FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Datye, A
Li, L
Zhang, W
Wei, YJ
Gao, YF
Pharr, GM
AF Datye, Amit
Li, Lin
Zhang, Wei
Wei, Yujie
Gao, Yanfei
Pharr, George M.
TI Extraction of Anisotropic Mechanical Properties From Nanoindentation of
SiC-6H Single Crystals
SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
LA English
DT Article
DE nanoindentation; elastic and plastic anisotropy; basal slip
ID SMALL STRESSED VOLUMES; SILICON-CARBIDE; INDENTATION; DEFORMATION;
ORIENTATION; SLIP; PLASTICITY; MAGNESIUM; MG; BEHAVIOR
AB Because brittle solids fail catastrophically during normal tension and compression testing, nanoindentation is often a useful alternative technique for measuring their mechanical properties and assessing their deformation characteristics. One practical question to be addressed in such studies is the relationship between the anisotropy in the uniaxial mechanical behavior to that in the indentation response. To this end, a systematic study of the mechanical behavior the 6H polytype of a hexagonal silicon carbide single crystal (SiC-6H) was performed using standard nanoindentation methods. The indentation elastic modulus and hardness measured using a Berkovich indenter at a peak load of 500 mN varied over a wide range of crystal orientation by only a few percent. The variation in modulus is shown to be consistent with an anisotropic elastic contact analysis based on the known single crystal elastic constants of the material. The variation in hardness is examined using a single crystal plasticity model that considers the anisotropy of slip in hexagonal crystals. When compared to experimental measurements, the analysis confirms that plasticity in SiC-6H is dominated by basal slip. An anisotropic elastic contact analysis provides insights into the relationship between the pop-in load, which characterizes the transition from elasticity to plasticity during nanoindentation testing, and the theoretical strength of the material. The observations and analyses lay the foundations for further examination of the deformation and failure mechanisms in anisotropic materials by nanoindentation techniques.
C1 [Datye, Amit; Li, Lin; Zhang, Wei; Gao, Yanfei; Pharr, George M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Wei, Yujie] Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China.
[Gao, Yanfei; Pharr, George M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Gao, YF; Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; Gao, YF; Pharr, GM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM pharr@utk.edu
RI Gao, Yanfei/F-9034-2010; Wei, Yujie/A-3770-2009
OI Gao, Yanfei/0000-0003-2082-857X; Wei, Yujie/0000-0002-3213-7891
FU U.S. National Science Foundation [CMMI 0926798, DMR 1427812]; Natural
Science Foundation of China [11425211]
FX This research was supported by the U.S. National Science Foundation CMMI
0926798 (AD, LL, YFG) and DMR 1427812 (GMP), and the Natural Science
Foundation of China 11425211 (YJW). Y.F.G. and G.M.P. are grateful to
Dr. A.A. Wereszczak for his critical review of the manuscript.
NR 32
TC 1
Z9 1
U1 10
U2 15
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0021-8936
EI 1528-9036
J9 J APPL MECH-T ASME
JI J. Appl. Mech.-Trans. ASME
PD SEP
PY 2016
VL 83
IS 9
AR 091003
DI 10.1115/1.4033790
PG 7
WC Mechanics
SC Mechanics
GA DV2KS
UT WOS:000382750000003
ER
PT J
AU DuPont, B
Azam, R
Proper, S
Cotilla-Sanchez, E
Hoyle, C
Piacenza, J
Oryshchyn, D
Zitney, SE
Bossart, S
AF DuPont, Bryony
Azam, Ridwan
Proper, Scott
Cotilla-Sanchez, Eduardo
Hoyle, Christopher
Piacenza, Joseph
Oryshchyn, Danylo
Zitney, Stephen E.
Bossart, Stephen
TI An Optimization Framework for Decision Making in Large, Collaborative
Energy Supply Systems
SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
LA English
DT Article
ID POWER-SYSTEMS
AB As demand for electricity in the U.S. continues to increase, it is necessary to explore the means through which the modern power supply system can accommodate both increasing affluence (which is accompanied by increased per-capita consumption) and the continually growing global population. Though there has been a great deal of research into the theoretical optimization of large-scale power systems, research into the use of an existing power system as a foundation for this growth has yet to be fully explored. Current successful and robust power generation systems that have significant renewable energy penetration-despite not having been optimized a priori-can be used to inform the advancement of modern power systems to accommodate the increasing demand for electricity. This work explores how an accurate and state-of-the-art computational model of a large, regional energy system can be employed as part of an overarching power systems optimization scheme that looks to inform the decision making process for next generation power supply systems. Research scenarios that explore an introductory multi-objective power flow analysis for a case study involving a regional portion of a large grid will be explored, along with a discussion of future research directions.
C1 [DuPont, Bryony; Proper, Scott; Hoyle, Christopher] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA.
[Azam, Ridwan; Cotilla-Sanchez, Eduardo] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA.
[Piacenza, Joseph] Calif State Univ Fullerton, Mech Engn, Fullerton, CA 92834 USA.
[Oryshchyn, Danylo; Zitney, Stephen E.; Bossart, Stephen] Natl Energy Technol Lab, Morgantown, WV 26507 USA.
RP DuPont, B (reprint author), Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA.
FU National Energy Technology Laboratory's Regional University Alliance
(NETL-RUA), a collaborative initiative of the NETL under RES [1100426]
FX As part of the National Energy Technology Laboratory's Regional
University Alliance (NETL-RUA), a collaborative initiative of the NETL,
this technical effort was performed under the RES Contract No. 1100426.
NR 19
TC 0
Z9 0
U1 1
U2 1
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0195-0738
J9 J ENERG RESOUR-ASME
JI J. Energy Resour. Technol.-Trans. ASME
PD SEP
PY 2016
VL 138
IS 5
AR 051601
DI 10.1115/1.4032521
PG 8
WC Energy & Fuels
SC Energy & Fuels
GA DV2MJ
UT WOS:000382754400001
ER
PT J
AU Kodavasal, J
Harms, K
Srivastava, P
Som, S
Quan, S
Richards, K
Garcia, M
AF Kodavasal, Janardhan
Harms, Kevin
Srivastava, Priyesh
Som, Sibendu
Quan, Shaoping
Richards, Keith
Garcia, Marta
TI Development of a Stiffness-Based Chemistry Load Balancing Scheme, and
Optimization of Input/Output and Communication, to Enable Massively
Parallel High-Fidelity Internal Combustion Engine Simulations
SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
LA English
DT Article
ID COMPRESSION IGNITION COMBUSTION; MODEL; DURATION
AB A closed-cycle gasoline compression ignition (GCI) engine simulation near top dead center (TDC) was used to profile the performance of a parallel commercial engine computational fluid dynamics (CFD) code, as it was scaled on up to 4096 cores of an IBM Blue Gene/Q (BG/Q) supercomputer. The test case has 9 x 10(6) cells near TDC, with a fixed mesh size of 0.15 mm, and was run on configurations ranging from 128 to 4096 cores. Profiling was done for a small duration of 0.11 crank angle degrees near TDC during ignition. Optimization of input/output (I/O) performance resulted in a significant speedup in reading restart files, and in an over 100-times speedup in writing restart files and files for postprocessing. Improvements to communication resulted in a 1400-times speedup in the mesh load balancing operation during initialization, on 4096 cores. An improved, "stiffness-based" algorithm for load balancing chemical kinetics calculations was developed, which results in an over three-times faster runtime near ignition on 4096 cores relative to the original load balancing scheme. With this improvement to load balancing, the code achieves over 78% scaling efficiency on 2048 cores, and over 65% scaling efficiency on 4096 cores, relative to 256 cores.
C1 [Kodavasal, Janardhan; Som, Sibendu] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Harms, Kevin; Garcia, Marta] Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Srivastava, Priyesh; Quan, Shaoping; Richards, Keith] Convergent Sci Inc, 6400 Enterprise Lane, Madison, WI 53719 USA.
RP Kodavasal, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM jkodavasal@anl.gov; harms@alcf.anl.gov;
priyesh.srivastava@convergecfd.com; ssom@anl.gov;
shaoping.quan@convergecfd.com; krichards@convergecfd.com;
mgarcia@alcf.anl.gov
FU U.S. Department of Energy (DOE) Office of Science Laboratory
[DE-AC02-06CH11357]; DOE's Office of Vehicle Technologies, Office of
Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]; DOE Office
of Science User Facility [DE-AC02-06CH11357]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (Argonne). Argonne, a U.S.
Department of Energy (DOE) Office of Science Laboratory, is operated
under Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Government. This research
was funded by DOE's Office of Vehicle Technologies, Office of Energy
Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357.
The authors wish to thank Gurpreet Singh, program manager at DOE, for
his support. We gratefully acknowledge the computing resources provided
on Fusion, an HPC cluster operated by the Laboratory Computing Resource
Center at Argonne National Laboratory. This research used resources of
the Argonne Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract No. DE-AC02-06CH11357.
The authors would like to thank Joseph Insley of the ALCF for help with
visualization, and Dr. Joshua Strodtbeck of Convergent Science, Inc. for
useful discussions.
NR 38
TC 1
Z9 1
U1 1
U2 1
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0195-0738
J9 J ENERG RESOUR-ASME
JI J. Energy Resour. Technol.-Trans. ASME
PD SEP
PY 2016
VL 138
IS 5
AR 052203
DI 10.1115/1.4032623
PG 11
WC Energy & Fuels
SC Energy & Fuels
GA DV2MJ
UT WOS:000382754400015
ER
PT J
AU Saha, K
Som, S
Battistoni, M
Li, YH
Quan, SP
Senecal, PK
AF Saha, Kaushik
Som, Sibendu
Battistoni, Michele
Li, Yanheng
Quan, Shaoping
Senecal, Peter Kelly
TI Modeling of Internal and Near-Nozzle Flow for a Gasoline Direct
Injection Fuel Injector
SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
LA English
DT Article
ID RELAXATION MODEL; ATOMIZATION; SPRAYS
AB A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multihole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from the engine combustion network (ECN). Simulations have been carried out for a fixed needle lift. The effects of turbulence, compressibility, and noncondensable gases have been considered in this work. Standard k-epsilon turbulence model has been used to model the turbulence. Homogeneous relaxation model (HRM) coupled with volume of fluid (VOF) approach has been utilized to capture the phase-change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine nonflashing and evaporative, nonflashing and nonevaporative, and flashing conditions. Noticeable hole-to-hole variations have been observed in terms of mass flow rates for all the holes under all the operating conditions considered in this study. Inside the nozzle holes mild cavitationlike and in the near-nozzle region flash-boiling phenomena have been predicted when liquid fuel is subjected to superheated ambiance. Under favorable conditions, considerable flashing has been observed in the near-nozzle regions. An enormous volume is occupied by the gasoline vapor, formed by the flash boiling of superheated liquid fuel. Large outlet domain connecting the exits of the holes and the pressure outlet boundary appeared to be necessary leading to substantial computational cost. Volume-averaging instead of mass-averaging is observed to be more effective, especially for finer mesh resolutions.
C1 [Saha, Kaushik; Som, Sibendu] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Battistoni, Michele] Univ Perugia, Dept Engn, I-106123 Perugia, Italy.
[Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly] Convergent Sci Inc, Madison, WI 53719 USA.
RP Saha, K (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ksaha@anl.gov; ssom@anl.gov; michele.battistoni@unipg.it;
yanheng.li@convergecfd.com; shaoping.quan@convergecfd.com;
senecal@convergecfd.com
RI Battistoni, Michele/M-9194-2014
OI Battistoni, Michele/0000-0001-6807-9657
FU U.S. Department of Energy Office of Science Laboratory
[DE-AC02-06CH11357]; DOEs Office of Vehicle Technologies, Office of
Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]
FX UChicago Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"), a U.S. Department of Energy Office of Science Laboratory,
is operated under Contract No. DE-AC02-06CH11357. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the
Government. This research was partially funded by DOEs Office of Vehicle
Technologies, Office of Energy Efficiency and Renewable Energy under
Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh
and Leo Breton, program manager at DOE, for his support.
NR 28
TC 0
Z9 0
U1 7
U2 7
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0195-0738
J9 J ENERG RESOUR-ASME
JI J. Energy Resour. Technol.-Trans. ASME
PD SEP
PY 2016
VL 138
IS 5
AR 052208
DI 10.1115/1.4032979
PG 11
WC Energy & Fuels
SC Energy & Fuels
GA DV2MJ
UT WOS:000382754400020
ER
PT J
AU Salvi, AA
Hoard, J
Styles, D
Assanis, D
AF Salvi, Ashwin A.
Hoard, John
Styles, Dan
Assanis, Dennis
TI In Situ Thermophysical Properties of an Evolving Carbon Nanoparticle
Based Deposit Layer Utilizing a Novel Infrared and Optical Methodology
SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
LA English
DT Article
ID GAS RECIRCULATION COOLERS; PARTICULATE DEPOSITION; FLOWS
AB The use of exhaust gas recirculation (EGR) in internal combustion engines has significant impacts on engine combustion and emissions. EGR can be used to reduce in-cylinder NOx production, reduce fuel consumption, and enable advanced forms of combustion. To maximize the benefits of EGR, the exhaust gases are often cooled with liquid to gas heat exchangers. However, the build up of a fouling deposit layer from exhaust particulates and volatiles results in the decrease of heat exchanger efficiency, increasing the outlet temperature of the exhaust gases and decreasing the advantages of EGR. This paper presents an experimental data from a novel in situ measurement technique in a visualization rig during the development of a 378 mu m thick deposit layer. Measurements were performed every 6 hrs for up to 24 hrs. The results show a nonlinear increase in deposit thickness with an increase in layer surface area as deposition continued. Deposit surface temperature and temperature difference across the thickness of the layer was shown to increase with deposit thickness while heat transfer decreased. The provided measurements combine to produce deposit thermal conductivity. A thorough uncertainty analysis of the in situ technique is presented and suggests higher measurement accuracy at thicker deposit layers and with larger temperature differences across the layer. The interface and wall temperature measurements are identified as the strongest contributors to the measurement uncertainty. Due to instrument uncertainty, the influence of deposit thickness and temperature could not be determined. At an average deposit thickness of 378 mu m and at a temperature of 100 degrees C, the deposit thermal conductivity was determined to be 0.044 +/- 60.0062 W/m K at a 90% confidence interval based on instrument accuracy.
C1 [Salvi, Ashwin A.] US DOE, ARPA E, 1000 Independence Ave SW, Washington, DC 20585 USA.
[Hoard, John] Univ Michigan, Walter E Lay Automot Lab 1012, 1231 Beal Ave, Ann Arbor, MI 48109 USA.
[Styles, Dan] Ford Motor Co, 2101 Village Rd, Dearborn, MI 48121 USA.
[Assanis, Dennis] SUNY Stony Brook, 407 Adm Bldg, Stony Brook, NY 11794 USA.
RP Salvi, AA (reprint author), US DOE, ARPA E, 1000 Independence Ave SW, Washington, DC 20585 USA.
EM asalvi@umich.edu; hoardjw@umich.edu; dstyles@ford.com;
dennis.assanis@stonybrook.edu
FU Ford Motor Company
FX The authors would like to thank Ford Motor Company for their financial
and intellectual support.
NR 31
TC 0
Z9 0
U1 3
U2 3
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0195-0738
J9 J ENERG RESOUR-ASME
JI J. Energy Resour. Technol.-Trans. ASME
PD SEP
PY 2016
VL 138
IS 5
AR 052207
DI 10.1115/1.4032942
PG 7
WC Energy & Fuels
SC Energy & Fuels
GA DV2MJ
UT WOS:000382754400019
ER
PT J
AU Kambhampati, A
Shioda, K
Gould, LH
Sharp, D
Brown, LG
Parashar, UD
Hall, AJ
AF Kambhampati, Anita
Shioda, Kayoko
Gould, L. Hannah
Sharp, Donald
Brown, Laura G.
Parashar, Umesh D.
Hall, Aron J.
TI A State-by-State Assessment of Food Service Regulations for Prevention
of Norovirus Outbreaks
SO JOURNAL OF FOOD PROTECTION
LA English
DT Article
DE Food service; Norovirus; Prevention; Regulation; Retail food code
ID UNITED-STATES; ACUTE GASTROENTERITIS; NORWALK VIRUS; HANDLER;
CONTAMINATION; TRANSMISSION
AB Noroviruses are the leading cause of foodborne disease in the United States. Foodborne transmission of norovirus is often associated with contamination of food during preparation by an infected food worker. The U.S. Food and Drug Administration's Food Code provides model food safety regulations for preventing transmission of foodborne disease in restaurants; however, adoption of specific provisions is at the discretion of state and local governments. We analyzed the food service regulations of all 50 states and the District of Columbia (i.e., 51 states) to describe differences in adoption of norovirus-related Food Code provisions into state food service regulations. We then assessed potential correlations between adoption of these regulations and characteristics of foodborne norovirus outbreaks reported to the National Outbreak Reporting System from 2009 through 2014. Of the 51 states assessed, all (100%) required food workers to wash their hands, and 39 (76%) prohibited bare-hand contact with ready-to-eat food. Thirty states (59%) required exclusion of staff with vomiting and diarrhea until 24 h after cessation of symptoms. Provisions requiring a certified food protection manager (CFPM) and a response plan for contamination events (i.e., vomiting) were least commonly adopted; 26 states (51%) required a CFPM, and 8 (16%) required a response plan. Although not statistically significant, states that adopted the provisions prohibiting bare-hand contact (0.45 versus 0.74, P = 0.07), requiring a CFPM (0.38 versus 0.75, P = 0.09), and excluding ill staff for >= 24 h after symptom resolution (0.44 versus 0.73, P = 0.24) each reported fewer foodborne norovirus outbreaks per million person-years than did those states without these provisions. Adoption and compliance with federal recommended food service regulations may decrease the incidence of foodborne norovirus outbreaks.
C1 [Kambhampati, Anita; Shioda, Kayoko; Parashar, Umesh D.; Hall, Aron J.] Ctr Dis Control & Prevent, Natl Ctr Immunizat & Resp Dis, Atlanta, GA 30333 USA.
[Gould, L. Hannah; Sharp, Donald] Ctr Dis Control & Prevent, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA 30333 USA.
[Brown, Laura G.] Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Atlanta, GA 30333 USA.
[Kambhampati, Anita; Shioda, Kayoko] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA.
RP Kambhampati, A (reprint author), Ctr Dis Control & Prevent, Natl Ctr Immunizat & Resp Dis, Atlanta, GA 30333 USA.; Kambhampati, A (reprint author), Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA.
EM wyc4@cdc.gov
FU U.S. Department of Energy; CDC; Agriculture and Food Research Initiative
Competitive Grant from U.S. Department of Agriculture, National
Institute of Food and Agriculture [2011-68003-30395]
FX This research was supported in part by appointments to the Research
Participation Program at the Centers for Disease Control and Prevention
(A.K. and K.S.) administered by the Oak Ridge Institute for Science and
Education through an interagency agreement between the U.S. Department
of Energy and the CDC. This work was also supported in part by
Agriculture and Food Research Initiative Competitive Grant
2011-68003-30395 from the U.S. Department of Agriculture, National
Institute of Food and Agriculture. The findings and conclusions in this
report are those of the authors and do not necessarily represent the
official position of the CDC.
NR 31
TC 0
Z9 0
U1 5
U2 5
PU INT ASSOC FOOD PROTECTION
PI DES MOINES
PA 6200 AURORA AVE SUITE 200W, DES MOINES, IA 50322-2863 USA
SN 0362-028X
EI 1944-9097
J9 J FOOD PROTECT
JI J. Food Prot.
PD SEP
PY 2016
VL 79
IS 9
BP 1527
EP 1536
DI 10.4315/0362-028X.JFP-16-088
PG 10
WC Biotechnology & Applied Microbiology; Food Science & Technology
SC Biotechnology & Applied Microbiology; Food Science & Technology
GA DV3DP
UT WOS:000382801500008
PM 28221948
ER
PT J
AU Mani, A
Tsai, FTC
Kao, SC
Naz, BS
Ashfaq, M
Rastogi, D
AF Mani, Amir
Tsai, Frank T. -C.
Kao, Shih-Chieh
Naz, Bibi S.
Ashfaq, Moetasim
Rastogi, Deeksha
TI Conjunctive management of surface and groundwater resources under
projected future climate change scenarios
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Conjunctive use; Multi-reservoir system; Groundwater; Climate change;
Uncertainty; Fractional programming
ID FRACTIONAL-PROGRAMMING APPROACH; CHANGE IMPACT ASSESSMENT;
WATER-RESOURCES; UNITED-STATES; QUANTIFYING UNCERTAINTY; GENETIC
ALGORITHMS; BIAS CORRECTION; VIC-2L MODEL; LARGE-SCALE; OPTIMIZATION
AB This study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydro climate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraints. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Mani, Amir; Tsai, Frank T. -C.] Louisiana State Univ, Dept Civil & Environm Engn, 3526G Patrick F Taylor Hall, Baton Rouge, LA 70803 USA.
[Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA.
[Kao, Shih-Chieh; Naz, Bibi S.] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA.
[Ashfaq, Moetasim; Rastogi, Deeksha] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
RP Tsai, FTC (reprint author), Louisiana State Univ, Dept Civil & Environm Engn, 3526G Patrick F Taylor Hall, Baton Rouge, LA 70803 USA.
EM amani1@lsu.edu; ftsai@lsu.edu; kaos@ornl.gov; naz.bibi2007@gmail.com;
mashfaq@ornl.gov; rastogid@ornl.gov
RI Kao, Shih-Chieh/B-9428-2012;
OI Kao, Shih-Chieh/0000-0002-3207-5328; Naz, Bibi/0000-0001-9888-1384
FU Louisiana Board of Regents [LEQSF(2012-15)-RD-A-03]; U.S. Geological
Survey under (LWRRI) [G11AP20082]; U.S. Department of Energy
[DE-AC05-00OR22725]
FX This work was supported in part by the Louisiana Board of Regents under
award number LEQSF(2012-15)-RD-A-03 and by the U.S. Geological Survey
under Grant/Cooperative Agreement No. G11AP20082 (through LWRRI). The
authors acknowledge Brian Clark of USGS for providing the Sparta
groundwater model, Pierre Sargent of USGS for providing water use data
for northern Louisiana, and the Louisiana Sparta Ground Water Commission
for providing technical reports. The LSU Center for Computation &
Technology (CCT) and the High Performance Computing (HPC) are
acknowledged for providing computing resources and technical assistance.
This paper was coauthored by employees of the Oak Ridge National
Laboratory, managed by UT Battelle, LLC, under contract
DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the
publisher, by accepting the article for publication, acknowledges that
the United States government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
government purposes.
NR 69
TC 1
Z9 1
U1 12
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD SEP
PY 2016
VL 540
BP 397
EP 411
DI 10.1016/j.jhydrol.2016.06.021
PG 15
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA DU5RR
UT WOS:000382269500032
ER
PT J
AU Malama, B
Kuhlman, KL
Brauchler, R
Bayer, P
AF Malama, Bwalya
Kuhlman, Kristopher L.
Brauchler, Ralf
Bayer, Peter
TI Modeling cross-hole slug tests in an unconfined aquifer
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Cross-hole slug tests; Multi-level; Unconfined aquifer; Hydraulic
conductivity; Specific storage; Specific yield
ID PARTIALLY PENETRATING WELLS; UNSATURATED FRACTURED TUFF; HYDRAULIC
CHARACTERIZATION; NUMERICAL INVERSION; INTERFERENCE TESTS; WATER; FLOW;
ROCK; APPLICABILITY; CONDUCTIVITY
AB A modified version of a published slug test model for unconfined aquifers is applied to cross-hole slug test data collected in field tests conducted at the Widen site in Switzerland. The model accounts for water-table effects using the linearized kinematic condition. The model also accounts for inertial effects in source and observation wells. The primary objective of this work is to demonstrate applicability of this semi-analytical model to multi-well and multi-level pneumatic slug tests. The pneumatic perturbation was applied at discrete intervals in a source well and monitored at discrete vertical intervals in observation wells. The source and observation well pairs were separated by distances of up to 4 m. The analysis yielded vertical profiles of hydraulic conductivity, specific storage, and specific yield at observation well locations. The hydraulic parameter estimates are compared to results from prior pumping and single-well slug tests conducted at the site, as well as to estimates from particle size analyses of sediment collected from boreholes during well installation. The results are in general agreement with results from prior tests and are indicative of a sand and gravel aquifer. Sensitivity analysis show that model identification of specific yield is strongest at late-time. However, the usefulness of late-time data is limited due to the low signal-to-noise ratios. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Malama, Bwalya] Calif Polytech State Univ San Luis Obispo, Nat Resources Management & Environm Sci Dept, San Luis Obispo, CA 93407 USA.
[Kuhlman, Kristopher L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Brauchler, Ralf] AF Consult Switzerland Ltd, Baden, Switzerland.
[Bayer, Peter] ETH, Zurich, Switzerland.
RP Malama, B (reprint author), Calif Polytech State Univ San Luis Obispo, Nat Resources Management & Environm Sci Dept, San Luis Obispo, CA 93407 USA.
EM bmalama@scalpoly.edu
RI Bayer, Peter/J-8245-2013;
OI Bayer, Peter/0000-0003-4884-5873; Kuhlman,
Kristopher/0000-0003-3397-3653
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 51
TC 0
Z9 0
U1 5
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD SEP
PY 2016
VL 540
BP 784
EP 796
DI 10.1016/j.jhydrol.2016.06.060
PG 13
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA DU5RR
UT WOS:000382269500061
ER
PT J
AU Es-Said, OS
Alcisto, J
Guerra, J
Jones, E
Dominguez, A
Hahn, M
Ula, N
Zeng, L
Ramsey, B
Mulazimoglu, H
Li, YJ
Miller, M
Alrashid, J
Papakyriakou, M
Kalnaus, S
Lee, EW
Frazier, WE
AF Es-Said, O. S.
Alcisto, J.
Guerra, J.
Jones, E.
Dominguez, A.
Hahn, M.
Ula, N.
Zeng, L.
Ramsey, B.
Mulazimoglu, H.
Li, Yong-Jun
Miller, M.
Alrashid, J.
Papakyriakou, M.
Kalnaus, S.
Lee, E. W.
Frazier, W. E.
TI Effect of Cadmium Plating Thickness on the Charpy Impact Energy of
Hydrogen-Charged 4340 Steel
SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
LA English
DT Article
DE 4340 steel; cadmium plating; Charpy impact test; hydrogen charging
ID MECHANICAL-PROPERTIES; INDUCED CRACKING; EMBRITTLEMENT; TRANSPORT;
BEHAVIOR; FRACTURE; MICROSTRUCTURE; DEFORMATION
AB Hydrogen was intentionally introduced into ultra-high strength steel by cadmium plating. The purpose was to examine the effect of cadmium plate thickness and hence hydrogen on the impact energy of the steel. The AISI 4340 steel was austenitized at 1000 A degrees C for 1 h, water quenched, and tempered at temperatures between 257 and 593 A degrees C in order to achieve a range of targeted strength levels. The specimens were cadmium plated with 0.00508 mm (0.2 mils), 0.00762 mm (0.3 mils), and 0.0127 mm (0.5 mils). Results demonstrated that the uncharged specimens exhibited higher impact energy values when compared to the plated specimens at all tempering temperatures. The cadmium-plated specimens had very low Charpy impact values irrespective of their ultimate tensile strength values. The model of hydrogen transport by mobile dislocations to the fracture site appears to provide the most suitable explanation of the results.
C1 [Es-Said, O. S.; Alcisto, J.; Guerra, J.; Jones, E.; Dominguez, A.; Miller, M.; Alrashid, J.; Papakyriakou, M.] Loyola Marymount Univ, Dept Mech Engn, Los Angeles, CA 90045 USA.
[Hahn, M.] Northrop Grumman, Mat & Proc F35, Redondo Beach, CA 90278 USA.
[Ula, N.] Loyola Marymount Univ, Dept Elect Engn, Los Angeles, CA 90045 USA.
[Zeng, L.; Ramsey, B.] Sargent Aerosp & Def, Torrance, CA 90502 USA.
[Mulazimoglu, H.] ALCOA Fastening Syst & Rings, Torrance, CA 90502 USA.
[Li, Yong-Jun] Loyola Marymount Univ, Coll Sci & Engn, MANE Labs, Los Angeles, CA 90045 USA.
[Kalnaus, S.] Oak Ridge Natl Lab, Computat Engn & Energy Sci Grp, Oak Ridge, TN USA.
[Lee, E. W.; Frazier, W. E.] Naval Air Syst Command, Patuxent River, MD 20670 USA.
RP Es-Said, OS (reprint author), Loyola Marymount Univ, Dept Mech Engn, Los Angeles, CA 90045 USA.
EM oessaid@lmu.edu
NR 44
TC 0
Z9 0
U1 5
U2 5
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1059-9495
EI 1544-1024
J9 J MATER ENG PERFORM
JI J. Mater. Eng. Perform.
PD SEP
PY 2016
VL 25
IS 9
BP 3606
EP 3614
DI 10.1007/s11665-016-2246-6
PG 9
WC Materials Science, Multidisciplinary
SC Materials Science
GA DV2JT
UT WOS:000382747400008
ER
PT J
AU Chen, GQ
Feng, ZL
Zhu, YC
Shi, QY
AF Chen, Gaoqiang
Feng, Zhili
Zhu, Yucan
Shi, Qingyu
TI An Alternative Frictional Boundary Condition for Computational Fluid
Dynamics Simulation of Friction Stir Welding
SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
LA English
DT Article
DE frictional boundary condition; friction stir welding; heat generation;
material flow; thermal-mechanical processing condition
ID MATERIAL FLOW; ALUMINUM-ALLOY; HEAT-GENERATION; TOOL; MODEL; STEEL;
VISUALIZATION
AB For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, the lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. The simulated temperature field is validated by the good agreement to the experimental measurements.
C1 [Chen, Gaoqiang; Zhu, Yucan; Shi, Qingyu] Tsinghua Univ, State Key Lab Tribol, 1 Tsinghua Yuan Pk, Beijing 100084, Peoples R China.
[Chen, Gaoqiang; Zhu, Yucan; Shi, Qingyu] Tsinghua Univ, Dept Mech Engn, Key Lab Adv Mat Proc Technol, 1 Tsinghua Yuan Pk, Beijing 100084, Peoples R China.
[Chen, Gaoqiang; Feng, Zhili] Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
RP Chen, GQ; Shi, QY (reprint author), Tsinghua Univ, State Key Lab Tribol, 1 Tsinghua Yuan Pk, Beijing 100084, Peoples R China.; Chen, GQ; Shi, QY (reprint author), Tsinghua Univ, Dept Mech Engn, Key Lab Adv Mat Proc Technol, 1 Tsinghua Yuan Pk, Beijing 100084, Peoples R China.; Chen, GQ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM Gaoqiang.chen@hotmail.com; shqy@tsinghua.edu.cn
FU National Natural Science Foundation of China [51375259]; National
Science and Technology Major Project of the Ministry of Science and
Technology of China [2012ZX04012-011]; China Scholarship Council
[20130620105]
FX The research was supported by the National Natural Science Foundation of
China (Grant No. 51375259) and the National Science and Technology Major
Project of the Ministry of Science and Technology of China (No.
2012ZX04012-011). Besides, Gaoqiang Chen was supported by the China
Scholarship Council (File No. 20130620105) for 2-year study at Oak Ridge
National Laboratory.
NR 37
TC 1
Z9 1
U1 17
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1059-9495
EI 1544-1024
J9 J MATER ENG PERFORM
JI J. Mater. Eng. Perform.
PD SEP
PY 2016
VL 25
IS 9
BP 4016
EP 4023
DI 10.1007/s11665-016-2219-9
PG 8
WC Materials Science, Multidisciplinary
SC Materials Science
GA DV2JT
UT WOS:000382747400051
ER
PT J
AU Martin, WE
Srijanto, BR
Collier, CP
Vosch, T
Richards, CI
AF Martin, W. Elliott
Srijanto, Bernadeta R.
Collier, C. Patrick
Vosch, Tom
Richards, Christopher I.
TI A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode
Waveguides
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ENHANCED RAMAN-SCATTERING; FLUORESCENCE CORRELATION SPECTROSCOPY;
NEAR-INFRARED FLUORESCENCE; PLASMON-COUPLED EMISSION; POLYELECTROLYTE
MULTILAYERS; BOWTIE NANOANTENNAS; MICROSCOPY; NANORODS; NANOPARTICLES;
EXCITATION
AB The effect of gold and aluminum zero-mode waveguides (ZMWs) on the brightness of immobilized Single emitters was characterized by probing fluorophores that absorb in the green. and red regions of the visible spectrum. Aluminum ZMWs enhance the emission of Atto565 fluorophores upon green excitation, but they do not enhance the emission of Atto647N fluorophores upon red excitation. Gold ZMWs increase emission of both fluorophores with Atto647N showing enhancement that is threefold higher than that observed for Atto565. This work indicates that 200 nm gold ZMWs are better suited for Single Molecule fluorescence studies the red region of:the visible spectrum, while aluminum appears more-suited for the green region of the visible spectrum.
C1 [Martin, W. Elliott; Richards, Christopher I.] Univ Kentucky, Dept Chem, 505 Rose St, Lexington, KY 40506 USA.
[Srijanto, Bernadeta R.; Collier, C. Patrick] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Vosch, Tom] Univ Copenhagen, Dept Chem, Nanosci Ctr, Univ Pk 5, DK-2100 Copenhagen, Denmark.
RP Richards, CI (reprint author), Univ Kentucky, Dept Chem, 505 Rose St, Lexington, KY 40506 USA.
EM chris.richards@uky.edu
RI Srijanto, Bernadeta/D-4213-2016; Vosch, Tom/B-4234-2015
OI Srijanto, Bernadeta/0000-0002-1188-1267; Vosch, Tom/0000-0001-5435-2181
FU HFSP [RGY0081/2014]; "Center for Synthetic Biology" at Copenhagen Univ.
by the UNIK research initiative of the Danish Ministry of Science,
Technology and Innovation [09-065274]; bioSYNergy, Univ. of Copenhagen's
Excellence Programme for Interdisciplinary Research
FX C.I.R. and T.V. acknowledge support from HFSP (RGY0081/2014). T.V.
gratefully acknowledges financial support from the "Center for Synthetic
Biology" at Copenhagen Univ. funded by the UNIK research initiative of
the Danish Ministry of Science, Technology and Innovation (Grant No.
09-065274) and bioSYNergy, Univ. of Copenhagen's Excellence Programme
for Interdisciplinary Research. Fabrication of 200 nm gold ZMWs was
conducted at the Center for Nanophase Materials Sciences, which is a
Department of Energy Office of Science User Facility.
NR 72
TC 0
Z9 0
U1 7
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 1
PY 2016
VL 120
IS 34
BP 6719
EP 6727
DI 10.1021/acs.jpca.6b03309
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DV0GU
UT WOS:000382596800006
PM 27499174
ER
PT J
AU Lee, L
Wilson, K
AF Lee, Lance
Wilson, Kevin
TI The Reactive-Diffusive Length of OH and Ozone in Model Organic Aerosols
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID HETEROGENEOUS OXIDATION; OLEIC-ACID; SUBMICRON SQUALANE; TRACER
DIFFUSION; GAS-PHASE; RADICALS; CHEMISTRY; PRODUCTS; KINETICS; EMISSIONS
AB A key step in the heterogeneous oxidation of atmospheric aerosols is the reaction of ozone (O-3) and hydroxyl radicals (OH) at the gas-particle interface. The formation of reaction products and free radical intermediates and their spatial distribution inside the particle is a sensitive function of the length over which these oxidants diffuse prior to reaction. The reactive-diffusive length of OH and ozone at organic aerosol interfaces is determined by observing the change in the effective uptake coefficient for size-selected model aerosols comprising a reactive core and a thin nanometer-sized (0-12 nm) organic shell. The core and shell materials are selected so that they are immiscible and adopt an assumed core-shell configuration. The results indicate a reactive-diffusive length of 1.4 run for hydroxyl (OH) radicals in squalane and 1.0 nm for ozone in squalene. Measurements for a purely diffusive system allow for an estimate for diffusion constant (1.6 x 10(-6) cm(2)/s) of ozone in squalane to be determined. The reactive-diffusive length offers a simple first order estimate of how shielding of aerosols by immiscible layers can alter estimates of oxidative lifetimes of aerosols in the atmosphere.
C1 [Lee, Lance; Wilson, Kevin] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA.
RP Wilson, K (reprint author), Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA.
EM krwilson@lbl.gov
FU Department of Energy's Office of Science Early Career Research Program;
Office of Energy Research, Office of Basic Energy Sciences, Chemical
Sciences, Geosciences, and Biosciences Division of the U.S. Department
of Energy [DE-AC02-05CH11231]
FX This work is supported by the Department of Energy's Office of Science
Early Career Research Program and by the Director, Office of Energy
Research, Office of Basic Energy Sciences, Chemical Sciences,
Geosciences, and Biosciences Division of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 57
TC 1
Z9 1
U1 11
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 1
PY 2016
VL 120
IS 34
BP 6800
EP 6812
DI 10.1021/acs.jpca.6b05285
PG 13
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DV0GU
UT WOS:000382596800016
PM 27509443
ER
PT J
AU Cai, QX
Wang, JG
Wang, Y
Mei, DH
AF Cai, Qiuxia
Wang, Jian-guo
Wang, Yong
Mei, Donghai
TI First-Principles Thermodynamics Study of Spinel MgAl2O4 Surface
Stability
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE
METHOD; ATOMISTIC SIMULATION; IR CATALYSTS; BASIS-SET; OXIDATION;
NANOPARTICLES; EFFICIENT; ETHANOL
AB The surface stability of all possible terminations for three low-index (100, 110, 111) structures of spinel MgAl2O4 was studied using a first-principles-based thermodynamic approach. The surface Gibbs free energy results indicate that the 100_AlO2 termination is the most stable surface structure under ultrahigh vacuum at T = 1100 K regardless of an Al-poor or Al-rich condition. With increasing oxygen pressure, the 111_O-2(Al) termination becomes the most stable surface in the Al-rich condition. The oxygen vacancy formation is thermodynamically favorable over the 100_AlO2, 111_O-2(Al), and (111) structures with Mg/O connected terminations. On the basis of the surface Gibbs free energies for both perfect and defective surface terminations, 100_AlO2. and 111_O-2(Al) are the most dominant surfaces in Al-rich conditions tinder atmospheric conditions. This is, also consistent with our previously reported experimental observation.
C1 [Cai, Qiuxia; Wang, Jian-guo] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Zhejiang, Peoples R China.
[Cai, Qiuxia; Wang, Yong; Mei, Donghai] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
[Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
RP Wang, JG (reprint author), Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Zhejiang, Peoples R China.; Wang, Y; Mei, DH (reprint author), Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.; Wang, Y (reprint author), Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
EM jgw@zjut.edu.cn; yong.wang@pnnl.gov; donghai.mei@pnnl.gov
RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011
OI Mei, Donghai/0000-0002-0286-4182;
FU National Energy Research Scientific Computing Center (NERSC); William R.
Wiley Environmental Molecular Sciences Laboratory (EMSL)
FX The research described in this paper is part of the MS3 Initiative at
the Pacific Northwest National Laboratory (PNNL). It was conducted under
the Laboratory Directed Research and Development Program (LDRD) at PNNL,
a multiprogram national laboratory operated by Battelle for the U.S.
Department of Energy (DOE). The computing time was granted by the
National Energy Research Scientific Computing Center (NERSC). Part of
the computing time was also granted by a scientific theme user proposal
in the William R. Wiley Environmental Molecular Sciences Laboratory
(EMSL), which is a U.S. Department of Energy national scientific user
facility located at PNNL in Richland, Washington.
NR 39
TC 0
Z9 0
U1 24
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD SEP 1
PY 2016
VL 120
IS 34
BP 19087
EP 19096
DI 10.1021/acs.jpcc.6b02998
PG 10
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA DV0GV
UT WOS:000382596900017
ER
PT J
AU Carpenter, TS
Parkin, J
Khalid, S
AF Carpenter, Timothy S.
Parkin, Jamie
Khalid, Syma
TI The Free Energy of Small Solute Permeation through the Escherichia coli
Outer Membrane Has a Distinctly Asymmetric Profile
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; LIPID-BILAYER; COMPUTER-SIMULATIONS;
FORCE-FIELD; EQUILIBRIUM
AB Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups provide a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. These results provide key insights for the development of novel antibiotics that target these bacteria.
C1 [Carpenter, Timothy S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Parkin, Jamie; Khalid, Syma] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England.
RP Khalid, S (reprint author), Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England.
EM S.Khalid@soton.ac.uk
RI Khalid, Syma/B-8108-2009
OI Khalid, Syma/0000-0002-3694-5044
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344, LLNL-JRNL-685118]
FX We acknowledge use of the Iridis III and IV supercomputers at the
University of Southampton. We also thank Livermore Computing for the
computing time. Part of this work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344, LLNL-JRNL-685118.
NR 17
TC 1
Z9 1
U1 8
U2 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD SEP 1
PY 2016
VL 7
IS 17
BP 3446
EP 3451
DI 10.1021/acs.jpclett.6b01399
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DV0JH
UT WOS:000382603300026
PM 27518381
ER
PT J
AU Buck, C
Yeh, MF
AF Buck, Christian
Yeh, Minfang
TI Metal-loaded organic scintillators for neutrino physics
SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
LA English
DT Review
DE liquid scintillators; neutrinos; large scale detectors
ID DOUBLE-BETA DECAY; LIQUID SCINTILLATOR; SOLAR NEUTRINOS;
ENERGY-TRANSFER; LIGHT YIELD; DETECTOR; BOREXINO; TIME; SPECTROSCOPY;
SYSTEM
AB Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.
C1 [Buck, Christian] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany.
[Yeh, Minfang] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Buck, C (reprint author), Max Planck Inst Kernphys, D-69117 Heidelberg, Germany.
EM Christian.Buck@mpi-hd.mpg.de
NR 112
TC 1
Z9 1
U1 4
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0954-3899
EI 1361-6471
J9 J PHYS G NUCL PARTIC
JI J. Phys. G-Nucl. Part. Phys.
PD SEP
PY 2016
VL 43
IS 9
AR 093001
DI 10.1088/0954-3899/43/9/093001
PG 40
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA DU6CB
UT WOS:000382299600001
ER
PT J
AU Allu, S
Kalnaus, S
Simunovic, S
Nanda, J
Turner, JA
Pannala, S
AF Allu, S.
Kalnaus, S.
Simunovic, S.
Nanda, J.
Turner, J. A.
Pannala, S.
TI A three-dimensional meso-macroscopic model for Li-Ion intercalation
batteries
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Li-ion; Modeling and simulation
ID LITHIUM DEPOSITION; POROUS-ELECTRODES; MICROBATTERIES; ARCHITECTURES;
CELLS; SIMULATIONS; TRANSPORT; CAPACITY
AB In this paper we present a three-dimensional computational formulation for electrode-electrolyte electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allows for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
[Pannala, S.] SABIC, Houston, TX USA.
RP Allu, S (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
EM allus@ornl.gov
OI Turner, John/0000-0003-2521-4091; allu, srikanth/0000-0003-2841-4398
FU U.S. Department of Energy [DE-AC05-00OR22725]; Vehicle Technologies
Program for the Office of Energy Efficiency and Renewable Energy
FX This research at Oak Ridge National Laboratory, managed by UT-Battelle,
LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725,
was sponsored by the Vehicle Technologies Program for the Office of
Energy Efficiency and Renewable Energy.
NR 38
TC 2
Z9 2
U1 10
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD SEP 1
PY 2016
VL 325
BP 42
EP 50
DI 10.1016/j.jpowsour.2016.06.001
PG 9
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA DT0HX
UT WOS:000381165600006
ER
PT J
AU Song, BH
Li, WD
Yan, PF
Oh, SM
Wang, CM
Manthiram, A
AF Song, Bohang
Li, Wangda
Yan, Pengfei
Oh, Seung-Min
Wang, Chong-Min
Manthiram, Arumugam
TI A facile cathode design combining Ni-rich layered oxides with Li-rich
layered oxides for lithium-ion batteries
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Nickel-rich layered oxide; Lithium-rich layered oxide; Surface chemical
stability; Pouch-type full cell
ID ELECTROCHEMICAL PROPERTIES; CAPACITY; ELECTRODES; MN; CHEMISTRY;
EVOLUTION; PHASE; FADE
AB A facile synthesis method has been developed to prepare xLi(2)MnO(3)center dot(1-x)LiNi0.7Co0.5Mn0.15O2 (x = 0, 0.03, 0.07, 0.10, 0.20, and 0.30) cathode materials, combining the advantages of the high specific capacity of the Ni-rich layered phase and the surface chemical stability of the Li-rich layered phase. X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrochemical charge/discharge measurements confirm the formation of a Li-rich layered phase with C2/m symmetry. The high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) reveals a spatial relationship that the Li-rich nano-domain islands are integrated into the conventional Ni-rich layered matrix (R (3) over barm). Most importantly, this is the first time that Li-rich phase has been directly observed inside a particle at the nano-scale, when the overall composition of the layered oxide Li1+delta Ni1-y-z-delta MnyMzO2 (M = metal) is Ni-rich (>0.5) rather than Mn-rich (>0.5). Remarkably, the xLi(2)MnO(3)center dot(1-x)LiNi0.7Co0.15Mn0.15O2 cathodes with optimized x value shows superior electrochemical performance at C/3 rate: an initial capacity of 190 mA h g(-1) with 90% capacity retention after 400 cycles in a half cell and 73.5% capacity retention after 900 cycles in a pouch-type full cell. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Song, Bohang; Li, Wangda; Oh, Seung-Min; Manthiram, Arumugam] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA.
[Song, Bohang; Li, Wangda; Oh, Seung-Min; Manthiram, Arumugam] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA.
[Yan, Pengfei; Wang, Chong-Min] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99352 USA.
RP Manthiram, A (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA.; Manthiram, A (reprint author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA.
EM manth@austin.utexas.edu
RI yan, pengfei/E-4784-2016; Song, Bohang/F-8239-2016
OI yan, pengfei/0000-0001-6387-7502; Song, Bohang/0000-0002-6477-609X
FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office
of Vehicle Technologies of the U.S. Department of Energy [DE-EE0006447];
Welch Foundation [F-1254]; DOE's Office of Biological and Environmental
Research; Department of Energy [DE-AC05-76RLO1830]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Vehicle Technologies of the U.S.
Department of Energy under Contract no. DE-EE0006447 and Welch
Foundation grant F-1254. The STEM work was conducted in the William R.
