; Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany.; Gutierrez, OY; Lercher, JA (reprint author), Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany.; Lercher, JA (reprint author), Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA.
EM oliver.gutierrez@mytum.de; johannes.lercher@ch.tum.de
FU Federal Ministry of Education and Research (BMBF) [01RC1106A]; Chemical
Imaging Initiative at Pacific Northwest National Laboratory (PNNL);
Environmental Molecular Sciences Laboratory (EMSL) - DOE's Office of
Biological and Environmental Research; DOE [DE-AC05-76RL01830]; Fond der
Chemischen Industrie (FCI)
FX The authors thank the Federal Ministry of Education and Research (BMBF)
for financial support (Project No. 01RC1106A) and Clariant for
productive discussions within the framework of MuniCat and the
iC4 PhotoCOO project. HRTEM imaging was funded by the
Chemical Imaging Initiative at Pacific Northwest National Laboratory
(PNNL) and the Environmental Molecular Sciences Laboratory (EMSL), a
national scientific user facility sponsored by the DOE's Office of
Biological and Environmental Research and located at PNNL. PNNL is a
multiprogram national laboratory operated by Battelle for the DOE under
Contract DE-AC05-76RL01830. K.E.S. gratefully acknowledges financial
support by the Fond der Chemischen Industrie (FCI). The authors thank
Kazuhiro Takanabe, Garry Haller, and Hany El-Sayed for fruitful
discussions, as well as Xaver Hecht, Martin Neukamm, and Udishnu Sanyal
for technical support, physicochemical characterization, and TEM
measurements.
NR 27
TC 0
Z9 0
U1 25
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD NOV 3
PY 2016
VL 7
IS 21
BP 4358
EP 4362
DI 10.1021/acs.jpclett.6b02151
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA EB2PT
UT WOS:000387205000019
PM 27750428
ER
PT J
AU Han, CS
Martin, MA
Dichosa, AEK
Daughton, AR
Frietze, S
Kaplan, H
Gurven, MD
Alcock, J
AF Han, Cliff S.
Martin, Melanie Ann
Dichosa, Armand E. K.
Daughton, Ashlynn R.
Frietze, Seth
Kaplan, Hillard
Gurven, Michael D.
Alcock, Joe
TI Salivary microbiomes of indigenous Tsimane mothers and infants are
distinct despite frequent premastication
SO PEERJ
LA English
DT Article
DE Oral microbiota; Gingivitis; Vertical transmission; Microbial diversity;
Oral disease; Microbe sharing; Premastication; Kinship; Infant microbial
development
ID STREPTOCOCCUS-MUTANS; ORAL MICROBIOTA; GUT MICROBIOME; YOUNG-CHILDREN;
HEALTH; FOOD; TRANSMISSION; CARIES; RISK; COMMUNITIES
AB Background. Premastication, the transfer of pre-chewed food, is a common infant and Young child feeding practice among the Tsimane, forager-horticulturalists living in the Bolivian Amazon, Research conducted primarily with Western populations has shown that infants harbor distinct oral microbiota from their mothers. Premastication, which is less common in these populations, may influence the colonization and maturation of infant oral microbiota, including via transmission of oral pathogens. We collected premasticated food and saliva samples from Tsimane mothers and infants (9-24 months of age) to test for evidence of bacterial transmission in prernasticated foods and overlap in maternal and infant salivary microbiota. We extracted bacterial DNA from two premasticated food samples and 12 matched salivary samples from maternal-infant pairs. DNA sequencing was performed with MiSeq (Illumina), We evaluated maternal and infant microbial composition in terms of relative abundance of specific taxa, alpha and beta diversity, and dissimilarity distances.
Results. The bacteria in saliva and premasticated food were mapped to 19 phyla and 400 genera and were dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The oral microbial communities of Tsimane mothers and infants who frequently share premasticated food were well-separated in a non-metric multidimensional scaling ordination (NMDS) plot, Infant microbiotas clustered together, with weighted Unifrac distances significantly differing between mothers and infants, Infant saliva contained more Firmicutes (p < 0.01) and fewer Proteobacteria (p < 0.05) than did maternal saliva. Many genera previously associated with dental and periodontal infections, e.g. Neisseri a, Gemella, Rothia, Actinomyces, Fusobacterium, and Leptotrichia, were more abundant in mothers than in infants.
Conclusions. Salivary microbiota of Tsimane infants and young children up to two years of age do not appear closely related to those of their mothers, despite frequent premastication and preliminary evidence that maternal bacteria is transmitted to premasticated foods. Infant physiology and diet may constrain colonization by maternal bacteria, including several oral pathogens.
C1 [Han, Cliff S.; Dichosa, Armand E. K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA.
[Martin, Melanie Ann] Yale Univ, Dept Anthropol, New Haven, CA 06520 USA.
[Daughton, Ashlynn R.] Los Alamos Natl Lab, Analyt Intelligence & Technol Div A, Los Alamos, NM USA.
[Frietze, Seth] Univ Vermont, Dept Med Lab & Radiat Sci, Burlington, VT USA.
[Kaplan, Hillard] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA.
[Gurven, Michael D.] Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA.
[Alcock, Joe] Univ New Mexico, Dept Emergency Med, Albuquerque, NM 87131 USA.
RP Alcock, J (reprint author), Univ New Mexico, Dept Emergency Med, Albuquerque, NM 87131 USA.
EM joalcock@salud.unm.edu
OI Dichosa, Armand/0000-0003-0640-6629; Martin, Melanie/0000-0003-0368-2791
FU Los Alamos National Laboratory through Laboratory Directed Research and
Development [20110034DR]; NSF Doctoral Dissertation Grant [BCS-1232370];
Wenner-Gren Dissertation Fieldwork Grant; NIH/NIA [R01AG024119-01]
FX This project is supported by Los Alamos National Laboratory through
Laboratory Directed Research and Development 20110034DR (Author 1); NSF
Doctoral Dissertation Grant BCS-1232370 and Wenner-Gren Dissertation
Fieldwork Grant (Author 2); NIH/NIA R01AG024119-01 (Authors 5 and 6).
The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
NR 57
TC 0
Z9 0
U1 7
U2 7
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
SN 2167-8359
J9 PEERJ
JI PeerJ
PD NOV 3
PY 2016
VL 4
AR e2660
DI 10.7717/peerj.2660
PG 21
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EB2EP
UT WOS:000387170800010
PM 27833819
ER
PT J
AU Savytskii, D
Jain, H
Tamura, N
Dierolf, V
AF Savytskii, D.
Jain, H.
Tamura, N.
Dierolf, V.
TI Rotating lattice single crystal architecture on the surface of glass
SO SCIENTIFIC REPORTS
LA English
DT Article
ID BIOLOGICAL-MATERIALS; SPHERULITIC GROWTH; LIQUID SELENIUM;
CRYSTALLIZATION; INTERFACES; SB2S3; FILMS; DISCLINATIONS; MECHANISMS;
NUCLEATION
AB Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.
C1 [Savytskii, D.; Jain, H.] Lehigh Univ, Mat Sci & Engn Dept, Bethlehem, PA 18015 USA.
[Tamura, N.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Dierolf, V.] Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA.
RP Jain, H (reprint author), Lehigh Univ, Mat Sci & Engn Dept, Bethlehem, PA 18015 USA.
EM H.Jain@Lehigh.edu
FU Basic Energy Sciences Division, Department of Energy [DE-SC0005010]; US
Department of Energy at Lawrence Berkeley National Laboratory and
University of California, Berkeley, California [DE-AC02-05CH11231]
FX This work was supported by the Basic Energy Sciences Division,
Department of Energy (DE-SC0005010). The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences Division, of the US Department of Energy
under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National
Laboratory and University of California, Berkeley, California.
NR 55
TC 0
Z9 0
U1 1
U2 1
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD NOV 3
PY 2016
VL 6
AR 36449
DI 10.1038/srep36449
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EB4MI
UT WOS:000387345500001
PM 27808168
ER
PT J
AU Soltanian, MR
Amooie, MA
Dai, ZX
Cole, D
Moortgat, J
AF Soltanian, Mohamad Reza
Amooie, Mohammad Amin
Dai, Zhenxue
Cole, David
Moortgat, Joachim
TI Critical Dynamics of Gravito-Convective Mixing in Geological Carbon
Sequestration
SO SCIENTIFIC REPORTS
LA English
DT Article
ID NATURAL GRADIENT EXPERIMENT; CO2 TRAPPING PROCESSES; SALINE FORMATIONS;
SOLUTE TRANSPORT; SAND AQUIFER; HETEROGENEITY; STORAGE; DISSOLUTION;
SIMULATION; DISPERSION
AB When CO2 is injected in saline aquifers, dissolution causes a local increase in brine density that can cause Rayleigh-Taylor-type gravitational instabilities. Depending on the Rayleigh number, density-driven flow may mix dissolved CO2 throughout the aquifer at fast advective time-scales through convective mixing. Heterogeneity can impact density-driven flow to different degrees. Zones with low effective vertical permeability may suppress fingering and reduce vertical spreading, while potentially increasing transverse mixing. In more complex heterogeneity, arising from the spatial organization of sedimentary facies, finger propagation is reduced in low permeability facies, but may be enhanced through more permeable facies. The connectivity of facies is critical in determining the large-scale transport of CO2-rich brine. We perform high-resolution finite element simulations of advection-diffusion transport of CO2 with a focus on facies-based bimodal heterogeneity. Permeability fields are generated by a Markov Chain approach, which represent facies architecture by commonly observed characteristics such as volume fractions. CO2 dissolution and phase behavior are modeled with the cubic-plus-association equation-of-state. Our results show that the organization of high-permeability facies and their connectivity control the dynamics of gravitationally unstable flow. We discover new flow regimes in both homogeneous and heterogeneous media and present quantitative scaling relations for their temporal evolution.
C1 [Soltanian, Mohamad Reza; Amooie, Mohammad Amin; Cole, David; Moortgat, Joachim] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Dai, Zhenxue] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Moortgat, J (reprint author), Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
EM moortgat.1@osu.edu
RI Moortgat, Joachim/J-7450-2013;
OI Moortgat, Joachim/0000-0002-0259-3597; Dai, Zhenxue/0000-0002-0805-7621
FU U.S. Department of Energy's (DOE) Office of Fossil Energy [FEAA-045];
U.S. DOE [DE-AC05-00OR22725]
FX The first author was supported by the U.S. Department of Energy's (DOE)
Office of Fossil Energy funding to Oak Ridge National Laboratory (ORNL)
under project FEAA-045. ORNL is managed by UT-Battelle for the U.S. DOE
under Contract DE-AC05-00OR22725.
NR 60
TC 0
Z9 0
U1 5
U2 5
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD NOV 3
PY 2016
VL 6
AR 35921
DI 10.1038/srep35921
PG 13
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EB2TA
UT WOS:000387214300001
PM 27808178
ER
PT J
AU Colletier, JP
Sawaya, MR
Gingery, M
Rodriguez, JA
Cascio, D
Brewster, AS
Michels-Clark, T
Hice, RH
Coquelle, N
Boutet, S
Williams, GJ
Messerschmidt, M
DePonte, DP
Sierra, RG
Laksmono, H
Koglin, JE
Hunter, MS
Park, HW
Uervirojnangkoorn, M
Bideshi, DK
Brunger, AT
Federici, BA
Sauter, NK
Eisenberg, DS
AF Colletier, Jacques-Philippe
Sawaya, Michael R.
Gingery, Mari
Rodriguez, Jose A.
Cascio, Duilio
Brewster, Aaron S.
Michels-Clark, Tara
Hice, Robert H.
Coquelle, Nicolas
Boutet, Sebastien
Williams, Garth J.
Messerschmidt, Marc
DePonte, Daniel P.
Sierra, Raymond G.
Laksmono, Hartawan
Koglin, Jason E.
Hunter, Mark S.
Park, Hyun-Woo
Uervirojnangkoorn, Monarin
Bideshi, Dennis K.
Brunger, Axel T.
Federici, Brian A.
Sauter, Nicholas K.
Eisenberg, David S.
TI De novo phasing with X-ray laser reveals mosquito larvicide BinAB
structure
SO NATURE
LA English
DT Article
ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; BACILLUS-SPHAERICUS;
CRYSTAL-STRUCTURE; TOXIN; THURINGIENSIS; PORE; MECHANISM; BINDING;
COMPLEMENTARITY; IDENTIFICATION
AB BinAB is a naturally occurring paracrystalline larvicide distributed worldwide to combat the devastating diseases borne by mosquitoes. These crystals are composed of homologous molecules, BinA and BinB, which play distinct roles in the multi-step intoxication process, transforming from harmless, robust crystals, to soluble protoxin heterodimers, to internalized mature toxin, and finally to toxic oligomeric pores. The small size of the crystals-50 unit cells per edge, on average-has impeded structural characterization by conventional means. Here we report the structure of Lysinibacillus sphaericus BinAB solved de novo by serial-femtosecond crystallography at an X-ray free-electron laser. The structure reveals tyrosine-and carboxylate-mediated contacts acting as pH switches to release soluble protoxin in the alkaline larval midgut. An enormous heterodimeric interface appears to be responsible for anchoring BinA to receptor-bound BinB for co-internalization. Remarkably, this interface is largely composed of propeptides, suggesting that proteolytic maturation would trigger dissociation of the heterodimer and progression to pore formation.
C1 [Colletier, Jacques-Philippe; Coquelle, Nicolas] Univ Grenoble Alpes, CEA, CNRS, IBS, F-38044 Grenoble, France.
[Sawaya, Michael R.; Gingery, Mari; Rodriguez, Jose A.; Cascio, Duilio; Eisenberg, David S.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Biol Chem, Los Angeles, CA 90095 USA.
[Sawaya, Michael R.; Eisenberg, David S.] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA.
[Michels-Clark, Tara; Hice, Robert H.; Sauter, Nicholas K.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA.
[Hice, Robert H.; Park, Hyun-Woo; Bideshi, Dennis K.; Federici, Brian A.] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA.
[Hice, Robert H.; Park, Hyun-Woo; Bideshi, Dennis K.; Federici, Brian A.] Univ Calif Riverside, Grad Program Cell Mol & Dev Biol, Riverside, CA 92521 USA.
[Boutet, Sebastien; Williams, Garth J.; Messerschmidt, Marc; DePonte, Daniel P.; Sierra, Raymond G.; Laksmono, Hartawan; Koglin, Jason E.; Hunter, Mark S.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA.
[Park, Hyun-Woo; Bideshi, Dennis K.] Calif Baptist Univ, Dept Biol Sci, Riverside, CA 92504 USA.
[Uervirojnangkoorn, Monarin; Brunger, Axel T.] Stanford Univ, Mol & Cellular Physiol, Stanford, CA 94305 USA.
[Uervirojnangkoorn, Monarin; Brunger, Axel T.] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA.
RP Colletier, JP (reprint author), Univ Grenoble Alpes, CEA, CNRS, IBS, F-38044 Grenoble, France.; Eisenberg, DS (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Biol Chem, Los Angeles, CA 90095 USA.; Eisenberg, DS (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA.
EM colletier@ibs.fr; david@mbi.ucla.edu
OI Sawaya, Michael/0000-0003-0874-9043
FU W.M. Keck Foundation [2843398]; NIH [AG-029430, GM095887, GM102520,
AI45817]; National Science Foundation [MCB 0958111]; DOE
[DE-FC02-02ER63421]; France Alzheimer Foundation
[FA-AAP-2013-65-101349]; Agence Nationale de la Recherche
[ANR-12-BS07-0008-03]; CNRS [PEPS-SASLELX-2013, PEPS-SASLELX-2014]; US
Department of Energy, Office of Science, and Office of Basic Energy
Sciences [DE-AC02-76SF00515]; Linac Coherent Light Source Ultrafast
Science Instruments project; DOE Office of Basic Energy Sciences;
National Institutes of Health [P41GM103393, P41RR001209]
FX We acknowledge the help of the following people during data collection:
S. Lee, J. Koralek, R. Shoeman, S. Botha, B. Doak and O. Zeldin. We
thank A. Volveda for advice regarding sequence-wise Fourier difference
map integration; J. Brooks-Bartlett and E. Garman for help with dose
calculations; and M. Weik for discussions and continuing support. We
thank the HCIA program of HHMI, the W.M. Keck Foundation (grant
2843398), the NIH (grant AG-029430), National Science Foundation (grant
MCB 0958111) and DOE (DE-FC02-02ER63421) (to D.S.E.), the France
Alzheimer Foundation (FA-AAP-2013-65-101349) and the Agence Nationale de
la Recherche (ANR-12-BS07-0008-03) (to J.-P.C.), NIH grants GM095887 and
GM102520 for dataprocessing methods (to N.K.S.), and NIH grant AI45817
(to B.A.F.). Support by the CNRS (PEPS-SASLELX-2013, PEPS-SASLELX-2014)
funded travel to LCLS. Use of the LCLS at SLAC National Accelerator
Laboratory, is supported by the US Department of Energy, Office of
Science, and Office of Basic Energy Sciences under contract no.
DE-AC02-76SF00515. The CXI instrument was funded by the Linac Coherent
Light Source Ultrafast Science Instruments project, itself funded by the
DOE Office of Basic Energy Sciences. Parts of the sample injector used
at LCLS for this research were funded by the National Institutes of
Health, P41GM103393, formerly P41RR001209.
NR 60
TC 2
Z9 2
U1 23
U2 23
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD NOV 3
PY 2016
VL 539
IS 7627
BP 43
EP +
DI 10.1038/nature19825
PG 27
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EA5OJ
UT WOS:000386670100025
PM 27680699
ER
PT J
AU Sivak, DA
Crooks, GE
AF Sivak, David A.
Crooks, Gavin E.
TI Thermodynamic geometry of minimum-dissipation driven barrier crossing
SO PHYSICAL REVIEW E
LA English
DT Article
ID FREE-ENERGY DIFFERENCES; SYNTHASE; MOTOR
AB We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation) driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions, which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in single-molecule experiments), provides a design principle for the construction of thermodynamically efficient coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular motors.
C1 [Sivak, David A.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Crooks, Gavin E.] Lawrence Berkeley Natl Lab, Mol Biophys Div, Berkeley, CA 94720 USA.
[Crooks, Gavin E.] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA.
RP Sivak, DA (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
EM dsivak@sfu.ca
FU Natural Sciences and Engineering Research Council of Canada (NSERC)
Discovery Grant; U.S. Army Research Laboratory; U.S. Army Research
Office [W911NF-13-1-0390]; WestGrid; Compute Canada Calcul Canada
FX The authors thank Leonid Chindelevitch (SFU Computing Science), Bingyun
Sun (SFU Chemistry), and Aliakbar Mehdizadeh, Steven J. Large, and
Alzbeta Medvedova (SFU Physics) for insightful comments on the paper.
This work was supported by a Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grant (D.A.S.) and by U.S. Army
Research Laboratory and the U.S. Army Research Office under Contract No.
W911NF-13-1-0390 (G.E.C.). This research was enabled in part by support
provided by WestGrid (www.westgrid.ca) and Compute Canada Calcul Canada
(www.computecanada.ca).
NR 37
TC 0
Z9 0
U1 7
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0045
EI 2470-0053
J9 PHYS REV E
JI Phys. Rev. E
PD NOV 3
PY 2016
VL 94
IS 5
AR 052106
DI 10.1103/PhysRevE.94.052106
PG 8
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA EA6YZ
UT WOS:000386776400001
PM 27967045
ER
PT J
AU Li, ZY
Zhou, Y
Qi, H
Pan, QW
Zhang, Z
Shi, NN
Lu, M
Stein, A
Li, CY
Ramanathan, S
Yu, NF
AF Li, Zhaoyi
Zhou, You
Qi, Hao
Pan, Qiwei
Zhang, Zhen
Shi, Norman Nan
Lu, Ming
Stein, Aaron
Li, Christopher Y.
Ramanathan, Shriram
Yu, Nanfang
TI Correlated Perovskites as a New Platform for Super-Broadband-Tunable
Photonics
SO ADVANCED MATERIALS
LA English
DT Article
ID METAL-INSULATOR-TRANSITION; MEMORY; LIGHT; FILMS; METASURFACES;
ABSORBERS; BATTERIES; MODULATOR
AB The electron-doping-induced phase transition of a prototypical perovskite SmNiO3 induces a large and non-volatile optical refractive-index change and has great potential for active-photonic-device applications. Strong optical modulation from the visible to the mid-infrared is demonstrated using thin-film SmNiO3. Modulation of a narrow band of light is demonstrated using plasmonic meta-surfaces integrated with SmNiO3.
C1 [Li, Zhaoyi; Shi, Norman Nan; Yu, Nanfang] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Zhou, You] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
[Qi, Hao; Pan, Qiwei; Li, Christopher Y.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Zhang, Zhen; Ramanathan, Shriram] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA.
[Lu, Ming; Stein, Aaron] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Yu, NF (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Ramanathan, S (reprint author), Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA.
EM shriram@purdue.edu; ny2214@columbia.edu
FU Defense Advanced Research Projects Agency Young Faculty Award
[D15AP00111]; Office of Naval Research Young Investigator Award
[N00014-16-1-2442]; Air Force Office of Scientific Research through
Multidisciplinary University Research Initiative program
[FA9550-14-1-0389]; Air Force Office of Scientific Research
[FA9550-12-1-0189]; National Science Foundation [ECCS1307948]; Army
Research Office [W911NF-16-1-0042, W911NF-14-1-0669]; U.S. Department of
Energy, Office of Basic Energy Sciences [DE-SC0012704]
FX The work was supported by Defense Advanced Research Projects Agency
Young Faculty Award (Grant No. D15AP00111), Office of Naval Research
Young Investigator Award program (Grant No. N00014-16-1-2442), Air Force
Office of Scientific Research (Grant No. FA9550-14-1-0389 through a
Multidisciplinary University Research Initiative program, and Grant No.
FA9550-12-1-0189), National Science Foundation (Grant No. ECCS1307948),
and Army Research Office (Grant Nos. W911NF-16-1-0042 and
W911NF-14-1-0669). Research was carried out in part at the Center for
Functional Nanomaterials, Brookhaven National Laboratory, which was
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, under Contract No. DE-SC0012704. The authors acknowledge
helpful discussions with Yuan Yang.
NR 38
TC 2
Z9 2
U1 17
U2 17
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD NOV 2
PY 2016
VL 28
IS 41
BP 9117
EP +
DI 10.1002/adma.201601204
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA EG6RU
UT WOS:000391174400006
PM 27573540
ER
PT J
AU Barai, P
Kumar, A
Mukherjee, PP
AF Barai, Pallab
Kumar, Aloke
Mukherjee, Partha P.
TI Modeling of Mesoscale Variability in Biofilm Shear Behavior
SO PLOS ONE
LA English
DT Article
ID MICROFLUIDIC DEVICE; FINITE-ELEMENT; FRACTURE; TRANSPORT; MATRIX;
ELASTICITY; MECHANICS; STRENGTH; SYSTEMS; SOLIDS
AB Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a) initial increase in stiffness due to strain stiffening of polymer matrix, and b) eventual reduction in stiffness because of tear in polymeric substrate.
C1 [Barai, Pallab; Mukherjee, Partha P.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
[Kumar, Aloke] Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada.
[Barai, Pallab] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA USA.
RP Mukherjee, PP (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.; Kumar, A (reprint author), Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada.
EM aloke.kumar@ualberta.ca; pmukherjee@tamu.edu
FU Texas A&M University, Faculty Research Initiation Grant
FX This work was supported by Texas A&M University, Faculty Research
Initiation Grant to PPM. The funder had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.; Financial support from Texas A&M University faculty
research initiation grant is gratefully acknowledged.
NR 58
TC 0
Z9 0
U1 2
U2 2
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 2
PY 2016
VL 11
IS 11
AR e0165593
DI 10.1371/journal.pone.0165593
PG 16
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EA6DJ
UT WOS:000386715500040
PM 27806068
ER
PT J
AU Ievlev, AV
Maksymovych, P
Trassin, M
Seidel, J
Ramesh, R
Kalinin, SV
Ovchinnikova, OS
AF Ievlev, Anton V.
Maksymovych, Petro
Trassin, Morgan
Seidel, Jan
Ramesh, Ramamoorthy
Kalinin, Sergei V.
Ovchinnikova, Olga S.
TI Chemical State Evolution in Ferroelectric Films during Tip-Induced
Polarization and Electroresistive Switching
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE ferroelectric thin film; polarization switching; atomic force
microscopy; time-of-flight secondary ion mass spectrometry; chemical
phenomena; ion intermixing
ID PIEZORESPONSE FORCE MICROSCOPY; SURFACE-POTENTIAL MICROSCOPY; CHARGE
GRADIENT MICROSCOPY; THIN-FILMS; DOMAIN-WALLS; NANOSCALE; GENERATION;
FUTURE; BIFEO3
AB Domain formation and ferroelectric switching is fundamentally inseparable from polarization screening, which on free surfaces can be realized via band bending and ionic adsorption. In the latter case, polarization switching is intrinsically coupled to the surface electrochemical phenomena, and the electrochemical stage can control kinetics and induce long-range interactions. However, despite extensive evidence toward the critical role of surface electrochemistry, little is known about the nature of the associated processes. Here we combine SPM tip induce polarization switching and secondary ion mass spectrometry to explore the evolution of chemical state of ferroelectric during switching. Surprisingly, we find that even pristine surfaces contain ions (e.g., Cl-) that are not anticipated based on chemistry of the system and processing. In the ferroelectric switching regime, we find surprising changes in surface chemistry, including redistribution of base cations. At higher voltages in the electroforming regime significant surface deformation was observed and associated with a strong ion intermixing.
C1 [Ievlev, Anton V.; Maksymovych, Petro; Kalinin, Sergei V.; Ovchinnikova, Olga S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
[Ievlev, Anton V.; Maksymovych, Petro; Kalinin, Sergei V.; Ovchinnikova, Olga S.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
[Trassin, Morgan; Seidel, Jan; Ramesh, Ramamoorthy] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Trassin, Morgan] Swiss Fed Inst Technol, Dept Mat, Vladimir Prelog Weg 4, CH-8093 Zurich, Switzerland.
[Seidel, Jan] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia.
RP Ievlev, AV; Ovchinnikova, OS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.; Ievlev, AV; Ovchinnikova, OS (reprint author), Oak Ridge Natl Lab, Inst Funct Imaging Mat, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM ievlevav@ornl.gov; ovchinnikovo@ornl.gov
RI Ievlev, Anton/H-3678-2012
OI Ievlev, Anton/0000-0003-3645-0508
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC05-00OR22725]; Division of Materials Sciences and
Engineering Division, Office of Basic Energy Sciences; U.S. DOE;
Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory
FX This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences under
contract number DE-AC05-00OR22725. Interpretation of BFO ferroelectric
switching was conducted at the Center for Nanophase Materials Sciences,
which is a DOE Office of Science User Facility (PM), the understanding
of ion mixing and ionic motion in BFO was supported by Division of
Materials Sciences and Engineering Division, Office of Basic Energy
Sciences, development of AFM/SIMS approach for understanding
electromechanical motion in ferroelectrics was supported U.S. DOE (SVK),
and by the Laboratory Directed Research and Development Program of Oak
Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S.
Department of Energy (AVI, OSO).
NR 51
TC 0
Z9 0
U1 15
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD NOV 2
PY 2016
VL 8
IS 43
BP 29588
EP 29593
DI 10.1021/acsami.6b10784
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA EB1FP
UT WOS:000387095300046
PM 27726329
ER
PT J
AU Corona, T
Ribas, L
Rovira, M
Farquhar, ER
Ribas, X
Ray, K
Company, A
AF Corona, Teresa
Ribas, Lidia
Rovira, Mireia
Farquhar, Erik R.
Ribas, Xavi
Ray, Kallol
Company, Anna
TI Characterization and Reactivity Studies of a Terminal Copper-Nitrene
Species
SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
LA English
DT Article
DE copper-nitrene species; density functional calculations; hydrogen atom
abstraction; mass spectrometry; nitrene transfer
ID C-H AMINATION; COUPLING REACTIONS; DICOPPER NITRENES; IMIDO COMPLEXES;
CARBENE; LIGANDS; BOND; CHEMISTRY; RELEVANT; CYCLE
AB High-valent terminal copper-nitrene species have been postulated as key intermediates in copper-catalyzed aziridination and amination reactions. The high reactivity of these intermediates has prevented their characterization for decades, thereby making the mechanisms ambiguous. Very recently, the Lewis acid adduct of a copper-nitrene intermediate was trapped at -90 degrees C and shown to be active in various oxidation reactions. Herein, we describe for the first time the synthesis and spectroscopic characterization of a terminal copper(II)-nitrene radical species that is stable at room temperature in the absence of any Lewis acid. The azide derivative of a triazamacrocyclic ligand that had previously been utilized in the stabilization of aryl-Cu-III intermediates was employed as an ancillary ligand in the study. The terminal copper(II)-nitrene radical species is able to transfer a nitrene moiety to phosphines and abstract a hydrogen atom from weak C-H bonds, leading to the formation of oxidized products in modest yields.
C1 [Corona, Teresa; Ribas, Lidia; Rovira, Mireia; Ribas, Xavi; Company, Anna] Univ Girona, Dept Quim, IQCC, Grp Quim Bioinspirada Supramol & Catalisi QBIS CA, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
[Farquhar, Erik R.] Case Western Reserve Univ, Ctr Synchrotron Biosci, Upton, NY 11973 USA.
[Farquhar, Erik R.] Brookhaven Natl Lab, Ctr Prote & Bioinformat, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
[Ray, Kallol] Humboldt Univ, Dept Chem, Brook Taylor Str 2, D-12489 Berlin, Germany.
RP Ribas, X; Company, A (reprint author), Univ Girona, Dept Quim, IQCC, Grp Quim Bioinspirada Supramol & Catalisi QBIS CA, Campus Montilivi, E-17003 Girona, Catalonia, Spain.; Ray, K (reprint author), Humboldt Univ, Dept Chem, Brook Taylor Str 2, D-12489 Berlin, Germany.
EM xavi.ribas@udg.edu; kallol.ray@chemie.hu-berlin.de; anna.company@udg.edu
RI Company, Anna/B-4121-2014; Ribas, Xavi/F-3945-2014;
OI Company, Anna/0000-0003-4845-4418; Ribas, Xavi/0000-0002-2850-4409;
Corona Prieto, Teresa/0000-0001-8033-8180
FU European Commission [2011-CIG-303522]; MINECO of Spain
[CTO2013-43012-P]; Clara Immerwahr award of UniCat; European Research
Council [ERC-2011-StG-277801]; Generalitat de Catalunya [2014 SGR 862];
DFG; US Department of Energy, Office of Science [DE-AC02-76SF00515,
DE-SC0012704]; US National Institutes of Health [P30-EB-009998]
FX This work was supported by the European Commission (2011-CIG-303522 to
A.C.), the MINECO of Spain ("Ramon y Cajal" contract to A.C. and
CTO2013-43012-P to A.C. and X.R.), the Clara Immerwahr award of UniCat
(to A.C.), the European Research Council (Starting Grant
ERC-2011-StG-277801 to X.R.), and the Generalitat de Catalunya (2014 SGR
862). K.R. thanks the DFG for a Heisenberg Professorship. X.R. also
acknowledges an ICREA Academia award. The XAS measurements at SSRL BL
2-2 were made possible by the US Department of Energy, Office of Science
(DE-AC02-76SF00515 and DE-SC0012704 to SSRL and NSLS-II, respectively)
and the US National Institutes of Health (P30-EB-009998 to the CWRU
Center for Synchrotron Biosciences).
NR 30
TC 0
Z9 0
U1 18
U2 18
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1433-7851
EI 1521-3773
J9 ANGEW CHEM INT EDIT
JI Angew. Chem.-Int. Edit.
PD NOV 2
PY 2016
VL 55
IS 45
BP 14005
EP 14008
DI 10.1002/anie.201607238
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB0EM
UT WOS:000387016200015
PM 27723252
ER
PT J
AU Kusuma, VA
Li, ZW
Hopkinson, D
Luebke, DR
Chen, SG
AF Kusuma, Victor A.
Li, Zhiwei
Hopkinson, David
Luebke, David R.
Chen, Shiaoguo
TI Evaluating the Energy Performance of a Hybrid Membrane-Solvent Process
for Flue Gas Carbon Dioxide Capture
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
ID CO2 CAPTURE; AMINES; PLANTS
AB A particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure non condensable gas is used to strip CO2 off the rich solvent stream. The gas pressurized stripping column product, having CO2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturing CO2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam-stripping process. We also found the amount of membrane required in this process is much less than required for direct CO2 Capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.
C1 [Kusuma, Victor A.; Hopkinson, David; Luebke, David R.] US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA.
[Kusuma, Victor A.] AECOM Corp, POB 10940, Pittsburgh, PA 15236 USA.
[Li, Zhiwei; Chen, Shiaoguo] Carbon Capture Sci LLC, POB 188, South Pk, PA 15129 USA.
[Luebke, David R.] LumiShield Technol Inc, 1817 Pkwy View Dr,Bldg 18, Pittsburgh, PA 15205 USA.
RP Kusuma, VA; Hopkinson, D (reprint author), US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA.; Kusuma, VA (reprint author), AECOM Corp, POB 10940, Pittsburgh, PA 15236 USA.
EM victor.kusuma@contr.netl.doe.gov
FU Department of Energy, National Energy Technology Laboratory (DOE/NETL)
[DE-FE0007567]; DOE/NETL under the RES contract [DE-FE0004000]; U.S.
Department of Energy
FX This report was prepared as an account of work sponsored by the
Department of Energy, National Energy Technology Laboratory (DOE/NETL)
through Cooperative Agreement No. DE-FE0007567 and in support of
DOE/NETL ongoing research on CO2 capture under the RES
contract DE-FE0004000. This research was also supported in part by an
appointment to the NETL Research Participation Program, sponsored by the
U.S. Department of Energy and administered by the Oak Ridge Institute
for Science and Education. Neither the United States Government nor any
agency thereof, nor any of their employees, nor AECOM, nor any of their
employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe on privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.
NR 25
TC 0
Z9 0
U1 7
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD NOV 2
PY 2016
VL 55
IS 43
BP 11329
EP 11337
DI 10.1021/acs.iecr.6b01656
PG 9
WC Engineering, Chemical
SC Engineering
GA EB1FN
UT WOS:000387095100013
ER
PT J
AU Pirovano, P
Farquhar, ER
Swart, M
McDonald, AR
AF Pirovano, Paolo
Farquhar, Erik R.
Swart, Marcel
McDonald, Aidan R.
TI Tuning the Reactivity of Terminal Nickel(III)-Oxygen Adducts for C-H
Bond Activation
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID COUPLED ELECTRON-TRANSFER; HYDROGEN-ATOM TRANSFER; NONHEME FE(IV)O
OXIDANTS; CARBON-DIOXIDE FIXATION; NICKEL SITE;
STRUCTURAL-CHARACTERIZATION; METAL OXO; 2-STATE REACTIVITY;
MARCUS-THEORY; COMPLEXES
AB Two metastable Ni-III complexes, [Ni-III(OAc)(L)] and [Ni-III(ONO2)(L)] (L = N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate, OAc = acetate), were prepared, adding to the previously prepared [Ni-III(OCO2H)(L)], with the purpose of probing the properties of terminal late-transition metal oxidants. These high-valent oxidants were prepared by the one-electron oxidation of their Ni-II precursors ([Ni-II(OAc)(L)]- and [Ni-II(ONO2)(L)]-) with tris(4-bromophenyl)ammoniumyl hexachloroantimonate. Fascinatingly, the reaction between any [Ni-II(X)(L)]- and NaOCl/acetic acid (AcOH) or cerium ammonium nitrate ((NH4)(2)[Ce-IV(NO3)(6)], CAN), yielded [Ni-III(OAc)(L)] and [Ni-III(ONO2)(L)], respectively. An array of spectroscopic characterizations (electronic absorption, electron paramagnetic resonance, X-ray absorption spectroscopies), electrochemical methods, and computational predictions (density functional theory) have been used to determine the structural, electronic, and magnetic properties of these highly reactive metastable oxidants. The Ni-III-oxidants proved competent in the oxidation of phenols (weak O-H bonds) and a series of hydrocarbon substrates (some with strong CH bonds). Kinetic investigation of the reactions with di-tert-butylphenols showed a 15-fold enhanced reaction rate for [Ni-III(ONO2)(L)] compared to [Ni-III(OCO2H)(L)] and [Ni-III(OAc)(L)], demonstrating the effect of electron-deficiency of the O-ligand on oxidizing power. The oxidation of a series of hydrocarbons by [Ni-III(OAc)(L)] was further examined. A linear correlation between the rate constant and the bond dissociation energy of the C-H bonds in the substrates was indicative of a hydrogen atom transfer mechanism. The reaction rate with dihydroanthracene (k(2) = 8.1 M-1 s(-1)) compared favorably with the most reactive high-valent metal-oxidants, and showcases the exceptional reactivity of late transition metaloxygen adducts.
C1 [Pirovano, Paolo; McDonald, Aidan R.] Univ Dublin, Trinity Coll Dublin, Sch Chem, Coll Green, Dublin 2, Ireland.
[Pirovano, Paolo; McDonald, Aidan R.] Univ Dublin, Trinity Coll Dublin, CRANN AMBER Nanosci Inst, Coll Green, Dublin 2, Ireland.
[Farquhar, Erik R.] Case Western Reserve Univ, Brookhaven Natl Lab, Ctr Synchrotron Biosci, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
[Swart, Marcel] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain.
[Swart, Marcel] Univ Girona, Fac Ciencies, Inst Quim Computac & Catalisi, Campus Montilivi, Girona 17003, Spain.
RP McDonald, AR (reprint author), Univ Dublin, Trinity Coll Dublin, Sch Chem, Coll Green, Dublin 2, Ireland.; McDonald, AR (reprint author), Univ Dublin, Trinity Coll Dublin, CRANN AMBER Nanosci Inst, Coll Green, Dublin 2, Ireland.
EM aidan.mcdonald@tcd.ie
OI McDonald, Aidan/0000-0002-8930-3256
FU European Union [FP7-333948, ERC-2015-STG-678202]; Science Foundation
Ireland [SFI/12/RC/2278]; Swart lab by the Ministerio de Economia y
Competitividad (MINECO) [CTQ2014-59212-P, CTQ2015-70851-ERC]; DIUE of
the Generalitat de Catalunya [2014SGR1202]; European Fund for Regional
Development (FEDER) [UNGI10-4E-801]; DOE Office of Science
[DE-AC02-76SF00515, DE-SC0012704]; NIH [P30-EB-009998]
FX This publication has emanated from research supported by the European
Union (FP7-333948, ERC-2015-STG-678202). Research in the McDonald lab is
supported in part by a research grant from Science Foundation Ireland
(SFI/12/RC/2278), and in the Swart lab by the Ministerio de Economia y
Competitividad (MINECO, Projects CTQ2014-59212-P and CTQ2015-70851-ERC),
the DIUE of the Generalitat de Catalunya (Project 2014SGR1202), and the
European Fund for Regional Development (FEDER, UNGI10-4E-801). XAS
experiments were conducted at SSRL beamline 2-2 (SLAC National
Accelerator Laboratory), with support from the DOE Office of Science
(DE-AC02-76SF00515 and DE-SC0012704) and NIH (P30-EB-009998). We are
grateful to: COST Action CM1305 (ECOSTBio) for networking support; Dr.
Brendan Twamley for performing X-ray crystallography measurements; Dr.
Anthony Fitzpatrick and Dr. Grace Morgan for EPR technical support;
Chiara Cecchini for exploratory studies; Dr. Apparao Draksharapu and
Prof. Wesley Browne for identifying NaOCl/AcOH as a useful oxidant.
NR 73
TC 1
Z9 1
U1 35
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 2
PY 2016
VL 138
IS 43
BP 14362
EP 14370
DI 10.1021/jacs.6b08406
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB1FM
UT WOS:000387095000034
PM 27739688
ER
PT J
AU Xiao, DNJ
Oktawiec, J
Milner, PJ
Long, JR
AF Xiao, Dianne J.
Oktawiec, Julia
Milner, Phillip J.
Long, Jeffrey R.
TI Pore Environment Effects on Catalytic Cyclohexane Oxidation in Expanded
Fe-2(dobdc) Analogues
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID METAL-ORGANIC FRAMEWORKS; NONHEME OXOIRON(IV) COMPLEXES; IRON(II)
COORDINATION SITES; C-H HYDROXYLATION; LIQUID-PHASE; (FEO)-O-IV
COMPLEXES; DIOXYGEN ACTIVATION; AEROBIC OXIDATION; FUNCTIONAL-GROUPS;
BOND ACTIVATION
AB Metal organic frameworks are a new class of heterogeneous catalysts in which molecular-level control over both the immediate and long-range chemical environment surrounding a catalytic center can be readily achieved. Here, the oxidation of cyclohexane to cyclohexanol and cyclohexanone is used as a model reaction to investigate the effect of a hydrophobic pore environment on product selectivity and catalyst stability in a series of iron-based frameworks. Specifically, expanded analogues of Fe-2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) were synthesized and evaluated, including the biphenyl derivative Fe-2(dobpdc) (H(4)dobpdc = 4,4'-dihydroxy- [1,1'-biphenyl]-3,3'-dicarboxylic acid), the terphenyl derivative Fe-2(dotpdc) (H(4)dotpdc = 4,4"-dihydroxy-[1,1':4',1"-terpheny1]-3,3"-dicarboxylicacid), and three modified terphenyl derivatives in which the central ring is replaced with tetrafluoro-, tetramethyl-, or di-tert-butylaryl groups. Within these five materials, a remarkable 3-fold enhancement of the alcohol:ketone (A:K) ratio and an order of magnitude increase in turnover number are achieved by simply altering the framework pore diameter and installing nonpolar functional groups near the iron site. Mossbauer spectroscopy, kinetic isotope effect, and gas adsorption measurements reveal that variations in the A:K selectivities arise from differences in the cyclohexane adsorption enthalpies of these frameworks, which become more favorable as the number of hydrophobic residues and thus van der Waals interactions increase.