Wiley Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by DOE's Office of Biological and
Environmental Research and located at PNNL. PNNL is operated by Battelle
for the Department of Energy under Contract DE-AC05-76RLO1830. The
authors acknowledge the assistance and valuable discussion with Dr.
Pilgun Oh and Dr. Jin-Yun Liao.
NR 36
TC 3
Z9 3
U1 40
U2 54
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD SEP 1
PY 2016
VL 325
BP 620
EP 629
DI 10.1016/j.jpowsour.2016.06.056
PG 10
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA DT0HX
UT WOS:000381165600071
ER
PT J
AU Lipson, AL
Han, SD
Kim, S
Pan, BF
Sa, NY
Liao, C
Fister, TT
Burrell, AK
Vaughey, JT
Ingram, BJ
AF Lipson, Albert L.
Han, Sang-Don
Kim, Soojeong
Pan, Baofei
Sa, Niya
Liao, Chen
Fister, Timothy T.
Burrell, Anthony K.
Vaughey, John T.
Ingram, Brian J.
TI Nickel hexacyanoferrate, a versatile intercalation host for divalent
ions from nonaqueous electrolytes
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Nickel hexacyanoferrate; Magnesium battery; Calcium battery; XANES;
Nonaqueous
ID PRUSSIAN BLUE; COPPER HEXACYANOFERRATE; RECHARGEABLE BATTERIES; IRON
HEXACYANOFERRATE; MAGNESIUM BATTERIES; CATHODE MATERIALS; OPEN
FRAMEWORK; INSERTION; LITHIUM; 1ST-PRINCIPLES
AB New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions from a nonaqueous electrolyte. This material has a relatively high insertion potential and low over potential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong; Pan, Baofei; Sa, Niya; Liao, Chen; Fister, Timothy T.; Burrell, Anthony K.; Vaughey, John T.; Ingram, Brian J.] Argonne Natl Lab, Joint Ctr Energy Storage Res, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA.
RP Ingram, BJ (reprint author), Argonne Natl Lab, Joint Ctr Energy Storage Res, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA.
EM ingram@anl.gov
RI BM, MRCAT/G-7576-2011; SA, NIYA/E-8521-2017
FU Joint Center for Energy Storage Research, an Energy Innovation Hub -
U.S. Department of Energy, Office of Science, Basic Energy Sciences; U.
S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; Department of Energy; DOE Office of
Science by Argonne National Laboratory [DE-AC02-06CH11357]
FX This work was supported as part of the Joint Center for Energy Storage
Research, an Energy Innovation Hub funded by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences. We would also like to
acknowledge the use of the Center for Nanoscale Materials, supported by
the U. S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT (APS sector
10BM) operations are supported by the Department of Energy and the MRCAT
member institutions. This research used resources of the Advanced Photon
Source, a U.S. Department of Energy (DOE) Office of Science User
Facility operated for the DOE Office of Science by Argonne National
Laboratory under Contract No. DE-AC02-06CH11357.
NR 29
TC 3
Z9 3
U1 46
U2 51
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD SEP 1
PY 2016
VL 325
BP 646
EP 652
DI 10.1016/j.jpowsour.2016.06.019
PG 7
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA DT0HX
UT WOS:000381165600075
ER
PT J
AU Shinozaki, K
Morimoto, Y
Pivovar, BS
Kocha, SS
AF Shinozaki, Kazuma
Morimoto, Yu
Pivovar, Bryan S.
Kocha, Shyam S.
TI Suppression of oxygen reduction reaction activity on Pt-based
electrocatalysts from ionomer incorporation
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Oxygen reduction reaction; Platinum; Platinum alloy; Neon ionomer;
Rotating disk electrode method; Ionomer coverage
ID ROTATING-DISK ELECTRODE; FUEL-CELL ELECTRODES; CATALYST LAYERS;
ACID-SOLUTION; 111 SURFACE; THIN-FILM; PLATINUM; TRANSPORT; PEMFC;
ADSORPTION
AB The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particles located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Shinozaki, Kazuma; Pivovar, Bryan S.; Kocha, Shyam S.] Natl Renewable Energy Lab, Electrochem Characterizat Labs, Golden, CO 80401 USA.
[Shinozaki, Kazuma] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA.
[Shinozaki, Kazuma; Morimoto, Yu] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan.
RP Shinozaki, K (reprint author), Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan.
EM Shinozaki@mosk.tytlabs.co.jp
FU U.S. Department of Energy, Fuel Cells Technologies Program
[DE-AC36-08-GO28308]; Toyota Central RD Labs., Inc.
FX Shyam S. Kocha gratefully acknowledges funding from the U.S. Department
of Energy, Fuel Cells Technologies Program under Contract No.
DE-AC36-08-GO28308 to the National Renewable Energy Laboratory. Kazuma
Shinozaki's stay at NREL and CSM was funded by Toyota Central R&D Labs.,
Inc. We would like to acknowledge Umicore for providing their catalysts.
NR 41
TC 1
Z9 1
U1 34
U2 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD SEP 1
PY 2016
VL 325
BP 745
EP 751
DI 10.1016/j.jpowsour.2016.06.062
PG 7
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA DT0HX
UT WOS:000381165600088
ER
PT J
AU Gupta, S
Feng, J
Chan, LJG
Petzold, CJ
Ralston, CY
AF Gupta, Sayan
Feng, Jun
Chan, Leanne Jade G.
Petzold, Christopher J.
Ralston, Corie Y.
TI Synchrotron X-ray footprinting as a method to visualize water in
proteins
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE bound water; hydroxyl radical labeling; mass spectrometry; protein
conformation; protein modification
ID STRUCTURAL MASS-SPECTROMETRY; MOLECULAR-DYNAMICS SIMULATIONS; ZINC
TRANSPORTER YIIP; HEART CYTOCHROME-C; NEUTRON-SCATTERING;
CRYSTAL-STRUCTURE; RADICAL PROBE; ELECTROSPRAY-IONIZATION; 3-DIMENSIONAL
STRUCTURE; HYDRATION DYNAMICS
AB The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with proteinwater interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed.
C1 [Gupta, Sayan; Ralston, Corie Y.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA.
[Feng, Jun] Lawrence Berkeley Natl Lab, Expt Syst, Adv Light Source, Berkeley, CA 94720 USA.
[Chan, Leanne Jade G.; Petzold, Christopher J.] Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA.
RP Ralston, CY (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA.
EM cyralston@lbl.gov
FU Office of Science, Office of Basic Energy Sciences, of the US Department
of Energy [DE-AC02-05CH11231]; US Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NIBIB
[P30-EB0966]; Welcome Trust; NIH; DOE; Office of Science, Office of
Biological and Environmental Research, US DOE [DE-AC02-05CH11231]
FX We thank Rich Celestre for help with the studies performed at the
Advanced Light Source. The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences, of the US
Department of Energy under Contract No. DE-AC02-05CH11231. The National
Synchrotron Light Source, Brookhaven National Laboratory, was supported
by the US Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE-AC02-98CH10886. The Center for
Synchrotron Biosciences at the National Synchrotron Light Sources is
supported by NIBIB under P30-EB0966. Studies on potassium channel work
are supported by the Welcome Trust. Studies on YiiP are supported by NIH
and DOE. Study on OCP is supported by NIH and DOE. This research used
resources of the Joint BioEnergy Institute supported by the Office of
Science, Office of Biological and Environmental Research, US DOE under
contract DE-AC02-05CH11231.
NR 102
TC 0
Z9 0
U1 9
U2 9
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2016
VL 23
BP 1056
EP 1069
DI 10.1107/S1600577516009024
PN 5
PG 14
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DU6CA
UT WOS:000382299500001
PM 27577756
ER
PT J
AU Dufresne, EM
Dunford, RW
Kanter, EP
Gao, Y
Moon, S
Walko, DA
Zhang, XS
AF Dufresne, Eric M.
Dunford, Robert W.
Kanter, Elliot P.
Gao, Yuan
Moon, Seoksu
Walko, Donald A.
Zhang, Xusheng
TI Pink-beam focusing with a one-dimensional compound refractive lens
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE compound refractive lenses; pink beam; chromatic aberration
ID RESOLVED SYNCHROTRON EXPERIMENTS
AB The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 mu m-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm(-2) was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. A method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.
C1 [Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; Gao, Yuan; Moon, Seoksu; Walko, Donald A.; Zhang, Xusheng] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
RP Dufresne, EM (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM dufresne@anl.gov
OI Dufresne, Eric/0000-0002-2077-4754
FU US DOE [DE-AC02-06CH11357]
FX The authors wish to thank Harold Gibson for technical support. This work
was performed on the APS 7-ID beamline. Use of the Advanced Photon
Source, an Office of Science User Facility operated for the US
Department of Energy (DOE) Office of Science by Argonne National
Laboratory, was supported by the US DOE under contract No.
DE-AC02-06CH11357.
NR 12
TC 0
Z9 0
U1 5
U2 5
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2016
VL 23
BP 1082
EP 1086
DI 10.1107/S1600577516009310
PN 5
PG 5
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DU6CA
UT WOS:000382299500004
PM 27577759
ER
PT J
AU Zhou, L
Huang, L
Bouet, N
Kaznatcheev, K
Vescovi, M
Dai, YF
Li, SY
Idir, M
AF Zhou, Lin
Huang, Lei
Bouet, Nathalie
Kaznatcheev, Konstantine
Vescovi, Matthew
Dai, Yifan
Li, Shengyi
Idir, Mourad
TI New figuring model based on surface slope profile for grazing-incidence
reflective optics
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE ion beam figuring; synchrotron optics; one-dimensional; surface slope
ID MEASURING MACHINE; MIRRORS
AB Surface slope profile is widely used in the metrology of grazing-incidence reflective optics instead of surface height profile. Nevertheless, the theoretical and experimental model currently used in deterministic optical figuring processes is based on surface height, not on surface slope. This means that the raw slope profile data from metrology need to be converted to height profile to perform the current height-based figuring processes. The inevitable measurement noise in the raw slope data will introduce significant cumulative error in the resultant height profiles. As a consequence, this conversion will degrade the determinism of the figuring processes, and will have an impact on the ultimate surface figuring results. To overcome this problem, an innovative figuring model is proposed, which directly uses the raw slope profile data instead of the usual height data as input for the deterministic process. In this paper, first the influence of the measurement noise on the resultant height profile is analyzed, and then a new model is presented; finally a demonstration experiment is carried out using a one-dimensional ion beam figuring process to demonstrate the validity of our approach.
C1 [Zhou, Lin; Dai, Yifan; Li, Shengyi] Natl Univ Def Technol, Coll Mechatron Engn & Automat, 109 Deya Rd, Changsha 410073, Hunan, Peoples R China.
[Zhou, Lin; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Idir, Mourad] Brookhaven Natl Lab, NSLS 2, POB 5000, Upton, NY 11973 USA.
[Zhou, Lin; Dai, Yifan; Li, Shengyi] Hunan Key Lab Ultraprecis Machining Technol, 47 Yanzheng St, Changsha 410073, Hunan, Peoples R China.
RP Idir, M (reprint author), Brookhaven Natl Lab, NSLS 2, POB 5000, Upton, NY 11973 USA.
EM midir@bnl.gov
FU US Department of Energy, Office of Science, Office of Basic Energy
sciences [DE-AC-02-98CH10886]; National Natural Science Foundation of
China [91323302]; Program for New Century Excellent Talents in
University [NCET-13-0165]
FX This work was supported by the US Department of Energy, Office of
Science, Office of Basic Energy sciences, under contract No.
DE-AC-02-98CH10886. LZ was supported by the National Natural Science
Foundation of China (No. 91323302) and the Program for New Century
Excellent Talents in University (No. NCET-13-0165). The authors
acknowledge Ray Conley for his support during the beginning of this
project.
NR 18
TC 0
Z9 0
U1 5
U2 5
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2016
VL 23
BP 1087
EP 1090
DI 10.1107/S1600577516010882
PN 5
PG 4
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DU6CA
UT WOS:000382299500005
ER
PT J
AU Stoupin, S
Antipov, S
Butler, JE
Kolyadin, AV
Katrusha, A
AF Stoupin, Stanislav
Antipov, Sergey
Butler, James E.
Kolyadin, Alexander V.
Katrusha, Andrey
TI Large-surface-area diamond (111) crystal plates for applications in
high-heat-load wavefront-preserving X-ray crystal optics
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE X-ray monochromator; high heat load; diamond crystal; wavefront
preservation
ID MONOCHROMATOR; RESOLUTION; BEAMLINE
AB Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm x 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm x 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 mu m x 13 mu m over the selected region were found to be less than 1 mu rad.
C1 [Stoupin, Stanislav] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Antipov, Sergey; Butler, James E.] Euclid Techlabs LLC, Solon, OH USA.
[Kolyadin, Alexander V.; Katrusha, Andrey] New Diamond Technol LLC, St Petersburg, Russia.
RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM sstoupin@aps.anl.gov
RI Butler, James/B-7965-2008
OI Butler, James/0000-0002-4794-7176
FU US Department of Energy, Office of Science [DE-AC02-06CH11357]
FX K. Lang, R. Woods and J. Kirchman are acknowledged for technical support
of the X-ray topography experiments. Use of the Advanced Photon Source
was supported by the US Department of Energy, Office of Science, under
Contract No. DE-AC02-06CH11357.
NR 22
TC 0
Z9 0
U1 6
U2 6
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2016
VL 23
BP 1118
EP 1123
DI 10.1107/S1600577516011796
PN 5
PG 6
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DU6CA
UT WOS:000382299500010
PM 27577765
ER
PT J
AU Jones, MWM
Phillips, NW
van Riessen, GA
Abbey, B
Vine, DJ
Nashed, YSG
Mudie, ST
Afshar, N
Kirkham, R
Chen, B
Balaur, E
de Jonge, MD
AF Jones, Michael W. M.
Phillips, Nicholas W.
van Riessen, Grant A.
Abbey, Brian
Vine, David J.
Nashed, Youssef S. G.
Mudie, Stephen T.
Afshar, Nader
Kirkham, Robin
Chen, Bo
Balaur, Eugeniu
de Jonge, Martin D.
TI Simultaneous X-ray fluorescence and scanning X-ray diffraction
microscopy at the Australian Synchrotron XFM beamline
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE X-ray fluorescence; scanning X-ray diffraction microscopy; ptychography
ID PTYCHOGRAPHY; RESOLUTION; METALS
AB Owing to its extreme sensitivity, quantitative mapping of elemental distributions via X-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both stepand fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.
C1 [Jones, Michael W. M.; Mudie, Stephen T.; Afshar, Nader; de Jonge, Martin D.] Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia.
[Jones, Michael W. M.; Phillips, Nicholas W.; Abbey, Brian; Chen, Bo; Balaur, Eugeniu] La Trobe Univ, La Trobe Inst Mol Sci, ARC Ctr Excellence Adv Mol Imaging, Bundoora, Vic 3086, Australia.
[Phillips, Nicholas W.] CSIRO Mfg, Parkville, Vic 3052, Australia.
[van Riessen, Grant A.] La Trobe Univ, Dept Chem & Phys, La Trobe Inst Mol Sci, Bundoora, Vic 3086, Australia.
[Vine, David J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Nashed, Youssef S. G.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA.
[Kirkham, Robin] CSIRO Mfg, Clayton, Vic 3168, Australia.
[Jones, Michael W. M.] Queensland Univ Technol, Fac Hlth, Brisbane, Qld 4000, Australia.
[Jones, Michael W. M.] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4000, Australia.
RP Jones, MWM; de Jonge, MD (reprint author), Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia.; Jones, MWM (reprint author), La Trobe Univ, La Trobe Inst Mol Sci, ARC Ctr Excellence Adv Mol Imaging, Bundoora, Vic 3086, Australia.; Jones, MWM (reprint author), Queensland Univ Technol, Fac Hlth, Brisbane, Qld 4000, Australia.; Jones, MWM (reprint author), Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4000, Australia.
EM mw.jones@qut.edu.au; martin.dejonge@synchrotron.org.au
RI van Riessen, Grant/H-3840-2011
OI van Riessen, Grant/0000-0002-6240-7143
FU Multi-modal Australian ScienceS Imaging and Visualization Environment
(MASSIVE); Australian Research Council (ARC) Centre of Excellence for
Advanced Molecular Imaging
FX We thank Dectris Ltd, Baden, Switzerland, for loan of the EIGER X 1M
detector. This research was undertaken on the XFM beamline at the
Australian Synchrotron, Victoria, Australia, and supported by the
Multi-modal Australian ScienceS Imaging and Visualization Environment
(MASSIVE) (http://www.massive.org.au). The authors acknowledge the
support of the Australian Research Council (ARC) Centre of Excellence
for Advanced Molecular Imaging. This work was performed in part at the
Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the
Australian National Fabrication Facility (ANFF).
NR 30
TC 0
Z9 0
U1 1
U2 1
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2016
VL 23
BP 1151
EP 1157
DI 10.1107/S1600577516011917
PN 5
PG 7
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DU6CA
UT WOS:000382299500015
PM 27577770
ER
PT J
AU Chen, YY
Sanchez, C
Yue, Y
Gonzalez, JM
Parkinson, DY
Liang, H
AF Chen, Yunyun
Sanchez, Carlos
Yue, Yuan
Gonzalez, Jorge M.
Parkinson, Dilworth Y.
Liang, Hong
TI Observation of two-dimensional yttrium oxide nanoparticles in mealworm
beetles (Tenebrio molitor)
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE synchrotron X-ray micro-tomography; K-edge subtraction; yttrium oxide
nanoparticles; mealworms; particle distribution
ID TROPHIC TRANSFER; TOMOGRAPHY
AB Nanomaterials are being used in medicine, manufacturing and consumer products, but their effects on organisms and the environment are not well understood because of the difficulty in detecting them. Here dual-energy X-ray K-edge subtraction was used to track two-dimensional yttrium oxide nanoparticles (which can be found in such household objects as color televisions) in adult mealworms (Tenebrio molitor). The insects ingested nanoparticle-infused feed for different time periods, up to 24 h, and the nanoparticles could then be identified at several locations in the insects' head, thorax and abdomen, mostly within the digestive tract. In time, all particles were excreted.
C1 [Chen, Yunyun; Yue, Yuan; Liang, Hong] Texas A&M Univ, Mat Sci & Engn, MS 3123, College Stn, TX 77843 USA.
[Sanchez, Carlos; Liang, Hong] Texas A&M Univ, Mech Engn, MS 3123, College Stn, TX 77843 USA.
[Gonzalez, Jorge M.] Calif State Univ Fresno, Dept Plant Sci, Fresno, CA 93740 USA.
[Parkinson, Dilworth Y.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Liang, H (reprint author), Texas A&M Univ, Mat Sci & Engn, MS 3123, College Stn, TX 77843 USA.; Liang, H (reprint author), Texas A&M Univ, Mech Engn, MS 3123, College Stn, TX 77843 USA.
EM hliang@tamu.edu
RI Yue, Yuan/F-2177-2017
FU ALS fellowship; Provost's Assigned Time for Research; California State
University Fresno; Office of Science, Office of Basic Energy Sciences,
of the US Department of Energy [DE-AC02-05CH11231]
FX YYC was partially sponsored by an ALS fellowship. JMG was supported by
the Provost's Assigned Time for Research (Summer 2015) and California
State University Fresno, Research, Scholarship and Creative proposal
Awarded (2014-2015). The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences, of the US
Department of Energy under Contract No. DE-AC02-05CH11231. YYC, CS, YY
and JMG conducted the experiments; YYC and JMG analyzed the data; DYP
and HL designed the experiments; YYC, JMG, DYP and HL wrote the paper.
All authors reviewed the manuscript. Authors state no competing
financial interests.
NR 24
TC 1
Z9 1
U1 7
U2 7
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2016
VL 23
BP 1197
EP 1201
DI 10.1107/S1600577516009942
PN 5
PG 5
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DU6CA
UT WOS:000382299500020
PM 27577775
ER
PT J
AU Logan, J
Harder, R
Li, LX
Haskel, D
Chen, P
Winarski, R
Fuesz, P
Schlagel, D
Vine, D
Benson, C
McNulty, I
AF Logan, Jonathan
Harder, Ross
Li, Luxi
Haskel, Daniel
Chen, Pice
Winarski, Robert
Fuesz, Peter
Schlagel, Deborah
Vine, David
Benson, Christa
McNulty, Ian
TI Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale
imaging of magnetic structure and lattice strain
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE Bragg coherent diffractive imaging; XMCD; nanomagnetism; strain
ID CRYSTALS
AB Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2 crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2 nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.
C1 [Logan, Jonathan; Winarski, Robert; McNulty, Ian] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Harder, Ross; Li, Luxi; Haskel, Daniel; Fuesz, Peter; Benson, Christa] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Chen, Pice] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA.
[Schlagel, Deborah] Ames Lab, Div Mat Sci & Engn, 2405 Kooser Dr, Ames, IA 50011 USA.
[Vine, David] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Logan, J (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM jmlogan@anl.gov
OI Chen, Pice/0000-0003-4401-5637; Logan, Jonathan/0000-0003-2554-9457
FU Center for Nanoscale Materials, a US Department of Energy Office of
Science User Facility [DE-AC02-06CH11357]; US Department of Energy
Office of Science User Facility [DE-AC02-06CH11357];
[DE-AC02-07CH11358]
FX Gd5Si2Ge2 single-crystal preparation
was performed at the Ames Laboratory. Ames Laboratory is operated by
Iowa State University under contract No DE-AC02-07CH11358. We would like
to thank Vitalij Pecharsky for reading the manuscript and offering
useful suggestions. We would also like to thank Carlos Giles, Zahirul
Islam and Jonathan Lang for helpful discussions, and Dan Legnini and
Huyue Zhao for engineering support. This work was performed, in part, at
the Center for Nanoscale Materials, a US Department of Energy Office of
Science User Facility under contract No. DE-AC02-06CH11357. This
research used resources of the Advanced Photon Source, a US Department
of Energy Office of Science User Facility operated by Argonne National
Laboratory under contract No. DE-AC02-06CH11357.
NR 18
TC 0
Z9 0
U1 4
U2 5
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2016
VL 23
BP 1210
EP 1215
DI 10.1107/S1600577516009632
PN 5
PG 6
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DU6CA
UT WOS:000382299500022
PM 27577777
ER
PT J
AU Cha, W
Liu, WJ
Harder, R
Xu, RQ
Fuoss, PH
Hruszkewycz, SO
AF Cha, Wonsuk
Liu, Wenjun
Harder, Ross
Xu, Ruqing
Fuoss, Paul H.
Hruszkewycz, Stephan O.
TI Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging
experiment
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE coherent X-ray diffraction imaging; polychromatic X-ray diffraction;
materials characterization
ID MICRODIFFRACTION
AB A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.
C1 [Cha, Wonsuk; Fuoss, Paul H.; Hruszkewycz, Stephan O.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA.
[Liu, Wenjun; Harder, Ross; Xu, Ruqing] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Hruszkewycz, SO (reprint author), Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA.
EM shrus@anl.gov
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; US DOE, Basic Energy Sciences, Materials
Sciences and Engineering Division
FX This work, including use of the Advanced Photon Source, was supported by
the US Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. PHF and SOH were
supported by US DOE, Basic Energy Sciences, Materials Sciences and
Engineering Division.
NR 9
TC 1
Z9 1
U1 7
U2 7
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD SEP
PY 2016
VL 23
BP 1241
EP 1244
DI 10.1107/S1600577516010523
PN 5
PG 4
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DU6CA
UT WOS:000382299500027
ER
PT J
AU Knapik, JJ
Trone, DW
Austin, KG
Steelman, RA
Farina, EK
Lieberman, HR
AF Knapik, Joseph J.
Trone, Daniel W.
Austin, Krista G.
Steelman, Ryan A.
Farina, Emily K.
Lieberman, Harris R.
TI Prevalence, Adverse Events, and Factors Associated with Dietary
Supplement and Nutritional Supplement Use by US Navy and Marine Corps
Personnel
SO JOURNAL OF THE ACADEMY OF NUTRITION AND DIETETICS
LA English
DT Article
DE Vitamin; Mineral; Prohormone; Sport drinks; Sport bars/gels
ID ACUTE LIVER-INJURY; WEIGHT-LOSS; UNITED-STATES; GENDER-DIFFERENCES;
NATIONAL-HEALTH; NO-XPLODE; CARE UTILIZATION; ACUTE HEPATITIS; OXYELITE
PRO; HYDROXYCUT
AB Background About 50% of Americans and 60% to 70% of US military personnel use dietary supplements, some of which have been associated with adverse events (AEs). Nutritional supplements like sport drinks and sport bars/gels are also commonly used by athletes and service members. Previous dietary supplement and nutritional supplement surveys were conducted on Army, Air Force, and Coast Guard personnel.
Objective The aim of this cross-sectional study was to investigate dietary and nutritional supplement use in Navy and Marine Corps personnel, including the prevalence, types, factors associated with use, and AEs.
Design A random sample of 10,000 Navy and Marine Corps personnel were contacted. Service members were asked to complete a detailed questionnaire describing their personal characteristics, supplement use, and AEs experienced.
Results In total, 1,708 service members completed the questionnaire during August through December 2014, with 1,683 used for analysis. Overall, 73% reported using dietary supplements one or more times per week. The most commonly used dietary supplements (used one or more times per week) were multivitamins/multiminerals (48%), protein/amino acids (34%), combination products (33%), and individual vitamins and minerals (29%). About 31% of service members reported using five or more dietary supplements. Sport drinks and sport bars/gels were used by 45% and 23% of service members, respectively. Monthly expenditures on dietary supplements averaged $39; 31% of service members spent >=$50/mo. Multivariate logistic regression modeling indicated that female sex (women/men; odds ratio [OR]=1.76, 95% CI 1.32 to 2.36), higher educational level (college degree/no college degree; OR=2.23, 95% CI 1.62 to 3.30), higher body mass index (calculated as kg/m(2)) (>= 30/<25; OR=1.67, 95% CI 1.06 to 2.63), and a greater amount of resistance training (>= 271/0 to 45 min/week; OR=2.85, 95% CI 1.94 to 4.17) were associated with dietary supplement use. Twenty-two percent of dietary supplement users and 6% of nutritional supplement users reported one or more AEs. For combination products alone, 29% of users reported one or more AEs.
Conclusions The prevalence of dietary supplement use in Navy and Marine Corps personnel was considerably higher than reported in civilian investigations for almost all types of dietary supplements, although similar to most other military services. Factors associated with dietary supplement use were similar to those reported in previous military and civilian investigations. Prevalence of self-reported AEs was very high, especially for combination products.
C1 [Knapik, Joseph J.; Austin, Krista G.; Farina, Emily K.; Lieberman, Harris R.] US Army Res Inst Environm Med, Mil Nutr Div, 10 Gen Greene Ave, Natick, MA 01760 USA.
[Knapik, Joseph J.; Steelman, Ryan A.] US Army Publ Hlth Ctr, Aberdeen Proving Ground, MD USA.
[Knapik, Joseph J.; Austin, Krista G.; Farina, Emily K.] Oak Ridge Inst Sci & Educ, Belcamp, MD USA.
[Trone, Daniel W.] Naval Hlth Res Ctr, San Diego, CA USA.
RP Knapik, JJ (reprint author), US Army Res Inst Environm Med, Mil Nutr Div, 10 Gen Greene Ave, Natick, MA 01760 USA.
EM joseph.j.knapik.ctr@mail.mil
FU Knowledge Preservation Program at the US Army Research Institute of
Environmental Medicine (USARIEM); Army Institute of Public Health
(AIPH); Center Alliance for Nutrition and Dietary Supplement Research
FX This research was supported in part by an appointment to the Knowledge
Preservation Program at the US Army Research Institute of Environmental
Medicine (USARIEM) and the Army Institute of Public Health (AIPH)
administered by the Oak Ridge Institute for Science and Education
through an interagency agreement between the US Department of Energy and
USARIEM. Funding was also provided by the Center Alliance for Nutrition
and Dietary Supplement Research.
NR 81
TC 2
Z9 2
U1 9
U2 9
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 2212-2672
EI 2212-2680
J9 J ACAD NUTR DIET
JI J. Acad. Nutr. Diet.
PD SEP
PY 2016
VL 116
IS 9
BP 1423
EP 1442
DI 10.1016/j.jand.2016.02.015
PG 20
WC Nutrition & Dietetics
SC Nutrition & Dietetics
GA DU8QH
UT WOS:000382478300009
PM 27083989
ER
PT J
AU Aubry, S
Rhee, M
Hommes, G
Bulatov, VV
Arsenlis, A
AF Aubry, S.
Rhee, M.
Hommes, G.
Bulatov, V. V.
Arsenlis, A.
TI Dislocation dynamics in hexagonal close-packed crystals
SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
LA English
DT Article
DE Dislocation dynamics; Hexagonal close-packed; Composites dislocations
ID HCP METALS; SLIP SYSTEMS; SIMULATIONS; MAGNESIUM; ALLOYS; DEFORMATION;
JUNCTIONS; STRENGTH
AB Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and nonlinear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of < c + a > and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. The results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulk crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale. Published by Elsevier Ltd.
C1 [Aubry, S.; Rhee, M.; Hommes, G.; Bulatov, V. V.; Arsenlis, A.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
RP Aubry, S (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Army Research Laboratory [W911NF-12-2-0022]
FX This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Also, research was sponsored by the Army Research
Laboratory and was accomplished under cooperative agreement number
W911NF-12-2-0022. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.
NR 33
TC 0
Z9 0
U1 11
U2 11
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-5096
EI 1873-4782
J9 J MECH PHYS SOLIDS
JI J. Mech. Phys. Solids
PD SEP
PY 2016
VL 94
BP 105
EP 126
DI 10.1016/j.jmps.2016.04.019
PG 22
WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed
Matter
SC Materials Science; Mechanics; Physics
GA DU6RM
UT WOS:000382342300007
ER
PT J
AU Runnels, B
Beyerlein, IJ
Conti, S
Ortiz, M
AF Runnels, Brandon
Beyerlein, Irene J.
Conti, Sergio
Ortiz, Michael
TI A relaxation method for the energy and morphology of grain boundaries
and interfaces
SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
LA English
DT Article
ID FCC METALS; BCC METALS; PLASTIC-DEFORMATION; CRYSTAL-SURFACES; 100
PLANES; COPPER; GROWTH
AB The energy density of crystal interfaces exhibits a characteristic "cusp" structure that renders it non-convex. Furthermore, crystal interfaces are often observed to be faceted, i.e., to be composed of flat facets in alternating directions. In this work, we forge a connection between these two observations by positing that the faceted morphology of crystal interfaces results from energy minimization. Specifically, we posit that the lack of convexity of the interfacial energy density drives the development of finely faceted microstructures and accounts for their geometry and morphology. We formulate the problem as a generalized minimal surface problem couched in a geometric measure-theoretical framework. We then show that the effective, or relaxed, interfacial energy density, with all possible interfacial morphologies accounted for, corresponds to the convexification of the bare or unrelaxed interfacial energy density, and that the requisite convexification can be attained by means of a faceting construction. We validate the approach by means of comparisons with experiment and atomistic simulations including symmetric and asymmetric tilt boundaries in face-centered cubic (FCC) and body-centered cubic (BCC) crystals. By comparison with simulated and experimental data, we show that this simple model of interfacial energy combined with a general microstructure construction based on convexification is able to replicate complex interfacial morphologies, including thermally induced morphological transitions. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Runnels, Brandon; Ortiz, Michael] CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
[Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA.
[Conti, Sergio] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany.
RP Ortiz, M (reprint author), CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
OI Runnels, Brandon/0000-0003-3043-5227; Conti, Sergio/0000-0001-7987-9174
FU NNSA's High Energy Density Laboratory Plasmas program [DE-NA0001805];
Los Alamos National Laboratory Seaborg Institute; Laboratory Directed
Research and Development program [20140348ER]; DFG [SFB 1060]
FX Brandon Runnels and Michael Ortiz would like to thank the NNSA's High
Energy Density Laboratory Plasmas program under award #DE-NA0001805.
Brandon Runnels additionally thanks the Los Alamos National Laboratory
Seaborg Institute for support during Summer 2014. Irene Beyerlein would
like to acknowledge support by a Laboratory Directed Research and
Development program award number 20140348ER. Sergio Conti would like to
acknowledge support of the DFG under SFB 1060.
NR 46
TC 1
Z9 1
U1 7
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-5096
EI 1873-4782
J9 J MECH PHYS SOLIDS
JI J. Mech. Phys. Solids
PD SEP
PY 2016
VL 94
BP 388
EP 408
DI 10.1016/j.jmps.2015.11.007
PG 21
WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed
Matter
SC Materials Science; Mechanics; Physics
GA DU6RM
UT WOS:000382342300022
ER
PT J
AU Finnell, J
AF Finnell, Joshua
TI Nutshell
SO LIBRARY JOURNAL
LA English
DT Book Review
C1 [Finnell, Joshua] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Finnell, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
NR 1
TC 0
Z9 0
U1 0
U2 0
PU REED BUSINESS INFORMATION
PI NEW YORK
PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA
SN 0363-0277
J9 LIBR J
JI Libr. J.
PD SEP 1
PY 2016
VL 141
IS 14
BP 100
EP 100
PG 1
WC Information Science & Library Science
SC Information Science & Library Science
GA DV0IX
UT WOS:000382602300141
ER
PT J
AU O'Bryhim, JR
Parsons, ECM
Gilmore, MP
Lance, SL
AF O'Bryhim, Jason R.
Parsons, E. C. M.
Gilmore, Michael P.
Lance, Stacey L.
TI Evaluating support for shark conservation among artisanal fishing
communities in Costa Rica
SO MARINE POLICY
LA English
DT Article
DE Artisanal fishermen; Conservation; Sharks; Potential behaviors; Social
surveys
ID TRADITIONAL ECOLOGICAL KNOWLEDGE; FISHERIES; MANAGEMENT; SCIENCE;
MARINE; TRADE
AB Many shark populations have experienced severe declines in the past few decades due to increased demand for their products. As fisheries managers, conservation biologists, and other invested groups move to develop new conservation measures to better protect sharks it will be important to understand the potential reactions (behaviors) local fishermen will have to new regulations. To determine the potential behaviors local artisanal fishermen in Costa Rica would have toward new conservation measures for sharks a structured survey (n=72) was distributed to several fishing communities along Costa Rica's Pacific coast. Overall, 89% of fishermen felt that protecting sharks was important with 97% stating a willingness to support shark conservation. However, support dropped to 67% if they would have to change some of their fishing practices. Almost all fishermen surveyed (93%) were in support of the formation of marine protected areas (MPAs). Although, if MPAs restricted their current fishing practices support dropped to between 6% and 65% depending on the restrictiveness of regulations implemented in the MPA. The majority (86%) of the fishermen surveyed also indicated they would be more likely to support new legislative measures to protect sharks if they were included in the decision making process. The results suggest that artisanal fishermen in Costa Rica are willing to protect sharks, but only if their current fishing practices are minimally impacted. It is therefore important that mangers work with these communities to develop management plans that will provide the best protection possible for sharks while also garnering local support to ensure continued compliance. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [O'Bryhim, Jason R.; Parsons, E. C. M.] George Mason Univ, Dept Environm Sci & Policy, Fairfax, VA 22030 USA.
[O'Bryhim, Jason R.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Gilmore, Michael P.] George Mason Univ, Sch Integrat Studies, Fairfax, VA 22030 USA.
RP O'Bryhim, JR (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
EM jobryhim@gmail.com
FU Rufford Foundation, United Kingdom [13921-1]; George Mason University,
United States; Explorers Club Washington Group Exploration and Field
Research Grant Program; Department of Energy, United States
[DE-FC09-07SR22506]; George Mason University Human Subjects Review Board
[8665]
FX We would like to thank everyone in Costa Rica who helped make this
research possible including: Dr. Ted Bradley, Randall Arauz, Maike
Heidemeyer, Andy Bystrom, Taylor Clarke, Dr. Ingo Wehrtmann, PRETOMA,
the University of Costa Rica, and the fishermen who were willing to
participate in this research. We also would like to thank Chelsie Romulo
for producing the map for this paper. Finally, we would like to thank
the Rufford Foundation, United Kingdom (ref. number 13921-1) for being
the main funding agency of this research as well as George Mason
University, United States and the Explorers Club Washington Group
Exploration and Field Research Grant Program for financial assistance.
This research was also partially supported by the Department of Energy,
United States under Award number DE-FC09-07SR22506 to the University of
Georgia Research Foundation. Permission to conduct this research was
granted by the George Mason University Human Subjects Review Board
(Protocol #8665).
NR 39
TC 0
Z9 0
U1 15
U2 15
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0308-597X
EI 1872-9460
J9 MAR POLICY
JI Mar. Pol.
PD SEP
PY 2016
VL 71
BP 1
EP 9
DI 10.1016/j.marpol.2016.05.005
PG 9
WC Environmental Studies; International Relations
SC Environmental Sciences & Ecology; International Relations
GA DT6KT
UT WOS:000381593800001
ER
PT J
AU Panova, O
Chen, XC
Bustillo, KC
Ophus, C
Bhatt, MP
Balsara, N
Minor, AM
AF Panova, Ouliana
Chen, X. Chelsea
Bustillo, Karen C.
Ophus, Colin
Bhatt, Mahesh P.
Balsara, Nitash
Minor, Andrew M.
TI Orientation mapping of semicrystalline polymers using scanning electron
nanobeam diffraction
SO MICRON
LA English
DT Article
DE TEM; STEM; Spatially resolved; Diffraction; Crystal orientation; P3HT;
Polymers; Locally resolved structure
ID STRUCTURAL FEATURES; CRYSTAL-STRUCTURE; RADIATION-DAMAGE;
MOLECULAR-WEIGHT; THIN-FILMS; POLY(3-HEXYLTHIOPHENE); MICROSCOPY; P3HT;
POLY(3-ALKYLTHIOPHENES); MICROSTRUCTURE
AB We demonstrate a scanning electron nanobeam diffraction technique that can be used for mapping the size and distribution of nanoscale crystalline regions in a polymer blend. In addition, it can map the relative orientation of crystallites and the degree of crystallinity of the material. The model polymer blend is a 50:50 w/w mixture of semicrystalline poly(3-hexylthiophene-2,5-diyl) (P3HT) and amorphous polystyrene (PS). The technique uses a scanning electron beam to raster across the sample and acquires a diffraction image at each probe position. Through image alignment and filtering, the diffraction image dataset enables mapping of the crystalline regions within the scanned area and construction of an orientation map. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Panova, Ouliana; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Panova, Ouliana; Bustillo, Karen C.; Ophus, Colin; Minor, Andrew M.] Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, Berkeley, CA USA.
[Chen, X. Chelsea; Balsara, Nitash] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Chen, X. Chelsea; Bhatt, Mahesh P.; Balsara, Nitash] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA.
[Bhatt, Mahesh P.; Balsara, Nitash] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, Berkeley, CA USA.
RP Minor, AM (reprint author), Univ Calif Berkeley, One Cyclotron Rd,MS 72, Berkeley, CA 94720 USA.
EM aminor@lbl.gov
FU Electron Microscopy of Soft Matter Program from the Office of Science,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S.
Department of Energy [DE-AC02-05CH11231]
FX Primary funding for the work was provided by the Electron Microscopy of
Soft Matter Program from the Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. The electron
microscopy was performed as a user project at the Molecular Foundry at
Lawrence Berkeley National Laboratory, which is supported by the U.S.
Department of Energy under Contract # DE-AC02-05CH11231. We wish to
thank Christoph Gammer for writing the custom scripts to drive the
diffraction mapping acquisition.
NR 45
TC 0
Z9 0
U1 13
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0968-4328
J9 MICRON
JI Micron
PD SEP
PY 2016
VL 88
BP 30
EP 36
DI 10.1016/j.micron.2016.05.008
PG 7
WC Microscopy
SC Microscopy
GA DT5NZ
UT WOS:000381531200005
PM 27323282
ER
PT J
AU Johnson, RH
Tutu, H
AF Johnson, Raymond H.
Tutu, Hlanganani
TI Predictive Reactive Transport Modeling at a Proposed Uranium In Situ
Recovery Site with a General Data Collection Guide
SO MINE WATER AND THE ENVIRONMENT
LA English
DT Article
DE Geochemical modeling; PHREEQC; Batch sorption
ID GROUND-WATER
AB Restoration of uranium in situ recovery (ISR) sites to predevelopment conditions is often very difficult. Future downgradient groundwater geochemistry can be evaluated using reactive transport modeling coupled with appropriate data collection. U.S. regulatory requirements specify that the geochemistry at the aquifer exemption boundary should never be affected, but compliance with this regulation has not been monitored at previous ISR sites. At the Dewey Burdock site near Edgemont, SD, USA, a change in groundwater flow direction created a scenario in which the oxidized side of a U roll-front deposit is downgradient of the ore zone. This increases the potential for future U transport, since conventional understanding of U geochemistry is that the reduced side provides more natural attenuation. Reactive transport modeling using U sorption parameters from batch sorption tests provides a predictive tool for future U transport. Prediction variations were tested using two different samples, considering different reaction assumptions and possible pH measurement errors. The results indicate a large range in U transport predictions, with high sensitivity to sorption parameters due to sample heterogeneity, pH, and the presence or absence of calcite. While the sample data set for these initial predictions was limited, the results highlight the need for additional calibration points and a thorough understanding of rock/water interactions in the downgradient zone. We provide a general data collection guide for steps in evaluating downgradient transport at future U ISR sites. These steps include core sampling in the downgradient and restored zones, along with batch sorption and column testing with restored and background groundwater in contact with the restored zone solid phase. Final reactive transport modeling will rely on high-quality calibration data from batch and column testing (plus any available field testing), but thorough site evaluation will also require appropriate long-term monitoring.
C1 [Johnson, Raymond H.] US DOE, Navarro Res & Engn, Off Legacy Management, 2597 Legacy Way, Grand Junction, CO 81503 USA.
[Tutu, Hlanganani] Univ Witwatersrand WITS, Inst Mol Sci, Sch Chem, P Bag X3, ZA-2050 Johannesburg, South Africa.
RP Johnson, RH (reprint author), US DOE, Navarro Res & Engn, Off Legacy Management, 2597 Legacy Way, Grand Junction, CO 81503 USA.
EM ray.johnson@lm.doe.gov; hlanganani.tutu@wits.ac.za
FU U.S. Department of Energy Office of Legacy Management; University of
Witwatersrand, South Africa
FX Funding for this work was provided by the U.S. Department of Energy
Office of Legacy Management. Additional funding was provided by the
University of Witwatersrand, South Africa. We also thank Dr. James Stone
(South Dakota School of Mines and Technology), the journal editors and
two anonymous journal reviewers for additional comments that helped
improve this manuscript.
NR 22
TC 0
Z9 0
U1 8
U2 8
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1025-9112
EI 1616-1068
J9 MINE WATER ENVIRON
JI Mine Water Environ.
PD SEP
PY 2016
VL 35
IS 3
BP 369
EP 380
DI 10.1007/s10230-015-0376-y
PG 12
WC Water Resources
SC Water Resources
GA DU4PB
UT WOS:000382193900011
ER
PT J
AU Hochstrasser, ML
Taylor, DW
Kornfeld, JE
Nogales, E
Doudna, JA
AF Hochstrasser, Megan L.
Taylor, David W.
Kornfeld, Jack E.
Nogales, Eva
Doudna, Jennifer A.
TI DNA Targeting by a Minimal CRISPR RNA-Guided Cascade
SO MOLECULAR CELL
LA English
DT Article
ID IN-VITRO RECONSTITUTION; PROCESSES PRE-CRRNA; R-LOOP FORMATION; CAS
SYSTEMS; SURVEILLANCE COMPLEX; ESCHERICHIA-COLI; IMMUNE-SYSTEM;
CRYSTAL-STRUCTURE; FUNCTIONAL-CHARACTERIZATION; EFFECTOR COMPLEXES
AB Bacteria employ surveillance complexes guided by CRISPR (clustered, regularly interspaced, short palindromic repeats) RNAs (crRNAs) to target foreign nucleic acids for destruction. Although most type I and type III CRISPR systems require four or more distinct proteins to form multi-subunit surveillance complexes, the type I-C systems use just three proteins to achieve crRNA maturation and double-stranded DNA target recognition. We show that each protein plays multiple functional and structural roles: Cas5c cleaves pre-crRNAs and recruits Cas7 to position the RNA guide for DNA binding and unwinding by Cas8c. Cryoelectron microscopy reconstructions of free and DNA-bound forms of the Cascade/I-C surveillance complex reveal conformational changes that enable R-loop formation with distinct positioning of each DNA strand. This streamlined type I-C system explains how CRISPR pathways can evolve compact structures that retain full functionality as RNA-guided DNA capture platforms.
C1 [Hochstrasser, Megan L.; Taylor, David W.; Nogales, Eva; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.
[Taylor, David W.; Nogales, Eva; Doudna, Jennifer A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.
[Kornfeld, Jack E.; Nogales, Eva; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
[Nogales, Eva; Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA.
[Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Taylor, David W.] Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA.
RP Taylor, DW; Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Taylor, DW; Doudna, JA (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Taylor, DW (reprint author), Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA.
EM dtaylor@utexas.edu; doudna@berkeley.edu
FU Damon Runyon Cancer Research Foundation [DRG-2218-15]
FX We thank R. Louder, A. Patel, E. Kellogg, P. Grob, T. Houweling, Z. Yu
and C. Hong for expert electron microscopy assistance and S. Floor, P.
Kranzusch, T. Liu, J. Nunez, S. Sternberg, S. Strutt, and R. Wilson for
helpful discussions and critical reading of the manuscript. D.W.T. is a
Damon Runyon Fellow supported by the Damon Runyon Cancer Research
Foundation (DRG-2218-15). J.A.D and E.N. are Howard Hughes Medical
Institute Investigators. J.A.D. is a co-founder of Editas Medicine,
Intellia Therapeutics, and Caribou Biosciences and a scientific advisor
to Caribou, Intellia, eFFECTOR Therapeutics, and Driver.
NR 50
TC 1
Z9 1
U1 20
U2 27
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 1097-2765
EI 1097-4164
J9 MOL CELL
JI Mol. Cell
PD SEP 1
PY 2016
VL 63
IS 5
BP 840
EP 851
DI 10.1016/j.molcel.2016.07.027
PG 12
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA DU9MO
UT WOS:000382542000012
PM 27588603
ER
PT J
AU Voiry, D
Fullon, R
Yang, JE
Silva, CDCE
Kappera, R
Bozkurt, I
Kaplan, D
Lagos, MJ
Batson, PE
Gupta, G
Mohite, AD
Dong, L
Er, DQ
Shenoy, VB
Asefa, T
Chhowalla, M
AF Voiry, Damien
Fullon, Raymond
Yang, Jieun
Castro e Silva, Cecilia de Carvalho
Kappera, Rajesh
Bozkurt, Ibrahim
Kaplan, Daniel
Lagos, Maureen J.
Batson, Philip E.
Gupta, Gautam
Mohite, Aditya D.
Dong, Liang
Er, Dequan
Shenoy, Vivek B.
Asefa, Tewodros
Chhowalla, Manish
TI The role of electronic coupling between substrate and 2D MoS2 nanosheets
in electrocatalytic production of hydrogen
SO NATURE MATERIALS
LA English
DT Article
ID AMORPHOUS MOLYBDENUM SULFIDE; ACTIVE EDGE SITES; EVOLUTION REACTION;
2-DIMENSIONAL SEMICONDUCTORS; CATALYTIC-ACTIVITY; DISULFIDE;
TRANSISTORS; GRAPHENE; CONTACTS; DEFECTS
AB The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of similar to-0.1 V and similar to 50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.
C1 [Voiry, Damien; Fullon, Raymond; Yang, Jieun; Castro e Silva, Cecilia de Carvalho; Kappera, Rajesh; Bozkurt, Ibrahim; Lagos, Maureen J.; Batson, Philip E.; Chhowalla, Manish] Rutgers State Univ, Mat Sci & Engn, 607 Taylor Rd, Piscataway, NJ 08854 USA.
[Kaplan, Daniel] US Army RDECOM ARDEC, Acoust & Networked Sensors Div, Picatinny Arsenal, NJ 07806 USA.
[Lagos, Maureen J.; Batson, Philip E.] Rutgers State Univ, Dept Phys, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA.
[Lagos, Maureen J.; Batson, Philip E.] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, 607 Taylor Rd, Piscataway, NJ 08854 USA.
[Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA.
[Dong, Liang; Er, Dequan; Shenoy, Vivek B.] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA.
[Asefa, Tewodros] Rutgers State Univ, Dept Chem & Chem Biol, 610 Taylor Rd, Piscataway, NJ 08854 USA.
[Asefa, Tewodros] Rutgers State Univ, Dept Chem & Biochem Engn, 98 Brett Rd, Piscataway, NJ 08854 USA.
RP Chhowalla, M (reprint author), Rutgers State Univ, Mat Sci & Engn, 607 Taylor Rd, Piscataway, NJ 08854 USA.
EM manish1@rci.rutgers.edu
RI Voiry, Damien/G-3541-2016;
OI Voiry, Damien/0000-0002-1664-2839; Kappera, Rajesh/0000-0003-1792-4405
FU NSF [DGE 0903661, ECCS 1128335, CAREER CHE-1004218, DMR-0968937,
NanoEHS-1134289, 0959905]; Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico-Brazil; Rutgers Energy Institute; LDRD program
at LANL; US DOE, Office of Science, BES Award [DE-SC0005132]; US
National Science Foundation [EFMA-542879, CMMI-1363203, CBET-1235870]
FX M.C. and D.V. acknowledge financial support from NSF DGE 0903661 and
ECCS 1128335. T.A. acknowledges financial assistance from NSF (CAREER
CHE-1004218, DMR-0968937, NanoEHS-1134289, NSF-ACIF, and Special
Creativity Grant).; C.d.C.C.e.S. acknowledges the Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico-Brazil, for a fellowship. J.Y.
and M.C. acknowledge financial support from Rutgers Energy Institute.
A.M. acknowledges LDRD program at LANL for funding this work. M.J.L. and
P.E.B. acknowledge support from the US DOE, Office of Science, BES Award
No. DE-SC0005132 and NSF No. 0959905. L.B., D.E., and V.B.S. acknowledge
EFMA-542879, CMMI-1363203 and CBET-1235870 from the US National Science
Foundation.
NR 48
TC 18
Z9 18
U1 144
U2 170
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
EI 1476-4660
J9 NAT MATER
JI Nat. Mater.
PD SEP
PY 2016
VL 15
IS 9
BP 1003
EP 1009
DI 10.1038/NMAT4660
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA DU7YG
UT WOS:000382429900019
PM 27295098
ER
PT J
AU Tsvetkov, N
Lu, QY
Sun, LX
Crumlin, EJ
Yildiz, B
AF Tsvetkov, Nikolai
Lu, Qiyang
Sun, Lixin
Crumlin, Ethan J.
Yildiz, Bilge
TI Improved chemical and electrochemical stability of perovskite oxides
with less reducible cations at the surface
SO NATURE MATERIALS
LA English
DT Article
ID SENSITIZED SOLAR-CELLS; ELECTRONIC-STRUCTURE; FUEL-CELLS; EXCHANGE
KINETICS; SPIN-STATE; THIN-FILMS; OXYGEN; CATHODE; SEGREGATION;
PERFORMANCE
AB Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO(3)) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr'(La)) by the positively charged oxygen vacancies (V-o(center dot center dot)) enriched at the surface. Here we show that reducing the surface V-o(center dot center dot) concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O-2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V-o(center dot center dot) and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 degrees C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.
C1 [Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; Yildiz, Bilge] MIT, Lab Electrochem Interfaces, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Tsvetkov, Nikolai; Sun, Lixin; Yildiz, Bilge] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Lu, Qiyang; Yildiz, Bilge] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Crumlin, Ethan J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Yildiz, B (reprint author), MIT, Lab Electrochem Interfaces, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Yildiz, B (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Yildiz, B (reprint author), MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM byildiz@mit.edu
FU NSF CAREER Award of the National Science Foundation, Division of
Materials Research, Ceramics Program [1055583]; National Aeronautics and
Space Administration (NASA); NSF [DMR-1419807]; Office of Science,
Office of Basic Energy Sciences, of the US Department of Energy
[DE-AC02-05CH11231]
FX The authors are grateful for funding support from the NSF CAREER Award
of the National Science Foundation, Division of Materials Research,
Ceramics Program, Grant No. 1055583, and from the National Aeronautics
and Space Administration (NASA) in support of the Mars Oxygen ISRU
Experiment (MOXIE), an instrument on the Mars 2020 rover mission. We
thank M. Youssef for useful discussions on the defects in LSC and Q. Liu
for experiment assistance at Advanced Light Source Beamline 9.3.2. The
authors also acknowledge the use of the Center for Materials Science and
Engineering, an MRSEC Shared Experimental Facility of the NSF at MIT,
supported by the NSF under award number DMR-1419807. The Advanced Light
Source is supported by the Director, Office of Science, Office of Basic
Energy Sciences, of the US Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 47
TC 7
Z9 7
U1 84
U2 122
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
EI 1476-4660
J9 NAT MATER
JI Nat. Mater.
PD SEP
PY 2016
VL 15
IS 9
BP 1010
EP 1016
DI 10.1038/NMAT4659
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA DU7YG
UT WOS:000382429900020
PM 27295099
ER
PT J
AU Jiang, YW
Carvalho-de-Souza, JL
Wong, RCS
Luo, ZQ
Isheim, D
Zuo, XB
Nicholls, AW
Jung, IW
Yue, JP
Liu, DJ
Wang, YC
De Andrade, V
Xiao, XH
Navrazhnykh, L
Weiss, DE
Wu, XY
Seidman, DN
Bezanilla, F
Tian, BZ
AF Jiang, Yuanwen
Carvalho-de-Souza, Joao L.
Wong, Raymond C. S.
Luo, Zhiqiang
Isheim, Dieter
Zuo, Xiaobing
Nicholls, Alan W.
Jung, Il Woong
Yue, Jiping
Liu, Di-Jia
Wang, Yucai
De Andrade, Vincent
Xiao, Xianghui
Navrazhnykh, Luizetta
Weiss, Dara E.
Wu, Xiaoyang
Seidman, David N.
Bezanilla, Francisco
Tian, Bozhi
TI Heterogeneous silicon rnesostructures for lipid-supported bioelectric
interfaces
SO NATURE MATERIALS
LA English
DT Article
ID POROUS SILICON; MESOPOROUS SILICON; THIN-FILMS; ELECTRONICS;
NANOPARTICLES; CELLS; REDUCTION; NANOWIRES; DYNAMICS; TISSUES
AB Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young's modulus that is 2-3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems.
C1 [Jiang, Yuanwen; Luo, Zhiqiang; Wang, Yucai; Navrazhnykh, Luizetta; Weiss, Dara E.; Tian, Bozhi] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Jiang, Yuanwen; Wong, Raymond C. S.; Luo, Zhiqiang; Wang, Yucai; Tian, Bozhi] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
[Carvalho-de-Souza, Joao L.; Wong, Raymond C. S.; Bezanilla, Francisco] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA.
[Isheim, Dieter; Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Isheim, Dieter; Seidman, David N.] Northwestern Univ, NUCAPT, Evanston, IL 60208 USA.
[Zuo, Xiaobing; De Andrade, Vincent; Xiao, Xianghui] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Nicholls, Alan W.] Univ Illinois, Res Resources Ctr, Chicago, IL 60607 USA.
[Jung, Il Woong] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Wu, Xiaoyang] Univ Chicago, Ben May Dept Canc Res, Chicago, IL 60637 USA.
[Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Bezanilla, Francisco; Tian, Bozhi] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA.
RP Tian, BZ (reprint author), Univ Chicago, Dept Chem, Chicago, IL 60637 USA.; Tian, BZ (reprint author), Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.; Bezanilla, F (reprint author), Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA.; Bezanilla, F; Tian, BZ (reprint author), Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA.
EM fbezanilla@uchicago.edu; btian@uchicago.edu
RI Seidman, David/B-6697-2009; Wang, Yucai/A-1098-2017
OI Wang, Yucai/0000-0001-6046-2934
FU Air Force Office of Scientific Research [AFOSR FA9550-14-1-0175,
FA9550-15-1-0285]; National Science Foundation (NSF CAREER)
[DMR-1254637]; National Science Foundation (NSF MRSEC) [DMR 1420709];
Searle Scholars Foundation; National Institutes of Health [NIH
GM030376]; University of Chicago Start-up Fund; NSF-MRI grant
[DMR-0420532]; ONR-DURIP grant [N00014-0400798, N00014-0610539,
N00014-0910781]; National Science Foundation's MRSEC programme
[DMR-1121262]; MRI-R2 grant from the National Science Foundation
[DMR-0959470]; Center for Nanoscale Materials, a US Department of
Energy, Office of Science, Office of Basic Energy Sciences User Facility
[E-AC02-06CH11357]; DOE Office of Science [DE-AC02-06CH11357]
FX This work is supported by the Air Force Office of Scientific Research
(AFOSR FA9550-14-1-0175, FA9550-15-1-0285), the National Science
Foundation (NSF CAREER, DMR-1254637; NSF MRSEC, DMR 1420709), the Searle
Scholars Foundation, the National Institutes of Health (NIH GM030376),
and the University of Chicago Start-up Fund. Atom-probe tomography was
performed at the Northwestern University Center for Atom-Probe
Tomography (NUCAPT), whose APT was purchased and upgraded with funding
from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798,
N00014-0610539, N00014-0910781) grants. NUCAPT is a Research Facility at
the Materials Research Center of Northwestern University, supported by
the National Science Foundation's MRSEC programme (grant number
DMR-1121262). Instrumentation at NUCAPT was further upgraded by the
Initiative for Sustainability and Energy at Northwestern (ISEN). This
work made use of the JEOL JEM-ARM200CF and JEOL JEM-3010 TEM in the
Electron Microscopy Service (Research Resources Center, UIC). The
acquisition of the UIC JEOL JEM-ARM200CF was supported by an MRI-R2
grant from the National Science Foundation (DMR-0959470). A portion of
this work was performed at the Center for Nanoscale Materials, a US
Department of Energy, Office of Science, Office of Basic Energy Sciences
User Facility under Contract No. DE-AC02-06CH11357. This research used
the resources of the Advanced Photon Source, a US Department of Energy
(DOE) Office of Science User Facility operated for the DOE Office of
Science by Argonne National Laboratory under Contract No.
DE-AC02-06CH11357. The authors thank D. Talapin, V. Srivastava, Y. Chen,
J. Treger, T. Sun, Q. Guo, J. Jureller and R. N. S. Divan for providing
technical support and stimulating discussions.
NR 50
TC 2
Z9 2
U1 52
U2 57
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
EI 1476-4660
J9 NAT MATER
JI Nat. Mater.
PD SEP
PY 2016
VL 15
IS 9
BP 1023
EP 1030
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA DU7YG
UT WOS:000382429900022
PM 27348576
ER
PT J
AU Gurdal, G
Mccutchan, EA
AF Gurdal, G.
Mccutchan, E. A.
TI Nuclear Data Sheets for A=70
SO NUCLEAR DATA SHEETS
LA English
DT Article
ID LOW-LYING STATES; HIGH-SPIN STATES; EVEN ZN ISOTOPES; DECAY HALF-LIVES;
ALPHA' INELASTIC-SCATTERING; DRIFTED GERMANIUM DETECTOR; THERMAL-NEUTRON
CAPTURE; DOUBLE-BETA DECAY; 64ZN 66ZN 68ZN; 50 MEV PROTONS
AB Spectroscopic data for all nuclei with mass number A=70 have been evaluated, and the corresponding level schemes from radioactive decay and reaction studies are presented. Since the previous evaluation, the half-life of Mn-70 has been measured and excited states in Fe-70 observed for the first time. Excited states in Ni-70 have been more extensively studied while Coulomb excitation and collinear laser spectroscopy measurements in Cu-70 have allowed for firm J pi assignments. Despite new measurements, there remain some discrepancies in half-lives of low lying states in Zn-70. New measurements have extended the knowledge of high-spin band structures in Ge-70 and As-70. This evaluation supersedes the prior A=70 evaluation of 2004Tu09.
C1 [Gurdal, G.] Millsaps Coll, Dept Phys, Jackson, MS 39210 USA.
[Mccutchan, E. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
RP Gurdal, G (reprint author), Millsaps Coll, Dept Phys, Jackson, MS 39210 USA.
FU Office of Nuclear Physics, Office of Science, US Department of Energy
[DE-AC02-98CH10946]
FX Research sponsored by Office of Nuclear Physics, Office of Science, US
Department of Energy, under contract DE-AC02-98CH10946.
NR 288
TC 0
Z9 0
U1 5
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
EI 1095-9904
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD SEP-OCT
PY 2016
VL 136
BP 1
EP 162
DI 10.1016/j.nds.2016.08.001
PG 162
WC Physics, Nuclear
SC Physics
GA DV0HG
UT WOS:000382598000001
ER
PT J
AU Joye, SB
Kleindienst, S
Gilbert, JA
Handley, KM
Weisenhorn, P
Overholt, WA
Kostka, JE
AF Joye, Samantha B.
Kleindienst, Sara
Gilbert, Jack A.
Handley, Kim M.
Weisenhorn, Pam
Overholt, Will A.
Kostka, Joel E.
TI Responses of Microbial Communities to Hydrocarbon Exposures
SO OCEANOGRAPHY
LA English
DT Article
ID DEEP-WATER-HORIZON; GULF-OF-MEXICO; POLYCYCLIC AROMATIC-HYDROCARBONS;
OIL-WELL BLOWOUT; DEGRADING BACTERIA; ALKANE DEGRADATION; ANAEROBIC
BIODEGRADATION; MACONDO OIL; SPILL; DISPERSANTS
AB The responses of microbial communities to hydrocarbon exposures are complex and variable, driven to a large extent by the nature of hydrocarbon infusion, local environmental conditions, and factors that regulate microbial physiology (e.g., substrate and nutrient availability). Although present at low abundance in the ocean, hydrocarbon-degrading seed populations are widely distributed, and they respond rapidly to hydrocarbon inputs at natural and anthropogenic sources. Microbiomes from environments impacted by hydrocarbon discharge may appear similar at a higher taxonomic rank (e.g., genus level) but diverge at increasing phylogenetic resolution (e.g., sub-OTU [operational taxonomic unit] levels). Such subtle changes are detectable by computational methods such as oligotyping or by genome reconstruction from metagenomic sequence data. The ability to reconstruct these genomes, and to characterize their transcriptional activities in different environmental contexts through metatranscriptomic mapping, is revolutionizing our ability to understand the diverse and adaptable microbial communities in marine ecosystems. Our knowledge of the environmental factors that regulate microbial hydrocarbon degradation and the efficiency with which marine hydrocarbon-degrading microbial communities bioremediate hydrocarbon contamination is incomplete. Moreover, detailed baseline descriptions of naturally occurring hydrocarbon-degrading microbial communities and a more robust understanding of the factors that regulate their activity are needed.
C1 [Joye, Samantha B.] Univ Georgia, Dept Marine Sci, Arts & Sci, Athens, GA 30602 USA.
[Kleindienst, Sara] Univ Tubingen, Microbial Ecol Grp, Ctr Appl Geosci, Tubingen, Germany.
[Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA.
[Handley, Kim M.] Univ Auckland, Sch Biol Sci, Auckland, New Zealand.
[Weisenhorn, Pam] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Overholt, Will A.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA.
[Kostka, Joel E.] Georgia Inst Technol, Atlanta, GA 30332 USA.
RP Joye, SB (reprint author), Univ Georgia, Dept Marine Sci, Arts & Sci, Athens, GA 30602 USA.
EM mjoye@uga.edu
RI Kleindienst, Sara/O-9908-2016
OI Kleindienst, Sara/0000-0001-8304-9149
FU GoMRI "Ecosystem Impacts of Oil and Gas Inputs to the Gulf2" (ECOGIG-2)
consortia; GoMRI "Center for Integrated Modeling and Analysis of the
Gulf Ecosystem-2" (C-IMAGE-2) consortia; RFP-II program "Creating a
predictive model of microbially mediated carbon remediation in the Gulf
of Mexico (JAG)"
FX We thank L. Nigro for assistance with the literature review and our
colleagues in the Gulf of Mexico Research Initiative's (GoMRI) program
for invigorating discussions on this topic. Funding for the preparation
of this manuscript was provided by GoMRI's "Ecosystem Impacts of Oil and
Gas Inputs to the Gulf2" (ECOGIG-2; SBJ) and the "Center for Integrated
Modeling and Analysis of the Gulf Ecosystem-2" (C-IMAGE-2; JEC)
consortia and RFP-II program "Creating a predictive model of microbially
mediated carbon remediation in the Gulf of Mexico (JAG)." This is ECOGIG
contribution no. 430.
NR 69
TC 1
Z9 1
U1 26
U2 26
PU OCEANOGRAPHY SOC
PI ROCKVILLE
PA P.O. BOX 1931, ROCKVILLE, MD USA
SN 1042-8275
J9 OCEANOGRAPHY
JI Oceanography
PD SEP
PY 2016
VL 29
IS 3
SI SI
BP 136
EP 149
DI 10.5670/oceanog.2016.78
PG 14
WC Oceanography
SC Oceanography
GA DU6OM
UT WOS:000382334500020
ER
PT J
AU Koohbor, B
Kidane, A
Lu, WY
AF Koohbor, Behrad
Kidane, Addis
Lu, Wei-Yang
TI Characterizing the constitutive response and energy absorption of rigid
polymeric foams subjected to intermediate-velocity impact
SO POLYMER TESTING
LA English
DT Article
DE Polymeric foam; Direct impact; Digital image correlation; Inertia;
Energy absorption
ID REPRESENTATIVE VOLUME ELEMENT; COMPRESSIVE RESPONSE; BEHAVIOR;
MICROSTRUCTURES; BAR
AB As an optimum energy-absorbing material system, polymeric foams are needed to dissipate the kinetic energy of an impact, while maintaining the impact force transferred to the protected object at a low level. Therefore, it is crucial to accurately characterize the load bearing and energy dissipation performance of foams at high strain rate loading conditions. There are certain challenges faced in the accurate measurement of the deformation response of foams due to their low mechanical impedance. In the present work, a non-parametric method is successfully implemented to enable the accurate assessment of the compressive constitutive response of rigid polymeric foams subjected to impact loading conditions. The method is based on stereovision high speed photography in conjunction with 3D digital image correlation, and allows for accurate evaluation of inertia stresses developed within the specimen during deformation time. Full-field distributions of stress, strain and strain rate are used to extract the local constitutive response of the material at any given location along the specimen axis. In addition, the effective energy absorbed by the material is calculated. Finally, results obtained from the proposed non parametric analysis are compared with data obtained from conventional test procedures. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Koohbor, Behrad; Kidane, Addis] Univ South Carolina, Dept Mech Engn, 300 Main St,Room A132, Columbia, SC 29208 USA.
[Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Kidane, A (reprint author), Univ South Carolina, Dept Mech Engn, 300 Main St,Room A132, Columbia, SC 29208 USA.
EM kidanea@cec.sc.edu
RI Koohbor, Behrad/F-9771-2015;
OI Koohbor, Behrad/0000-0002-5787-4644; , Addis/0000-0003-0830-0158
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 24
TC 0
Z9 0
U1 7
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0142-9418
EI 1873-2348
J9 POLYM TEST
JI Polym. Test
PD SEP
PY 2016
VL 54
BP 48
EP 58
DI 10.1016/j.polymertesting.2016.06.023
PG 11
WC Materials Science, Characterization & Testing; Polymer Science
SC Materials Science; Polymer Science
GA DV3CJ
UT WOS:000382798300007
ER
PT J
AU Linville, JL
Shen, YW
Schoene, RP
Nguyen, M
Urgun-Demirtas, M
Snyder, SW
AF Linville, Jessica L.
Shen, Yanwen
Schoene, Robin P.
Nguyen, Maximilian
Urgun-Demirtas, Meltem
Snyder, Seth W.
TI Impact of trace element additives on anaerobic digestion of sewage
sludge with in-situ carbon dioxide sequestration
SO PROCESS BIOCHEMISTRY
LA English
DT Article
DE Anaerobic digestion; Trace elements; Carbon dioxide sequestration;
Olivine; Renewable methane production
ID MICROBIAL COMMUNITY; METHANE PRODUCTION; BIOGAS PRODUCTION; WASTE-WATER;
KINETICS; OPTIMIZATION; MODEL
AB Anaerobic digestion (AD) of sludge at wastewater treatment plants can benefit from addition of essential trace metals such as iron, nickel and cobalt to increase biogas production for utilization in combined heat and power systems, fed into natural gas pipelines or as a vehicle fuel. This study evaluated the impact and benefits of Ni/Co and olivine addition to the digester at mesophilic temperatures. These additions supplement previously reported research in which iron-rich olivine (MgSiO4) was added to sequester CO2 in-situ during batch AD of sludge. Trace element addition has been shown to stimulate and stabilize biogas production and have a synergistic effect on the mineral carbonation process. AD with 5% w/v olivine and 1.5 mg/L Ni/Co addition had a 17.3% increase in methane volume, a 6% increase in initial exponential methane production rate and a 56% increase in methane yield (mL CH4/g CODdegraded) compared to the control due to synergistic trace element and olivine addition while maintaining 17.7% CO2 sequestration from olivine addition. Both first-order kinetic modeling and response surface methodology modeling confirmed the combined benefit of the trace elements and olivine addition. These results were significantly higher than previously reported results with olivine addition alone [1] (Linville et al., 2016). (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Linville, Jessica L.; Shen, Yanwen; Schoene, Robin P.; Nguyen, Maximilian; Urgun-Demirtas, Meltem; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Lemont, IL 60439 USA.
RP Urgun-Demirtas, M (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Lemont, IL 60439 USA.
EM demirtasmu@anl.gov
FU California Energy Commission of California Government [ARV-10-003-01
SMUD]; [DE-AC02-06CH11357]
FX This work was sponsored by via Sacramento Municipal Utilities by the
California Energy Commission of California Government (ARV-10-003-01
SMUD). The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory ("Argonne"), Argonne, a US
Department of Energy Office of Science laboratory, is operated under
contract no. DE-AC02-06CH11357. The US Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the government. The funding source for the
work reported here did not have a role in study design, data collection,
analysis, data interpretation, writing, or in the decision to publish.
NR 46
TC 0
Z9 0
U1 16
U2 16
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1359-5113
EI 1873-3298
J9 PROCESS BIOCHEM
JI Process Biochem.
PD SEP
PY 2016
VL 51
IS 9
BP 1283
EP 1289
DI 10.1016/j.procbio.2016.06.003
PG 7
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Engineering, Chemical
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Engineering
GA DU6UG
UT WOS:000382349500020
ER
PT J
AU Gao, YF
Bei, HB
AF Gao, Yanfei
Bei, Hongbin
TI Strength statistics of single crystals and metallic glasses under small
stressed volumes
SO PROGRESS IN MATERIALS SCIENCE
LA English
DT Review
DE Strength statistics; Intrinsic thermal-activation mechanism; Extrinsic
stochastic mechanism; Universal relationship between strength and sample
size
ID ANISOTROPIC HALF-SPACES; SUBMICRON LENGTH SCALES; MO-ALLOY MICROPILLARS;
ON-SUBSTRATE SYSTEMS; POP-IN BEHAVIOR; DISLOCATION NUCLEATION; INCIPIENT
PLASTICITY; SIZE DEPENDENCE; YIELD STRENGTH; DEFORMATION MECHANISMS
AB It has been well documented that plastic deformation of crystalline and amorphous metals/alloys shows a general trend of "smaller is stronger". The majority of the experimental and modeling studies along this line have been focused on finding and reasoning the scaling slope or exponent in the logarithmic plot of strength versus size. In contrast to this view, here we show that the universal picture should be the thermally activated nucleation mechanisms in small stressed volume, the stochastic behavior as to find the weakest links in intermediate sizes of the stressed volume, and the convolution of these two mechanisms with respect to variables such as indenter radius in nanoindentation pop-in, crystallographic orientation, pre-strain level, sample length as in uniaxial tests, and others. Experiments that cover the entire spectrum of length scales and a unified model that treats both thermal activation and spatial stochasticity have discovered new perspectives in understanding and correlating the strength statistics in a vast of observations in nanoindentation, micro-pillar compression, and fiber/whisker tension tests of single crystals and metallic glasses. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Gao, Yanfei; Bei, Hongbin] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Gao, Yanfei] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Gao, YF; Bei, HB (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM ygao7@utk.edu; beih@ornl.gov
RI Gao, Yanfei/F-9034-2010;
OI Gao, Yanfei/0000-0003-2082-857X; Bei, Hongbin/0000-0003-0283-7990
FU U.S. Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division
FX This work was sponsored by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Materials Sciences and Engineering
Division.
NR 169
TC 2
Z9 2
U1 33
U2 39
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0079-6425
J9 PROG MATER SCI
JI Prog. Mater. Sci.
PD SEP
PY 2016
VL 82
BP 118
EP 150
DI 10.1016/j.pmatsci.2016.05.002
PG 33
WC Materials Science, Multidisciplinary
SC Materials Science
GA DV0ER
UT WOS:000382591300004
ER
PT J
AU Deur, A
Brodsky, SJ
de Teramond, GF
AF Deur, Alexandre
Brodsky, Stanley J.
de Teramond, Guy F.
TI The QCD running coupling
SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS
LA English
DT Review
DE QCD; Coupling constant; Non-perturbative; Renormalization; Infrared
properties; Hadron physics
ID SPIN STRUCTURE-FUNCTION; ABELIAN GAUGE-THEORIES;
DEEP-INELASTIC-SCATTERING; YANG-MILLS THEORY; ANALYTIC
PERTURBATION-THEORY; DEPENDENT STRUCTURE-FUNCTION; DYSON-SCHWINGER
EQUATIONS; TO-LEADING ORDER; CHIRAL-SYMMETRY BREAKING; EFFECTIVE GLUON
MASS
AB We review the present theoretical and empirical knowledge for alpha(s), the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of us alpha(s)(Q(2)) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on alpha(s)(Q(2)) at high Q(2), as predicted by perturbative QCD, and its analytic behavior at small Q(2), based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of as alpha(s)(Q(2)) in the high momentum transfer domain of QCD. We review how alpha(s) is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior as alpha(s)(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale A and hadron masses. One can also identify a specific scale Q(0) which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including lattice QCD, the Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating their conflicting predictions, we discuss the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances in this difficult area, but also to suggest what could be an optimal definition of as alpha(s)(Q(2)) in order to bring better unity to the subject. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Deur, Alexandre] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Brodsky, Stanley J.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
[de Teramond, Guy F.] Univ Costa Rica, San Jose, Costa Rica.
RP Deur, A (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
EM deurpam@jlab.org; sjbth@slac.stanford.edu; gdt@asterix.crnet.cr
FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics
[DE-AC05-06OR23177, DE-AC02-76SF00515]
FX We thank Hans Guenter Dosch, David d'Enterria, John A. Gracey, Andrei L.
Kataev, Cedric Lorce, Matin Mojaza, Christian Weiss, Xing-Gang Wu and Ma
Yang for instructive discussions on as and related topics. We are
grateful to A. Faessler for his invitation to write this review. This
material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Nuclear Physics under contract
DE-AC05-06OR23177 and DE-AC02-76SF00515. SLAC-PUB-16448.
NR 731
TC 7
Z9 7
U1 5
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0146-6410
EI 1873-2224
J9 PROG PART NUCL PHYS
JI Prog. Part. Nucl. Phys.
PD SEP
PY 2016
VL 90
BP 1
EP 74
DI 10.1016/j.ppnp.2016.04.003
PG 74
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA DU6RP
UT WOS:000382342600001
ER
PT J
AU Cronauer, SL
Briner, JP
Kelley, SE
Zimmerman, SRH
Morlighem, M
AF Cronauer, Sandra L.
Briner, Jason P.
Kelley, Samuel E.
Zimmerman, Susan R. H.
Morlighem, Mathieu
TI Be-10 dating reveals early-middle Holocene age of the Drygalski Moraines
in central West Greenland
SO QUATERNARY SCIENCE REVIEWS
LA English
DT Article; Proceedings Paper
CT 2nd International Conference of the
Palaeo-Arctic-Spatial-and-Temporal-Gateways-Network (PAST Gateways)
CY 2014
CL Trieste, ITALY
SP Palaeo Arctic Spatial & Temporal Gateways Network
DE Cosmogenic nuclide exposure dating; Greenland Ice Sheet;
Proglacial-threshold lake; Holocene
ID ICE STREAM SYSTEM; JAKOBSHAVN ISBRAE; THERMAL MAXIMUM; LAST RECESSION;
SHEET; RETREAT; TEMPERATURE; HISTORY; CLIMATE; REGION
AB We reconstruct the history of the Greenland Ice Sheet margin on the Nuussuaq Peninsula in central West Greenland through the Holocene using lake sediment analysis and cosmogenic Be-10 exposure dating of the prominent Drygalski Moraines. Erratics perched on bedrock outboard of the Drygalski Moraines constrain local deglaciation to similar to 9.9 +/- 0.6 ka (n = 2). Three Drygalski Moraine crests yield mean Be-10 ages of 8.6 +/- 0.4 ka (n = 2), 8.5 +/- 0.2 ka (n = 3), and 7.6 +/- 0.1 ka (n = 2) from outer to inner. Perched erratics between the inner two moraines average 7.8 +/- 0.1 ka (n = 2) and are consistent with the moraine ages. Sediments from a proglacial lake with a catchment area extending an estimated 2 km beneath (inland of) the present ice sheet terminus constrain an ice sheet minimum extent from 5.4 ka to 0.6 ka. The moraine chronology paired with the lake sediment stratigraphy reveals that the ice margin likely remained within similar to 2 km of its present position from similar to 9.9 to 5.4 ka. This unexpected early Holocene stability, preceded by rapid ice retreat and followed by minimum ice extent between similar to 5.4 and 0.6 ka, contrasts with many records of early Holocene warmth and the Northern Hemisphere summer insolation maximum. We suggest ice margin stability may instead be tied to adjacent ocean temperatures, which reached an optimum in the middle Holocene. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Cronauer, Sandra L.; Briner, Jason P.; Kelley, Samuel E.] Univ Buffalo, Dept Geol, 411 Cooke Hall, Buffalo, NY 14260 USA.
[Zimmerman, Susan R. H.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, 7000 East Ave, Livermore, CA 94550 USA.
[Morlighem, Mathieu] Univ Calif Irvine, Dept Earth Syst Sci, Croul Hall, Irvine, CA 92697 USA.
[Kelley, Samuel E.] Univ Waterloo, Dept Earth & Environm Sci, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada.
RP Briner, JP (reprint author), Univ Buffalo, Dept Geol, 411 Cooke Hall, Buffalo, NY 14260 USA.
NR 53
TC 5
Z9 5
U1 4
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0277-3791
J9 QUATERNARY SCI REV
JI Quat. Sci. Rev.
PD SEP 1
PY 2016
VL 147
SI SI
BP 59
EP 68
DI 10.1016/j.quascirev.2015.08.034
PG 10
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA DU7QK
UT WOS:000382409500005
ER
PT J
AU Leung, MCK
Hutson, MS
Seifert, AW
Spencer, RM
Knudsen, TB
AF Leung, Maxwell C. K.
Hutson, M. Shane
Seifert, Ashley W.
Spencer, Richard M.
Knudsen, Thomas B.
TI Computational modeling and simulation of genital tubercle development
SO REPRODUCTIVE TOXICOLOGY
LA English
DT Article; Proceedings Paper
CT 44th Annual Conference of the European-Teratology-Society
CY SEP 11-14, 2016
CL Dublin, IRELAND
SP European Teratol Soc
DE Agent-based model; Genital tubercle; Hypospadias; Computational
toxicology
ID TISSUE-SPECIFIC ROLES; EPITHELIAL-MESENCHYMAL TRANSFORMATION;
REPRODUCTIVE-TRACT DEVELOPMENT; MATE GENITOURINARY SYSTEM; EXTERNAL
GENITALIA; SONIC-HEDGEHOG; ANDROGEN RECEPTOR; ENDOCRINE DISRUPTION;
URETHRAL DEVELOPMENT; DIVERSE MECHANISMS
AB Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Leung, Maxwell C. K.; Knudsen, Thomas B.] US EPA, Natl Ctr Computat Toxicol, Res Triangle Pk, NC 27711 USA.
[Leung, Maxwell C. K.; Hutson, M. Shane] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA.
[Hutson, M. Shane] Vanderbilt Univ, Vanderbilt Inst Integrat Biosyst Res & Educ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Seifert, Ashley W.] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA.
[Spencer, Richard M.] Lockheed Martin, Res Triangle Pk, NC 27709 USA.
RP Leung, MCK; Knudsen, TB (reprint author), US EPA, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA.
EM leung.maxwell@epa.gov; knudsen.thomas@epa.gov
OI Leung, Maxwell/0000-0003-1530-3306
NR 79
TC 0
Z9 0
U1 3
U2 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0890-6238
J9 REPROD TOXICOL
JI Reprod. Toxicol.
PD SEP
PY 2016
VL 64
SI SI
BP 151
EP 161
DI 10.1016/j.reprotox.2016.05.005
PG 11
WC Reproductive Biology; Toxicology
SC Reproductive Biology; Toxicology
GA DU1GR
UT WOS:000381956700013
PM 27180093
ER
PT J
AU Bakhti, S
Tishchenko, AV
Zambrana-Puyalto, X
Bonod, N
Dhuey, SD
Schuck, PJ
Cabrini, S
Alayoglu, S
Destouches, N
AF Bakhti, Said
Tishchenko, Alexandre V.
Zambrana-Puyalto, Xavier
Bonod, Nicolas
Dhuey, Scott D.
Schuck, P. James
Cabrini, Stefano
Alayoglu, Selim
Destouches, Nathalie
TI Fano-like resonance emerging from magnetic and electric plasmon mode
coupling in small arrays of gold particles
SO SCIENTIFIC REPORTS
LA English
DT Article
ID NEGATIVE REFRACTIVE-INDEX; METAL NANOPARTICLES; SURFACE-PLASMONS;
NANOSTRUCTURES; SCATTERING; METAMATERIALS; NANOCLUSTERS; PERMEABILITY;
FREQUENCIES; RESONATORS
AB In this work we theoretically and experimentally analyze the resonant behavior of individual 3 x 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.
C1 [Bakhti, Said; Tishchenko, Alexandre V.; Destouches, Nathalie] Univ Lyon, UJM St Etienne, CNRS, Inst Opt Grad Sch,Lab Hubert Curien UMR 5516, F-42023 St Etienne, France.
[Zambrana-Puyalto, Xavier; Bonod, Nicolas] Aix Marseille Univ, Cent Marseille, Inst Fresnel, CNRS, Marseille, France.
[Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA.
[Alayoglu, Selim] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA.
RP Destouches, N (reprint author), Univ Lyon, UJM St Etienne, CNRS, Inst Opt Grad Sch,Lab Hubert Curien UMR 5516, F-42023 St Etienne, France.
EM nathalie.destouches@univ-st-etienne.fr
RI Bonod, Nicolas/F-3344-2014
FU LABEX MANUTECH-SISE of Universite de Lyon, within the program
"Investissements d'Avenir" [ANR-10-LABX-0075, ANR-11-IDEX-0007]; ANR
[12-NANO-0006]; A*MIDEX project - Investissements d'Avenir French
Government program [ANR-11-IDEX-0001-02]; Office of Science, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering,
of the U.S. Department of Energy [DE-AC02-05CH11231]
FX N.D. is grateful to Ali Belkacem, from the Chemical Sciences Division
(CSD), Berkeley, for fruitful discussions and his support to initiate
this joint work. This work was supported by the LABEX MANUTECH-SISE
(ANR-10-LABX-0075) of Universite de Lyon, within the program
"Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French
National Research Agency (ANR). The authors thank ANR for its financial
support in the framework of project PHOTOFLEX no. 12-NANO-0006. Work at
Institut Fresnel has been carried out thanks to the support of the
A*MIDEX project (no. ANR-11-IDEX-0001-02) funded by the Investissements
d'Avenir French Government program managed by the French National
Research Agency (ANR). Work at the Molecular Foundry was supported by
the Director, Office of Science, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering, of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.
NR 53
TC 0
Z9 0
U1 22
U2 22
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD SEP 1
PY 2016
VL 6
AR 32061
DI 10.1038/srep32061
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DU7AL
UT WOS:000382365600001
PM 27580515
ER
PT J
AU Hu, ZQ
Wang, XJ
Nan, TX
Zhou, ZY
Ma, BH
Chen, XQ
Jones, JG
Howe, BM
Brown, GJ
Gao, Y
Lin, H
Wang, ZG
Guo, RD
Chen, SY
Shi, XL
Shi, W
Sun, HZ
Budil, D
Liu, M
Sun, NX
AF Hu, Zhongqiang
Wang, Xinjun
Nan, Tianxiang
Zhou, Ziyao
Ma, Beihai
Chen, Xiaoqin
Jones, John G.
Howe, Brandon M.
Brown, Gail J.
Gao, Yuan
Lin, Hwaider
Wang, Zhiguang
Guo, Rongdi
Chen, Shuiyuan
Shi, Xiaoling
Shi, Wei
Sun, Hongzhi
Budil, David
Liu, Ming
Sun, Nian X.
TI Non-Volatile Ferroelectric Switching of Ferromagnetic Resonance in
NiFe/PLZT Multiferroic Thin Film Heterostructures
SO SCIENTIFIC REPORTS
LA English
DT Article
ID ELECTRIC-FIELD CONTROL; ROOM-TEMPERATURE; OXIDE HETEROSTRUCTURES;
MAGNETIC-ANISOTROPY; SPIN POLARIZATION; TUNNEL-JUNCTIONS; ATOMIC LAYERS;
VOLTAGE; MEMORY; CHARGE
AB Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Nonvolatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices.
C1 [Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Chen, Xiaoqin; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Sun, Nian X.] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA.
[Hu, Zhongqiang; Jones, John G.; Howe, Brandon M.; Brown, Gail J.] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA.
[Zhou, Ziyao; Liu, Ming] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China.
[Zhou, Ziyao; Liu, Ming] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China.
[Ma, Beihai] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Budil, David] Northeastern Univ, Dept Chem, Boston, MA 02115 USA.
RP Sun, NX (reprint author), Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA.; Liu, M (reprint author), Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China.; Liu, M (reprint author), Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China.
EM mingliu@mail.xjtu.edu.cn; n.sun@neu.edu
RI Gao, Yuan/E-4277-2016; Liu, Ming/B-4143-2009
OI Gao, Yuan/0000-0002-2444-1180; Liu, Ming/0000-0002-6310-948X
FU National Science Foundation [1160504]; NSF Nanosystems Engineering
Research Center for Translational Applications of Nanoscale Multiferroic
Systems TANMS; W.M. Keck Foundation; Air Force Research Laboratory
[FA8650-14-C-5706]; U.S. Department of Energy, Vehicle Technologies
Program [DE-AC02-06CH11357]; Air Force Office of Scientific Research
(AFOSR)
FX This work was supported by the National Science Foundation Award
1160504, NSF Nanosystems Engineering Research Center for Translational
Applications of Nanoscale Multiferroic Systems TANMS, the W.M. Keck
Foundation, and the Air Force Research Laboratory through Contract No.
FA8650-14-C-5706. Work at Argonne was funded by the U.S. Department of
Energy, Vehicle Technologies Program, under Contract No.
DE-AC02-06CH11357. B.H. and G.B. gratefully acknowledge the financial
support from the Air Force Office of Scientific Research (AFOSR).
NR 54
TC 0
Z9 0
U1 34
U2 42
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD SEP 1
PY 2016
VL 6
AR 32408
DI 10.1038/srep32408
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DU6MS
UT WOS:000382329800001
PM 27581071
ER
PT J
AU Alazizi, A
Smith, D
Erdemir, A
Kim, SH
AF Alazizi, Ala
Smith, David
Erdemir, Ali
Kim, Seong H.
TI Silane Treatment of Diamond-Like Carbon: Improvement of Hydrophobicity,
Oleophobicity, and Humidity Tolerance of Friction
SO TRIBOLOGY LETTERS
LA English
DT Article
DE Diamond-like carbon; DLC; Humidity tolerance; Silane treatment
ID TRIBOLOGICAL MOISTURE SENSITIVITY; CHEMICAL-VAPOR-DEPOSITION; RUN-IN
BEHAVIOR; WATER-ADSORPTION; INTERNAL-STRESS; FILMS; WEAR; LUBRICATION;
SI; SURFACES
AB Hydrophobicity and humidity tolerance of the low friction behavior of hydrogenated diamond-like carbon (H-DLC) were improved via surface modification using vapor-phase chemical reactions with organic silanes at 250-280 degrees C. Water and hexadecane contact angles increased after silane treatments. Unlike pristine H-DLC which loses ultra-low friction behavior as soon as relative humidity (RH) increases to a few percent, silane-treated H-DLC films maintained a low friction behavior (with a coefficient less than 0.08) up to 30 % RH. Elemental analysis of the transfer films accumulated on the balls after friction tests indicated that the silane molecules not only decorated the topmost surface of the H-DLC, but also penetrated into and reacted with the subsurface. Surface roughness, water adsorption behavior, and hardness measurements also showed that silane treatment affected the surface morphology and subsurface porosity of the H-DLC film.
C1 [Alazizi, Ala; Kim, Seong H.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.
[Alazizi, Ala; Kim, Seong H.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
[Smith, David] SilcoTek Corp, Bellefonte, PA 16823 USA.
[Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.; Kim, SH (reprint author), Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
EM shkim@engr.psu.edu
FU National Science Foundation [CMMI-1131128]; U.S. Department of Energy,
Office of Energy Efficiency and Renewable Energy, Vehicle Technologies
Office [DE-AC02-06CH11357]
FX This work was supported by the National Science Foundation (Grant No.
CMMI-1131128). Additional support was provided by the U.S. Department of
Energy, Office of Energy Efficiency and Renewable Energy, Vehicle
Technologies Office under Contract DE-AC02-06CH11357. The authors
acknowledged Dr. Osman Eryilmaz for preparing H-DLC samples on silicon
substrates for this study.
NR 50
TC 0
Z9 0
U1 13
U2 13
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1023-8883
EI 1573-2711
J9 TRIBOL LETT
JI Tribol. Lett.
PD SEP
PY 2016
VL 63
IS 3
AR 43
DI 10.1007/s11249-016-0733-4
PG 11
WC Engineering, Chemical; Engineering, Mechanical
SC Engineering
GA DU7KD
UT WOS:000382392200014
ER
PT J
AU Dwivedi, D
Mohanty, BP
Lesikar, BJ
AF Dwivedi, Dipankar
Mohanty, Binayak P.
Lesikar, Bruce J.
TI Impact of the Linked Surface Water-Soil Water-Groundwater System on
Transport of E. coli in the Subsurface
SO WATER AIR AND SOIL POLLUTION
LA English
DT Article
DE E. coli transport; Seasonal variability; Septic tanks; Surface water and
groundwater interaction
ID SATURATED POROUS-MEDIA; ALLUVIAL GRAVEL AQUIFER; ESCHERICHIA-COLI; SAND
COLUMNS; CRYPTOSPORIDIUM OOCYSTS; HYDRAULIC CONDUCTIVITY; BACTERIAL
TRANSPORT; VIRUS TRANSPORT; MODEL; FILTRATION
AB Escherichia coli (E. coli) contamination of groundwater (GW) and surface water (SW) occurs significantly through the subsurface from onsite wastewater treatment systems (OWTSs). However, E. coli transport in the subsurface remains inadequately characterized at the field scale, especially within the vadose zone. Therefore, the aim of this research is to investigate the impact of groundwater fluctuations (e.g., recharging, discharging conditions) and variable conditions in the vadose zone (e.g., pulses of E. coli flux) by characterizing E. coli fate and transport in a linked surface watersoil water-groundwater system (SW-SoW-GW). In particular, this study characterizes the impact of flow regimes on E. coli transport in the subsurface and evaluates the sensitivity of parameters that control the transport of E. coli in the SW-SoW-GW system. This study was conducted in Lake Granbury, which is an important water supply in north-central Texas providing water for over 250,000 people. Results showed that there was less removal of E. coli during groundwater recharge events as compared to GW discharge events. Also, groundwater and surface water systems largely control E. coli transport in the subsurface; however, temporal variability of E. coli can be explained by linking the SW-SoW-GW system. Moreover, sensitivity analysis revealed that saturated water content of the soil, total retention rate coefficient, and hydraulic conductivity are important parameters for E. coli transport in the subsurface.
C1 [Dwivedi, Dipankar] Lawrence Berkeley Natl Lab, Earth & Environm Sci Area, Berkeley, CA 94720 USA.
[Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA.
[Lesikar, Bruce J.] Kaselco LLC Texas, Shiner, TX 77984 USA.