C1 [Xiao, Dianne J.; Oktawiec, Julia; Milner, Phillip J.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Long, Jeffrey R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Long, JR (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Long, JR (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM jrlong@berkeley.edu
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-SC0001015]; Nanoporous Materials Genome Center; U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; DOE
Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]
FX The synthetic chemistry, structural analysis, and characterization of
gas adsorption properties were supported through the Center for Gas
Separations Relevant to Clean Energy Technologies, an Energy Frontier
Research Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Award DE-SC0001015. The
reactivity studies were supported by the Nanoporous Materials Genome
Center, funded by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences and Biosciences,
under Award DE-FG02-12ER16362. This research also used resources of the
Advanced Photon Source, a U.S. Department of Energy (DOE) Office of
Science User Facility operated for the DOE Office of Science by Argonne
National Laboratory under Contract No. DE-AC02-06CH11357. We thank
Douglas A. Reed, Miguel I. Gonzalez, and David Z. Zee for experimental
assistance and helpful discussions.
NR 79
TC 2
Z9 2
U1 34
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 2
PY 2016
VL 138
IS 43
BP 14371
EP 14379
DI 10.1021/jacs.6b08417
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA EB1FM
UT WOS:000387095000035
PM 27704846
ER
PT J
AU Bouchard, KE
Aimone, JB
Chun, MY
Dean, T
Denker, M
Diesmann, M
Donofrio, DD
Frank, LM
Kasthuri, N
Koch, C
Ruebel, O
Simon, HD
Sommer, FT
Prabhat
AF Bouchard, Kristofer E.
Aimone, James B.
Chun, Miyoung
Dean, Thomas
Denker, Michael
Diesmann, Markus
Donofrio, David D.
Frank, Loren M.
Kasthuri, Narayanan
Koch, Chirstof
Ruebel, Oliver
Simon, Horst D.
Sommer, Friedrich T.
Prabhat
TI High-Performance Computing in Neuroscience for Data-Driven Discovery,
Integration, and Dissemination
SO NEURON
LA English
DT Editorial Material
ID NETWORK; SIMULATION
AB Opportunities offered by new neuro-technologies are threatened by lack of coherent plans to analyze,manage, and understand the data. High-performance computing will allow exploratory analysis of massive datasets stored in standardized formats, hosted in open repositories, and integrated with simulations.
C1 [Bouchard, Kristofer E.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA.
[Bouchard, Kristofer E.; Frank, Loren M.] UC San Francisco, Kavli Inst Fundamental Neurosci, San Francisco, CA 94158 USA.
[Bouchard, Kristofer E.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA.
[Aimone, James B.] Sandia Natl Labs, Ctr Comp Res, POB 5800, Albuquerque, NM 87185 USA.
[Chun, Miyoung] Kavli Fdn, Oxnard, CA 93030 USA.
[Dean, Thomas] Google Res, Mountain View, CA 94043 USA.
[Denker, Michael; Diesmann, Markus] Julich Res Ctr, JARA BRAIN Inst, Inst Adv Simulat IAS 6, Inst Neurosci & Med INM 6, D-52425 Julich, Germany.
[Diesmann, Markus] Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy & Psychosomat, D-52062 Aachen, Germany.
[Diesmann, Markus] Rhein Westfal TH Aachen, Dept Phys, D-52062 Aachen, Germany.
[Donofrio, David D.; Ruebel, Oliver] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Frank, Loren M.] UC San Francisco, Howard Hughes Med Inst, San Francisco, CA 94158 USA.
[Frank, Loren M.] UC San Francisco, Dept Physiol, San Francisco, CA 94158 USA.
[Kasthuri, Narayanan] Argonne Natl Lab, Nanosci Div, Lemont, IL 60439 USA.
[Kasthuri, Narayanan] Univ Chicago, Dept Neurobiol, Chicago, IL 60637 USA.
[Koch, Chirstof] Allen Inst Brain Sci, Seattle, WA 98109 USA.
[Simon, Horst D.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Sommer, Friedrich T.] Univ Calif Berkeley, Redwood Ctr Theoret Neurosci, Berkeley, CA 94720 USA.
[Prabhat] Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA.
RP Bouchard, KE (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA.; Bouchard, KE (reprint author), UC San Francisco, Kavli Inst Fundamental Neurosci, San Francisco, CA 94158 USA.; Bouchard, KE (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA.; Prabhat (reprint author), Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA.
EM kebouchard@lbl.gov; prabhat@lbl.gov
NR 14
TC 3
Z9 3
U1 1
U2 1
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0896-6273
EI 1097-4199
J9 NEURON
JI Neuron
PD NOV 2
PY 2016
VL 92
IS 3
BP 628
EP 631
DI 10.1016/j.neuron.2016.10.035
PG 4
WC Neurosciences
SC Neurosciences & Neurology
GA EA6TU
UT WOS:000386762700016
PM 27810006
ER
PT J
AU Morozovska, AN
Eliseev, EA
Genenko, YA
Vorotiahin, IS
Silibin, MV
Cao, Y
Kim, Y
Glinchuk, MD
Kalinin, SV
AF Morozovska, Anna N.
Eliseev, Eugene A.
Genenko, Yuri A.
Vorotiahin, Ivan S.
Silibin, Maxim V.
Cao, Ye
Kim, Yunseok
Glinchuk, Maya D.
Kalinin, Sergei V.
TI Flexocoupling impact on size effects of piezoresponse and conductance in
mixed-type ferroelectric semiconductors under applied pressure
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSITION-METAL OXIDES; THIN-FILM PROPERTIES; ION BATTERY CATHODE;
NANOSCALE; FLEXOELECTRICITY; MICROSCOPY; FIELD; MULTIFERROICS;
COEFFICIENTS; PHYSICS
AB We explore the role of flexoelectric effect in functional properties of nanoscale ferroelectric films with mixed electronic-ionic conductivity. Using a coupled Ginzburg-Landau model, we calculate spontaneous polarization, effective piezoresponse, elastic strain and compliance, carrier concentration, and piezoconductance as a function of thickness and applied pressure. In the absence of flexoelectric coupling, the studied physical quantities manifest well-explored size-induced phase transitions, including transition to paraelectric phase below critical thickness. Similarly, in the absence of external pressure flexoelectric coupling affects properties of these films only weakly. However, the combined effect of flexoelectric coupling and external pressure induces polarizations at the film surfaces, which cause the electric built-in field that destroys the thickness-induced phase transition to paraelectric phase and induces the electretlike state with irreversible spontaneous polarization below critical thickness. Interestingly, the built-in field leads to noticeable increase of the average strain and elastic compliance in this thickness range. We further illustrate that the changes of the electron concentration by several orders of magnitude under positive or negative pressures can lead to the occurrence of high-or low-conductivity states, i.e., the nonvolatile piezoresistive switching, in which the swing can be controlled by the film thickness and flexoelectric coupling. The obtained theoretical results can be of fundamental interest for ferroic systems, and can provide a theoretical model for explanation of a set of recent experimental results on resistive switching and transient polar states in these systems.
C1 [Morozovska, Anna N.; Vorotiahin, Ivan S.] Natl Acad Sci Ukraine, Inst Phys, 46 Prospekt Nauky, UA-03028 Kiev, Ukraine.
[Eliseev, Eugene A.; Glinchuk, Maya D.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, Krjijanovskogo 3, UA-03142 Kiev, Ukraine.
[Genenko, Yuri A.; Vorotiahin, Ivan S.] Tech Univ Darmstadt, Inst Mat Wissensch, Jovanka Bontschits Str 2, D-64287 Darmstadt, Germany.
[Silibin, Maxim V.] Natl Res Univ Elect Technol MIET, Bldg 1,Shokin Sq, Moscow 124498, Russia.
[Cao, Ye; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Kim, Yunseok] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea.
RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Phys, 46 Prospekt Nauky, UA-03028 Kiev, Ukraine.
EM anna.n.morozovska@gmail.com; genenko@mm.tu-darmstadt.de;
sergei2@ornl.gov
RI Genenko, Yuri/A-2663-2008
OI Genenko, Yuri/0000-0002-2943-2363
FU National Academy of Sciences of Ukraine [07-06-15, CNMS2016-061]; Office
of Basic Energy Sciences, U.S. Department of Energy; German Research
Foundation [GE 1171/7-1]; President of the Russian Federation
[14.Y30.15.2883-MK]; project part of the state tasks in the field of
scientific activity [11.2551.2014/K]; Basic Science Research program
through the National Research Foundation of Korea - Ministry of Science,
ICT and Future Planning [NRF-2014R1A4A1008474]
FX E.A.E. and A.N.M. acknowledge the National Academy of Sciences of
Ukraine (Grant No. 07-06-15) and Grant No. CNMS2016-061. S.V.K.
acknowledges the Office of Basic Energy Sciences, U.S. Department of
Energy. I.S.V. is grateful to the German Research Foundation for support
through Grant No. GE 1171/7-1. M.V.S. acknowledges the grant of the
President of the Russian Federation for state support of young Russian
scientists-Ph.D. (Grant No. 14.Y30.15.2883-MK) and the project part of
the state tasks in the field of scientific activity Grant No.
11.2551.2014/K. Y.K. acknowledges that a portion of this work was
supported by the Basic Science Research program through the National
Research Foundation of Korea funded by the Ministry of Science, ICT and
Future Planning (Grant No. NRF-2014R1A4A1008474).
NR 65
TC 1
Z9 1
U1 5
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 2
PY 2016
VL 94
IS 17
AR 174101
DI 10.1103/PhysRevB.94.174101
PG 10
WC Physics, Condensed Matter
SC Physics
GA EA5JN
UT WOS:000386656100001
ER
PT J
AU Badran, H
Scholey, C
Auranen, K
Grahn, T
Greenlees, PT
Herzan, A
Jakobsson, U
Julin, R
Juutinen, S
Konki, J
Leino, M
Mallaburn, M
Pakarinen, J
Papadakis, P
Partanen, J
Peura, P
Rahkila, P
Sandzelius, M
Saren, J
Sorri, J
Stolze, S
Uusitalo, J
AF Badran, H.
Scholey, C.
Auranen, K.
Grahn, T.
Greenlees, P. T.
Herzan, A.
Jakobsson, U.
Julin, R.
Juutinen, S.
Konki, J.
Leino, M.
Mallaburn, M.
Pakarinen, J.
Papadakis, P.
Partanen, J.
Peura, P.
Rahkila, P.
Sandzelius, M.
Saren, J.
Sorri, J.
Stolze, S.
Uusitalo, J.
TI Confirmation of the new isotope Pb-178
SO PHYSICAL REVIEW C
LA English
DT Article
ID TOTAL DATA READOUT; EVEN-EVEN NUCLEI; ALPHA-DECAY; FINE-STRUCTURE;
BRANCHING RATIOS; SHELL
AB The extremely neutron-deficient isotope Pb-178 has been produced. The GREAT spectrometer at the focal plane position of the gas-filled separator RITU was used to study the alpha decay of Pb-178 and its alpha-decay chain through alpha-alpha correlations. The alpha decay was measured to have an energy and half-life of E-alpha = 7610(30) keV and t(1/2) = 0.21(-0.08)(+0.21) ms, respectively. The half-life is consistent with recent theoretical calculations using the Coulomb and proximity potential model. The alpha-decay reduced width and hindrance factor for Pb-178 were deduced and correspond to an unhindered Delta l = 0 transition. In addition, the mass excess of Pb-178 and the alpha-decay Q value were calculated from the experimental results and compared to theoretical values.
C1 [Badran, H.; Scholey, C.; Auranen, K.; Grahn, T.; Greenlees, P. T.; Herzan, A.; Julin, R.; Juutinen, S.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Peura, P.; Rahkila, P.; Sandzelius, M.; Saren, J.; Sorri, J.; Stolze, S.; Uusitalo, J.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland.
[Jakobsson, U.] KTH Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden.
[Mallaburn, M.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Auranen, K.] Argonne Natl Lab, 9700 Cass Ave, Lemont, IL 60439 USA.
[Auranen, K.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
[Jakobsson, U.] Univ Helsinki, Lab Radiochem, Dept Chem, POB 55, FI-00014 Helsinki, Finland.
[Peura, P.] Univ Helsinki, Helsinki Inst Phys, POB 64, FIN-00014 Helsinki, Finland.
RP Badran, H (reprint author), Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland.
EM hussam.h.badran@jyu.fi
RI Scholey, Catherine/G-2720-2014
OI Scholey, Catherine/0000-0002-8743-6071
FU Academy of Finland under the Finnish Center of Excellence Program
[213503]; Marie Curie Career Integration Grant [304033]; Academy of
Finland [257562]
FX The authors would like to thank John Green from Argonne National
Laboratory and B. Lommel and the GSI target laboratory staff for
producing the Pd targets. This work has been supported by the Academy of
Finland under the Finnish Center of Excellence Program (Contract No.
213503), the Marie Curie Career Integration Grant (Grant No. 304033),
and the Academy of Finland (Grant No. 257562).
NR 38
TC 0
Z9 0
U1 3
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV 2
PY 2016
VL 94
IS 5
AR 054301
DI 10.1103/PhysRevC.94.054301
PG 6
WC Physics, Nuclear
SC Physics
GA EA5JP
UT WOS:000386656400001
ER
PT J
AU Liu, J
Hill, JC
Sherwin, BD
Petri, A
Bohm, V
Haiman, Z
AF Liu, Jia
Hill, J. Colin
Sherwin, Blake D.
Petri, Andrea
Boehm, Vanessa
Haiman, Zoltan
TI CMB lensing beyond the power spectrum: Cosmological constraints from the
one-point probability distribution function and peak counts
SO PHYSICAL REVIEW D
LA English
DT Article
ID COSMIC SHEAR; NEW-MODEL; WEAK; STATISTICS; BISPECTRUM; POLARIZATION;
INFORMATION; TEMPERATURE; PREDICTIONS; PARAMETERS
AB Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB stage III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use N-body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function and provide specific forecasts for the ongoing stage III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 9 sigma (PDF) and 6 sigma (peaks) detections of these statistics with AdvACT. Our simulation pipeline fully accounts for the non-Gaussianity of the lensing reconstruction noise, which is significant and cannot be neglected. Combining the power spectrum, PDF, and peak counts for AdvACT will tighten cosmological constraints in the Omega(m)-sigma(8) plane by approximate to 30%, compared to using the power spectrum alone.
C1 [Liu, Jia] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Liu, Jia; Hill, J. Colin; Haiman, Zoltan] Columbia Univ, Dept Astron, New York, NY 10027 USA.
[Sherwin, Blake D.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA.
[Sherwin, Blake D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Petri, Andrea] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA.
[Boehm, Vanessa] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Haiman, Zoltan] Columbia Univ, ISCAP, New York, NY 10027 USA.
RP Liu, J (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Liu, J (reprint author), Columbia Univ, Dept Astron, New York, NY 10027 USA.
EM jia@astro.princeton.edu
FU NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1602663];
Simons Foundation; Simons Fellowship; Miller Institute for Basic
Research in Science at the University of California, Berkeley; National
Science Foundation (NSF) [AST-1210877]; ROADS award at Columbia
University; NSF [ACI-1053575]; Canada Foundation for Innovation under
the auspices of Compute Canada; Government of Ontario; Ontario Research
Fund-Research Excellence; University of Toronto
FX We thank Nick Battaglia, Francois Bouchet, Simone Ferraro, Antony Lewis,
Mark Neyrinck, Emmanuel Schaan, and Marcel Schmittfull for useful
discussions. We acknowledge helpful comments from an anonymous referee.
J. L. is supported by an NSF Astronomy and Astrophysics Postdoctoral
Fellowship under Award No. AST-1602663. This work is partially supported
by a Junior Fellowship from the Simons Foundation to JCH and a Simons
Fellowship to Z. H.. B. D. S. is supported by a Fellowship from the
Miller Institute for Basic Research in Science at the University of
California, Berkeley. This work is partially supported by National
Science Foundation (NSF) Grant No. AST-1210877 (to Z. H.) and by a ROADS
award at Columbia University. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported by NSF
Grant No. ACI-1053575. Computations were performed on the GPC
supercomputer at the SciNet HPC consortium. SciNet is funded by the
Canada Foundation for Innovation under the auspices of Compute Canada,
the Government of Ontario, the Ontario Research Fund-Research
Excellence, and the University of Toronto.
NR 80
TC 0
Z9 0
U1 1
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD NOV 2
PY 2016
VL 94
IS 10
AR 103501
DI 10.1103/PhysRevD.94.103501
PG 15
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA EA5ID
UT WOS:000386651900001
ER
PT J
AU Harvey-Thompson, AJ
Sefkow, AB
Wei, MS
Nagayama, T
Campbell, EM
Blue, BE
Heeter, RF
Koning, JM
Peterson, KJ
Schmitt, A
AF Harvey-Thompson, A. J.
Sefkow, A. B.
Wei, M. S.
Nagayama, T.
Campbell, E. M.
Blue, B. E.
Heeter, R. F.
Koning, J. M.
Peterson, K. J.
Schmitt, A.
TI Laser propagation measurements in long-scale-length underdense plasmas
relevant to magnetized liner inertial fusion
SO PHYSICAL REVIEW E
LA English
DT Article
ID SIMULATIONS; TARGETS
AB We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n(e)/n(crit) similar to 0.04 is irradiated by a multi-ns, multi-kJ, 0.35-mu m, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0 x 10(14) to 2.5 x 10(14) W/cm(2) and pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity (I = 1.5 x 10(14) W/cm(2)) beams can efficiently couple energy (similar to 82% of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The demonstrated heating efficiency is significantly higher than is thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)].
C1 [Harvey-Thompson, A. J.; Sefkow, A. B.; Nagayama, T.; Peterson, K. J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Wei, M. S.; Blue, B. E.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
[Campbell, E. M.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA.
[Heeter, R. F.; Koning, J. M.] Lawrence Livermore Natl Lab, POB 808,L-472, Livermore, CA 94551 USA.
[Schmitt, A.] Naval Res Lab, Washington, DC 20375 USA.
RP Harvey-Thompson, AJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
FU Laboratory Directed Research and Development Program at Sandia; National
Nuclear Security Administration [DE-AC04-94AL85000]
FX The authors gratefully acknowledge the outstanding support of S. B.
Hansen, C. A. Jennings, R. D. McBride, J. Emig, D. Canning, C. Sorce, V.
Gelbov, C. Stoeckl, and the entire OMEGA-EP crew at the Laboratory for
Laser Energetics and General Atomics for target fabrication. A. B. S.
gratefully acknowledges M. M. Marinak, M. Pehul, and H. A. Scott for
code support. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the National Nuclear
Security Administration under Contract No. DE-AC04-94AL85000. Support
was also provided in part by the Laboratory Directed Research and
Development Program at Sandia.
NR 10
TC 0
Z9 0
U1 6
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0045
EI 2470-0053
J9 PHYS REV E
JI Phys. Rev. E
PD NOV 2
PY 2016
VL 94
IS 5
AR 051201
DI 10.1103/PhysRevE.94.051201
PG 5
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA EA6YX
UT WOS:000386776200001
PM 27967028
ER
PT J
AU Woods, LM
Dalvit, DAR
Tkatchenko, A
Rodriguez-Lopez, P
Rodriguez, AW
Podgornik, R
AF Woods, L. M.
Dalvit, D. A. R.
Tkatchenko, A.
Rodriguez-Lopez, P.
Rodriguez, A. W.
Podgornik, R.
TI Materials perspective on Casimir and van der Waals interactions
SO REVIEWS OF MODERN PHYSICS
LA English
DT Article
ID DENSITY-FUNCTIONAL-THEORY; GENERALIZED GRADIENT APPROXIMATION;
FLUCTUATION-INDUCED INTERACTIONS; CONDUCTING SPHERICAL-SHELL; WALLED
CARBON NANOTUBES; LONG-RANGE INTERACTIONS; ZERO-POINT ENERGY; MU-M
RANGE; DISPERSION FORCES; TOPOLOGICAL INSULATORS
AB Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.
C1 [Woods, L. M.] Univ S Florida, Dept Phys, Tampa, FL 33620 USA.
[Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA.
[Tkatchenko, A.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany.
[Tkatchenko, A.] Univ Luxembourg, Phys & Mat Sci Res Unit, L-1511 Luxembourg, Luxembourg.
[Rodriguez-Lopez, P.] Univ Paris 11, CNRS UMR 8626, Lab Phys Theor & Modeles Stat, Bat 100, F-91405 Orsay, France.
[Rodriguez-Lopez, P.] Univ Paris 11, CNRS UMR 8626, GISC, Bat 100, F-91405 Orsay, France.
[Rodriguez, A. W.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08540 USA.
[Podgornik, R.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Podgornik, R.] Jozef Stefan Inst, Dept Theoret Phys, SI-1000 Ljubljana, Slovenia.
[Podgornik, R.] Univ Ljubljana, Fac Math & Phys, Dept Phys, SI-1000 Ljubljana, Slovenia.
RP Woods, LM (reprint author), Univ S Florida, Dept Phys, Tampa, FL 33620 USA.
EM lmwoods@usf.edu
OI Rodriguez-Lopez, Pablo/0000-0003-0625-2682
FU U.S. Department of Energy [DE-FG02-06ER46297]; LANL LDRD program;
European Research Council (ERC StG VDW-CMAT); People Programme (Marie
Curie Actions) of the European Union's Seventh Framework Programme under
REA grant [302005]; project TerMic (Spanish Government)
[FIS2014-52486-R]; U.S. National Science Foundation [DMR-1454836]; U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-SC0008176]
FX L. M. W. acknowledges financial support from the U.S. Department of
Energy under Award No. DE-FG02-06ER46297. D. A. R. D. was supported by
the LANL LDRD program. A. T. thanks the European Research Council (ERC
StG VDW-CMAT) for funding. P. R.-L. acknowledges financial support from
People Programme (Marie Curie Actions) of the European Union's Seventh
Framework Programme (No. FP7/2007-2013) under REA grant agreement No.
302005 and by project TerMic (Grant No. FIS2014-52486-R, Spanish
Government) and also acknowledges helpful discussions with A. G.
Grushin. A. W. R. acknowledges financial support from the U.S. National
Science Foundation under Grant No. DMR-1454836. R. P. acknowledges the
support of the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering under Award No.
DE-SC0008176. R. P. thanks V. Adrian Parsegian, Roger H. French, Wai-Yim
Ching, Nicole F. Steinmetz, and Jaime C. Hopkins for their input in
preparing this review.
NR 628
TC 6
Z9 6
U1 44
U2 44
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0034-6861
EI 1539-0756
J9 REV MOD PHYS
JI Rev. Mod. Phys.
PD NOV 2
PY 2016
VL 88
IS 4
AR 045003
DI 10.1103/RevModPhys.88.045003
PG 48
WC Physics, Multidisciplinary
SC Physics
GA EA5IQ
UT WOS:000386653300001
ER
PT J
AU Kim, BS
Rhim, JW
Kim, B
Kim, C
Park, SR
AF Kim, Beom Seo
Rhim, Jun-Won
Kim, Beomyoung
Kim, Changyoung
Park, Seung Ryong
TI Determination of the band parameters of bulk 2H-MX2 (M = Mo, W; X = S,
Se) by angle-resolved photoemission spectroscopy
SO SCIENTIFIC REPORTS
LA English
DT Article
ID MOLYBDENUM-DISULFIDE; VALLEY POLARIZATION; MONOLAYER WSE2; LAYER MOS2;
SEMICONDUCTOR; GENERATION; GRAPHENE; FILMS; FIELD
AB Monolayer MX2 (M = Mo, W; X = S, Se) has recently been drawn much attention due to their application possibility as well as the novel valley physics. On the other hand, it is also important to understand the electronic structures of bulk MX2 for material applications since it is very challenging to grow large size uniform and sustainable monolayer MX2. We performed angle-resolved photoemission spectroscopy and tight binding calculations to investigate the electronic structures of bulk 2H-MX2. We could extract all the important electronic band parameters for bulk 2H-MX2, including the band gap, direct band gap size at K (-K) point and spin splitting size. Upon comparing the parameters for bulk 2H-MX2 (our work) with mono-and multi-layer MX2 (published), we found that stacked layers, substrates for thin films, and carrier concentration significantly affect the parameters, especially the band gap size. The origin of such effect is discussed in terms of the screening effect.
C1 [Kim, Beom Seo; Kim, Changyoung] Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul 08826, South Korea.
[Kim, Beom Seo; Kim, Changyoung] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea.
[Kim, Beom Seo; Park, Seung Ryong] Incheon Natl Univ, Dept Phys, Inchon 22012, South Korea.
[Rhim, Jun-Won] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany.
[Kim, Beomyoung] Pohang Univ Sci & Technol, Dept Phys, Pohang 37673, South Korea.
[Kim, Beomyoung] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Park, SR (reprint author), Incheon Natl Univ, Dept Phys, Inchon 22012, South Korea.; Rhim, JW (reprint author), Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany.
EM phyruth@gmail.com; AbePark@inu.ac.kr
FU Incheon National University Research Grant; [IBS-R009-G2]
FX We thank Yeongkwan Kim, Jonathan D. Denlinger, Jongkeun Jung, and
Soohyun Cho for assistance in the experiments. We also thank Wonshik
Kyung for helpful discussions. This work was supported by the Incheon
National University Research Grant in 2013. B.S.K. and C.K. were
supported by IBS-R009-G2, Korea.
NR 43
TC 0
Z9 0
U1 15
U2 15
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD NOV 2
PY 2016
VL 6
AR 36389
DI 10.1038/srep36389
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EA6UA
UT WOS:000386763300001
PM 27805019
ER
PT J
AU Ryu, J
No, K
Kim, Y
Park, E
Hong, S
AF Ryu, Jeongjae
No, Kwangsoo
Kim, Yeontae
Park, Eugene
Hong, Seungbum
TI Synthesis and Application of Ferroelectric Poly(Vinylidene
Fluoride-co-Trifluoroethylene) Films using Electrophoretic Deposition
SO SCIENTIFIC REPORTS
LA English
DT Article
ID THICK-FILMS; COPOLYMER; SPECTROSCOPY; FABRICATION; CERAMICS; FLUORIDE;
SPECTRA
AB In this study, we investigated the deposition kinetics of polyvinylidene fluoride copolymerized with trifluoroethylene (P(VDF-TrFE)) particles on stainless steel substrates during the electrophoretic deposition (EPD) process. The effect of applied voltage and deposition time on the structure and ferroelectric property of the P(VDF-TrFE) films was studied in detail. A method of repeated EPD and heat treatment above melting point were employed to fabricate crack-free P(VDF-TrFE) thick films. This method enabled us to fabricate P(VDF-TrFE) films with variable thicknesses. The morphology of the obtained films was investigated by scanning electron microscopy (SEM), and the formation of beta-phase was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. P(VDF-TrFE) films prepared with various thicknesses showed remnant polarization (P-r) of around 4 mu C/cm(2). To demonstrate the applicability of our processing recipe to complex structures, we fabricated a spring-type energy harvester by depositing P(VDF-TrFE) films on stainless steel springs using EPD process. Our preliminary results show that an electrophoretic deposition can be applied to produce high-quality P(VDF-TrFE) films on planar as well as three-dimensional (3-D) substrates.
C1 [Ryu, Jeongjae; No, Kwangsoo; Kim, Yeontae; Hong, Seungbum] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea.
[Park, Eugene] Nelson Mandela African Inst Sci & Technol, Mat & Energy Sci & Engn, Arusha 447, Tanzania.
[Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA.
RP No, K; Hong, S (reprint author), Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea.; Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA.
EM ksno@kaist.ac.kr; hong@anl.gov
RI No, Kwangsoo/C-1983-2011; Hong, Seungbum/B-7708-2009
OI Hong, Seungbum/0000-0002-2667-1983
FU Mid-career Researcher Program through the National Research Foundation
of Korea (NRF) - Ministry of Education, Science and Technology (MEST)
[2010-0015063]; Conversion Research Center Program through the National
Research Foundation of Korea (NRF) - Ministry of Education, Science and
Technology (MEST) [2011K000674]; Basic Science Research Program through
the National Research Foundation of Korea (NRF) - Ministry of Education
[2015R1D1A1A01056983]; Laboratory Directed Research and Development
(LDRD) from Argonne National Laboratory [DE-AC02-06CH11357]
FX This research was supported by the Mid-career Researcher Program (No.
2010-0015063) and Conversion Research Center Program (No. 2011K000674)
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (MEST) and Basic Science
Research Program (No. 2015R1D1A1A01056983) through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education. Work at
Argonne National Laboratory (S.H., data analysis and contribution to
writing of manuscript) was supported by Laboratory Directed Research and
Development (LDRD) funding from Argonne National Laboratory, provided by
the Director, Office of Science, of the U.S. Department of Energy under
contract DE-AC02-06CH11357.
NR 38
TC 0
Z9 0
U1 10
U2 10
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD NOV 2
PY 2016
VL 6
AR 36176
DI 10.1038/srep36176
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EA6HN
UT WOS:000386727600001
PM 27805008
ER
PT J
AU Soheilypour, M
Mofrad, MRK
AF Soheilypour, M.
Mofrad, M. R. K.
TI Regulation of RNA-binding proteins affinity to export receptors enables
the nuclear basket proteins to distinguish and retain aberrant mRNAs
SO SCIENTIFIC REPORTS
LA English
DT Article
ID AGENT-BASED MODEL; PORE COMPLEX; QUALITY-CONTROL; NUCLEOCYTOPLASMIC
TRANSPORT; SACCHAROMYCES-CEREVISIAE; SPLICING FACTORS; YEAST; DYNAMICS;
MICROSCOPY; INTERACTS
AB Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear bask et proteins could more easily capture and retain them inside the nucleus.
C1 [Soheilypour, M.; Mofrad, M. R. K.] Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Bioengn, Berkeley, CA 94720 USA.
[Soheilypour, M.; Mofrad, M. R. K.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Mofrad, M. R. K.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA.
RP Mofrad, MRK (reprint author), Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Bioengn, Berkeley, CA 94720 USA.; Mofrad, MRK (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.; Mofrad, MRK (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA.
EM mofrad@berkeley.edu
FU National Science Foundation through a CAREER Award [CBET-0955291]; Intel
Corporation
FX We gratefully acknowledge fruitful discussions with and suggestions by
Dr. Karsten Weis. We also thank Dr. Mohammad Azimi for his foundational
contributions in creating the original version of our ABM model and
codes, and Mohaddeseh Peyro, Kiavash Garakani, and the rest of Molecular
Cell Biomechanics Laboratory for their fruitful discussions. Financial
support from National Science Foundation through a CAREER Award
(CBET-0955291) is gratefully acknowledged. Simulations were conducted on
a computer cluster, which was partly funded by Intel Corporation.
NR 67
TC 0
Z9 0
U1 1
U2 1
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD NOV 2
PY 2016
VL 6
AR 35380
DI 10.1038/srep35380
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EA6FZ
UT WOS:000386723300001
PM 27805000
ER
PT J
AU Ma, JL
Mahapatra, P
Zitney, SE
Biegler, LT
Miller, DC
AF Ma, Jinliang
Mahapatra, Priyadarshi
Zitney, Stephen E.
Biegler, Lorenz T.
Miller, David C.
TI D-RM Builder: A software tool for generating fast and accurate nonlinear
dynamic reduced models from high-fidelity models
SO COMPUTERS & CHEMICAL ENGINEERING
LA English
DT Article
DE Data-driven dynamic reduced models; Nonlinear system identification
models; Dynamic simulation; Model predictive control; Engineering
software development; Carbon capture
ID CARBON CAPTURE SYSTEMS; IDENTIFICATION; SIMULATION; OPTIMIZATION;
NETWORKS
AB Dynamic reduced models (D-RMs) derived from rigorous models are highly desired for speeding up dynamic simulations. A useful software tool named D-RM Builder was developed to automatically generate data-driven D-RMs from high-fidelity dynamic models. It allows a user to configure input/output variables, sample input space and generate sequences of step changes, launch high-fidelity model simulations, fit simulation results to a D-RM, and finally visualize and validate the D-RM. The Decoupled A-B Net (DABNet) nonlinear system identification model was used as the main D-RM type and was enhanced to model nonlinear multiple input and multiple output dynamic systems with options for double-pole formulation to handle fast/slow time scales and pole value optimization. The D-RM Builder tool has been successfully used to generate D-RMs for a highly nonlinear pH neutralization reactor system and a two-time-scale bubbling fluidized bed adsorber-reactor for CO2 capture. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Ma, Jinliang; Mahapatra, Priyadarshi; Zitney, Stephen E.] Natl Energy Technol Lab, Morgantown, WV 26507 USA.
[Ma, Jinliang] AECOM, Morgantown, WV 26505 USA.
[Mahapatra, Priyadarshi] West Virginia Univ, Corp Res, Morgantown, WV 26506 USA.
[Biegler, Lorenz T.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15289 USA.
[Miller, David C.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
RP Ma, JL (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA.
EM jinliang.ma@netl.doe.gov
FU U.S. Department of Energy, Office of Fossil Energy as part of the Carbon
Capture Simulation Initiative (CCSI); National Energy Technology
Laboratory [DE-FE0004000]
FX This work was supported by the U.S. Department of Energy, Office of
Fossil Energy as part of the Carbon Capture Simulation Initiative
(CCSI). This technical effort was performed in support of the National
Energy Technology Laboratory's ongoing research under the RES contract
DE-FE0004000. This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.
NR 23
TC 0
Z9 0
U1 4
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0098-1354
EI 1873-4375
J9 COMPUT CHEM ENG
JI Comput. Chem. Eng.
PD NOV 2
PY 2016
VL 94
BP 60
EP 74
DI 10.1016/j.compchemeng.2016.07.021
PG 15
WC Computer Science, Interdisciplinary Applications; Engineering, Chemical
SC Computer Science; Engineering
GA EA0BA
UT WOS:000386247700005
ER
PT J
AU Hu, YY
Smith, CE
Cai, ZH
Donnelly, LAJ
Yang, J
Hu, JCC
Simmer, JP
AF Hu, Yuanyuan
Smith, Charles E.
Cai, Zhonghou
Donnelly, Lorenza A. -J.
Yang, Jie
Hu, Jan C. -C.
Simmer, James P.
TI Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6
Amelx(-/-) mice and Amelx(+/-) lyonization
SO MOLECULAR GENETICS & GENOMIC MEDICINE
LA English
DT Article
DE Ameloblast; amelogenesis imperfecta; amelogenin; amorphous calcium
phosphate; enamel; incisor; molar; octacalcium phosphate
ID LINKED AMELOGENESIS IMPERFECTA; DEVELOPING DENTAL ENAMEL; PRIMARY RNA
TRANSCRIPT; AMINO-ACID-SEQUENCE; MOUSE MOLAR TOOTH; RAT INCISOR;
MESSENGER-RNA; GENE-EXPRESSION; BOVINE ENAMEL; NULL MICE
AB Background Amelogenin is required for normal enamel formation and is the most abundant protein in developing enamel.
Methods Amelx(+/+), Amelx(+/,) and Amelx(-/-) molars and incisors from C57BL/6 mice were characterized using RT-PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and X-ray diffraction.
Results No amelogenin protein was detected by Western blot analyses of enamel extracts from Amelx(-/-) mice. Amelx(-/-) incisor enamel averaged 20.3 +/- 3.3 mu m in thickness, or only 1/6th that of the wild type (122.3 +/- 7.9 mu m). Amelx(-/-) incisor enamel nanohardness was 1.6 Gpa, less than half that of wild-type enamel (3.6 Gpa). Amelx(+/-) incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelx(-/-) enamel and varied levels of amelogenin in Amelx(+/-) incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx(+/+) and Amelx(-/-) enamel extending from mineralized dentin collagen to the ameloblast. The Amelx(-/-) enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. X-ray diffraction determined that the predominant mineral in Amelx(-/-) enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelx(-/-) ameloblasts were similar to wild-type ameloblasts except no Tomes' processes extended into the thin enamel. Amelx(-/-) and Amelx(+/-) molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage.
Conclusion Amelogenin forms a resorbable matrix that separates and supports, but does not shape early secretory-stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomes' process.
C1 [Hu, Yuanyuan; Smith, Charles E.; Donnelly, Lorenza A. -J.; Yang, Jie; Hu, Jan C. -C.; Simmer, James P.] Univ Michigan, Dept Biol & Mat Sci, Sch Dent, 1210 Eisenhower Pl, Ann Arbor, MI 48108 USA.
[Smith, Charles E.] McGill Univ, Dept Anat & Cell Biol, Facil Electron Microscopy Res, Fac Dent, Montreal, PQ H3A 2B2, Canada.
[Cai, Zhonghou] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave Bldg 431-B005, Argonne, IL 60439 USA.
[Yang, Jie] Peking Univ, Sch & Hosp Stomatol, Dept Pediat Dent, 22 South Ave, Beijing 100081, Peoples R China.
RP Simmer, JP (reprint author), Univ Michigan, Dept Biol & Mat Sci, Dent Res Lab, 1210 Eisenhower Pl, Ann Arbor, MI 48108 USA.
EM jsimmer@umich.edu
FU National Institute of Dental and Craniofacial Research [DE012769,
DE015846]; Basic Energy Sciences [DE-AC02-06CH11357]
FX National Institute of Dental and Craniofacial Research (Grant/Award
Number: 'DE012769', 'DE015846'), Basic Energy Sciences (Grant/Award
Number: 'DE-AC02-06CH11357').
NR 118
TC 1
Z9 1
U1 0
U2 0
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2324-9269
J9 MOL GENET GENOM MED
JI Mol. Genet. Genom. Med.
PD NOV
PY 2016
VL 4
IS 6
BP 641
EP +
DI 10.1002/mgg3.252
PG 21
WC Genetics & Heredity
SC Genetics & Heredity
GA EL2LP
UT WOS:000394451500008
PM 27896287
ER
PT J
AU Al Hosni, M
Vialle, S
Gurevich, B
Daley, TM
AF Al Hosni, Mohammed
Vialle, Stephanie
Gurevich, Boris
Daley, Thomas M.
TI Estimation of rock frame weakening using time-lapse crosswell: The Frio
brine pilot project
SO GEOPHYSICS
LA English
DT Article
ID CO2 GEOLOGICAL STORAGE; NORTH-SEA; SEISMIC VELOCITY; INJECTED CO2;
SATURATION; PHYSICS; SANDSTONE; INTEGRITY; TRANSPORT; CEMENTATION
AB CO2 injection into subsurface reservoirs leads to pressure and saturation changes. Furthermore, CO2-brine-minerals interaction could result in dissolution or reprecipitation of rock frame-forming minerals. Observed time-lapse seismic associated with CO2 injection into poorly consolidated sandstone at the Frio CO2 injection site (Texas, USA) could not be predicted using classical rock-physics models (i.e., models involving elastic changes in the rock frame due to saturations and/or pressures changes only, and assuming no changes in the rock microstructure). That, and the changes in the fluid chemistry after CO2 injection, suggests that the assumption of a constant rock microstructure might be violated. Using high-resolution time-lapse crosswell data, we have developed a methodology for estimating changes in the rock frame by quantifying the rock-frame drained moduli before and after CO2 injection. Based on rock microstructure diagnostics, we found that the changes in the drained frame elastic properties are due to the changes in the grain contact-cement percentage. The reduction in contact-cement percent is found to be variable throughout the reservoir, with a maximum near the injection well, down to 0.01% from the initial 0.1% contact cement; this results in more than 40% reduction in the drained frame shear and bulk moduli. CO2 saturation was estimated using this model for uniform and patchy saturation cases. Our rock-physics analysis may allow improved interpretation of time-lapse seismic for CO2 saturation in the context of other poorly consolidated sandstones with similar geomechanical properties. Having the P-and S-wave velocity time-lapse data is key to improve saturation estimates with this analysis method.
C1 [Al Hosni, Mohammed; Vialle, Stephanie; Gurevich, Boris] Curtin Univ, Perth, WA, Australia.
[Al Hosni, Mohammed; Vialle, Stephanie; Gurevich, Boris] Cooperat Res Ctr Greenhouse Gas Technol CO2CRC Lt, Canberra, ACT, Australia.
[Gurevich, Boris] CSIRO, Canberra, ACT, Australia.
[Daley, Thomas M.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Al Hosni, M (reprint author), Curtin Univ, Perth, WA, Australia.; Al Hosni, M (reprint author), Cooperat Res Ctr Greenhouse Gas Technol CO2CRC Lt, Canberra, ACT, Australia.
EM m.alhosni@postgrad.curtin.edu.au; stephanie.vialle@curtin.edu.au;
b.gurevich@curtin.edu.au; tmdaley@lbl.gov
FU Curtin University of Technology's Reservoir Geophysics Consortium;
Commonwealth of Australia; [DE-AC02-05CH11231]
FX The Frio crosswell data set was acquired with the support of the United
States Department of Energy under the GEO-SEQ project led by the
Lawrence Berkeley National Laboratory. This work has been funded by
Curtin University of Technology's Reservoir Geophysics Consortium and
the Commonwealth of Australia through its support to CO2CRC Ltd. The
Lawrence Berkeley National Laboratory is supported under contract
DE-AC02-05CH11231.
NR 63
TC 0
Z9 0
U1 1
U2 1
PU SOC EXPLORATION GEOPHYSICISTS
PI TULSA
PA 8801 S YALE ST, TULSA, OK 74137 USA
SN 0016-8033
EI 1942-2156
J9 GEOPHYSICS
JI Geophysics
PD NOV-DEC
PY 2016
VL 81
IS 6
BP B235
EP B245
DI 10.1190/GEO2015-0684.1
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA EJ0UQ
UT WOS:000392926400028
ER
PT J
AU Chen, AP
Zhou, HH
Zhu, YY
Li, LG
Zhang, WR
Narayan, J
Wang, HY
Jia, QX
AF Chen, Aiping
Zhou, Honghui
Zhu, Yuanyuan
Li, Leigang
Zhang, Wenrui
Narayan, Jagdish
Wang, Haiyan
Jia, Quanxi
TI Stabilizing new bismuth compounds in thin film form
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
ID SUPERCELL STRUCTURE; TIO2 FILMS; STRAIN; NANOCOMPOSITES; GROWTH;
MAGNETORESISTANCE; NANOSTRUCTURES; INTERFACES; BI2FECRO6; LAALO3
AB Growth of unexpected phases from a composite target of BiFeO3:BiMnO3 and/or BiFeO3:BiCrO3 has been explored using pulsed laser deposition. The Bi2FeMnO6 tetragonal phase can be grown directly on SrTiO3 (STO) substrate, while two phases (S1 and S2) were found to grow on LaAlO3 (LAO) substrates with narrow growth windows. However, introducing a thin CeO2 buffer layer effectively broadens the growth window for the pure S1 phase, regardless of the substrate. Moreover, we discovered two new phases (X1 and X2) when growing on STO substrates using a BiFeO3:BiCrO3 target. Pure X2 phase can be obtained on CeO2-buffered STO and LAO substrates. This work demonstrates that some unexpected phases can be stabilized in a thin film form by using composite perovskite BiRO3 (R = Cr, Mn, Fe, Co, Ni) targets. Furthermore, it also indicates that CeO2 can serve as a general template for the growth of bismuth compounds with potential room-temperature multiferroicity.