RP Dwivedi, D (reprint author), Lawrence Berkeley Natl Lab, Earth & Environm Sci Area, Berkeley, CA 94720 USA.
EM DDwivedi@lbl.gov
FU EPA 319(h) grant; National Institute of Environmental Health Sciences
[5R01ES015634]; Texas Water Resources Institute; Texas AM [02-130003]
FX This research was supported by EPA 319(h) grant for TMDL in Texas
streams and partly supported by the National Institute of Environmental
Health Sciences (grant 5R01ES015634), Texas Water Resources Institute,
and Texas A&M support a/c 02-130003. The content is solely the
responsibility of the authors and does not necessarily represent the
official views of the funding agencies.
NR 73
TC 0
Z9 0
U1 17
U2 17
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0049-6979
EI 1573-2932
J9 WATER AIR SOIL POLL
JI Water Air Soil Pollut.
PD SEP
PY 2016
VL 227
IS 9
AR 351
DI 10.1007/s11270-016-3053-2
PG 16
WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water
Resources
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences;
Water Resources
GA DV2OY
UT WOS:000382761400059
ER
PT J
AU Cardenas, AJP
O'Hagan, M
AF Cardenas, Allan Jay P.
O'Hagan, Molly
TI Crystal structure of dimethylformamidium
bis(trifluoromethanesulfonyl)amide: an ionic liquid
SO ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS
LA English
DT Article
DE crystal structure; ionic liquid; electrolyte; hydrogen bond
AB At 100 K, the title molecular salt, C3H8NO+center dot C2F6NO4S2-, has orthorhombic (P2(1)2(1)2(1)) symmetry; the amino H atom of bis(trifluoromethanesulfonyl) amine (HNTf2) was transferred to the basic O atom of dimethylformamide (DMF) when the ionic liquid components were mixed. The structure displays an O-H center dot center dot center dot N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C-H center dot center dot center dot O interaction, generating an R-2(2) (7) loop. A further very weak C-H center dot center dot center dot O interaction generates an [001] chain.
C1 [Cardenas, Allan Jay P.; O'Hagan, Molly] Pacific Northwest Natl Lab, POB 999 MSIN K2-57, Richland, WA 99352 USA.
RP O'Hagan, M (reprint author), Pacific Northwest Natl Lab, POB 999 MSIN K2-57, Richland, WA 99352 USA.
EM Molly.OHagan@pnnl.gov
NR 9
TC 0
Z9 0
U1 0
U2 0
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 2056-9890
J9 ACTA CRYSTALLOGR E
JI Acta Crystallogr. Sect. E.-Crystallogr. Commun.
PD SEP
PY 2016
VL 72
BP 1290
EP +
DI 10.1107/S2056989016012251
PN 9
PG 7
WC Crystallography
SC Crystallography
GA DU6CL
UT WOS:000382301000016
PM 27920919
ER
PT J
AU Hong, YC
Hensley, A
McEwen, JS
Wang, Y
AF Hong, Yongchun
Hensley, Alyssa
McEwen, Jean-Sabin
Wang, Yong
TI Perspective on Catalytic Hydrodeoxygenation of Biomass Pyrolysis Oils:
Essential Roles of Fe-Based Catalysts
SO CATALYSIS LETTERS
LA English
DT Article
DE Biofuel; Hydrodeoxygenation Lignin; Fe catalyst; Bimetallic catalyst;
Pyrolysis oil
ID GAS-PHASE HYDRODEOXYGENATION; H-2 DISSOCIATIVE ADSORPTION;
FISCHER-TROPSCH SYNTHESIS; 1ST PRINCIPLES; BIO-OIL; M-CRESOL; GUAIACOL
HYDRODEOXYGENATION; HYDROPROCESSING CATALYSTS; HYDROTREATING CATALYSTS;
BIODIESEL PRODUCTION
AB Catalytic fast pyrolysis is the most promising approach for biofuel production due to its simple process and versatility to handle lignocellulosic biomass feedstocks with varying and complex compositions. Compared with in situ catalytic fast pyrolysis, ex situ catalytic pyrolysis has the flexibility of optimizing the pyrolysis step and catalytic process individually to improve the quality of pyrolysis oil (stability, oxygen content, acid number, etc.) and to maximize the carbon efficiency in the conversion of biomass to pyrolysis oil. Hydrodeoxygenation is one of the key catalytic functions in ex situ catalytic fast pyrolysis. Recently, Fe-based catalysts have been reported to exhibit superior catalytic properties in the hydrodeoxygenation of model compounds in pyrolysis oil, which potentially makes the ex situ pyrolysis of biomass commercially viable due to the abundance and low cost of Fe. Here, we briefly summarize the recent progress on Fe-based catalysts for the hydrodeoxygenation of biomass, and provide perspectives on how to further improve Fe-based catalysts (activity and stability) for their potential applications in the emerging area of biomass conversion.
C1 [Hong, Yongchun; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
[Hong, Yongchun; Wang, Yong] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
[McEwen, Jean-Sabin] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA.
[McEwen, Jean-Sabin] Washington State Univ, Dept Chem, Pullman, WA 99164 USA.
RP Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.; Wang, Y (reprint author), Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
EM yong.wang@pnnl.gov
FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division
of Chemical Sciences, Geosciences, and Biosciences [DE-FG02-05ER15712,
DE-SC0014560]; Department of Energy's Office of Biological and
Environmental Research
FX Y. W. and Y. H. acknowledge the financial support from the US Department
of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical
Sciences, Geosciences, and Biosciences under award numbers
DE-FG02-05ER15712. J.-S. M. and A. H. acknowledge the financial support
from the US Department of Energy (DOE), Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences under award
number DE-SC0014560. A portion of the research was performed at
Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research and located at Pacific
Northwest National Laboratory (PNNL).
NR 129
TC 1
Z9 1
U1 39
U2 44
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1011-372X
EI 1572-879X
J9 CATAL LETT
JI Catal. Lett.
PD SEP
PY 2016
VL 146
IS 9
BP 1621
EP 1633
DI 10.1007/s10562-016-1770-1
PG 13
WC Chemistry, Physical
SC Chemistry
GA DU2AD
UT WOS:000382011600001
ER
PT J
AU Magee, JW
Palomino, RM
White, MG
AF Magee, Joseph W.
Palomino, Robert M.
White, Michael G.
TI Infrared Spectroscopy Investigation of Fe-Promoted Rh Catalysts
Supported on Titania and Ceria for CO Hydrogenation
SO CATALYSIS LETTERS
LA English
DT Article
DE Heterogeneous catalysis; Infrared spectroscopy; CO Hydrogenation; FeRh
alloy; Ethanol
ID WATER-GAS-SHIFT; CARBON-MONOXIDE; HIGH-PRESSURE; RHODIUM CATALYSTS;
SIO2-SUPPORTED RH; ETHANOL SYNTHESIS; IRON CATALYSTS; FT-IR; SYNGAS;
ADSORPTION
AB The nature of the promotional effect of Fe addition to Rh/TiO2 and Rh/CeO2 catalysts for CO hydrogenation was investigated using FT-IR spectroscopy in an ultrahigh vacuum compatible transmission IR cell. CO adsorption experiments on Rh and FeRh showed vibrational signatures characteristic of linear and bridge bound CO on Rh-0 as well as geminal-dicarbonyl species associated with Rh+. Compared to TiO2, the CeO2-supported catalysts show increased dispersion, reflected by decreased particle size, and a lower signal for linear versus geminal-dicarbonyl bonded CO. The absorption frequencies for CO on Rh/CeO2 are also redshifted relative to Rh/TiO2, which results from a weaker Rh-CO interaction, likely due to the increased reducibility of the CeO2 support. Upon addition of Fe, a new spectral feature is observed and attributed to CO bound to Rh in close contact with Fe, likely as a surface alloy. CO hydrogenation on (Fe)Rh catalysts on both supports was also studied. Compared to bare Rh, Fe containing catalysts promote formate and methoxy species on the surface at lower temperature (180 A degrees C), which suggests an enhancement in methanol selectivity by Fe addition. At higher temperatures (220 A degrees C), the spectral features appear similar, further confirming the role of Fe as a disrupter of large Rh-0 crystallites and regulator of CO dissociation and CH4 formation.
C1 [Magee, Joseph W.; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Palomino, Robert M.; White, Michael G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP White, MG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; White, MG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM jmagee@bnl.gov; rpalomino@bnl.gov; mgwhite@bnl.gov
OI Palomino, Robert/0000-0003-4476-3512
FU Brookhaven National Laboratory [DE-SC0012704]; Division of Chemical
Sciences, Geosciences, and Biosciences within the Office of Basic Energy
Sciences
FX The work was carried out at Brookhaven National Laboratory under
Contract No. DE-SC0012704 with the U.S Department of Energy, Office of
Science, and supported by its Division of Chemical Sciences,
Geosciences, and Biosciences within the Office of Basic Energy Sciences.
The authors gratefully acknowledge Dr. Jordi Llorca of the Technical
University of Catalonia (Barcelona, Spain) for performing electron
microscopy characterization of the catalysts used in these experiments.
NR 47
TC 0
Z9 0
U1 17
U2 25
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1011-372X
EI 1572-879X
J9 CATAL LETT
JI Catal. Lett.
PD SEP
PY 2016
VL 146
IS 9
BP 1771
EP 1779
DI 10.1007/s10562-016-1801-y
PG 9
WC Chemistry, Physical
SC Chemistry
GA DU2AD
UT WOS:000382011600014
ER
PT J
AU Dane, M
Gonis, A
AF Dane, Markus
Gonis, Antonios
TI On the v-Representabilty Problem in Density Functional Theory:
Application to Non-Interacting Systems
SO COMPUTATION
LA English
DT Article
DE density functional theory; v-representability; constrained search
ID SELF-INTERACTION PROBLEM; UPSILON-REPRESENTABILITY; ELECTRON-DENSITIES;
CONSTRUCTION; ORBITALS
AB Based on a computational procedure for determining the functional derivative with respect to the density of any antisymmetric N- particle wave function for a non-interacting system that leads to the density, we devise a test as to whether or not a wave function known to lead to a given density corresponds to a solution of a Schrdinger equation for some potential. We examine explicitly the case of non-interacting systems described by Slater determinants. Numerical examples for the cases of a one-dimensional square-well potential with infinite walls and the harmonic oscillator potential illustrate the formalism.
C1 [Dane, Markus; Gonis, Antonios] Lawrence Livermore Natl Lab, POB 808,L-372, Livermore, CA 94551 USA.
RP Dane, M (reprint author), Lawrence Livermore Natl Lab, POB 808,L-372, Livermore, CA 94551 USA.
EM daene1@llnl.gov; gonis1@llnl.gov
RI Dane, Markus/H-6731-2013
OI Dane, Markus/0000-0001-9301-8469
NR 22
TC 1
Z9 1
U1 3
U2 3
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2079-3197
J9 COMPUTATION
JI Computation
PD SEP
PY 2016
VL 4
IS 3
AR 24
DI 10.3390/computation4030024
PG 13
WC Mathematics, Interdisciplinary Applications
SC Mathematics
GA DU8RB
UT WOS:000382480300002
ER
PT J
AU Houde, S
Spurlock, CA
AF Houde, Sebastien
Spurlock, C. Anna
TI Minimum Energy Efficiency Standards for Appliances: Old and New Economic
Rationales
SO ECONOMICS OF ENERGY & ENVIRONMENTAL POLICY
LA English
DT Article
DE Appliances; Minimum Energy Efficiency Standards; Energy Efficiency
Policy
ID FUEL-ECONOMY; QUALITY STANDARDS; DISCOUNT RATES; GASOLINE PRICES;
COMPETITION; COSTS; CONSUMPTION; INNOVATION; PURCHASE; POLICIES
AB We revisit Hausman and Joskow (1982)'s economic rationales for appliance minimum energy efficiency standards. In addition to the four market failures they argued could justify appliance standards energy prices below marginal social cost, consumers underestimating energy prices, consumer discount rates above social discount rates, and principal-agent problems we discuss two additional market failures that are relevant and potentially economically important in this context: market power and innovation market failures. We highlight puzzles uncovered by recent empirical results, and suggest directions future research should take to better understand the normative implications of appliance standards.
C1 [Houde, Sebastien] Univ Maryland, Dept Agr & Resource Econ, College Pk, MD 20742 USA.
[Spurlock, C. Anna] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Houde, S (reprint author), Univ Maryland, Dept Agr & Resource Econ, College Pk, MD 20742 USA.
EM shoude@umd.edu; caspurlock@lbl.gov
FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office
of Building Technology, State, and Community Programs, of the U.S.
Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Building Technology, State, and
Community Programs, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. Thank you to Catherine Wolfram, Paul Joskow,
Louis-Gaetan Giraudet, Larry Dale, and Louis-Benoit Desroches for
comments and suggestions.
NR 68
TC 0
Z9 0
U1 4
U2 4
PU INT ASSOC ENERGY ECONOMICS
PI CLEVELAND
PA 28790 CHAGRIN BLVD, STE 210, CLEVELAND, OH 44122 USA
SN 2160-5882
EI 2160-5890
J9 ECON ENERGY ENV POL
JI Econ. Energy Environ. Policy
PD SEP
PY 2016
VL 5
IS 2
BP 65
EP 83
DI 10.5547/2160-5890.5.2.shou
PG 19
WC Economics; Environmental Studies
SC Business & Economics; Environmental Sciences & Ecology
GA DU3HL
UT WOS:000382101300005
ER
PT J
AU Fleck, SC
Churchwell, MI
Doerge, DR
Teeguarden, JG
AF Fleck, Stefanie C.
Churchwell, Mona I.
Doerge, Daniel R.
Teeguarden, Justin G.
TI Urine and serum biomonitoring of exposure to environmental estrogens II:
Soy isoflavones and zearalenone in pregnant women
SO FOOD AND CHEMICAL TOXICOLOGY
LA English
DT Article
DE Soy isoflavones; Zearalenone; Exposure; Pregnancy; Biomonitoring;
Endocrine disruptors
ID SPRAGUE-DAWLEY RATS; BREAST-CANCER RISK; PHYSIOLOGICAL CONCENTRATIONS;
MYCOTOXIN EXPOSURE; PLACENTAL-TRANSFER; RECEPTOR-ALPHA; GENISTEIN;
DIETARY; GROWTH; PHARMACOKINETICS
AB Urine and serum biomonitoring was used to measure internal exposure to selected dietary estrogens in a cohort of 30 pregnant women. Exposure was measured over a period comprising one-half day in the field (6 h) and one day in a clinic (24 h). Biomonitoring of the dietary phytoestrogens genistein (GEN), daidzein (DDZ) and equol (EQ), as well as the mycoestrogen, zearalenone (ZEN) and its congeners, was conducted using UPLC-MS/MS. Biomonitoring revealed evidence of internal exposure to naturally occurring dietary estrogens during pregnancy. Urinary concentrations of total GEN, DDZ and EQ were similar to levels reported for general adult U.S. population. Measurable concentrations of total (parent and metabolites) GEN, DDZ and EQ were present in 240, 207 and 2 of 270 serum samples, respectively. Six out of 30 subjects had measurable concentrations of unconjugated GEN and/or DDZ in serum between 0.6 and 7.1 nM. Urine to serum total isoflavone ratios for GEN, DDZ and EQ were 13, 47, and 180, respectively. ZEN and its reductive metabolite, alpha-zearalenol (alpha-ZEL), were present in pregnant women (11 out of 30 subjects) as conjugates at levels near the limit of quantification. The average total urinary concentration was 0.10 mu g/L for ZEN and 0.11 mu g/L for alpha-ZEL. (C) 2016 Published by Elsevier Ltd.
C1 [Fleck, Stefanie C.; Churchwell, Mona I.; Doerge, Daniel R.] US FDA, Div Biochem Toxicol, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA.
[Teeguarden, Justin G.] Pacific Northwest Natl Lab, Hlth Effects & Exposure Sci, Richland, WA 99352 USA.
[Teeguarden, Justin G.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA.
RP Teeguarden, JG (reprint author), 902 Battelle Blvd, Richland, WA 99352 USA.
EM stefanie.fleck@fda.hhs.gov; mona.churchwell@fda.hhs.gov;
daniel.doerge@fda.hhs.gov; jt@pnnl.gov
NR 46
TC 1
Z9 1
U1 13
U2 15
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0278-6915
EI 1873-6351
J9 FOOD CHEM TOXICOL
JI Food Chem. Toxicol.
PD SEP
PY 2016
VL 95
BP 19
EP 27
DI 10.1016/j.fct.2016.05.021
PG 9
WC Food Science & Technology; Toxicology
SC Food Science & Technology; Toxicology
GA DT9PX
UT WOS:000381835900003
PM 27255803
ER
PT J
AU Bowman, WM
Bowman, JD
AF Bowman, Warigia M.
Bowman, J. David
TI Censorship or self-control? Hate speech, the state and the voter in the
Kenyan election of 2013
SO JOURNAL OF MODERN AFRICAN STUDIES
LA English
DT Article
ID SOCIAL MEDIA; POLITICAL-CHANGE; INTERNET; MOBILIZATION; VIOLENCE;
DEMOCRATIZATION; AFRICA
AB In 2013, the Kenyan government adopted a hybrid censorship strategy that relied on regulation, the presence of a strong security state, and the willingness of Kenyans to self-censor. The goal of this censorship strategy was to ensure a peaceful election. This study examines two issues. First, it investigates steps taken by the Kenyan government to minimise hate speech. Second, it explores how efforts to minimise hate speech affected citizen communications over SMS during the 2013 election. An initial round of qualitative data was gathered (n = 101) through a structured exit interview administered election week. A statistically significant, representative sample of quantitative data was gathered by a reputable Kenyan polling firm (n 2000). Both sets of empirical data indicate that Kenyan citizens cooperated in large part with efforts to limit political speech. Yet speech was not always completely peaceful'. Rather, voters used electronic media to insult, offend, and express contentious political views as well as express peace speech. This study argues that the empirical evidence suggests hate speech over text messages during the Kenyan election declined between 2008 and 2013.
C1 [Bowman, Warigia M.] Univ Arkansas, Clinton Sch Publ Serv, 1200 President Clinton Ave, Little Rock, AR 72201 USA.
[Bowman, J. David] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Bowman, WM (reprint author), Univ Arkansas, Clinton Sch Publ Serv, 1200 President Clinton Ave, Little Rock, AR 72201 USA.
EM wbowman@clintonschool.uasys.edu; bowmanjd@ornl.gov
FU University of Arkansas Clinton School of Public Service
FX We wish to express our deepest gratitude for the work of our colleagues
on the Kenya Information Communications Technology List ('Kictanet').
Specifically, we would like to thank our colleagues Michael Kipsang
Bullut, Grace Githaiga, Wambui Ngugi, Brian Munyao Longwe, Mwendwa
Kivuva, Abraham Mulwo, Muchiri Nyaggah, and Norbert Wildermuth for
helping to collect the data that form the foundation of this paper.
Thank you also to the University of Arkansas Clinton School of Public
Service for funding part of the research upon which this paper is based.
We would also like to thank participants of the Kenya Elections Workshop
held in June 2013 for their comments, which helped improve this paper.
We are particularly grateful to Tom Wolf of IPSOS Synovate. We would
also like to thank Dorina Bekoe, Fodei Batty, Paola Cavallari and
Florence Muema as well as two anonymous reviewers from JMAS for their
valuable insights. Finally, my thanks go to Kimani Njogu of Twaweza
Publishing, for his elegant Kiswahili translations.
NR 53
TC 0
Z9 0
U1 7
U2 7
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-278X
EI 1469-7777
J9 J MOD AFR STUD
JI J. Mod. Afr. Stud.
PD SEP
PY 2016
VL 54
IS 3
BP 495
EP 531
DI 10.1017/S0022278X16000380
PG 37
WC Area Studies
SC Area Studies
GA DU7FR
UT WOS:000382379300006
ER
PT J
AU Duenas, ME
Carlucci, L
Lee, YJ
AF Duenas, Maria Emilia
Carlucci, Laura
Lee, Young Jin
TI Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at
High-Spatial Resolution
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
DE Mass spectrometry imaging; MALDI; Matrix; Recrystallization; Maize;
Lipids; High spatial resolution
ID MASS-SPECTROMETRY; LATENT FINGERMARKS; TOF MS; TISSUE; SUBLIMATION;
METABOLITES; EFFICIENCY
AB Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 mu m spatial resolution.
C1 [Duenas, Maria Emilia; Carlucci, Laura; Lee, Young Jin] US DOE, Ames Lab, Ames, IA 50011 USA.
[Duenas, Maria Emilia; Lee, Young Jin] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA.
RP Lee, YJ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.; Lee, YJ (reprint author), Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA.
EM yjlee@iastate.edu
FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division
of Chemical Sciences, Geosciences, and Biosciences; DOE
[DE-AC02-07CH11358]
FX The authors acknowledge support for this work by the US Department of
Energy (DOE), Office of Basic Energy Sciences, Division of Chemical
Sciences, Geosciences, and Biosciences. The Ames Laboratory is operated
by Iowa State University under DOE Contract DE-AC02-07CH11358.
NR 13
TC 0
Z9 0
U1 11
U2 11
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1044-0305
EI 1879-1123
J9 J AM SOC MASS SPECTR
JI J. Am. Soc. Mass Spectrom.
PD SEP
PY 2016
VL 27
IS 9
BP 1575
EP 1578
DI 10.1007/s13361-016-1422-0
PG 4
WC Biochemical Research Methods; Chemistry, Analytical; Chemistry,
Physical; Spectroscopy
SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy
GA DT1YR
UT WOS:000381278500016
PM 27349253
ER
PT J
AU Bannister, ME
Meyer, FW
Hijazi, H
Unocic, KA
Garrison, LM
Parish, CM
AF Bannister, M. E.
Meyer, F. W.
Hijazi, H.
Unocic, K. A.
Garrison, L. M.
Parish, C. M.
TI Surface morphologies of He-implanted tungsten
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article; Proceedings Paper
CT 21st International Workshop on Inelastic Ion-Surface Collisions (IISC)
CY OCT 18-23, 2015
CL Donostia San Sebastian, SPAIN
DE He nanofuzz formation; Tungsten surface modification; Plasma wall
interactions
ID THERMAL-DESORPTION; HELIUM
AB Surface morphologies of tungsten surfaces, both polycrystalline and single-crystal [1 1 0], were investigated using SEM and FIB/SEM techniques after implantations at elevated surfaces temperatures (1200-1300 K) using well-characterized, mono-energetic He ion beams with a wide range of ion energies (218 eV-250 keV). Nanofuzz was observed on polycrystalline tungsten (PCW) following implantation of 100-keV He ions at a flux threshold of 0.9 x 10(16) cm(-2) s(-1), but not following 200-keV implantations with similar fluxes. No nanofuzz formation was observed on single-crystal [1 1 0] tungsten (SCW), despite fluxes exceeding those demonstrated previously to produce nanofuzz on polycrystalline tungsten. Pre-damaging the single-crystal tungsten with implanted C impurity interstitials did not significantly affect the, surface morphologies resulting from the high-flux He ion implantations. The main factor leading to the different observed surface structures for the pristine and C-implanted single-crystal W samples appeared to be the peak He ion flux characterizing the different exposures. It was speculated that nano fuzz formation was not observed for any SCW target exposures because of increased incubation fluences required for such targets. (C) 2016 Published by Elsevier B.V.
C1 [Bannister, M. E.; Meyer, F. W.; Hijazi, H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Unocic, K. A.; Garrison, L. M.; Parish, C. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA.
[Hijazi, H.] Aix Marseille Univ, CNRS, PIIM UMR 7345, F-13397 Marseille, France.
RP Bannister, ME (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
EM bannisterme@ornl.gov
RI Parish, Chad/J-8381-2013; Garrison, Lauren/S-2526-2016;
OI Garrison, Lauren/0000-0002-5673-8333; Bannister, Mark
E./0000-0002-9572-8154
NR 30
TC 0
Z9 0
U1 6
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
EI 1872-9584
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD SEP 1
PY 2016
VL 382
BP 76
EP 81
DI 10.1016/j.nimb.2016.05.003
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DU7RY
UT WOS:000382413500015
ER
PT J
AU Dong, T
Van Wychen, S
Nagle, N
Pienkos, PT
Laurens, LML
AF Dong, T.
Van Wychen, S.
Nagle, N.
Pienkos, P. T.
Laurens, L. M. L.
TI Impact of biochemical composition on susceptibility of algal biomass to
acid-catalyzed pretreatment for sugar and lipid recovery
SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
LA English
DT Article
DE Algae; Biorefinery; Biomass composition; Lipids; Carbohydrates;
Bioethanol; Renewable diesel; Process economics
ID HIGH-PRESSURE HOMOGENIZATION; CELL DISRUPTION; ASSISTED EXTRACTION;
BIOFUELS PRODUCTION; CHLORELLA-VULGARIS; MICROALGAE; OIL; HYDROLYSIS;
PARAMETERS; ULTRASOUND
AB One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We focus on the impact of compositional characteristics of biomass on the susceptibility to pretreatment in order to maximize the valorization of algal biomass conversion for biofuels and bioproducts. The release of monomeric carbohydrates in the aqueous phase and extractability of the lipid fraction was measured based a response surface methodology to find significant explanatory variables and interaction terms. We studied the effect of harvest timing on the conversion yields, using three algal strains; Chlorella vulgaris and Scenedesmus acutus and Nannochloropsis granulata representing three different nutritionalmetabolic phases. Four cultivation conditions of high (>= 90 gallon gasoline equivalent/ton biomass) value for a combined sugar- and lipid-based biofuels process were identified. These four conditions represent eithermid or late stage harvest cultivation regimes. The results indicate that acid pretreatment has potential to be applicable for a vast range of biomass samples to obtain high energy yields, but that the exact conditions and optima are dependent on the strain and likely the starting composition of the biomass. (C) 2016 The Authors. Published by Elsevier B.V.
C1 [Dong, T.; Van Wychen, S.; Nagle, N.; Pienkos, P. T.; Laurens, L. M. L.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA.
RP Laurens, LML (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM Lieve.Laurens@nrel.gov
FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy as part of the BioEnergy Technology Office (BETO) [1.3.4.300,
1.3.1.200, 1.3.4.201]; National Renewable Energy, Sustainable Algal
Biofuels Consortium project - DOE [DE-EE0003372]
FX We thank Drs. JohnMcGowen and Thomas Dempster (AzCATI, ASU, Mesa, AZ)
for providing the biomass used for this work. We acknowledge technical
assistance from Nicholas Sweeney and Deborah Hyman for the help with
microscopy and HPLC analysis of carbohydrates, respectively, for this
work. The work presented here was supported by the U.S. Department of
Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable
Energy as part of the BioEnergy Technology Office (BETO) task
#1.3.4.300, 1.3.1.200 and 1.3.4.201, and as part of the Sustainable
Algal Biofuels Consortium project, funded under DOE Award #
DE-EE0003372.
NR 29
TC 0
Z9 0
U1 16
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-9264
J9 ALGAL RES
JI Algal Res.
PD SEP
PY 2016
VL 18
BP 69
EP 77
DI 10.1016/j.algal.2016.06.004
PG 9
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA DT8NV
UT WOS:000381748800009
ER
PT J
AU Novoveska, L
Zapata, AKM
Zabolotney, JB
Atwood, MC
Sundstrom, ER
AF Novoveska, Lucie
Zapata, Anastasia K. M.
Zabolotney, Jeffrey B.
Atwood, Matthew C.
Sundstrom, Eric R.
TI Optimizing microalgae cultivation and wastewater treatment in
large-scale offshore photobioreactors
SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
LA English
DT Article
DE Microalgae cultivation; Polyculture; Wastewater treatment; Offshore
photobioreactors; Biofuel
ID ALGAL BIOFUEL PRODUCTION; PHYTOPLANKTON COMMUNITIES; DIVERSITY;
COMPETITION; STABILITY; BIODIESEL; DEMAND; BATCH
AB Algae Systems LLC has designed and implemented a novel approach to wastewater treatment in which municipal wastewater is used to cultivate microalgae in modular, offshore photobioreactors (PBRs). At the Algae Systems plant in Daphne AL, this process was used to treat up to 50,000 gal/day of incoming raw wastewater. A combination of algae nutrient uptake, aeration by photosynthetically produced oxygen, and dewatering via suspended air flotation removed 75% of total nitrogen, 93% of total phosphorus and 92% BOD from influent wastewater. Offshore PBRs contained evolving polycultures of microalgae and associated heterotrophs, with community composition shifting based on the dynamic external and internal environment. During one year of operation, microalgae composition shifted from dominance of Scenedesmus dimorphus to a diverse polyculture dominated by genus Chlorella, Cryptomonas and Scenedesmus. "The more, the merrier" approach to species richness produced resilient communities, enabling efficient nutrient uptake due to niche complementarity and eliminating process downtime due to biological disruptions. The resulting biomass was suitable for fuel conversion via hydrothermal liquefaction due to consistent lipid content, low ash content, and consistent elemental composition. Biomass production rates ranged from 3.5 to 22.7 g/m(2)/day during continuous operation, with productivity predominantly driven by temperature and frequency of harvest. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Novoveska, Lucie; Zapata, Anastasia K. M.; Zabolotney, Jeffrey B.; Atwood, Matthew C.; Sundstrom, Eric R.] Algae Syst LLC, 6321 Jordan Rd, Daphne, AL 36526 USA.
[Zabolotney, Jeffrey B.] Univ S Alabama, Dept Biol, Mobile, AL 36688 USA.
[Novoveska, Lucie] Dauphin Isl Sea Lab, 101 Bienville Blvd, Dauphin Isl, AL 36528 USA.
[Zapata, Anastasia K. M.] Algae Energy, 2460 Ind Pk Blvd, Cumming, GA 30041 USA.
[Sundstrom, Eric R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Novoveska, L (reprint author), Algae Syst LLC, 6321 Jordan Rd, Daphne, AL 36526 USA.; Novoveska, L (reprint author), Dauphin Isl Sea Lab, 101 Bienville Blvd, Dauphin Isl, AL 36528 USA.
FU Algae Systems LLC
FX Funding was provided by Algae Systems LLC. We would like to thank our
talented offshore crew and the operation team. Tom Dempster (AzCATI) and
Eric Brunden provided valuable insight. We thank Daphne Utilities for
their continuous support. We also thank two anonymous reviewers for
their critical contributions to the manuscript.
NR 52
TC 4
Z9 4
U1 29
U2 50
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-9264
J9 ALGAL RES
JI Algal Res.
PD SEP
PY 2016
VL 18
BP 86
EP 94
DI 10.1016/j.algal.2016.05.033
PG 9
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA DT8NV
UT WOS:000381748800011
ER
PT J
AU Pegallapati, AK
Frank, ED
AF Pegallapati, Ambica K.
Frank, Edward D.
TI Energy use and greenhouse gas emissions from an algae fractionation
process for producing renewable diesel
SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
LA English
DT Article
DE Algae; Life-cycle analysis; Greenhouse gas emissions; Biofuels;
Renewable energy
ID BIOFUELS
AB In one approach to algal biofuel production, lipids are extracted and converted to renewable diesel and non-lipid remnants are converted to biogas, which is used for renewable heat and power to support the process. Since biofuel economics benefit from increased fuel yield, the National Renewable Energy Laboratory analyzed an alternative pathway that extracts lipids and also makes ethanol from carbohydrates in the biomass. In this paper, we examine the environmental sustainability of this "fractionation pathway" through life-cycle analysis (LCA) of greenhouse gas emissions and energy use. When the feedstock productivity was 30 (18) g/m(2)/d, this pathway emitted 31 (36) gCO(2)e/MJ of total fuel, which is less than the emissions associated with conventional low sulfur petroleum diesel (96 gCO(2)e/MJ). The fractionation pathway performed well in this model despite the diversion of carbon to the ethanol fuel. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Pegallapati, Ambica K.; Frank, Edward D.] Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave, Argonne, IL 60439 USA.
RP Frank, ED (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM apegallapati@anl.gov; efrank@anl.gov
FU Bioenergy Technologies Office in the U.S. Department of Energy Office of
Energy Efficiency and Renewable Energy; Argonne, a US Department of
Energy Office of Science laboratory [DE-AC02-06CH11357]
FX We would like to thank Ryan Davis and Jennifer Markham from the National
Renewable Energy Laboratory for data and for helpful comments. This work
was sponsored by the Bioenergy Technologies Office in the U.S.
Department of Energy Office of Energy Efficiency and Renewable Energy.
The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a US
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The US Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.
NR 12
TC 0
Z9 0
U1 15
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-9264
J9 ALGAL RES
JI Algal Res.
PD SEP
PY 2016
VL 18
BP 235
EP 240
DI 10.1016/j.algal.2016.06.019
PG 6
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA DT8NV
UT WOS:000381748800026
ER
PT J
AU Qiu, DR
Xie, M
Dai, JC
An, WX
Wei, HH
Tian, CY
Kempher, ML
Zhou, AF
He, ZL
Gu, BH
Zhou, JZ
AF Qiu, Dongru
Xie, Ming
Dai, Jingcheng
An, Weixing
Wei, Hehong
Tian, Chunyuan
Kempher, Megan L.
Zhou, Aifen
He, Zhili
Gu, Baohua
Zhou, Jizhong
TI Differential Regulation of the Two Ferrochelatase Paralogues in
Shewanella loihica PV-4 in Response to Environmental Stresses
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID HEME-BIOSYNTHESIS PATHWAY; LIGHT-SENSITIVE MUTANTS; PROTOPORPHYRIN-IX;
ESCHERICHIA-COLI; ONEIDENSIS MR-1; SYSTEMS BIOLOGY; SIGMA-FACTORS;
GENES; GENUS; IDENTIFICATION
AB Determining the function and regulation of paralogues is important in understanding microbial functional genomics and environmental adaptation. Heme homeostasis is crucial for the survival of environmental microorganisms. Most Shewanella species encode two paralogues of ferrochelatase, the terminal enzyme in the heme biosynthesis pathway. The function and transcriptional regulation of two ferrochelatase genes, hemH1 and hemH2, were investigated in Shewanella loihica PV-4. The disruption of hemH1 but not hemH2 resulted in a significant accumulation of extracellular protoporphyrin IX (PPIX), the precursor to heme, and decreased intracellular heme levels. hemH1 was constitutively expressed, and the expression of hemH2 increased when hemH1 was disrupted. The transcription of hemH1 was regulated by the housekeeping sigma factor RpoD and potentially regulated by OxyR, while hemH2 appeared to be regulated by the oxidative stress-associated sigma factor RpoE2. When an oxidative stress condition was mimicked by adding H2O2 to the medium or exposing the culture to light, PPIX accumulation was suppressed in the Delta hemH1 mutant. Consistently, transcriptome analysis indicated enhanced iron uptake and suppressed heme synthesis in the Delta hemH1 mutant. These data indicate that the two paralogues are functional in the heme synthesis pathway but regulated by environmental conditions, providing insights into the understanding of bacterial response to environmental stresses and a great potential to commercially produce porphyrin compounds.
IMPORTANCE
Shewanella is capable of utilizing a variety of electron acceptors for anaerobic respiration because of the existence of multiple c-type cytochromes in which heme is an essential component. The cytochrome-mediated electron transfer across cellular membranes could potentially be used for biotechnological purposes, such as electricity generation in microbial fuel cells and dye decolorization. However, the mechanism underlying the regulation of biosynthesis of heme and cytochromes is poorly understood. Our study has demonstrated that two ferrochelatase genes involved in heme biosynthesis are differentially regulated in response to environmental stresses, including light and reactive oxygen species. This is an excellent example showing how bacteria have evolved to maintain cellular heme homeostasis. More interestingly, the high yields of extracellular protoporphyrin IX by the Shewanella loihica PV-4 mutants could be utilized for commercial production of this valuable chemical via bacterial fermentation.
C1 [Qiu, Dongru; Dai, Jingcheng; An, Weixing; Wei, Hehong] Chinese Acad Sci, Inst Hydrobiol, Wuhan, Peoples R China.
[Qiu, Dongru; Dai, Jingcheng; An, Weixing; Wei, Hehong] Univ Chinese Acad Sci, Beijing, Peoples R China.
[Qiu, Dongru; Xie, Ming; Kempher, Megan L.; Zhou, Aifen; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Gen, Norman, OK 73019 USA.
[Tian, Chunyuan] Hubei Engn Univ, Sch Life Sci & Technol, Xiaogan, Peoples R China.
[Gu, Baohua] Oak Ridge Natl Lab, Div Earth Sci, Oak Ridge, TN 37831 USA.
[Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China.
RP Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Gen, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.; Zhou, JZ (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China.
EM jzhou@ou.edu
FU DOE [DE-FG02-07ER64383]; Chinese Academy of Sciences [Y15103-1-401];
One-Hundred Scholar Award; [WO2014144329 A2]
FX This work was supported by DOE grant DE-FG02-07ER64383 to J.Z. and the
Chinese Academy of Sciences grant Y15103-1-401 and One-Hundred Scholar
Award to D.Q.; J.Z., D.Q., Z.H., and M.X. have a potential financial
conflict of interest resulting from a published patent application (no.
WO2014144329 A2) regarding the Shewanella-based production of
protoporphyrin IX.
NR 39
TC 0
Z9 0
U1 17
U2 17
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
EI 1098-5336
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD SEP
PY 2016
VL 82
IS 17
BP 5077
EP 5088
DI 10.1128/AEM.00203-16
PG 12
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA DT5DI
UT WOS:000381500700003
PM 27287322
ER
PT J
AU Chen, J
Garcia, HE
AF Chen, Jun
Garcia, Humberto E.
TI Economic optimization of operations for hybrid energy systems under
variable markets
SO APPLIED ENERGY
LA English
DT Article
DE Hybrid energy systems; Renewable; Operations optimization; Economic
analysis; Power market
ID ELECTRICITY MARKET; COMBINED HEAT; MICRO-GRIDS; STORAGE; GENERATION;
MANAGEMENT; DESIGN
AB Hybrid energy systems (HES) have been proposed to be an important element to enable increasing penetration of clean energy. This paper proposes a methodology for operations optimization to maximize their economic value based on predicted renewable generation and market information. A multi environment computational platform for performing such operations optimization is also developed. To compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulation results of two specific HES configurations illustrate the proposed methodology and computational capability. Economic advantages of such operations optimizer and associated flexible operations are demonstrated by comparing the economic performance of flexible operations with that of constant operations. Sensitivity analysis with respect to market variability and prediction error are also performed. Published by Elsevier Ltd.
C1 [Chen, Jun; Garcia, Humberto E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Garcia, HE (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM humberto.garcia@inl.gov
OI Chen, Jun/0000-0002-0934-8519
FU Energy Security Initiative (ESI); Nuclear-Renewable Energy Systems
Program at Idaho National Laboratory (INL) under the U.S. Department of
Energy [DE-AC-07-05ID14517]
FX This research is supported by the Energy Security Initiative (ESI) and
the Nuclear-Renewable Energy Systems Program at Idaho National
Laboratory (INL) under the U.S. Department of Energy contract
DE-AC-07-05ID14517. The authors would like to acknowledge the assistance
of Mr. Wesley R. Deason and Dr. Michael G. McKellar in providing part of
cost parameters, and the leadership of Dr. Richard D. Boardman and Dr.
Shannon M. Bragg-Sitton in the Nuclear-Renewable Energy Systems Program
at INL.
NR 63
TC 9
Z9 9
U1 4
U2 11
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD SEP 1
PY 2016
VL 177
BP 11
EP 24
DI 10.1016/j.apenergy.2016.05.056
PG 14
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA DS2OR
UT WOS:000380623900002
ER
PT J
AU Yin, RX
Kara, EC
Li, YP
DeForest, N
Wang, K
Yong, TY
Stadler, M
AF Yin, Rongxin
Kara, Emre C.
Li, Yaping
DeForest, Nicholas
Wang, Ke
Yong, Taiyou
Stadler, Michael
TI Quantifying flexibility of commercial and residential loads for demand
response using setpoint changes
SO APPLIED ENERGY
LA English
DT Article
DE Demand response; Thermostatically controlled loads; Regression models;
Two-state model; Simplified DR potential estimation
ID BUILDING ENERGY PERFORMANCE; ANCILLARY SERVICE; SMART APPLIANCES; HVAC
SYSTEMS; OPTIMIZATION; MODEL; PILOT; IDENTIFICATION; CONSUMPTION;
INTEGRATION
AB This paper presents a novel demand response estimation framework for residential and commercial buildings using a combination of EnergyPlus and two-state models for thermostatically controlled loads. Specifically, EnergyPlus models for commercial and multi-dwelling residential units are applied to construct exhaustive datasets (i.e., with more than 300M data points) that capture the detailed load response and complex thermodynamics of several building types. Subsequently, regression models are fit to each dataset to predict DR potential based on key inputs, including hour of day, set point change and outside air temperature. For single residential units, and residential thermostatically controlled loads (i.e. water heaters and refrigerators) a two-state model from the literature is applied. For commercial office building and Multiple Dwelling Units (MDUs) building, the fitted regression model can predict DR potential with 80-90% accuracy for more than 90% of data points. The coefficients of, determination (i.e. R-2 value) range between 0.54 and 0.78 for the office buildings and 0.39-0.81 for MDUs, respectively. The proposed framework is then validated for commercial buildings through a comparison with a dataset composed of 11 buildings during 12 demand response events. In addition, the use of the proposed simplified DR estimation framework is presented in terms of two cases (1) peak load shed prediction in an individual building and (2) aggregated DR up/down capacity from a large-scale group of different buildings. Published by Elsevier Ltd.
C1 [Yin, Rongxin; Kara, Emre C.; DeForest, Nicholas; Stadler, Michael] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA USA.
[Li, Yaping; Wang, Ke; Yong, Taiyou] China Elect Power Res Inst, Beijing, Peoples R China.
[Kara, Emre C.] SLAC Natl Accelerator Lab, Grid Integrat Syst & Mobil Grp, Menlo Pk, CA USA.
RP Yin, RX (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA USA.
EM ryin@lbl.gov
FU State Grid Corporation of China Project (Study on Key Technologies for
Power and Frequency Control of System with Source-Grid-Load
Interactions) [DZN17201300197]
FX The work described in this study was coordinated by the Grid Integration
Group of Lawrence Berkeley National Laboratory and was supported by the
State Grid Corporation of China Project (DZN17201300197, Study on Key
Technologies for Power and Frequency Control of System with
Source-Grid-Load Interactions).
NR 54
TC 3
Z9 3
U1 16
U2 16
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD SEP 1
PY 2016
VL 177
BP 149
EP 164
DI 10.1016/j.apenergy.2016.05.090
PG 16
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA DS2OR
UT WOS:000380623900014
ER
PT J
AU Zhang, CY
Wang, Q
Wang, JH
Korpas, M
Pinson, P
Ostergaard, J
Khodayar, ME
AF Zhang, Chunyu
Wang, Qi
Wang, Jianhui
Korpas, Magnus
Pinson, Pierre
Ostergaard, Jacob
Khodayar, Mohammad E.
TI Trading strategies for distribution company with stochastic distributed
energy resources
SO APPLIED ENERGY
LA English
DT Article
DE Distributed energy resources (DERs); Proactive distribution company
(PDISCO); Electricity markets; Bilevel game-theoretic model;
Multi-period AC power flow; Mathematical program with equilibrium
constraints (MPEC); Mathematical program with primal and dual
constraints (MPPDC)
ID DISTRIBUTION-SYSTEM; DEMAND RESPONSE; GENERATION; OPERATION; MARKET;
LOAD; MICROGRIDS; DEVICES; MODEL; WIND
AB This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower-level (LL) problems include the TL day-ahead market and scenario-based real-time markets, respectively with the objectives of maximizing social welfare and minimizing operation cost. The upper-level (UL) problem is to maximize the PDISCO's profit across these markets. The PDISCO's strategic offers/bids interactively influence the outcomes of each market. Since the LL problems are linear and convex, while the UL problem is non-linear and non-convex, an equivalent primal-dual approach is used to reformulate this bilevel model to a solvable mathematical program with equilibrium constraints (MPEC). The effectiveness of the proposed model is verified by case studies. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Zhang, Chunyu; Korpas, Magnus] Norwegian Univ Sci & Technol, Dept Elect Power Engn, Trondheim, Norway.
[Wang, Qi; Pinson, Pierre; Ostergaard, Jacob] Tech Univ Denmark, Ctr Elect Power & Energy, Lyngby, Denmark.
[Wang, Jianhui] Argonne Natl Lab, Energy Syst Div, Argonne, IL USA.
[Khodayar, Mohammad E.] So Methodist Univ, Dept Elect Engn, Dallas, TX USA.
RP Wang, JH (reprint author), Argonne Natl Lab, Energy Syst Div, Argonne, IL USA.
EM chunyu.zhang@ntnu.no; qiwa@elektro.dtu.dk; jianhui.wang@anl.gov;
magnus.korpas@ntnu.no; ppin@elektro.dtu.dk; joe@elektro.dtu.dk;
mkhodayar@smu.edu
FU Research Council of Norway [255209]; Danish iPower Platform Project
[10-095378]; U.S. Department of Energy (DOE)'s Office of Electricity
Delivery and Energy Reliability
FX The authors would like to acknowledge the support from the Research
Council of Norway under Grant 255209, the Danish iPower Platform Project
under Grant 10-095378, and the U.S. Department of Energy (DOE)'s Office
of Electricity Delivery and Energy Reliability.
NR 24
TC 2
Z9 2
U1 2
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD SEP 1
PY 2016
VL 177
BP 625
EP 635
DI 10.1016/j.apenergy.2016.05.143
PG 11
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA DS2OR
UT WOS:000380623900052
ER
PT J
AU Mo, JK
Kang, ZY
Yang, GQ
Retterer, ST
Cullen, DA
Toops, TJ
Green, JB
Zhang, FY
AF Mo, Jingke
Kang, Zhenye
Yang, Gaoqiang
Retterer, Scott T.
Cullen, David A.
Toops, Todd J.
Green, Johney B., Jr.