C1 [Chen, Aiping; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA.
[Zhou, Honghui; Narayan, Jagdish] North Carolina State Univ, Dept Mat Sci & Engn, NSF Ctr Adv Mat & Smart Struct, Raleigh, NC 27695 USA.
[Zhu, Yuanyuan] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA.
[Li, Leigang; Zhang, Wenrui; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA.
[Wang, Haiyan] Purdue Univ, Sch Mat Engn Elect & Comp Engn, W Lafayette, IN 47907 USA.
RP Chen, AP; Jia, QX (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA.
EM apchen@lanl.gov; qxjia@lanl.gov
OI Chen, Aiping/0000-0003-2639-2797
FU NNSA's Laboratory Directed Research and Development Program; Center for
Integrated Nanotechnologies; U.S. Department of Energy (DOE) Office of
Science; National Nuclear Security Administration of the U.S. Department
of Energy [DE-AC52-06NA25396]; Office of Naval Research
[N00014-15-1-2362, N00014-16-1-2465]; U.S. National Science Foundation
[DMR-1565822]
FX The work at Los Alamos National Laboratory was supported by the NNSA's
Laboratory Directed Research and Development Program and was performed,
in part, at the Center for Integrated Nanotechnologies, an Office of
Science User Facility operated for the U.S. Department of Energy (DOE)
Office of Science. Los Alamos National Laboratory, an affirmative action
equal opportunity employer, is operated by Los Alamos National Security,
LLC, for the National Nuclear Security Administration of the U.S.
Department of Energy under contract DE-AC52-06NA25396. The work at Texas
A&M and Purdue University is funded by the Office of Naval Research
N00014-15-1-2362 (Texas A&M) and N00014-16-1-2465 (Purdue). The TEM work
is funded by the U.S. National Science Foundation (DMR-1565822).
NR 55
TC 0
Z9 0
U1 0
U2 0
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0884-2914
EI 2044-5326
J9 J MATER RES
JI J. Mater. Res.
PD NOV
PY 2016
VL 31
IS 22
BP 3530
EP 3537
DI 10.1557/jmr.2016.391
PG 8
WC Materials Science, Multidisciplinary
SC Materials Science
GA EO3KX
UT WOS:000396594700006
ER
PT J
AU Niehaus, EM
Munsterkotter, M
Proctor, RH
Brown, DW
Sharon, A
Idan, Y
Oren-Young, L
Sieber, CM
Novak, O
Pencik, A
Tarkowska, D
Hromadova, K
Freeman, S
Maymon, M
Elazar, M
Youssef, SA
El-Shabrawy, EM
Shalaby, ABA
Houterman, P
Brock, NL
Burkhardt, I
Tsavkelova, EA
Dickschat, JS
Galuszka, P
Guldener, U
Tudzynski, B
AF Niehaus, Eva-Maria
Muensterkoetter, Martin
Proctor, Robert H.
Brown, Daren W.
Sharon, Amir
Idan, Yifat
Oren-Young, Liat
Sieber, Christian M.
Novak, Ondrej
Pencik, Ales
Tarkowska, Danuse
Hromadova, Kristyna
Freeman, Stanley
Maymon, Marcel
Elazar, Meirav
Youssef, Sahar A.
El-Shabrawy, El Said M.
Shalaby, Abdel Baset A.
Houterman, Petra
Brock, Nelson L.
Burkhardt, Immo
Tsavkelova, Elena A.
Dickschat, Jeroen S.
Galuszka, Petr
Gueldener, Ulrich
Tudzynski, Bettina
TI Comparative "Omics" of the Fusarium fujikuroi Species Complex Highlights
Differences in Genetic Potential and Metabolite Synthesis
SO GENOME BIOLOGY AND EVOLUTION
LA English
DT Article
DE Fusarium fujikuroi species complex; genome sequencing; secondary
metabolism; in planta expression; metabolomics; evolution
ID FUNCTIONAL-CHARACTERIZATION; GIBBERELLA-FUJIKUROI; NATURAL-PRODUCTS;
RNA-SEQ; TRANSCRIPTION FACTORS; BIOSYNTHETIC-PATHWAY; POLYKETIDE
SYNTHASES; AUXIN BIOSYNTHESIS; MANGO MALFORMATION; ACID
AB Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins. The spectrum of SMs produced can differ among closely related species, suggesting that SMs might be determinants of host specificity. To date, genomes of only a limited number of FFC species have been sequenced. Here, we provide draft genome sequences of three more members of the FFC: a single isolate of F. mangiferae, the cause of mango malformation, and two isolates of F. proliferatum, one a pathogen of maize and the other an orchidendophyte. We compared these genomes to publicly available genome sequences of three other FFC species. The comparisons revealed species-specific and isolate-specific differences in the composition and expression (in vitro and in planta) of genes involved in SM production including those for phytohormome biosynthesis. Such differences have the potential to impact host specificity and, as in the case of F. proliferatum, the pathogenic versus endophytic life style.
C1 [Niehaus, Eva-Maria; Tudzynski, Bettina] Westfal Wilhelms Univ Munster, Mol Biol & Biotechnol Fungi, Inst Biol & Biotechnol Pflanzen, Munster, Germany.
[Muensterkoetter, Martin] German Res Ctr Environm Hlth GmbH, Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol, Neuherberg, Germany.
[Proctor, Robert H.; Brown, Daren W.] USDA, Natl Ctr Agr Utilizat Res, Peoria, IL USA.
[Sharon, Amir; Idan, Yifat; Oren-Young, Liat] Tel Aviv Univ, Dept Mol Biol & Ecol Plants, Tel Aviv, Israel.
[Sieber, Christian M.] Univ Calif, Dept Energy, Joint Genome Inst, Berkeley, CA USA.
[Novak, Ondrej; Pencik, Ales; Tarkowska, Danuse; Hromadova, Kristyna; Galuszka, Petr] Palacky Univ, Ctr Reg Hana Biotechnol & Agr Res, Olomouc, Czech Republic.
[Freeman, Stanley; Maymon, Marcel; Elazar, Meirav] Agr Res Org, Volcani Ctr, Dept Plant Pathol & Weed Res, Bet Dagan, Israel.
[Youssef, Sahar A.; El-Shabrawy, El Said M.; Shalaby, Abdel Baset A.] Agr Res Ctr, Plant Pathol Res Inst, Giza, Egypt.
[Houterman, Petra] Univ Amsterdam, Swammerdam Inst Life Sci, Plant Pathol, Amsterdam, Netherlands.
[Brock, Nelson L.; Burkhardt, Immo; Dickschat, Jeroen S.] Rhein Friedrich Wilhelms Univ Bonn, Kekule Inst Organ Chem & Biochem, Bonn, Germany.
[Tsavkelova, Elena A.] Lomonosov Moscow State Univ, Fac Biol, Dept Microbiol, Moscow, Russia.
[Gueldener, Ulrich] Tech Univ Munich, Wissenschaftszentrum Weihenstephan, Dept Genome Oriented Bioinformat, Maximus von Imhof Forum 3, Freising Weihenstephan, Germany.
RP Tudzynski, B (reprint author), Westfal Wilhelms Univ Munster, Mol Biol & Biotechnol Fungi, Inst Biol & Biotechnol Pflanzen, Munster, Germany.; Guldener, U (reprint author), Tech Univ Munich, Wissenschaftszentrum Weihenstephan, Dept Genome Oriented Bioinformat, Maximus von Imhof Forum 3, Freising Weihenstephan, Germany.
EM u.gueldener@tum.de; tudzynsb@uni-muenster.de
OI Guldener, Ulrich/0000-0001-5052-8610
FU Deutsche Forschungsgemeinschaft (DFG) [TU101/17-2, GU1205/2-2]; Austrian
Science Fund FWF [F3705/DFG ME1682/6-1]; National Science Foundation,
Czech Republic [16-10602S]
FX This study was supported by the Deutsche Forschungsgemeinschaft (DFG),
projects TU101/17-2 and GU1205/2-2, by the Austrian Science Fund FWF
(special research project Fusarium, F3705/DFG ME1682/6-1) and the
National Science Foundation, Czech Republic (grant number 16-10602S).
Mention of trade names or commercial products in this publication is
solely for the purpose of providing specific information and does not
imply recommendation or endorsement by the US Department of Agriculture.
USDA is an equal opportunity provider and employer. We are grateful for
the technical assistance of Stephanie Folmar, Marcie Moore and Crystal
Probyn. We thank Martijn Rep (University of Amsterdam, The Netherlands)
for support in performing CHEF gel analysis. We thank also Jose J.
Espino for transforming Fusarium strains.
NR 125
TC 1
Z9 1
U1 4
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1759-6653
J9 GENOME BIOL EVOL
JI Genome Biol. Evol.
PD NOV
PY 2016
VL 8
IS 11
BP 3574
EP 3599
DI 10.1093/gbe/evw259
PG 26
WC Evolutionary Biology; Genetics & Heredity
SC Evolutionary Biology; Genetics & Heredity
GA EK3GU
UT WOS:000393815300022
PM 28040774
ER
PT J
AU Hesse, CN
Torres-Cruz, TJ
Tobias, TB
Al-Matruk, M
Porras-Alfaro, A
Kuske, CR
AF Hesse, Cedar N.
Torres-Cruz, Terry J.
Tobias, Terri Billingsley
Al-Matruk, Maryam
Porras-Alfaro, Andrea
Kuske, Cheryl R.
TI Ribosomal RNA gene detection and targeted culture of novel
nitrogen-responsive fungal taxa from temperate pine forest soil
SO MYCOLOGIA
LA English
DT Article
DE Duke Forest; Endogone; Mucoromycotina; Saccharomycotina; soil nitrogen
ID ATMOSPHERIC CO2; HIGH-THROUGHPUT; LARGE-SUBUNIT; DIVERSITY; COMMUNITIES;
BACTERIAL; CLASSIFICATION; IDENTIFICATION; ALIGNMENT; REVEALS
AB Soil fungal communities are responsible for carbon and nitrogen (N) cycling. The high complexity of the soil fungal community and the high proportion of taxonomically unidentifiable sequences confound ecological interpretations in field studies because physiological information is lacking for many organisms known only by their rRNA sequences. This situation forces experimental comparisons to be made at broader taxonomic racks where functions become difficult to infer. The objective of this study was to determine OTU (operational taxonomic units) level responses of the soil fungal community to N enrichment in a temperate pine forest experiment and to use the sequencing data to guide culture efforts of novel N-responsive fungal taxa. Replicate samples from four soil horizons (up to 10 cm depth) were obtained from ambient, enriched CO2 and N-fertilization plots. Through a fungal large subunit rRNA gene (LSU) sequencing survey, we identified two novel fungal clades that were abundant in our soil sampling (representing up to 27% of the sequences in some samples) and responsive to changes in soil N. The two N-responsive taxa with no predicted taxonomic association were targeted for isolation and culturing from specific soil samples where their sequences were abundant. Representatives of both OTUs were successfully cultured using a filtration approach. One taxon (OTU6) was most closely related to Saccharomycotina; the second taxon (OTU69) was most closely related to Mucoromycotina. Both taxa likely represent novel species. This study shows how observation of specific OTUs level responses to altered N status in a large rRNA gene field survey provided the impetus to design targeted culture approaches for isolation of novel N-responsive fungal taxa.
C1 [Hesse, Cedar N.; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
[Torres-Cruz, Terry J.; Tobias, Terri Billingsley; Al-Matruk, Maryam; Porras-Alfaro, Andrea] Western Illinois Univ, Dept Biol Sci, Macomb, IL 61455 USA.
[Hesse, Cedar N.] ARS, USDA, Corvallis, OR 97331 USA.
RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
EM kuske@lanl.gov
FU Science Focus Area grant from the US Department of Energy, Biological
and Environmental Research Division; RISE (Research Inspiring Student
Excellence) and Women in Science programs at Western Illinois University
FX This study was supported through a Science Focus Area grant to CRK from
the US Department of Energy, Biological and Environmental Research
Division, and through the RISE (Research Inspiring Student Excellence)
and Women in Science programs at Western Illinois University.
NR 40
TC 0
Z9 0
U1 2
U2 2
PU ALLEN PRESS INC
PI LAWRENCE
PA 810 E 10TH ST, LAWRENCE, KS 66044 USA
SN 0027-5514
EI 1557-2536
J9 MYCOLOGIA
JI Mycologia
PD NOV-DEC
PY 2016
VL 108
IS 6
BP 1082
EP 1090
DI 10.3852/16-086
PG 9
WC Mycology
SC Mycology
GA EJ5PA
UT WOS:000393269000003
ER
PT J
AU Altieri, AS
Ladner, JE
Li, Z
Robinson, H
Sallman, ZF
Marino, JP
Kelman, Z
AF Altieri, Amanda S.
Ladner, Jane E.
Li, Zhuo
Robinson, Howard
Sallman, Zahur F.
Marino, John P.
Kelman, Zvi
TI A small protein inhibits proliferating cell nuclear antigen by breaking
the DNA clamp (vol 44, pg 6232, 2016)
SO NUCLEIC ACIDS RESEARCH
LA English
DT Correction
C1 [Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; Sallman, Zahur F.; Marino, John P.; Kelman, Zvi] Univ Maryland, Inst Biosci & Biotechnol, 9600 Gudelsky Dr, Rockville, MD 20850 USA.
[Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; Sallman, Zahur F.; Marino, John P.; Kelman, Zvi] NIST, 9600 Gudelsky Dr, Rockville, MD 20850 USA.
[Li, Zhuo] State Ocean Adm, Inst Oceanog 3, 184 Daxue Rd, Xiamen 361005, Fujian, Peoples R China.
[Robinson, Howard] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Kelman, Zvi] Univ Maryland, Inst Biosci & Biotechnol Res, Biomol Labeling Lab, 9600 Gudelsky Dr, Rockville, MD 20850 USA.
RP Kelman, Z (reprint author), Univ Maryland, Inst Biosci & Biotechnol, 9600 Gudelsky Dr, Rockville, MD 20850 USA.; Kelman, Z (reprint author), NIST, 9600 Gudelsky Dr, Rockville, MD 20850 USA.; Kelman, Z (reprint author), Univ Maryland, Inst Biosci & Biotechnol Res, Biomol Labeling Lab, 9600 Gudelsky Dr, Rockville, MD 20850 USA.
EM zkelman@umd.edu
NR 1
TC 0
Z9 0
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
EI 1362-4962
J9 NUCLEIC ACIDS RES
JI Nucleic Acids Res.
PD NOV
PY 2016
VL 44
IS 20
BP 10015
EP 10015
DI 10.1093/nar/gkw824
PG 1
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA EK3HR
UT WOS:000393817800007
PM 27625392
ER
PT J
AU Chen, ZH
Wang, X
Qi, YJ
Yang, S
Soares, JANT
Apgar, BA
Gao, R
Xu, RJ
Lee, Y
Zhang, X
Yao, J
Martin, LW
AF Chen, Zuhuang
Wang, Xi
Qi, Yajun
Yang, Sui
Soares, Julio A. N. T.
Apgar, Brent A.
Gao, Ran
Xu, Ruijuan
Lee, Yeonbae
Zhang, Xiang
Yao, Jie
Martin, Lane W.
TI Self-Assembled, Nanostructured, Tunable Metamaterials via Spinodal
Decomposition
SO ACS NANO
LA English
DT Article
DE self-assembly; spinodal decomposition; nanoscale phase separation;
metamaterials; VO2; epitaxial thin films
ID NEAR-INFRARED METAMATERIALS; PHASE-TRANSITION; NEGATIVE REFRACTION;
HYPERBOLIC METAMATERIALS; THIN-FILMS; VO2; SYSTEM; OXIDES; INDEX;
NANOCOMPOSITES
AB Self-assembly via nanoscale phase separation offers an elegant route to fabricate nanocomposites with physical properties unattainable in single-component systems. One important class of nanocomposites are optical meta materials which exhibit exotic properties and lead to opportunities for agile control of light propagation. Such metamaterials are typically fabricated via expensive and hard to -scale top-down processes requiring precise integration of dissimilar materials. In turn, there is a need for alternative, more efficient routes to fabricate large-scale metamaterials for practical applications with deep-subwavelength resolution. Here, we demonstrate a bottom-up approach to fabricate scalable nanostructured metamaterials via spinodal decomposition. To demonstrate the potential of such an approach, we leverage the innate spinodal decomposition of the VO2-TiO2 system, the metal-to-insulator transition in VO2, and thin-film epitaxy, to produce self-organized nanostructures with coherent interfaces and a structural unit cell down to 15 nm (tunable between horizontally and vertically aligned lamellae) wherein the iso-frequency surface is temperature-tunable from elliptic to hyperbolic dispersion producing metamaterial behavior. These results provide an efficient route for the fabrication of nanostructured metamaterials and other nanocomposites for desired functionalities.
C1 [Chen, Zuhuang; Wang, Xi; Apgar, Brent A.; Gao, Ran; Xu, Ruijuan; Lee, Yeonbae; Yao, Jie; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Chen, Zuhuang; Yang, Sui; Zhang, Xiang; Yao, Jie; Martin, Lane W.] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.
[Qi, Yajun] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Key Lab Green Preparat & Applicat Mat, Minist Educ,Dept Mat Sci & Engn, Wuhan 430062, Peoples R China.
[Yang, Sui; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA.
[Soares, Julio A. N. T.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA.
RP Chen, ZH; Martin, LW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Chen, ZH; Martin, LW (reprint author), Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.
EM zuhuang@berkeley.edu; lwmartin@berkeley.edu
FU Air Force Office of Scientific Research [FA9550-12-1-0471]; National
Science Foundation of China [11204069, 51472078]; Department of Energy,
Basic Energy Science [DE-SC0012375]; National Science Foundation
[DMR-1451219]; Laboratory Directed Research and Development Program of
Lawrence Berkeley National Laboratory under U.S. Department of Energy
[DE-AC02-05CH11231]; Hellman Family Foundation
FX We would like to thank Dr. Jingbo Sun for useful discussion. Z.H.C. and
R.G. acknowledge the support of the Air Force Office of Scientific
Research under Grant No. FA9550-12-1-0471. Y.Q, acknowledges support of
the National Science Foundation of China under Grant Nos. 11204069 and
51472078. B.A.A. acknowledges support from the Department of Energy,
Basic Energy Science, under Grant No. DE-SC0012375 for the development
of various oxide films and optical studies. R.X. acknowledges support
from the National Science Foundation under Grant No. DMR-1451219. L.W.M.
acknowledges support from the Laboratory Directed Research and
Development Program of Lawrence Berkeley National Laboratory under U.S.
Department of Energy Contract No. DE-AC02-05CH11231 for the development
of light-matter interactions in materials. X.W. and J.Y. acknowledge the
support from the Hellman Family Foundation. The ellipsometry
measurements were carried out in the Frederick Seitz Materials Research
Laboratory Central Research Facilities, University of Illinois.
NR 59
TC 1
Z9 1
U1 16
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD NOV
PY 2016
VL 10
IS 11
BP 10237
EP 10244
DI 10.1021/acsnano.6b05736
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA ED5SR
UT WOS:000388913100053
PM 27934083
ER
PT J
AU Pulcherio, MC
Renjit, AA
Illindala, MS
Khalsa, AS
Eto, JH
Klapp, DA
Lasseter, RH
AF Pulcherio, Mariana C.
Renjit, Ajit Anbiah
Illindala, Mahesh S.
Khalsa, Amrit S.
Eto, Joseph H.
Klapp, David A.
Lasseter, Robert H.
TI Evaluation of Control Methods to Prevent Collapse of a Mixed-Source
Microgrid
SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
LA English
DT Article
DE Control systems; energy resources; governors; industrial power systems;
internal combustion engines; inverters; power system modeling;
synchronous generators
AB For a microgrid with a mix of distributed energy resources (DERs), major challenges on its survivability are found in the islanded condition. In particular, a sudden loss of generation or a large and fluctuating load could force the microgrid to operate near its capacity limits. Such a situation can cause a cascading collapse of the mixed-source microgrid, even when the load demand is within the system's power rating. This condition was observed during several tests carried out at the Consortium for Electric Reliability Technology Solutions Microgrid Test Bed. This paper analyzes the root causes behind the collapse. It highlights that the capacity of a low-inertia system to support load changes is contributed by faster responding DERs initially. Therefore, the microgrid is particularly susceptible if the faster responding DERs do not have adequate reserve margin. Two control methods are evaluated for providing safeguards to these DERs and prevent the system collapse.
C1 [Pulcherio, Mariana C.] Ohio State Univ, Columbus, OH 43210 USA.
[Illindala, Mahesh S.] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.
[Renjit, Ajit Anbiah] Spirae Inc, Ft Collins, CO 80524 USA.
[Khalsa, Amrit S.] Amer Elect Power Co, Groveport, OH 43125 USA.
[Eto, Joseph H.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Klapp, David A.] Adv Microgrid Syst, Westerville, OH 43081 USA.
[Lasseter, Robert H.] Univ Wisconsin, Dept Elect & Comp Engnineer, Madison, WI 63705 USA.
RP Pulcherio, MC (reprint author), Ohio State Univ, Columbus, OH 43210 USA.
EM costa.85@osu.edu; arenjit@spirae.com; millindala@ieee.org;
askhalsa@aep.com; jheto@lbl.gov; microgrids@outlook.com;
lasseter@engr.wisc.edu
OI Illindala, Mahesh/0000-0002-2015-1338; Renjit, Ajit
Anbiah/0000-0002-4599-7647
FU Office of Electricity Delivery and Energy Reliability, Transmission
Reliability Program of the U.S. Department of Energy [7004227]; Ohio
State University
FX This work was supported by the Office of Electricity Delivery and Energy
Reliability, Transmission Reliability Program of the U.S. Department of
Energy under Subcontract 7004227 with The Ohio State University
administered by the Lawrence Berkeley National Laboratory.
NR 24
TC 0
Z9 0
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-9994
EI 1939-9367
J9 IEEE T IND APPL
JI IEEE Trans. Ind. Appl.
PD NOV-DEC
PY 2016
VL 52
IS 6
BP 4566
EP 4576
DI 10.1109/TIA.2016.2599139
PG 11
WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic
SC Engineering
GA EJ3FQ
UT WOS:000393098400005
ER
PT J
AU Fan, YC
Shen, NH
Zhang, FL
Wei, ZY
Li, HQ
Zhao, Q
Fu, QH
Zhang, P
Koschny, T
Soukoulis, CM
AF Fan, Yuancheng
Shen, Nian-Hai
Zhang, Fuli
Wei, Zeyong
Li, Hongqiang
Zhao, Qian
Fu, Quanhong
Zhang, Peng
Koschny, Thomas
Soukoulis, Costas M.
TI Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz
Regime
SO ADVANCED OPTICAL MATERIALS
LA English
DT Article
ID MONOLAYER GRAPHENE; ABSORBING MEDIA; META-SURFACE; METAMATERIALS; SHIFT;
REFLECTION; PLASMONICS; METASURFACES; ABSORPTION; PHASE
AB Goos-Hanchen (G-H) effect is of great interest in the manipulation of optical beams. However, it is still fairly challenging to attain efficient controls of the G-H shift for diverse applications. Here, a mechanism to realize tunable G-H shift in the terahertz regime with electrically controllable graphene is proposed. Taking monolayer graphene covered epsilon-near-zero metamaterial as a planar model system, it is found that the G-H shifts for the orthogonal s-polarized and p-polarized terahertz beams at oblique incidence are positive and negative, respectively. The G-H shift can be modified substantially by electrically controlling the Fermi energy of the monolayer graphene. Reversely, the Fermi energy dependent G-H effect can also be used as a strategy for measuring the doping level of graphene. In addition, the G-H shifts of the system are of strong frequency-dependence at oblique angles of incidence, therefore the proposed graphene hybrid system can potentially be used for the generation of terahertz "rainbow," a flat analog of the dispersive prism in optics. The proposed scheme of hybrid system involving graphene for dynamic control of G-H shift will have potential applications in the manipulation of terahertz waves.
C1 [Fan, Yuancheng; Zhang, Fuli; Fu, Quanhong] Northwestern Polytech Univ, Minist Educ, Key Lab Space Appl Phys & Chem, Xian 710129, Peoples R China.
[Fan, Yuancheng; Zhang, Fuli; Fu, Quanhong] Northwestern Polytech Univ, Dept Appl Phys, Sch Sci, Xian 710129, Peoples R China.
[Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Wei, Zeyong; Li, Hongqiang] Tongji Univ, Key Lab Adv Microstruct Mat MOE, Shanghai 200092, Peoples R China.
[Wei, Zeyong; Li, Hongqiang] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China.
[Zhao, Qian] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol, Beijing 100084, Peoples R China.
[Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece.
RP Fan, YC (reprint author), Northwestern Polytech Univ, Minist Educ, Key Lab Space Appl Phys & Chem, Xian 710129, Peoples R China.; Fan, YC (reprint author), Northwestern Polytech Univ, Dept Appl Phys, Sch Sci, Xian 710129, Peoples R China.
EM phyfan@nwpu.edu.cn
RI Soukoulis, Costas/A-5295-2008;
OI Fan, Yuancheng/0000-0002-7919-4148
FU National Science Foundation of China (NSFC) [61505164, 11372248,
61275176, 11404213]; Program for Scientific Activities of Returned
Overseas Professionals in Shaanxi Province; Fundamental Research Funds
for the Central Universities [3102015ZY079, 3102015ZY058]; U.S.
Department of Energy, Office of Basic Energy Science, Division of
Materials Science and Engineering [DE-AC02-07CH11358]; U.S. Office of
Naval Research [N00014-14-1-0474]; European Research Council [320081]
FX The authors would like to acknowledge financial support from the
National Science Foundation of China (NSFC) (Grant Nos. 61505164,
11372248, 61275176, and 11404213), the Program for Scientific Activities
of Returned Overseas Professionals in Shaanxi Province, and the
Fundamental Research Funds for the Central Universities (Grant Nos.
3102015ZY079 and 3102015ZY058). Work at Ames Laboratory was partially
supported by the U.S. Department of Energy, Office of Basic Energy
Science, Division of Materials Science and Engineering (Ames Laboratory
was operated for the U.S. Department of Energy by Iowa State University
under Contract No. DE-AC02-07CH11358), by the U.S. Office of Naval
Research, Award No. N00014-14-1-0474 (simulations). The European
Research Council under the ERC Advanced Grant No. 320081 (PHOTOMETA)
supported work (theory) at FORTH.
NR 54
TC 3
Z9 3
U1 16
U2 16
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 2195-1071
J9 ADV OPT MATER
JI Adv. Opt. Mater.
PD NOV
PY 2016
VL 4
IS 11
BP 1824
EP 1828
DI 10.1002/adom.201600303
PG 5
WC Materials Science, Multidisciplinary; Optics
SC Materials Science; Optics
GA EI3PR
UT WOS:000392404200021
ER
PT J
AU Ailes, EC
Gilboa, SM
Gill, SK
Broussard, CS
Crider, KS
Berry, RJ
Carter, TC
Hobbs, CA
Interrante, JD
Reefhuis, J
AF Ailes, Elizabeth C.
Gilboa, Suzanne M.
Gill, Simerpal K.
Broussard, Cheryl S.
Crider, Krista S.
Berry, Robert J.
Carter, Tonia C.
Hobbs, Charlotte A.
Interrante, Julia D.
Reefhuis, Jennita
CA Natl Birth Defects Prevention
TI Association between Antibiotic Use Among Pregnant Women with Urinary
Tract Infections in the First Trimester and Birth Defects, National
Birth Defects Prevention Study 1997 to 2011
SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY
LA English
DT Article
DE birth defects; antibiotic; cephalosporin; nitrofurantoin; penicillin;
trimethoprim-sulfamethoxazole; urinary tract infection
ID FOLIC-ACID ANTAGONISTS; CONGENITAL-ABNORMALITIES; MEDICATION USE;
PRIMARY-CARE; RISK; EXPOSURE; NITROFURANTOIN; TRIMETHOPRIM; COHORT;
MALFORMATIONS
AB Background: Previous studies noted associations between birth defects and some antibiotics (e.g., nitrofurantoin, sulfonamides) but not others (e.g., penicillins). It is unclear if previous findings were due to antibiotic use, infections, or chance. To control for potential confounding by indication, we examined associations between antibiotic use and birth defects, among women reporting urinary tract infections (UTIs). Methods: The National Birth Defects Prevention Study is a multi-site, population-based case-control study. Case infants/fetuses have any of over 30 major birth defects and controls are live-born infants without major birth defects. We analyzed pregnancies from 1997 to 2011 to estimate the association between maternally reported periconceptional (month before conception through the third month of pregnancy) use of nitrofurantoin, trimethoprim-sulfamethoxazole, or cephalosporins and specific birth defects, among women with periconceptional UTIs. Women with periconceptional UTIs who reported penicillin use served as the comparator. Results: Periconceptional UTIs were reported by 7.8% (2029/26,068) of case and 6.7% (686/10,198) of control mothers. Most (68.2% of case, 66.6% of control mothers) also reported antibiotic use. Among 608 case and 231 control mothers reporting at least one periconceptional UTI and certain antibiotic use, compared with penicillin, nitrofurantoin use was associated with oral clefts in the offspring (adjusted odds ratio, 1.97 [95% confidence interval, 1.10-3.53]), trimethoprim-sulfamethoxazole use with esophageal atresia (5.31 [1.39-20.24]) and diaphragmatic hernia (5.09 [1.20-21.69]), and cephalosporin use with anorectal atresia/stenosis (5.01 [1.34-18.76]). Conclusion: Periconceptional exposure to some antibiotics might increase the risk for certain birth defects. However, because individual birth defects are rare, absolute risks should drive treatment decisions. (C) 2016 Wiley Periodicals, Inc.
C1 [Ailes, Elizabeth C.; Gilboa, Suzanne M.; Broussard, Cheryl S.; Crider, Krista S.; Berry, Robert J.; Interrante, Julia D.; Reefhuis, Jennita] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 4770 Buford Hwy NE,MS E-86, Atlanta, GA 30341 USA.
[Gill, Simerpal K.] Duchesnay Inc, Blainville, PQ, Canada.
[Carter, Tonia C.] Marshfield Clin Fdn Med Res & Educ, Marshfield, WI USA.
[Hobbs, Charlotte A.] Univ Arkansas Med Sci, Coll Med, Little Rock, AR 72205 USA.
[Interrante, Julia D.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA.
RP Ailes, EC (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 4770 Buford Hwy NE,MS E-86, Atlanta, GA 30341 USA.
EM eailes@cdc.gov
FU U.S. Department of Energy; CDC
FX Supported by an appointment to the Research Participation Program at the
National Carter or Birth Defects and Developmental Disabilities, Centers
for Disease Control and Prevention (CDC), administered by the Oak Ridge
Institute for Science and Education through an interagency agreement
between the U.S. Department of Energy and CDC.
NR 36
TC 0
Z9 0
U1 2
U2 2
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1542-0752
EI 1542-0760
J9 BIRTH DEFECTS RES A
JI Birth Defects Res. Part A-Clin. Mol. Teratol.
PD NOV
PY 2016
VL 106
IS 11
SI SI
BP 940
EP 949
DI 10.1002/bdra.23570
PG 10
WC Developmental Biology; Toxicology
SC Developmental Biology; Toxicology
GA EI9HC
UT WOS:000392817500011
PM 27891788
ER
PT J
AU MacMartin, DG
Kravitz, B
Long, JCS
Rasch, PJ
AF MacMartin, Douglas G.
Kravitz, Ben
Long, Jane C. S.
Rasch, Philip J.
TI Geoengineering with stratospheric aerosols: What do we not know after a
decade of research?
SO Earths Future
LA English
DT Article
ID INTERCOMPARISON PROJECT GEOMIP; CLIMATE; MODEL; RADIATION; SULFATE;
IMPACT; OZONE; INJECTIONS; CHEMISTRY; SCENARIO
AB Any well-informed future decision on whether and how to deploy solar geoengineering requires balancing the impacts (both intended and unintended) of intervening in the climate against the impacts of not doing so. Despite tremendous progress in the last decade, the current state of knowledge remains insufficient to support an assessment of this balance, even for stratospheric aerosol geoengineering (SAG), arguably the best understood (practical) geoengineering method. We articulate key unknowns associated with SAG, including both climate-science and design questions, as an essential step toward developing a future strategic research program that could address outstanding uncertainties.
C1 [MacMartin, Douglas G.] Cornell Univ, Mech & Aerosp Engn, Ithaca, NY 14850 USA.
[Kravitz, Ben; Rasch, Philip J.] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA.
[Long, Jane C. S.] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP MacMartin, DG (reprint author), Cornell Univ, Mech & Aerosp Engn, Ithaca, NY 14850 USA.
EM dgm224@cornell.edu
FU U.S. Department of Energy [DE-AC05-76RL01830]
FX The comments of S. Tilmes and an anonymous reviewer are greatly
appreciated. The Pacific Northwest National Laboratory is operated for
the U.S. Department of Energy by Battelle Memorial Institute under
contract DE-AC05-76RL01830.
NR 48
TC 0
Z9 0
U1 7
U2 7
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2328-4277
J9 EARTHS FUTURE
JI Earth Future
PD NOV
PY 2016
VL 4
IS 11
BP 543
EP 548
DI 10.1002/2016EF000418
PG 6
WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric
Sciences
GA EI9FI
UT WOS:000392812800008
ER
PT J
AU Raduha, S
Butler, D
Mozley, PS
Person, M
Evans, J
Heath, JE
Dewers, TA
Stauffer, PH
Gable, CW
Kelkar, S
AF Raduha, S.
Butler, D.
Mozley, P. S.
Person, M.
Evans, J.
Heath, J. E.
Dewers, T. A.
Stauffer, P. H.
Gable, C. W.
Kelkar, S.
TI Potential seal bypass and caprock storage produced by
deformation-band-to-opening-mode-fracture transition at the
reservoir/caprock interface
SO GEOFLUIDS
LA English
DT Article
DE caprock; carbon storage; deformation bands; fractures; multiphase flow;
reservoir rock; seal bypass
ID FLUID-FLOW; CO2; EQUATION; SYSTEMS; UTAH; SEQUESTRATION; LEAKAGE; WATER
AB We examined the potential impact on CO2 transport of zones of deformation bands in reservoir rock that transition to opening-mode fractures within overlying caprock. Sedimentological and petrophysical measurements were collected along an approximately 5 m x 5 m outcrop of the Slick Rock and Earthy Members of the Entrada Sandstone on the eastern flank of the San Rafael Swell, Utah, USA. Measured deformation band permeability (2 mD) within the reservoir facies is about three orders of magnitude lower than the host sandstone. Average permeability of the caprock facies (0.0005 mD) is about seven orders of magnitude lower than the host sandstone. Aperture-based permeability estimates of the opening-mode caprock fractures are high (3.3 x 10(7) mD). High-resolution CO2-H2O transport models incorporate these permeability data at the millimeter scale. We varied fault properties at the reservoir/caprock interface between open fractures and deformation bands as part of a sensitivity study. Numerical modeling results suggest that zones of deformation bands within the reservoir strongly compartmentalize reservoir pressures largely blocking lateral, cross-fault flow of supercritical CO2. Significant vertical CO2 transport into the caprock occurred in some scenarios along opening-mode fractures. The magnitude of this vertical CO2 transport depends on the small-scale geometry of the contact between the openingmode fracture and the zone of deformation bands, as well as the degree to which fractures penetrate caprock. The presence of relatively permeable units within the caprock allows storage of significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock.
C1 [Raduha, S.; Butler, D.; Mozley, P. S.; Person, M.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA.
[Evans, J.] Utah State Univ, Dept Geol, Logan, UT 84322 USA.
[Heath, J. E.; Dewers, T. A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Stauffer, P. H.; Gable, C. W.; Kelkar, S.] Los Alamos Natl Labs, Los Alamos, NM USA.
RP Mozley, PS (reprint author), New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA.
EM mozley@nmt.edu
OI Stauffer, Philip/0000-0002-6976-221X
FU US Department of Energy (DOE) National Energy Technology Laboratory
(NETL) [DEFE0004844]; DOE/NETL; Center for Frontiers of Subsurface
Energy Security, an Energy Frontier Research Center - US Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-SC0001114]; US Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]; US Department of Energy
[DE-AC52-06NA25396]
FX Many people helped us with various aspects of this project. In
particular, we thank Elizabeth Petrie, Dave Richie, and Alex Urquhart
for help in the field. This material is based upon work supported by the
US Department of Energy (DOE) National Energy Technology Laboratory
(NETL) under Grant Number DEFE0004844. The project was managed and
administered by the New Mexico Institute of Mining and Technology and
funded by DOE/NETL and cost-sharing partners. Our project managers at
NETL, first Dawn Deal and then Brian Dressel, kept us on track with
reporting and budget matters and were always available to answer our
questions. We acknowledge partial support from the Center for Frontiers
of Subsurface Energy Security, an Energy Frontier Research Center funded
by the US Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Award Number DE-SC0001114. Sandia National
Laboratories is a multiprogram laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the US Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000. Los Alamos National
Laboratory, an affirmative action/equal-opportunity employer, is
operated by Los Alamos National Security, LLC, for the National Nuclear
Security Administration of the US Department of Energy under contract
DE-AC52-06NA25396.
NR 43
TC 1
Z9 1
U1 0
U2 0
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1468-8115
EI 1468-8123
J9 GEOFLUIDS
JI Geofluids
PD NOV
PY 2016
VL 16
IS 4
BP 752
EP 768
DI 10.1111/gfl.12177
PG 17
WC Geochemistry & Geophysics; Geology
SC Geochemistry & Geophysics; Geology
GA EI7ZS
UT WOS:000392724300007
ER
PT J
AU Knapik, J
Steelman, R
AF Knapik, Joseph
Steelman, Ryan
TI Risk Factors for Injuries During Military Static-Line Airborne
Operations: A Systematic Review and Meta-Analysis
SO JOURNAL OF ATHLETIC TRAINING
LA English
DT Review
DE parachutes; parachuting; wind speed; night; temperature; parachute ankle
brace; terrain; wounds; trauma; musculoskeletal
ID PARACHUTE LANDING INJURIES; ANKLE BRACE; PHYSICAL-FITNESS; US ARMY;
FEMALE; RATES; SURVEILLANCE; REDUCTION; BATTALION; ALTITUDE
AB Objective: To identify and analyze articles in which the authors examined risk factors for soldiers during military staticline airborne operations.
Data Sources: We searched for articles in PubMed, the Defense Technical Information Center, reference lists, and other sources using the key words airborne, parachuting, parachutes, paratrooper, injuries, wounds, trauma, and musculoskeletal.
Study Selection: The search identified 17 684 potential studies. Studies were included if they were written in English, involved military static-line parachute operations, recorded injuries directly from events on the landing zone or from safety or medical records, and provided data for quantitative assessment of injury risk factors. A total of 23 studies met the review criteria, and 15 were included in the meta-analysis.
Data Extraction: The summary statistic obtained for each risk factor was the risk ratio, which was the ratio of the injury risk in 1 group to that of another (baseline) group. Where data were sufficient, meta-analyses were performed and heterogeneity and publication bias were assessed.
Data Synthesis: Risk factors for static-line parachuting injuries included night jumps, jumps with extra equipment, higher wind speeds, higher air temperatures, jumps from fixedwing aircraft rather than balloons or helicopters, jumps onto certain types of terrain, being a female paratrooper, greater body weight, not using the parachute ankle brace, smaller parachute canopies, simultaneous exits from both sides of an aircraft, higher heat index, winds from the rear of the aircraft on exit entanglements, less experience with a particular parachute system, being an enlisted soldier rather than an officer, and jumps involving a greater number of paratroopers.
Conclusions: We analyzed and summarized factors that increased the injury risk for soldiers during military static-line parachute operations. Understanding and considering these factors in risk evaluations may reduce the likelihood of injury during parachuting.
C1 [Knapik, Joseph; Steelman, Ryan] US Army, Portfolio Epidemiol & Dis Surveillance, Publ Hlth Ctr, 5154 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA.
[Knapik, Joseph] Oak Ridge Inst Sci & Educ, Aberdeen Proving Ground, MD USA.
RP Knapik, J (reprint author), US Army, Portfolio Epidemiol & Dis Surveillance, Publ Hlth Ctr, 5154 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA.
EM joseph.j.knapik.ctr@mail.mil
NR 67
TC 0
Z9 0
U1 0
U2 0
PU NATL ATHLETIC TRAINERS ASSOC INC
PI DALLAS
PA 2952 STEMMONS FREEWAY, DALLAS, TX 75247 USA
SN 1062-6050
EI 1938-162X
J9 J ATHL TRAINING
JI J. Athl. Train.
PD NOV
PY 2016
VL 51
IS 11
BP 962
EP 980
DI 10.4085/1062-6050-51.9.10
PG 19
WC Sport Sciences
SC Sport Sciences
GA EI9WZ
UT WOS:000392861400016
PM 28068166
ER
PT J
AU Roettgen, DR
Allen, MS
Mayes, RL
AF Roettgen, Daniel R.
Allen, Matthew S.
Mayes, Randall L.
TI Wind Turbine Substructuring Using the Transmission Simulator Method
SO SOUND AND VIBRATION
LA English
DT Article
ID MASS
AB This work contains an example of the transmission simulator method for experimental dynamic substructuring using the Ampair 600 wind turbine. A modal test was performed on the hub with a single blade attached and then, using the hub as a transmission simulator, this subsubstructure was replicated three times, rotated into the correct orientation and then assembled together with two negative copies of the hub. Substructuring predictions of the modes and frequency response functions for the three-bladed assembly were compared to a set-of-truth test data. The article also highlights the dynamic substructuring wiki, where the test data for this structure and other helpful resources are available for researchers or engineers who wish to test these techniques using real measurements.
C1 [Roettgen, Daniel R.; Allen, Matthew S.] Univ Wisconsin, Madison, WI 53706 USA.
[Mayes, Randall L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
RP Allen, MS (reprint author), Univ Wisconsin, Madison, WI 53706 USA.
EM msallen@engr.wisc.edu
NR 11
TC 0
Z9 0
U1 0
U2 0
PU ACOUSTICAL PUBL INC
PI BAY VILLAGE
PA 27101 E OVIATT RD, PO BOX 40416, BAY VILLAGE, OH 44140 USA
SN 1541-0161
J9 SOUND VIB
JI Sound Vib.
PD NOV
PY 2016
VL 50
IS 11
BP 14
EP 17
PG 4
WC Acoustics; Engineering, Mechanical; Mechanics
SC Acoustics; Engineering; Mechanics
GA EI8IY
UT WOS:000392750800005
ER
PT J
AU Chuang, MT
Fu, JS
Lee, CT
Lin, NH
Gao, Y
Wang, SH
Sheu, GR
Hsiao, TC
Wang, JL
Yen, MC
Lin, TH
Thongboonchoo, N
AF Chuang, Ming-Tung
Fu, Joshua S.
Lee, Chung-Te
Lin, Neng-Huei
Gao, Yang
Wang, Sheng-Hsiang
Sheu, Guey-Rong
Hsiao, Ta-Chih
Wang, Jia-Lin
Yen, Ming-Cheng
Lin, Tang-Huang
Thongboonchoo, Narisara
TI The Simulation of Long-Range Transport of Biomass Burning Plume and
Short-Range Transport of Anthropogenic Pollutants to a Mountain
Observatory in East Asia during the 7-SEAS/2010 Dongsha Experiment
SO AEROSOL AND AIR QUALITY RESEARCH
LA English
DT Article
DE Biomass burning; Lulin high-mountain site; Simulation; 2010 Dongsha
experiment
ID SOUTHEAST-ASIA; AIR-QUALITY; TAIWAN; AEROSOLS; SITE; CHINA; DUST; MASS;
ENHANCEMENT; CONTINENT
AB The Community Multi-scale Air Quality Model (CMAQ) is used to simulate the long-range transport of biomass burning (BB) pollutants from Southeast Asia (SEA) towards the Taiwan Central Mountain Range (CMR) in March and April 2010. The results show that a proportion of the BB plume was blocked and compressed at the windward side of CMR. High-altitude BB plume is shown to influence air quality on the ground via three mechanisms: (1) the subsidence in the anticyclone, (2) the downward motion in the cold surge, and (3) the vertical mixing of the boundary layer over land. Two case studies are further investigated to probe the chemical evolution of the air parcel approaching Mt. Lulin. The first case shows that the third mechanism also explained the increase in the concentrations of peroxyacyl nitrate (PAN), higher peroxyacyl nitrate (PANX), NH3, SO2, and volatile organic compounds in the BB plume when entering the land over western Taiwan. Meanwhile, the percentage of NO3- in the plume is also significantly increased. The second case reveals that valley wind transported air pollutants from the ground to the mountains. The air parcel, accompanied with considerable concentrations of PAN, PANX, SULF, and anthropogenic secondary organic aerosol, moved up Mt. Lulin. The pollutant concentrations, except for elemental carbon, in the air parcel decreased on approach to Mt. Lulin because the air parcel was mixed with a clean air.
C1 [Chuang, Ming-Tung] Natl Cent Univ, Grad Inst Energy Engn, Chungli 32001, Taiwan.
[Fu, Joshua S.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA.
[Lee, Chung-Te; Hsiao, Ta-Chih] Natl Cent Univ, Grad Inst Environm Engn, Chungli 32001, Taiwan.
[Lin, Neng-Huei; Wang, Sheng-Hsiang; Sheu, Guey-Rong; Yen, Ming-Cheng] Natl Cent Univ, Grad Inst Atmospher Phys, Chungli 32001, Taiwan.
[Wang, Jia-Lin] Natl Cent Univ, Dept Chem, Chungli 32001, Taiwan.
[Lin, Tang-Huang] Natl Cent Univ, Ctr Space & Remote Sensing Res, Chungli 32001, Taiwan.
[Thongboonchoo, Narisara] King Mongkuts Inst Technol, Coll Chem Engn, Bangkok, Thailand.
[Gao, Yang] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA.
RP Chuang, MT (reprint author), Natl Cent Univ, Grad Inst Energy Engn, Chungli 32001, Taiwan.
EM mtchuang100@gmail.com
FU Taiwan National Science Council [NSC 100-2111-M-008-017, NSC
101-2111-M-008-005, NSC 102-2111-M-008-010, MOST 103-2111-M-008-005]
FX We would like to express our gratitude to the Taiwan National Science
Council (NSC 100-2111-M-008-017, NSC 101-2111-M-008-005, NSC
102-2111-M-008-010, and MOST 103-2111-M-008-005). We would also like to
thank the Taiwan Environmental Protection Agency for the data obtained
at Lulin Atmospheric Background Station (LABS). We acknowledge the US
National Centers for Environmental Prediction (NCEP) for providing the
Final Operation Global Analysis (FNL) data and the Taiwan Central
Weather Bureau and Data Bank of Atmospheric Research (DBAR) managed by
the National Taiwan University for the meteorological maps.
NR 48
TC 4
Z9 4
U1 4
U2 4
PU TAIWAN ASSOC AEROSOL RES-TAAR
PI TAICHUNG COUNTY
PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E
RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN
SN 1680-8584
EI 2071-1409
J9 AEROSOL AIR QUAL RES
JI Aerosol Air Qual. Res.
PD NOV
PY 2016
VL 16
IS 11
SI SI
BP 2933
EP 2949
DI 10.4209/aaqr.2015.07.0440
PG 17
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA EI2HI
UT WOS:000392307100027
ER
PT J
AU Gibbons, SM
Scholz, M
Hutchison, AL
Dinner, AR
Gilbert, JA
Coleman, ML
AF Gibbons, Sean M.
Scholz, Monika
Hutchison, Alan L.
Dinner, Aaron R.
Gilbert, Jack A.
Coleman, Maureen L.
TI Disturbance Regimes Predictably Alter Diversity in an Ecologically
Complex Bacterial System
SO MBIO
LA English
DT Article
ID INTERMEDIATE DISTURBANCE; SPECIES-DIVERSITY; HUMAN MICROBIOME;
COMMUNITY; HYPOTHESIS; PRODUCTIVITY; STABILITY; FREQUENCY; SEQUENCES;
ECOLOGY
AB Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems.
IMPORTANCE The diversity of microbial communities is linked to the functioning and stability of ecosystems. As humanity continues to impact ecosystems worldwide, and as diet and disease perturb our own commensal microbial communities, the ability to predict how microbial diversity will respond to disturbance is of critical importance. Using microbial microcosm experiments, we find that community diversity responds to different disturbance regimes in a reproducible and predictable way. Maximum diversity occurs when two communities, each suited to different environmental conditions, are mixed due to disturbance. This maximum diversity is transient except under specific regimes. Using a simple mathematical model, we show that transient unimodality is likely a common feature of microbial diversity-disturbance relationships in fluctuating environments.
C1 [Gibbons, Sean M.; Scholz, Monika; Hutchison, Alan L.; Dinner, Aaron R.; Gilbert, Jack A.; Coleman, Maureen L.] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA.
[Gibbons, Sean M.; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Hutchison, Alan L.] Univ Chicago, Med Scientist Training Program, Chicago, IL 60637 USA.
[Dinner, Aaron R.] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.
[Scholz, Monika; Dinner, Aaron R.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, 940 E 57Th St, Chicago, IL 60637 USA.
[Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA.
[Gilbert, Jack A.] Univ Chicago, Dept Surg, 5841 S Maryland Ave, Chicago, IL 60637 USA.
[Coleman, Maureen L.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA.
[Gibbons, Sean M.] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RP Gibbons, SM (reprint author), Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA.; Gibbons, SM (reprint author), Argonne Natl Lab, Inst Genom & Syst Biol, 9700 S Cass Ave, Argonne, IL 60439 USA.; Gibbons, SM (reprint author), MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM sean.gibbons@fulbrightmail.org
FU HHS | National Institutes of Health (NIH) [5T-32EB-009412, T32GM07281];
National Science Foundation (NSF) [PHY-1305542]; EPA STAR graduate
fellowship; HHMI International Student Research Fellowship
FX This work, including the efforts of Sean M. Gibbons, was funded by HHS |
National Institutes of Health (NIH) (5T-32EB-009412). This work,
including the efforts of Alan L. Hutchison, was funded by HHS | National
Institutes of Health (NIH) (T32GM07281). This work, including the
efforts of Aaron R. Dinner, was funded by National Science Foundation
(NSF) (PHY-1305542).; SMG was supported by an EPA STAR graduate
fellowship. MS was supported by a HHMI International Student Research
Fellowship.
NR 64
TC 0
Z9 0
U1 6
U2 6
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 2150-7511
J9 MBIO
JI mBio
PD NOV-DEC
PY 2016
VL 7
IS 6
AR e01372
DI 10.1128/mBio.01372-16
PG 10
WC Microbiology
SC Microbiology
GA EH9GK
UT WOS:000392079500067
ER
PT J
AU Vineis, JH
Ringus, DL
Morrison, HG
Delmont, TO
Dalal, S
Raffals, LH
Antonopoulos, DA
Rubin, DT
Eren, AM
Chang, EB
Sogin, ML
AF Vineis, Joseph H.
Ringus, Daina L.
Morrison, Hilary G.
Delmont, Tom O.
Dalal, Sushila
Raffals, Laura H.
Antonopoulos, Dionysios A.
Rubin, David T.
Eren, A. Murat
Chang, Eugene B.
Sogin, Mitchell L.
TI Patient-Specific Bacteroides Genome Variants in Pouchitis
SO MBIO
LA English
DT Article
ID INFLAMMATORY-BOWEL-DISEASE; ANTIBIOTIC-RESISTANCE GENES; CAPSULAR
POLYSACCHARIDE; ULCERATIVE-COLITIS; SYMBIOTIC BACTERIA; ILEAL POUCH;
SURFACE ARCHITECTURE; ESCHERICHIA-COLI; SEQUENCING DATA; CROHNS-DISEASE
AB A 2-year longitudinal microbiome study of 22 patients who underwent colectomy with an ileal pouch anal anastomosis detected significant increases in distinct populations of Bacteroides during 9 of 11 patient visits that coincided with inflammation (pouchitis). Oligotyping and metagenomic short-read annotation identified Bacteroides populations that occurred in early samples, bloomed during inflammation, and reappeared after antibiotic treatment. Targeted cultivation of Bacteroides isolates from the same individual at multiple time points and from several patients detected subtle genomic changes, including the identification of rapidly evolving genomic elements that differentiate isogenic strains of Bacteroides fragilis from the mucosa versus lumen. Each patient harbored Bacteroides spp. that are closely related to commonly occurring clinical isolates, including Bacteroides ovatus, B. thetaiotaomicron, B. vulgatus, and B. fragilis, which contained unique loci in different patients for synthesis of capsular polysaccharides. The presence of unique Bacteroides capsular polysaccharide loci within different hosts and between the lumen and mucosa may represent adaptations to stimulate, suppress, and evade host-specific immune responses at different microsites of the ileal pouch.
IMPORTANCE This longitudinal study provides an opportunity to describe shifts in the microbiomes of individual patients who suffer from ulcerative colitis (UC) prior to and following inflammation. Pouchitis serves as a model for UC with a predictable incidence of disease onset and enables prospective longitudinal investigations of UC etiology prior to inflammation. Because of insufficient criteria for predicting which patients will develop UC or pouchitis, the interpretation of cross-sectional study designs suffers from lack of information about the microbiome structure and host gene expression patterns that directly correlate with the onset of disease. Our unique longitudinal study design allows each patient to serve as their own control, providing information about the state of the microbiome and host prior to and during the course of disease. Of significance to the broader community, this study identifies microbial strains that may have genetic elements that trigger the onset of disease in susceptible hosts.
C1 [Vineis, Joseph H.; Morrison, Hilary G.; Eren, A. Murat; Sogin, Mitchell L.] Josephine Bay Paul Ctr, Marine Biol Lab, Woods Hole, MA 02543 USA.
[Ringus, Daina L.; Delmont, Tom O.; Dalal, Sushila; Antonopoulos, Dionysios A.; Rubin, David T.; Eren, A. Murat; Chang, Eugene B.] Univ Chicago, Dept Med, Gastroenterol Sect, Knapp Ctr Biomed Discovery, Chicago, IL 60637 USA.
[Raffals, Laura H.] Mayo Clin, Div Gastroenterol & Hepatol, Dept Internal Med, Rochester, MN USA.
[Antonopoulos, Dionysios A.] Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Sogin, ML (reprint author), Josephine Bay Paul Ctr, Marine Biol Lab, Woods Hole, MA 02543 USA.
EM mitchellsogin@gmail.com
FU Leona M. and Harry B. Helmsley Charitable Trust (Helmsley Charitable
Trust); Bay and Paul Foundations (Bay & Paul Foundations); Frank R.
Lillie Research Innovation Award; Gastrointestinal Research Foundation
of Chicago
FX This work, including the efforts of Eugene B. Chang, was funded by Leona
M. and Harry B. Helmsley Charitable Trust (Helmsley Charitable Trust).
This work, including the efforts of Mitchell L. Sogin, was funded by Bay
and Paul Foundations (Bay & Paul Foundations). This work, including the
efforts of A. Murat Eren, was funded by the Frank R. Lillie Research
Innovation Award. This work, including the efforts of Eugene B. Chang
and David T. Rubin, was funded by the Gastrointestinal Research
Foundation of Chicago.
NR 68
TC 1
Z9 1
U1 0
U2 0
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 2150-7511
J9 MBIO
JI mBio
PD NOV-DEC
PY 2016
VL 7
IS 6
AR e01713-16
DI 10.1128/mBio.01713-16
PG 11
WC Microbiology
SC Microbiology
GA EH9GK
UT WOS:000392079500027
ER
PT J
AU Pavlenko, V
Liu, FZ
Hoffbauer, MA
Moody, NA
Batista, ER
AF Pavlenko, Vitaly
Liu, Fangze
Hoffbauer, Mark A.
Moody, Nathan A.
Batista, Enrique R.
TI Kinetics of alkali-based photocathode degradation
SO AIP ADVANCES
LA English
DT Article
ID ANTIMONIDE PHOTOCATHODES
AB We report on a kinetic model that describes the degradation of the quantum efficiency (QE) of Cs3Sb and negative electron affinity (NEA) GaAs photocathodes under UHV conditions. In addition to the generally accepted irreversible chemical change of a photocathode's surface due to reactions with residual gases, such as O-2, CO2, and H2O, the model incorporates an intermediate reversible physisorption step, similar to Langmuir adsorption. This intermediate step is needed to satisfactorily describe the strongly non-exponential QE degradation curves for two distinctly different classes of photocathodes -surface-activated and "bulk," indicating that in both systems the QE degradation results from surface damage. The recovery of the QE upon improvement of vacuum conditions is also accurately predicted by this model with three parameters (rates of gas adsorption, desorption, and irreversible chemical reaction with the surface) comprising metrics to better characterize the lifetime of the cathodes, instead of time-pressure exposure expressed in Langmuir units. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
C1 [Pavlenko, Vitaly; Moody, Nathan A.] Los Alamos Natl Lab, Accelerator Operat & Technol Div, Los Alamos, NM 87545 USA.
[Liu, Fangze] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Hoffbauer, Mark A.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Moody, NA (reprint author), Los Alamos Natl Lab, Accelerator Operat & Technol Div, Los Alamos, NM 87545 USA.
EM nmoody@lanl.gov; erb@lanl.gov
FU U.S. Department of Energy through the LANL/LDRD Program; U.S. Department
of Energy [DE-AC52-06NA25396]
FX We gratefully acknowledge the support of the U.S. Department of Energy
through the LANL/LDRD Program. Los Alamos National Laboratory is
operated by Los Alamos National Security, LLC, for the National Nuclear
Security Administration of U.S. Department of Energy (contract
DE-AC52-06NA25396). We thank J. Lewellen and V. Bermudez for critical
reading of the manuscript, D. Lizon, A. Mohite, G. Gupta, and H.
Yamaguchi for help with the sample fabrication, and S. Gerashchenko, and
A. Malyzhenkov for valuable technical discussions.
NR 18
TC 1
Z9 1
U1 7
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 2158-3226
J9 AIP ADV
JI AIP Adv.
PD NOV
PY 2016
VL 6
IS 11
AR 115008
DI 10.1063/1.4967349
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA EH9HO
UT WOS:000392082600016
ER
PT J
AU Zhang, RL
Damewood, L
Fong, CY
Yang, LH
Peng, RW
Felser, C
AF Zhang, R. L.
Damewood, L.
Fong, C. Y.
Yang, L. H.
Peng, R. W.
Felser, C.
TI A half-metallic half-Heusler alloy having the largest atomic-like
magnetic moment at optimized lattice constant
SO AIP ADVANCES
LA English
DT Article
AB For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803 angstrom, and has the maximum atomic-like magnetic moment of 5 mu(B). The challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed. (C) 2016Author(s).
C1 [Zhang, R. L.; Peng, R. W.] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China.
[Zhang, R. L.; Peng, R. W.] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
[Zhang, R. L.; Damewood, L.; Fong, C. Y.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Yang, L. H.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA.
[Felser, C.] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany.
RP Zhang, RL (reprint author), Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China.; Zhang, RL (reprint author), Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China.; Zhang, RL (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
EM rlzhang@nju.edu.cn
FU National Natural Science Foundation of China [10904061, 11034005,
61475070, 11474157, 11321063]; Ministry of Science and Technology of
China [2012CB921502]; China Scholarship Council; National Science
Foundation [ECCS-0725902]; U.S. Department of Energy [DE-AC52-07NA27344]
FX This work was supported by grants from the National Natural Science
Foundation of China (Grant Nos. 10904061, 11034005, 61475070, 11474157,
and 11321063), the State Key Program for Basic Research from the
Ministry of Science and Technology of China (Grant Nos. 2012CB921502),
and China Scholarship Council. Work at UC Davis was supported in part by
the National Science Foundation Grant No. ECCS-0725902. Work at Lawrence
Livermore National Laboratory was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344.
NR 18
TC 0
Z9 0
U1 5
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 2158-3226
J9 AIP ADV
JI AIP Adv.
PD NOV
PY 2016
VL 6
IS 11
AR 115209
DI 10.1063/1.4967365
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA EH9HO
UT WOS:000392082600061
ER
PT J
AU Kravitz, B
Guenther, AB
Gu, LH
Karl, T
Kaser, L
Pallardy, SG
Penuelas, J
Potosnak, MJ
Seco, R
AF Kravitz, Ben
Guenther, Alex B.
Gu, Lianhong
Karl, Thomas
Kaser, Lisa
Pallardy, Stephen G.
Penuelas, Josep
Potosnak, Mark J.
Seco, Roger
TI A new paradigm of quantifying ecosystem stress through chemical
signatures
SO ECOSPHERE
LA English
DT Article
DE chemical signatures; ecosystem; stress; volatile organic compounds
ID ORGANIC-COMPOUND EMISSIONS; PLANT VOLATILE EMISSIONS; FLUX MEASUREMENTS;
BIOGENIC EMISSIONS; ISOPRENE EMISSION; AEROSOL FORMATION; FLORAL
VOLATILE; MODEL; SCALE; REFLECTANCE
AB Stress-induced emissions of biogenic volatile organic compounds (VOCs) from terrestrial ecosystems may be one of the dominant sources of VOC emissions worldwide. Understanding the ecosystem stress response could reveal how ecosystems will respond and adapt to climate change and, in turn, quantify changes in the atmospheric burden of VOC oxidants and secondary organic aerosols. Here, we argue, based on preliminary evidence from several opportunistic measurement sources, that chemical signatures of stress can be identified and quantified at the ecosystem scale. We also outline future endeavors that we see as next steps toward uncovering quantitative signatures of stress, including new advances in both VOC data collection and analysis of "big data."
C1 [Kravitz, Ben] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-30, Richland, WA 99352 USA.
[Guenther, Alex B.; Seco, Roger] Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall St, Irvine, CA 92697 USA.
[Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Karl, Thomas] Univ Innsbruck, Inst Atmospher & Crysopher Sci, Innrain 52f, A-6020 Innsbruck, Austria.
[Kaser, Lisa] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
[Pallardy, Stephen G.] Univ Missouri, Dept Forestry, 203 Anheuser Busch Nat Resources Bldg, Columbia, MO 65211 USA.
[Penuelas, Josep] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain.
[Penuelas, Josep] CSIC, Global Ecol Unit CREAF CSIC UAB, Cerdanyola Del Valles 08193, Catalonia, Spain.
[Potosnak, Mark J.] Depaul Univ, Dept Environm Sci & Studies, McGowan South,Suite 203, Chicago, IL 60604 USA.
RP Kravitz, B (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-30, Richland, WA 99352 USA.
EM ben.kravitz@pnnl.gov
RI Seco, Roger/F-7124-2011;
OI Seco, Roger/0000-0002-2078-9956; Gu, Lianhong/0000-0001-5756-8738
FU EMSL, a DOE Office of Science user facility - Department of Energy's
Office of Biological and Environmental Research; U.S. Department of
Energy [DE-AC05-76RL01830]; National Science Foundation; European
Research Council [SyG-2013-610028 IMBALANCE-P]
FX We thank two anonymous reviewers for their helpful comments. We also
thank the members of the Signature Discovery Initiative team for their
support and guidance throughout this process. Special thanks go to
Vanessa Bailey, Nathan Baker, George Bonheyo, Ryan Hafen, Alejandro
Heredia-Langner, Jenna Larson, LeeAnn McCue, Trenton Pulsipher, Landon
Sego, Yannan Sun, Mark Tardiff, and Tim White. A portion of this
research was supported by EMSL, a DOE Office of Science user facility
sponsored by the Department of Energy's Office of Biological and
Environmental Research and located at Pacific Northwest National
Laboratory. A portion of this research was conducted under the
laboratory Directed Research and Development Program at PNNL, a
multiprogram national laboratory operated by Battelle for the U.S.
Department of Energy under Contract DE-AC05-76RL01830. The National
Center for Atmospheric Research is sponsored by the National Science
Foundation. Josep Penuelas's research was supported by the European
Research Council Synergy grant SyG-2013-610028 IMBALANCE-P.
NR 63
TC 0
Z9 0
U1 9
U2 9
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2150-8925
J9 ECOSPHERE
JI Ecosphere
PD NOV
PY 2016
VL 7
IS 11
AR e01559
DI 10.1002/ecs2.1559
PG 15
WC Ecology
SC Environmental Sciences & Ecology
GA EI1AP
UT WOS:000392207600017
ER
PT J
AU Hertzberg, M
Schreuder, H
AF Hertzberg, Martin
Schreuder, Hans
TI Role of atmospheric carbon dioxide in climate change
SO ENERGY & ENVIRONMENT
LA English
DT Article
DE IPCC paradigm; atmospheric CO2; human emission; atmospheric
temperatures; ice core data; satellite data
AB The authors evaluate the United Nations Intergovernmental Panel on Climate Change (IPCC) consensus that the increase of carbon dioxide in the Earth's atmosphere is of anthropogenic origin and is causing dangerous global warming, climate change and climate disruption. The totality of the data available on which that theory is based is evaluated. The data include: (a) Vostok ice-core measurements; (b) accumulation of CO2 in the atmosphere; (c) studies of temperature changes that precede CO2 changes; (d) global temperature trends; (e) current ratio of carbon isotopes in the atmosphere; (f) satellite data for the geographic distribution of atmospheric CO2; (g) effect of solar activity on cosmic rays and cloud cover. Nothing in the data supports the supposition that atmospheric CO2 is a driver of weather or climate, or that human emissions control atmospheric CO2.
C1 [Hertzberg, Martin] US Naval Postgrad Sch, Monterey, CA USA.
[Hertzberg, Martin] Fleet Weather Cent, Washington, DC USA.
[Hertzberg, Martin] US Bur Mines Facil, Explos Testing Lab, Pittsburgh, PA USA.
[Hertzberg, Martin] MSHA, Washington, DC USA.
[Hertzberg, Martin] DOE, Washington, DC USA.
[Hertzberg, Martin] NAS, Washington, DC USA.
[Hertzberg, Martin] EPRI, Palo Alto, CA USA.
[Schreuder, Hans] MENSA, Caythorpe, England.
EM ruthhertzberg@msn.com
NR 7
TC 0
Z9 0
U1 17
U2 17
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0958-305X
EI 2048-4070
J9 ENERG ENVIRON-UK
JI Energy Environ.
PD NOV
PY 2016
VL 27
IS 6-7
BP 785
EP 797
DI 10.1177/0958305X16674637
PG 13
WC Environmental Studies
SC Environmental Sciences & Ecology
GA EH4ZV
UT WOS:000391783300009
ER
PT J
AU Dashti, H
Conejo, AJ
Jiang, RW
Wang, JH
AF Dashti, Hossein
Conejo, Antonio J.
Jiang, Ruiwei
Wang, Jianhui
TI Weekly Two-Stage Robust Generation Scheduling for Hydrothermal Power
Systems
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Hydrothermal coordination; robust optimization; unit commitment; vector
autoregressive model
ID UNIT COMMITMENT PROBLEM; DAY ELECTRICITY PRICES; HYDRO PRODUCER; MARKET;
OPTIMIZATION; RESERVOIR; ALGORITHM; DISPATCH; MODELS; WIND
AB As compared to short-term forecasting (e.g., 1 day), it is often challenging to accurately forecast the volume of precipitation in a medium-term horizon (e.g., 1 week). As a result, fluctuations in water inflow can trigger generation shortage and electricity price spikes in a power system with major or predominant hydro resources. In this paper, we study a two-stage robust scheduling approach for a hydrothermal power system. We consider water inflow uncertainty and employ a vector autoregressive (VAR) model to represent its seasonality and accordingly construct an uncertainty set in the robust optimization approach. We design a Benders' decomposition algorithm to solve this problem. Results are presented for the proposed approach on a real-world case study.
C1 [Dashti, Hossein] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA.
[Conejo, Antonio J.] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA.
[Conejo, Antonio J.] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.
[Jiang, Ruiwei] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA.
[Wang, Jianhui] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Dashti, H (reprint author), Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA.
EM hdashti@email.arizona.edu; conejonavarro.1@osu.edu; ruiwei@umich.edu;
jianhui.wang@anl.gov
RI Conejo, Antonio/I-2757-2012
OI Conejo, Antonio/0000-0002-2324-605X
FU University of Arizona Renewable Energy Network; National Science
Foundation (NSF) [60050502]; NSF [CMMI-1555983]; U.S. Department of
Energy Office of Electricity Delivery and Energy Reliability
FX The work of H. Dashti was supported in part by the University of Arizona
Renewable Energy Network. The work of A. J. Conejo was supported in part
by the National Science Foundation (NSF) under grant 60050502. The work
of R. Jiang was supported in part by the NSF under grant CMMI-1555983.
The work of J. Wang was supported by the U.S. Department of Energy
Office of Electricity Delivery and Energy Reliability. Paper no.
TPWRS-00750-2015.
NR 41
TC 1
Z9 1
U1 6
U2 6
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD NOV
PY 2016
VL 31
IS 6
BP 4554
EP 4564
DI 10.1109/TPWRS.2015.2510628
PG 11
WC Engineering, Electrical & Electronic
SC Engineering
GA EH2ES
UT WOS:000391580900036
ER
PT J
AU Kang, M
Kim, K
Muljadi, E
Park, JW
Kang, YC
AF Kang, Moses
Kim, Keonhui
Muljadi, Eduard
Park, Jung-Wook
Kang, Yong Cheol
TI Frequency Control Support of a Doubly-Fed Induction Generator Based on
the Torque Limit
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Rotor speed; over-deceleration (OD); torque limit; second frequency dip
(SFD); frequency nadir (FN)
ID SPEED WIND TURBINES; SYSTEMS; ENERGY
AB This paper proposes a torque limit-based inertial control scheme of a doubly-fed induction generator (DFIG) that supports the frequency control of a power system. If a frequency deviation occurs, the proposed scheme aims to release a large amount of kinetic energy (KE) stored in the rotating masses of a DFIG to raise the frequency nadir (FN). Upon detecting the event, the scheme instantly increases its output to the torque limit and then reduces the output with the rotor speed so that it converges to the stable operating range. To restore the rotor speed while causing a small second frequency dip (SFD), after the rotor speed converges the power reference is reduced by a small amount and maintained until it meets the reference for maximum power point tracking control. The test results demonstrate that the scheme can improve the FN and maximum rate of change of frequency while causing a small SFD in any wind conditions and in a power system that has a high penetration of wind power, and thus the scheme helps maintain the required level of system reliability. The scheme releases the KE from 2.9 times to 3.7 times the Hydro-Quebec requirement depending on the power reference.
C1 [Kang, Moses; Kim, Keonhui] Chonbuk Natl Univ, Dept Elect Engn, Chonju 561756, South Korea.
[Kang, Moses; Kim, Keonhui] Chonbuk Natl Univ, Wind Energy Grid Adapt Technol WeGAT Res Ctr, Chonju 561756, South Korea.
[Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Park, Jung-Wook] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea.
[Kang, Yong Cheol] Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Chonju 561756, South Korea.
[Kang, Yong Cheol] Chonbuk Natl Univ, Smart Grid Res Ctr, Chonju 561756, South Korea.
RP Kang, YC (reprint author), Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Chonju 561756, South Korea.; Kang, YC (reprint author), Chonbuk Natl Univ, Smart Grid Res Ctr, Chonju 561756, South Korea.
EM bass0680@jbnu.ac.kr; keonhuikim@jbnu.ac.kr; eduard.muljadi@nrel.gov;
jungpark@yonsei.ac.kr; yckang@jbnu.ac.kr
FU National Research Foundation of Korea (NRF) - Korea government (MSIP)
[2010-0028509, 2010-0028065]; U.S. Department of Energy
[DE-AC36-08-GO28308]; NREL
FX This work was supported in part by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIP) (No.
2010-0028509) and in part by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIP) (No. 2010-0028065).
NREL's contribution to this work was supported by the U.S. Department of
Energy under Contract No. DE-AC36-08-GO28308 with NREL. Paper no.
TPWRS-00762-2015. (Corresponding author: Yong Cheol Kang.)
NR 21
TC 0
Z9 0
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD NOV
PY 2016
VL 31
IS 6
BP 4575
EP 4583
DI 10.1109/TPWRS.2015.2514240
PG 9
WC Engineering, Electrical & Electronic
SC Engineering
GA EH2ES
UT WOS:000391580900038
ER
PT J
AU Li, ZS
Guo, QL
Sun, HB
Wang, JH
AF Li, Zhengshuo
Guo, Qinglai
Sun, Hongbin
Wang, Jianhui
TI Coordinated Economic Dispatch of Coupled Transmission and Distribution
Systems Using Heterogeneous Decomposition
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Active distribution grid (ADG); decentralized optimization;
decomposition; economic dispatch (ED); locational marginal price (LMP);
transmission
ID OPTIMAL POWER-FLOW; DISTRIBUTION NETWORK; DC-OPF; MANAGEMENT;
OPTIMIZATION
AB Because distributed generations are extensively integrated into active distribution grids (ADGs), the transmission and distribution coordinated economic dispatch (TDCED) should be investigated to optimally dispatch the generation resources and evaluate the locational marginal prices (LMPs) of the entire system. In this paper, the TDCED problem is formulated, and a new heterogeneous decomposition (HGD) algorithm is proposed. In the HGD algorithm, the transmission LMP at the boundary bus and ADGs' power are exchanged among transmission and ADGs. The optimality and convergency of HGD are proven and numerically verified. In addition, several related issues are further discussed: a) methods to improve the convergency of HGD, b) considerations regarding security issues and voltage constraints in TDCED and corresponding modified HGD algorithms, and c) the practicality of HGD in either separate or transparent interaction modes of transmission and distribution in future grids. Numerical simulations indicate that the generation resources are optimally utilized and that LMPs are reasonably evaluated in TDCED. Congestion in the traditional isolated dispatch mode can also be prevented. Moreover, simulations on several systems from T6D2 to T300D60 verify that the HGD algorithm is an efficient and robust algorithm with limited communication burdens to solve TDCED.
C1 [Li, Zhengshuo; Guo, Qinglai; Sun, Hongbin] Tsinghua Univ, State Key Lab Power Syst, Dept Elect Engn, Beijing 100084, Peoples R China.
[Wang, Jianhui] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Sun, HB (reprint author), Tsinghua Univ, State Key Lab Power Syst, Dept Elect Engn, Beijing 100084, Peoples R China.
EM shb@tsinghua.edu.cn; jianhui.wang@anl.gov
FU National Key Basic Research Program of China (973 Program)
[2013CB228203]; National Science Foundation of China [51025725,
51321005]; Tsinghua University Initiative Scientific Research Program;
U.S. Department of Energy Office of Electricity Delivery and Energy
Reliability
FX This work was supported in part by the National Key Basic Research
Program of China (973 Program) (2013CB228203), in part by the National
Science Foundation of China (51025725 & 51321005), and in part by the
Tsinghua University Initiative Scientific Research Program. The work of
J. Wang was supported by the U.S. Department of Energy Office of
Electricity Delivery and Energy Reliability. Paper no. TPWRS-01014-2015.
NR 36
TC 0
Z9 0
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD NOV
PY 2016
VL 31
IS 6
BP 4817
EP 4830
DI 10.1109/TPWRS.2016.2515578
PG 14
WC Engineering, Electrical & Electronic
SC Engineering
GA EH2ES
UT WOS:000391580900061
ER
PT J
AU Castillo, A
Laird, C
Silva-Monroy, CA
Watson, JP
O'Neill, RP
AF Castillo, Anya
Laird, Carl
Silva-Monroy, Cesar A.
Watson, Jean-Paul
O'Neill, Richard P.
TI The Unit Commitment Problem With AC Optimal Power Flow Constraints
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE AC optimal power flow (ACOPF); local solution method; mixed-integer
nonlinear program (MINLP); outer approximation (OA); unit commitment
(UC)
ID INTEGER NONLINEAR PROGRAMS; MIXED-INTEGER; OUTER-APPROXIMATION;
SECURITY; ALGORITHM
AB We propose a mathematical programming-based approach to optimize the unit commitment problem with alternating current optimal power flow (ACOPF) network constraints. This problem is a nonconvex mixed-integer nonlinear program (MINLP) that we solve through a solution technique based on the outer approximation method. Our solution technique cooptimizes real and reactive power scheduling and dispatch subject to both unit commitment constraints and ACOPF constraints. The proposed approach is a local solution method that leverages powerful linear and mixed-integer commercial solvers. We demonstrate the relative economic and operational impact of more accurate ACOPF constraint modeling on the unit commitment problem, when compared with copperplate and DCOPF constraint modeling approaches; we use a six-bus, the IEEE RTS-79, and the IEEE-118 test systems for this analysis. Our approach can be extended to solve larger scale power systems as well as include security constraints or uncertainty through decomposition techniques.
C1 [Castillo, Anya] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Castillo, Anya; O'Neill, Richard P.] FERC, Washington, DC 20426 USA.
[Laird, Carl] Purdue Univ, W Lafayette, IN 47907 USA.
[Silva-Monroy, Cesar A.; Watson, Jean-Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Castillo, A (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA.; Castillo, A (reprint author), FERC, Washington, DC 20426 USA.
EM anya.castillo@gmail.com; carllaird@purdue.edu; casilv@sandia.gov;
jwatson@sandia.gov; richard.oneill@ferc.gov
FU U.S. Department of Energy's Office of Science through Advanced
Scientific Computing Research program [KJ0401000]; U.S. Department of
Energy's National Nuclear Security Administration [DE-AC04-94-AL85000]
FX This work was supported by the U.S. Department of Energy's Office of
Science through the Advanced Scientific Computing Research program under
Contract KJ0401000, project title "Multifaceted Mathematics for Complex
Energy System." Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under Contract
DE-AC04-94-AL85000. Paper no. TPWRS-01022-2015.
NR 44
TC 0
Z9 0
U1 5
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD NOV
PY 2016
VL 31
IS 6
BP 4853
EP 4866
DI 10.1109/TPWRS.2015.2511010
PG 14
WC Engineering, Electrical & Electronic
SC Engineering
GA EH2ES
UT WOS:000391580900064
ER
PT J
AU Dai, CX
Wu, L
Wu, HY
AF Dai, Chenxi
Wu, Lei
Wu, Hongyu
TI A Multi-Band Uncertainty Set Based Robust SCUC With Spatial and Temporal
Budget Constraints
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Multi-band uncertainty set; SCUC; robust optimization
ID UNIT COMMITMENT PROBLEM; STOCHASTIC SECURITY; OPTIMIZATION; WIND
AB The dramatic increase of renewable energy resources in recent years, together with the long-existing load forecast errors and increasingly involved price sensitive demands, has introduced significant uncertainties into power systems operation. In order to guarantee the operational security of power systems with such uncertainties, robust optimization has been extensively studied in security-constrained unit commitment (SCUC) problems, for immunizing the system against worst uncertainty realizations. However, traditional robust SCUC models with single-band uncertainty sets may yield over-conservative solutions in most cases. This paper proposes a multi-band robust model to accurately formulate various uncertainties with higher resolution. By properly tuning band intervals and weight coefficients of individual bands, the proposed multi-band robust model can rigorously and realistically reflect spatial/temporal relationships and asymmetric characteristics of various uncertainties, and in turn could effectively leverage the tradeoff between robustness and economics of robust SCUC solutions. The proposed multi-band robust SCUC model is solved by Benders decomposition (BD) and outer approximation (OA), while taking the advantage of integral property of the proposed multi-band uncertainty set. In addition, several accelerating techniques are developed for enhancing the computational performance and the convergence speed. Numerical studies on a 6-bus system and the modified IEEE 118-bus system verify the effectiveness of the proposed robust SCUC approach for enhancing uncertainty modeling capabilities and mitigating conservativeness of the robust SCUC solution.
C1 [Dai, Chenxi; Wu, Lei] Clarkson Univ, Elect & Comp Engn Dept, Potsdam, NY 13699 USA.
[Wu, Hongyu] NREL, Golden, CO 80401 USA.
RP Dai, CX (reprint author), Clarkson Univ, Elect & Comp Engn Dept, Potsdam, NY 13699 USA.
EM daic@clarkson.edu; lwu@clarkson.edu; Hongyu.Wu@nrel.gov
OI Wu, Hongyu/0000-0002-5223-6635
FU U.S. National Science Foundation [ECCS-1254310]
FX This work was supported in part by the U.S. National Science Foundation
grant ECCS-1254310. Paper no. TPWRS-01245-2015.
NR 31
TC 0
Z9 0
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD NOV
PY 2016
VL 31
IS 6
BP 4988
EP 5000
DI 10.1109/TPWRS.2016.2525009
PG 13
WC Engineering, Electrical & Electronic
SC Engineering
GA EH2ES
UT WOS:000391580900076
ER
PT J
AU Wei, W
Li, N
Wang, JH
Mei, SW
AF Wei, Wei
Li, Na
Wang, Jianhui
Mei, Shengwei
TI Estimating the Probability of Infeasible Real-Time Dispatch Without
Exact Distributions of Stochastic Wind Generations
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Convex optimization; power system operation; uncertainty quantification;
wind generation
ID CONSTRAINED UNIT COMMITMENT; ROBUST OPTIMIZATION APPROACH;
POWER-GENERATION; RESERVE DISPATCH; SYSTEMS; ENERGY; UNCERTAINTY;
CAPACITY
AB This paper proposes a data-driven and convex optimization based method to quantify the probability of infeasible real-time dispatch (RTD) of power systems with volatile wind energy integrations. The required information about wind power is a finite sequence of moments, instead of the exact probability distribution function (PDF). The candidate PDFs are restricted in a functional set subject to moment constraints. By assuming the dispatchable region of nodal wind power injection is available, we propose a semi-definite programming (SDP) based method and a linear programming (LP) based method to estimate the probability of infeasibility in the worst wind power distribution. We also suggest two alternative methods based on the emerging generalized Chebyshev inequality (GCI) and generalized Gauss inequality (GGI), which only utilize the first and second order moments, and boil down to solving SDPs. We compare the performances of all the discussed methods on the moderately sized IEEE 118-bus system. Experimental results demonstrate that our method can offer monotonically better estimation when higher order moments are provided and is competitive with GCI and GGI.
C1 [Wei, Wei; Mei, Shengwei] Tsinghua Univ, State Key Lab Power Syst, Dept Elect Engn, Beijing 100084, Peoples R China.
[Li, Na] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Wang, Jianhui] Argonne Natl Lab, Lemont, IL 60439 USA.
RP Wei, W (reprint author), Tsinghua Univ, State Key Lab Power Syst, Dept Elect Engn, Beijing 100084, Peoples R China.
EM wei-wei04@mails.tsinghua.edu.cn; nali@seas.harvard.edu;
jianhui.wang@anl.gov; meishengwei@mail.tsinghua.edu.cn
FU National Natural Science Foundation of China [51577163, 51577097];
Foundation for Innovative Research Groups of the National Natural
Science Foundation of China [51321005]; State Grid Corporation of China
[SGSXDKYDWKJ2015-001]
FX The work of W. Wei and S. Mei was supported in part by the National
Natural Science Foundation of China (51577163), in part by the
Foundation for Innovative Research Groups of the National Natural
Science Foundation of China (51321005), and in part by the special grand
from State Grid Corporation of China (SGSXDKYDWKJ2015-001). The work of
N. Li was supported by the National Natural Science Foundation of China
(51577097). Paper no. TPWRS-01273-2015. (Corresponding author: Wei Wei.)
NR 44
TC 0
Z9 0
U1 2
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD NOV
PY 2016
VL 31
IS 6
BP 5022
EP 5032
DI 10.1109/TPWRS.2015.2513047
PG 11
WC Engineering, Electrical & Electronic
SC Engineering
GA EH2ES
UT WOS:000391580900079
ER
PT J
AU Wei, W
Wang, JH
Mei, SW
AF Wei, Wei
Wang, Jianhui
Mei, Shengwei
TI Convexification of the Nash Bargaining Based Environmental-Economic
Dispatch
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Convex optimization; environmental-economic dispatch; multi-objective
optimization; bargaining theory
AB The environmental-economic dispatch (EED) is a bi-objective optimization problem. The Nash bargaining theory provides one way to determine a compromising solution without a clear carbon tax or carbon cap, or any subjective attitudes on both objectives, which yields a non-convex program. This letter proposes a convex formulation for Nash bargaining based EED and a linear programming (LP) based algorithm. Case studies show its scalability on real-world large-scale power systems.
C1 [Wei, Wei; Mei, Shengwei] Tsinghua Univ, Dept Elect Engn, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China.
[Wang, Jianhui] Argonne Natl Lab, Lemont, IL 60439 USA.