Zhang, Feng-Yuan
TI Thin liquid/gas diffusion layers for high-efficiency hydrogen production
from water splitting
SO APPLIED ENERGY
LA English
DT Article
DE Proton exchange membrane fuel; cells/electrolyzer cells; Liquid/gas
diffusion layers; Hydrogen production; Water splitting; Performance and
efficiency
ID ELECTROLYTE FUEL-CELL; MICROPOROUS LAYER; BIPOLAR PLATES; PERFORMANCE;
MEMBRANE; ENERGY; TRANSPORT; OPTIMIZATION; MEDIA; DURABILITY
AB In this study, a novel titanium thin LGDL with well-tunable pore morphologies was developed by employing nano-manufacturing and was applied in a standard PEMEC. The LGDL tests show significant performance improvements. The operating voltages required at a current density of 2.0 A/cm(2) were as low as 1.69 V, and its efficiency reached a report high of up to 88%. The new thin and flat LGDL with well-tunable straight pores has been demonstrated to remarkably reduce the ohmic, interfacial and transport losses. In addition, well-tunable features, including pore size, pore shape, pore distribution, and thus porosity and permeability, will be very valuable for developing PEMEC models and for validation of its simulations with optimal and repeatable performance. The LGDL thickness reduction from greater than 350 mu m of conventional LGDLs to 25 mu m will greatly decrease the weight and volume of PEMEC stacks, and represents a new direction for future developments of low-cost PEMECs with high performance. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Mo, Jingke; Kang, Zhenye; Yang, Gaoqiang; Zhang, Feng-Yuan] Univ Tennessee, UT Space Inst, Dept Mech Aerosp & Biomed Engn, Nanodynam & High Efficiency Lab Prop & Power Nano, Knoxville, TN 37388 USA.
[Retterer, Scott T.; Cullen, David A.; Toops, Todd J.; Green, Johney B., Jr.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Zhang, FY (reprint author), Univ Tennessee, UT Space Inst, Dept Mech Aerosp & Biomed Engn, Nanodynam & High Efficiency Lab Prop & Power Nano, Knoxville, TN 37388 USA.
EM fzhang@utk.edu
RI Green, Johney/B-3391-2017;
OI Green, Johney/0000-0003-2383-7260; Cullen, David/0000-0002-2593-7866;
Zhang, Feng-Yuan/0000-0003-2535-0966
FU U.S. Department of Energy's National Energy Technology Laboratory
[DE-FE0011585]; DOE Office of Basic Energy Sciences
FX The authors greatly appreciate the support from U.S. Department of
Energy's National Energy Technology Laboratory under Award DE-FE0011585.
The research was partially performed at ORNL's Center for Nanophase
Materials Sciences (CNMS), which is sponsored by DOE Office of Basic
Energy Sciences. The authors also wish to express their appreciations to
Dr. Bo Han, Stuart Steen, William C. Barnhill, Alexander Terekhov,
Douglas Warnberg, Kate Lansford, Andrew Mays, and Rong Chen for their
help.
NR 51
TC 6
Z9 6
U1 7
U2 16
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD SEP 1
PY 2016
VL 177
BP 817
EP 822
DI 10.1016/j.apenergy.2016.05.154
PG 6
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA DS2OR
UT WOS:000380623900068
ER
PT J
AU Dong, T
Knoshaug, EP
Pienkos, PT
Laurens, LML
AF Dong, Tao
Knoshaug, Eric P.
Pienkos, Philip T.
Laurens, Lieve M. L.
TI Lipid recovery from wet oleaginous microbial biomass for biofuel
production: A critical review
SO APPLIED ENERGY
LA English
DT Article
DE Oleaginous microorganism; Lipid; Wet extraction; Mass transfer; Cell
disruption; Biofuel
ID PULSED-ELECTRIC-FIELD; HIGH-PRESSURE HOMOGENIZATION; YEAST
RHODOSPORIDIUM-TORULOIDES; ENZYME-ASSISTED EXTRACTION; CELL-WALL
DEGRADATION; FED-BATCH CULTURE; BIODIESEL PRODUCTION;
CHLORELLA-VULGARIS; SOLVENT-EXTRACTION; MICROALGAL BIOMASS
AB Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. This paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention to cell disruption and lipid mass transfer to support extraction from wet biomass. (C) 2016 The Author(s). Published by Elsevier Ltd.
C1 [Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; Laurens, Lieve M. L.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80228 USA.
RP Laurens, LML (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80228 USA.
EM Lieve.Laurens@nrel.gov
FU DOE Bioenergy Technology Office (BETO) [DE-AC36-08GO28308]
FX This work was supported by the DOE Bioenergy Technology Office (BETO)
under Contract no. DE-AC36-08GO28308. Special thanks to Nick Sweeney for
photomicrographs, and Jacob Kruger for conducting HPH on algae biomass.
NR 190
TC 1
Z9 1
U1 22
U2 32
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD SEP 1
PY 2016
VL 177
BP 879
EP 895
DI 10.1016/j.apenergy.2016.06.002
PG 17
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA DS2OR
UT WOS:000380623900073
ER
PT J
AU Marquardt, D
Kucerka, N
Wassall, SR
Harroun, TA
Katsaras, J
AF Marquardt, Drew
Kucerka, Norbert
Wassall, Stephen R.
Harroun, Thad A.
Katsaras, John
TI Cholesterol's location in lipid bilayers
SO CHEMISTRY AND PHYSICS OF LIPIDS
LA English
DT Article
DE Cholesterol; Sterol; Membrane dynamics; Membrane structure; Lipid
domains
ID MOLECULAR-DYNAMICS SIMULATIONS; NUCLEAR-MAGNETIC-RESONANCE; ACYL-CHAIN
UNSATURATION; FLIP-FLOP; NEUTRON-DIFFRACTION; PHASE-DIAGRAM; DEUTERIUM
NMR; MODEL SYSTEMS; PHOSPHATIDYLCHOLINE BILAYERS; PHOSPHOLIPID-BILAYERS
AB It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered L-0 phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the L-0 phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown - at least in some bilayers - to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid-water interface. In this article we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
C1 [Marquardt, Drew] Graz Univ, Inst Mol Biosci, Div Biophys, NAWI Graz, Humboldtstr 50-3, A-8010 Graz, Austria.
[Marquardt, Drew] BioTechMed Graz, Graz, Austria.
[Kucerka, Norbert] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna 141980, Moscow Region, Russia.
[Kucerka, Norbert] Comenius Univ, Dept Phys Chem Drugs, Fac Pharm, Bratislava 83232, Slovakia.
[Wassall, Stephen R.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA.
[Harroun, Thad A.; Katsaras, John] Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada.
[Katsaras, John] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Katsaras, John] Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA.
[Katsaras, John] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA.
RP Marquardt, D (reprint author), Graz Univ, Inst Mol Biosci, Div Biophys, NAWI Graz, Humboldtstr 50-3, A-8010 Graz, Austria.; Marquardt, D (reprint author), BioTechMed Graz, Graz, Austria.; Katsaras, J (reprint author), Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA.
EM drew.marquardt@uni-graz.at; katsarasj@ornl.gov
OI Katsaras, John/0000-0002-8937-4177
FU VEGA grant [1/0916/16]; collaborative SR-JINR program
[04-4-1121-2015/2017]; Scientific User Facilities Division of the DOE
Office of Basic Energy Sciences under US DOE [DE-AC05-00OR22725]
FX DM thanks Georg Pabst for his support. NK is supported through the VEGA
grant 1/0916/16 and collaborative SR-JINR program under theme
04-4-1121-2015/2017, JK is supported through the Scientific User
Facilities Division of the DOE Office of Basic Energy Sciences under US
DOE Contract No. DE-AC05-00OR22725.
NR 114
TC 1
Z9 1
U1 17
U2 32
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0009-3084
EI 1873-2941
J9 CHEM PHYS LIPIDS
JI Chem. Phys. Lipids
PD SEP
PY 2016
VL 199
SI SI
BP 17
EP 25
DI 10.1016/j.chemphyslip.2016.04.001
PG 9
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA DT9PC
UT WOS:000381833800004
PM 27056099
ER
PT J
AU Haaskjold, YL
Bolkan, HA
Krogh, KO
Jongopi, J
Lundeby, KM
Mellesmo, S
Garces, PSJ
Josendal, O
Opstad, A
Svensen, E
Fuentes, LMZ
Kamara, AS
Riera, M
Arranz, J
Roberts, DP
Stamper, PD
Austin, P
Moosa, AJ
Marke, D
Hassan, S
Eide, GE
Berg, A
Blomberg, B
AF Haaskjold, Yngvar Lunde
Bolkan, Hakon Angell
Krogh, Kurt Osthuus
Jongopi, James
Lundeby, Karen Marie
Mellesmo, Sindre
Jose Garces, Pedro San
Josendal, Ola
Opstad, Asmund
Svensen, Erling
Zabala Fuentes, Luis Matias
Kamara, Alfred Sandy
Riera, Melchor
Arranz, Javier
Roberts, David P.
Stamper, Paul D.
Austin, Paula
Moosa, Alfredo J.
Marke, Dennis
Hassan, Shoaib
Eide, Geir Egil
Berg, Ase
Blomberg, Bjorn
TI Clinical Features of and Risk Factors for Fatal Ebola Virus Disease,
Moyamba District, Sierra Leone, December 2014 February 2015
SO EMERGING INFECTIOUS DISEASES
LA English
DT Article
ID HEMORRHAGIC-FEVER; WEST-AFRICA; HOLDING UNITS; OUTBREAK; EPIDEMIC;
OUTCOMES; TRANSMISSION; MANAGEMENT; FREETOWN; ORIGIN
AB The 2013-2016 outbreak of Ebola virus disease (EVD) in West Africa infected >28,000 people, including >11,000 who died, and disrupted social life in the region. We retrospectively studied clinical signs and symptoms and risk factors for fatal outcome among 31 Ebola virus positive patients admitted to the Ebola Treatment Center in Moyamba District, Sierra Leone. We found a higher rate of bleeding manifestations than reported elsewhere during the outbreak. Significant predictors for death were shorter time from symptom onset to admission, male sex, high viral load on initial laboratory testing, severe pain, diarrhea, bloody feces, and development of other bleeding manifestations during hospitalization. These risk factors for death could be used to identify patients in need of more intensive medical support. The lack of fever in as many as one third of EVD cases may have implications for temperature-screening practices and case definitions.
C1 [Haaskjold, Yngvar Lunde; Josendal, Ola; Svensen, Erling; Eide, Geir Egil; Blomberg, Bjorn] Haukeland Hosp, Bergen, Norway.
[Bolkan, Hakon Angell; Krogh, Kurt Osthuus; Mellesmo, Sindre] St Olav Hosp, Trondheim, Norway.
[Jongopi, James; Kamara, Alfred Sandy; Moosa, Alfredo J.; Marke, Dennis] Moyamba Dist Hosp, Moyamba, Sierra Leone.
[Lundeby, Karen Marie] Oslo Univ Hosp, Oslo, Norway.
[Jose Garces, Pedro San; Zabala Fuentes, Luis Matias; Arranz, Javier] Med Mundo, Madrid, Spain.
[Opstad, Asmund] Haraldsplass Diaconal Hosp, Bergen, Norway.
[Svensen, Erling; Eide, Geir Egil; Blomberg, Bjorn] Univ Bergen, Bergen, Norway.
[Riera, Melchor] Hosp Son Espases, Palma De Mallorca, Spain.
[Arranz, Javier] Inst Invest Palma IDISPA, Madrid, Spain.
[Roberts, David P.; Stamper, Paul D.] MRIGlobal, Rockville, MD USA.
[Austin, Paula] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Hassan, Shoaib] FELTP Publ Hlth, Islamabad, Pakistan.
[Berg, Ase] Stavanger Univ Hosp, Stavanger, Norway.
RP Blomberg, B (reprint author), Haukeland Hosp, Dept Med, Post Box 1400, N-5021 Bergen, Norway.
EM bjorn.blomberg@uib.no
OI Arranz, Javier/0000-0003-0728-9751
NR 38
TC 0
Z9 0
U1 14
U2 14
PU CENTERS DISEASE CONTROL
PI ATLANTA
PA 1600 CLIFTON RD, ATLANTA, GA 30333 USA
SN 1080-6040
EI 1080-6059
J9 EMERG INFECT DIS
JI Emerg. Infect. Dis
PD SEP
PY 2016
VL 22
IS 9
BP 1537
EP 1544
DI 10.3201/eid2209.151621
PG 8
WC Immunology; Infectious Diseases
SC Immunology; Infectious Diseases
GA DU1GJ
UT WOS:000381955900002
PM 27268303
ER
PT J
AU Bubbosh, P
AF Bubbosh, Paul
TI FROM LAB TO MARKET
SO FOREIGN AFFAIRS
LA English
DT Letter
C1 [Bubbosh, Paul] US DOE, Energy Secur Div, Washington, DC 20585 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU COUNCIL FOREIGN RELAT IONS INC
PI NEW YORK
PA HAROLD PRATT HOUSE, 58 E 68TH ST, NEW YORK, NY 10065 USA
SN 0015-7120
J9 FOREIGN AFF
JI Foreign Aff.
PD SEP-OCT
PY 2016
VL 95
IS 5
BP 192
EP 192
PG 1
WC International Relations
SC International Relations
GA DT1KG
UT WOS:000381240500077
ER
PT J
AU Beckingham, LE
Mitnick, EH
Steefel, CI
Zhang, S
Voltolini, M
Swift, AM
Yang, L
Cole, DR
Sheets, JM
Ajo-Franklin, JB
DePaolo, DJ
Mito, S
Xue, ZQ
AF Beckingham, Lauren E.
Mitnick, Elizabeth H.
Steefel, Carl I.
Zhang, Shuo
Voltolini, Marco
Swift, Alexander M.
Yang, Li
Cole, David R.
Sheets, Julia M.
Ajo-Franklin, Jonathan B.
DePaolo, Donald J.
Mito, Saeko
Xue, Ziqiu
TI Evaluation of mineral reactive surface area estimates for prediction of
reactivity of a multi-mineral sediment
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
DE Reactive surface area; CO2 sequestration; Mineral reaction rates
ID BASALTIC GLASS DISSOLUTION; SOLUTION SATURATION STATE; KAOLINITE
DISSOLUTION; DEGREES-C; NUMERICAL-SIMULATION; DIOPSIDE DISSOLUTION;
FELDSPAR DISSOLUTION; QUARTZ DISSOLUTION; AQUEOUS-SOLUTIONS; CONTINUUM
SCALE
AB Our limited understanding of mineral reactive surface area contributes to significant uncertainties in quantitative simulations of reactive chemical transport in subsurface processes. Continuum formulations for reactive transport typically use a number of different approximations for reactive surface area, including geometric, specific, and effective surface area. In this study, reactive surface area estimates are developed and evaluated for their ability to predict dissolution rates in a well-stirred flow-through reactor experiment using disaggregated samples from the Nagaoka pilot CO2 injection site (Japan). The disaggregated samples are reacted with CO2 acidified synthetic brine under conditions approximating the field conditions and the evolution of solute concentrations in the reactor effluent is tracked over time. The experiments, carried out in fluid-dominated conditions at a pH of 3.2 for 650 h, resulted in substantial dissolution of the sample and release of a disproportionately large fraction of the divalent cations. Traditional reactive surface area estimation methods, including an adjusted geometric surface area and a BET-based surface area, are compared to a newly developed image-based method. Continuum reactive transport modeling is used to determine which of the reactive surface area models provides the best match with the effluent chemistry from the well-stirred reactor. The modeling incorporates laboratory derived mineral dissolution rates reported in the literature and the initial modal mineralogy of the Nagaoka sediment was determined from scanning electron microscopy (SEM) characterization. The closest match with the observed steady-state effluent concentrations was obtained using specific surface area estimates from the image-based approach supplemented by literature-derived BET measurements. To capture the evolving effluent chemistry, particularly over the first 300 h of the experiment, it was also necessary to account for the grain size distribution in the sediment and the presence of a highly reactive volcanic glass phase that shows preferential cation leaching. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Beckingham, Lauren E.; Steefel, Carl I.; Voltolini, Marco; Yang, Li; Ajo-Franklin, Jonathan B.; DePaolo, Donald J.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Mitnick, Elizabeth H.; Zhang, Shuo; DePaolo, Donald J.] Univ Calif Berkeley, Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Swift, Alexander M.; Cole, David R.; Sheets, Julia M.] Ohio State Univ, Mendenhall Lab 275, 125 South Oval Mall, Columbus, OH 43210 USA.
[Mito, Saeko; Xue, Ziqiu] Res Inst Innovat Technol Earth RITE, 9-2 Kizugawadai, Kizugawa, Kyoto 6190292, Japan.
[Beckingham, Lauren E.] Auburn Univ, Harbert Engn Ctr 211, Auburn, AL 36830 USA.
RP Beckingham, LE (reprint author), Auburn Univ, Dept Civil Engn, Auburn, AL 36830 USA.
EM leb@auburn.edu
RI Ajo-Franklin, Jonathan/G-7169-2015; Steefel, Carl/B-7758-2010;
Voltolini, Marco/G-2781-2015;
OI Mito, Saeko/0000-0001-7647-8674; Zhang, Shuo/0000-0002-2170-4299
FU Center for Nanoscale Control of Geologic CO2 (NCGC), an Energy Frontier
Research Center - U.S. Department of Energy, Office of Science, Basic
Energy Sciences [DE-AC02-05CH11231]; Ministry of Economy, Trade and
Industry (METI)
FX This work was supported as part of the Center for Nanoscale Control of
Geologic CO2 (NCGC), an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science, Basic Energy
Sciences under Award # DE-AC02-05CH11231. Rock sample collection at the
Nagaoka pilot CO2 injection site was financed by Ministry of
Economy, Trade and Industry (METI) under the contract of "Research and
Development of Underground Storage for Carbon Dioxide".
NR 96
TC 0
Z9 0
U1 24
U2 27
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD SEP 1
PY 2016
VL 188
BP 310
EP 329
DI 10.1016/j.gca.2016.05.040
PG 20
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DS4LN
UT WOS:000380752700018
ER
PT J
AU Wang, YG
Gelabert, A
Michel, FM
Choi, Y
Gescher, J
Ona-Nguema, G
Eng, PJ
Bargar, JR
Farges, F
Spormann, AM
Brown, GE
AF Wang, Yingge
Gelabert, Alexandre
Michel, F. Marc
Choi, Yongseong
Gescher, Johannes
Ona-Nguema, Georges
Eng, Peter J.
Bargar, John R.
Farges, Francois
Spormann, Alfred M.
Brown, Gordon E., Jr.
TI Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and
Zn(II) partitioning and speciation at Shewanella
oneidensis/metal-oxide/water interfaces
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
DE Shewanella oneidensis; Biofilms; Metal-oxide surface; Sorption; Pb; Zn;
Hematite; Alumina; X-ray standing wave; LP-XSW-FY; Metal partitioning;
Diffusion; Kinetics
ID BURKHOLDERIA-CEPACIA BIOFILMS; BOND-VALENCE DETERMINATION; OXIDE-WATER
INTERFACES; RAY STANDING-WAVE; BACTERIAL SURFACES; MICROBIAL BIOFILMS;
ZINC SORPTION; HEMATITE 0001; INFRARED-SPECTROSCOPY; COMPETITIVE-BINDING
AB Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of alpha-Al2O3 and alpha-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) surfaces at low Pb concentration ([Pb] = 10(-7) M) and then increasingly partitions into the biofilm coatings at higher concentrations (10(-6) to 10(-4) M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10(-7) to 10(-4) M). In comparison, the alpha-Al2O3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, alpha-Al2O3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) at [Me(II)] of 10(-7) M; at 10(-5) M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10(-5) M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb L-III-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be complexed by carboxyl groups in S. oneidensis biofilms after 3-h exposure at pH 6.0 and [Me(II)] = 10(-5) M. In contrast with Burkholderia cepacia, which was used in our previous studies of monolayer biofilm-coated metal-oxide surfaces (Templeton et al., 2001), S. oneidensis MR-1 forms relatively thick biofilm coatings (6-20 mu m) that are rich in reactive functional groups and are expected to dominate metal-ion adsorption. Our results show that even thick and highly reactive biofilms like S. oneidensis do not cause much change in the intrinsic chemical reactivities of the underlying metal-oxide surfaces with respect to aqueous Pb(II) and Zn(II) and don't block reactive sites on the metal-oxide surfaces; instead they reduce the rate of Pb(II) and Zn(II) sorption onto these surfaces. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; Farges, Francois; Brown, Gordon E., Jr.] Stanford Univ, Sch Earth Energy & Environm Sci, Dept Geol Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA.
[Gelabert, Alexandre] Univ Paris Diderot, Aqueous Geochem Grp, Sorbonne Paris Cite, Inst Phys Globe Paris,UMR 7154,CNRS, F-75013 Paris, France.
[Michel, F. Marc; Bargar, John R.; Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
[Choi, Yongseong] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Gescher, Johannes] Karlsruhe Inst Technol, Inst Appl Biosci, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany.
[Gescher, Johannes; Spormann, Alfred M.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA.
[Ona-Nguema, Georges] Univ Paris 06, IMPMC, UMR 7590, F-75015 Paris, France.
[Eng, Peter J.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA.
[Farges, Francois] Museum Natl Hist Nat, USM 201, Paris, France.
[Farges, Francois] Museum Natl Hist Nat, CNRS, UMR 7160, Paris, France.
[Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
RP Brown, GE (reprint author), Stanford Univ, Sch Earth Energy & Environm Sci, Dept Geol Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA.; Brown, GE (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Brown, GE (reprint author), SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
EM gordon.brown@stanford.edu
FU U.S. National Science Foundation [CHE-0431425]; DOE-Office of Biological
and Environmental Research through the Science Focus Area at the
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator
Laboratory; U.S. DOE Office of Basic Energy Sciences; GeoSoilEnviroCARS
Sector 13 at the Advanced Photon Source, Argonne National Laboratory;
U.S. National Science Foundation - Earth Sciences [EAR-0622171]; U.S.
Department of Energy - Geosciences [DE-FG02-94ER14466]; U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX This study was supported by U.S. National Science Foundation Grant
CHE-0431425 (Stanford Environmental Molecular Science Institute) and by
the DOE-Office of Biological and Environmental Research through the
Science Focus Area at the Stanford Synchrotron Radiation Lightsource,
SLAC National Accelerator Laboratory. The XSW and EXAFS data reported in
this paper were collected at the Stanford Synchrotron Radiation
Lightsource, SLAC National Accelerator Laboratory, which is supported by
the U.S. DOE Office of Basic Energy Sciences, and at the
GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source, Argonne
National Laboratory. GeoSoilEnviroCARS is supported by the U.S. National
Science Foundation - Earth Sciences (EAR-0622171) and the U.S.
Department of Energy - Geosciences (DE-FG02-94ER14466). The Advanced
Photon Source is supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. We thank Carmen Cordova for help with the biofilm
growth and Sanjit Ghose for help with XSW data collection at the APS. We
also wish to thank three anonymous reviewers for suggestions that
clarified the manuscript as well as GCA Editor Marc Norman and former
GCA Associate Editor Roy Wogelius for their patience during the revision
process.
NR 94
TC 3
Z9 3
U1 22
U2 25
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD SEP 1
PY 2016
VL 188
BP 368
EP 392
DI 10.1016/j.gca.2016.04.052
PG 25
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DS4LN
UT WOS:000380752700021
ER
PT J
AU Wang, YG
Gelabert, A
Michel, FM
Choi, Y
Eng, PJ
Spormann, AM
Brown, GE
AF Wang, Yingge
Gelabert, Alexandre
Michel, F. Marc
Choi, Yongseong
Eng, Peter J.
Spormann, Alfred M.
Brown, Gordon E., Jr.
TI Effect of biofilm coatings at metal-oxide/water interfaces II:
Competitive sorption between Pb(II) and Zn(II) at Shewanella
oneidensis/metal-oxide/water interfaces
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
DE Shewanella oneidensis; Biofilm; Metal-oxide surface; Competitive
sorption; Pb; Zn; Hematite; Alumina; X-ray standing wave; LP-XSW-FY;
Metal partitioning
ID RAY STANDING WAVES; AMORPHOUS IRON OXYHYDROXIDE; CHEMICAL-EQUILIBRIUM
MODEL; BOND-VALENCE DETERMINATION; OXIDE-WATER INTERFACES;
ELECTROCHEMICAL INTERFACES; SURFACE COMPLEXATION; POLY(ACRYLIC ACID);
AQUEOUS-SOLUTIONS; HEAVY-METALS
AB Competitive sorption of Pb(II) and Zn(II) on Shewanella oneidensis MR-1 biofilm-coated single-crystal alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) surfaces was investigated using long-period X-ray standing wave-florescence yield (LP-XSW-FY) spectroscopy. In situ partitioning of aqueous Pb(II) and Zn(II) between the biofilms and underlying metal-oxide substrates was probed following exposure of these complex interfaces to equi-molar Pb and Zn solutions (0.01 M NaNO3 as background electrolyte, pH = 6.0, and 3-h equilibration time). At higher Pb and Zn concentrations (>= 10(-5) M), more than 99% of these ions partitioned into the biofilms at S. oneidensis/alpha-Al2O3 (1-102)/water interfaces, which is consistent with the partitioning behavior of both Pb(II) or Zn(II) in single-metal-ion experiments. Thus, no apparent competitive effects were found in this system at these relatively high metal-ion concentrations. However, at lower equi-molar concentrations (<= 10(-6) M), Pb(II) and Zn(II) partitioning in the same system changed significantly compared to the single-metal-ion systems. The presence of Zn(II) decreased Pb(II) partitioning onto alpha-Al2O3 (1-10 2) substantially (similar to 52% to similar to 13% at 10(-7) M, and similar to 23% to similar to 5% at 10(-6) M), whereas the presence of Pb(II) caused more Zn(II) to partition onto alpha-Al2O3 (1-102) surfaces (similar to 15% to similar to 28% at 10(-7) M, and similar to 1% to similar to 7% at 10(-6) M). The higher observed partitioning of Zn(II) (similar to 28%) at the alpha-Al2O3 (1-102) surfaces compared to Pb(II) (similar to 13%) in the mixed-metal-ion systems at the lowest concentration (10(-7) M) suggests that Zn(II) is slightly favored over Pb(II) for sorption sites on alpha-Al2O3 (1-102) surfaces under our experimental conditions. Competitive sorption of Pb(II) and Zn(II) at S. oneidensis/alpha-Fe2O3 (0001)/water interfaces at equi-molar metal-ion concentrations of <= 10(-6) M showed that the presence of Pb(II) ions decreased Zn(II) partitioning onto alpha-Fe2O3 (0001) significantly (similar to 45% to <1% at 10(-7) M, and similar to 41% to 3% at 10(-6) M), whereas adding Zn(II) caused only small changes in Pb(II) partitioning (similar to 59% to similar to 47% at 10(-7) M, and similar to 26% to similar to 23% at 10(-6) M), suggesting that Pb(II) strongly outcompetes Zn(II) for sorption sites on S. oneidensis-coated alpha-Fe2O3 (0001) surfaces. Our study implies that caution should be taken when applying results obtained from partitioning studies of single-metal-ion systems to mixed-metal-ion systems at complex biofilm/mineral interfaces. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; Brown, Gordon E., Jr.] Stanford Univ, Sch Earth Energy & Environm Sci, Dept Geol Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA.
[Gelabert, Alexandre] Univ Paris 07, Dept Earth Sci, IMPMC, IPGP,CNRS,UMR 7590, F-75015 Paris, France.
[Michel, F. Marc] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
[Choi, Yongseong] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Eng, Peter J.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA.
[Spormann, Alfred M.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA.
[Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
[Michel, F. Marc] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA.
RP Wang, YG (reprint author), Stanford Univ, Sch Earth Energy & Environm Sci, Dept Geol Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA.
EM wang.yingge@gmail.com
FU U.S. National Science Foundation [CHE-0431425]; National Science
Foundation Earth Sciences [EAR-1128799]; U.S. Department of Energy -
Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX This study was supported by U.S. National Science Foundation Grant
CHE-0431425 (Stanford Environmental Molecular Science Institute). The
LP-XSW-FY data reported here were obtained at GeoSoilEnviroCARS
(Advanced Photon Source Sector 13) at the Advanced Photon Source,
Argonne National Laboratory. GeoSoilEnviroCARS is supported by the
National Science Foundation Earth Sciences (EAR-1128799) and the U.S.
Department of Energy - Geosciences (DE-FG02-94ER14466). The Advanced
Photon Source is supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. We also wish to thank two anonymous reviewers for
helpful comments and thank GCA Editor Dr. Marc Norman and former GCA
Associate Editor Dr. Roy Wogelius for their patience during the revision
process.
NR 57
TC 1
Z9 1
U1 12
U2 17
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD SEP 1
PY 2016
VL 188
BP 393
EP 406
DI 10.1016/j.gca.2016.04.054
PG 14
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DS4LN
UT WOS:000380752700022
ER
PT J
AU Wang, YG
Michel, FM
Choi, Y
Eng, PJ
Levard, C
Siebner, H
Gu, BH
Bargar, JR
Brown, GE
AF Wang, Yingge
Michel, F. Marc
Choi, Yongseong
Eng, Peter J.
Levard, Clement
Siebner, Hagar
Gu, Baohua
Bargar, John R.
Brown, Gordon E., Jr.
TI Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
DE Humic acid; Pb; Cu; Zn; Ca; Metal-oxide surfaces; Single crystal; X-ray
standing wave; LP-XSW-FY; Metal partitioning; Hematite; Alumina; pH
effect
ID RAY STANDING WAVES; NATURAL ORGANIC-MATTER; ION-BINDING; X-RAYS;
COMPETITIVE ADSORPTION; MINERAL SURFACES; HEMATITE 0001; IRON-OXIDE;
ELECTROCHEMICAL INTERFACES; DYNAMICAL DIFFRACTION
AB Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (similar to 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: alpha-Al2O3 (00 01), alpha-Al2O3 (1-102), and alpha-Fe2O3 (0001). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the alpha-Fe2O3 (0001) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the alpha-Al2O3 (1-102) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated alpha-Al2O3 (1-102) surfaces in samples without the addition of calcium. However, the amounts of Pb(II) mobilized from the ESHA coatings onto the alpha-Al2O3 (1-102) surfaces increased from 40% (no added Ca) to 58% (with 2 mM Ca) after 72 h of reaction time, possibly due to displacement of Pb(II) by Ca(II) from binding sites in the ESHA coatings. In contrast, Pb(II), Cu(II), and Zn(II) present in the ESHA coatings were found to be unreactive with the alpha-Al2O3 (0001) surface. The observed reactivities of the three ESHA-coated metal-oxide surfaces with respect to metal-ion sorption are consistent with the trend observed for the uncoated metal-oxide surfaces: alpha-Fe2O3 (0001) > alpha-Al2O3 (1-102) > alpha-Al2O3 (0001). In addition, Pb(II) partitioning onto alpha-Al2O3 (1-102) surfaces increased with increasing pH from 4.0 to 9.0 as a result of the increasingly negative surface charge. These results show that intrinsic properties (nature of binding sites, binding affinities, and surface charge) of the ESHA coatings and metal-oxide surfaces, as well as external parameters such as pH and competing ions, are key factors governing the distribution and speciation of metal ions at complex NOM/mineral interfaces. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Wang, Yingge; Michel, F. Marc; Levard, Clement; Siebner, Hagar; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol Sci, Surface & Aqueous Geochem Grp, Sch Earth Energy & Environm Sci, Stanford, CA 94305 USA.
[Michel, F. Marc; Bargar, John R.; Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
[Choi, Yongseong] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Eng, Peter J.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA.
[Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
RP Brown, GE (reprint author), Stanford Univ, Dept Geol Sci, Surface & Aqueous Geochem Grp, Sch Earth Energy & Environm Sci, Stanford, CA 94305 USA.; Brown, GE (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Brown, GE (reprint author), SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
EM gordon.brown@stanford.edu
FU U.S. National Science Foundation [CHE-0431425]; U.S. National Science
Foundation-Center for Environmental Implications for Nanotechnology
(based at Duke University) (U.S. National Science Foundation)
[EF-0830093]; U.S. National Science Foundation - Earth Sciences
[EAR-1128799]; U.S. Department of Energy - Geosciences
[DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This study was supported by U.S. National Science Foundation Grant
CHE-0431425 (Stanford Environmental Molecular Science Institute) and by
the U.S. National Science Foundation-Center for Environmental
Implications for Nanotechnology (based at Duke University) (U.S.
National Science Foundation Cooperative Agreement EF-0830093). The
LP-XSW-FY data reported in this paper were collected at
GeoSoilEnviroCARS (Advanced Photon Source Sector 13) at the Advanced
Photon Source, Argonne National Laboratory. GeoSoilEnviroCARS is
supported by the U.S. National Science Foundation - Earth Sciences
(EAR-1128799) and the U.S. Department of Energy - Geosciences
(DE-FG02-94ER14466). The Advanced Photon Source is supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. We wish to thank
Guangchao Li (Stanford University) for ICP-AES analysis and Prof. Zhenan
Bao (Chemical Engineering, Stanford University) for allowing us to use
her spin coater. We also wish to thank three reviewers for their
valuable suggestions. The STXM data reported in this paper were
collected at the Advanced Light Source, Lawrence Berkeley National
Laboratory. The Advanced Light Source is supported by the Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 75
TC 0
Z9 0
U1 26
U2 33
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD SEP 1
PY 2016
VL 188
BP 407
EP 423
DI 10.1016/j.gca.2016.05.009
PG 17
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DS4LN
UT WOS:000380752700023
ER
PT J
AU Wesnousky, SG
Briggs, RW
Caffee, MW
Ryerson, FJ
Finkel, RC
Owen, LA
AF Wesnousky, Steven G.
Briggs, Richard W.
Caffee, Marc W.
Ryerson, F. J.
Finkel, Robert C.
Owen, Lewis A.
TI Terrestrial cosmogenic surface exposure dating of glacial and associated
landforms in the Ruby Mountains-East Humboldt Range of central Nevada
and along the northeastern flank of the Sierra Nevada
SO GEOMORPHOLOGY
LA English
DT Article
DE Geomorphology; Moraines; Cosmogenic dating; Sierra Nevada; Ruby
Mountains-East Humboldt Range
ID HIMALAYAN-TIBETAN OROGEN; DENUDATION RATES; PLEISTOCENE GLACIATION;
QUATERNARY GLACIATION; CENTRAL KARAKORAM; GREAT-BASIN; ICE AGES; BE-10;
MORAINES; AL-26
AB Deposits near Lamoille in the Ruby Mountains-East Humboldt Range of central Nevada and at Woodfords on the eastern edge of the Sierra Nevada each record two distinct glacial advances. We compare independent assessments of terrestrial cosmogenic nuclide (TCN) surface exposure ages for glacial deposits that we have determined to those obtained by others at the two sites. At each site, TCN ages of boulders on moraines of the younger advance are between 15 and 30 ka and may be associated with marine oxygen isotope stage (MIS) 2. At Woodfords, TCN ages of boulders on the moraine of the older advance are younger than similar to 60 ka and possibly formed during MIS 4, whereas boulders on the correlative outwash surface show ages approaching 140 ka (similar to MIS 6). The TCN ages of boulders on older glacial moraine at Woodfords thus appear to severely underestimate the true age of the glacial advance responsible for the deposit. The same is possibly true at Lamoille where clasts sampled from the moraine of the oldest advance have ages ranging between 20 and 40 ka with a single outlier age of similar to 80 ka The underestimations are attributed to the degradation and denudation of older moraine crests. Noting that boulder ages on the older advances at each site overlap significantly with MIS 2. We speculate that erosion of the older moraines has been episodic, with a pulse of denudation accompanying the inception of MIS 2 glaciation. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Wesnousky, Steven G.] Univ Nevada, Ctr Neotecton Studies, 1664 North Virginia St, Reno, NV 89557 USA.
[Briggs, Richard W.] US Geol Survey, 1711 Illinois St, Golden, CO 80401 USA.
[Caffee, Marc W.] Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA.
[Ryerson, F. J.; Finkel, Robert C.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, L-202,7000 East Ave, Livermore, CA 94550 USA.
[Owen, Lewis A.] Univ Cincinnati, POB 210013, Cincinnati, OH 45221 USA.
RP Wesnousky, SG (reprint author), Univ Nevada, Ctr Neotecton Studies, 1664 North Virginia St, Reno, NV 89557 USA.
EM wesnousky@unr.edu; rbriggs@usgs.gov; mcaffee@purdue.edu;
ryerson1@llnl.gov; owenls@ucmail.uc.edu
OI Ryerson, Frederick/0000-0002-6235-4408; Briggs,
Richard/0000-0001-8108-0046
FU USGS Grants [G15AP00088, G14AP00048]
FX The manuscript has benefited from the critical and constructive comments
of Jaako Pukonen, Ben Laabs and two anonymous reviewers. We give
particular thanks to Editor Richard Marston for his time and careful
comments that improved the manuscript. Anne-Sophie Meriaux assisted with
sample preparation. This research was supported in part by USGS Grants
G15AP00088 and G14AP00048. Center for Neotectonics Contribution No. 68.
NR 51
TC 0
Z9 0
U1 3
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-555X
EI 1872-695X
J9 GEOMORPHOLOGY
JI Geomorphology
PD SEP 1
PY 2016
VL 268
BP 72
EP 81
DI 10.1016/j.geomorph.2016.04.027
PG 10
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA DT0JA
UT WOS:000381168600008
ER
PT J
AU Daley, TM
Miller, DE
Dodds, K
Cook, P
Freifeld, BM
AF Daley, T. M.
Miller, D. E.
Dodds, K.
Cook, P.
Freifeld, B. M.
TI Field testing of modular borehole monitoring with simultaneous
distributed acoustic sensing and geophone vertical seismic profiles at
Citronelle, Alabama
SO GEOPHYSICAL PROSPECTING
LA English
DT Article
DE Acquisition; Borehole Geophysics; Seismics; Fibre-optic DAS
AB A modular borehole monitoring concept has been implemented to provide a suite of well-based monitoring tools that can be deployed cost effectively in a flexible and robust package. The initial modular borehole monitoring system was deployed as part of a CO2 injection test operated by the Southeast Regional Carbon Sequestration Partnership near Citronelle, Alabama. The Citronelle modular monitoring system transmits electrical power and signals, fibre-optic light pulses, and fluids between the surface and a reservoir. Additionally, a separate multi-conductor tubing-encapsulated line was used for borehole geophones, including a specialized clamp for casing clamping with tubing deployment. The deployment of geophones and fibre-optic cables allowed comparison testing of distributed acoustic sensing. We designed a large source effort (>64 sweeps per source point) to test fibre-optic vertical seismic profile and acquired data in 2013. The native measurement in the specific distributed acoustic sensing unit used (an iDAS from Silixa Ltd) is described as a localized strain rate. Following a processing flow of adaptive noise reduction and rebalancing the signal to dimensionless strain, improvement from repeated stacking of the source was observed. Conversion of the rebalanced strain signal to equivalent velocity units, via a scaling by local apparent velocity, allows quantitative comparison of distributed acoustic sensing and geophone data in units of velocity. We see a very good match of uncorrelated time series in both amplitude and phase, demonstrating that velocity-converted distributed acoustic sensing data can be analyzed equivalent to vertical geophones. We show that distributed acoustic sensing data, when averaged over an interval comparable to typical geophone spacing, can obtain signal-to-noise ratios of 18 dB to 24 dB below clamped geophones, a result that is variable with noise spectral amplitude because the noise characteristics are not identical. With vertical seismic profile processing, we demonstrate the effectiveness of downgoing deconvolution from the large spatial sampling of distributed acoustic sensing data, along with improved upgoing reflection quality. We conclude that the extra source effort currently needed for tubing-deployed distributed acoustic sensing vertical seismic profile, as part of a modular monitoring system, is well compensated by the extra spatial sampling and lower deployment cost as compared with conventional borehole geophones.
C1 [Daley, T. M.; Cook, P.; Freifeld, B. M.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Miller, D. E.] Silixa Ltd, Elstree, England.
RP Daley, TM (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM tmdaley@lbl.gov
RI Daley, Thomas/G-3274-2015; Freifeld, Barry/F-3173-2010; Cook,
Paul/I-4788-2016
OI Daley, Thomas/0000-0001-9445-0843;
FU CO2 Capture Project; Lawrence Berkeley Laboratory [DE-AC02-05CH11231]
FX We would like to thank the CO2 Capture Project for support of the
modular borehole monitoring (MBM) concept, development, and deployment.
We thank the SECARB team, including Jerry Hill of SSEB, Rob Trautz of
EPRI, George Koperna and Dave Riestenberg of ARI, and Gary Dittmar of
Denbury. Acquisition of seismic data (geophone and DAS) was assisted by
Dale Adessi of SR2020 and Michelle Robertson of LBNL. We would like to
thank Bjorn Paulsson and John Thornburg of Paulsson, Inc. for the
fabrication and deployment support of MBM geophones. This paper was
greatly improved by the efforts of the anonymous reviewers and the
editor. This work was supported by the CO2 Capture Project, and
performed by Lawrence Berkeley Laboratory under Contract No.
DE-AC02-05CH11231.
NR 20
TC 1
Z9 1
U1 7
U2 7
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0016-8025
EI 1365-2478
J9 GEOPHYS PROSPECT
JI Geophys. Prospect.
PD SEP
PY 2016
VL 64
IS 5
BP 1318
EP 1334
DI 10.1111/1365-2478.12324
PG 17
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DS6UI
UT WOS:000380917900008
ER
PT J
AU Rosenberg, G
Haghnegahdar, P
Goddard, P
Carr, P
Wu, KS
de Prado, ML
AF Rosenberg, Gili
Haghnegahdar, Poya
Goddard, Phil
Carr, Peter
Wu, Kesheng
de Prado, Marcos Lopez
TI Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer
SO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
LA English
DT Article
DE Optimal trading trajectory; portfolio optimization; quantum annealing
ID PORTFOLIO SELECTION PROBLEM; MINIMUM TRANSACTION LOTS; ALGORITHM; COSTS
AB We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.
C1 [Rosenberg, Gili; Goddard, Phil] 1QBit, Vancouver, BC V6C 2B5, Canada.
[Haghnegahdar, Poya] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada.
[Carr, Peter] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA.
[Wu, Kesheng] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[de Prado, Marcos Lopez] Guggenheim Partners LLC, New York, NY 10017 USA.
[de Prado, Marcos Lopez] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Rosenberg, G (reprint author), 1QBit, Vancouver, BC V6C 2B5, Canada.
EM gili.rosenberg@1qbit.com; phagh-neg@phas.ubc.ca; phil.goddard@1qbit.com;
Peter.P.Carr@morganstanley.com; kwu@lbl.gov;
Marcos.LopezDePrado@guggenheimpartners.com
FU 1QB Information Technologies (1QBit); Mitacs
FX This work was supported by 1QB Information Technologies (1QBit) and
Mitacs. The guest editor coordinating the review of this manuscript was
Daniel. P. Palomar.
NR 48
TC 1
Z9 1
U1 3
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1932-4553
EI 1941-0484
J9 IEEE J-STSP
JI IEEE J. Sel. Top. Signal Process.
PD SEP
PY 2016
VL 10
IS 6
BP 1053
EP 1060
DI 10.1109/JSTSP.2016.2574703
PG 8
WC Engineering, Electrical & Electronic
SC Engineering
GA DT4XA
UT WOS:000381483500008
ER
PT J
AU Kou, F
Yang, SL
Zhang, LH
Teat, SJ
Tian, GX
AF Kou, Fei
Yang, Suliang
Zhang, Lihua
Teat, Simon J.
Tian, Guoxin
TI Complexation of Ho(III) with tetraalkyl-diglycolamide in aqueous
solutions and a solid state compared in organic solutions of solvent
extraction
SO INORGANIC CHEMISTRY COMMUNICATIONS
LA English
DT Article
DE Ho(III); Diglycolamide; Solvent extraction; Crystallography;
Spectrophotometry
ID MUTUAL SEPARATION; TODGA; LANTHANIDES; ACTINIDES; AM(III); SYSTEM; IONS;
N,N'-DIMETHYL-N,N'-DIHEXYL-3-OXAPENTANEDIAMIDE;
N,N,N',N'-TETRAETHYLDIGLYCOLAMIDE; COMBINATION
AB The complexation of Ho(III) with tetramethyl-diglycolamide (TMDGA) and N,N'-dimethyl-N,N'-dioctyldiglycolamide (DMDODGA) were investigated with spectrophotometry and X-ray crystallography. Single crystals of a solid compound HoL3(ClO4)(3) (L = TMDGA) were grown from aqueous solutions by slow evaporation. The crystal structure of HoL3(ClO4)(3) shows that in the solid compound Ho(III) is coordinated by nine oxygen atoms from three tridentate TMDGA molecules in a distorted tricapped trigonal prism (TCTP) geometry. In aqueous solution, three successive complex species, HoL3+, HoL23+, and HoL33+ (L = TMDGA) were identified and their stability constants were determined to be 2.20 +/- 0.09, 4.48 +/- 0.18, 5.88 +/- 0.18, respectively, with spectral titration method at 25 degrees C and 1 M ionic strength (1 M NaNO3). The UV-Vis absorption/reflection spectra of the 1:3 species HoL33+ (L = TMDGA) in aqueous solution/solid state HoL3(ClO4)(3) compound were very well comparable to the absorption spectra of the extracted samples of Ho(III) with DMDODGA in various organic solvents in solvent extraction. The similarity in the spectra suggest that Ho(III) in the extracted samples is also coordinated by three tridentate DMDODGA with similar coordination geometry as that in HoL33+ (L = TMDGA) in aqueous solution/solid HoL3(ClO4)(3) compound. In the organic phase of solvent extraction with DMDODGA as extractant, the nitrate anions do not directly bond to Ho(III) in the extracted complex but just act as far away counter -ion to neutralize the positive charge of HoL33+ (L = DMDODGA), and the diluents do not have much influence on the formation of the extracted Ho(III)-DMDODGA complex. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Kou, Fei; Yang, Suliang; Zhang, Lihua; Tian, Guoxin] China Inst Atom Chem, Radiochem Dept, Beijing 102413, Peoples R China.
[Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Tian, Guoxin] Harbin Engn Univ, Coll Nucl Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China.
RP Yang, SL; Tian, GX (reprint author), China Inst Atom Chem, Radiochem Dept, Beijing 102413, Peoples R China.
EM gtian@ciae.ac.cn
FU National Natural Science Foundation of China [91426302]; Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX This work was supported by the National Natural Science Foundation of
China (91426302). The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences, of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 29
TC 1
Z9 1
U1 8
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-7003
EI 1879-0259
J9 INORG CHEM COMMUN
JI Inorg. Chem. Commun.
PD SEP
PY 2016
VL 71
BP 41
EP 44
DI 10.1016/j.inoche.2016.06.035
PG 4
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA DT9PV
UT WOS:000381835700010
ER
PT J
AU Rasmusson, K
Rasmusson, M
Tsang, Y
Niemi, A
AF Rasmusson, K.
Rasmusson, M.
Tsang, Y.
Niemi, A.