RP Wei, W (reprint author), Tsinghua Univ, Dept Elect Engn, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China.
EM wei-wei04@mails.tsinghua.edu.cn; jianhui.wang@anl.gov;
meishengwei@mail.tsinghua.edu.cn
FU National Natural Science Foundation of China [51321005]; special grant
from State Grid Corporation of China [SGSXDKY-DWKJ2015-001]
FX This work was supported in part by the National Natural Science
Foundation of China (51321005), and in part by the special grant from
State Grid Corporation of China (SGSXDKY-DWKJ2015-001). Paper no.
PESL-00147-2015. (Corresponding author: Wei Wei.)
NR 4
TC 0
Z9 0
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD NOV
PY 2016
VL 31
IS 6
BP 5208
EP 5209
DI 10.1109/TPWRS.2016.2521322
PG 2
WC Engineering, Electrical & Electronic
SC Engineering
GA EH2ES
UT WOS:000391580900101
ER
PT J
AU Ma, WJ
Wang, JH
Lu, XN
Gupta, V
AF Ma, Wann-Jiun
Wang, Jianhui
Lu, Xiaonan
Gupta, Vijay
TI Optimal Operation Mode Selection for a DC Microgrid
SO IEEE TRANSACTIONS ON SMART GRID
LA English
DT Article
DE DC; microgrids; switched system; optimal control
ID SYSTEMS; GENERATION; STABILITY
AB This paper considers an optimal control problem to improve dc microgrid stability while minimizing its operation cost. A dc microgrid consists of various components, such as renewable energy sources, loads, and power lines. Every component may change its role during operation by switching to a different mode in real time. A switched system approach is employed to ensure the stability of a dc microgrid with a rich array of operation modes. Meanwhile, an optimal control algorithm is designed to improve the system performance by appropriately selecting the operation modes. A typical dc microgrid with three source buses and one load bus is implemented. The effectiveness of the algorithms is verified by MATLAB/Simulink time-domain tests and numerical studies.
C1 [Ma, Wann-Jiun] Duke Univ, Dept Mech & Mat Sci, Durham, NC 27708 USA.
[Wang, Jianhui; Lu, Xiaonan] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA.
[Gupta, Vijay] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA.
RP Ma, WJ (reprint author), Duke Univ, Dept Mech & Mat Sci, Durham, NC 27708 USA.
EM wann.jiun.ma@duke.edu; jianhui.wang@anl.gov; xiaonan.lu@anl.gov;
vgupta2@nd.edu
RI Gupta, Vijay/C-7420-2009
OI Gupta, Vijay/0000-0001-7060-3956
FU National Science Foundation [1239224]; Office of Electricity of the U.S.
Department of Energy
FX The work of W.-J. Ma and V. Gupta was supported by the National Science
Foundation under Grant 1239224. The work of J. Wang and X. Lu was
supported by the Office of Electricity of the U.S. Department of Energy.
NR 19
TC 0
Z9 0
U1 3
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3053
EI 1949-3061
J9 IEEE T SMART GRID
JI IEEE Trans. Smart Grid
PD NOV
PY 2016
VL 7
IS 6
BP 2624
EP 2632
DI 10.1109/TSG.2016.2516566
PG 9
WC Engineering, Electrical & Electronic
SC Engineering
GA EH4EH
UT WOS:000391723600006
ER
PT J
AU Khodaei, A
Wu, L
Aminifar, F
Bahramirad, S
Parvania, M
Qiu, F
Aguero, JR
Kwasinski, A
AF Khodaei, Amin
Wu, Lei
Aminifar, Farrokh
Bahramirad, Shay
Parvania, Masood
Qiu, Feng
Aguero, Julio Romero
Kwasinski, Alexis
TI Guest Editorial Power Grid Resilience
SO IEEE TRANSACTIONS ON SMART GRID
LA English
DT Editorial Material
C1 [Khodaei, Amin] Univ Denver, Dept Elect & Comp Engn, Denver, CO 80209 USA.
[Wu, Lei] Clarkson Univ, Potsdam, NY USA.
[Aminifar, Farrokh] Univ Tehran, Tehran, Iran.
[Bahramirad, Shay] ComEd, Chicago, IL USA.
[Parvania, Masood] Univ Utah, Salt Lake City, UT USA.
[Qiu, Feng] Argonne Natl Lab, Lemont, IL USA.
[Aguero, Julio Romero] Quanta Technol, Raleigh, NC USA.
[Kwasinski, Alexis] Univ Pittsburg, Pittsburgh, PA USA.
RP Khodaei, A (reprint author), Univ Denver, Dept Elect & Comp Engn, Denver, CO 80209 USA.
EM amin.khodaei@du.edu
OI Aminifar, Farrokh/0000-0003-2331-2798
NR 0
TC 0
Z9 0
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3053
EI 1949-3061
J9 IEEE T SMART GRID
JI IEEE Trans. Smart Grid
PD NOV
PY 2016
VL 7
IS 6
BP 2805
EP 2806
DI 10.1109/TSG.2016.2612498
PG 2
WC Engineering, Electrical & Electronic
SC Engineering
GA EH4EH
UT WOS:000391723600022
ER
PT J
AU Yuan, W
Wang, JH
Qiu, F
Chen, C
Kang, CQ
Zeng, B
AF Yuan, Wei
Wang, Jianhui
Qiu, Feng
Chen, Chen
Kang, Chongqing
Zeng, Bo
TI Robust Optimization-Based Resilient Distribution Network Planning
Against Natural Disasters
SO IEEE TRANSACTIONS ON SMART GRID
LA English
DT Article
DE Natural disaster; microgrid; robust optimization; distribution network
planning; resilience; distributed generation
ID LARGE-SCALE; POWER; SYSTEM; MODEL; RECONFIGURATION; RESTORATION;
PLACEMENT; DEFENSE
AB Natural disasters such as Hurricane Sandy can seriously disrupt the power grids. To increase the resilience of an electric distribution system against natural disasters, this paper proposes a resilient distribution network planning problem (RDNP) to coordinate the hardening and distributed generation resource allocation with the objective of minimizing the system damage. The problem is formulated as a two-stage robust optimization model. Hardening and distributed generation resource placement are considered in the distribution network planning. A multi-stage and multi-zone based uncertainty set is designed to capture the spatial and temporal dynamics of an uncertain natural disaster as an extension to the traditional N-K contingency approach. The optimal solution of the RDNP yields a resilient distribution system against natural disasters. Our computational studies on the IEEE distribution test systems validate the effectiveness of the proposed model and reveal that distributed generation is critical in increasing the resilience of a distribution system against natural disasters in the form of microgrids.
C1 [Yuan, Wei] Univ S Florida, Dept Ind & Management Syst Engn, Tampa, FL 33620 USA.
[Wang, Jianhui; Qiu, Feng; Chen, Chen] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA.
[Kang, Chongqing] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China.
[Zeng, Bo] Univ Pittsburgh, Dept Ind Engn, Pittsburgh, PA 15261 USA.
RP Yuan, W (reprint author), Univ S Florida, Dept Ind & Management Syst Engn, Tampa, FL 33620 USA.
EM weiyuan@mail.usf.edu; jianhui.wang@anl.gov; fqiu@anl.gov;
morningchen@anl.gov; cqkang@tsinghua.edu.cn; bzeng@pitt.edu
FU U.S. Department of Energy Office of Electricity Delivery and Energy
Reliability; Open Project Program of State Key Laboratory of Power
System, Tsinghua University [SKLD14KZ04]
FX This work was supported in part by the U.S. Department of Energy Office
of Electricity Delivery and Energy Reliability, and in part by the Open
Project Program of State Key Laboratory of Power System, Tsinghua
University, under Grant SKLD14KZ04.
NR 33
TC 0
Z9 0
U1 7
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3053
EI 1949-3061
J9 IEEE T SMART GRID
JI IEEE Trans. Smart Grid
PD NOV
PY 2016
VL 7
IS 6
BP 2817
EP 2826
DI 10.1109/TSG.2015.2513048
PG 10
WC Engineering, Electrical & Electronic
SC Engineering
GA EH4EH
UT WOS:000391723600024
ER
PT J
AU Chanda, S
Srivastava, AK
AF Chanda, Sayonsom
Srivastava, Anurag K.
TI Defining and Enabling Resiliency of Electric Distribution Systems With
Multiple Microgrids
SO IEEE TRANSACTIONS ON SMART GRID
LA English
DT Article
DE Microgrids; power distribution system; power system reconfiguration;
resilience
ID POWER; RESTORATION; NETWORKS
AB This paper presents a method for quantifying and enabling the resiliency of a power distribution system using analytical hierarchical process and percolation theory. Using this metric, quantitative analysis can be done to analyze the impact of possible control decisions to pro-actively enable the resilient operation of distribution system with multiple microgrids and other resources. Developed resiliency metric can also be used in short term distribution system planning. The benefits of being able to quantify resiliency can help distribution system planning engineers and operators to justify control actions, compare different reconfiguration algorithms, and develop proactive control actions to avert power system outage due to impending catastrophic weather situations or other adverse events. Validation of the proposed method is done using modified CERTS microgrids and a modified industrial distribution system. Simulation results show topological and composite metric considering power system characteristics to quantify the resiliency of a distribution system with the proposed methodology, and improvements in resiliency using two-stage reconfiguration algorithm and multiple microgrids.
C1 [Chanda, Sayonsom] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Srivastava, Anurag K.] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99163 USA.
RP Chanda, S (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM sayon@ieee.org; asrivast@eecs.wsu.edu
OI Srivastava, Anurag/0000-0003-3518-8018
NR 43
TC 0
Z9 0
U1 5
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3053
EI 1949-3061
J9 IEEE T SMART GRID
JI IEEE Trans. Smart Grid
PD NOV
PY 2016
VL 7
IS 6
BP 2859
EP 2868
DI 10.1109/TSG.2016.2561303
PG 10
WC Engineering, Electrical & Electronic
SC Engineering
GA EH4EH
UT WOS:000391723600028
ER
PT J
AU Kang, M
Muljadi, E
Hur, K
Kang, YC
AF Kang, Moses
Muljadi, Eduard
Hur, Kyeon
Kang, Yong Cheol
TI Stable Adaptive Inertial Control of a Doubly-Fed Induction Generator
SO IEEE TRANSACTIONS ON SMART GRID
LA English
DT Article
DE Inertial control; over-deceleration (OD); power reference; second
frequency dip (SFD); frequency nadir (FN)
ID SPEED WIND TURBINES; PRIMARY FREQUENCY CONTROL; POWER PENETRATION;
SYSTEMS; ENERGY; SUPPORT
AB This paper proposes a stable adaptive inertial control scheme of a doubly-fed induction generator. The proposed power reference is defined in two sections: 1) the deceleration period and 2) the acceleration period. The power reference in the deceleration period consists of a constant and the reference for maximum power point tracking (MPPT) operation. The latter contributes to preventing a second frequency dip (SFD) in this period because its reduction rate is large at the early stage of an event but quickly decreases with time. To improve the frequency nadir (FN), the constant value is set to be proportional to the rotor speed prior to an event. The reference ensures that the rotor speed converges to a stable operating region. To accelerate the rotor speed while causing a small SFD, when the rotor speed converges, the power reference is reduced by a small amount and maintained until it meets the MPPT reference. The results show that the scheme causes a small SFD while improving the FN and the rate of change of frequency in any wind conditions, even in a grid that has a high penetration of wind power.
C1 [Kang, Moses] Chonbuk Natl Univ, Dept Elect Engn, Jeonju 561756, South Korea.
[Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Hur, Kyeon] Yonsei Univ, Dept Elect & Elect Engn, Seoul 120749, South Korea.
[Kang, Yong Cheol] Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Jeonju 561756, South Korea.
[Kang, Yong Cheol] Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea.
RP Kang, YC (reprint author), Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Jeonju 561756, South Korea.; Kang, YC (reprint author), Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea.
EM bass0680@jbnu.ac.kr; eduard.muljadi@nrel.gov; khur@yonsei.ac.kr;
yckang@jbnu.ac.kr
FU National Research Foundation of Korea by the Korea Government
[2010-0028509]; U.S. Department of Energy through NREL
[DE-AC36-08-GO28308]
FX This work was supported in part by the National Research Foundation of
Korea by the Korea Government under Grant 2010-0028509, and in part by
the U.S. Department of Energy through NREL under Contract
DE-AC36-08-GO28308.
NR 23
TC 0
Z9 0
U1 3
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3053
EI 1949-3061
J9 IEEE T SMART GRID
JI IEEE Trans. Smart Grid
PD NOV
PY 2016
VL 7
IS 6
BP 2971
EP 2979
DI 10.1109/TSG.2016.2559506
PG 9
WC Engineering, Electrical & Electronic
SC Engineering
GA EH4EH
UT WOS:000391723600039
ER
PT J
AU Kim, J
Muljadi, E
Park, JW
Kang, YC
AF Kim, Jinho
Muljadi, Eduard
Park, Jung-Wook
Kang, Yong Cheol
TI Adaptive Hierarchical Voltage Control of a DFIG-Based Wind Power Plant
for a Grid Fault
SO IEEE TRANSACTIONS ON SMART GRID
LA English
DT Article
DE Hierarchical WPP voltage control; adaptive Q-V characteristic; available
reactive power; voltage support; grid resilience
ID FED INDUCTION GENERATOR; DESIGN; TURBINES
AB This paper proposes an adaptive hierarchical voltage control scheme of a doubly-fed induction generator (DFIG)-based wind power plant (WPP) that can secure more reserve of reactive power (Q) in the WPP against a grid fault. To achieve this, each DFIG controller employs an adaptive reactive power to voltage (Q-V) characteristic. The proposed adaptive Q-V characteristic is temporally modified depending on the available Q capability of a DFIG; it is dependent on the distance from a DFIG to the point of common coupling (PCC). The proposed characteristic secures more Q reserve in the WPP than the fixed one. Furthermore, it allows DFIGs to promptly inject up to the Q limit, thereby improving the PCC voltage support. To avert an overvoltage after the fault clearance, washout filters are implemented in the WPP and DFIG controllers; they can prevent a surplus Q injection after the fault clearance by eliminating the accumulated values in the proportional-integral controllers of both controllers during the fault. Test results demonstrate that the scheme can improve the voltage support capability during the fault and suppress transient overvoltage after the fault clearance under scenarios of various system and fault conditions; therefore, it helps ensure grid resilience by supporting the voltage stability.
C1 [Kim, Jinho] Chonbuk Natl Univ, Dept Elect Engn, Jeonju 561756, South Korea.
[Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Park, Jung-Wook] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120149, South Korea.
[Kang, Yong Cheol] Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Jeonju 561756, South Korea.
[Kang, Yong Cheol] Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea.
RP Kang, YC (reprint author), Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Jeonju 561756, South Korea.; Kang, YC (reprint author), Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea.
EM jkim@jbnu.ac.kr; eduard.muljadi@nrel.gov; jungpark@yonsei.ac.kr;
yckang@jbnu.ac.kr
FU National Research Foundation of Korea through the Korea Government
(MSIP) [2010-0028509, 2011-0028065]; U.S. Department of Energy through
NREL [DE-AC36-08-GO28308]
FX This work was supported in part by the National Research Foundation of
Korea through the Korea Government (MSIP) under Grant 2010-0028509 and
Grant 2011-0028065, and in part by the U.S. Department of Energy through
NREL under Contract DE-AC36-08-GO28308.
NR 29
TC 0
Z9 0
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3053
EI 1949-3061
J9 IEEE T SMART GRID
JI IEEE Trans. Smart Grid
PD NOV
PY 2016
VL 7
IS 6
BP 2980
EP 2990
DI 10.1109/TSG.2016.2562111
PG 11
WC Engineering, Electrical & Electronic
SC Engineering
GA EH4EH
UT WOS:000391723600040
ER
PT J
AU Gorelenkov, NN
Heidbrink, WW
Kramer, GJ
Lestz, JB
Podesta, M
Van Zeeland, MA
White, RB
AF Gorelenkov, N. N.
Heidbrink, W. W.
Kramer, G. J.
Lestz, J. B.
Podesta, M.
Van Zeeland, M. A.
White, R. B.
TI Validating predictive models for fast ion profile relaxation in burning
plasmas
SO NUCLEAR FUSION
LA English
DT Article; Proceedings Paper
CT 14th IAEA Technical Meeting on Energetic Particles in Magnetic
Confinement Systems
CY 2015
CL Vienna, AUSTRIA
SP IAEA
DE alpha particles; Alfvenic modes; magnetic fusion; reduced quasi-linear
model
ID ALFVEN EIGENMODES; TOROIDAL PLASMAS; STABILITY; TOKAMAKS; EXCITATION
AB The redistribution and potential loss of energetic particles due to MHD modes can limit the performance of fusion plasmas by reducing the plasma heating rate. In this work, we present validation studies of the 1.5D critical gradient model (CGM) for Alfven eigenmode (AE) induced EP transport in NSTX and DIII-D neutral beam heated plasmas. In previous comparisons with a single DIII-D L-mode case, the CGM model was found to be responsible for 75% of measured AE induced neutron deficit [1]. A fully kinetic HINST is used to compute mode stability for the non-perturbative version of CGM (or nCGM). We have found that AEs show strong local instability drive up to gamma/omega similar to 20% violating assumptions of perturbative approaches used in NOVA-K code. We demonstrate that both models agree with each other and both underestimate the neutron deficit measured in DIII-D shot by approximately a factor of 2.
On the other hand in NSTX the application of CGM shows good agreement for the measured flux deficit predictions. We attempt to understand these results with the help of the so-called kick model which is based on the guiding center code ORBIT. The kick model comparison gives important insight into the underlying velocity space dependence of the AE induced EP transport as well as it allows the estimate of the neutron deficit in the presence of the low frequency Alfvenic modes. Within the limitations of used models we infer that there are missing modes in the analysis which could improve the agreement with the experiments.
C1 [Gorelenkov, N. N.; Kramer, G. J.; Lestz, J. B.; Podesta, M.; White, R. B.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
[Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA USA.
[Van Zeeland, M. A.] Gen Atom, San Diego, CA USA.
RP Gorelenkov, NN (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM ngorelen@pppl.gov
NR 35
TC 0
Z9 0
U1 2
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2016
VL 56
IS 11
SI SI
AR 112015
DI 10.1088/0029-5515/56/11/112015
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA EG9QI
UT WOS:000391393900015
ER
PT J
AU Pfefferle, D
Cooper, WA
Fasoli, A
Graves, JP
AF Pfefferle, D.
Cooper, W. A.
Fasoli, A.
Graves, J. P.
TI Effects of magnetic ripple on 3D equilibrium and alpha particle
confinement in the European DEMO
SO NUCLEAR FUSION
LA English
DT Article; Proceedings Paper
CT 14th IAEA Technical Meeting on Energetic Particles in Magnetic
Confinement Systems
CY 2015
CL Vienna, AUSTRIA
SP IAEA
DE alpha particle confinement; 3D MHD equilibrium; stochastic ripple
diffusion; ripple well trapping; neoclassical transport; energetic
particle loss
ID TOROIDAL PLASMA; TOKAMAKS; FIELD; TRANSPORT; SIMULATIONS; DIFFUSION;
IONS
AB An assessment of alpha particle confinement is performed in the European DEMO reference design. 3D MHD equilibria with nested flux-surfaces and single magnetic axis are obtained with the VMEC free-boundary code, thereby including the plasma response to the magnetic ripple created by the finite number of TF coils. Populations of fusion alphas that are consistent with the equilibrium profiles are evolved until slowing-down with the VENUS-LEVIS orbit code in the guiding-centre approximation. Fast ion losses through the last-closed flux-surface are numerically evaluated with two ripple models: (1) using the 3D equilibrium and (2) algebraically adding the non-axisymmetric ripple perturbation to the 2D equilibrium. By virtue of the small ripple field and its non-resonant nature, both models quantitatively agree. Differences are however noted in the toroidal location of particles losses on the last-closed flux-surface, which in the first case is 3D and in the second not. Superbanana transport, i.e. ripple-well trapping and separatrix crossing, is expected to be the dominant loss mechanism, the strongest effect on alphas being between 100-200 KeV. Above this, stochastic ripple diffusion is responsible for a rather weak loss rate, as the stochastisation threshold is observed numerically to be higher than analytic estimates. The level of ripple in the current 18 TF coil design of the European DEMO is not found to be detrimental to fusion alpha confinement.
C1 [Pfefferle, D.; Cooper, W. A.; Fasoli, A.; Graves, J. P.] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland.
[Pfefferle, D.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Pfefferle, D (reprint author), Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland.; Pfefferle, D (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM david.pfefferle@princeton.edu
NR 35
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2016
VL 56
IS 11
SI SI
AR 112002
DI 10.1088/0029-5515/56/11/112002
PG 14
WC Physics, Fluids & Plasmas
SC Physics
GA EG9QI
UT WOS:000391393900002
ER
PT J
AU Podesta, M
Gorelenkova, M
Fredrickson, ED
Gorelenkov, NN
White, RB
AF Podesta, M.
Gorelenkova, M.
Fredrickson, E. D.
Gorelenkov, N. N.
White, R. B.
TI Effects of energetic particle phase space modifications by instabilities
on integrated modeling
SO NUCLEAR FUSION
LA English
DT Article; Proceedings Paper
CT 14th IAEA Technical Meeting on Energetic Particles in Magnetic
Confinement Systems
CY 2015
CL Vienna, AUSTRIA
SP IAEA
DE NB current drive; fast ion transport modeling; integrated tokamak
simulations; TRANSP code
ID INDUCED ALFVEN EIGENMODE; DIII-D TOKAMAK; PLASMAS; PHYSICS; NSTX;
TRANSPORT
AB Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effective tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfven eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.
C1 [Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Podesta, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM mpodesta@pppl.gov
NR 31
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2016
VL 56
IS 11
SI SI
AR 112005
DI 10.1088/0029-5515/56/11/112005
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA EG9QI
UT WOS:000391393900005
ER
PT J
AU Van Zeeland, MA
Heidbrink, WW
Sharapov, SE
Spong, D
Cappa, A
Chen, X
Collins, C
Garcia-Munoz, M
Gorelenkov, NN
Kramer, GJ
Lauber, P
Lin, Z
Petty, C
AF Van Zeeland, M. A.
Heidbrink, W. W.
Sharapov, S. E.
Spong, D.
Cappa, A.
Chen, Xi
Collins, C.
Garcia-Munoz, M.
Gorelenkov, N. N.
Kramer, G. J.
Lauber, P.
Lin, Z.
Petty, C.
TI Electron cyclotron heating can drastically alter reversed shear Alfven
eigenmode activity in DIII-D through finite pressure effects
SO NUCLEAR FUSION
LA English
DT Article; Proceedings Paper
CT 14th IAEA Technical Meeting on Energetic Particles in Magnetic
Confinement Systems
CY 2015
CL Vienna, AUSTRIA
SP IAEA
DE magnetohydrodynamic waves; tokamaks; fusion products effects; plasma
heating by microwaves; plasma heating by particle beams
ID AXISYMMETRICAL TOROIDAL PLASMAS; WAVE CASCADES; D TOKAMAK; MODES;
GRADIENT; DRIVEN; JT-60U
AB A recent DIII-D experiment investigating the impact of electron cyclotron heating (ECH) on neutral beam driven reversed shear Alfven eigenmode (RSAE) activity is presented. The experiment includes variations of ECH injection location and timing, current ramp rate, beam injection geometry (on/off-axis), and neutral beam power. Essentially all variations carried out in this experiment were observed to change the impact of ECH on AE activity significantly. In some cases, RSAEs were observed to be enhanced with ECH near the off-axis minimum in magnetic safety factor (q(min)), in contrast to the original DIII-D experiments where the modes were absent when ECH was deposited near q(min). It is found that during intervals when the geodesic acoustic mode (GAM) frequency at q(min) is elevated and the calculated RSAE minimum frequency, including contributions from thermal plasma gradients, is very near or above the nominal TAE frequency (f(TAE)), RSAE activity is not observed or RSAEs with a much reduced frequency sweep range are found. This condition is primarily brought about by ECH modification of the local electron temperature (T-e) which can raise both the local T-e at q(min) as well as its gradient. A q-evolution model that incorporates this reduction in RSAE frequency sweep range is in agreement with the observed spectra and appears to capture the relative balance of TAE or RSAE-like modes throughout the current ramp phase of over 38 DIII-D discharges. Detailed ideal MHD calculations using the NOVA code show both modification of plasma pressure and pressure gradient at q(min) play an important role in modifying the RSAE activity. Analysis of the ECH injection near the q(min) case where no frequency sweeping RSAEs are observed shows the typical RSAE is no longer an eigenmode of the system. What remains is an eigenmode with poloidal harmonic content reminiscent of the standard RSAE, but absent of the typical frequency sweeping behavior. The remaining eigenmode is also often strongly coupled to gap TAEs. Analysis with the non-perturbative gyro fluid code TAEFL confirms this change in RSAE activity and also shows a large drop in the resultant mode growth rates.
C1 [Van Zeeland, M. A.; Chen, Xi; Petty, C.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
[Heidbrink, W. W.; Collins, C.; Lin, Z.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Sharapov, S. E.] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
[Spong, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Cappa, A.] CIEMAT, Lab Nacl Fus, E-28040 Madrid, Spain.
[Garcia-Munoz, M.; Lauber, P.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany.
[Gorelenkov, N. N.; Kramer, G. J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Van Zeeland, MA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
EM vanzeeland@fusion.gat.com
RI Cappa, Alvaro/C-5614-2017
OI Cappa, Alvaro/0000-0002-2250-9209
NR 66
TC 1
Z9 1
U1 3
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2016
VL 56
IS 11
SI SI
AR 112007
DI 10.1088/0029-5515/56/11/112007
PG 15
WC Physics, Fluids & Plasmas
SC Physics
GA EG9QI
UT WOS:000391393900007
ER
PT J
AU Mo, JK
Kang, ZY
Retterer, ST
Cullen, DA
Toops, TJ
Green, JB
Mench, MM
Zhang, FY
AF Mo, Jingke
Kang, Zhenye
Retterer, Scott T.
Cullen, David A.
Toops, Todd J.
Green, Johney B., Jr.
Mench, Matthew M.
Zhang, Feng-Yuan
TI Discovery of true electrochemical reactions for ultrahigh catalyst mass
activity in water splitting
SO SCIENCE ADVANCES
LA English
DT Article
ID MEMBRANE ELECTROLYZER CELL; TRANSITION-METAL CARBIDES;
HYDROGEN-PRODUCTION; FUEL-CELLS; PEM ELECTROLYSIS; OXYGEN EVOLUTION;
LOW-COST; ENERGY; PERFORMANCE; FUTURE
AB Better understanding of true electrochemical reaction behaviors in electrochemical energy devices has long been desired. It has been assumed so far that the reactions occur across the entire catalyst layer (CL), which is designed and fabricated uniformly with catalysts, conductors of protons and electrons, and pathways for reactants and products. By introducing a state-of-the-art characterization system, a thin, highly tunable liquid/gas diffusion layer (LGDL), and an innovative design of electrochemical proton exchange membrane electrolyzer cells (PEMECs), the electrochemical reactions on both microspatial and microtemporal scales are revealed for the first time. Surprisingly, reactions occur only on the CL adjacent to good electrical conductors. On the basis of these findings, new CL fabrications on the novel LGDLs exhibitmore than 50 times higher mass activity than conventional catalyst-coated membranes in PEMECs. This discovery presents an opportunity to enhance the multiphase interfacial effects, maximizing the use of the catalysts and significantly reducing the cost of these devices.
C1 [Mo, Jingke; Kang, Zhenye; Zhang, Feng-Yuan] Univ Tennessee, Inst Space, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37388 USA.
[Retterer, Scott T.; Cullen, David A.; Toops, Todd J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Green, Johney B., Jr.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Mench, Matthew M.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA.
RP Zhang, FY (reprint author), Univ Tennessee, Inst Space, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37388 USA.
EM fzhang@utk.edu
OI Green, Johney/0000-0003-2383-7260; Cullen, David/0000-0002-2593-7866
FU U.S. Department of Energy's (DOE) National Energy Technology Laboratory
[DE-FE0011585]; DOE Office of Basic Energy Sciences
FX Financial support for this study was provided by the U.S. Department of
Energy's (DOE) National Energy Technology Laboratory under award
DE-FE0011585. The research was partially performed at ORNL's Center for
Nanophase Materials Sciences, which is sponsored by the DOE Office of
Basic Energy Sciences.
NR 47
TC 2
Z9 2
U1 13
U2 13
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 2375-2548
J9 SCI ADV
JI Sci. Adv.
PD NOV
PY 2016
VL 2
IS 11
AR e1600690
DI 10.1126/sciadv.1600690
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EG7WS
UT WOS:000391267800009
PM 28138516
ER
PT J
AU Sun, WH
Dacek, ST
Ong, SP
Hautier, G
Jain, A
Richards, WD
Gamst, AC
Persson, KA
Ceder, G
AF Sun, Wenhao
Dacek, Stephen T.
Ong, Shyue Ping
Hautier, Geoffroy
Jain, Anubhav
Richards, William D.
Gamst, Anthony C.
Persson, Kristin A.
Ceder, Gerbrand
TI The thermodynamic scale of inorganic crystalline metastability
SO SCIENCE ADVANCES
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; NITRIDE CHEMISTRY;
PRINCIPLES; STABILITY; DESIGN; PHASE; POLYMORPHS; NUCLEATION; PREDICTION
AB The space of metastable materials offers promising new design opportunities for next-generation technological materials such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory-calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of 'remnant metastability'-that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase.
C1 [Sun, Wenhao; Dacek, Stephen T.; Richards, William D.; Ceder, Gerbrand] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Sun, Wenhao; Ceder, Gerbrand] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Ong, Shyue Ping] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA.
[Hautier, Geoffroy] Catholic Univ Louvain, Inst Condensed Matter & Nanosci, B-1348 Louvain La Neuve, Belgium.
[Jain, Anubhav; Persson, Kristin A.] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA.
[Gamst, Anthony C.] Univ Calif San Diego, Dept Math, Computat & Appl Stat Lab, La Jolla, CA 92093 USA.
[Persson, Kristin A.; Ceder, Gerbrand] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Ceder, G (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.; Ceder, G (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Ceder, G (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM gceder@berkeley.edu
FU Department of Energy (DOE) Basic Energy Sciences program
[DE-AC02-05CH11231, EDCBEE]; U.S. DOE, Office of Science, Basic Energy
Sciences as part of the DOE Energy Frontier Research Center "Center for
Next Generation of Materials by Design: Incorporating Metastability"
[UGA-0-41029-16/ER392000]; U.S. DOE, Office of Science, Office of Basic
Energy Sciences [DE-AC02-06CH11357]; U.S. DOE Office of Science Facility
at Brookhaven National Laboratory [DE-SC0012704]
FX The data-mining portion of this work was intellectually led by the
Materials Project, which was supported by the Department of Energy (DOE)
Basic Energy Sciences program under grant no. EDCBEE, DOE contract
DE-AC02-05CH11231. The analysis of different forms of metastability was
supported by the U.S. DOE, Office of Science, Basic Energy Sciences,
under contract no. UGA-0-41029-16/ER392000 as part of the DOE Energy
Frontier Research Center "Center for Next Generation of Materials by
Design: Incorporating Metastability." We used computing resources at the
Argonne National Laboratory Center for Nanoscale Materials, an Office of
Science User Facility, which was supported by the U.S. DOE, Office of
Science, Office of Basic Energy Sciences, under contract no.
DE-AC02-06CH11357. This research also used computational resources from
the Center for Functional Nanomaterials, which is a U.S. DOE Office of
Science Facility at Brookhaven National Laboratory, under contract no.
DE-SC0012704.
NR 64
TC 1
Z9 1
U1 11
U2 11
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 2375-2548
J9 SCI ADV
JI Sci. Adv.
PD NOV
PY 2016
VL 2
IS 11
AR e1600225
DI 10.1126/sciadv.1600225
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EG7WS
UT WOS:000391267800004
PM 28138514
ER
PT J
AU La Tessa, C
Sivertz, M
Chiang, IH
Lowenstein, D
Rusek, A
AF La Tessa, Chiara
Sivertz, Michael
Chiang, I-Hung
Lowenstein, Derek
Rusek, Adam
TI Overview of the NASA space radiation laboratory
SO LIFE SCIENCES IN SPACE RESEARCH
LA English
DT Article
DE Space radiation research; NASA
ID SIMULATION
AB The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. This work contains a general overview of NSRL structure, capabilities and operation. (C) 2016 The Committee on Space Research(COSPAR). Published by Elsevier Ltd. All rights reserved.
C1 [La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; Lowenstein, Derek; Rusek, Adam] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP La Tessa, C (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM clatessa@bnl.gov
FU NASA [T570X]; United State Department of Energy [DE-AC02-98CH10886]
FX The work at NSRL is supported by NASA (Contract No. T570X) and performed
under the United State Department of Energy (Contract No.
DE-AC02-98CH10886). The authors would like to thank the Collider
Accelerator Department main control room staffand the operations support
technicians without whom the facility could not run smoothly. We wish to
acknowledge the Ion Source EBIS personnel for the tremendous effort and
extremely efficient work. A special thanks goes to NSLR chief engineer
Charlie Pearson who endeavors to improve the facility every day.
NR 11
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2214-5524
EI 2214-5532
J9 LIFE SCI SPACE RES
JI Life Sci. Space Res.
PD NOV
PY 2016
VL 11
BP 18
EP 23
DI 10.1016/j.lssr.2016.10.002
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EG6SA
UT WOS:000391175100003
PM 27993189
ER
PT J
AU Mahadevan, R
Adhikari, S
Shakya, R
Wang, KG
Dayton, DC
Li, M
Pu, YQ
Ragauskas, AJ
AF Mahadevan, Ravishankar
Adhikari, Sushil
Shakya, Rajdeep
Wang, Kaige
Dayton, David C.
Li, Mi
Pu, Yunqiao
Ragauskas, Arthur J.
TI Effect of torrefaction temperature on lignin macromolecule and product
distribution from HZSM-5 catalytic pyrolysis
SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
LA English
DT Article
DE Biomass; Catalytic fast pyrolysis (CFP); HZSM-5; Torrefaction; Lignin
ID SWITCHGRASS; BIOMASS; WOOD
AB Torrefaction is a low-temperature process considered as an effective pretreatment technique to improve the grindability of biomass as well as enhance the production of aromatic hydrocarbons from Catalytic Fast Pyrolysis (CFP). This study was performed to understand the effect of torrefaction temperature on structural changes in the lignin macromolecule and its subsequent influence on in-situ CFP process. Lignin extracted from southern pine and switchgrass (via organosolv treatment) was torrefied at four different temperatures (150, 175, 200 and 225 degrees C) in a tubular reactor. Between the two biomass types studied, lignin from pine appeared to have greater thermal stability during torrefaction when compared with switchgrass lignin. The structural changes in lignin as a result of torrefaction were followed by using FTIR spectroscopy, solid state CP/MAS C-13 NMR, P-31 NMR spectroscopy and it was found that higher torrefaction temperature (200 and 225 degrees C) caused polycondensation and de-methoxylation of the aromatic units of lignin. Gel permeation chromatography analysis revealed that polycondensation during torrefaction resulted in an increase in the molecular weight and polydispersity of lignin. The torrefied lignin was subsequently used in CFP experiments using H(+)ZSM-5 catalyst in a micro-reactor (Py-GC/MS) to understand the effect of torrefaction on the product distribution from pyrolysis. It was observed that although the selectivity of benzene-toluene-xylene compounds from CFP of pine improved from 58.3% (torrefaction temp at 150 degrees C) to 69.0% (torrefaction temp at 225 degrees C), the severity of torrefaction resulted in a loss of overall aromatic hydrocarbon yield from 11.6% to 4.9% under same conditions. Torrefaction at higher temperatures also increased the yield of carbonaceous residues from 63.9% to 72.8%. Overall, torrefying lignin caused structural transformations in both type of lignins (switchgrass and pine), which is ultimately detrimental to achieving a higher aromatic hydrocarbon yield from CFP. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Mahadevan, Ravishankar; Adhikari, Sushil; Shakya, Rajdeep] Auburn Univ, Dept Biosyst Engn, Auburn, AL 36849 USA.
[Wang, Kaige; Dayton, David C.] RTI Int, Div Energy Technol, 3040 East Cornwallis Rd, Res Triangle Pk, NC 27709 USA.
[Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA.
[Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.
RP Adhikari, S (reprint author), Auburn Univ, Dept Biosyst Engn, Auburn, AL 36849 USA.
EM sushil.adhikari@auburn.edu
FU US Department of Agriculture-National Institute of Food and Agriculture
[USDA-NIFA-2015-67021-22842]; National Science Foundation
[NSF-CBET-1333372]
FX The authors would like to acknowledge US Department of
Agriculture-National Institute of Food and Agriculture
(USDA-NIFA-2015-67021-22842) and National Science Foundation
(NSF-CBET-1333372) for funding this study. This work is part of the
first author's requirements for the degree of Ph.D. at Auburn
University, and most of the work was carried out at RTI International.
However, only the authors are responsible for any remaining errors in
this manuscript.
NR 30
TC 0
Z9 0
U1 9
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0165-2370
EI 1873-250X
J9 J ANAL APPL PYROL
JI J. Anal. Appl. Pyrolysis
PD NOV
PY 2016
VL 122
BP 95
EP 105
DI 10.1016/j.jaap.2016.10.011
PG 11
WC Chemistry, Analytical; Spectroscopy
SC Chemistry; Spectroscopy
GA EF7FU
UT WOS:000390496300011
ER
PT J
AU Nawn, CD
Souhan, BE
Carter, R
Kneapler, C
Fell, N
Ye, JY
AF Nawn, Corinne D.
Souhan, Brian E.
Carter, Robert, III
Kneapler, Caitlin
Fell, Nicholas
Ye, Jing Yong
TI Distinguishing tracheal and esophageal tissues with hyperspectral
imaging and fiber-optic sensing
SO JOURNAL OF BIOMEDICAL OPTICS
LA English
DT Article
DE trachea; esophagus; intubation; fiber optic; hyperspectral camera;
spectral characterization
ID EMERGENCY-DEPARTMENTS; AIRWAY MANAGEMENT; DIFFICULT AIRWAY;
INTENSIVE-CARE; INTUBATION; GUIDELINES
AB During emergency medical situations, where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. Complications during ETI, such as repeated attempts, failed intubation, or accidental intubation of the esophagus, can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. Our study examined the spectral reflectance properties of the tracheal and esophageal tissue to determine whether a unique spectral profile exists for either tissue for the purpose of detection. The study began by using a hyperspectral camera to image excised pig tissue samples exposed to white and UV light in order to capture the spectral reflectance properties with high fidelity. After identifying a unique spectral characteristic of the trachea that significantly differed from esophageal tissue, a follow-up investigation used a fiber optic probe to confirm the detectability and consistency of the different reflectance characteristics in a pig model. Our results characterize the unique and consistent spectral reflectance characteristic of tracheal tissue, thereby providing foundational support for exploiting spectral properties to detect the trachea during medical procedures. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication.
C1 [Nawn, Corinne D.; Carter, Robert, III] United States Army Inst Surg Res, 3698 Chambers Pass, Ft Sam Houston, TX 78234 USA.
[Nawn, Corinne D.] Oak Ridge Inst Sci & Educ, 4692 Millennium Dr,Suite 101, Belcamp, MD 21017 USA.
[Nawn, Corinne D.; Ye, Jing Yong] Univ Texas San Antonio, One UTSA Circle, San Antonio, TX 78249 USA.
[Nawn, Corinne D.; Carter, Robert, III; Ye, Jing Yong] Univ Texas Hlth Sci Ctr San Antonio, 7703 Floyd Curl Dr,Mail Code 7736, San Antonio, TX 78229 USA.
[Souhan, Brian E.; Kneapler, Caitlin; Fell, Nicholas] US Mil Acad, 606 Thayer Rd, West Point, NY 10996 USA.
RP Nawn, CD (reprint author), United States Army Inst Surg Res, 3698 Chambers Pass, Ft Sam Houston, TX 78234 USA.; Nawn, CD (reprint author), Oak Ridge Inst Sci & Educ, 4692 Millennium Dr,Suite 101, Belcamp, MD 21017 USA.; Nawn, CD (reprint author), Univ Texas San Antonio, One UTSA Circle, San Antonio, TX 78249 USA.; Nawn, CD (reprint author), Univ Texas Hlth Sci Ctr San Antonio, 7703 Floyd Curl Dr,Mail Code 7736, San Antonio, TX 78229 USA.
EM nawn.cori@gmail.com
FU Army Research Office of the United States Army Research Laboratory;
Defense Advanced Research Project Agency; Oak Ridge Institute for
Science and Education
FX Support of this work by the Army Research Office of the United States
Army Research Laboratory, the Defense Advanced Research Project Agency,
and the Oak Ridge Institute for Science and Education is acknowledged.
The authors have no conflicts of interest to report pertaining to the
present study. Animal statement: This study has been conducted in
compliance with the Animal Welfare Act, the implementing Animal Welfare
Regulations, and the principles of the Guide for the Care and User of
Laboratory Animals. DoD disclaimer: The opinions or assertions contained
herein are the private views of the author and are not to be construed
as official or as reflecting the views of the Department of the Army or
the Department of Defense.
NR 13
TC 0
Z9 0
U1 0
U2 0
PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 1083-3668
EI 1560-2281
J9 J BIOMED OPT
JI J. Biomed. Opt.
PD NOV
PY 2016
VL 21
IS 11
AR 117004
DI 10.1117/1.JBO.21.11.117004
PG 10
WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine &
Medical Imaging
SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine &
Medical Imaging
GA EF9RT
UT WOS:000390668200022
PM 27893090
ER
PT J
AU Pacheco, JM
Stenfeldt, C
Rodriguez, LL
Arzt, J
AF Pacheco, J. M.
Stenfeldt, C.
Rodriguez, L. L.
Arzt, J.
TI Infection Dynamics of Foot-and-Mouth Disease Virus in Cattle Following
Intranasopharyngeal Inoculation or Contact Exposure
SO JOURNAL OF COMPARATIVE PATHOLOGY
LA English
DT Article
DE animal models; cattle; foot-and-mouth disease virus; pathogenesis
ID SIMULATED-NATURAL INOCULATION; PARTIAL PROTECTION; EARLY PATHOGENESIS;
SEROTYPE O; RT-PCR; TRANSMISSION; VACCINATION; PIGS; RESPONSES; CYTOKINE
AB For the purpose of developing an improved experimental model for studies of foot-and-mouth disease virus (FMDV) infection in cattle, three different experimental systems based on natural or simulated natural virus exposure were compared under standardized experimental conditions. Ante-mortem infection dynamics were characterized in cattle exposed to FMDV through a novel, simulated natural intranasopharyngeal (INP) inoculation system or through standardized and controlled systems of within- or between-species direct contact exposure (cattle-to-cattle or pig-to-cattle). All three systems were efficient in causing synchronous, generalized foot-and-mouth disease in cattle exposed to one of three different strains of FMDV representing serotypes O, A and Asial. There was more within-group variation in the timing of clinical infection following natural and simulated natural virus exposure systems when compared with the conventionally used system of needle inoculation (intraepithelial lingual inoculation). However, the three optimized exposure systems described herein have the advantage of closely simulating field conditions by utilizing natural routes of primary infection, thereby facilitating engagement of mucosal host defence mechanisms. Overall, it is concluded that INP inoculation and standardized systems of direct contact exposure provide effective alternatives to conventional (needle) inoculation systems for studies in which it is desirable to simulate the natural biology of FMDV infection. Published by Elsevier Ltd.
C1 [Pacheco, J. M.; Stenfeldt, C.; Rodriguez, L. L.; Arzt, J.] ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA.
[Stenfeldt, C.] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN USA.
RP Arzt, J (reprint author), ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA.
EM Jonathan.Arzt@ars.usda.gov
OI Arzt, Jonathan/0000-0002-7517-7893
FU CRIS [1940-32000-057-00D]; Science and Technology Directorate of the US
Department of Homeland Security [HSHQDC-11-X-00189]; PIADC Research
Participation Program fellowships
FX This work was funded in part by CRIS project 1940-32000-057-00D (USDA,
Agricultural Research Service), as well as through an interagency
agreement with the Science and Technology Directorate of the US
Department of Homeland Security under Award Number HSHQDC-11-X-00189. CS
was recipient of PIADC Research Participation Program fellowships,
administered by the Oak Ridge Institute for Science and Education
(ORISE) through an interagency agreement with the US Department of
Energy. The sponsors had no involvement in the study design, in the
collection, analysis and interpretation of data, in the writing of the
manuscript, or in the decision to submit the manuscript for publication.
The authors acknowledge and appreciate expert laboratory support
provided by G. R. Smoliga, E. J. Hartwig, S. J. Pauszek and E. Bishop.
The first two authors contributed equally to this work.
NR 53
TC 0
Z9 0
U1 4
U2 4
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0021-9975
EI 1532-3129
J9 J COMP PATHOL
JI J. Comp. Pathol.
PD NOV
PY 2016
VL 155
IS 4
BP 314
EP 325
DI 10.1016/j.jcpa.2016.08.005
PG 12
WC Pathology; Veterinary Sciences
SC Pathology; Veterinary Sciences
GA EF9AW
UT WOS:000390624100006
PM 27697284
ER
PT J
AU Ba, Y
Kang, QJ
Liu, HH
Sun, JJ
Wang, C
AF Ba, Yan
Kang, Qinjun
Liu, Haihu
Sun, Jinju
Wang, Chao
TI Three-dimensional lattice Boltzmann simulations of microdroplets
including contact angle hysteresis on topologically structured surfaces
SO JOURNAL OF COMPUTATIONAL SCIENCE
LA English
DT Article; Proceedings Paper
CT 24th International Conference on Discrete Simulation of Fluid Dynamics
(DSFD)
CY JUL 13-17, 2015
CL Royal Soc Edinburgh, Edinburgh, SCOTLAND
HO Royal Soc Edinburgh
DE Contact angle hysteresis; Cassie state; Wenzel state; Structured
surfaces; Lattice Boltzmann method
ID GAS-DIFFUSION LAYER; MEMBRANE FUEL-CELL; SUPERHYDROPHOBIC SURFACES;
HYDROPHOBIC SURFACE; IMMISCIBLE DROPLET; ROUGH SURFACES; CASSIE-BAXTER;
2-PHASE FLOWS; WENZEL STATE; MODEL
AB In this study, the dynamical behavior of a droplet on topologically structured surface is investigated by using a three-dimensional color-gradient lattice Boltzmann model. A wetting boundary condition is proposed to model fluid-surface interactions, which is advantageous to improve the accuracy of the simulation and suppress spurious velocities at the contact line. The model is validated by the droplet partial wetting test and reproduction of the Cassie and Wenzel states. A series of simulations are conducted to investigate the behavior of a droplet when subjected to a shear flow. It is found that in Cassie state, the droplet undergoes a transition from stationary, to slipping and finally to detachment states as the capillary number increases, while in Wenzel state, the last state changes to the breakup state. The critical capillary number, above which the droplet slipping occurs, is small for the Cassie droplet, but is significantly enhanced for the Wenzel droplet due to the increased contact angle hysteresis. In Cassie state, the receding contact angle nearly equals the prediction by the Cassie relation, and the advancing contact angle is close to 180, leading to a small contact angle hysteresis. In Wenzel state, however, the contact angle hysteresis is extremely large (around 100). Finally, high droplet mobility can be easily achieved for Cassie droplets, whereas in Wenzel state, extremely low droplet mobility is identified. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Ba, Yan; Liu, Haihu; Sun, Jinju; Wang, Chao] Xi An Jiao Tong Univ, Sch Energy & Power Engn, 28 West Xianning Rd, Xian 710049, Peoples R China.
[Ba, Yan; Kang, Qinjun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Sun, Jinju] CICAAE, Beijing, Peoples R China.
RP Sun, JJ (reprint author), Xi An Jiao Tong Univ, Sch Energy & Power Engn, 28 West Xianning Rd, Xian 710049, Peoples R China.
EM jjsun@mail.xjtu.edu.cn
RI Liu, Haihu/B-2097-2013
OI Liu, Haihu/0000-0002-0295-1251
NR 58
TC 1
Z9 1
U1 12
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1877-7503
J9 J COMPUT SCI-NETH
JI J. Comput. Sci.
PD NOV
PY 2016
VL 17
SI SI
BP 418
EP 430
DI 10.1016/j.jocs.2016.03.015
PN 2
PG 13
WC Computer Science, Interdisciplinary Applications; Computer Science,
Theory & Methods
SC Computer Science
GA EF9BN
UT WOS:000390625800013
ER
PT J
AU Burnett, JL
Milbrath, BD
AF Burnett, Jonathan L.
Milbrath, Brian D.
TI Radionuclide observables for the Platte underground nuclear explosive
test on 14 April 1962
SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY
LA English
DT Article
DE Underground nuclear explosion; OSI; CTBT; Platte
ID GAMMA-SPECTROMETRY; RADIOIODINE; RATIOS
AB Past nuclear weapon explosive tests provide invaluable information for understanding the radionuclide observables expected during an On-site Inspection (OSI) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These radioactive signatures are complex and subject to spatial and temporal variability. The Platte underground nuclear explosive test on 14 April 1962 provides extensive environmental monitoring data that can be modelled and used to calculate the maximum time available for detection of the OSI-relevant radionuclides. The 1.6 kT test is especially useful as it released the highest amounts of recorded activity during Operation Nougat at the Nevada Test Site now known as the Nevada National Security Site (NNSS). It has been estimated that 036% of the activity was released, and dispersed in a northerly direction. The deposition ranged from 1 x 10(-11) to 1 x 10(-9) of the atmospheric release (per m(2)), and has been used in this paper to evaluate an OSI and the OSI-relevant radionuclides at 1 week to 2 years post-detonation. Radioactive decay reduces the activity of the OSI-relevant radionuclides by 99.7% within 2 years of detonation, such that detection throughout the hypothesized inspection is only achievable close to the explosion where deposition was highest. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Burnett, Jonathan L.; Milbrath, Brian D.] Pacific Northwest Natl Lab, POB 999, Richland, WA 99354 USA.
RP Burnett, JL (reprint author), Pacific Northwest Natl Lab, POB 999, Richland, WA 99354 USA.
EM jonathan.burnett@pnnl.gov
FU U.S. Department of Energy by Battelle [DE-AC05-76RL01830]
FX The authors thank the National Oceanic and Atmospheric Administration
(NOAA) Air Resources Laboratory (ARL) for the provision of the HYSPLIT
transport and dispersion model and Real-time Environmental Applications
and Display sYstem (READY) website (http://www.ready.noaa.gov) used in
this research. The views expressed here do not necessarily reflect the
opinion of the United States Government, the United States Department of
Energy, or the Pacific Northwest National Laboratory. Pacific Northwest
National Laboratory is operated for the U.S. Department of Energy by
Battelle under Contract DE-AC05-76RL01830.
NR 31
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0265-931X
EI 1879-1700
J9 J ENVIRON RADIOACTIV
JI J. Environ. Radioact.
PD NOV
PY 2016
VL 164
BP 232
EP 238
DI 10.1016/j.jenvrad.2016.08.002
PG 7
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA EF7KF
UT WOS:000390507800027
PM 27521903
ER
PT J
AU Yuan, B
Bedrikovetsky, P
Huang, TP
Moghanloo, RG
Dai, CL
Venkatraman, A
Sun, BJ
Thomas, D
Wang, L
Wood, D
AF Yuan, Bin
Bedrikovetsky, Pavel
Huang, Tianping (Tim)
Moghanloo, Rouzbeh Ghanbarnezhad
Dai, Caili
Venkatraman, Ashwin
Sun, Baojiang
Thomas, Dewers
Wang, Lei
Wood, David
TI Special issue: Formation damage during enhanced gas and liquid recovery
SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING
LA English
DT Editorial Material
ID FINES MIGRATION; POROUS-MEDIA; WATER; RESERVOIRS; PARTICLES
C1 [Yuan, Bin; Moghanloo, Rouzbeh Ghanbarnezhad] Univ Oklahoma, Norman, OK 73019 USA.
[Bedrikovetsky, Pavel] Univ Adelaide, Adelaide, SA, Australia.
[Huang, Tianping (Tim)] Bake Hughes, Houston, TX USA.
[Dai, Caili; Sun, Baojiang] China Univ Petr, Qingdao, Peoples R China.
[Venkatraman, Ashwin] Shell E&P Co, Houston, TX USA.
[Thomas, Dewers] Sandia Natl Labs, Geomech Lab, Livermore, CA 94550 USA.
[Wang, Lei] Colorado Sch Mines, Golden, CO 80401 USA.
[Wood, David] DWA Energy Ltd, Lincoln, England.
RP Yuan, B (reprint author), Univ Oklahoma, Norman, OK 73019 USA.; Wood, D (reprint author), DWA Energy Ltd, Lincoln, England.
EM biny@ou.edu; pavel@asp.adelaide.edu.au; Tim.Huang@bakerhughes.com;
rouzbeh.gm@ou.edu; daicl306@163.com; Ashwin.Venkatraman2@shell.com;
sunbj1128@vip.126.com; tdewers@sandia.gov; lwang@mines.edu;
dw@dwasolutions.com
NR 17
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1875-5100
EI 2212-3865
J9 J NAT GAS SCI ENG
JI J. Nat. Gas Sci. Eng.
PD NOV
PY 2016
VL 36
BP 1051
EP 1054
DI 10.1016/j.jngse.2016.11.019
PN A
PG 4
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA EG0PN
UT WOS:000390734800089
ER
PT J
AU Tumeo, A
Feo, J
Villa, O
AF Tumeo, Antonino
Feo, John
Villa, Oreste
TI Special Issue on Theory and Practice of Irregular Applications (TaPIA)
SO PARALLEL COMPUTING
LA English
DT Editorial Material
C1 [Tumeo, Antonino] PNNL, High Performance Comp Grp, Richland, WA 99354 USA.
[Tumeo, Antonino; Feo, John; Villa, Oreste] PNNL, Richland, WA USA.
[Tumeo, Antonino] Politecn Milan, Milan, Italy.
[Feo, John] Northwest Inst Adv Comp, Seattle, WA USA.
[Feo, John] PNNL, Ctr Adapt Supercomp Software, Richland, WA USA.
[Feo, John] Lawrence Livermore Natl Lab, Comp Sci Grp, Lawrence, KS USA.
[Feo, John] Lawrence Livermore Natl Lab, Sisal Language Project, Lawrence, KS USA.
[Feo, John] Cray Inc, Seattle, WA USA.
[Feo, John] Microsoft, Redmond, WA USA.
[Feo, John] Univ Calif Davis, Davis, CA USA.
[Feo, John] Washington State Univ, Pullman, WA 99164 USA.
[Villa, Oreste] NVIDIA Res, Pullman, WA USA.
RP Tumeo, A (reprint author), PNNL, High Performance Comp Grp, Richland, WA 99354 USA.
EM ntonino.tumeo@pnnl.gov; john.feo@pnnl.gov; ovilla@nvidia.com
NR 0
TC 0
Z9 0
U1 3
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
EI 1872-7336
J9 PARALLEL COMPUT
JI Parallel Comput.
PD NOV
PY 2016
VL 59
SI SI
BP 21
EP 23
DI 10.1016/j.parco.2016.10.005
PG 3
WC Computer Science, Theory & Methods
SC Computer Science
GA EF9GI
UT WOS:000390638300002
ER
PT J
AU Hirsch, CN
Hirsch, CD
Brohammer, AB
Bowman, MJ
Soifer, I
Barad, O
Shem-Tov, D
Baruch, K
Lu, F
Hernandez, AG
Fields, CJ
Wright, CL
Koehler, K
Springer, NM
Buckler, E
Buell, CR
de Leon, N
Kaeppler, SM
Childs, KL
Mikel, MA
AF Hirsch, Candice N.
Hirsch, Cory D.
Brohammer, Alex B.
Bowman, Megan J.
Soifer, Ilya
Barad, Omer
Shem-Tov, Doron
Baruch, Kobi
Lu, Fei
Hernandez, Alvaro G.
Fields, Christopher J.
Wright, Chris L.
Koehler, Klaus
Springer, Nathan M.
Buckler, Edward
Buell, C. Robin
de Leon, Natalia
Kaeppler, Shawn M.
Childs, Kevin L.
Mikel, Mark A.
TI Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic
and Transcriptome Diversity in Maize
SO PLANT CELL
LA English
DT Article
ID COPY NUMBER VARIATION; ARABIDOPSIS-THALIANA; EUKARYOTIC GENOMES;
QUALITY-CONTROL; READ ALIGNMENT; PLANT GENOMICS; OPEN SOFTWARE;
ORYZA-SATIVA; PAN-GENOME; MAKER-P
AB Intense artificial selection over the last 100 years has produced elite maize ( Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison of these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.
C1 [Hirsch, Candice N.; Brohammer, Alex B.] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA.
[Hirsch, Cory D.] Univ Minnesota, Dept Plant Pathol, St Paul, MN 55108 USA.
[Bowman, Megan J.; Buell, C. Robin; Childs, Kevin L.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.
[Soifer, Ilya] Calico Labs, San Francisco, CA 94080 USA.
[Barad, Omer; Shem-Tov, Doron; Baruch, Kobi] NRGENE Ltd, IL-7403648 Ness Ziona, Israel.
[Lu, Fei; Buckler, Edward] Cornell Univ, Inst Genome Divers, Ithaca, NY 14850 USA.
[Hernandez, Alvaro G.; Fields, Christopher J.; Wright, Chris L.; Mikel, Mark A.] Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL 61801 USA.
[Koehler, Klaus] Dow AgroSci, Indianapolis, IN 46268 USA.
[Springer, Nathan M.] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA.
[Buckler, Edward] ARS, USDA, Ithaca, NY 14850 USA.
[Buell, C. Robin] DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[de Leon, Natalia; Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA.
[de Leon, Natalia; Kaeppler, Shawn M.] DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.
[Childs, Kevin L.] Michigan State Univ, Ctr Genom Enabled Plant Sci, E Lansing, MI 48824 USA.
[Mikel, Mark A.] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA.
RP Hirsch, CN (reprint author), Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA.
EM cnhirsch@umn.edu
OI Bowman, Megan/0000-0001-5742-1779; Hirsch, Cory/0000-0002-3409-758X
FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science)
[DE-FC02-07ER64494]; Dow AgroSciences; National Science Foundation
[IOS-1126998]; National Science Foundation National Plant Genome
Initiative Postdoctoral Fellowship in Biology Fellowship [1202724];
DuPont Pioneer Bill Kuhn Honorary Fellowship
FX This work was funded in part by the DOE Great Lakes Bioenergy Research
Center (DOE BER Office of Science DE-FC02-07ER64494), by Dow
AgroSciences, and by the National Science Foundation (Grant IOS-1126998
to K.L.C.). The Minnesota Supercomputing Institute at the University of
Minnesota provided computational resources that contributed to the
research results reported in this article. C.D.H. was supported by a
National Science Foundation National Plant Genome Initiative
Postdoctoral Fellowship in Biology Fellowship (Grant 1202724). A.B.B.
was supported by the DuPont Pioneer Bill Kuhn Honorary Fellowship.
NR 89
TC 1
Z9 1
U1 3
U2 3
PU AMER SOC PLANT BIOLOGISTS
PI ROCKVILLE
PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA
SN 1040-4651
EI 1532-298X
J9 PLANT CELL
JI Plant Cell
PD NOV
PY 2016
VL 28
IS 11
BP 2700
EP 2714
DI 10.1105/tpc.16.00353
PG 15
WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology
GA EG1NR
UT WOS:000390800000003
PM 27803309
ER
PT J
AU Pointer, WD
Sun, XD
AF Pointer, W. David
Sun, Xiaodong
TI Special issue on the 16th International Topical Meeting on Nuclear
Reactor Thermal Hydraulics Foreword
SO NUCLEAR TECHNOLOGY
LA English
DT Editorial Material
C1 [Pointer, W. David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Sun, Xiaodong] Ohio State Univ, Columbus, OH 43210 USA.
RP Pointer, WD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2016
VL 196
IS 2
SI SI
BP V
EP VI
PG 2
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA ED0CK
UT WOS:000388510400001
ER
PT J
AU Zhou, H
An, K
Allu, S
Pannala, S
Li, JL
Bilheux, HZ
Martha, SK
Nanda, J
AF Zhou, Hui
An, Ke
Allu, Srikanth
Pannala, Sreekanth
Li, Jianlin
Bilheux, Hassina Z.
Martha, Surendra K.
Nanda, Jagjit
TI Probing Multiscale Transport and Inhomogeneity in a Lithium-Ion Pouch
Cell Using In Situ Neutron Methods
SO ACS ENERGY LETTERS
LA English
DT Article
ID X-RAY-DIFFRACTION; GAS EVOLUTION; BATTERIES; GRAPHITE; ELECTRODES;
OPERANDO; INTERCALATION; DYNAMICS; CHARGE; SCATTERING
AB We demonstrate the lithiation process in graphitic anodes using in situ neutron radiography and diffraction in a single-layer pouch cell. The variation in neutron absorption contrast in graphite shows a direct correlation between the degree of lithiation and the discharge potential. The experimental neutron attenuation line profiles across the graphite electrode at various discharge times (potentials) were compared with lithium concentration profiles computed using a 3D electrochemical transport model. In conjunction with imaging/radiography, in situ neutron diffraction was carried out to obtain information about the local structural changes during various stages of lithiation in carbon. Combined in situ radiography and diffraction supported by 3D multiscale electrochemical modeling opens up a powerful nondestructive tool that can be utilized to understand the multiscale nature of lithium transport as well as observe various inhomogeneities at a cell level.
C1 [Zhou, Hui; An, Ke; Allu, Srikanth; Pannala, Sreekanth; Li, Jianlin; Bilheux, Hassina Z.; Martha, Surendra K.; Nanda, Jagjit] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Zhou, Hui] SUNY Binghamton, NECCES, Binghamton, NY 13902 USA.
[Pannala, Sreekanth] SABIC, Houston, TX 77042 USA.
[Martha, Surendra K.] Indian Inst Technol Hyderabad, Dept Chem, Sangareddy 502285, Telangana, India.
RP Nanda, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM nandaj@ornl.gov
RI An, Ke/G-5226-2011
OI An, Ke/0000-0002-6093-429X
FU Office of Vehicle Technology, EERE, DOE
FX This research used resources at the High Flux Isotope Reactor and
Spallation Neutron Source, a DOE Office of Science User Facility
operated by the Oak Ridge National Laboratory. J.N., H.Z., S.A., S.P.,
and S.M. acknowledge support from the Office of Vehicle Technology,
EERE, DOE. The authors thank Drs. Andrew Payzant and Thomas Proffen for
critical reading of the manuscript and valuable comments.
NR 39
TC 0
Z9 0
U1 10
U2 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2380-8195
J9 ACS ENERGY LETT
JI ACS Energy Lett.
PD NOV
PY 2016
VL 1
IS 5
BP 981
EP 986
DI 10.1021/acsenergylett.6b00353
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology -
Other Topics; Materials Science
GA EF1LG
UT WOS:000390085700014
ER
PT J
AU Manser, JS
Rollin, JA
Brown, KE
Rohlfing, EA
AF Manser, Joseph S.
Rollin, Joseph A.
Brown, Kristen E.
Rohlfing, Eric A.
TI ARPA-E: Accelerating US Energy Innovation
SO ACS ENERGY LETTERS
LA English
DT Editorial Material
C1 [Manser, Joseph S.; Rollin, Joseph A.; Brown, Kristen E.; Rohlfing, Eric A.] US DOE, Adv Res Projects Agcy Energy, 1000 Independence Ave Southwest, Washington, DC 20585 USA.
RP Rohlfing, EA (reprint author), US DOE, Adv Res Projects Agcy Energy, 1000 Independence Ave Southwest, Washington, DC 20585 USA.
NR 1
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2380-8195
J9 ACS ENERGY LETT
JI ACS Energy Lett.
PD NOV
PY 2016
VL 1
IS 5
BP 987
EP 990
DI 10.1021/acsenergylett.6b00494
PG 4
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology -
Other Topics; Materials Science
GA EF1LG
UT WOS:000390085700015
ER
PT J
AU Schelhas, LT
Christians, JA
Berry, JJ
Toney, MF
Tassone, CJ
Luther, JM
Stone, KH
AF Schelhas, Laura T.
Christians, Jeffrey A.
Berry, Joseph J.
Toney, Michael F.
Tassone, Christopher J.
Luther, Joseph M.
Stone, Kevin H.
TI Monitoring a Silent Phase Transition in CH3NH3PbI3 Solar Cells via
Operando X-ray Diffraction
SO ACS ENERGY LETTERS
LA English
DT Article
ID METHYLAMMONIUM LEAD IODIDE; PEROVSKITE; EFFICIENCY; PERFORMANCE;
RECOMBINATION; STATE
AB The relatively modest temperature of the tetragonal-to-cubic phase transition in CH3NH3PbI3 perovskite is likely to occur during real world operation of CH3NH3PI3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to the structural phase transition. This decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH3NH3PbI3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.
C1 [Schelhas, Laura T.; Toney, Michael F.; Tassone, Christopher J.; Stone, Kevin H.] SLAG Natl Accelerator Lab, SSRL Mat Sci Div, Menlo Pk, CA 94025 USA.
[Christians, Jeffrey A.; Berry, Joseph J.; Luther, Joseph M.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Stone, KH (reprint author), SLAG Natl Accelerator Lab, SSRL Mat Sci Div, Menlo Pk, CA 94025 USA.; Luther, JM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM joey.luther@nrel.gov; khstone@slac.stanford.edu
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-76SF00515]; U.S. Department of Energy Office of Energy
Efficiency under the NREL Laboratory Director's Research and Development
program [DE-AC36-08- GO28308]; Hybrid Perovskite Solar Cell program of
the National Center for Photovoltaics - U.S. Department of Energy,
Office of Energy Efficiency and Renewable Energy, Solar Energy
Technologies Office
FX The authors wish to thank Tim Dunn, Valery Borzenets, Samuil
Belopolskiy, and Doug Van Campen for help with the chamber design and
operation. Use of the Stanford Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, was supported by the U.S. Department of
Energy, Office of Basic Energy Sciences under Contract No.
DE-AC02-76SF00515. Work at the National Renewable Energy Lab (NREL) was
supported by U.S. Department of Energy Office of Energy Efficiency under
contract No. DE-AC36-08- GO28308 under the NREL Laboratory Director's
Research and Development program (JJ.B. and J.M.L.) as well as the
Hybrid Perovskite Solar Cell program of the National Center for
Photovoltaics funded by the U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy, Solar Energy Technologies Office (JAC.
and L.T.S.).
NR 34
TC 1
Z9 1
U1 5
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2380-8195
J9 ACS ENERGY LETT
JI ACS Energy Lett.
PD NOV
PY 2016
VL 1
IS 5
BP 1007
EP 1012
DI 10.1021/acsenergylett.6b00441
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology -
Other Topics; Materials Science
GA EF1LG
UT WOS:000390085700018
ER
PT J
AU Zheng, XJ
Wu, CC
Jha, SK
Li, Z
Zhu, K
Priya, S
AF Zheng, Xiaojia
Wu, Congcong
Jha, Shikhar K.
Li, Zhen
Zhu, Kai
Priya, Shashank
TI Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by
Strain Relaxation
SO ACS ENERGY LETTERS
LA English
DT Article
ID HYBRID SOLAR-CELLS; IODIDE; CH3NH3PBI3; CRYSTALS; CONDUCTIVITY;
TRIHALIDE; DIFFUSION; DYNAMICS; PLANAR
AB Though formamidinium lead triiodide (FAPbI(3)) possesses a suitable band gap and good thermal stability, the phase transition from the pure black perovskite phase (alpha-phase) to the undesirable yellow nonperovskite polymorph (delta-phase) at room temperature, especially under humid air, hinders its practical application. Here, we investigate the intrinsic instability mechanism of the alpha-phase at ambient temperature and demonstrate the existence of an anisotropic strained lattice in the (111) plane that drives phase transformation into the delta-phase. Methylammonium bromide (MABr) alloying (or FAPbI(3)-MABr) was found to cause lattice contraction, thereby balancing the lattice strain. This led to dramatic improvement in the stability of alpha-FAPbI3. Solar cells fabricated using FAPbI(3)-MABr demonstrated significantly enhanced stability under the humid air.
C1 [Zheng, Xiaojia; Wu, Congcong; Jha, Shikhar K.; Priya, Shashank] Virginia Tech, Ctr Energy Harvesting Mat & Syst, Blacksburg, VA 24061 USA.
[Li, Zhen; Zhu, Kai] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.
RP Zheng, XJ; Priya, S (reprint author), Virginia Tech, Ctr Energy Harvesting Mat & Syst, Blacksburg, VA 24061 USA.; Zhu, K (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.
EM xiaojia@vt.edu; kai.zhu@nrel.gov
OI Li, Zhen/0000-0003-1177-2818
FU Institute of Critical Technology and Applied Science (ICTAS); Office of
Naval Research through the MURI program; Office of Naval Research
participation in NSF I/UCRC: Center for Energy Harvesting Materials and
Systems (CEHMS); U.S. Department of Energy [DE-AC36-08-GO28308]; hybrid
perovskite solar cell program of the National Center for Photovoltaics -
U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy, Solar Energy Technologies Office
FX The authors acknowledge financial support from the Institute of Critical
Technology and Applied Science (ICTAS). S.P. and X.Z. would also like to
acknowledge financial support from the Office of Naval Research through
the MURI program. S.K.J was supported through the Office of Naval
Research participation in NSF I/UCRC: Center for Energy Harvesting
Materials and Systems (CEHMS). The work at the National Renewable Energy
Laboratory is supported by the U.S. Department of Energy under Contract
No. DE-AC36-08-GO28308. K.Z. and Z.L. acknowledge support by the hybrid
perovskite solar cell program of the National Center for Photovoltaics
funded by the U.S. Department of Energy, Office of Energy Efficiency and
Renewable Energy, Solar Energy Technologies Office.
NR 29
TC 1
Z9 1
U1 19
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2380-8195
J9 ACS ENERGY LETT
JI ACS Energy Lett.
PD NOV
PY 2016
VL 1
IS 5
BP 1014
EP 1020
DI 10.1021/acsenergylett.6b00457
PG 7
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology -
Other Topics; Materials Science
GA EF1LG
UT WOS:000390085700020
ER
PT J
AU Balasubramanian, B
Das, B
Nguyen, MC
Xu, XS
Zhang, J
Zhang, XZ
Liu, YH
Huq, A
Valloppilly, SR
Jin, YL
Wang, CZ
Ho, KM
Sellmyer, DJ
AF Balasubramanian, Balamurugan
Das, Bhaskar
Manh Cuong Nguyen
Xu, Xiaoshan
Zhang, Jie
Zhang, Xiaozhe
Liu, Yaohua
Huq, Ashfia
Valloppilly, Shah R.
Jin, Yunlong
Wang, Cai-Zhuang
Ho, Kai-Ming
Sellmyer, David J.
TI Structure and magnetism of new rare-earth-free intermetallic compounds:
Fe3+xCo3-xTi2 (0 <= x <= 3)
SO APL MATERIALS
LA English
DT Article
ID AUGMENTED-WAVE METHOD; PERMANENT-MAGNETS
AB We report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Coin the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm(3)) and saturation magnetic polarization (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder. (C) 2016 Author(s).
C1 [Balasubramanian, Balamurugan; Das, Bhaskar; Xu, Xiaoshan; Zhang, Xiaozhe; Valloppilly, Shah R.; Jin, Yunlong; Sellmyer, David J.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA.
[Balasubramanian, Balamurugan; Das, Bhaskar; Xu, Xiaoshan; Zhang, Xiaozhe; Jin, Yunlong; Sellmyer, David J.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA.
[Manh Cuong Nguyen; Wang, Cai-Zhuang; Ho, Kai-Ming] US DOE, Ames Lab, Ames, IA 50011 USA.
[Manh Cuong Nguyen; Zhang, Jie; Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Zhang, Jie] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China.
[Liu, Yaohua] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[Huq, Ashfia] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
RP Balasubramanian, B (reprint author), Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA.; Balasubramanian, B (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA.
EM bbalasubramanian2@unl.edu; dsellmyer@unl.edu
RI Liu, Yaohua/B-2529-2009; Xu, Xiaoshan/B-1255-2009; Huq,
Ashfia/J-8772-2013;
OI Liu, Yaohua/0000-0002-5867-5065; Xu, Xiaoshan/0000-0002-4363-392X; Huq,
Ashfia/0000-0002-8445-9649; Das, Bhaskar/0000-0001-7444-0701; Nguyen,
Manh Cuong/0000-0001-8027-9029
FU National Science Foundation (NSF), Division of Materials Research (DMR)
[DMREF: SusChEM 1436385]; NSF, DMR [DMREF: SusChEM 1436386]; NSF [NNCI:
1542182]; Nebraska Research Initiative (NRI)
FX Experimental work by B.B., B.D., X.X., S.R.V., and D.J.S. was supported
by the National Science Foundation (NSF), Division of Materials Research
(DMR), under Award DMREF: SusChEM 1436385. Theoretical research by
C.Z.W. and K.M.H. was supported by NSF, DMR, under Award DMREF: SusChEM
1436386. Research at Nebraska was performed in part in the Nebraska
Nanoscale Facility, Nebraska Center for Materials and Nanoscience, which
is supported by the NSF underAward NNCI: 1542182, and the Nebraska
Research Initiative (NRI). Resources at Spallation Neutron Source, a DOE
Office of Science User Facility operated by the Oak Ridge National
Laboratory, were also used for this research.
NR 29
TC 0
Z9 0
U1 10
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 2166-532X
J9 APL MATER
JI APL Mater.
PD NOV
PY 2016
VL 4
IS 11
AR 116109
DI 10.1063/1.4968517
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA EF3MK
UT WOS:000390228300011
ER
PT J
AU Burst, JM
Farrell, SB
Albin, DS
Colegrove, E
Reese, MO
Duenow, JN
Kuciauskas, D
Metzger, WK
AF Burst, James M.
Farrell, Stuart B.
Albin, David S.
Colegrove, Eric
Reese, Matthew O.
Duenow, Joel N.
Kuciauskas, Darius
Metzger, Wyatt K.
TI Carrier density and lifetime for different dopants in single-crystal and
polycrystalline CdTe
SO APL MATERIALS
LA English
DT Article
ID CDS/CDTE SOLAR-CELLS; CADMIUM TELLURIDE; DOPED CDTE; EXCITED-STATES; CU;
PHOTOLUMINESCENCE; RECOMBINATION; ACCEPTORS; COPPER; STABILITY
AB CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10(16) cm(-3), but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10(16) cm(-3) hole density are achieved in singlecrystal and polycrystalline CdTe without CdCl2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. This combination of long lifetime, high carrier concentration, and improved stability can help overcome historic barriers for CdTe solar cell development. (C) 2016 Author(s).
C1 [Burst, James M.; Farrell, Stuart B.; Albin, David S.; Colegrove, Eric; Reese, Matthew O.; Duenow, Joel N.; Kuciauskas, Darius; Metzger, Wyatt K.] NREL, Golden, CO 80401 USA.
RP Burst, JM (reprint author), NREL, Golden, CO 80401 USA.
OI Kuciauskas, Darius/0000-0001-8091-5718
FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy Laboratory
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
NR 55
TC 0
Z9 0
U1 9
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 2166-532X
J9 APL MATER
JI APL Mater.
PD NOV
PY 2016
VL 4
IS 11
AR 116102
DI 10.1063/1.4966209
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA EF3MK
UT WOS:000390228300004
ER
PT J
AU Liu, K
Zhang, RF
Beyerlein, IJ
Chen, XY
Yang, H
Germann, TC
AF Liu, K.
Zhang, R. F.
Beyerlein, I. J.
Chen, X. Y.
Yang, H.
Germann, T. C.
TI Cooperative dissociations of misfit dislocations at bimetal interfaces
SO APL MATERIALS
LA English
DT Article
ID CU-NI; DEFORMATION MECHANISMS; COMPOSITES; NUCLEATION; STRENGTH; AG/NI;
MULTILAYERS; BOUNDARIES; BEHAVIOR; ENERGY
AB Using atomistic simulations, several semi-coherent cube-on-cube bimetal interfaces are comparatively investigated to unravel the combined effect of the character of misfit dislocations, the stacking fault energy difference between bimetal pairs, and their lattice mismatch on the dissociation of interfacial misfit dislocations. Different dissociation paths and features under loadings provide several unique deformation mechanisms that are critical for understanding interface strengthening. In particular, applied strains can cause either the formation of global interface coherency by the migration of misfit dislocations from an interface to an adjoining crystal interior or to an alternate packing of stacking faults connected by stair-rod dislocations. (C) 2016 Author(s).
C1 [Liu, K.; Zhang, R. F.; Chen, X. Y.; Yang, H.] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China.
[Liu, K.; Zhang, R. F.; Chen, X. Y.; Yang, H.] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China.
[Beyerlein, I. J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Germann, T. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Zhang, RF (reprint author), Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China.; Zhang, RF (reprint author), Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China.
EM zrf@buaa.edu.cn
OI Germann, Timothy/0000-0002-6813-238X
FU Fundamental Research Funds for the Central Universities; National
Natural Science Foundation of China [51471018, 51672015]; National
Thousand Young Talents Program of China
FX This work is supported by the Fundamental Research Funds for the Central
Universities, National Natural Science Foundation of China (Grant Nos.
51471018 and 51672015), and National Thousand Young Talents Program of
China.
NR 38
TC 0
Z9 0
U1 8
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 2166-532X
J9 APL MATER
JI APL Mater.
PD NOV
PY 2016
VL 4
IS 11
AR 111101
DI 10.1063/1.4967207
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA EF3MK
UT WOS:000390228300001
ER
PT J
AU Liu, Y
Tanatar, MA
Timmons, E
Lograsso, TA
AF Liu, Yong
Tanatar, Makariy A.
Timmons, Erik
Lograsso, Thomas A.
TI Polarized Light Microscopy Study on the Reentrant Phase Transition in a
(Ba1-xKx) Fe2As2 Single Crystal with x=0.24
SO CRYSTALS
LA English
DT Article
DE reentrant phase transition; polarized optical images; structural domains
ID IRON PNICTIDES; SUPERCONDUCTIVITY
AB A sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba1-xKx) Fe2As2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba1-xKx) Fe2As2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T-N similar to 80 K. The structural domains vanish below similar to 30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T-N similar to 80 K, LTO1 to low temperature tetragonal (LTT) structure at T-c similar to 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T similar to 15 K.
C1 [Liu, Yong; Tanatar, Makariy A.; Timmons, Erik; Lograsso, Thomas A.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA.
[Tanatar, Makariy A.; Timmons, Erik] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Lograsso, Thomas A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Liu, Y (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA.
EM yliu@ameslab.gov; tanatar@iastate.edu; erikt@iastate.edu;
lograsso@ameslab.gov
OI Lograsso, Thomas/0000-0002-8441-5320
FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
Materials Science and Engineering Division; U.S. DOE by Iowa State
University [DE-AC02-07CH11358]
FX We thank Warren E. Straszheim for WDS measurement and Ruslan Prozorov
for support of this study. This work was supported by the U.S.
Department of Energy (DOE), Office of Basic Energy Sciences, Materials
Science and Engineering Division. Ames Laboratory is operated for the
U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358.
NR 28
TC 0
Z9 0
U1 9
U2 9
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2073-4352
J9 CRYSTALS
JI Crystals
PD NOV
PY 2016
VL 6
IS 11
AR 142
DI 10.3390/cryst6110142
PG 7
WC Crystallography; Materials Science, Multidisciplinary
SC Crystallography; Materials Science
GA EF1SP
UT WOS:000390105400006
ER
PT J
AU Ganesh, VK
Liang, XW
Geoghegan, JA
Cohen, ALV
Venugopalan, N
Foster, TJ
Hook, M
AF Ganesh, Vannakambadi K.
Liang, Xiaowen
Geoghegan, Joan A.
Cohen, Ana Luisa V.
Venugopalan, Nagarajan
Foster, Timothy J.
Hook, Magnus
TI Lessons from the Crystal Structure of the S. aureus Surface Protein
Clumping Factor A in Complex With Tefibazumab, an Inhibiting Monoclonal
Antibody
SO EBIOMEDICINE
LA English
DT Article
DE Staphylococcal infections; Clumping factor A; Fibrinogen; Tefibazumab;
Aurexis; Therapeutic mAb
ID FIBRINOGEN-BINDING MSCRAMM; STAPHYLOCOCCUS-AUREUS; FACTOR-A; INFECTIVE
ENDOCARDITIS; PLATELET ACTIVATION; FACTOR CLFA; FACTOR-I; VIRULENCE;
MODEL; CLFA(221-550)
AB The Staphylococcus aureus fibrinogen binding MSCRAMM(Microbial Surface Components Recognizing Adhesive Matrix Molecules), ClfA (clumping factor A) is an important virulence factor in staphylococcal infections and a component of several vaccines currently under clinical evaluation. The mouse monoclonal antibody aurexis (also called 12-9), and the humanized version tefibazumab are therapeutic monoclonal antibodies targeting ClfA that in combination with conventional antibiotics were effective in animal models but showed less impressive efficacy in a limited Phase II clinical trial. We here report the crystal structure and a biochemical characterization of the ClfA/tefibazumab (Fab) complex. The epitope for tefibazumab is located to the "top" of the N3 subdomain of ClfA and partially overlaps with a previously unidentified second binding site for fibrinogen. A high-affinity binding of ClfA to fibrinogen involves both an interaction at the N3 site and the previously identified docking of the C-terminal segment of the fibrinogen gamma-chain in the N2N3 trench. Although tefibazumab binds ClfA with high affinity we observe a modest IC50 value for the inhibition of fibrinogen binding to the MSCRAMM. This observation, paired with a common natural occurring variant of ClfA that is not effectively recognized by the mAb, may partly explain the modest effect tefibazumab showed in the initial clinic trail. This information will provide guidance for the design of the next generation of therapeutic anti-staphylococcal mAbs targeting ClfA. (C) 2016 Published by Elsevier B.V.
C1 [Ganesh, Vannakambadi K.; Liang, Xiaowen; Cohen, Ana Luisa V.; Hook, Magnus] Texas A&M Univ, Hlth Sci Ctr, Inst Biosci & Technol, Ctr Infect & Inflammatory Dis, 2121 W Holcombe Blvd, Houston, TX 77030 USA.
[Geoghegan, Joan A.; Foster, Timothy J.] Trinity Coll Dublin, Sch Genet & Microbiol, Moyne Inst Prevent Med, Dept Microbiol, Dublin 2, Ireland.
[Venugopalan, Nagarajan] Argonne Natl Lab, GM CA APS, 9700 South Cass Ave, Lemont, IL 60439 USA.
RP Hook, M (reprint author), Texas A&M Univ, Hlth Sci Ctr, Inst Biosci & Technol, Ctr Infect & Inflammatory Dis, 2121 W Holcombe Blvd, Houston, TX 77030 USA.
EM mhook@ibt.tamhsc.edu
FU NHLBI NIH HHS [R01 HL119648]; NIAID NIH HHS [R01 AI020624, R56 AI020624]
NR 41
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2352-3964
J9 EBIOMEDICINE
JI EBioMedicine
PD NOV
PY 2016
VL 13
BP 328
EP 338
DI 10.1016/j.ebiom.2016.09.027
PG 11
WC Medicine, General & Internal
SC General & Internal Medicine
GA EG0EU
UT WOS:000390704800047
PM 27789272
ER
PT J
AU Larsen, PH
AF Larsen, Peter H.
TI A method to estimate the costs and benefits of undergrounding
electricity transmission and distribution lines
SO ENERGY ECONOMICS
LA English
DT Article
DE Electric system reliability; Grid resilience; Power outages;
Undergrounding; Cost-benefit analysis
AB There has been a general shortfall of peer-reviewed literature identifying methods to estimate the costs and benefits of strategies employed by electric utilities to improve grid resilience. This paper introduces for the first time a comprehensive analysis framework to estimate the societal costs and benefits of implementing one strategy to improve power system reliability: undergrounding power transmission and distribution lines. It is shown that undergrounding transmission and distribution lines can be a cost-effective strategy to improve reliability, but only if certain criteria are met before the decision to underground is made. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Larsen, Peter H.] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA.
[Larsen, Peter H.] Stanford Univ, Management Sci & Engn Dept, Stanford, CA 94305 USA.
[Larsen, Peter H.] 1 Cyclotron Rd,90-4000, Berkeley, CA 94720 USA.