TI A simulation study of the effect of trapping model, geological
heterogeneity and injection strategies on CO2 trapping
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE CCS; Capillary trapping; Hysteresis; Injection strategies; Residual
trapping; Solubility trapping
ID GOVERNING MULTIPHASE FLOW; CARBON-DIOXIDE; RELATIVE PERMEABILITY; SALINE
AQUIFERS; RESERVOIR CONDITIONS; CAPILLARY FORCES; DISSOLUTION; STORAGE;
SEQUESTRATION; HELETZ
AB Industrial CO2 emissions to the atmosphere can be reduced through geological storage, where the gas is injected into the subsurface and trapped by several mechanisms. Residual and solubility trapping are two important processes providing trapping, and their effectiveness ultimately determines the feasibility of geological storage. By means of numerical modeling, a systematic analysis was made concerning the factors potentially affecting trapping, to guide the planned injection experiments at the Heletz test injection site. The effect of enhanced-trapping injection strategies along with the role of geological heterogeneity and the choice of trapping model (TM) were evaluated. The results showed that adding chase-fluid stages to a conventional CO2 injection enhanced the trapping. Taking into account the geological heterogeneity decreased trapping, as this retarded the buoyant migration, resulting in less imbibition and residual trapping. The choice of TM was significant, with the simplified Land TM producing the highest trapping, and the Aissaoui TM the lowest. The results stress the importance of using an appropriate TM as well as heterogeneity model for the site in question for any predictive modeling of CO2 sequestration, as different assumptions may lead to significant discrepancies in the predicted trapping. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Rasmusson, K.; Rasmusson, M.; Tsang, Y.; Niemi, A.] Uppsala Univ, Dept Earth Sci, Villavagen 16, S-75236 Uppsala, Sweden.
[Tsang, Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Rasmusson, K (reprint author), Uppsala Univ, Dept Earth Sci, Villavagen 16, S-75236 Uppsala, Sweden.
EM kristina.rasmusson@geo.uu.se; maria.rasmusson@geo.uu.se;
yttsang@lbl.gov; auli.niemi@geo.uu.se
FU European Community's 7th Framework Programme (project MUSTANG) [227286];
EU FP7 R&D program (project TRUST) [309067]
FX lThe research leading to these results is supported by funding from the
European Community's 7th Framework Programme FP7/2007-2013 under grant
agreement no. 227286 (project MUSTANG) and the EU FP7 R&D program under
grant agreement no. 309067 (project TRUST), which is gratefully
acknowledged. We would like to thank S.M. Benson at Stanford University
for providing us with experimental data for the characteristic
functions. We would also like to thank two anonymous reviewers for their
review and constructive comments for improvement of the manuscript.
NR 58
TC 1
Z9 1
U1 8
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD SEP
PY 2016
VL 52
BP 52
EP 72
DI 10.1016/j.ijggc.2016.06.020
PG 21
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA DT8GQ
UT WOS:000381728300006
ER
PT J
AU Serno, S
Johnson, G
LaForce, TC
Ennis-King, J
Haese, RR
Boreham, CJ
Paterson, L
Freifeld, BM
Cook, PJ
Kirste, D
Haszeldine, RS
Gilfillan, SMV
AF Serno, Sascha
Johnson, Gareth
LaForce, Tara C.
Ennis-King, Jonathan
Haese, Ralf R.
Boreham, Christopher J.
Paterson, Lincoln
Freifeld, Barry M.
Cook, Paul J.
Kirste, Dirk
Haszeldine, R. Stuart
Gilfillan, Stuart M. V.
TI Using oxygen isotopes to quantitatively assess residual CO2 saturation
during the CO2CRC Otway Stage 2B Extension residual saturation test
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE Residual saturation; Oxygen isotopes; Otway; Geochemical tracer; CO2
storage
ID CARBON-DIOXIDE STORAGE; THERMOMINERAL WATERS; DISSOLUTION TEST;
FRACTIONATION; INJECTION; DISPOSAL; EXCHANGE; AQUIFERS; SITE; H2O
AB Residual CO2 trapping is a key mechanism of secure CO2 storage, an essential component of the Carbon Capture and Storage technology. Estimating the amount of CO2 that will be residually trapped in a saline aquifer formation remains a significant challenge. Here, we present the first oxygen isotope ratio (delta O-18) measurements from a single-well experiment, the CO2CRC Otway 2B Extension, used to estimate levels of residual trapping of CO2. Following the initiation of the drive to residual saturation in the reservoir, reservoir water delta O-18 decreased, as predicted from the baseline isotope ratios of water and CO2, over a time span of only a few days. The isotope shift in the near-wellbore reservoir water is the result of isotope equilibrium exchange between residual CO2 and water. For the region further away from the well, the isotopic shift in the reservoir water can also be explained by isotopic exchange with mobile CO2 from ahead of the region driven to residual, or continuous isotopic exchange between water and residual CO2 during its back-production, complicating the interpretation of the change in reservoir water delta O-18 in terms of residual saturation. A small isotopic distinction of the baseline water and CO2 delta O-18, together with issues encountered during the field experiment procedure, further prevents the estimation of residual CO2 saturation levels from oxygen isotope changes without significant uncertainty. The similarity of oxygen isotope-based near-wellbore saturation levels and independent estimates based on pulsed neutron logging indicates the potential of using oxygen isotope as an effective inherent tracer for determining residual saturation on a field scale within a few days. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Serno, Sascha; Johnson, Gareth; Haszeldine, R. Stuart; Gilfillan, Stuart M. V.] Univ Edinburgh, Sch Geosci, Grant Inst, Kings Bldg,James Hutton Rd, Edinburgh EH9 3FE, Midlothian, Scotland.
[LaForce, Tara C.; Ennis-King, Jonathan; Haese, Ralf R.; Boreham, Christopher J.; Paterson, Lincoln; Kirste, Dirk] Univ Melbourne, Ltd CO2CRC, Carlton, Vic 3010, Australia.
[LaForce, Tara C.; Ennis-King, Jonathan; Paterson, Lincoln] CSIRO Energy, Private Bag 10, Clayton, Vic 3169, Australia.
[Haese, Ralf R.] Univ Melbourne, Sch Earth Sci, Carlton, Vic 3010, Australia.
[Boreham, Christopher J.] Geosci Australia, GPO Box 378, Canberra, ACT 2601, Australia.
[Freifeld, Barry M.; Cook, Paul J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Kirste, Dirk] Simon Fraser Univ, Dept Earth Sci, Burnaby, BC V5A 1S6, Canada.
RP Serno, S (reprint author), Univ Edinburgh, Sch Geosci, Grant Inst, Kings Bldg,James Hutton Rd, Edinburgh EH9 3FE, Midlothian, Scotland.
EM Sascha.Serno@ed.ac.uk
RI Freifeld, Barry/F-3173-2010; Cook, Paul/I-4788-2016
FU UK CCS Research Centre (UKCCSRC) through Call 2 grant; ECR International
Travel Exchange Fund; EPSRC as part of the RCUK Energy Programme;
CO2CRC; AGOS; COSPL; Australian government through CRC programme; Carbon
Storage Program, U.S. DOE, Assistant Secretary for Fossil Energy, Office
of Clean Coal and Carbon Management through the NETL
FX This work was supported by funding from the UK CCS Research Centre
(UKCCSRC) through the Call 2 grant to S.M.V.G., GJ. and R.S.S., and the
ECR International Travel Exchange Fund to S.S. The UKCCSRC is funded by
the EPSRC as part of the RCUK Energy Programme. Funding for the Otway 2B
Extension comes through CO2CRC, AGOS and COSPL. The authors acknowledge
the funding provided by the Australian government through its CRC
programme to support this CO2CRC research project. C.J.B. publishes with
the permission of the CEO, Geoscience Australia. Funding for the group
from the Lawrence Berkeley National Laboratory was provided by the
Carbon Storage Program, U.S. DOE, Assistant Secretary for Fossil Energy,
Office of Clean Coal and Carbon Management through the NETL. We would
like to thank Sue Golding and Kim Baublys for conducting stable isotope
measurements at the Stable Isotope Geochemistry Laboratory of the School
of Earth Sciences, University of Queensland, Australia. We appreciate
the help in sample collection from Jay Black, Hong Phuc Vu and the field
operating team under the supervision of Rajindar Singh. The paper was
improved by constructive comments from two anonymous reviewers.
NR 53
TC 0
Z9 0
U1 10
U2 10
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD SEP
PY 2016
VL 52
BP 73
EP 83
DI 10.1016/j.ijggc.2016.06.019
PG 11
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA DT8GQ
UT WOS:000381728300007
ER
PT J
AU Pawar, RJ
Bromhal, GS
Chu, SP
Dilmore, RM
Oldenburg, CM
Stauffer, PH
Zhang, YQ
Guthrie, GD
AF Pawar, Rajesh J.
Bromhal, Grant S.
Chu, Shaoping
Dilmore, Robert M.
Oldenburg, Curtis M.
Stauffer, Philip H.
Zhang, Yingqi
Guthrie, George D.
TI The National Risk Assessment Partnership's integrated assessment model
for carbon storage: A tool to support decision making amidst uncertainty
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE Risk assessment; Risk quantification; CO2 sequestration; Risk profiles;
Integrated assessment model; Reduced order models; NRAP
ID REDUCED-ORDER MODELS; DEEP SALINE AQUIFERS; CO2 STORAGE; GEOLOGICAL
SEQUESTRATION; INDUCED SEISMICITY; BRINE LEAKAGE; SYSTEM MODEL; DIOXIDE;
SENSITIVITY; MANAGEMENT
AB The US DOE-funded National Risk Assessment Partnership (NRAP) has developed an integrated assessment model (NRAP-IAM-CS) that can be used to simulate carbon dioxide (CO2) injection, migration, and associated impacts at a geologic carbon storage site. The model, NRAP-IAM-CS, incorporates a system modeling-based approach while taking into account the full subsurface system from the storage reservoir to groundwater aquifers and the atmosphere. The approach utilizes reduced order models (ROMs) that allow fast computations of entire system performance even for periods of hundreds to thousands of years. The ROMs are run in Monte Carlo mode allowing estimation of uncertainties of the entire system without requiring long computational times. The NRAP-IAM-CS incorporates ROMs that realistically represent several key processes and properties of storage reservoirs, wells, seals, and groundwater aquifers. Results from the NRAP-IAM-CS model are used to quantify risk profiles for selected parameter distributions of reservoir properties, seal properties, numbers of wells, well properties, thief zones, and groundwater aquifer properties. A series of examples is used to illustrate how the risk under different storage conditions evolves over time, both during injection, in the near-term post injection period, and over the long term. It is also shown how results from NRAP-IAM-CS can be used to investigate the importance of different parameters on risk of leakage and risk of groundwater contamination under different storage conditions. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Pawar, Rajesh J.; Chu, Shaoping; Stauffer, Philip H.; Guthrie, George D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Bromhal, Grant S.; Dilmore, Robert M.] Natl Energy Technol Lab, South Pk Township, PA USA.
[Oldenburg, Curtis M.; Zhang, Yingqi] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Pawar, RJ (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div EES 16, Los Alamos, NM 87545 USA.
EM rajesh@lanl.gov
RI Oldenburg, Curtis/L-6219-2013;
OI Oldenburg, Curtis/0000-0002-0132-6016; Stauffer,
Philip/0000-0002-6976-221X
FU U.S. Department of Energy's (DOE) Office of Fossil Energy's Crosscutting
Research program
FX This work was completed as part of the National Risk Assessment
Partnership (NRAP) project. Support for this project came from the U.S.
Department of Energy's (DOE) Office of Fossil Energy's Crosscutting
Research program. The authors wish to acknowledge Traci Rodosta and M.
Kylee Rice (NETL Strategic Center for Coal) and Mark Ackiewicz (DOE
Office of Fossil Energy) for programmatic guidance, direction, and
support. The authors also wish to acknowledge contributions from
researchers across the NRAP technical teams, who developed ROMs that are
implemented in the NRAP-IAM-CS model.
NR 44
TC 5
Z9 5
U1 5
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD SEP
PY 2016
VL 52
BP 175
EP 189
DI 10.1016/j.ijggc.2016.06.015
PG 15
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA DT8GQ
UT WOS:000381728300015
ER
PT J
AU Trainor-Guitton, W
Mansoor, K
Sun, YW
Carroll, S
AF Trainor-Guitton, Whitney
Mansoor, Kayyum
Sun, Yunwei
Carroll, Susan
TI Merits of pressure and geochemical data as indicators of CO2/brine
leakage into a heterogeneous, sedimentary aquifer
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE CO2 storage; CO2 and brine leakage; Monitoring Reactive transport;
Detectability
ID SHALLOW GROUNDWATER SYSTEM; CO2 LEAKAGE; CARBON SEQUESTRATION;
UNCERTAINTY QUANTIFICATION; ELECTRICAL-RESISTIVITY; SITE; STORAGE;
PERFORMANCE; MIGRATION; IMPACTS
AB This study assesses the merits of pressure data and geochemical data as indicators of a combined CO2/brine leakage into a heterogeneous, sedimentary aquifer. We simulate the changes in three aquifer responses (pressure, total dissolved solids (TDS), and pH) due to CO2/brine leakage at an abandoned well with an uncertain location and hypothesize that these changes can only be observed from a single shallow monitoring well, mimicking the low density of observation wells for the considered aquifer. Specifically, detection likelihoods are calculated to describe how frequently pressure, TDS, and pH signals will coincide with a leak for observations made at different distances and times from the initiation of the CO2/brine leakage rate. The pressure signal gives a more spatially extensive signal than either TDS or pH, and pressure detection probabilities increase upstream of flow barriers (pressurizing-affect). The pH and TDS rebound down-stream of the flow barriers. When only considering the samples that experience the highest leakage volumes, there is a 50% likelihood of detecting a pressure change 400 m away at times >= 30 years. However, the TDS and pH detection likelihoods are <20% at 100 m distance for times >= 30 years. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Trainor-Guitton, Whitney] Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA.
[Trainor-Guitton, Whitney; Mansoor, Kayyum; Sun, Yunwei; Carroll, Susan] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
RP Trainor-Guitton, W (reprint author), Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA.
EM wtrainor@mines.edu
FU U.S. Department of Energy's (DOE's) Office of Fossil Energy's
Cross-cutting Research program
FX This work is part of the National Risk Assessment Partnership (NRAP)
which is supported by the U.S. Department of Energy's (DOE's) Office of
Fossil Energy's Cross-cutting Research program.
NR 30
TC 0
Z9 0
U1 3
U2 3
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD SEP
PY 2016
VL 52
BP 237
EP 249
DI 10.1016/j.ijggc.2016.07.002
PG 13
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA DT8GQ
UT WOS:000381728300020
ER
PT J
AU Keating, E
Bacon, D
Carroll, S
Mansoor, K
Sun, YW
Zheng, LE
Harp, D
Dai, ZX
AF Keating, Elizabeth
Bacon, Diana
Carroll, Susan
Mansoor, Kayyum
Sun, Yunwei
Zheng, Liange
Harp, Dylan
Dai, Zhenxue
TI Applicability of aquifer impact models to support decisions at CO2
sequestration sites
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE Carbon sequestration; Groundwater impacts; Risk assessment;
Reduced-order modeling
ID DISSOLUTION KINETICS; GEOCHEMICAL IMPACTS; EVALUATING IMPACTS; POTABLE
AQUIFERS; CARBON-DIOXIDE; SHALLOW; LEAKAGE; GROUNDWATER; ADSORPTION;
FIELD
AB The National Risk Assessment Partnership has developed a suite of tools to assess and manage risk at CO2 sequestration sites. This capability includes polynomial or look-up table based reduced-order models (ROMs) that predict the impact of CO2 and brine leaks on overlying aquifers. The development of these computationally-efficient models and the underlying reactive transport simulations they emulate has been documented elsewhere (Carroll et al, 2014a,b; Dal et al., 2014: Keating et al., 2016). In this paper, we seek to demonstrate applicability of ROM-based analysis by considering what types of decisions and aquifer types would benefit from the ROM analysis. We present four hypothetical examples where applying ROMs, in ensemble mode, could support decisions during a geologic CO2 sequestration project. These decisions pertain to site selection, site characterization, monitoring network evaluation, and health impacts. In all cases, we consider potential brine/CO2 leak rates at the base of the aquifer to be uncertain. We show that derived probabilities provide information relevant to the decision at hand.
Although the ROMs were developed using site-specific data from two aquifers (High Plains and Edwards), the models accept aquifer characteristics as variable inputs and so they may have more broad applicability. We conclude that pH and TDS predictions are the most transferable to other aquifers based on the analysis of the nine water quality metrics (pH, TDS, 4 trace metals, 3 organic compounds). Guidelines are presented for determining the aquifer types for which the ROMs should be applicable. (C) Published by Elsevier Ltd.
C1 [Keating, Elizabeth; Harp, Dylan; Dai, Zhenxue] Los Alamos Natl Lab, Earth & Environm Sci Div, MS T003, Los Alamos, NM 87545 USA.
[Bacon, Diana] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA.
[Carroll, Susan; Mansoor, Kayyum; Sun, Yunwei] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
[Zheng, Liange] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Keating, E (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, MS T003, Los Alamos, NM 87545 USA.
EM ekeating@lanl.gov; Diana.Bacon@pnnl.gov; carroll6@llnl.gov;
mansoor1@llnl.gov; sun4@llnl.gov; lzheng@lbl.gov; dharp@lanl.gov;
daiz@lanl.gov
RI zheng, liange/B-9748-2011;
OI zheng, liange/0000-0002-9376-2535; Dai, Zhenxue/0000-0002-0805-7621
FU DOE Office of Fossil Energy's Crosscutting Research program
FX This work was completed as part of National Risk Assessment Partnership
(NRAP) project. Support for this project came from the DOE Office of
Fossil Energy's Crosscutting Research program. The authors wish to
acknowledge Robert Romanosky (NETL Strategic Center for Coal) and Regis
Conrad (DOE Office of Fossil Energy) for programmatic guidance,
direction, and support. Additionally, this work benefited greatly from
thoughtful comments from three anonymous reviewers.
NR 51
TC 0
Z9 0
U1 6
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD SEP
PY 2016
VL 52
BP 319
EP 330
DI 10.1016/j.ijggc.2016.07.001
PG 12
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA DT8GQ
UT WOS:000381728300025
ER
PT J
AU Rhiger, DR
Smith, EP
Kolasa, BP
Kim, JK
Klem, JF
Hawkins, SD
AF Rhiger, David R.
Smith, Edward P.
Kolasa, Borys P.
Kim, Jin K.
Klem, John F.
Hawkins, Samuel D.
TI Analysis of III-V Superlattice nBn Device Characteristics
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE Infrared; nBn; III-V material; superlattice; InAs/InAsSb; capacitance
measurements
AB Mid-wavelength infrared nBn detectors built with III-V superlattice materials have been tested by means of both capacitance and direct-current methods. By combining the results, it is possible to achieve clear separation of the two components of dark current, namely the generation-recombination (GR) current due to the Shockley-Read-Hall mechanism in the depletion region, and the diffusion current from the neutral region. The GR current component is unambiguously identified by two characteristics: (a) it is a linear function of the depletion width, and (b) its activation energy is approximately one-half the bandgap. The remaining current is shown to be due to diffusion because of its activation energy equaling the full bandgap. In addition, the activation energy of the total measured dark current in each local region of the temperature-bias parameter space is evaluated. We show the benefits of capacitance analysis applied to the nBn device and review some of the requirements for correct measurements. The carrier concentration of the unintentionally doped absorber region is found to be 1.2 x 10(14) cm(-3) n-type. It is shown that the depletion region resides almost entirely within the absorber. Also, the doping in the nBn barrier is found to be 4 x 10(15) cm(-3) p-type. Minority-carrier lifetimes estimated from the dark current components are on the order of 10 mu s.
C1 [Rhiger, David R.; Smith, Edward P.; Kolasa, Borys P.] Raytheon Vis Syst, 75 Coromar Dr, Goleta, CA 93117 USA.
[Kim, Jin K.; Klem, John F.; Hawkins, Samuel D.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
RP Rhiger, DR (reprint author), Raytheon Vis Syst, 75 Coromar Dr, Goleta, CA 93117 USA.
EM drhiger@raytheon.com
NR 19
TC 2
Z9 2
U1 10
U2 14
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
EI 1543-186X
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD SEP
PY 2016
VL 45
IS 9
BP 4646
EP 4653
DI 10.1007/s11664-016-4545-y
PG 8
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA DS9CM
UT WOS:000381080000022
ER
PT J
AU Yoo, W
Sim, A
AF Yoo, Wucherl
Sim, Alex
TI Time-Series Forecast Modeling on High-Bandwidth Network Measurements
SO JOURNAL OF GRID COMPUTING
LA English
DT Article
DE Data modeling; Time series; Prediction model; Network measurements;
Network traffic
ID AVAILABLE BANDWIDTH; TCP THROUGHPUT
AB With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. We have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and the AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.
C1 [Yoo, Wucherl; Sim, Alex] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Yoo, W (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM wyoo@lbl.gov
FU Office of Advanced Scientific Computing Research, Office of Science, of
the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Office of Advanced Scientific Computing
Research, Office of Science, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. The authors would like to thank Chris
Tracy, Jon Dugan, Brian Tierney, Inder Monga, and Gregory Bell at ESnet;
Arie Shoshani, K. John Wu, Joy Bonaguro, and Jay Krous at LBNL; Richard
Carlson at Dept. of Energy.
NR 38
TC 0
Z9 0
U1 5
U2 5
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1570-7873
EI 1572-9184
J9 J GRID COMPUT
JI J. Comput.
PD SEP
PY 2016
VL 14
IS 3
BP 463
EP 476
DI 10.1007/s10723-016-9368-9
PG 14
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
SC Computer Science
GA DT0FP
UT WOS:000381158800005
ER
PT J
AU Glosser, D
Kutchko, B
Benge, G
Crandall, D
Ley, MT
AF Glosser, D.
Kutchko, B.
Benge, G.
Crandall, D.
Ley, M. T.
TI Relationship between operational variables, fundamental physics and
foamed cement properties in lab and field generated foamed cement
slurries
SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING
LA English
DT Article
DE Energy; Foamed cement; Wellbores; Engineering
ID PASTE
AB Foamed cement is a critical component for wellbore stability. The mechanical performance of a foamed cement depends on its microstructure, which in turn depends on the preparation method and attendant operational variables. Determination of cement stability for field use is based on laboratory testing protocols governed by API Recommended Practice 10B-4 (API RP 10B-4, 2015). However, laboratory and field operational variables contrast considerably in terms of scale, as well as slurry mixing and foaming processes. Here, laboratory and field operational processes are characterized within a physics-based framework. It is shown that the "atomization energy" imparted by the high pressure injection of nitrogen gas into the field mixed foamed cement slurry is - by a significant margin - the highest energy process, and has a major impact on the void system in the cement slurry. There is no analog for this high energy exchange in current laboratory cement preparation and testing protocols. Quantifying the energy exchanges across the laboratory and field processes provides a basis for understanding relative impacts of these variables on cement structure, and can ultimately lead to the development of practices to improve cement testing and performance. Published by Elsevier B.V.
C1 [Glosser, D.; Kutchko, B.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Glosser, D.] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA.
[Crandall, D.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
[Benge, G.] Benge Consulting, The Woodlands, TX USA.
[Ley, M. T.] Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA.
RP Kutchko, B (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
EM Barbara.Kutchko@netl.doe.gov
FU U.S. Department of Energy
FX This work was completed as part of National Energy Technology Laboratory
(NETL) research for the Department of Energy's Complementary Research
Program under Section 999 of the Energy Policy Act of 2005. This
research was supported in part by an appointment to the National Energy
Technology Laboratory Research Participation Program, sponsored by the
U.S. Department of Energy and administered by the Oak Ridge Institute
for Science and Education. The authors wish to acknowledge Roy Long
(NETL Strategic Center for Natural Gas and Oil) and Elena Melchert (DOE
Office of Fossil Energy) for programmatic guidance, direction, and
support. The authors would like to thank Bryan Tennant, Karl Jarvis and
Roger Lapeer for making the CT scanner lab functional. Thanks to Rick
Spaulding and Jim Fazio for superior laboratory assistance. The authors
extend a special thanks to Erick Cunningham and Woody Lawrence, and to
Kelly Rose and Jen Bauer. DBG would also like to thank S. Miaskeiwicz,
E. Anish, the Millers, Russell Schwartz, and the Arnolds.
NR 27
TC 0
Z9 1
U1 6
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-4105
EI 1873-4715
J9 J PETROL SCI ENG
JI J. Pet. Sci. Eng.
PD SEP
PY 2016
VL 145
BP 66
EP 76
DI 10.1016/j.petrol.2016.03.014
PG 11
WC Energy & Fuels; Engineering, Petroleum
SC Energy & Fuels; Engineering
GA DT9PU
UT WOS:000381835600006
ER
PT J
AU Dhuwe, A
Klara, A
Sullivan, J
Lee, J
Cummings, S
Beckman, E
Enick, R
Perry, R
AF Dhuwe, Aman
Klara, Alex
Sullivan, James
Lee, Jason
Cummings, Stephen
Beckman, Eric
Enick, Robert
Perry, Robert
TI Assessment of solubility and viscosity of ultra-high molecular weight
polymeric thickeners in ethane, propane and butane for miscible EOR
SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING
LA English
DT Article
DE Ethane; Propane; Butane; Thickener; Ultrahigh molecular weight polymer;
Poly-alpha-olefin
ID THERMODYNAMIC PROPERTY MODEL; PRESSURE PHASE-BEHAVIOR; CARBON-DIOXIDE;
POLY(ETHYLENE-CO-METHYL ACRYLATE); N-BUTANE; SYSTEMS; EQUILIBRIA;
COPOLYMER; OIL; CO2
AB Natural gas liquid (NGL), a mixture consisting primarily of ethane, propane, and butane, is an excellent enhanced oil recovery (EOR) solvent. However, NGL is typically about ten times less viscous than the crude oil within the carbonate or sandstone porous media, which causes the NGL to finger through the rock toward production wells resulting in low volumetricsweep efficiency in five-spot patterns or during a linear drive displacement. The viscosity of candidate polymeric NGL thickeners is measured with a windowed, close-clearance falling ball viscometer, and an expression for the average shear rate associated with this type of viscometer is derived. High molecular weight polydimethyl siloxane (PDMS, MW 9.8 10(5)) can thicken ethane, propane and butane, but the viscosity enhancement is very modest (e.g. a doubling of butane viscosity with 2% PDMS at 7 MPa and 25 degrees C), making field application of PDMS unlikely. A dilute concentration of a drag-reducing agent (DRA) poly-alpha-olefin that has an average molecular weight greater than 2.0 10(7) is more promising as a potential thickener for liquid butane, liquid propane and liquid or supercritical ethane. The DRA polymer, which is introduced as an extremely viscous 1% or 2% solution in hexane, is soluble in butane and propane at 25-60 degrees C and concentrations up to at least 0.5 wt% at pressures slightly above the vapor pressure of butane or propane. The DRA polymer is much more difficult to dissolve in ethane, however, requiring pressures of more than 20 MPa. The DRA polymer is especially effective for thickening butane (e.g. a 4.8-fold viscosity increase at 25 degrees C, 55.16 MPa and 0.2 wt% DRA). The DRA is less effective for increasing propane viscosity (e.g. a 2.3-fold viscosity increase at the same conditions), and even less effective for thickening ethane. In general, viscosity enhancement increases with decreasing temperature, increasing pressure, and an increase in the carbon number of the light alkane, which are reflective of increased NGL solvent strength at low temperature and high pressure. Practical application of DRA during EOR may be hindered, however, by the relatively high concentration (similar to 5000 ppm) of DRA polymer required for order-of-magnitude viscosity increases, very high pressure requirements for DRA dissolution if the ethane content of the NGL is high, and the large amount of hexane that would have to be introduced if the DRA polymer if it is introduced as a solution in hexane. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Dhuwe, Aman; Sullivan, James; Lee, Jason; Cummings, Stephen; Beckman, Eric; Enick, Robert] Univ Pittsburgh, Swanson Sch Engn, Dept Chem & Petr Engn, 940 Benedum Engn Hall,3700 OHara St, Pittsburgh, PA 15261 USA.
[Klara, Alex] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA.
[Enick, Robert] US DOE, Natl Energy Technol Lab, Off Res & Dev, Pittsburgh, PA 15236 USA.
[Perry, Robert] GE Global Res, Res Circle, Niskayuna, NY 12309 USA.
RP Enick, R (reprint author), Univ Pittsburgh, Swanson Sch Engn, Dept Chem & Petr Engn, 940 Benedum Engn Hall,3700 OHara St, Pittsburgh, PA 15261 USA.
EM rme@pitt.edu
FU U.S. Department of Energy Advanced Research Project Agency-Energy
(ARPA-E) [DE-AR0000292]
FX This work was supported by the U.S. Department of Energy Advanced
Research Project Agency-Energy (ARPA-E) (Contract No. DE-AR0000292). The
authors are grateful to them for their support. We would also like to
express our appreciation to Lubrizol for their enthusiastic support of
the newly formed Lubrizol Innovation Collaboration in the Department of
Chemical and Petroleum Engineering at the Swanson School of Engineering
at the University of Pittsburgh.
NR 48
TC 2
Z9 2
U1 9
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-4105
EI 1873-4715
J9 J PETROL SCI ENG
JI J. Pet. Sci. Eng.
PD SEP
PY 2016
VL 145
BP 266
EP 278
DI 10.1016/j.petrol.2016.05.018
PG 13
WC Energy & Fuels; Engineering, Petroleum
SC Energy & Fuels; Engineering
GA DT9PU
UT WOS:000381835600024
ER
PT J
AU Yu, HJ
Takeuchi, H
Takeuchi, M
Liu, Q
Kantharia, J
Haltiwanger, RS
Li, HL
AF Yu, Hongjun
Takeuchi, Hideyuki
Takeuchi, Megumi
Liu, Qun
Kantharia, Joshua
Haltiwanger, Robert S.
Li, Huilin
TI Structural analysis of Notch-regulating Rumi reveals basis for
pathogenic mutations
SO NATURE CHEMICAL BIOLOGY
LA English
DT Article
ID O-GLCNAC TRANSFERASE; SQUAMOUS-CELL CARCINOMA; CANCER;
GLUCOSYLTRANSFERASE; MECHANISM; DIFFRACTION; PATHWAY;
GLYCOSYLTRANSFERASES; XYLOSYLTRANSFERASE; GLYCOSYLATION
AB Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development, including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi's critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary and ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence,C-X-S-X-(P/A)-C and a conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling-Degos disease are clustered around the enzyme active site and adversely affect its activity. Our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling.
C1 [Yu, Hongjun; Liu, Qun; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Takeuchi, Hideyuki; Takeuchi, Megumi; Haltiwanger, Robert S.] Univ Georgia, Complex Carbohydrate Res Ctr, 220 Riverbend Rd, Athens, GA 30602 USA.
[Kantharia, Joshua; Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA.
RP Li, HL (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.; Haltiwanger, RS (reprint author), Univ Georgia, Complex Carbohydrate Res Ctr, 220 Riverbend Rd, Athens, GA 30602 USA.; Li, HL (reprint author), SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA.
EM rhalti@uga.edu; hli@bnl.gov
FU NIH [GM061126, AG029979]; SBU-BNL; US Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-98CH10886,
DE-AC02-06CH11357]
FX We thank members of the Li and Haltiwanger labs for critical comments on
this work, as well as S. Singh Johar for technical assistance. The work
was supported by the NIH (grants GM061126 (to R.S.H.) and AG029979 (to
H.L.)) and SBU-BNL (seed grant to R.S.H. and H.L.). We acknowledge
access to beamlines X25, X29 and X4A at NSLS, Brookhaven National
Laboratory and LRL-CAT at APS, Argonne National Laboratory, and we thank
the staff at these beamlines. NSLS and APS were supported by the US
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under contract nos. DE-AC02-98CH10886 and DE-AC02-06CH11357,
respectively. Use of the Lilly Research Laboratories Collaborative
Access Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon
Source was provided by Eli Lilly Company, which operates the facility.
The results published here are in part based on data generated by the
TCGA Research Network (http://cancergenome.nih.gov/). H.L. dedicates
this work to the loving memory of his son Paul J. Li.
NR 52
TC 0
Z9 0
U1 7
U2 7
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1552-4450
EI 1552-4469
J9 NAT CHEM BIOL
JI Nat. Chem. Biol.
PD SEP
PY 2016
VL 12
IS 9
BP 735
EP +
DI 10.1038/nchembio.2135
PG 8
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA DU5MF
UT WOS:000382255100016
PM 27428513
ER
PT J
AU Souhan, B
Chen, CP
Lu, M
Stein, A
Bakhru, H
Grote, RR
Bergman, K
Green, WMJ
Osgood, RM
AF Souhan, Brian
Chen, Christine P.
Lu, Ming
Stein, Aaron
Bakhru, Hassaram
Grote, Richard R.
Bergman, Keren
Green, William M. J.
Osgood, Richard M., Jr.
TI Ar+-Implanted Si-Waveguide Photodiodes for Mid-Infrared Detection
SO PHOTONICS
LA English
DT Article
DE silicon; photodetectors; integrated optics devices
ID ERROR-FREE OPERATION; MU-M; INFRARED PHOTODIODES; AVALANCHE PHOTODIODE;
SILICON; PHOTODETECTORS; MODULATION; BANDWIDTH; MODE; BAND
AB Complementary metal-oxide-semiconductor (CMOS)-compatible Ar+-implanted Si-waveguide p-i-n photodetectors operating in the mid-infrared (2.2 to 2.3 mu m wavelengths) are demonstrated at room temperature. Responsivities exceeding 21 mA/ W are measured at a 5 V reverse bias with an estimated internal quantum efficiency of 3.1%-3.7%. The dark current is found to vary from a few nanoamps down to less than 11 pA after post-implantation annealing at 350 degrees C. Linearity is demonstrated over four orders of magnitude, confirming a single-photon absorption process. The devices demonstrate a higher thermal processing budget than similar Si+-implanted devices and achieve higher responsivity after annealing up to 350 degrees C.
C1 [Souhan, Brian] US Mil Acad, Photon Res Ctr, West Point, NY 10996 USA.
[Chen, Christine P.; Bergman, Keren] Columbia Univ, Dept Elect Engn, 500 W 120th St, New York, NY 10027 USA.
[Lu, Ming; Stein, Aaron] Brookhaven Natl Lab, Ctr Funct Nanomat, POB 5000, Upton, NY 11973 USA.
[Bakhru, Hassaram] SUNYPOLY, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA.
[Grote, Richard R.] Univ Penn, Dept Elect & Syst Engn, 200 S 33rd St, Philadelphia, PA 19104 USA.
[Green, William M. J.] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA.
[Osgood, Richard M., Jr.] Columbia Univ, Microelect Sci Labs, 500 W 120th St, New York, NY 10027 USA.
RP Souhan, B (reprint author), US Mil Acad, Photon Res Ctr, West Point, NY 10996 USA.
EM brian.souhan@gmail.com; cpc2143@columbia.edu; mlu@bnl.gov;
stein@bnl.gov; hbakhru@sunypoly.edu; rgrote@seas.upenn.edu;
bergman@ee.columbia.edu; wgreen@us.ibm.com; osgood@columbia.edu
NR 27
TC 0
Z9 0
U1 6
U2 8
PU MDPI AG
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2304-6732
J9 PHOTONICS
JI Photonics
PD SEP
PY 2016
VL 3
IS 3
AR 46
DI 10.3390/photonics3030046
PG 8
WC Optics
SC Optics
GA DT9ZG
UT WOS:000381860400006
ER
PT J
AU Hommel, R
Siegwolf, R
Zavadlav, S
Arend, M
Schaub, M
Galiano, L
Haeni, M
Kayler, ZE
Gessler, A
AF Hommel, R.
Siegwolf, R.
Zavadlav, S.
Arend, M.
Schaub, M.
Galiano, L.
Haeni, M.
Kayler, Z. E.
Gessler, A.
TI Impact of interspecific competition and drought on the allocation of new
assimilates in trees
SO PLANT BIOLOGY
LA English
DT Article
DE Carbon isotope labelling; mean residence time; osmotic adjustment;
phloem transport; respiration
ID BEECH FAGUS-SYLVATICA; CARBON-ISOTOPE COMPOSITION; RECENTLY FIXED
CARBON; EUROPEAN BEECH; ACER-PLATANOIDES; CLIMATE-CHANGE; NORWAY SPRUCE;
NITROGEN-COMPOUNDS; RESIDENCE TIME; FOREST
AB In trees, the interplay between reduced carbon assimilation and the inability to transport carbohydrates to the sites of demand under drought might be one of the mechanisms leading to carbon starvation. However, we largely lack knowledge on how drought effects on new assimilate allocation differ between species with different drought sensitivities and how these effects are modified by interspecific competition. We assessed the fate of C-13 labelled assimilates in above- and belowground plant organs and in root/rhizosphere respired CO2 in saplings of drought-tolerant Norway maple (Acer platanoides) and drought-sensitive European beech (Fagus sylvatica) exposed to moderate drought, either in mono- or mixed culture. While drought reduced stomatal conductance and photosynthesis rates in both species, both maintained assimilate transport belowground. Beech even allocated more new assimilate to the roots under moderate drought compared to non-limited water supply conditions, and this pattern was even more pronounced under interspecific competition. Even though maple was a superior competitor compared to beech under non-limited soil water conditions, as indicated by the changes in above- and belowground biomass of both species in the interspecific competition treatments, we can state that beech was still able to efficiently allocate new assimilate belowground under combined drought and interspecific competition. This might be seen as a strategy to maintain root osmotic potential and to prioritise root functioning. Our results thus show that beech tolerates moderate drought stress plus competition without losing its ability to supply belowground tissues. It remains to be explored in future work if this strategy is also valid during long-term drought exposure.
C1 [Hommel, R.; Kayler, Z. E.; Gessler, A.] Inst Landscape Biogeochem, Leibniz Ctr Agr Landscape Res ZALF, Muncheberg, Germany.
[Siegwolf, R.] Paul Scherrer Inst, Lab Atmospher Chem Stable Isotopes & Ecosyst Flux, Villigen, Switzerland.
[Zavadlav, S.] Dept Forest Physiol & Genet, Ljubljana, Slovenia.
[Arend, M.; Schaub, M.; Galiano, L.; Haeni, M.; Gessler, A.] Swiss Fed Inst Forest Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland.
[Galiano, L.] Univ Freiburg, Inst Hydrol, Freiburg, Germany.
[Gessler, A.] Berlin Brandenburg Inst Adv Biodivers Res BBIB, Berlin, Germany.
[Kayler, Z. E.] US Forest Serv, USDA, Northern Res Stn, Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Gessler, A (reprint author), Swiss Fed Inst Forest Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland.
EM arthur.gessler@wsl.ch
RI Gessler, Arthur/C-7121-2008; Arend, Matthias/L-7795-2013; Galiano,
Lucia/P-1818-2016; Haeni, Matthias/A-3446-2013; Schaub,
Marcus/E-4874-2012
OI Gessler, Arthur/0000-0002-1910-9589; Galiano, Lucia/0000-0003-0123-1882;
Haeni, Matthias/0000-0003-3977-2166; Schaub, Marcus/0000-0002-0158-8892
FU Deutsche Forschungsgemeinschaft [GE 1090/8-1, GE 1090/9-1]
FX The authors are grateful to Eva Hilbig for continuous support during all
labelling experiments, and Johannes Bruckhoff for preparing the custom
chambers. Special thanks to Katja Felsmann, Ruth Lamparter, Kirstin
Jansen, Lucia Atanet, Susanne Remus, Florian Reverey, Richard Hommel,
Rainer Hentschel and Martin Hentschel for huge help during the harvests
and analyses. We thank Stephan Wirth for the supply of the Picarro. The
project was funded by the Deutsche Forschungsgemeinschaft (Grant
numbers: GE 1090/8-1 and 9-1).
NR 69
TC 3
Z9 3
U1 31
U2 52
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1435-8603
EI 1438-8677
J9 PLANT BIOLOGY
JI Plant Biol.
PD SEP
PY 2016
VL 18
IS 5
BP 785
EP 796
DI 10.1111/plb.12461
PG 12
WC Plant Sciences
SC Plant Sciences
GA DS8IT
UT WOS:000381027400006
PM 27061772
ER
PT J
AU Jones-Albertus, R
Feldman, D
Fu, R
Horowitz, K
Woodhouse, M
AF Jones-Albertus, Rebecca
Feldman, David
Fu, Ran
Horowitz, Kelsey
Woodhouse, Michael
TI Technology advances needed for photovoltaics to achieve widespread grid
price parity
SO PROGRESS IN PHOTOVOLTAICS
LA English
DT Article
DE economics; LCOE; photovoltaics
AB To quantify the potential value of technological advances to the photovoltaics (PV) sector, this paper examines the impact of changes to key PV module and system parameters on the levelized cost of energy (LCOE). The parameters selected include module manufacturing cost, efficiency, degradation rate, and service lifetime. NREL's System Advisor Model (SAM) is used to calculate the lifecycle cost per kilowatt-hour (kWh) for residential, commercial, and utility scale PV systems within the contiguous United States, with a focus on utility scale. Different technological pathways are illustrated that may achieve the Department of Energy's SunShot goal of PV electricity that is at grid price parity with conventional electricity sources. In addition, the impacts on the 2015 baseline LCOE due to changes to each parameter are shown. These results may be used to identify research directions with the greatest potential to impact the cost of PV electricity. Copyright (c) 2016 John Wiley & Sons, Ltd.
C1 [Jones-Albertus, Rebecca] US DOE, Off Energy Efficiency & Renewable Energy, Solar Energy Technol Off, Washington, DC 20585 USA.
[Feldman, David; Fu, Ran; Horowitz, Kelsey; Woodhouse, Michael] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA.
RP Jones-Albertus, R (reprint author), US DOE, Off Energy Efficiency & Renewable Energy, Solar Energy Technol Off, Washington, DC 20585 USA.; Woodhouse, M (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA.; Woodhouse, M (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Washington, DC USA.
EM rebecca.jones-albertus@ee.doe.gov; michael.woodhouse@nrel.gov
NR 14
TC 3
Z9 3
U1 13
U2 14
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1062-7995
EI 1099-159X
J9 PROG PHOTOVOLTAICS
JI Prog. Photovoltaics
PD SEP
PY 2016
VL 24
IS 9
BP 1272
EP 1283
DI 10.1002/pip.2755
PG 12
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DS7LJ
UT WOS:000380964700010
ER
PT J
AU Ward, JS
Remo, T
Horowitz, K
Woodhouse, M
Sopori, B
VanSant, K
Basore, P
AF Ward, J. Scott
Remo, Timothy
Horowitz, Kelsey
Woodhouse, Michael
Sopori, Bhushan
VanSant, Kaitlyn
Basore, Paul
TI Techno-economic analysis of three different substrate removal and reuse
strategies for III-V solar cells
SO PROGRESS IN PHOTOVOLTAICS
LA English
DT Article
DE photovoltaics; III-V; substrate; reuse
ID EPITAXIAL LIFT-OFF; HIGH-EFFICIENCY; SI; TECHNOLOGY; CRACKING; FILMS
AB The high cost of wafers suitable for epitaxial deposition of III-V solar cells has been a primary barrier to widespread use of these cells in low-concentration and one-sun terrestrial solar applications. A possible solution is to reuse the substrate many times, thus spreading its cost across many cells. We performed a bottom-up techno-economic analysis of three different strategies for substrate reuse in high-volume manufacturing: epitaxial lift-off, spalling, and the use of a porous germanium release layer. The analysis shows that the potential cost reduction resulting from substrate reuse is limited in all three strategies--not by the number of reuse cycles achievable, but by the costs that are incurred in each cycle to prepare the substrate for another epitaxial deposition. The dominant substrate-preparation cost component is different for each of the three strategies, and the cost-ranking of these strategies is subject to change if future developments substantially reduce the cost of epitaxial deposition. Copyright (c) 2016 John Wiley & Sons, Ltd.
C1 [Ward, J. Scott; Remo, Timothy; Horowitz, Kelsey; Woodhouse, Michael; Sopori, Bhushan; VanSant, Kaitlyn; Basore, Paul] Natl Renewable Energy Lab, Golden, CO USA.
RP Ward, JS (reprint author), Natl Renewable Energy Lab, Golden, CO USA.
EM scott.ward@nrel.gov
FU US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy
Laboratory; DOE Solar Energy Technologies Office [DE-EE00025784]
FX This work was supported by the US Department of Energy under Contract
No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory.
Funding provided by the DOE Solar Energy Technologies Office under
agreement DE-EE00025784 for "PV Partnering & Business Development." The
US Government and the publisher, by accepting the article for
publication, acknowledge that the US Government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this work, or allow others to do so, for US Government
purposes.
NR 27
TC 1
Z9 1
U1 8
U2 8
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1062-7995
EI 1099-159X
J9 PROG PHOTOVOLTAICS
JI Prog. Photovoltaics
PD SEP
PY 2016
VL 24
IS 9
BP 1284
EP 1292
DI 10.1002/pip.2776
PG 9
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DS7LJ
UT WOS:000380964700011
ER
PT J
AU Ginley, D
Granqvist, CG
Kiriakidis, G
Klein, A
Kamiya, T
Hosono, H
AF Ginley, David
Granqvist, Claes-G.
Kiriakidis, George
Klein, Andreas
Kamiya, Toshio
Hosono, Hideo
TI 9th International Symposium on Transparent Oxide and Related Materials
for Electronics and Optics (TOEO9) Preface
SO THIN SOLID FILMS
LA English
DT Editorial Material
C1 [Ginley, David] NREL, Golden, CO 80401 USA.
[Granqvist, Claes-G.] Uppsala Univ, Uppsala, Sweden.
[Kiriakidis, George] Univ Crete, Rethimnon, Greece.
[Klein, Andreas] Tech Univ Darmstadt, Darmstadt, Germany.
[Kamiya, Toshio; Hosono, Hideo] Tokyo Tech, Tokyo, Japan.
RP Ginley, D (reprint author), NREL, Golden, CO 80401 USA.
RI Kamiya, Toshio/E-8615-2014; Kiriakidis, George/G-9685-2011
OI Kamiya, Toshio/0000-0002-8358-240X;
NR 0
TC 0
Z9 0
U1 3
U2 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD SEP 1
PY 2016
VL 614
BP 43
EP 43
DI 10.1016/j.tsf.2016.07.054
PN B
PG 1
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA DS8KW
UT WOS:000381033200001
ER
PT J
AU de Souza, MM
Oostrom, M
White, MD
da Silva, GC
Barbosa, MC
AF de Souza, Michelle Matos
Oostrom, Mart
White, Mark D.
da Silva, Gerson Cardoso, Jr.
Barbosa, Maria Claudia
TI Simulation of Subsurface Multiphase Contaminant Extraction Using a
Bioslurping Well Model
SO TRANSPORT IN POROUS MEDIA
LA English
DT Article
DE Well model; Bioslurping; STOMP; Multiphase extraction; LNAPL recovery
ID NUMERICAL RESERVOIR SIMULATION; NONAQUEOUS PHASE LIQUIDS; POROUS-MEDIA;
UNCONFINED AQUIFERS; FLOW; HYDROCARBON; PERMEABILITY; REMEDIATION;
MIGRATION; RECOVERY
AB Subsurface simulation of multiphase extraction from wells is notoriously difficult. Explicit representation of well geometry requires small grid resolution, potentially leading to large computational demands. To reduce the problem dimensionality, multiphase extraction is mostly modeled using vertically averaged approaches. In this paper, a multiphase well model approach is presented as an alternative to simplify the application. The well model, a multiphase extension of the classic Peaceman model, has been implemented in the STOMP simulator. The numerical solution approach accounts for local conditions and gradients in the exchange of fluids between the well and the aquifer. Advantages of this well model implementation include the option to simulate the effects of well characteristics and operation. Simulations were conducted investigating the effects of extraction location, applied vacuum pressure, and a number of hydraulic properties. The obtained results were all consistent and logical. A major outcome of the test simulations is that, in contrast to common recommendations to extract from either the gas-NAPL or the NAPL-aqueous phase interface, the optimum extraction location should be in between these two levels. The new model implementation was also used to simulate extraction at a field site in Brazil. The simulation shows a good match with the field data, suggesting that the new STOMP well module may correctly represent oil removal. The field simulations depend on the quality of the site conceptual model, including the porous media and contaminant properties and the boundary and extraction conditions adopted. The new module may potentially be used to design field applications and analyze extraction data.
C1 [de Souza, Michelle Matos; Barbosa, Maria Claudia] Univ Fed Rio de Janeiro, COPPE UFRJ, Civil Engn Program, Pedro Calmon Ave,POB 68506, Rio De Janeiro, RJ, Brazil.
[Oostrom, Mart; White, Mark D.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
[da Silva, Gerson Cardoso, Jr.] Univ Fed Rio de Janeiro, Dept Geol, CCMN, Athos da Silveira Ramos Ave 274, Rio De Janeiro, RJ, Brazil.
RP de Souza, MM (reprint author), Univ Fed Rio de Janeiro, COPPE UFRJ, Civil Engn Program, Pedro Calmon Ave,POB 68506, Rio De Janeiro, RJ, Brazil.
EM mmsouza79@gmail.com; mart.oostrom@pnnl.gov; mark.white@pnnl.gov;
gerson@acd.ufrj.br; mclaudia@coc.ufrj.br
RI da Silva Jr., Gerson/C-5767-2013
OI da Silva Jr., Gerson/0000-0002-7160-0893
FU Department of Energy (DOE) [DE-AC06-76RLO 1830]; National Counsel of
Technological and Scientific Development (CNPq); Science without Borders
Program (CAPES-Ciencia sem fronteiras)
FX Pacific Northwest National Laboratory (PNNL) is operated by the Battelle
Memorial Institute for the Department of Energy (DOE) under Contract
DE-AC06-76RLO 1830. Part of the work was completed by the senior author
as a visiting scholar at the Environmental Molecular Sciences Laboratory
(EMSL), a scientific user facility of the United States Department of
Energy's Office of Biological and Environmental Research operated by the
Pacific Northwest National Laboratory (PNNL). The senior author is
grateful to the Brazilian agencies-National Counsel of Technological and
Scientific Development (CNPq) and the Science without Borders Program
(CAPES-Ciencia sem fronteiras)-for a research scholarship under which
this work was carried out.
NR 49
TC 0
Z9 0
U1 5
U2 6
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0169-3913
EI 1573-1634
J9 TRANSPORT POROUS MED
JI Transp. Porous Media
PD SEP
PY 2016
VL 114
IS 3
BP 649
EP 673
DI 10.1007/s11242-016-0738-3
PG 25
WC Engineering, Chemical
SC Engineering
GA DU3EZ
UT WOS:000382094900002
ER
PT J
AU Vine, EL
Jones, CM
AF Vine, Edward L.
Jones, Christopher M.
TI Competition, carbon, and conservation: Assessing the energy savings
potential of energy efficiency competitions
SO ENERGY RESEARCH & SOCIAL SCIENCE
LA English
DT Article
DE Energy efficiency; Competition; Persistence; Behavior; Comparative
feedback; Social norms
ID CONSUMPTION; RISK
AB Competition has become an increasingly popular strategy to engage individuals in energy and resource conservation; however, there has not been an objective, independent review of existing competition programs focusing on the reduction of energy use.
This paper attempts to address this shortcoming. This paper reviews a representative selection of completed and ongoing energy reduction competitions in the United States and uses the lessons learned to provide best practice guidance on the design, implementation, and evaluation of future programs. Four key research questions are addressed in this study:
How effective have competitions been at changing behavior and reducing energy?
How long do energy savings persist after the end of competitions?
Under what circumstances are competitions more or less effective?
What are common best practices for the design, implementation and evaluation of energy and resource conservation competitions?
The primary target audiences for this paper are electric and natural gas utilities seeking to broaden their portfolio of behavior-based interventions, as well as potential designers, implementers and evaluators of energy reduction competitions. Our intention is to improve the effectiveness of competitions and to suggest when competition may or may not be an effective strategy to save energy over the long term. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Vine, Edward L.] Calif Inst Energy & Environm, Berkeley, CA USA.
[Jones, Christopher M.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
RP Vine, EL (reprint author), Lawrence Berkeley Natl Lab, CIEE, Bldg 90-2128, Berkeley, CA 94720 USA.
EM elvine@lbl.gov
NR 49
TC 0
Z9 0
U1 4
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2214-6296
EI 2214-6326
J9 ENERGY RES SOC SCI
JI Energy Res. Soc. Sci.
PD SEP
PY 2016
VL 19
BP 158
EP 176
DI 10.1016/j.erss.2016.06.013
PG 19
WC Environmental Studies
SC Environmental Sciences & Ecology
GA DT7BJ
UT WOS:000381640400017
ER
PT J
AU McManamay, R
Brewer, S
Jager, H
Troia, M
AF McManamay, Ryan A.
Brewer, Shannon K.
Jager, Henriette I.
Troia, Matthew J.
TI Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation
Needs
SO ENVIRONMENTAL MANAGEMENT
LA English
DT Article
DE Dams; Rivers; Regulation; Policy; Environmental flow; Hydrology
ID MODIFYING DAM OPERATIONS; HYDROLOGIC ALTERATION; ECOLOGICAL RESPONSES;
RESERVOIR OPERATION; RIVER ECOSYSTEMS; FISH ASSEMBLAGE; STREAM; WATER;
HABITAT; REGIME
AB The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.
C1 [McManamay, Ryan A.; Jager, Henriette I.; Troia, Matthew J.] Oak Ridge Natl Lab, Div Environm Sci, 1 Bethel Valley Rd,MS-6351,POB 2008, Oak Ridge, TN 37831 USA.
[Brewer, Shannon K.] Oklahoma State Univ, US Geol Survey, Oklahoma Cooperat Fish & Wildlife Res Unit, Stillwater, OK 74078 USA.
RP McManamay, R (reprint author), Oak Ridge Natl Lab, Div Environm Sci, 1 Bethel Valley Rd,MS-6351,POB 2008, Oak Ridge, TN 37831 USA.
EM mcmanamayra@ornl.gov
FU US Department of Energy [AC05-00OR22725]; Department of Energy
FX This manuscript has been authored by employees of UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the US Department of Energy. The
United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doepublic-access-plan).
NR 88
TC 0
Z9 0
U1 12
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0364-152X
EI 1432-1009
J9 ENVIRON MANAGE
JI Environ. Manage.
PD SEP
PY 2016
VL 58
IS 3
BP 365
EP 385
DI 10.1007/s00267-016-0726-y
PG 21
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DS3IM
UT WOS:000380676300001
PM 27344163
ER
PT J
AU Gao, J
Zhang, AP
Lam, SK
Zhang, XS
Thomson, AM
Lin, E
Jiang, KJ
Clarke, LE
Edmonds, JA
Kyle, PG
Yu, S
Zhou, YY
Zhou, S
AF Gao, Ji
Zhang, Aiping
Lam, Shu Kee
Zhang, Xuesong
Thomson, Allison M.
Lin, Erda
Jiang, Kejun
Clarke, Leon E.
Edmonds, James A.
Kyle, Page G.
Yu, Sha
Zhou, Yuyu
Zhou, Sheng
TI An integrated assessment of the potential of agricultural and forestry
residues for energy production in China
SO GLOBAL CHANGE BIOLOGY BIOENERGY
LA English
DT Article
DE bioenergy; carbon tax; carbon capture and storage; climate policy;
integrated assessment; residue biomass
ID ORGANIC-CARBON STOCKS; CO2 CONCENTRATIONS; PROJECTED CHANGES; RURAL
CHINA; LAND-USE; BIOMASS; MITIGATION; BIOENERGY; SYSTEMS; STORAGE
AB Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ of the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.
C1 [Gao, Ji; Zhang, Aiping; Lin, Erda] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China.
[Lam, Shu Kee] Univ Melbourne, Crop & Soil Sci Sect, Fac Vet & Agr Sci, Melbourne, Vic 3010, Australia.
[Zhang, Xuesong; Clarke, Leon E.; Edmonds, James A.; Kyle, Page G.; Yu, Sha] Pacific Northwest Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Zhang, Xuesong; Clarke, Leon E.; Edmonds, James A.; Kyle, Page G.; Yu, Sha] Univ Maryland, College Pk, MD 20740 USA.
[Zhang, Xuesong] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[Thomson, Allison M.] Alliance Sustainable Agr, Field Market, 777 N Capitol St NE,Suite 803, Washington, DC 20002 USA.
[Jiang, Kejun] ERI, Beijing 100038, Peoples R China.
[Zhou, Yuyu] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA 50011 USA.
[Zhou, Sheng] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China.
RP Lin, E (reprint author), Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China.; Jiang, KJ (reprint author), ERI, Beijing 100038, Peoples R China.
EM lined@ami.ac.cn; kjiang@eri.org.cn
OI Lam, Shu Kee/0000-0001-7943-5004
FU Ministry of Science and Technology of the People's Republic of China
[2013BAD11B03, 2012CB955801]; National Natural Science Foundation of
China [71373142]
FX This work was supported by the Ministry of Science and Technology of the
People's Republic of China (2013BAD11B03 and 2012CB955801) and the
National Natural Science Foundation of China (71373142).
NR 60
TC 0
Z9 0
U1 12
U2 21
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1757-1693
EI 1757-1707
J9 GCB BIOENERGY
JI GCB Bioenergy
PD SEP
PY 2016
VL 8
IS 5
BP 880
EP 893
DI 10.1111/gcbb.12305
PG 14
WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA DS6SR
UT WOS:000380913500004
ER
PT J
AU Morris, GP
Hu, ZB
Grabowski, PP
Borevitz, JO
de Graaff, MA
Miller, RM
Jastrow, JD
AF Morris, Geoffrey P.
Hu, Zhenbin
Grabowski, Paul P.
Borevitz, Justin O.
de Graaff, Marie-Anne
Miller, R. Michael
Jastrow, Julie D.
TI Genotypic diversity effects on biomass production in native perennial
bioenergy cropping systems
SO GLOBAL CHANGE BIOLOGY BIOENERGY
LA English
DT Article
DE big bluestem; biomass feedstock; cultivars; ecotype; fertilization;
low-input high-diversity; polymorphism; switchgrass; tallgrass prairie;
yield
ID SWITCHGRASS PANICUM-VIRGATUM; BIG BLUESTEM; CELLULOSIC ETHANOL; PLANT
COMMUNITY; US MIDWEST; REGISTRATION; GRASSLAND; FEEDSTOCK; MONOCULTURES;
MANAGEMENT
AB The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008-2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars - under low or high species diversity, with or without nitrogen inputs - and quantified establishment, biomass yield, and biomass composition. In one experiment (agronomic trial'), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (diversity gradient'), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.
C1 [Morris, Geoffrey P.; Hu, Zhenbin] Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA.
[Grabowski, Paul P.] USDA ARS Dairy Forage Res Ctr, Madison, WI 53706 USA.
[Borevitz, Justin O.] Australian Natl Univ, Res Sch Biol, Acton, ACT 2601, Australia.
[de Graaff, Marie-Anne] Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA.
[Miller, R. Michael; Jastrow, Julie D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
RP Morris, GP (reprint author), Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA.
EM gpmorris@ksu.edu
OI Morris, Geoffrey/0000-0002-3067-3359
FU US Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-06CH11357]; Argonne/UChicago Energy
Initiative; USDA-NIFA [2010-03894]; USDA-AFRI [2012-67010-20069];
National Institutes of Health Training Grant [T32 GM007197]
FX Funding for this research was provided by the US Department of Energy,
Office of Science, Office of Biological and Environmental Research under
contract DE-AC02-06CH11357 to Argonne National Laboratory (RMM and JDJ).
Additional support was provided by the Argonne/UChicago Energy
Initiative to RMM and JOB, USDA-NIFA grant 2010-03894 to RMM, and a
USDA-AFRI grant 2012-67010-20069 to M-AG, JDJ, and GPM. PPG was
partially supported by National Institutes of Health Training Grant T32
GM007197. We thank Timothy Vugteveen, Whitney Panneton, Nina Noah,
Jeremy Lederhouse, Scott Hofmann, Susan Kirt Alterio, Kelly Moran
Sturner, and Cheryl Martin for technical assistance, and two anonymous
reviewers for helpful comments and suggestions.
NR 77
TC 0
Z9 0
U1 11
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1757-1693
EI 1757-1707
J9 GCB BIOENERGY
JI GCB Bioenergy
PD SEP
PY 2016
VL 8
IS 5
BP 1000
EP 1014
DI 10.1111/gcbb.12309
PG 15
WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA DS6SR
UT WOS:000380913500012
PM 27668013
ER
PT J
AU Ma, TH
Li, CJ
Lu, ZM
AF Ma, Tuhua
Li, Changjiang
Lu, Zhiming
TI Geographical environment determinism for discovery of mineral deposits
SO JOURNAL OF GEOCHEMICAL EXPLORATION
LA English
DT Article
DE Mineral resources; Spatial distribution; Geographic environments;
Undiscovered deposit number; Exploration level; Power-law (fractal)
model
ID LAW; DISTRIBUTIONS
AB The spatial distribution of metallic mineral deposits discovered in China during 1901 to 2007 shows that nearly 85% of the total 2906 metallic mineral deposits with the magnitude greater than medium-size are located on the southeastern side of the famous Heihe-Tengchong "geo-demographic demarcation line". This spatial pattern is consistent with the population distribution of China, indicating that the spatial distribution of discovered mineral deposits may be related to exploration level that is strongly restricted by the geographic environments. We found that the number of discovered deposits per unit area in explored regions increases with the exploration level, following a power-law model. From this model, if the geological, geochemical and geophysical exploration in the NW region of the geo-demographic demarcation line reaches the same level as that in the SE region of the line, about 2000 metallic mineral deposits with magnitudes greater than medium-size remain to be discovered in the NW region of China. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Ma, Tuhua; Li, Changjiang] Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China.
[Lu, Zhiming] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA.
RP Li, CJ (reprint author), Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China.
EM zjigmr@mail.hz.zj.cn
FU Special Fund from Zhejiang Provincial Government, China [98]
FX This study was partially funded by the Special Fund from Zhejiang
Provincial Government, China (zjcx. 2011 No. 98). We would like to thank
the editor and two anonymous reviewers for their valuable comments and
suggestions, which have improved the paper.
NR 24
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-6742
EI 1879-1689
J9 J GEOCHEM EXPLOR
JI J. Geochem. Explor.
PD SEP
PY 2016
VL 168
BP 163
EP 168
DI 10.1016/j.gexplo.2016.07.001
PG 6
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DT7DV
UT WOS:000381648200013
ER
PT J
AU Tan, L
Snead, LL
Katoh, Y
AF Tan, L.
Snead, L. L.
Katoh, Y.
TI Development of new generation reduced activation ferritic-martensitic
steels for advanced fusion reactors
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE Precipitates; Strengthening; Toughness; ODS ferritic steel; Reduced
activation ferritic-martensitic steels
ID LOW-CYCLE FATIGUE; MECHANICAL-PROPERTIES; RAFM STEEL; PRECIPITATION
BEHAVIOR; CREEP DEFORMATION; LAVES PHASE; MICROSTRUCTURE; STRENGTH;
TUNGSTEN; IMPACT
AB International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above similar to 500 degrees C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Tan, L.; Katoh, Y.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Snead, L. L.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RP Tan, L (reprint author), One Bethel Valley Rd,POB 2008,MS-6136, Oak Ridge, TN 37831 USA.
EM tanl@ornl.gov
RI Tan, Lizhen/A-7886-2009
OI Tan, Lizhen/0000-0002-3418-2450
FU U.S. Department of Energy, Office of Science, Fusion Energy Sciences;
U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy
Enabling Technology FY Award; U.S. Department of Energy
[DE-AC05-00OR22725]
FX This research was supported by the U.S. Department of Energy, Office of
Science, Fusion Energy Sciences and Office of Nuclear Energy, Nuclear
Energy Enabling Technology FY 2012 Award. This manuscript has been
authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with
the U.S. Department of Energy.
NR 49
TC 3
Z9 3
U1 11
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 42
EP 49
DI 10.1016/j.jnucmat.2016.05.037
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500006
ER
PT J
AU Koyanagi, T
Katoh, Y
Ozawa, K
Shimoda, K
Hinoki, T
Snead, LL
AF Koyanagi, Takaaki
Katoh, Yutai
Ozawa, Kazumi
Shimoda, Kazuya
Hinoki, Tatsuya
Snead, Lance L.
TI Neutron-irradiation creep of silicon carbide materials beyond the
initial transient
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID SIC/SIC COMPOSITES; SIC FIBERS; ELEVATED-TEMPERATURES; BEHAVIOR; GROWTH;
STEELS; DPA
AB Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. The materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber-reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 degrees C up to 30 dpa with initial bend stresses of up to similar to 1 GPa for the fibers and similar to 300 MPa for the other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is similar to 1 x 10(-7) [dpa(-1) MPa-1] at 430-750 degrees C for the range of 1-30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial micro-structures-such as grain boundary, crystal orientation, and secondary phases-increase with increasing irradiation temperature. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Koyanagi, Takaaki; Katoh, Yutai] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Ozawa, Kazumi] Japan Atom Energy Agcy, Aomori 0393212, Japan.
[Shimoda, Kazuya; Hinoki, Tatsuya] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan.
[Snead, Lance L.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RP Koyanagi, T (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd,A-154 Bldg 4500S, Oak Ridge, TN 37831 USA.
EM koyanagit@ornl.gov
RI Koyanagi, Takaaki/D-9841-2017
OI Koyanagi, Takaaki/0000-0001-7272-4049
FU Office of Fusion Energy Sciences, U.S. Department of Energy
[DE-C05-00OR22725]; UT-Battelle, LLC; US-Japan TITAN Collaboration on
Fusion Blanket Technology and Materials; High Flux Isotope Reactor -
Office of Basic Energy Sciences, U.S. Department of Energy
FX This work was supported by the Office of Fusion Energy Sciences, U.S.
Department of Energy, under contract DE-C05-00OR22725 with UT-Battelle,
LLC, and the US-Japan TITAN Collaboration on Fusion Blanket Technology
and Materials. Research was supported in part by the High Flux Isotope
Reactor, which is sponsored by the Office of Basic Energy Sciences, U.S.
Department of Energy. The authors would like to gratefully acknowledge
contributions to pre- and post-irradiation experiments from F. C.
Montgomery, C. M. Silva, A. M. Williams, P. S. Tedder, C. Shih and M. R.
McAlister at Oak Ridge National Laboratory, and M. Fukuda at Tohoku
University.
NR 34
TC 0
Z9 0
U1 6
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 97
EP 111
DI 10.1016/j.jnucmat.2016.06.006
PG 15
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500013
ER
PT J
AU Guo, XF
Wu, D
Xu, HW
Burns, PC
Navrotsky, A
AF Guo, Xiaofeng
Wu, Di
Xu, Hongwu
Burns, Peter C.
Navrotsky, Alexandra
TI Thermodynamic studies of studtite thermal decomposition pathways via
amorphous intermediates UO3, U2O7, and UO4
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE UO2; Studtite; Calorimetry; Enthalpy of formation; Nuclear fuel
alteration
ID HIGH-TEMPERATURE CALORIMETRY; NUCLEAR-FUEL; URANIUM PEROXIDE; URANYL
PEROXIDE; METASTUDTITE; STABILITY; DISSOLUTION; DIRECTIONS; CORROSION;
PROGRESS
AB The thermal decomposition of studtite (UO2)O-2(H2O)(2)center dot 2H(2)O results in a series of intermediate X-ray amorphous materials with general composition UO3+x (x = 0, 0.5, 1). As an extension of a structural study on U2O7., this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solution calorimetry. The thermodynamic data demonstrate the metastability of the amorphous UO3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO3+x materials that pose the risk of significant O2 gas. Quantitative knowledge of the energy landscape of amorphous UO3+x was provided for stability analysis and assessment of conditions for decomposition. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Guo, Xiaofeng; Xu, Hongwu] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA.
[Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.
[Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA.
[Wu, Di] Washington State Univ, Gene & Lina Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA.
[Burns, Peter C.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA.
[Burns, Peter C.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA.
RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.; Navrotsky, A (reprint author), Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA.
EM anavrotsky@ucdavis.edu
RI Wu, Di/A-3039-2014;
OI Wu, Di/0000-0001-6879-321X; Xu, Hongwu/0000-0002-0793-6923
FU Materials Science of Actinides, an Energy Frontier Research Center - the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DESC0001089]; Seaborg postdoctoral fellowship from the
Laboratory Directed Research and Development (LDRD) program, through the
G. T. Seaborg Institute, of Los Alamos National Laboratory (LANL); DOE
[DE-AC52-06NA25396]
FX Calorimetric studies at UC Davis and data analysis were supported by the
Materials Science of Actinides, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences under Award DESC0001089. X. G was supported by a
Seaborg postdoctoral fellowship from the Laboratory Directed Research
and Development (LDRD) program, through the G. T. Seaborg Institute, of
Los Alamos National Laboratory (LANL), which is operated by Los Alamos
National Security LLC, under DOE Contract DE-AC52-06NA25396. We thank
Sabrina Labs and Dirk Bosbach for providing the initial studtite sample.
NR 31
TC 3
Z9 3
U1 16
U2 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 158
EP 163
DI 10.1016/j.jnucmat.2016.06.014
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500020
ER
PT J
AU Miao, YB
Mo, K
Yao, TK
Lian, J
Fortner, J
Jamison, L
Xu, RQ
Yacout, AM
AF Miao, Yinbin
Mo, Kun
Yao, Tiankai
Lian, Jie
Fortner, Jeffrey
Jamison, Laura
Xu, Ruqing
Yacout, Abdellatif M.
TI Correlation between crystallographic orientation and surface faceting in
UO2
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE Uranium dioxide; Surface faceting; Morphology; Synchrotron diffraction;
Scanning electron microscopy
ID F/M ODS STEEL; VICINAL SURFACES; GAS-RELEASE; FUEL; SYNCHROTRON; ENERGY;
NANOPARTICLES; LEED; FERRITE/MARTENSITE; MICROSTRUCTURE
AB Here coordinated experimental efforts to quantitatively correlate crystallographic orientation and surface faceting features in UO2 are reported upon. A sintered polycrystalline UO2 sample was thermally etched to induce the formation of surface faceting features. Synchrotron Laue microdiffraction was used to obtain a precise crystallographic orientation map for the UO2 surface grains. Scanning electron microscopy (SEM) was utilized to collect the detailed information on the surface morphology of the sample. The surface faceting features were found to be highly dependent on the crystallographic orientation. In most cases, Triple-plane structures containing one {100} plane and two {111} planes were found to dominate the surface of UO2. The orientation-faceting relationship established in this study revealed a practical and efficient method of determining crystallographic orientation based on the surface features captured by SEM images. (C) 2016 Published by Elsevier B.V.
C1 [Miao, Yinbin; Mo, Kun; Fortner, Jeffrey; Jamison, Laura; Xu, Ruqing; Yacout, Abdellatif M.] Argonne Natl Lab, Lemont, IL 60439 USA.
[Yao, Tiankai; Lian, Jie] Rensselaer Polytech Inst, Troy, NY 12180 USA.
RP Mo, K (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA.; Lian, J (reprint author), Rensselaer Polytech Inst, Troy, NY 12180 USA.
EM kunmo@anl.gov; lianj@rpi.edu
OI Jamison, Laura/0000-0003-2759-6310; Miao, Yinbin/0000-0002-3128-4275
FU U.S. Department of Energy (DOE)'s Nuclear Energy Advanced Modeling and
Simulation (NEAMS) program; U.S. DOE's Nuclear Energy University Program
(NEUP) [DE-NE0008440]; DOE Office of Science by Argonne National
Laboratory [DE-AC-02-06CH11357]
FX This work was funded by the U.S. Department of Energy (DOE)'s Nuclear
Energy Advanced Modeling and Simulation (NEAMS) program and the U.S.
DOE's Nuclear Energy University Program (NEUP) DE-NE0008440. This
research used resources of the Advanced Photon Source, a U.S. DOE Office
of Science User Facility operated for the DOE Office of Science by
Argonne National Laboratory under Contract No. DE-AC-02-06CH11357
between UChicago Argonne, LLC and the U.S. Department of Energy.
NR 36
TC 1
Z9 1
U1 6
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 176
EP 184
DI 10.1016/j.jnucmat.2016.05.044
PG 9
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500023
ER
PT J
AU Martinez, E
Soisson, F
Caro, A
Uberuaga, BP
AF Martinez, Enrique
Soisson, Frederic
Caro, Alfredo
Uberuaga, Blas P.
TI Atomistic modeling of the reordering process of gamma ' disordered
particles in Ni-Al alloys
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE Segregation; Diffusion; Irradiation
ID MONTE-CARLO-SIMULATION; MATERIAL INCONEL X-750; ION IRRADIATION;
INTERMETALLIC COMPOUNDS; MOLECULAR-DYNAMICS; BEAM WINDOW; KINETICS;
TEMPERATURE; DISSOLUTION; EVOLUTION
AB Ni-based alloys are used in nuclear applications, including as a window material at isotope production facilities, withstanding high fluxes of different energetic particles like protons. Irradiation disorders the gamma' precipitates that in large extent confer the mechanical properties characterizing these materials. Upon disordering, the gamma' phase transforms into oversaturated gamma, degrading the materials properties. Experimentally it is observed that disordering might take place at fairly low irradiation doses. Once the particles are disordered, a competition between dissolution, due to strong concentration gradients in an oversaturated solid solution, and reordering appears. Here, we examine this competition in a model Ni-Al alloy under thermal conditions for different precipitates sizes and temperatures. We observe Al interdiffusion from the supersaturated particle to the matrix. Also, stochasticity appears as an important factor in to where precipitates locate. Stress relaxation seems to modify the precipitation process, with a stronger interface effect compared to rigid lattice simulations. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Martinez, Enrique; Caro, Alfredo; Uberuaga, Blas P.] Los Alamos Natl Lab, Div Mat Sci & Technol, MST-8, Los Alamos, NM 87545 USA.
[Soisson, Frederic] Univ Paris Saclay, CEA, DEN Serv Rech Met Phys, F-91191 Gif Sur Yvette, France.
RP Martinez, E (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST-8, Los Alamos, NM 87545 USA.
EM enriquem@lanl.gov
OI Martinez Saez, Enrique/0000-0002-2690-2622
FU US Department of Energy (DOE) through the LANL/LDRD Program; U.S. DOE
[DE-AC52-06NA25396]
FX The authors gratefully acknowledge the support of the US Department of
Energy (DOE) through the LANL/LDRD Program for this work. This research
used resources provided by the LANL Institutional Computing Program.
LANL, an affirmative action/equal opportunity employer, is operated by
Los Alamos National Security, LLC, for the National Nuclear Security
Administration of the U.S. DOE under contract DE-AC52-06NA25396.
NR 33
TC 0
Z9 0
U1 6
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 207
EP 214
DI 10.1016/j.jnucmat.2016.06.019
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500026
ER
PT J
AU Fadzil, SM
Hrma, P
Schweiger, MJ
Riley, BJ
AF Fadzil, Syazwani Mohd
Hrma, Pavel
Schweiger, Michael J.
Riley, Brian J.
TI Component effects on crystallization of RE-containing
aluminoborosilicate glass
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE Lanthanide borosilicate glass; Pyroprocessing; Liquidus temperature;
Crystalline phases
ID LEVEL WASTE GLASS; LIQUIDUS TEMPERATURE; PYROCHEMICAL PROCESS
AB Lanthanide-aluminoborosilicate (LABS) glass is one option for immobilizing rare earth (RE) oxide fission products generated during reprocessing of pyroprocessed fuel. This glass system can accommodate a high loading of RE oxides and has excellent chemical durability. The present study describes efforts to model equilibrium crystallinity as a function of glass composition and temperature as well as liquidus temperature (T-L) as a function of glass composition. The experimental method for determining T-L was ASTM C1720-11. Typically, three crystalline phases were formed in each glass: Ce-borosilicate (Ce3B-Si2O10), mullite (Al10Si2O19), and corundum (Al2O3). Cerianite (CeO2) was a common minor crystalline phase and Nd-silicate (Nd2Si2O7) occurred in some of the glasses. In the composition region studied, T-L decreased as SiO2 and B2O3 fractions increased and strongly increased with increasing fractions of RE oxides; Al2O3 had a moderate effect on the T-L but, as expected, it strongly affected the precipitation of Al-containing crystals. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Fadzil, Syazwani Mohd; Hrma, Pavel] Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang 790784, South Korea.
[Fadzil, Syazwani Mohd] Natl Univ Malaysia, Fac Sci & Technol, Sch Appl Phys, Bandar Baru Bangi 43650, Selangor, Malaysia.
[Hrma, Pavel; Schweiger, Michael J.; Riley, Brian J.] Pacific Northwest Natl Lab, POB 999, Richland, WA USA.
RP Fadzil, SM (reprint author), Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang 790784, South Korea.
EM syazwanimf@ukm.edu.my
OI Riley, Brian/0000-0002-7745-6730
FU Department of Energy's Waste Treatment and Immobilization Plant Federal
Project Office; U.S. Department of Energy [DE-AC05-76RL01830]; BK21 +
program through National Research Foundation of Korea - Ministry of
Education, Science and Technology
FX The authors greatly appreciate B.R. Johnson and other staff members of
Pacific Northwest National Laboratory (PNNL) with the financial support
of the Department of Energy's Waste Treatment and Immobilization Plant
Federal Project Office under the direction of A. A. Kruger. PNNL is
operated by Battelle for the U.S. Department of Energy under Contract
Number DE-AC05-76RL01830. This work was also supported by the BK21 +
program through the National Research Foundation of Korea funded by the
Ministry of Education, Science and Technology.
NR 28
TC 0
Z9 0
U1 4
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 261
EP 267
DI 10.1016/j.jnucmat.2016.06.018
PG 7
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500033
ER
PT J
AU Kim, YS
Jeong, GY
Sohn, DS
Jamison, LM
AF Kim, Yeon Soo
Jeong, G. Y.
Sohn, D. -S.
Jamison, L. M.
TI Pore growth in U-Mo/Al dispersion fuel
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE U-Mo/Al dispersion fuel; Pore growth; Porosity; In-pile data; Modeling
ID IRRADIATION BEHAVIOR; PARTICLE DISPERSION; ENHANCED DIFFUSION; AL
MATRIX; MO FUEL; PRODUCT; ENERGIES; TENSION; SURFACE; ALLOY
AB U-Mo/Al dispersion fuel is currently under development in the DOE's Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Kim, Yeon Soo; Jamison, L. M.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Jeong, G. Y.; Sohn, D. -S.] Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 689798, South Korea.
RP Kim, YS (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM yskim@anl.gov
OI Jeong, Gwan Yoon/0000-0002-3326-3718; Jamison, Laura/0000-0003-2759-6310
FU U.S. Department of Energy, National Nuclear Security Administration
(NNSA), Office of Material Management and Minimization (NA-23) Reactor
Conversion Program [DE-AC-02-06CH11357]; National Research Foundation of
Korea (NRF) grant - Korean government (Ministry of Education, Science
and Technology) [2011-0031771]
FX This study used information gathered from three reduced-size plates from
RERTR-4, -5, and -9 tests and two full-size plates from AFIP-1 test
irradiated at the ATR. For the former three reduced-size plates, the
authors acknowledge Drs. S. Hayes, D. Wachs and M. Meyer from INL and G.
Hofman from ANL for the irradiation test designs, T. Wiencek from ANL
and C. Clark from INL for the test plate fabrication, and late R. Strain
from ANL and A. Robinson from INL for PIEs. For the latter full-size
plates, Mr. A. Robinson and Dr. D. Wachs are recognized. The operations
staff at the ATR is also acknowledged for these irradiation tests. The
physics data available by Dr. G. Chang and Ms. M. Lillo are also
appreciated. The authors wish to thank Drs. A. Leenaers and P. Lemoine
for the FUTURE test PIE images available in the literature that were
used to obtain data in Table 4. This work was supported by the U.S.
Department of Energy, National Nuclear Security Administration (NNSA),
Office of Material Management and Minimization (NA-23) Reactor
Conversion Program under Contract No. DE-AC-02-06CH11357 between
UChicago Argonne, LLC and the US Department of Energy, and in part by
the National Research Foundation of Korea (NRF) grant funded by the
Korean government (Ministry of Education, Science and Technology) under
contract number 2011-0031771.
NR 48
TC 0
Z9 0
U1 5
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 275
EP 286
DI 10.1016/j.jnucmat.2016.06.029
PG 12
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500035
ER
PT J
AU Imada, K
Ishimaru, M
Xue, HZ
Zhang, YW
Shannon, SC
Weber, WJ
AF Imada, Kenta
Ishimaru, Manabu
Xue, Haizhou
Zhang, Yanwen
Shannon, Steven C.
Weber, William J.
TI Amorphization resistance of nano-engineered SiC under heavy ion
irradiation
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE Nanostructured materials; Carbides; Amorphization; Scanning/transmission
electron microscopy (STEM)
ID NANOCRYSTALLINE SILICON-CARBIDE; RADIATION TOLERANCE; SICF/SIC
COMPOSITES; NUCLEAR-WASTE; IMMOBILIZATION; SPECTROSCOPY; IMPLANTATION;
TEMPERATURE; PLUTONIUM; DENSITY
AB Silicon carbide (SiC) with a high-density of planar defects (hereafter, 'nano-engineered SiC') and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. It was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Imada, Kenta; Ishimaru, Manabu] Kyushu Inst Technol, Dept Mat Sci & Engn, Kitakyushu, Fukuoka 8048550, Japan.
[Xue, Haizhou; Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Shannon, Steven C.] North Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA.
RP Ishimaru, M (reprint author), Kyushu Inst Technol, Dept Mat Sci & Engn, Kitakyushu, Fukuoka 8048550, Japan.
EM ishimaru@post.matsc.kyutech.ac.jp
RI Weber, William/A-4177-2008
OI Weber, William/0000-0002-9017-7365
FU Kazuchika Okura Memorial Foundation; Ministry of Education, Sports,
Science, and Technology, Japan [16H04518]; U.S. Department of Energy,
Office of Sciences, Basic Energy Sciences, Materials Sciences and
Engineering Division; Nuclear Energy University Programs
FX This work was supported in part by the Kazuchika Okura Memorial
Foundation, Grant-in-Aid for Scientific Research (B) (Grant No.
16H04518) from the Ministry of Education, Sports, Science, and
Technology, Japan (MI), by the U.S. Department of Energy, Office of
Sciences, Basic Energy Sciences, Materials Sciences and Engineering
Division (YZ and WJW), and Nuclear Energy University Programs (HX and
SS). MI appreciates Mr. Shinsuke Inoue (Kyushu Institute of Technology)
for supporting SRIM calculations.
NR 31
TC 0
Z9 0
U1 9
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 310
EP 314
DI 10.1016/j.jnucmat.2016.06.031
PG 5
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500039
ER
PT J
AU Pizzocri, D
Rabiti, C
Luzzi, L
Barani, T
Van Uffelen, P
Pastore, G
AF Pizzocri, D.
Rabiti, C.
Luzzi, L.
Barani, T.
Van Uffelen, P.
Pastore, G.
TI PolyPole-1: An accurate numerical algorithm for intra-granular fission
gas release
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE Diffusion; Nuclear fuel modelling; Intra-granular fission gas release;
Numerical algorithms; Modal methods; FORMAS; URGAS; PolyPole
ID UO2 FUEL; SPHERICAL GRAINS; DIFFUSIVE FLOW; XE DIFFUSION; IRRADIATION;
BEHAVIOR; PRECIPITATION; MIGRATION; BOUNDARY; BUBBLES
AB The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this paper, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, combined with polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of PolyPole-1 is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work. Published by Elsevier B.V.
C1 [Pizzocri, D.; Luzzi, L.; Barani, T.] Politecn Milan, Dept Energy, Nucl Engn Div, Via Masa 34, I-20156 Milan, Italy.
[Rabiti, C.; Pastore, G.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
[Van Uffelen, P.] European Commiss, Inst Transuranium Elements, Joint Res Ctr, POB 2340, D-76125 Karlsruhe, Germany.
RP Pastore, G (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM giovanni.pastore@inl.gov
OI Barani, Tommaso/0000-0002-6771-9461; Pastore,
Giovanni/0000-0003-2812-506X; Luzzi, Lelio/0000-0002-9754-4535
FU DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program at
Idaho National Laboratory (INL, USA); GENTLE Project at Institute for
Transuranium Elements (JRC- ITU, Germany) [198236]; Doctoral Program in
"Energy and Nuclear Science and Technology" at Politecnico di Milano
(POLIMI, Italy); U.S. Government [DE-AC07-05ID14517]
FX This work was funded by the DOE Nuclear Energy Advanced Modeling and
Simulation (NEAMS) Program at Idaho National Laboratory (INL, USA), the
GENTLE Project 198236 at Institute for Transuranium Elements (JRC- ITU,
Germany), and the Doctoral Program in "Energy and Nuclear Science and
Technology" at Politecnico di Milano (POLIMI, Italy).; The submitted
manuscript has been authored by a contractor of the U.S. Government
under Contract DE-AC07-05ID14517. Accordingly, the U.S. Government
retains a non-exclusive, royalty free license to publish or reproduce
the published form of this contribution, or allow others to do so, for
U.S. Government purposes.
NR 37
TC 0
Z9 0
U1 1
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 333
EP 342
DI 10.1016/j.jnucmat.2016.06.028
PG 10
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500042
ER
PT J
AU Burkes, DE
Casella, AJ
Casella, AM
AF Burkes, Douglas E.
Casella, Amanda J.
Casella, Andrew M.
TI Measurement of fission gas release from irradiated U-Mo dispersion fuel
samples
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID NUCLEAR-FUEL; PRODUCTS; ALLOYS
AB The uranium-molybdenum (U-Mo) alloy dispersed in an Al-Si matrix has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. In this paper, two irradiated samples containing 53.9 vol% U-7wt% Mo fuel particles dispersed in an Al-2wt% Si matrix were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/ differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Measurements revealed three distinct fission gas release events for the samples from 400 to 700 degrees C, as well as a number of minor fission gas releases below and above this temperature range. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature with exceptional agreement. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.] Pacific Northwest Natl Lab, Nucl Engn & Anal Grp, POB 999,MSIN K8-34, Richland, WA 99352 USA.
RP Burkes, DE (reprint author), Pacific Northwest Natl Lab, Nucl Engn & Anal Grp, POB 999,MSIN K8-34, Richland, WA 99352 USA.
EM Douglas.Burkes@pnnl.gov
FU National Nuclear Security Administration's Office of Material Management
and Minimization Reactor Conversion Program [DE-AC05-76RL01830]; United
States Government
FX The authors would like to acknowledge Dr. Bruce McNamara for his review
of the manuscript and helpful discussion. The authors would like to
acknowledge Mr. Jason Schulthess, Mr. Adam Robinson, Dr. Barry Rabin,
and Mrs. Susan Case from Idaho National Laboratory for the preparation
and delivery of the irradiated fuel segment. Installation of equipment
into hot cells and the operations conducted in hot cells is a large
undertaking. The authors would like to acknowledge those at Pacific
Northwest National Laboratory who were involved in the preparation of
samples and performance of measurements, specifically Ms. Nicole Green,
Mr. Jake Bohlke, Mr. Dustin Blundon, Dr. Edgar Buck, Mr. Eric Hanson,
Mr. Kevin Heaton, Mr. Paul MacFarlan, Mr. Robert Orton, Mr. Bruce
Slonecker, Ms. Franciska Steen, Mr. Randy Thornhill, and Mr. Patrick
Valdez. Finally, the authors would like to acknowledge the sponsor, the
National Nuclear Security Administration's Office of Material Management
and Minimization Reactor Conversion Program, for the opportunity to
conduct this work under contract DE-AC05-76RL01830.; This paper was
prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or Battelle Memorial Institute. The
views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.
NR 29
TC 1
Z9 1
U1 3
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 365
EP 374
DI 10.1016/j.jnucmat.2016.05.039
PG 10
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500044
ER
PT J
AU Piro, MHA
Banfield, J
Clarno, K
Simunovic, S
Besmann, TM
Lewis, BJ
Thompson, WT
AF Piro, M. H. A.
Banfield, J.
Clarno, K.
Simunovic, S.
Besmann, T. M.
Lewis, B. J.
Thompson, W. T.
TI Coupled thermochemical, isotopic evolution and heat transfer simulations
in highly irradiated UO2 nuclear fuel (vol 441, pg 240, 2013)
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Correction
C1 [Piro, M. H. A.; Besmann, T. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA.
[Banfield, J.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA.
[Clarno, K.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN USA.
[Simunovic, S.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA.
[Lewis, B. J.; Thompson, W. T.] Royal Mil Coll Canada, Dept Chem & Chem Engn, Kingston, ON, Canada.
[Piro, M. H. A.] Canadian Nucl Labs, Chalk River, ON, Canada.
[Banfield, J.] Gen Elect Hitachi Nucl Energy, Wilmington, NC USA.
[Besmann, T. M.] Univ South Carolina, Columbia, SC USA.
RP Piro, MHA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA.; Piro, MHA (reprint author), Canadian Nucl Labs, Chalk River, ON, Canada.
EM markus.piro@cnl.ca
NR 4
TC 0
Z9 0
U1 4
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD SEP
PY 2016
VL 478
BP 375
EP 377
DI 10.1016/j.jnucmat.2016.06.030
PG 3
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DT7CM
UT WOS:000381644500045
ER
PT J
AU Sanjeewa, LD
McGuire, MA
Pellizzeri, TMS
McMillen, CD
Garlea, VO
Willett, D
Chumanov, G
Kolis, JW
AF Sanjeewa, Liurukara D.
McGuire, Michael A.
Pellizzeri, Tiffany M. Smith
McMillen, Colin D.
Garlea, V. Ovidiu
Willett, Daniel
Chumanov, George
Kolis, Joseph W.
TI Synthesis and characterization of new fluoride-containing manganese
vanadates A(2)Mn(2)V(2)O(7)F(2) (A=Rb, Cs) and Mn2VO4F
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
DE Hydrothermal; Vanadate; Manganese(II); Antiferromagnetism
ID HYDROTHERMAL SYNTHESIS; CRYSTAL-STRUCTURE; MAGNETIC-PROPERTIES; METAL
OXYFLUORIDE; BUILDING UNITS; GROUP MINERALS; FLUOROPHOSPHATE; CHEMISTRY;
POLAR; LATTICES
AB Large single crystals of A(2)Mn(2)V(2)O(7)F(2) (A =Rb, Cs) and Mn2VO4F were grown using a high-temperature (similar to 600 degrees C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO4F2 building blocks. The A(2)Mn(2)V(2)O(7)F2 series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb(2)Mn(2)V(2)O(7)F2: a=7.4389 (17) angstrom, b=11.574(3) angstrom, c=10.914(2) angstrom; Cs2Mn2V2O7F2: a=7.5615(15) angstrom, b= 11.745(2) angstrom, c= 11.127(2) angstrom). The structure is composed of zigzag chains of edge-sharing MnO4F2 units running along the a-axis, and interconnected through V2O7 pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn2+ indicated that Cs2Mn2V2O7F2 is antiferromagnetic with a Neel temperature, T-N= similar to 3 K and a Weiss constant, theta, of -11.7 (1) K. Raman and infrared spectra were also analyzed to identify the fundamental V-O vibrational modes in Cs2Mn2V2O7F2. Mn-2(VO4)F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) angstrom, b=6.8036(7) angstrom, c=10.1408(13) A and beta=116.16(3)degrees. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn2+. These interpenetrating chains are additionally connected through isolated VO4 tetrahedra to form the condensed structure. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Sanjeewa, Liurukara D.; Pellizzeri, Tiffany M. Smith; McMillen, Colin D.; Willett, Daniel; Chumanov, George; Kolis, Joseph W.] Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
[Sanjeewa, Liurukara D.; Pellizzeri, Tiffany M. Smith; McMillen, Colin D.; Willett, Daniel; Chumanov, George; Kolis, Joseph W.] Clemson Univ, COMSET, Clemson, SC 29634 USA.
[McGuire, Michael A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Garlea, V. Ovidiu] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
RP Kolis, JW (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA.; Kolis, JW (reprint author), Clemson Univ, COMSET, Clemson, SC 29634 USA.
EM kjoseph@clemson.edu
RI McGuire, Michael/B-5453-2009
OI McGuire, Michael/0000-0003-1762-9406
FU National Science Foundation [DMR-1410727]
FX The authors thank the National Science Foundation Grants #DMR-1410727
for financial support.
NR 49
TC 1
Z9 1
U1 13
U2 19
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
EI 1095-726X
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD SEP
PY 2016
VL 241
BP 30
EP 37
DI 10.1016/j.jssc.2016.05.008
PG 8
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA DS4EJ
UT WOS:000380733900005
ER
PT J
AU Heffernan, KM
Ross, NL
Spencer, EC
Boatner, LA
AF Heffernan, Karina M.