RP Larsen, PH (reprint author), Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA.; Larsen, PH (reprint author), Stanford Univ, Management Sci & Engn Dept, Stanford, CA 94305 USA.; Larsen, PH (reprint author), 1 Cyclotron Rd,90-4000, Berkeley, CA 94720 USA.
EM PHLarsen@lbl.gov
NR 45
TC 0
Z9 0
U1 5
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0140-9883
EI 1873-6181
J9 ENERG ECON
JI Energy Econ.
PD NOV
PY 2016
VL 60
BP 47
EP 61
DI 10.1016/j.eneco.2016.09.011
PG 15
WC Economics
SC Business & Economics
GA EF7FR
UT WOS:000390496000006
ER
PT J
AU Hanson, D
Schmalzer, D
Nichols, C
Balash, P
AF Hanson, Donald
Schmalzer, David
Nichols, Christopher
Balash, Peter
TI The impacts of meeting a tight CO2 performance standard on the electric
power sector
SO ENERGY ECONOMICS
LA English
DT Article
DE Electricity analysis; Energy modeling; Gas demand; Intermittent
renewables; Power plant dispatch; Power plant retirements
AB This paper presents innovative modeling of complex interactions among gas-fired generators, coal-fired power plants, and renewables (wind and solar) when pushed hard to reduce CO2 emissions. A hypothetical CO2 technology performance standard, giving rise to a shadow price on CO2 emissions, was specified as part of the study design. In this work we see gas generation rapidly replacing coal generation. To understand the fate of coal based generation, it is important to examine trends at a granular level. An important feature of our model, the Electricity Supply and Investment Model (ESIM) is that it contains a unit inventory with unit characteristics and a memory of how each unit is operated over time. Cycling damages that individual coal units incur are a function of cumulative wear and tear over time. The expected remaining life of a cycled coal unit will depend on the severity of the cycling and for how many years. Deteriorating operating characteristics of a cycled unit over time results in higher operating costs, slipping down the dispatch loading order, and hence an acceleration of cycling damage, that is, a viscous circle of decline. The rate of CFPP retirements will increase for lower gas prices, higher price on CO2 emissions, and greater penetration of variable and intermittent renewables. Published by Elsevier B.V.
C1 [Hanson, Donald; Schmalzer, David] Argonne Natl Lab, GSS-221,9700 S Cass Ave, Lemont, IL 60439 USA.
[Hanson, Donald] Depaul Univ, 1 E Jackson Blvd, Chicago, IL 60604 USA.
[Nichols, Christopher] Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA.
[Balash, Peter] Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA.
RP Hanson, D (reprint author), Argonne Natl Lab, GSS-221,9700 S Cass Ave, Lemont, IL 60439 USA.
EM dhanson@anl.gov
FU National Energy Technology Laboratory; U.S. Department of Energy, Office
of Fossil Energy [DE-AC0-206CH11357]
FX Donald Hanson and David Schmalzer appreciate the support from the
National Energy Technology Laboratory. The work described here does not
necessarily reflect the views of Argonne National Laboratory, the
University of Chicago, the National Energy Technology Laboratory, or the
U.S. Department of Energy.; Argonne National Laboratory's work was
supported by the U.S. Department of Energy, Office of Fossil Energy
under contract DE-AC0-206CH11357.
NR 13
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0140-9883
EI 1873-6181
J9 ENERG ECON
JI Energy Econ.
PD NOV
PY 2016
VL 60
BP 476
EP 485
DI 10.1016/j.eneco.2016.08.018
PG 10
WC Economics
SC Business & Economics
GA EF7FR
UT WOS:000390496000045
ER
PT J
AU Cole, WJ
Medlock, KB
Jani, A
AF Cole, Wesley J.
Medlock, Kenneth B., III
Jani, Aditya
TI A view to the future of natural gas and electricity: An integrated
modeling approach
SO ENERGY ECONOMICS
LA English
DT Article
DE Natural gas markets; Electricity markets; Market integration; Capacity
expansion modeling
AB This paper demonstrates the value of integrating two highly spatially resolved models: the Rice World Gas Trade Model (RWGTM) of the natural gas sector and the Regional Energy Deployment System (ReEDS) model of the U.S. electricity sector. The RWGTM passes electricity-sector natural gas prices to the ReEDS model, while the ReEDS model returns electricity-sector natural gas demand to the RWGTM. The two models successfully converge to a solution under reference scenario conditions. We present electricity-sector and natural gas sector evolution using the integrated models for this reference scenario. This paper demonstrates that the integrated models produced similar national-level results as when running in a stand-alone form, but that regional and state-level results can vary considerably. As we highlight, these regional differences have potentially significant implications for electric sector planners especially in the wake of substantive policy changes for the sector (e.g., the Clean Power Plan). (C) 2016 Elsevier B.V. All rights reserved.
C1 [Cole, Wesley J.] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA.
[Medlock, Kenneth B., III] Rice Univ, Ctr Energy Studies, Baker Inst Publ Policy, Houston, TX 77005 USA.
[Medlock, Kenneth B., III] Rice Univ, Dept Econ, 6100 Main St,MS40, Houston, TX USA.
[Jani, Aditya] Rice Univ, Dept Civil & Environm Engn, Baker Inst Publ Policy, 6100 Main St,MS519, Houston, TX 77005 USA.
[Jani, Aditya] Rice Univ, Ctr Energy Studies, Baker Inst Publ Policy, 6100 Main St,MS519, Houston, TX 77005 USA.
RP Cole, WJ (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM wesley.cole@nrel.gov
FU Department of Energy Office of Energy Efficiency and Renewable Energy
[DE-AC36-08GO28308]
FX The ReEDS portion of this work was funded by the Department of Energy
Office of Energy Efficiency and Renewable Energy under contract number
DE-AC36-08GO28308. Any errors or omissions are the sole responsibility
of the authors.
NR 34
TC 0
Z9 0
U1 4
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0140-9883
EI 1873-6181
J9 ENERG ECON
JI Energy Econ.
PD NOV
PY 2016
VL 60
BP 486
EP 496
DI 10.1016/j.eneco.2016.03.005
PG 11
WC Economics
SC Business & Economics
GA EF7FR
UT WOS:000390496000046
ER
PT J
AU Yeh, S
Yang, C
Gibbs, M
Roland-Holst, D
Greenblatt, J
Mahone, A
Wei, D
Brinkman, G
Cunningham, J
Eggert, A
Haley, B
Hart, E
Williams, J
AF Yeh, Sonia
Yang, Christopher
Gibbs, Michael
Roland-Holst, David
Greenblatt, Jeffery
Mahone, Amber
Wei, Dan
Brinkman, Gregory
Cunningham, Joshua
Eggert, Anthony
Haley, Ben
Hart, Elaine
Williams, Jim
TI A modeling comparison of deep greenhouse gas emissions reduction
scenarios by 2030 in California
SO ENERGY STRATEGY REVIEWS
LA English
DT Article
DE Modeling comparison; GHG abatement; Non-energy GHG; Emissions reduction
scenarios; Climate policies
ID TECHNOLOGICAL-CHANGE; COMPARISON PROJECT; TECHNICAL CHANGE; POLICY;
IMPACTS; ECONOMY; ENERGY
AB California aims to reduce greenhouse gas (GHG) emissions to 40% below 1990 levels by 2030. We compare six energy models that have played various roles in informing the state policymakers in setting climate policy goals and targets. These models adopt a range of modeling structures, including stock-turnover back-casting models, a least-cost optimization model, macroeconomic/macro-econometric models, and an electricity dispatch model. Results from these models provide useful insights in terms of the transformations in the energy system required, including efficiency improvements in cars, trucks, and buildings, electrification of end-uses, low-or zero-carbon electricity and fuels, aggressive adoptions of zero-emission vehicles (ZEVs), demand reduction, and large reductions of non-energy GHG emissions. Some of these studies also suggest that the direct economic costs can be fairly modest or even generate net savings, while the indirect macroeconomic benefits are large, as shifts in employment and capital investments could have higher economic returns than conventional energy expenditures. These models, however, often assume perfect markets, perfect competition, and zero transaction costs. They also do not provide specific policy guidance on how these transformative changes can be achieved. Greater emphasis on modeling uncertainty, consumer behaviors, heterogeneity of impacts, and spatial modeling would further enhance policymakers' ability to design more effective and targeted policies. This paper presents an example of how policymakers, energy system modelers and stakeholders interact and work together to develop and evaluate long-term state climate policy targets. Even though this paper focuses on California, the process of dialogue and interactions, modeling results, and lessons learned can be generally adopted across different regions and scales. (C) 2016 The Authors. Published by Elsevier Ltd.
C1 [Yeh, Sonia; Yang, Christopher] Univ Calif Davis, Inst Transportat Studies, 1605 Tilia,Suite 100, Davis, CA 95616 USA.
[Yeh, Sonia] Chalmers, Environm & Energy Dept, SE-41296 Gothenburg, Sweden.
[Gibbs, Michael; Cunningham, Joshua] Calif Air Resources Board, Sacramento, CA 95814 USA.
[Roland-Holst, David] Univ Calif Berkeley, Dept Agr & Resource Econ, 207 Giannini Hall, Berkeley, CA 94720 USA.
[Greenblatt, Jeffery] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, 1 Cyclotron Rd,MS 90-2002, Berkeley, CA 94720 USA.
[Greenblatt, Jeffery] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, 1 Cyclotron Rd,MS 90-2002, Berkeley, CA 94720 USA.
[Mahone, Amber; Haley, Ben; Hart, Elaine; Williams, Jim] E3, 101 Montgomery St,Suite 1600, San Francisco, CA 94104 USA.
[Wei, Dan] Univ Southern Calif, Sol Price Sch Publ Policy, Los Angeles, CA 90089 USA.
[Brinkman, Gregory] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
[Eggert, Anthony] ClimateWorks Fdn, 235 Montgomery St,Suite 1300, San Francisco, CA 94104 USA.
RP Yeh, S (reprint author), Chalmers, Energy & Environm, SE-41296 Gothenburg, Sweden.
EM sonia.yeh@chalmers.se
OI Yeh, Sonia/0000-0003-4936-6057; Yeh, Sonia/0000-0002-4852-1177
FU California Air Resources Board [14-8008, 09-346, 12-329]; California Air
Resources Board; California Energy Commission; California Public
Utilities Commission; California Independent System Operator; Energy
Foundation; Sustainable Transportation Energy Pathways (STEPS) program;
Next10
FX This research and the workshop is partly supported by the California Air
Resources Board (award # 14-8008). Co. Funding for the PATHWAYS model
was provided by the California Air Resources Board, the California
Energy Commission, California Public Utilities Commission, the
California Independent System Operator, and the Energy Foundation. Yeh
and Yang acknowledge funding support from the Sustainable Transportation
Energy Pathways (STEPS) program and California Air Resources Board
(award # 09-346) for the development of CA-TIMES model. Roland-Holst
acknowledges funding support from Next10 for the latest model revision.
Greenblatt acknowledges funding support from California Air Resources
Board for the CALGAPS model (award # 12-329). We appreciate the comments
and feedback provided by Brad Neff, Sonika Choudhary and Xantha Bruso.
We also thank two anonymous reviewers whose comments have significantly
improved the quality of this paper. Any errors and omissions are the
responsibility of the authors alone.
NR 47
TC 0
Z9 0
U1 7
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-467X
EI 2211-4688
J9 ENERGY STRATEG REV
JI Energy Strateg. Rev.
PD NOV
PY 2016
VL 13-14
BP 169
EP 180
DI 10.1016/j.esr.2016.10.001
PG 12
WC Energy & Fuels
SC Energy & Fuels
GA EF4RB
UT WOS:000390318600015
ER
PT J
AU Zhou, X
Obadia, MM
Venna, SR
Roth, EA
Serghei, A
Luebke, DR
Myers, C
Chang, ZM
Enick, R
Drockenmuller, E
Nulwala, HB
AF Zhou, Xu
Obadia, Mona M.
Venna, Surendar R.
Roth, Elliot A.
Serghei, Anatoli
Luebke, David R.
Myers, Christina
Chang, Zhengmian
Enick, Robert
Drockenmuller, Eric
Nulwala, Hunaid B.
TI Highly cross-linked polyether-based 1,2,3-triazolium ion conducting
membranes with enhanced gas separation properties
SO EUROPEAN POLYMER JOURNAL
LA English
DT Article
DE Poly(ionic liquid); 1,2,3-Triazolium; Network; Ionic conductivity;
Polyether; CO2 separation membrane
ID CLICK CHEMISTRY POLYADDITION; TRANSPORT PROPERTIES; PERMEATION
PROPERTIES; POLY(ETHYLENE OXIDE); POLYMER MEMBRANES; POLY(IONIC
LIQUID)S; CO2 SEPARATION; COPOLYMERS; POLY(1,2,3-TRIAZOLIUM)S;
FUNCTIONALIZATION
AB A series of cross-linked polyether-based 1,2,3-triazolium ion conducting membranes are prepared via the combination of thermally promoted Huisgen 1,3-dipolar cycloaddition of a dialkyne and a diazide poly(trimethylene ether glycol) monomers with in-situ N-alkylation of the resulting poly(1,2,3-triazole)s with varying contents of 1,10-diiododecane as cross-linking agent. The resulting free-standing membranes have T(g)s below -60 degrees C, T(d)s up to 230 degrees C, and Young's modulus up to 4.2 MPa. The overall combined reaction kinetics were studied by DSC yielding an activation energy of 76 kJ/mol by the Kissinger method. These ion conducting membranes have conductivities up to 10(-6) S/cm at 30 degrees C under anhydrous conditions. They have potential to be used in CO2 separation applications as they exhibit CO2 permeability of 59-110 Barrer and CO2/N-2 selectivity of 25-48. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Zhou, Xu; Venna, Surendar R.; Roth, Elliot A.; Luebke, David R.; Myers, Christina; Nulwala, Hunaid B.] US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA.
[Obadia, Mona M.; Serghei, Anatoli; Drockenmuller, Eric] Univ Lyon 1, Univ Lyon, CNRS, Ingn Mat Polymeres,UMR 5223, F-69003 Lyon, France.
[Enick, Robert] Univ Pittsburgh, Chem & Petr Engn Dept, Pittsburgh, PA 15213 USA.
[Nulwala, Hunaid B.] Carnegie Mellon Univ, Dept Chem, 4400 Forbes Ave, Pittsburgh, PA 15213 USA.
[Zhou, Xu; Luebke, David R.; Nulwala, Hunaid B.] Liquid Ion Solut LLC, 1817 Pkwy View Dr, Pittsburgh, PA 15205 USA.
[Chang, Zhengmian] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA.
RP Drockenmuller, E (reprint author), Univ Lyon 1, Univ Lyon, CNRS, Ingn Mat Polymeres,UMR 5223, F-69003 Lyon, France.; Zhou, X; Nulwala, HB (reprint author), Liquid Ion Solut LLC, 1817 Pkwy View Dr, Pittsburgh, PA 15205 USA.
EM zhou@liq-ion.com; eric.drockenmuller@univ-lyon1.fr;
hnulwala@andrew.cmu.edu
RI Chang, Zhengmian/B-8010-2017;
OI Nulwala, Hunaid/0000-0001-7481-3723
FU U.S. Department of Energy's National Energy Technology Laboratory
[DE-FE0004000]; U.S. Department of Energy; Institut Universitaire de
France; Region Rhone-Alpes; Fulbright scholar program
FX This work was performed in support of the U.S. Department of Energy's
National Energy Technology Laboratory's ongoing research on
CO2 capture under the contract DE-FE0004000. This research
was supported in part by an appointment to the National Energy
Technology Laboratory Research Participation Program, sponsored by the
U.S. Department of Energy and administered by the Oak Ridge Institute
for Science and Education. E.D. and M.M.O. gratefully acknowledge the
financial support from the "Institut Universitaire de France", the
"Region Rhone-Alpes" and the Fulbright scholar program. PTMEG was kindly
provided as a gift by DuPont via a Materials Transfer Agreement with the
University of Pittsburgh. The authors acknowledge Dr. David Hopkinson at
the National Energy Technology Laboratory for the water contact angle
measurements.
NR 62
TC 1
Z9 1
U1 13
U2 13
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0014-3057
EI 1873-1945
J9 EUR POLYM J
JI Eur. Polym. J.
PD NOV
PY 2016
VL 84
BP 65
EP 76
DI 10.1016/j.eurpolymj.2016.09.001
PG 12
WC Polymer Science
SC Polymer Science
GA EF2UT
UT WOS:000390181800006
ER
PT J
AU Qin, ZC
Dunn, JB
Kwon, H
Mueller, S
Wander, MM
AF Qin, Zhangcai
Dunn, Jennifer B.
Kwon, Hoyoung
Mueller, Steffen
Wander, Michelle M.
TI Influence of spatially dependent, modeled soil carbon emission factors
on life-cycle greenhouse gas emissions of corn and cellulosic ethanol
SO GLOBAL CHANGE BIOLOGY BIOENERGY
LA English
DT Article
DE GREET model; land use change; life cycle analysis; Miscanthus; poplar;
surrogate CENTURY model; switchgrass; willow
ID LAND-USE CHANGE; UNITED-STATES; ORGANIC-CARBON; CROP RESIDUE; US
CROPLANDS; BIOFUELS; IMPACT; BIOENERGY; SEQUESTRATION; METAANALYSIS
AB Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO(2)eq MJ(-1)) were 2.1-9.3 for corn-, -0.7 for corn stover-, -3.4 to 12.9 for switchgrass-, and -20.1 to -6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO(2)eq MJ(-1), 100 cm) were estimated to be 59-66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -7 to -0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar-and willow-derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.
C1 [Qin, Zhangcai; Dunn, Jennifer B.] Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Kwon, Hoyoung] Int Food Policy Res Inst, Environm & Prod Technol Div, 2033 K St NW, Washington, DC 20006 USA.
[Mueller, Steffen] Univ Illinois, Energy Resources Ctr, 1309 South Halsted St, Chicago, IL 60607 USA.
[Wander, Michelle M.] Univ Illinois, Dept Nat Resources & Environm Sci, 1102 South Goodwin Ave, Urbana, IL 61801 USA.
RP Qin, ZC; Dunn, JB (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM zqin@anl.gov; jdunn@anl.gov
FU Bioenergy Technologies Office (BETO) of the Office of Energy Efficiency
and Renewable Energy of the United States Department of Energy
[DE-AC02-06CH11357]
FX The authors are very grateful to Hao Cai, Christina Canter, Laurence
Eaton, Julie Jastrow, Paul Van Deusen, and Michael Wang for helpful
communication and discussions. We thank the anonymous reviewers for
insightful comments. This work was supported by the Bioenergy
Technologies Office (BETO) of the Office of Energy Efficiency and
Renewable Energy of the United States Department of Energy, under
contract DE-AC02-06CH11357. We thank Kristen Johnson, Alicia Lindauer,
and Zia Haq of BETO for support and guidance. The GREET model and its
CCLUB module that includes SOC/EF data can be accessed free of charge at
https://greet.es.anl.gov/.
NR 48
TC 1
Z9 1
U1 10
U2 10
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1757-1693
EI 1757-1707
J9 GCB BIOENERGY
JI GCB Bioenergy
PD NOV
PY 2016
VL 8
IS 6
BP 1136
EP 1149
DI 10.1111/gcbb.12333
PG 14
WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA EF0TL
UT WOS:000390038800009
ER
PT J
AU Chen, M
Guo, ZL
Zheng, J
Jing, FL
Chu, W
AF Chen, Min
Guo, Zhanglong
Zheng, Jian
Jing, Fangli
Chu, Wei
TI CO2 selective hydrogenation to synthetic natural gas (SNG) over four
nano-sized Ni/ZrO2 samples: ZrO2 crystalline phase & treatment impact
SO JOURNAL OF ENERGY CHEMISTRY
LA English
DT Article
DE Monoclinic zirconia support; Nano-sized nickel catalyst; CO2-TPD-MS;
TPSR-CH4; CO2 selective hydrogenation
ID CARBON-DIOXIDE; CATALYTIC-ACTIVITY; LOW-TEMPERATURE; ZIRCONIA
MORPHOLOGY; NI NANOPARTICLES; METHANATION; ADSORPTION; STABILITY;
METHANOL; SURFACE
AB Two type zirconia (monoclinic and tetragonal phase ZrO2) carriers were synthesized via hydrothermal route, and nano-sized zirconia supported nickel catalysts were prepared by incipient impregnation then followed thermal treatment at 30 0 degrees C to 50 0 degrees C, for the CO2 selective hydrogenation to synthetic natural gas (SNG). The catalysts were characterized by XRD, CO2-TPD-MS, XPS, TPSR (CH 4, CO2) techniques. For comparison, the catalyst NZ-W-400 (monoclinic) synthesized in water solvent exhibited a better catalytic activity than the catalyst NZ-M-400 (tetragonal) prepared in methanol solvent. The catalyst NZ-W-400 displayed more H-2 absorbed sites, more basic sites and a lower temperature of initial CO2 activation. Then, the thermal treatment of monoclinic ZrO 2 supported nickel precursor was manufactured at three temperature of 350, 40 0, 50 0 degrees C. The TPSR experiments displayed that there were the lower temperature for CO2 activation and initial conversion (185 degrees C) as well as the lower peak temperature of CH 4 generation (318 degrees C), for the catalyst calcined at 500 degrees C. This sample contained the more basic sites and the higher catalytic activity, evidenced byCO(2)-TPD-MS and performance measurement. As for the NZ-W-350 sample, which exhibited the less basic sites and the lower catalytic activity, its initial temperature for CO2 activation and conversion was higher (214 degrees C) as well as the higher peak temperature of CH4 formation (382 degrees C). (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
C1 [Chen, Min; Guo, Zhanglong; Jing, Fangli; Chu, Wei] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China.
[Chen, Min; Jing, Fangli; Chu, Wei] Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610225, Sichuan, Peoples R China.
[Zheng, Jian] Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA.
RP Chu, W (reprint author), Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China.
EM chuwei1965@scu.edu.cn
FU National Natural Science Foundation of China [21476145]
FX This work was supported by National Natural Science Foundation of China
(21476145). We acknowledge J. Q. Hu, Z. Peng and X. P. Gao for their
useful discussion and helps. The donation of XPS techniques by
Analytical & Testing Center of Sichuan University is gratefully
acknowledged. We also thank J. Zhen for his assistances on Raman
measurement.
NR 64
TC 0
Z9 0
U1 25
U2 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2095-4956
J9 J ENERGY CHEM
JI J. Energy Chem.
PD NOV
PY 2016
VL 25
IS 6
BP 1070
EP 1077
DI 10.1016/j.jechem.2016.11.008
PG 8
WC Chemistry, Applied; Chemistry, Physical; Energy & Fuels; Engineering,
Chemical
SC Chemistry; Energy & Fuels; Engineering
GA EF2CN
UT WOS:000390132200022
ER
PT J
AU Damiano, PA
Johnson, JR
Chaston, CC
AF Damiano, P. A.
Johnson, J. R.
Chaston, C. C.
TI Ion gyroradius effects on particle trapping in kinetic Alfven waves
along auroral field lines
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID PLASMA SHEET; ELECTRON ACCELERATION; R-E; ENERGIZATION; MAGNETOPAUSE;
DISPERSION; REGION; POLAR; MODEL
AB In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field. It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.
C1 [Damiano, P. A.; Johnson, J. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton Ctr Heliophys, POB 451, Princeton, NJ 08543 USA.
[Johnson, J. R.] Andrews Univ, Dept Engn & Comp Sci, Berrien Springs, MI 49104 USA.
[Chaston, C. C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Chaston, C. C.] Univ Sydney, Sch Phys, Sydney, NSW, Australia.
RP Damiano, PA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton Ctr Heliophys, POB 451, Princeton, NJ 08543 USA.
EM pdamiano@pppl.gov
FU NSF [AGS1203299]; NASA [NNH16AC43, NNH15AZ95I, NNH14AY11I, NNH14AY20I,
NNX15AJ01G, NNX13AE12G, NNX16AR10G, NNX16AQ87G]; Australian Research
Council [FT110100316]; National Center for Atmospheric Research (under
CISL project) [UPR10002]; U.S. Department of Energy, Office of Science,
Office of Fusion Energy Sciences; U.S. Department of Energy
[DE-AC02-09CH11466]
FX P.A.D. acknowledges useful discussions with W. Fox and S. Wing. The
authors acknowledge support from NSF grant (AGS1203299) and NASA grant
(NNH16AC43). The work at PPPL and Andrews University was also supported
by NASA grants (NNH15AZ95I, NNH14AY11I, NNH14AY20I, NNX15AJ01G,
NNX13AE12G, NNX16AR10G and NNX16AQ87G). C. Chaston also acknowledges
support from Australian Research Council grant FT110100316. This work
was facilitated by the Max-Planck/Princeton Center for Plasma Physics.
The numerical data used in the figures may be obtained by contacting the
corresponding author (pdamiano@pppl.gov). Computing resources were
provided by the Princeton Plasma Physics Laboratory and the National
Center for Atmospheric Research (under CISL project UPR10002). This
manuscript is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Fusion Energy Sciences, and has
been authored by Princeton University under contract DE-AC02-09CH11466
with the U.S. Department of Energy. The publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a nonexclusive, paid-up, irrevocable worldwide license to
publish or reproduce the published form of this manuscript, or allows
others to do so, for United States Government purposes.
NR 34
TC 0
Z9 0
U1 3
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD NOV
PY 2016
VL 121
IS 11
BP 10831
EP 10844
DI 10.1002/2016JA022566
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EF5XO
UT WOS:000390403400013
ER
PT J
AU Fu, XG
Cowee, MM
Jordanova, VK
Gary, SP
Reeves, GD
Winske, D
AF Fu, Xiangrong
Cowee, Misa M.
Jordanova, Vania K.
Gary, S. Peter
Reeves, Geoffrey D.
Winske, Dan
TI Predicting electromagnetic ion cyclotron wave amplitude from unstable
ring current plasma conditions
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID VAN ALLEN PROBES; 1-2 MAGNETIC PULSATIONS; EMIC WAVES; EQUATORIAL
MAGNETOSPHERE; DEPENDENCE; ANISOTROPY; STORM; INSTABILITIES;
PRECIPITATION; DISTRIBUTIONS
AB Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this paper, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Such scaling can be used in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.
C1 [Fu, Xiangrong; Reeves, Geoffrey D.] New Mexico Consortium, Los Alamos, NM 87544 USA.
[Cowee, Misa M.; Jordanova, Vania K.; Reeves, Geoffrey D.; Winske, Dan] Los Alamos Natl Lab, Los Alamos, NM USA.
[Gary, S. Peter] Space Sci Inst, Boulder, CO USA.
RP Fu, XG (reprint author), New Mexico Consortium, Los Alamos, NM 87544 USA.
EM xrfu@utexas.edu
OI Jordanova, Vania/0000-0003-0475-8743; Reeves,
Geoffrey/0000-0002-7985-8098; Gary, S. Peter/0000-0002-4655-2316
FU U.S. Department of Energy; NASA [NNH13AW83I, NNH14AX90I, NNG13PJ05I];
NSF-GEM project [1303300]
FX The Los Alamos portion of this research was performed under the auspices
of the U.S. Department of Energy, with partial support from NASA grants
NNH13AW83I, NNH14AX90I and NNG13PJ05I. The research effort of S.P.G. was
supported by the NSF-GEM project 1303300. The data produced by our
simulations will be made available to the public upon request.
NR 47
TC 1
Z9 1
U1 1
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD NOV
PY 2016
VL 121
IS 11
BP 10954
EP 10965
DI 10.1002/2016JA023303
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EF5XO
UT WOS:000390403400021
ER
PT J
AU Li, LY
Yu, J
Cao, JB
Wang, ZQ
Yu, YQ
Reeves, GD
Li, X
AF Li, L. Y.
Yu, J.
Cao, J. B.
Wang, Z. Q.
Yu, Y. Q.
Reeves, G. D.
Li, X.
TI Effects of ULF waves on local and global energetic particles: Particle
energy and species dependences
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID OUTER RADIATION BELT; INTERPLANETARY MAGNETIC-FIELD; RELATIVISTIC
ELECTRONS; GEOMAGNETIC-PULSATIONS; RESONANT INTERACTION; FLUX
MODULATIONS; DIFFUSION; ACCELERATION; LOSSES; STORMS
AB After 06: 13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (vertical bar delta vertical bar >= 15 nT) in the Pc4-Pc5 wave band (1.6-9 mHz) near the noon geosynchronous orbit (6.6 R-E). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (>= 75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in the wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (>= 225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (< 225 keV) and protons (75-400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. The global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (>= 225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of "Dst effect" and substorm injection.
C1 [Li, L. Y.; Yu, J.; Cao, J. B.; Yu, Y. Q.] Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
[Wang, Z. Q.] Nanjing Univ Aeronaut & Astronaut, Dept Space Sci & Applicat, Coll Astronaut, Nanjing, Jiangsu, Peoples R China.
[Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA.
[Li, X.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
[Li, X.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA.
RP Li, LY (reprint author), Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
EM lyli_ssri@buaa.edu.cn
RI Yu, Yiqun/E-2710-2012;
OI Yu, Yiqun/0000-0002-1013-6505; Reeves, Geoffrey/0000-0002-7985-8098; LI,
XINLIN/0000-0002-1683-3192
FU NSFC [41374165, 41431071, 41074119, 41174141]
FX This work is supported by the NSFC (41374165, 41431071, 41074119, and
41174141). LANL data (L01A, L02A, L97A, L084, and L095) are provided by
G.D. Reeves (E-mail: reeves@lanl.gov). The Pd, IMF, and
HSYM data are available at the Web
http://cdaweb.gsfc.nasa.gov/sp_phys. Geomagnetic data at the KIL, FCC,
and DAWS stations are available at the Web
http://spears.lancs.ac.uk/samnet/ and from magnetometer networks
(SAMNET, CANMOS, and CARISMA). Geomagnetic data at the TIX and CHD
stations are provided by A. Moiseyev and S.I. Solovyev. Liuyuan Li
thanks all the staffs working for these data.
NR 47
TC 0
Z9 0
U1 5
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD NOV
PY 2016
VL 121
IS 11
BP 11007
EP 11020
DI 10.1002/2016JA023149
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA EF5XO
UT WOS:000390403400025
ER
PT J
AU Reese, D
Weber, C
AF Reese, Daniel
Weber, Christopher
TI Numerical investigation of 3D effects on a 2D-dominated shocked mixing
layer
SO PHYSICS OF FLUIDS
LA English
DT Article
ID RICHTMYER-MESHKOV INSTABILITY; RAYLEIGH-TAYLOR INSTABILITY; SINGLE-MODE;
SIMULATIONS
AB A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds numbers due to the growth of background noise and 3D effects like vortex stretching. This three-dimensionality changes macroscopic features, such as the perturbation growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D perturbation with small-scale, 3D fluctuations is modeled using the hydrodynamics code Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar to the experiments of Motl et al. ["Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges," Phys. Fluids 21(12), 126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D effects. We report on the structure, growth, and mixing of the post-shocked interface in 2D and 3D. Published by AIP Publishing.
C1 [Reese, Daniel] Univ Wisconsin, Madison, WI 53706 USA.
[Reese, Daniel; Weber, Christopher] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Reese, D (reprint author), Univ Wisconsin, Madison, WI 53706 USA.; Reese, D (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM dtreese@wisc.edu
FU U.S. Department of Energy [DE-AC52-07NA27344]; DOE [DE-NA0001980]; WCI
HEDP summer program at LLNL
FX Part of this work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract No. DE-AC52-07NA27344. A portion of this research was supported
by DOE Grant No. DE-NA0001980. The authors are grateful for the support
of the WCI HEDP summer program at LLNL and the assistance of A. Cook and
W. Cabot.
NR 22
TC 0
Z9 0
U1 5
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-6631
EI 1089-7666
J9 PHYS FLUIDS
JI Phys. Fluids
PD NOV
PY 2016
VL 28
IS 11
AR 114102
DI 10.1063/1.4966683
PG 9
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA EF3PS
UT WOS:000390237300016
ER
PT J
AU Anastassopoulos, V
Andrianov, S
Baartman, R
Baessler, S
Bai, M
Benante, J
Berz, M
Blaskiewicz, M
Bowcock, T
Brown, K
Casey, B
Conte, M
Crnkovic, JD
D'Imperio, N
Fanourakis, G
Fedotov, A
Fierlinger, P
Fischer, W
Gaisser, MO
Giomataris, Y
Grosse-Perdekamp, M
Guidoboni, G
Haciomeroglu, S
Hoffstaetter, G
Huang, H
Incagli, M
Ivanov, A
Kawall, D
Kim, YI
King, B
Koop, IA
Lazarus, DM
Lebedev, V
Lee, MJ
Lee, S
Lee, YH
Lehrach, A
Lenisa, P
Sandri, PL
Luccio, AU
Lyapin, A
MacKay, W
Maier, R
Makino, K
Malitsky, N
Marciano, WJ
Meng, W
Meot, F
Metodiev, EM
Miceli, L
Moricciani, D
Morse, WM
Nagaitsev, S
Nayak, SK
Orlov, YF
Ozben, CS
Park, ST
Pesce, A
Petrakou, E
Pile, P
Podobedov, B
Polychronakos, V
Pretz, J
Ptitsyn, V
Ramberg, E
Raparia, D
Rathmann, F
Rescia, S
Roser, T
Sayed, HK
Semertzidis, YK
Senichev, Y
Sidorin, A
Silenko, A
Simos, N
Stahl, A
Stephenson, EJ
Stroher, H
Syphers, MJ
Talman, J
Talman, RM
Tishchenko, V
Touramanis, C
Tsoupas, N
Venanzoni, G
Vetter, K
Vlassis, S
Won, E
Zavattini, G
Zelenski, A
Zioutas, K
AF Anastassopoulos, V.
Andrianov, S.
Baartman, R.
Baessler, S.
Bai, M.
Benante, J.
Berz, M.
Blaskiewicz, M.
Bowcock, T.
Brown, K.
Casey, B.
Conte, M.
Crnkovic, J. D.
D'Imperio, N.
Fanourakis, G.
Fedotov, A.
Fierlinger, P.
Fischer, W.
Gaisser, M. O.
Giomataris, Y.
Grosse-Perdekamp, M.
Guidoboni, G.
Haciomeroglu, S.
Hoffstaetter, G.
Huang, H.
Incagli, M.
Ivanov, A.
Kawall, D.
Kim, Y. I.
King, B.
Koop, I. A.
Lazarus, D. M.
Lebedev, V.
Lee, M. J.
Lee, S.
Lee, Y. H.
Lehrach, A.
Lenisa, P.
Sandri, P. Levi
Luccio, A. U.
Lyapin, A.
MacKay, W.
Maier, R.
Makino, K.
Malitsky, N.
Marciano, W. J.
Meng, W.
Meot, F.
Metodiev, E. M.
Miceli, L.
Moricciani, D.
Morse, W. M.
Nagaitsev, S.
Nayak, S. K.
Orlov, Y. F.
Ozben, C. S.
Park, S. T.
Pesce, A.
Petrakou, E.
Pile, P.
Podobedov, B.
Polychronakos, V.
Pretz, J.
Ptitsyn, V.
Ramberg, E.
Raparia, D.
Rathmann, F.
Rescia, S.
Roser, T.
Sayed, H. Kamal
Semertzidis, Y. K.
Senichev, Y.
Sidorin, A.
Silenko, A.
Simos, N.
Stahl, A.
Stephenson, E. J.
Stroeher, H.
Syphers, M. J.
Talman, J.
Talman, R. M.
Tishchenko, V.
Touramanis, C.
Tsoupas, N.
Venanzoni, G.
Vetter, K.
Vlassis, S.
Won, E.
Zavattini, G.
Zelenski, A.
Zioutas, K.
TI A storage ring experiment to detect a proton electric dipole moment
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID PRECISION PARTICLE SIMULATIONS; RUNGE-KUTTA INTEGRATION; POLARIZATION;
SEARCH; FIELDS; MODEL; MUON
AB A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10(-29) e . cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV. (C) 2016 Author(s).
C1 [Anastassopoulos, V.; Vlassis, S.; Zioutas, K.] Univ Patras, Dept Phys, Rion 26500, Greece.
[Andrianov, S.; Ivanov, A.] St Petersburg State Univ, Fac Appl Math & Control Proc, St Petersburg, Russia.
[Baartman, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Baessler, S.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA.
[Bai, M.; Lehrach, A.; Maier, R.; Rathmann, F.; Senichev, Y.; Stroeher, H.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany.
[Bai, M.; Lehrach, A.; Maier, R.; Rathmann, F.; Senichev, Y.; Stroeher, H.] Forschungszentrum Julich, JARA Fame, D-52425 Julich, Germany.
[Benante, J.; Blaskiewicz, M.; Brown, K.; Crnkovic, J. D.; D'Imperio, N.; Fedotov, A.; Fischer, W.; Huang, H.; Lazarus, D. M.; Luccio, A. U.; MacKay, W.; Malitsky, N.; Marciano, W. J.; Meng, W.; Meot, F.; Morse, W. M.; Nayak, S. K.; Pile, P.; Podobedov, B.; Polychronakos, V.; Ptitsyn, V.; Raparia, D.; Rescia, S.; Roser, T.; Sayed, H. Kamal; Simos, N.; Talman, J.; Tishchenko, V.; Tsoupas, N.; Zelenski, A.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Berz, M.; Makino, K.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Bowcock, T.; King, B.; Touramanis, C.] Univ Liverpool, Dept Phys, Liverpool, Merseyside, England.
[Casey, B.; Lebedev, V.; Nagaitsev, S.; Ramberg, E.; Syphers, M. J.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Conte, M.] Dept Phys, I-16146 Genoa, Italy.
[Conte, M.] INFN Sect Genoa, I-16146 Genoa, Italy.
[Fanourakis, G.] Inst Nucl & Particle Phys NCSR Demokritos, GR-15310 Aghia Paraskevi Athens, Greece.
[Fierlinger, P.] Tech Univ Munich, Phys Dept & Excellence Cluster Universe, Garching, Germany.
[Gaisser, M. O.; Haciomeroglu, S.; Kim, Y. I.; Lee, M. J.; Lee, S.; Metodiev, E. M.; Miceli, L.; Park, S. T.; Petrakou, E.; Semertzidis, Y. K.; Won, E.] Inst for Basic Sci Korea, Ctr Axion & Precis Phys Res, Daejeon 34141, South Korea.
[Giomataris, Y.] CEA Saclay, DAPNIA, F-91191 Gif Sur Yvette, France.
[Grosse-Perdekamp, M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Guidoboni, G.; Lenisa, P.; Pesce, A.; Zavattini, G.] Univ Ferrara, INFN Ferrara, Ferrara, Italy.
[Hoffstaetter, G.; Orlov, Y. F.; Talman, R. M.] Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA.
[Incagli, M.] Univ Pisa, Dept Phys, Pisa, Italy.
[Incagli, M.] INFN Pisa, Pisa, Italy.
[Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Koop, I. A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Lee, Y. H.] Korea Res Inst Stand & Sci, Daejeon 34141, South Korea.
[Lehrach, A.; Pretz, J.; Stahl, A.] Rhein Westfal TH Aachen, D-52056 Aachen, Germany.
[Lehrach, A.; Pretz, J.; Stahl, A.] Phys Zentrum, Phys Inst B 3, JARA Fame, D-52056 Aachen, Germany.
[Sandri, P. Levi; Venanzoni, G.] INFN, Lab Nazl Frascati, I-00044 Rome, Italy.
[Lyapin, A.] Royal Holloway Univ London, Egham, Surrey, England.
[Metodiev, E. M.] Harvard Univ, Harvard Coll, Cambridge, MA 02138 USA.
[Moricciani, D.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy.
[Moricciani, D.] INFN, Sez Roma Tor Vergata, Rome, Italy.
[Ozben, C. S.] Istanbul Tech Univ, TR-34469 Istanbul, Turkey.
[Semertzidis, Y. K.] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea.
[Sidorin, A.; Silenko, A.] Joint Inst Nucl Res, Dubna, Moscow Region, Russia.
[Silenko, A.] Belarusian State Univ, Res Inst Nucl Problems, Minsk, Byelarus.
[Stephenson, E. J.] Indiana Univ, Ctr Spacetime Symmetries, Bloomington, IN 47405 USA.
[Syphers, M. J.] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Vetter, K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Won, E.] Korea Univ, Dept Phys, Seoul 02841, South Korea.
RP Semertzidis, YK (reprint author), Inst for Basic Sci Korea, Ctr Axion & Precis Phys Res, Daejeon 34141, South Korea.; Semertzidis, YK (reprint author), Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea.
EM yannis@kaist.ac.kr
NR 44
TC 0
Z9 0
U1 11
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 115116
DI 10.1063/1.4967465
PG 7
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300392
PM 27910557
ER
PT J
AU Bachmann, B
Hilsabeck, T
Field, J
Masters, N
Reed, C
Pardini, T
Rygg, JR
Alexander, N
Benedetti, LR
Doppner, T
Forsman, A
Izumi, N
LePape, S
Ma, T
MacPhee, AG
Nagel, S
Patel, P
Spears, B
Landen, OL
AF Bachmann, B.
Hilsabeck, T.
Field, J.
Masters, N.
Reed, C.
Pardini, T.
Rygg, J. R.
Alexander, N.
Benedetti, L. R.
Doppner, T.
Forsman, A.
Izumi, N.
LePape, S.
Ma, T.
MacPhee, A. G.
Nagel, S.
Patel, P.
Spears, B.
Landen, O. L.
TI Resolving hot spot microstructure using x-ray penumbral imaging
(invited)
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID FUSION-TARGETS; PLASMAS
AB We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 mu m resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 mu m to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved. Published by AIP Publishing.
C1 [Bachmann, B.; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Doppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A.] Gen Atom, San Diego, CA 92186 USA.
RP Bachmann, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM bachmann2@llnl.gov
RI Patel, Pravesh/E-1400-2011
NR 41
TC 1
Z9 1
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E201
DI 10.1063/1.4959161
PG 7
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300165
PM 27910489
ER
PT J
AU Bedoya, F
Allain, JP
Kaita, R
Skinner, CH
Buzi, L
Koel, BE
AF Bedoya, F.
Allain, J. P.
Kaita, R.
Skinner, C. H.
Buzi, L.
Koel, B. E.
TI Unraveling wall conditioning effects on plasma facing components in
NSTX-U with the Materials Analysis Particle Probe (MAPP)
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID PERFORMANCE
AB A novel Plasma Facing Components (PFCs) diagnostic, the Materials Analysis Particle Probe (MAPP), has been recently commissioned in the National Spherical Torus Experiment Upgrade (NSTX-U). MAPP is currently monitoring the chemical evolution of the PFCs in the NSTX-U lower divertor at 107 cm from the tokamak axis on a day-to-day basis. In this work, we summarize the methodology that was adopted to obtain qualitative and quantitative descriptions of the samples chemistry. Using this methodology, we were able to describe all the features in all our spectra to within a standard deviation of +/- 0.22 eV in position and +/- 248 s(-1) eV in area. Additionally, we provide an example of this methodology with data of boronized ATJ graphite exposed to NSTX-U plasmas. Published by AIP Publishing.
C1 [Bedoya, F.; Allain, J. P.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA.
[Kaita, R.; Skinner, C. H.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Buzi, L.; Koel, B. E.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08540 USA.
RP Allain, JP (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA.
EM allain@illinois.edu
OI Koel, Bruce/0000-0002-0032-4991; Allain, Jean Paul/0000-0003-1348-262X
NR 16
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D403
DI 10.1063/1.4955276
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300008
PM 27910555
ER
PT J
AU Beiersdorfer, P
Magee, EW
Hell, N
Brown, GV
AF Beiersdorfer, P.
Magee, E. W.
Hell, N.
Brown, G. V.
TI Imaging crystal spectrometer for high-resolution x-ray measurements on
electron beam ion traps and tokamaks
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID SENSITIVE PROPORTIONAL COUNTER; CHARGED IONS; EXTREME-ULTRAVIOLET; LINE
EMISSION; SPECTROSCOPY; POLARIZATION; TRANSITIONS; TEMPERATURE;
POSITION; SPECTRA
AB We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of lambda/Delta lambda >= 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components. Published by AIP Publishing.
C1 [Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hell, N.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany.
RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
NR 42
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E339
DI 10.1063/1.4962049
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300207
PM 27910570
ER
PT J
AU Benedetti, LR
Trosseille, C
Holder, JP
Piston, K
Hargrove, D
Bradley, DK
Bell, P
Raimbourg, J
Prat, M
Pickworth, LA
Khan, SF
AF Benedetti, L. R.
Trosseille, C.
Holder, J. P.
Piston, K.
Hargrove, D.
Bradley, D. K.
Bell, P.
Raimbourg, J.
Prat, M.
Pickworth, L. A.
Khan, S. F.
TI A comparison of "flat fielding" techniques for x-ray framing cameras
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB Gain can vary across the active area of an x-ray framing camera by a factor of 4 (or more!) due to the voltage loss and dispersion associated with pulse transmission in a microstripline-coated microchannel plate. In order to make quantitative measurements, it is consequently important to measure the gain variation ("flat field"). Moreover, because of electromagnetic cross talk, gain variation depends on specific operational parameters, and ideally a flat field would be obtained at all operating conditions. As part of a collaboration between Lawrence Livermore National Laboratory's National Ignition Facility and the Commissariat a l'Energie Atomique, we have been able to evaluate the consistency of three different methods of measuring x-ray flat fields. By applying all three methods to a single camera, we are able to isolate performance from method. Here we report the consistency of the methods and discuss systematic issues with the implementation and analysis of each. Published by AIP Publishing.
C1 [Benedetti, L. R.; Holder, J. P.; Piston, K.; Hargrove, D.; Bradley, D. K.; Bell, P.; Pickworth, L. A.; Khan, S. F.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
[Trosseille, C.; Raimbourg, J.; Prat, M.] CEA DAM, F-91297 Bruyeres Le Chatel, Arpajon, France.
RP Benedetti, LR (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM benedetti3@llnl.gov
NR 10
TC 0
Z9 0
U1 2
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D622
DI 10.1063/1.4963201
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300079
PM 27910442
ER
PT J
AU Biewer, TM
Meitner, S
Rapp, J
Ray, H
Shaw, G
AF Biewer, T. M.
Meitner, S.
Rapp, J.
Ray, H.
Shaw, G.
TI First results from the Thomson scattering diagnostic on proto-MPEX
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T-e) and electron density (n(e)) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T-e similar to 2 eV and n(e) similar to 1 x 10(19) m(-3). The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given. Published by AIP Publishing.
C1 [Biewer, T. M.; Meitner, S.; Rapp, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Ray, H.; Shaw, G.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA.
RP Biewer, TM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM biewertm@ornl.gov
NR 10
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E518
DI 10.1063/1.4959163
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300233
PM 27910678
ER
PT J
AU Bitter, M
Hill, KW
Gao, L
Efthimion, PC
Delgado-Apariccio, L
Lazerson, S
Pablant, N
AF Bitter, M.
Hill, K. W.
Gao, Lan
Efthimion, P. C.
Delgado-Apariccio, L.
Lazerson, S.
Pablant, N.
TI A multi-cone x-ray imaging Bragg crystal spectrometer
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID SPECTROGRAPH
AB This article describes a new x-ray imaging Bragg crystal spectrometer, which-in combination with a streak camera or a gated strip detector-can be used for time-resolved measurements of x-ray line spectra at the National Ignition Facility and other high power laser facilities. The main advantage of this instrument is that it produces perfect images of a point source for each wavelength in a selectable spectral range and that the detector plane can be perpendicular to the crystal surface or inclined by an arbitrary angle with respect to the crystal surface. These unique imaging properties are obtained by bending the x-ray diffracting crystal into a certain shape, which is generated by arranging multiple cones with different aperture angles on a common nodal line. Published by AIP Publishing.
C1 [Bitter, M.; Hill, K. W.; Gao, Lan; Efthimion, P. C.; Delgado-Apariccio, L.; Lazerson, S.; Pablant, N.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Bitter, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM bitter@pppl.gov
OI Lazerson, Samuel/0000-0001-8002-0121
NR 3
TC 1
Z9 1
U1 2
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E333
DI 10.1063/1.4960537
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300201
PM 27910415
ER
PT J
AU Brookman, MW
Austin, ME
McLean, AG
Carlstrom, TN
Hyatt, AW
Lohr, J
AF Brookman, M. W.
Austin, M. E.
McLean, A. G.
Carlstrom, T. N.
Hyatt, A. W.
Lohr, J.
TI Improved cross-calibration of Thomson scattering and electron cyclotron
emission with ECH on DIII-D
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB Thomson scattering produces n(e) profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n(e) proportional to I-TS, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n(e) calibration is adjusted against an absolute n(e) from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n(e) from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as "ECH pump-out" generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff. Published by AIP Publishing.
C1 [Brookman, M. W.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA.
[Austin, M. E.; McLean, A. G.] Lawrence Livermore Natl Lab, Livermore, CA 94500 USA.
[Carlstrom, T. N.; Hyatt, A. W.; Lohr, J.] Gen Atom Co, San Diego, CA 92122 USA.
RP Brookman, MW (reprint author), Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA.
EM brookmanmw@fusion.gat.com
NR 4
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E517
DI 10.1063/1.4959916
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300232
PM 27910589
ER
PT J
AU Brown, GV
Beiersdorfer, P
Hell, N
Magee, E
AF Brown, G. V.
Beiersdorfer, P.
Hell, N.
Magee, E.
TI Experimentally determining the relative efficiency of spherically bent
germanium and quartz crystals
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID HIGHLY-CHARGED IONS; SPECTROSCOPY; SPECTROMETERS; RESOLUTION; SPECTRA;
TRAP
AB We have used the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory and a duplicate Orion High Resolution X-ray Spectrometer (OHREX) to measure the relative efficiency of a spherically bent quartz (1011) crystal (2d = 6.687 angstrom) and a spherically bent germanium (111) crystal (2d = 6.532 angstrom). L-shell X-ray photons from highly charged molybdenum ions generated in EBIT-I were simultaneously focussed and Bragg reflected by each crystal, both housed in a single spectrometer, onto a single CCD X-ray detector. The flux from each crystal was then directly compared. Our results show that the germanium crystal has a reflection efficiency significantly better than the quartz crystal, however, the energy resolution is significantly worse. Moreover, we find that the spatial focussing properties of the germanium crystal are worse than those of the quartz crystal. Details of the experiment are presented, and we discuss the advantages of using either crystal on a streak-camera equipped OHREX spectrometer. Published by AIP Publishing.
C1 [Brown, G. V.; Beiersdorfer, P.; Hell, N.; Magee, E.] Lawrence Livermore Natl Lab, Div Phys, 7000 East Ave, Livermore, CA 94550 USA.
[Hell, N.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte, D-96049 Bamberg, Germany.
[Hell, N.] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany.
RP Brown, GV (reprint author), Lawrence Livermore Natl Lab, Div Phys, 7000 East Ave, Livermore, CA 94550 USA.
EM brown86@llnl.gov
NR 15
TC 0
Z9 0
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D620
DI 10.1063/1.4962037
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300077
PM 27910582
ER
PT J
AU Brunner, KJ
Chorley, JC
Dipper, NA
Naylor, G
Sharples, RM
Taylor, G
Thomas, DA
Vann, RGL
AF Brunner, K. J.
Chorley, J. C.
Dipper, N. A.
Naylor, G.
Sharples, R. M.
Taylor, G.
Thomas, D. A.
Vann, R. G. L.
TI Modifications to the synthetic aperture microwave imaging diagnostic
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016. Published by AIP Publishing.
C1 [Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; Sharples, R. M.] Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England.
[Naylor, G.; Thomas, D. A.] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England.
[Taylor, G.] Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA.
[Thomas, D. A.; Vann, R. G. L.] Univ York, York Plasma Inst, York YO10 5DQ, N Yorkshire, England.
RP Brunner, KJ (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England.
EM k.j.brunner@durham.ac.uk
OI Brunner, Kai/0000-0002-0974-0457; Sharples, Ray/0000-0003-3449-8583
NR 13
TC 1
Z9 1
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E129
DI 10.1063/1.4961283
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300158
PM 27910342
ER
PT J
AU Campbell, MF
Bohlin, GA
Schrader, PE
Bambha, RP
Kliewer, CJ
Johansson, KO
Michelsen, HA
AF Campbell, M. F.
Bohlin, G. A.
Schrader, P. E.
Bambha, R. P.
Kliewer, C. J.
Johansson, K. O.
Michelsen, H. A.
TI Design and characterization of a linear Hencken-type burner
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID LASER-INDUCED INCANDESCENCE; AIR DIFFUSION FLAME;
ATOMIC-ABSORPTION-SPECTROMETRY; INTERNAL-COMBUSTION ENGINES; TUNABLE
DIODE-LASER; SOOT FORMATION; SLOT BURNER; TURBULENT COMBUSTION;
RAMAN-SCATTERING; PREMIXED FLAMES
AB We have designed and constructed a Hencken-type burner that produces a 38-mm-long linear laminar partially premixed co-flow diffusion flame. This burner was designed to produce a linear flame for studies of soot chemistry, combining the benefit of the conventional Hencken burner's laminar flames with the advantage of the slot burner's geometry for optical measurements requiring a long interaction distance. It is suitable for measurements using optical imaging diagnostics, line-of-sight optical techniques, or off-axis optical-scattering methods requiring either a long or short path length through the flame. This paper presents details of the design and operation of this new burner. We also provide characterization information for flames produced by this burner, including relative flow-field velocities obtained using hot-wire anemometry, temperatures along the centerline extracted using direct one-dimensional coherent Raman imaging, soot volume fractions along the centerline obtained using laser-induced incandescence and laser extinction, and transmission electron microscopy images of soot thermophoretically sampled from the flame. Published by AIP Publishing.
C1 [Campbell, M. F.; Bohlin, G. A.; Schrader, P. E.; Bambha, R. P.; Kliewer, C. J.; Johansson, K. O.; Michelsen, H. A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA.
RP Michelsen, HA (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA.
EM hamiche@sandia.gov
RI Bohlin, Alexis/L-8973-2015
OI Bohlin, Alexis/0000-0003-4383-8332
NR 88
TC 0
Z9 0
U1 8
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 115114
DI 10.1063/1.4967491
PG 12
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300390
PM 27910522
ER
PT J
AU Casey, DT
Volegov, PL
Merrill, FE
Munro, DH
Grim, GP
Landen, OL
Spears, BK
Fittinghoff, DN
Field, JE
Smalyuk, VA
AF Casey, D. T.
Volegov, P. L.
Merrill, F. E.
Munro, D. H.
Grim, G. P.
Landen, O. L.
Spears, B. K.
Fittinghoff, D. N.
Field, J. E.
Smalyuk, V. A.
TI Fluence-compensated down-scattered neutron imaging using the neutron
imaging system at the National Ignition Facility
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB The Neutron Imaging System at the National Ignition Facility is used to observe the primary similar to 14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models. Published by AIP Publishing.
C1 [Casey, D. T.; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Volegov, P. L.; Merrill, F. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Casey, DT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM casey21@llnl.gov
NR 15
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E715
DI 10.1063/1.4960065
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300293
PM 27910388
ER
PT J
AU Chen, H
Palmer, N
Dayton, M
Carpenter, A
Schneider, MB
Bell, PM
Bradley, DK
Claus, LD
Fang, L
Hilsabeck, T
Hohenberger, M
Jones, OS
Kilkenny, JD
Kimmel, MW
Robertson, G
Rochau, G
Sanchez, MO
Stahoviak, JW
Trotter, DC
Porter, JL
AF Chen, Hui
Palmer, N.
Dayton, M.
Carpenter, A.
Schneider, M. B.
Bell, P. M.
Bradley, D. K.
Claus, L. D.
Fang, L.
Hilsabeck, T.
Hohenberger, M.
Jones, O. S.
Kilkenny, J. D.
Kimmel, M. W.
Robertson, G.
Rochau, G.
Sanchez, M. O.
Stahoviak, J. W.
Trotter, D. C.
Porter, J. L.
TI A high-speed two-frame, 1-2 ns gated X-ray CMOS imager used as a
hohlraum diagnostic on the National Ignition Facility (invited)
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 x 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall. Published by AIP Publishing.
C1 [Chen, Hui; Palmer, N.; Dayton, M.; Carpenter, A.; Schneider, M. B.; Bell, P. M.; Bradley, D. K.; Jones, O. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Claus, L. D.; Fang, L.; Kimmel, M. W.; Robertson, G.; Rochau, G.; Sanchez, M. O.; Stahoviak, J. W.; Trotter, D. C.; Porter, J. L.] Sandia Natl Labs, Albuquerque, NM 87123 USA.
[Hilsabeck, T.; Kilkenny, J. D.] Gen Atom, San Diego, CA 92186 USA.
[Hohenberger, M.] Laser Energet Lab, Rochester, NY 14623 USA.
RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM chen33@llnl.gov
NR 20
TC 1
Z9 1
U1 6
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E203
DI 10.1063/1.4962252
PG 7
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300167
PM 27910306
ER
PT J
AU Chrystal, C
Burrell, KH
Grierson, BA
Haskey, SR
Groebner, RJ
Kaplan, DH
Briesemeister, A
AF Chrystal, C.
Burrell, K. H.
Grierson, B. A.
Haskey, S. R.
Groebner, R. J.
Kaplan, D. H.
Briesemeister, A.
TI Improved edge charge exchange recombination spectroscopy in DIII-D
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID COUPLED-DEVICE DETECTORS; D TOKAMAK; SYSTEM
AB The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16 to 38. New fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas. Published by AIP Publishing.
C1 [Chrystal, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
[Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.] Gen Atom, POB 85608, San Diego, CA 92186 USA.
[Grierson, B. A.; Haskey, S. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Briesemeister, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Chrystal, C (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
EM chrystal@fusion.gat.com
OI Briesemeister, Alexis/0000-0003-3703-0978; Haskey,
Shaun/0000-0002-9978-6597
NR 15
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E512
DI 10.1063/1.4958915
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300227
PM 27910369
ER
PT J
AU Clary, R
Roquemore, A
Douglass, J
Jaramillo, D
Korepanov, S
Magee, R
Medley, S
Smirnov, A
AF Clary, R.
Roquemore, A.
Douglass, J.
Jaramillo, D.
Korepanov, S.
Magee, R.
Medley, S.
Smirnov, A.
TI A mass resolved, high resolution neutral particle analyzer for C-2U
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID TOKAMAK
AB C-2U is a high-confinement, advanced beam driven field-reversed configuration plasma experiment which sustains the configuration for >5 ms, in excess of typical MHD and fast particle instability times, as well as fast particle slowing down times. Fast particle dynamics are critical to C-2U performance and several diagnostics have been deployed to characterize the fast particle population, including neutron and proton detectors. To increase our understanding of fast particle behavior and supplement existing diagnostics, an E parallel to B neutral particle analyzer was installed, which simultaneously measures H-0 and D-0 flux with large dynamic range and high energy resolution. Here we report the commissioning of the E parallel to B analyzer, confirm the instrument has energy resolution Delta epsilon/epsilon less than or similar to 0.1 and a dynamic range epsilon(max)/epsilon(min) similar to 30, and present measurements of initial testing on C-2U. Published by AIP Publishing.
C1 [Clary, R.; Douglass, J.; Jaramillo, D.; Korepanov, S.; Magee, R.; Smirnov, A.] Tri Alpha Energy Inc, Rancho Santa Margarita, CA 92688 USA.
[Roquemore, A.; Medley, S.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA.
RP Clary, R (reprint author), Tri Alpha Energy Inc, Rancho Santa Margarita, CA 92688 USA.
EM rclary@trialphaenergy.com
NR 11
TC 2
Z9 2
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E703
DI 10.1063/1.4958911
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300281
PM 27910391
ER
PT J
AU Cooper, CM
Pace, DC
Paz-Soldan, C
Commaux, N
Eidietis, NW
Hollmann, EM
Shiraki, D
AF Cooper, C. M.
Pace, D. C.
Paz-Soldan, C.
Commaux, N.
Eidietis, N. W.
Hollmann, E. M.
Shiraki, D.
TI Applying the new gamma ray imager diagnostic to measurements of runaway
electron Bremsstrahlung radiation in the DIII-D Tokamak
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID GENERATION; DISRUPTIONS
AB A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function. Published by AIP Publishing.
C1 [Cooper, C. M.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA.
[Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W.] Gen Atom, POB 85608, San Diego, CA 92186 USA.
[Commaux, N.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Hollmann, E. M.] Univ Calif San Diego, San Diego, CA 92093 USA.
RP Cooper, CM (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA.
EM coopercm@fusion.gat.com
NR 25
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E602
DI 10.1063/1.4961288
PG 7
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300278
PM 27910457
ER
PT J
AU Danly, CR
Christensen, K
Fatherley, VE
Fittinghoff, DN
Grim, GP
Hibbard, R
Izumi, N
Jedlovec, D
Merrill, FE
Schmidt, DW
Simpson, RA
Skulina, K
Volegov, PL
Wilde, CH
AF Danly, C. R.
Christensen, K.
Fatherley, V. E.
Fittinghoff, D. N.
Grim, G. P.
Hibbard, R.
Izumi, N.
Jedlovec, D.
Merrill, F. E.
Schmidt, D. W.
Simpson, R. A.
Skulina, K.
Volegov, P. L.
Wilde, C. H.
TI Combined neutron and x-ray imaging at the National Ignition Facility
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB X-ray and neutrons are commonly used to image inertial confinement fusion implosions, providing key diagnostic information on the fuel assembly of burning deuterium-tritium (DT) fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occurs from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreased neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a combined neutron x-ray imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line of sight. This system is described, and initial results are presented along with prospects for definitive coregistration of the images. Published by AIP Publishing.
C1 [Danly, C. R.; Fatherley, V. E.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Christensen, K.; Fittinghoff, D. N.; Grim, G. P.; Hibbard, R.; Izumi, N.; Jedlovec, D.; Skulina, K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Danly, CR (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
EM cdanly@lanl.gov
NR 14
TC 0
Z9 0
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D703
DI 10.1063/1.4962194
PG 6
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300084
PM 27910487
ER
PT J
AU Datte, PS
Eckart, M
Moore, AS
Thompson, W
de Dios, GV
AF Datte, P. S.
Eckart, M.
Moore, A. S.
Thompson, W.
de Dios, G. Vergel
TI Impulse responses of visible phototubes used in National Ignition
Facility neutron time of flight diagnostics
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 x 10(15) these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Omega load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and similar to 2% rms for the square root of the second central moment with similar to 500 ps value. Detailed results are presented for three different diode configurations. Published by AIP Publishing.
C1 [Datte, P. S.; Eckart, M.; Moore, A. S.; Thompson, W.; de Dios, G. Vergel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Datte, PS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM datte1@llnl.gov
NR 3
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D837
DI 10.1063/1.4962039
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300121
PM 27910365
ER
PT J
AU Datte, PS
Ross, JS
Froula, DH
Daub, KD
Galbraith, J
Glenzer, S
Hatch, B
Katz, J
Kilkenny, J
Landen, O
Manha, D
Manuel, AM
Molander, W
Montgomery, D
Moody, J
Swadling, GF
Weaver, J
AF Datte, P. S.
Ross, J. S.
Froula, D. H.
Daub, K. D.
Galbraith, J.
Glenzer, S.
Hatch, B.
Katz, J.
Kilkenny, J.
Landen, O.
Manha, D.
Manuel, A. M.
Molander, W.
Montgomery, D.
Moody, J.
Swadling, G. F.
Weaver, J.
TI The design of the optical Thomson scattering diagnostic for the National
Ignition Facility
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (lambda(0)-210 nm) will be used to optimize the scattered signal for plasma densities of 5 x 10(20) electrons/cm(3) while a 3 omega probe will be used for experiments investigating lower density plasmas of 1 x 10(19) electrons/cm(3). We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser. Published by AIP Publishing.
C1 [Datte, P. S.; Ross, J. S.; Daub, K. D.; Galbraith, J.; Hatch, B.; Kilkenny, J.; Landen, O.; Manha, D.; Manuel, A. M.; Molander, W.; Moody, J.; Swadling, G. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Froula, D. H.; Katz, J.] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA.
[Glenzer, S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Montgomery, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Weaver, J.] Naval Res Lab, Plasma Phys Div, Washington, DC 20375 USA.
RP Datte, PS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM datte1@llnl.gov
NR 8
TC 0
Z9 0
U1 5
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E549
DI 10.1063/1.4962043
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300264
PM 27910656
ER
PT J
AU Delgado-Aparicio, LF
Maddox, J
Pablant, N
Hill, K
Bitter, M
Rice, JE
Granetz, R
Hubbard, A
Irby, J
Greenwald, M
Marmar, E
Tritz, K
Stutman, D
Stratton, B
Efthimion, P
AF Delgado-Aparicio, L. F.
Maddox, J.
Pablant, N.
Hill, K.
Bitter, M.
Rice, J. E.
Granetz, R.
Hubbard, A.
Irby, J.
Greenwald, M.
Marmar, E.
Tritz, K.
Stutman, D.
Stratton, B.
Efthimion, P.
TI Multi-energy SXR cameras for magnetically confined fusion plasmas
(invited)
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID X-RAY PHA; PULSE-HEIGHT ANALYZER; ELECTRON-TEMPERATURE; HT-7 TOKAMAK
AB A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T-e, n(Z), Delta Z(eff), and n(e,fast)). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium-to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness. Published by AIP Publishing.
C1 [Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Stratton, B.; Efthimion, P.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA.
[Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.] MIT, Cambridge, MA 02141 USA.
[Tritz, K.; Stutman, D.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
RP Delgado-Aparicio, LF (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08540 USA.
EM ldelgado@pppl.gov
OI Greenwald, Martin/0000-0002-4438-729X
NR 36
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E204
DI 10.1063/1.4964807
PG 6
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300168
PM 27910663
ER
PT J
AU Doppner, T
Kraus, D
Neumayer, P
Bachmann, B
Emig, J
Falcone, RW
Fletcher, LB
Hardy, M
Kalantar, DH
Kritcher, AL
Landen, OL
Ma, T
Saunders, AM
Wood, RD
AF Doppner, T.
Kraus, D.
Neumayer, P.
Bachmann, B.
Emig, J.
Falcone, R. W.
Fletcher, L. B.
Hardy, M.
Kalantar, D. H.
Kritcher, A. L.
Landen, O. L.
Ma, T.
Saunders, A. M.
Wood, R. D.
TI Improving a high-efficiency, gated spectrometer for x-ray Thomson
scattering experiments at the National Ignition Facility
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Doppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements. Published by AIP Publishing.
C1 [Doppner, T.; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D.] Lawrence Livermore Natl Lab, Livermore, CA 94720 USA.
[Kraus, D.; Falcone, R. W.; Saunders, A. M.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Neumayer, P.] Gesell Schwerionenphys, Darmstadt, Germany.
[Falcone, R. W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Fletcher, L. B.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94720 USA.
RP Doppner, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94720 USA.
EM doeppner1@llnl.gov
NR 12
TC 0
Z9 0
U1 4
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E515
DI 10.1063/1.4959874
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300230
PM 27910303
ER
PT J
AU Dunham, G
Harding, EC
Loisel, GP
Lake, PW
Nielsen-Weber, LB
AF Dunham, G.
Harding, E. C.
Loisel, G. P.
Lake, P. W.
Nielsen-Weber, L. B.
TI Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to
determine the response of a DITABIS Super Micron image plate scanner
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed. Published by AIP Publishing.
C1 [Dunham, G.; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Dunham, G (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA.
EM gsdunha@sandia.gov
NR 5
TC 1
Z9 1
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E301
DI 10.1063/1.4955482
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300169
PM 27910495
ER
PT J
AU Dvorak, J
Jarrige, I
Bisogni, V
Coburn, S
Leonhardt, W
AF Dvorak, Joseph
Jarrige, Ignace
Bisogni, Valentina
Coburn, Scott
Leonhardt, William
TI Towards 10 meV resolution: The design of an ultrahigh resolution soft
X-ray RIXS spectrometer
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID INELASTIC-SCATTERING; LIGHT-SOURCE; MONOCHROMATOR; EXCITATIONS;
SPECTROSCOPY; BEAMLINE; GRATINGS; EDGE
AB We present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2 theta motion over a range of 112. using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction for the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. This will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS. Published by AIP Publishing.
C1 [Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina; Coburn, Scott; Leonhardt, William] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
RP Dvorak, J (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
EM jdvorak@bnl.gov
NR 31
TC 1
Z9 1
U1 2
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 115109
DI 10.1063/1.4964847
PG 12
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300385
PM 27910402
ER
PT J
AU Eckart, ME
Boyce, KR
Brown, GV
Chiao, MP
Fujimoto, R
Haas, D
den Herder, JW
Ishisaki, Y
Kelley, RL
Kilbourne, CA
Leutenegger, MA
McCammon, D
Mitsuda, K
Porter, FS
Sawada, M
Sneiderman, GA
Szymkowiak, AE
Takei, Y
Tashiro, M
Tsujimoto, M
de Vries, CP
Watanabe, T
Yamada, S
Yamasaki, NY
AF Eckart, M. E.
Boyce, K. R.
Brown, G. V.
Chiao, M. P.
Fujimoto, R.
Haas, D.
den Herder, J. -W.
Ishisaki, Y.
Kelley, R. L.
Kilbourne, C. A.
Leutenegger, M. A.
McCammon, D.
Mitsuda, K.
Porter, F. S.
Sawada, M.
Sneiderman, G. A.
Szymkowiak, A. E.
Takei, Y.
Tashiro, M.
Tsujimoto, M.
de Vries, C. P.
Watanabe, T.
Yamada, S.
Yamasaki, N. Y.
TI Calibration of the microcalorimeter spectrometer on-board the Hitomi
(Astro-H) observatory
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters. Published by AIP Publishing.
C1 [Eckart, M. E.; Chiao, M. P.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Porter, F. S.; Watanabe, T.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.
[Boyce, K. R.; Sneiderman, G. A.] NASA, Goddard Space Flight Ctr, Code 592, Greenbelt, MD 20771 USA.
[Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Chiao, M. P.; Leutenegger, M. A.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA.
[Fujimoto, R.] Kanazawa Univ, Kanazawa, Ishikawa 9201192, Japan.
[Haas, D.; den Herder, J. -W.; de Vries, C. P.] SRON, Netherlands Inst Space Res, Utrecht, Netherlands.
[Ishisaki, Y.; Yamada, S.] Tokyo Metropolitan Univ, Hachioji, Tokyo 1920397, Japan.
[McCammon, D.] Univ Wisconsin Madison, Madison, WI 53706 USA.
[Mitsuda, K.; Takei, Y.; Tsujimoto, M.; Yamasaki, N. Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan.
[Sawada, M.] Aoyama Gakuin Univ, Sagamihara, Kanagawa 2525258, Japan.
[Szymkowiak, A. E.] Yale Univ, New Haven, CT 06520 USA.
[Tashiro, M.] Saitama Univ, Sakura Ku, Saitama 3388570, Japan.
[Watanabe, T.] Univ Maryland, CRESST, College Pk, MD 20742 USA.
RP Eckart, ME (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.
EM Megan.E.Eckart@nasa.gov
RI Yamasaki, Noriko/C-2252-2008; Porter, Frederick/D-3501-2012
OI Porter, Frederick/0000-0002-6374-1119
NR 8
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D503
DI 10.1063/1.4961075
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300055
PM 27910640
ER
PT J
AU Edwards, ER
Cassata, WS
Velsko, CA
Yeamans, CB
Shaughnessy, DA
AF Edwards, E. R.
Cassata, W. S.
Velsko, C. A.
Yeamans, C. B.
Shaughnessy, D. A.
TI Determination of relative krypton fission product yields from 14 MeV
neutron induced fission of U-238 at the National Ignition Facility
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of Kr-88 and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the (85)mKr/Kr-88 ratio, which may be the result of incorrect nuclear data. Published by AIP Publishing.
C1 [Edwards, E. R.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
[Cassata, W. S.; Velsko, C. A.; Yeamans, C. B.; Shaughnessy, D. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Edwards, ER (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
EM edwards76@llnl.gov
NR 5
TC 0
Z9 0
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D838
DI 10.1063/1.4963155
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300122
PM 27910394
ER
PT J
AU Fatherley, VE
Bingham, DA
Cartelli, MD
DiDomizio, RA
Griego, JR
Herrmann, HW
Lopez, FE
Oertel, JA
Pollack, MJ
AF Fatherley, V. E.
Bingham, D. A.
Cartelli, M. D.
DiDomizio, R. A.
Griego, J. R.
Herrmann, H. W.
Lopez, F. E.
Oertel, J. A.
Pollack, M. J.
TI Design and fabrication of a window for the gas Cherenkov detector 3
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB The gas Cherenkov detector 3 was designed at Los Alamos National Laboratory for use in inertial confinement fusion experiments at both the Omega Laser Facility and the National Ignition Facility. This instrument uses a low-Z gamma-to-electron convertor plate and high pressure gas to convert MeV gammas into UV/visible Cherenkov photons for fast optical detection. This is a follow-on diagnostic from previous versions, with two notable differences: the pressure of the gas is four times higher, and it allows the use of fluorinated gas, requiring metal seals. These changes force significant changes in the window component, having a unique set of requirements and footprint limitations. The selected solution for this component, a sapphire window brazed into a stainless steel flange housing, is described. Published by AIP Publishing.
C1 [Fatherley, V. E.; Bingham, D. A.; Cartelli, M. D.; Griego, J. R.; Herrmann, H. W.; Lopez, F. E.; Oertel, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[DiDomizio, R. A.; Pollack, M. J.] EnvirOptics Inc, Colmar, PA 18915 USA.
RP Fatherley, VE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM vef@lanl.gov
NR 2
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E718
DI 10.1063/1.4961156
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300296
PM 27910419
ER
PT J
AU Fatherley, VE
Barker, DA
Fittinghoff, DN
Hibbard, RL
Martinez, JI
Merrill, FE
Oertel, JA
Schmidt, DW
Volegov, PL
Wilde, CH
AF Fatherley, V. E.
Barker, D. A.
Fittinghoff, D. N.
Hibbard, R. L.
Martinez, J. I.
Merrill, F. E.
Oertel, J. A.
Schmidt, D. W.
Volegov, P. L.
Wilde, C. H.
TI Design of the polar neutron-imaging aperture for use at the National
Ignition Facility
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm x 15 mm x 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 mu m and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 mu m square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF. Published by AIP Publishing.
C1 [Fatherley, V. E.; Martinez, J. I.; Merrill, F. E.; Oertel, J. A.; Schmidt, D. W.; Volegov, P. L.; Wilde, C. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Barker, D. A.; Fittinghoff, D. N.; Hibbard, R. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Fatherley, VE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM vef@lanl.gov
NR 4
TC 1
Z9 1
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D821
DI 10.1063/1.4960314
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300105
PM 27910447
ER
PT J
AU Flesch, K
Kremeyer, T
Schmitz, O
Soukhanovskii, V
Wenzel, U
AF Flesch, K.
Kremeyer, T.
Schmitz, O.
Soukhanovskii, V.
Wenzel, U.
TI Development of miniaturized, spectroscopically assisted Penning gauges
for fractional helium and hydrogen neutral pressure measurements
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID DIVERTOR; TOKAMAK
AB Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution. Published by AIP Publishing.
C1 [Flesch, K.; Kremeyer, T.; Schmitz, O.] Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA.
[Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Wenzel, U.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany.
RP Flesch, K (reprint author), Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA.
EM kbflesch@wisc.edu
NR 9
TC 1
Z9 1
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E529
DI 10.1063/1.4960815
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300244
PM 27910409
ER
PT J
AU Fletcher, LB
Zastrau, U
Galtier, E
Gamboa, EJ
Goede, S
Schumaker, W
Ravasio, A
Gauthier, M
MacDonald, MJ
Chen, Z
Granados, E
Lee, HJ
Fry, A
Kim, JB
Roedel, C
Mishra, R
Pelka, A
Kraus, D
Barbrel, B
Doppner, T
Glenzer, SH
AF Fletcher, L. B.
Zastrau, U.
Galtier, E.
Gamboa, E. J.
Goede, S.
Schumaker, W.
Ravasio, A.
Gauthier, M.
MacDonald, M. J.
Chen, Z.
Granados, E.
Lee, H. J.
Fry, A.
Kim, J. B.
Roedel, C.
Mishra, R.
Pelka, A.
Kraus, D.
Barbrel, B.
Doppner, T.
Glenzer, S. H.
TI High resolution x-ray Thomson scattering measurements from cryogenic
hydrogen jets using the linac coherent light source
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
ID ELECTRONS; PLASMAS; PHYSICS
AB We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)]. Published by AIP Publishing.
C1 [Fletcher, L. B.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Glenzer, S. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Zastrau, U.; Goede, S.] European XFEL, Schenefeld, Germany.
[Ravasio, A.] Lab Utilisat Lasers Intenses, Palaiseau, France.
[MacDonald, M. J.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Chen, Z.] Univ Alberta, Edmonton, AB T6G 2R3, Canada.
[Pelka, A.; Kraus, D.] Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany.
[Kraus, D.; Barbrel, B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Doppner, T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Fletcher, LB (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
EM lbfletch@slac.stanford.edu
RI gauthier, Maxence/K-2578-2014;
OI gauthier, Maxence/0000-0001-6608-9325; MacDonald,
Michael/0000-0002-6295-6978
NR 13
TC 0
Z9 0
U1 7
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11E524
DI 10.1063/1.4959792
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300239
PM 27910564
ER
PT J
AU Fournier, KB
Brown, CG
Yeoman, MF
Fisher, JH
Seiler, SW
Hinshelwood, D
Compton, S
Holdener, FR
Kemp, GE
Newlander, CD
Gilliam, RP
Froula, N
Lilly, M
Davis, JF
Lerch, MA
Blue, BE
AF Fournier, K. B.
Brown, C. G., Jr.
Yeoman, M. F.
Fisher, J. H.
Seiler, S. W.
Hinshelwood, D.
Compton, S.
Holdener, F. R.
Kemp, G. E.
Newlander, C. D.
Gilliam, R. P.
Froula, N.
Lilly, M.
Davis, J. F.
Lerch, Maj. A.
Blue, B. E.
TI X-ray transport and radiation response assessment (XTRRA) experiments at
the National Ignition Facility
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility's diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within +/- 1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed. Published by AIP Publishing.
C1 [Fournier, K. B.; Brown, C. G., Jr.; Yeoman, M. F.; Compton, S.; Holdener, F. R.; Kemp, G. E.; Blue, B. E.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA.
[Fisher, J. H.; Newlander, C. D.; Gilliam, R. P.; Froula, N.] Fifth Gait Technol Inc, 14040 Camden Circle, Huntsville, AL 35803 USA.
[Seiler, S. W.; Davis, J. F.; Lerch, Maj. A.] Def Threat Reduct Agcy, 8725 John J Kingman Rd, Ft Belvoir, VA 22060 USA.
[Hinshelwood, D.] Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA.
[Lilly, M.] Dynasen Inc, 20 Arnold Pl, Goleta, CA 93117 USA.
RP Fournier, KB (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA.
EM fournier2@llnl.gov
OI Fournier, Kevin/0000-0002-1123-3788
NR 14
TC 0
Z9 0
U1 2
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D421
DI 10.1063/1.4960501
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300026
PM 27910608
ER
PT J
AU Frenje, JA
Hilsabeck, TJ
Wink, CW
Bell, P
Bionta, R
Cerjan, C
Johnson, MG
Kilkenny, JD
Li, CK
Seguin, FH
Petrasso, RD
AF Frenje, J. A.
Hilsabeck, T. J.
Wink, C. W.
Bell, P.
Bionta, R.
Cerjan, C.
Johnson, M. Gatu
Kilkenny, J. D.
Li, C. K.
Seguin, F. H.
Petrasso, R. D.
TI The magnetic recoil spectrometer (MRSt) for time-resolved measurements
of the neutron spectrum at the National Ignition Facility (NIF)
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (rho R), apparent ion temperature (T-i), yield (Y-n), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of similar to 20 ps and energy resolution of similar to 100 keV for total neutron yields above similar to 10(16). At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of similar to 20 ps. Published by AIP Publishing.
C1 [Frenje, J. A.; Wink, C. W.; Johnson, M. Gatu; Li, C. K.; Seguin, F. H.; Petrasso, R. D.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Hilsabeck, T. J.; Kilkenny, J. D.] Gen Atom, San Diego, CA 92186 USA.
[Bell, P.; Bionta, R.; Cerjan, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Frenje, JA (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM jfrenje@psfc.mit.edu
OI Cerjan, Charles/0000-0002-5168-6845
NR 13
TC 0
Z9 0
U1 4
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D806
DI 10.1063/1.4959164
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300090
PM 27910467
ER
PT J
AU Frerichs, H
Effenberg, F
Schmitz, O
Biedermann, C
Feng, Y
Jakubowski, M
Konig, R
Krychowiak, M
Lore, J
Niemann, H
Pedersen, TS
Stephey, L
Wurden, GA
AF Frerichs, H.
Effenberg, F.
Schmitz, O.
Biedermann, C.
Feng, Y.
Jakubowski, M.
Koenig, R.
Krychowiak, M.
Lore, J.
Niemann, H.
Pedersen, T. S.
Stephey, L.
Wurden, G. A.
TI Synthetic plasma edge diagnostics for EMC3-EIRENE, highlighted for
Wendelstein 7-X
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB Interpretation of spectroscopic measurements in the edge region of high-temperature plasmas can be a challenge since line of sight integration effects make direct interpretation in terms of quantitative, local emission strengths often impossible. The EMC3-EIRENE code-a 3D fluid edge plasma and kinetic neutral gas transport code-is a suitable tool for full 3D reconstruction of such signals. A versatile synthetic diagnostic module has been developed recently which allows the realistic 3D setup of various plasma edge diagnostics to be captured. We highlight these capabilities with two examples for Wendelstein 7-X (W7-X): a visible camera for the analysis of recycling, and a coherent-imaging system for velocity measurements.
C1 [Frerichs, H.; Effenberg, F.; Schmitz, O.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA.
[Biedermann, C.; Feng, Y.; Jakubowski, M.; Koenig, R.; Krychowiak, M.; Niemann, H.; Pedersen, T. S.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany.
[Lore, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Stephey, L.] Univ Wisconsin, HSX Plasma Lab, Madison, WI 53706 USA.
[Wurden, G. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Frerichs, H (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA.
EM hfrerichs@wisc.edu
OI Jakubowski, Marcin/0000-0002-6557-3497; Wurden, Glen/0000-0003-2991-1484
NR 6
TC 2
Z9 2
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D441
DI 10.1063/1.4959910
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300046
PM 27910599
ER
PT J
AU Gao, L
Hill, KW
Bitter, M
Efthimion, PC
Delgado-Aparicio, L
Pablant, NA
Baronova, EO
Pereira, NR
AF Gao, Lan
Hill, K. W.
Bitter, M.
Efthimion, P. C.
Delgado-Aparicio, L.
Pablant, N. A.
Baronova, E. O.
Pereira, N. R.
TI Spatial resolution of a spherical x-ray crystal spectrometer at various
magnifications
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 21st Topical Conference on High-Temperature Plasma Diagnostics
CY JUN 05-09, 2016
CL Madison, WI
AB A high spatial resolution of a few mu m is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten L beta(2) rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-mu m pixel size. The source-to-crystal (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution. Published by AIP Publishing.
C1 [Gao, Lan; Hill, K. W.; Bitter, M.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N. A.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
[Baronova, E. O.] NRC Kurchatov Inst, Moscow, Russia.
[Pereira, N. R.] Ecopulse Inc, 7844 Vervain Ct, Springfield, VA 22152 USA.
RP Gao, L (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM lgao@pppl.gov
NR 10
TC 0
Z9 0
U1 3
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD NOV
PY 2016
VL 87
IS 11
AR 11D611
DI 10.1063/1.4960066
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA EF3RO
UT WOS:000390242300068
PM 27910513
ER
PT J
AU Gauthier, M
Kim, JB
Curry, CB
Aurand, B
Gamboa, EJ
Gode, S
Goyon, C
Hazi, A
Kerr, S
Pak, A
Propp, A
Ramakrishna, B
Ruby, J
Willi, O
Williams, GJ
Rodel, C
Glenzer, SH
AF Gauthier, M.
Kim, J. B.
Curry, C. B.
Aurand, B.
Gamboa, E. J.
Gode, S.
Goyon, C.
Hazi, A.
Kerr, S.
Pak, A.
Propp, A.
Ramakrishna, B.
Ruby, J.
Willi, O.
Williams, G. J.
Roedel, C.
Glenzer, S. H.
TI High-intensity laser-accelerated ion beam produced