Ross, Nancy L.
Spencer, Elinor C.
Boatner, Lynn A.
TI The structural response of gadolinium phosphate to pressure
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
ID MONAZITE; SPECTRA
AB Accurate elastic constants for gadolinium phosphate (GdPO4) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO4 determined under hydrostatic conditions, 128.1(8) GPa (K'=5.8(2)), is markedly different from that obtained with GdPO4 under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. High pressure Raman and diffraction analysis indicate that the PO4 tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO4 structure is facilitated by bending/ twisting of the Gd-O-P links that result in increased distortion in the GdO9 polyhedra. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Heffernan, Karina M.; Ross, Nancy L.; Spencer, Elinor C.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA.
[Boatner, Lynn A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Ross, NL (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA.
EM nross@vt.edu
FU National Science Foundation [EAR-1118691]; U.S. Department of Energy,
Office of Science, Basic Energy Sciences, Materials Sciences and
Engineering Division
FX N.L. R., K.M. H., and E.C. S. gratefully acknowledge support from the
National Science Foundation (Grant No. EAR-1118691). K.M. H. and E.C. S.
would also like to thank Drs. Carla Slebonick and Jing Zhou for their
help and valuable insight on this project. Research at the Oak Ridge
National Laboratory for one author (LAB) was supported by the U.S.
Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division.
NR 19
TC 2
Z9 2
U1 7
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
EI 1095-726X
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD SEP
PY 2016
VL 241
BP 180
EP 186
DI 10.1016/j.jssc.2016.06.009
PG 7
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA DS4EJ
UT WOS:000380733900025
ER
PT J
AU Tabackman, AA
Frankson, R
Marsan, ES
Perry, K
Cole, KE
AF Tabackman, Alexa A.
Frankson, Rochelle
Marsan, Eric S.
Perry, Kay
Cole, Kathryn E.
TI Structure of 'linkerless' hydroxamic acid inhibitor-HDAC8 complex
confirms the formation of an isoform-specific subpocket
SO JOURNAL OF STRUCTURAL BIOLOGY
LA English
DT Article
DE Histone deacetylase 8; Histone deacetylase inhibitors (HDACi);
Hydroxamic acids; AutoDock Vina
ID HISTONE DEACETYLASE INHIBITORS; T-CELL LYMPHOMA; CRYSTAL-STRUCTURE;
HUMAN HDAC8; DOCKING; CANCER; SUBSTRATE; SOFTWARE; BINDING; ROLES
AB Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and nonhistone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza(R)), romidepsin (FK228, Istodax(R)), belinostat (Beleodaq(R)), and panobinostat (Farydak(R)). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98 angstrom resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Tabackman, Alexa A.; Marsan, Eric S.; Cole, Kathryn E.] Christopher Newport Univ, Dept Mol Biol & Chem, 1 Ave Arts, Newport News, VA 23606 USA.
[Frankson, Rochelle] Ithaca Coll, Dept Chem, 950 Danby Rd, Ithaca, NY 14850 USA.
[Perry, Kay] Cornell Univ, Northeastern Collaborat Access Team NE CAT, Argonne Natl Lab, Bldg 436E,9700 South Cass Ave, Argonne, IL 60439 USA.
[Perry, Kay] Cornell Univ, Dept Chem & Chem Biol, Argonne Natl Lab, Bldg 436E,9700 South Cass Ave, Argonne, IL 60439 USA.
RP Cole, KE (reprint author), Christopher Newport Univ, Dept Mol Biol & Chem, 1 Ave Arts, Newport News, VA 23606 USA.
EM kathryn.cole@cnu.edu
FU National Institute of General Medical Sciences of the National
Institutes of Health [P41 GM103403]; NIH-ORIP HEI grant [S10 RR029205];
US DOE [DE-AC02-06CH11357]; Ithaca College; Christopher Newport
University
FX This work is based upon research conducted at the Advanced Photon Source
on the Northeastern Collaborative Access Team beamlines, which are
supported by a grant from the National Institute of General Medical
Sciences (P41 GM103403) of the National Institutes of Health. The
Pilatus 6M detector on 24-ID-C beam line is funded by a NIH-ORIP HEI
grant (S10 RR029205). Use of the Advanced Photon Source, an Office of
Science User Facility operated for the U.S. Department of Energy (DOE)
Office of Science by Argonne National Laboratory, was supported by the
US DOE under Contract No. DE-AC02-06CH11357. KEC would like to thank
Ithaca College and Christopher Newport University for funding.
Undergraduate summer research was supported by the Dana Award (RF,
Ithaca College) and the Summer Scholars Program (AT, Christopher Newport
University). We would also like to thank Dr. Scott Ulrich for providing
the inhibitors, and Dr. Daniel Dowling for helpful conversations.
NR 31
TC 1
Z9 1
U1 8
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1047-8477
EI 1095-8657
J9 J STRUCT BIOL
JI J. Struct. Biol.
PD SEP
PY 2016
VL 195
IS 3
BP 373
EP 378
DI 10.1016/j.jsb.2016.06.023
PG 6
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA DT8WZ
UT WOS:000381777700012
PM 27374062
ER
PT J
AU DebRoy, S
Hiraga, N
Imamura, M
Hayes, CN
Akamatsu, S
Canini, L
Perelson, AS
Pohl, RT
Persiani, S
Uprichard, SL
Tateno, C
Dahari, H
Chayama, K
AF DebRoy, S.
Hiraga, N.
Imamura, M.
Hayes, C. N.
Akamatsu, S.
Canini, L.
Perelson, A. S.
Pohl, R. T.
Persiani, S.
Uprichard, S. L.
Tateno, C.
Dahari, H.
Chayama, K.
TI Hepatitis C virus dynamics and cellular gene expression in uPA-SCID
chimeric mice with humanized livers during intravenous silibinin
monotherapy
SO JOURNAL OF VIRAL HEPATITIS
LA English
DT Article
DE anti-inflammatory; chimeric mice with humanized livers; gene expression;
uPA-SCID; viral kinetic modelling
ID TRANSFERRIN RECEPTOR 1; SERUM AMYLOID-A; ANTIVIRAL ACTIVITY;
PROTEASE-INHIBITOR; HCV KINETICS; IN-VITRO; INFECTION; SILYMARIN;
THERAPY; SOFOSBUVIR
AB Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an extract of milk thistle (Silybum marianum) seeds that has exhibited hepatoprotective and antiviral effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination with ribavirin. To elucidate the incompletely understood mode of action of SIL against HCV, mathematical modelling of HCV kinetics and human hepatocyte gene expression studies were performed in uPA-SCID-chimeric mice with humanized livers. Chronically HCV-infected mice (n = 15) were treated for 14 days with daily intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and human albumin (hAlb) were measured frequently, and liver HCV RNA was analysed at days 3 and 14. Microarray analysis of human hepatocyte gene expression was performed at days 0, 3 and 14 of treatment. While hAlb remained constant, a biphasic viral decline in serum was observed consisting of a rapid 1st phase followed by a second slower phase (or plateau with the two lower SIL dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median epsilon = 77%). However, the rate of HCV-infected hepatocyte decline, , was dose-dependent. Intracellular HCV RNA levels correlated (r = 0.66, P = 0.01) with serum HCV RNA. Pathway analysis revealed increased anti-inflammatory and antiproliferative gene expression in human hepatocytes in SIL-treated mice. The results suggest that SIL could lead to a continuous second-phase viral decline, that is potentially viral clearance, in the absence of adaptive immune response along with increased anti-inflammatory and antiproliferative gene expression in human hepatocytes.
C1 [DebRoy, S.; Canini, L.; Uprichard, S. L.; Dahari, H.] Loyola Univ, Med Ctr, Dept Med, Program Expt & Theoret Modeling,Div Hepatol, Maywood, IL 60153 USA.
[DebRoy, S.] Univ South Carolina Beaufort, Dept Math & Computat Sci, Bluffton, SC USA.
[Hiraga, N.; Imamura, M.; Hayes, C. N.; Akamatsu, S.; Chayama, K.] Hiroshima Univ, Inst Biomed & Hlth Sci, Dept Gastroenterol & Metab, Appl Life Sci, Hiroshima, Japan.
[Canini, L.] Univ Edinburgh, Ctr Immun Infect & Evolut, Edinburgh, Midlothian, Scotland.
[Perelson, A. S.] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM USA.
[Pohl, R. T.] German Assoc Phytotherapy, Speyer, Germany.
[Persiani, S.] Rottapharm Biotech SRL, Monza, MB, Italy.
[Tateno, C.] PhoenixBio Co Ltd, Higashihiroshima, Japan.
RP Chayama, K (reprint author), Hiroshima Univ, Inst Biomed & Hlth Sci, Dept Gastroenterol & Metab, Minami Ku, 1-2-3 Kasumi, Hiroshima, Hiroshima 7348551, Japan.
EM chayama@hiroshima-u.ac.jp
FU PhoenixBio Co. Ltd.; NIH [P20-GM103452, R01-AI028433, R01-AI011095,
R01-AI078881]; U.S. Department of Energy [DE-AC52-06NA25396]; USCB
research grant award; UK Biotechnology and Biological Sciences Research
Council [1698: BB/L001330/1]; Research Program on Hepatitis from the
Japan Agency for Medical Research and Development, AMED
[15fk0210001h0002]
FX Portions of this work were supported by PhoenixBio Co. Ltd., NIH grants
P20-GM103452, R01-AI028433, R01-AI011095 and R01-AI078881 and performed
under the auspices of the U.S. Department of Energy under contract
DE-AC52-06NA25396, USCB research grant award, and the UK Biotechnology
and Biological Sciences Research Council - grant reference 1698:
BB/L001330/1. SIL was provided by Rottapharm vertical bar Madaus Ltd.
This research is partially supported by research funding from the
Research Program on Hepatitis from the Japan Agency for Medical Research
and Development, AMED (grant number: 15fk0210001h0002).
NR 47
TC 0
Z9 0
U1 0
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1352-0504
EI 1365-2893
J9 J VIRAL HEPATITIS
JI J. Viral Hepatitis
PD SEP
PY 2016
VL 23
IS 9
BP 708
EP 717
DI 10.1111/jvh.12551
PG 10
WC Gastroenterology & Hepatology; Infectious Diseases; Virology
SC Gastroenterology & Hepatology; Infectious Diseases; Virology
GA DS6NF
UT WOS:000380898000006
PM 27272497
ER
PT J
AU Mondo, SJ
Salvioli, A
Bonfante, P
Morton, JB
Pawlowska, TE
AF Mondo, Stephen J.
Salvioli, Alessandra
Bonfante, Paola
Morton, Joseph B.
Pawlowska, Teresa E.
TI Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts
of Fungi
SO MOLECULAR BIOLOGY AND EVOLUTION
LA English
DT Article
DE diversifying selection; effective population size; evolution rate;
genetic drift; Glomeribacter gigasporarum; mutation rate; purifying
selection; vertical transmission
ID NONSYNONYMOUS NUCLEOTIDE SUBSTITUTIONS; CANDIDATUS GLOMERIBACTER
GIGASPORARUM; BAYESIAN PHYLOGENETIC INFERENCE; DELETERIOUS MUTATIONS;
POPULATION-SIZE; MOLECULAR EVOLUTION; DNA POLYMORPHISM; DELETIONAL BIAS;
GENETIC DRIFT; SELECTION
AB Bacterial endosymbionts are critical to the existence of many eukaryotes. Among them, vertically transmitted endobacteria are uniquely typified by reduced genomes and molecular evolution rate acceleration relative to free-living taxa. These patterns are attributable to genetic drift-dominated degenerative processes associated with reproductive dependence on the host. The degenerative evolution scenario is well supported in endobacteria with strict vertical transmission, such as essential mutualists of insects. In contrast, heritable endosymbionts that are nonessential to their hosts and engage occasionally in horizontal transmission are expected to display deviations from the degenerative evolution model. To explore evolution patterns in such nonessential endobacteria, we focused on Candidatus Glomeribacter gigasporarum ancient heritable mutualists of fungi. Using a collection of genomes, we estimated in Glomeribacter mutation rate at 2.03 X 10(-9) substitutions per site per year and effective population size at 1.44 X 10(8). Both fall within the range of values observed in free-living bacteria. To assess the ability of Glomeribacter to purge slightly deleterious mutations, we examined genome-wide d(N)/ d(S) values and distribution patterns. We found that these dN/ dS profiles cluster Glomeribacter with free-living bacteria as well as with other nonessential endosymbionts, while distinguishing it from essential heritable mutualists of insects. Finally, our evolutionary simulations revealed that the molecular evolution rate acceleration in Glomeribacter is caused by limited recombination in a largely clonal population rather than by increased fixation of slightly deleterious mutations. Based on these patterns, we propose that genome evolution in Glomeribacter is nondegenerative and exemplifies a departure from the model of degenerative evolution in heritable endosymbionts.
C1 [Mondo, Stephen J.; Pawlowska, Teresa E.] Cornell Univ, Sch Integrat Plant Sci Plant Pathol & Plant Micro, Ithaca, NY 14853 USA.
[Salvioli, Alessandra; Bonfante, Paola] Univ Turin, Dept Life Sci & Syst Biol, Turin, Italy.
[Morton, Joseph B.] West Virginia Univ, Div Plant & Soil Sci, Morgantown, WV 26506 USA.
[Mondo, Stephen J.] US DOE Joint Genome Inst, Walnut Creek, CA USA.
RP Pawlowska, TE (reprint author), Cornell Univ, Sch Integrat Plant Sci Plant Pathol & Plant Micro, Ithaca, NY 14853 USA.
EM tep8@cornell.edu
FU National Science Foundation [DEB-0918880, CSBR-1349308]; University of
Torino
FX We thank R. Hernandez for advice on SDF_CODE, E. Angert, O. Lastovetsky,
J. Russell, G. Turgeon and two anonymous reviewers for helpful comments.
This study was supported by the National Science Foundation grant
DEB-0918880 to T.E.P. and CSBR-1349308 to J.B.M. as well as the 60%
project from the University of Torino to P.B.
NR 103
TC 0
Z9 0
U1 9
U2 14
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0737-4038
EI 1537-1719
J9 MOL BIOL EVOL
JI Mol. Biol. Evol.
PD SEP
PY 2016
VL 33
IS 9
BP 2216
EP 2231
DI 10.1093/molbev/msw086
PG 16
WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics &
Heredity
SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics &
Heredity
GA DT7XU
UT WOS:000381702500005
PM 27189571
ER
PT J
AU Adams, CJ
Yu, JS
Mao, JH
Jen, KY
Costes, SV
Wade, M
Shoemake, J
Aina, OH
Del Rosario, R
Menchavez, PT
Cardiff, RD
Wahl, GM
Balmain, A
AF Adams, Cassandra J.
Yu, Jennifer S.
Mao, Jian-Hua
Jen, Kuang-Yu
Costes, Sylvain V.
Wade, Mark
Shoemake, Jocelyn
Aina, Olulanu H.
Del Rosario, Reyno
Menchavez, Phuong Thuy
Cardiff, Robert D.
Wahl, Geoffrey M.
Balmain, Allan
TI The Trp53 delta proline (Trp53 Delta P) mouse exhibits increased genome
instability and susceptibility to radiation-induced, but not
spontaneous, tumor development
SO MOLECULAR CARCINOGENESIS
LA English
DT Article
DE Trp53; cancer radiation; genomic instability
ID P53-DEFICIENT MICE; RICH REGION; DNA-DAMAGE; P53; SUPPRESSION;
TUMORIGENESIS; APOPTOSIS; CANCER; DOMAIN; LYMPHOMAS
AB The tumor suppressor TP53 can initiate a plethora of anti-proliferative effects to maintain genomic integrity under conditions of genotoxic stress. The N-terminal proline-rich domain (PRD) of TP53 is important in the regulation of TP53 activity and stability. A common polymorphism at codon 72 in this region has been associated with altered cancer risk in humans. The Trp53P mouse, which carries a germline homozygous deletion of a region of the PRD, does not develop spontaneous tumors in a mixed 129/Sv and C57BL/6 genetic background, but is highly susceptible to a broad range of tumor types following total body exposure to 4 Gy gamma () radiation. This contrasts with the tumor spectrum in Trp53 null (-/-) mice, which mainly develop thymic lymphomas and osteosarcomas. Analysis of genomic instability in tissues and cells from Trp53P mice demonstrated elevated basal levels of aneuploidy, but this is not sufficient to drive spontaneous tumorigenesis, which requires an additional DNA damage stimulus. Levels of genomic instability did not increase significantly in Trp53P mice following irradiation exposure, suggesting that other radiation effects including tissue inflammation, altered metabolism or autophagy, may play an important role. The Trp53P mouse is a novel model to dissect the mechanisms of tumor development induced by radiation exposure. (c) 2015 Wiley Periodicals, Inc.
C1 [Adams, Cassandra J.; Del Rosario, Reyno; Menchavez, Phuong Thuy; Balmain, Allan] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, 1450 3rd St, San Francisco, CA 94158 USA.
[Yu, Jennifer S.; Shoemake, Jocelyn] Cleveland Clin, Dept Radiat Oncol, Dept Stem Cell Biol, Main Campus, Cleveland, OH 44106 USA.
[Mao, Jian-Hua; Costes, Sylvain V.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA.
[Jen, Kuang-Yu] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA.
[Wade, Mark] Fdn Ist Italiano Tecnol IIT, Ctr Genom Sci IIT SEMM, Milan, Italy.
[Aina, Olulanu H.; Cardiff, Robert D.] Univ Calif Davis, Dept Pathol & Lab Med, Primate Dr, CA USA.
[Wahl, Geoffrey M.] Salk Inst Biol Studies, Gene Express Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA.
RP Balmain, A (reprint author), Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, 1450 3rd St, San Francisco, CA 94158 USA.
FU NASA Specialized Center for Research in Radiation Health Effects
[NNX09AM52G, UO1 CA84244, CA141455]; Department of Energy Low Dose
Radiation Research Program [DESC0003679]; Leukemia and Lymphoma Society
[5409-13]
FX Grant sponsor: NASA Specialized Center for Research in Radiation Health
Effects; Grant numbers: NNX09AM52G; UO1 CA84244; CA141455; Grant
sponsor: The Department of Energy Low Dose Radiation Research Program;
Grant number: DESC0003679; Grant sponsor: The Leukemia and Lymphoma
Society Fellowship; Grant number: 5409-13
NR 35
TC 0
Z9 0
U1 3
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0899-1987
EI 1098-2744
J9 MOL CARCINOGEN
JI Mol. Carcinog.
PD SEP
PY 2016
VL 55
IS 9
BP 1387
EP 1396
DI 10.1002/mc.22377
PG 10
WC Biochemistry & Molecular Biology; Oncology
SC Biochemistry & Molecular Biology; Oncology
GA DS6LU
UT WOS:000380894100009
PM 26310697
ER
PT J
AU Li, H
Yang, XR
Weng, BS
Su, JQ
Nie, SA
Gilbert, JA
Zhu, YG
AF Li, Hu
Yang, Xiaoru
Weng, Bosen
Su, Jianqiang
Nie, San'an
Gilbert, Jack A.
Zhu, Yong-Guan
TI The phenological stage of rice growth determines anaerobic ammonium
oxidation activity in rhizosphere soil
SO SOIL BIOLOGY & BIOCHEMISTRY
LA English
DT Article
DE N loss; Anammox; Rhizosphere; Rice growth period; Root exudates;
N-15-tracing
ID METHANE-OXIDIZING BACTERIA; CANDIDATUS BROCADIA FULGIDA; CHINESE PADDY
SOILS; ORYZA-SATIVA L.; ANAMMOX BACTERIA; ACTIVATED-SLUDGE; NITROGEN
LOSS; DENITRIFICATION; DIVERSITY; COMMUNITY
AB Anaerobic oxidation of ammonium (anammox) plays an important role in nitrogen (N) loss from agricultural systems. Recently, the rice rhizosphere was demonstrated to be a hotspot for anammox, yet the dynamics of anammox activity and the distribution of anammox bacteria in rhizosphere soil at different phenological stages of rice growth are still unknown. In this study, the activity, diversity and abundance of anammox bacteria in both rhizosphere and bulk soils were investigated over the entire rice growth season. From tillering to ripening stage, significantly higher anammox bacterial abundance was detected in rhizosphere soils compared to bulk soils. The rhizosphere soils also had significantly higher anammox rates at tillering and booting stages (0.71 and 0.32 nmol N g(-1) dry soil h(-1), respectively) compared to bulk soils. The anammox rate in rhizosphere soil was positively correlated to the concentrations of NOx- (total of nitrate and nitrite) and acetate. The abundance of anammox bacteria was significantly correlated with the concentration of succinate in rhizosphere soils. A total of five anammox genera of Brocadia, Kuenenia, Anammoxoglobus, Jettenia and Scalindua were detected, with Brocadia predominating in all examined samples. The distribution of anammox bacteria in rhizosphere and bulk soils varied with phenological stages. Statistical analysis indicated that C/N ratio, formate, citrate and ammonium were key factors influencing the composition of anammox bacteria. Variations in activity, abundance and distribution of anammox bacteria in rhizosphere were observed over the phenological progression, demonstrating that the root exudates might be influential for the anammox process. This study implies that future efforts in estimating the rate of anammox should consider the temporal variation during plant life cycles. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Li, Hu; Yang, Xiaoru; Weng, Bosen; Su, Jianqiang; Nie, San'an; Zhu, Yong-Guan] Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, Xiamen 361021, Peoples R China.
[Zhu, Yong-Guan] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China.
[Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA.
[Gilbert, Jack A.] Argonne Natl Lab, Biosci Div, Lemont, IL 60439 USA.
[Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA.
RP Zhu, YG (reprint author), Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, Xiamen 361021, Peoples R China.
EM ygzhu@iue.ac.cn
RI SPRP, XDB150200/N-7373-2016; Su, Jian Qiang/C-2388-2009; CAS,
KLUEH/G-8978-2016; Zhu, Yong-Guan/A-1412-2009
OI Su, Jian Qiang/0000-0003-1875-249X; Zhu, Yong-Guan/0000-0003-3861-8482
FU Strategic Priority Research Program of Chinese Academy of Sciences
[XDB15020302, XDB15020402]; Natural Science Foundation of China
[41430858]; International Science & Technology Cooperation Program of
China [2011DFB91710]; U.S. Dept. of Energy [DE-AC02-06CH11357]
FX This study was financially supported by the Strategic Priority Research
Program of Chinese Academy of Sciences (XDB15020302, XDB15020402), the
Natural Science Foundation of China (41430858), and the International
Science & Technology Cooperation Program of China (2011DFB91710). We
thank Dr. Juan Wang for her help in rice cultivation and Dr. Han Zhang
for assistance in the equipment of Isotope Ratio Mass Spectrometer. This
work was supported in part by the U.S. Dept. of Energy under Contract
DE-AC02-06CH11357.
NR 49
TC 0
Z9 0
U1 34
U2 41
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-0717
J9 SOIL BIOL BIOCHEM
JI Soil Biol. Biochem.
PD SEP
PY 2016
VL 100
BP 59
EP 65
DI 10.1016/j.soilbio.2016.05.015
PG 7
WC Soil Science
SC Agriculture
GA DS2LD
UT WOS:000380600100007
ER
PT J
AU Huh, U
Cho, W
Joy, DC
AF Huh, U.
Cho, W.
Joy, D. C.
TI Monte Carlo modeling of ion beam induced secondary electrons
SO ULTRAMICROSCOPY
LA English
DT Article
DE Monte Carlo; Secondary electron; Yield; Ion beam; Stopping power; Ion
microscope
ID MICROSCOPE; METROLOGY; EMISSION
AB Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE 6) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10-100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Huh, U.; Joy, D. C.] Univ Tennessee, Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
[Cho, W.] Univ Tennessee, Elect & Comp Engn, Knoxville, TN 37996 USA.
[Joy, D. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Huh, U (reprint author), Univ Tennessee, Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
EM uhuh@vols.utk.edu
FU DS [R011082032]; Center of Excellence [R011310039]
FX This work was partially supported by DS Account number R011082032 and
Center of Excellence Account number R011310039 for the Center for
Materials Processing at the University of Tennessee, Knoxville.
NR 32
TC 0
Z9 0
U1 2
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3991
EI 1879-2723
J9 ULTRAMICROSCOPY
JI Ultramicroscopy
PD SEP
PY 2016
VL 168
BP 28
EP 33
DI 10.1016/j.ultramic.2016.05.010
PG 6
WC Microscopy
SC Microscopy
GA DS4MB
UT WOS:000380754100004
PM 27337603
ER
PT J
AU Poudel, S
Tokmina-Lukaszewska, M
Colman, DR
Refai, M
Schut, GJ
King, PW
Maness, PC
Adams, MWW
Peters, JW
Bothner, B
Boyd, ES
AF Poudel, Saroj
Tokmina-Lukaszewska, Monika
Colman, Daniel R.
Refai, Mohammed
Schut, Gerrit J.
King, Paul W.
Maness, Pin-Ching
Adams, Michael W. W.
Peters, John W.
Bothner, Brian
Boyd, Eric S.
TI Unification of [FeFe]-hydrogenases into three structural and functional
groups
SO BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS
LA English
DT Article
DE [FeFe]-hydrogenase; Hydrogen; Electron bifurcation; Post-translational
modification; Regulation; Bioinformatics
ID ALGA CHLAMYDOMONAS-REINHARDTII; SULFATE-REDUCING BACTERIA;
THERMOTOGA-MARITIMA; MASS-SPECTROMETRY; IRON-HYDROGENASE;
HISTIDINE-KINASE; ACTIVE-SITE; BIOCHEMICAL-CHARACTERIZATION;
CLOSTRIDIUM-PASTEURIANUM; PROTEIN-PHOSPHORYLATION
AB Background: [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H-2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H-2.
Methods: To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatory proteins encoded in HydA gene neighborhoods.
Results: HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggest that they are post-translationally modified by phosphorylation.
Conclusions: These results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA.
General significance: This classification scheme provides a framework for future biochemical and mutagenesis studies to elucidate the functional role of Hyd enzymes. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Poudel, Saroj; Colman, Daniel R.; Boyd, Eric S.] Montana State Univ, Dept Microbiol & Immunol, POB 173520, Bozeman, MT 59717 USA.
[Tokmina-Lukaszewska, Monika; Refai, Mohammed; Peters, John W.; Bothner, Brian] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA.
[Schut, Gerrit J.; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA.
[King, Paul W.; Maness, Pin-Ching] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA.
RP Boyd, ES (reprint author), Montana State Univ, Dept Microbiol & Immunol, POB 173520, Bozeman, MT 59717 USA.
EM saroz189@gmail.com; tokminalukas@gmail.com; daniel.colman@montana.edu;
refai1982@gmail.com; gerti@uga.edu; Paul.King@nrel.gov;
PinChing.Maness@nrel.gov; adams@bmb.uga.edu;
john.peters@chemistry.montana.edu; bbothner@montana.edu;
eboyd@montana.edu
RI King, Paul/D-9979-2011;
OI King, Paul/0000-0001-5039-654X; Peters, John/0000-0001-9117-9568
FU Biological Electron Transfer and Catalysis Energy Frontier Research
Center - U.S. Department of Energy, Office of Science, and Basic Energy
Sciences [DE-SC0012518]; Murdock Charitable Trust; National Institute of
Health of the Centers of Biomedical Research Excellence program
[5P20RR02437]
FX This work was supported as part of the Biological Electron Transfer and
Catalysis Energy Frontier Research Center funded by the U.S. Department
of Energy, Office of Science, and Basic Energy Sciences under Award #
DE-SC0012518. The mass spectrometry facility at Montana State University
receives funding from the Murdock Charitable Trust and National
Institute of Health 5P20RR02437 of the Centers of Biomedical Research
Excellence program.
NR 88
TC 2
Z9 2
U1 11
U2 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-4165
EI 1872-8006
J9 BBA-GEN SUBJECTS
JI Biochim. Biophys. Acta-Gen. Subj.
PD SEP
PY 2016
VL 1860
IS 9
BP 1910
EP 1921
DI 10.1016/j.bbagen.2016.05.034
PG 12
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA DS2LQ
UT WOS:000380601400010
PM 27241847
ER
PT J
AU Fraga, MB
Delplanque, JP
Yang, N
Lavernia, EJ
Monson, TC
AF Fraga, Martin B.
Delplanque, Jean-Pierre
Yang, Nancy
Lavernia, Enrique J.
Monson, Todd C.
TI High pressure FAST of nanocrystalline barium titanate
SO CERAMICS INTERNATIONAL
LA English
DT Article
DE Barium titanate; Sintering; Grain size; Spark plasma sintering
ID ABNORMAL GRAIN-GROWTH; DIELECTRIC-PROPERTIES; BATIO3 CERAMICS;
COMPUTER-SIMULATION; SIZE; FERROELECTRICS; DENSIFICATION; BEHAVIOR;
CONSOLIDATION; ATMOSPHERE
AB This work studies the microstructural evolution of nanocrystalline (< 1 mu m) barium titanate (BaTiO3), and presents high pressure in field-assisted sintering (FAST) as a robust methodology to obtain > 100 nm BaTiO3 compacts. Using FAST, two commercial similar to 50 nm powders were consolidated into compacts of varying densities and grain sizes. Microstructural inhomogeneities were investigated for each case, and an interpretation is developed using a modified Monte Carlo Potts (MCP) simulation. Two recurrent microstructural inhomogeneities are highlighted, heterogeneous grain growth and low-density regions, both ubiqutously present in all samples to varying degrees. In the worst cases, HGG presents an area coverage of 52%. Because HGG is sporadic but homogenous throughout a sample, the catalyst (e.g., the local segregation of species) must be, correspondingly, distributed in a homogenous manner. MCP demonstrates that in such a case, a large distance between nucleating abnormal grains is required otherwise abnormal grains prematurely impinge on each other, and their size is not distinguishable from that of normal grains. Compacts sintered with a pressure of 300 MPa and temperatures of 900 degrees C, were 99.5% dense and had a grain size of 90 +/- 24 nm. These are unprecedented results for commercial BaTiO3 powders or any starting powder of 50 nm particle size other authors have used 16 nm lab-produced powder to obtain similar results. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
C1 [Fraga, Martin B.; Delplanque, Jean-Pierre] Univ Calif Davis, Davis, CA 95616 USA.
[Yang, Nancy] Sandia Natl Labs, Livermore, CA USA.
[Lavernia, Enrique J.] Univ Calif Irvine, Irvine, CA USA.
[Monson, Todd C.] Sandia Natl Labs, Albuquerque, NM USA.
RP Fraga, MB (reprint author), Univ Calif Davis, Davis, CA 95616 USA.
EM mbfraga@ucdavis.edu
OI Monson, Todd/0000-0002-9782-7084; Delplanque,
Jean-Pierre/0000-0003-1774-1641
FU Air Force Research Laboratory/High Power Microwave Electromagnetic
Microwave Division; US Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX The authors gratefully acknowledge the support of Sandia National
Laboratories. The authors also wish to thank Dr. Susan Heidger of the
Air Force Research Laboratory/High Power Microwave Electromagnetic
Microwave Division for additional support of this work. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin
Corporation, for the US Department of Energy's National Nuclear Security
Administration under contract no. DE-AC04-94AL85000.
NR 50
TC 1
Z9 1
U1 17
U2 27
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0272-8842
EI 1873-3956
J9 CERAM INT
JI Ceram. Int.
PD SEP
PY 2016
VL 42
IS 12
BP 13868
EP 13875
DI 10.1016/j.ceramint.2016.05.193
PG 8
WC Materials Science, Ceramics
SC Materials Science
GA DR7LT
UT WOS:000380081900068
ER
PT J
AU Lin, F
Leyffer, S
Munson, T
AF Lin, Fu
Leyffer, Sven
Munson, Todd
TI A two-level approach to large mixed-integer programs with application to
cogeneration in energy-efficient buildings
SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
LA English
DT Article
DE Coarsened models; Distributed generation; Large-scale problems;
Two-level approach; Multi-period planning; Resource and cost allocation;
Two-stage mixed-integer programs
ID DISTRIBUTED GENERATION SYSTEMS; NONLINEAR OPTIMIZATION;
LAGRANGIAN-RELAXATION; SIMULATION PROGRAM; COLUMN GENERATION;
LINEAR-PROGRAMS; OPTIMAL-DESIGN; BILEVEL; AGGREGATION; BOUNDS
AB We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence provides an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. The coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.
C1 [Lin, Fu; Leyffer, Sven; Munson, Todd] Argonne Natl Lab, Math & Comp Sci Div, 9700 South Cass Ave, Lemont, IL 60439 USA.
RP Lin, F (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 South Cass Ave, Lemont, IL 60439 USA.
EM fulin@mcs.anl.gov; leyffer@mcs.anl.gov; tmunson@mcs.anl.gov
FU U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Applied Mathematics program
[DE-AC02-06CH11357]
FX This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing
Research, Applied Mathematics program under contract number
DE-AC02-06CH11357. We thank the reviewers for their helpful comments. Fu
Lin thanks Dr. Ralph Muehleisen for useful discussions on EnergyPlus.
NR 40
TC 0
Z9 0
U1 9
U2 9
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0926-6003
EI 1573-2894
J9 COMPUT OPTIM APPL
JI Comput. Optim. Appl.
PD SEP
PY 2016
VL 65
IS 1
BP 1
EP 46
DI 10.1007/s10589-016-9842-0
PG 46
WC Operations Research & Management Science; Mathematics, Applied
SC Operations Research & Management Science; Mathematics
GA DS0CF
UT WOS:000380262200001
ER
PT J
AU Zhang, N
Hu, ZG
Springer, C
Li, YN
Shen, B
AF Zhang, Ning
Hu, Zhaoguang
Springer, Cecilia
Li, Yanning
Shen, Bo
TI A bi-level integrated generation-transmission planning model
incorporating the impacts of demand response by operation simulation
SO ENERGY CONVERSION AND MANAGEMENT
LA English
DT Article
DE Unit commitment; Generation-transmission expansion planning; Bi-level
planning model; Demand response; Peak load reduction
ID POWER-GENERATION; ELECTRICITY MARKETS; UNIT COMMITMENT; SYSTEMS;
COORDINATION; RESOURCE; OPTIMIZATION
AB If all the resources in power supply side, transmission part, and power demand side are considered together, the optimal expansion scheme from the perspective of the whole system can be achieved. In this paper, generation expansion planning and transmission expansion planning are combined into one model. Moreover, the effects of demand response in reducing peak load are taken into account in the planning model, which can cut back the generation expansion capacity and transmission expansion capacity. Existing approaches to considering demand response for planning tend to overestimate the impacts of demand response on peak load reduction. These approaches usually focus on power reduction at the moment of peak load without considering the situations in which load demand at another moment may unexpectedly become the new peak load due to demand response. These situations are analyzed in this paper. Accordingly, a novel approach to incorporating demand response in a planning model is proposed. A modified unit commitment model with demand response is utilized. The planning model is thereby a bi-level model with interactions between generation-transmission expansion planning and operation simulation to reflect the actual effects of demand response and find the reasonably optimal planning result. (C) 2016 Elsevier Ltd. All rights, reserved.
C1 [Zhang, Ning] Beijing Jiaotong Univ, Sch Elect Engn, Beijing 100044, Peoples R China.
[Zhang, Ning; Hu, Zhaoguang] State Grid Corp China, State Grid Energy Res Inst, Beijing 102200, Peoples R China.
[Springer, Cecilia; Shen, Bo] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA.
[Springer, Cecilia] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA.
[Li, Yanning] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China.
RP Zhang, N (reprint author), Beijing Jiaotong Univ, Sch Elect Engn, Beijing 100044, Peoples R China.
EM 12121580@bjtu.edu.cn
NR 44
TC 1
Z9 1
U1 5
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0196-8904
EI 1879-2227
J9 ENERG CONVERS MANAGE
JI Energy Conv. Manag.
PD SEP 1
PY 2016
VL 123
BP 84
EP 94
DI 10.1016/j.enconman.2016.06.020
PG 11
WC Thermodynamics; Energy & Fuels; Mechanics
SC Thermodynamics; Energy & Fuels; Mechanics
GA DS2LP
UT WOS:000380601300008
ER
PT J
AU Jay, DA
Borde, AB
Diefenderfer, HL
AF Jay, David A.
Borde, Amy B.
Diefenderfer, Heida L.
TI Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: II.
Water Level Models, Floodplain Wetland Inundation, and System Zones
SO ESTUARIES AND COASTS
LA English
DT Article
DE Environmental flows; Estuarine processes; Hydropower impacts;
Non-stationary tides; Sum exceedance value; Tidal freshwater; Tidal
river zonation; Tides; Wetlands; Water levels
ID PLANT-SPECIES RICHNESS; HARMONIC-ANALYSIS; CLIMATE INFLUENCES; SALMONID
HABITAT; LAWRENCE-RIVER; SALT MARSHES; FRESH-WATER; FLOW; VEGETATION;
GRADIENTS
AB Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetland hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones.
C1 [Jay, David A.] Portland State Univ, Dept Civil & Environm Engn, POB 751, Portland, OR 97207 USA.
[Borde, Amy B.; Diefenderfer, Heida L.] Pacific NW Natl Lab, Marine Sci Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA.
RP Jay, DA (reprint author), Portland State Univ, Dept Civil & Environm Engn, POB 751, Portland, OR 97207 USA.
EM djay@cecs.pdx.edu; amy.borde@pnnl.gov; heida.diefenderfer@pnnl.gov
FU US Army Corps of Engineers Columbia River Fish Mitigation Program; PNNL
by the Bonneville Power Administration; Lower Columbia Estuary
Partnership; National Science Foundation [OCE-0929055]
FX This work was supported by the US Army Corps of Engineers Columbia River
Fish Mitigation Program. Funding for flood-plain water-level data
collection by PNNL was also provided in part by the Bonneville Power
Administration and Lower Columbia Estuary Partnership. Partial support
for D. A. Jay was provided by the National Science Foundation, grant
OCE-0929055. We thank V. Cullinan, R. Kaufmann, K. Leffler, C. McNeil,
and S. Zimmerman for technical assistance.
NR 80
TC 2
Z9 2
U1 12
U2 19
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1559-2723
EI 1559-2731
J9 ESTUAR COAST
JI Estuaries Coasts
PD SEP
PY 2016
VL 39
IS 5
BP 1299
EP 1324
DI 10.1007/s12237-016-0082-4
PG 26
WC Environmental Sciences; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA DS0EO
UT WOS:000380268400001
ER
PT J
AU Nyhan, M
Sobolevsky, S
Kang, CG
Robinson, P
Corti, A
Szell, M
Streets, D
Lu, ZF
Britter, R
Barrett, SRH
Ratti, C
AF Nyhan, Marguerite
Sobolevsky, Stanislav
Kang, Chaogui
Robinson, Prudence
Corti, Andrea
Szell, Michael
Streets, David
Lu, Zifeng
Britter, Rex
Barrett, Steven R. H.
Ratti, Carlo
TI Predicting vehicular emissions in high spatial resolution using
pervasively measured transportation data and microscopic emission's
model
SO ATMOSPHERIC ENVIRONMENT
LA English
DT Article
DE Air quality; Transportation; Emissions; Microscopic emissions model;
Microscopic vehicle movement
ID AIR-POLLUTION; LOS-ANGELES; VEHICLE; MORTALITY; CITIES; VARIABILITY;
REDUCTION; EVOLUTION; NETWORKS; QUALITY
AB Air pollution related to traffic emissions pose an especially significant problem in cities; this is due to its adverse impact on human health and well-being. Previous studies which have aimed to quantify emissions from the transportation sector have been limited by either simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air pollution emissions for Singapore. This novel approach enabled the quantification of instantaneous drive cycle parameters in high spatio-temporal resolution, which provided the basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible with previously used methods for estimating emissions. Relatively higher emissions areas were mainly concentrated in a few districts that were the Singapore Downtown Core area, to the north of the central urban region and to the east of it. Daily emissions quantified for the total motor vehicle population of Singapore were found to be comparable to another emissions dataset Results demonstrated that high resolution spatio-temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly localized areas of elevated acceleration and air pollution emissions in cities, and may become a complement to traditional emission estimates, especially in emerging cities and countries where reliable fine-grained urban air quality data is not easily available. This is the first study of its kind to investigate measured microscopic vehicle movement in tandem with microscopic emissions modeling for a substantial study domain. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Nyhan, Marguerite; Robinson, Prudence; Britter, Rex; Ratti, Carlo] MIT, SENSEable City Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Sobolevsky, Stanislav] NYU, Ctr Urban Sci & Progress, New York, NY USA.
[Kang, Chaogui] Wuhan Univ, Wuhan, Hubei, Peoples R China.
[Corti, Andrea] Politecn Milan, 32 Piazza Leonardo da Vinci, Milan, Italy.
[Szell, Michael] Northeastern Univ, Dept Phys, Ctr Complex Network Res, Boston, MA 02115 USA.
[Streets, David; Lu, Zifeng] NASA, Argonne Natl Lab, Lemont, IL USA.
[Barrett, Steven R. H.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA.
RP Nyhan, M (reprint author), MIT, SENSEable City Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM mnyhan@mit.edu
OI Kang, Chaogui/0000-0002-0122-9419
FU MIT SENSEable City Lab Consortium; Singapore-MIT Alliance for Research &
Technology program
FX All the authors wish to thank the MIT SENSEable City Lab Consortium and
the Singapore-MIT Alliance for Research & Technology program for
supporting the research. M. Nyhan would like to thank Fulbright and the
Irish Environmental Protection Agency. The authors would also like to
acknowledge Dr. Luc Int. Panis for providing advice on some modeling
aspects of the study.
NR 68
TC 1
Z9 1
U1 30
U2 43
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1352-2310
EI 1873-2844
J9 ATMOS ENVIRON
JI Atmos. Environ.
PD SEP
PY 2016
VL 140
BP 352
EP 363
DI 10.1016/j.atmosenv.2016.06.018
PG 12
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA DR7MG
UT WOS:000380083200031
ER
PT J
AU Kupwade-Patil, K
Diallo, SO
Hossain, DZ
Islam, MR
Allouche, EN
AF Kupwade-Patil, Kunal
Diallo, Souleymane O.
Hossain, Dewan Zayid
Islam, Md Rashedul
Allouche, Erez N.
TI Investigation of activation kinetics in geopolymer paste using
quasielastic neutron scattering
SO CONSTRUCTION AND BUILDING MATERIALS
LA English
DT Article
DE Fly ash; Quasielastic neutron scattering (QENS); Geopolymer;
Characterization; Gelation; Dissolution
ID CALCIUM SILICATE HYDRATE; PORTLAND-CEMENT PASTES; TRICALCIUM SILICATE;
FLY-ASH; TRANSLATIONAL DYNAMICS; GEL FORMATION; WATER; MICROSTRUCTURE;
EVOLUTION; STATE
AB Quasielastic neutron scattering (QENS) has been used to investigate the binding process of water molecules in pastes of calcium geopolymer prepared with low and high calcium fly ash contents, and at two different NaOH molarities, 10 and 14 M. The in situ measurements were carried at ambient and elevated curing temperatures (60 degrees C). By carefully monitoring the time evolution of the elastic peak intensity, we infer a gelation process, followed by polymerization and a hardening in the high calcium geopolymer paste at 60 degrees C, in agreement with previously proposed geopolymerization model. This behavior was neither observed at ambient temperature in both low and high calcium geopolymer cement paste, within the precision of the neutron instrument. Our study clearly shows that a minimal amount of heat is necessary to form gelation and polymerization during the activation process. The activation of geopolymer paste with high NaOH molarity involves more chemically bound water molecules than that at lower activator concentration. This work shows that the QENS technique can be effectively used to characterize the alkali-activation kinetics in certain geopolymer pastes, and that temperature and molarity of the activator play a vital role in controlling the gel mechanism. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Kupwade-Patil, Kunal; Hossain, Dewan Zayid; Islam, Md Rashedul; Allouche, Erez N.] Louisiana Tech Univ, Dept Civil Engn, ACBL, Ruston, LA 71272 USA.
[Diallo, Souleymane O.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN USA.
RP Kupwade-Patil, K (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM kunalk@mit.edu
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy; DOE-EPSCoR Grant [DE-FG02-08ER46528]
FX This research at ORNL's Spallation Neutron Source (SNS) was sponsored by
the Scientific User Facilities Division, Office of Basic Energy
Sciences, U.S. Department of Energy. Travel to Oak Ridge National
Laboratory to carry out this work was supported by a Travel Fellowship,
from, the DOE-EPSCoR Grant to the University of Tennessee,
DE-FG02-08ER46528. This study was conducted when the first author of the
paper was at Louisiana Tech University. We would like to thank Dr.
Eugene Mamontov from Oak Ridge National Laboratory for fruitful
discussions during the course of these experiments. The authors are also
thankful to Dr. Claire White from Princeton University for reviewing the
initial version of this manuscript and for her feedback.
NR 44
TC 1
Z9 1
U1 3
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0950-0618
EI 1879-0526
J9 CONSTR BUILD MATER
JI Constr. Build. Mater.
PD SEP 1
PY 2016
VL 120
BP 181
EP 188
DI 10.1016/j.conbuildmat.2016.05.104
PG 8
WC Construction & Building Technology; Engineering, Civil; Materials
Science, Multidisciplinary
SC Construction & Building Technology; Engineering; Materials Science
GA DR7MP
UT WOS:000380084100020
ER
PT J
AU Ramezani, H
Wang, Y
Yablonovitch, E
Zhang, X
AF Ramezani, Hamidreza
Wang, Yuan
Yablonovitch, Eli
Zhang, Xiang
TI Unidirectional Perfect Absorber
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE critical coupling; exceptional point; metrology; Parity time symmetry;
perfect absorber; spectral singularity; unidirectional perfect absorber
ID PARITY-TIME SYMMETRY; EXCEPTIONAL POINT; ABSORPTION; LASER
AB We show an interplay between Fano resonances and a judicious absorption mechanism leads to a unidirectional perfect absorber, which can be controlled in both direction and frequency. Critical coupling phenomenon created by interference, separates the left-and right-side of the system. At the same time, Fano resonance causes a divergence in the delay time of photons traveling through the loss part of the system, which results in full absorption of the photons from one side. Moreover, we depict that coincidence of the two unidirectional perfect absorber modes from opposite directions results in a perfect absorber mode, which is distinct from the CPA modes. Furthermore, we show that the unidirectional perfect absorber mode is at the same time a spectral singularity and an exceptional point, which makes this point ultrasensitive to any changes in the system. Our results open a direction for designing new type of absorbers, sensors, and switches.
C1 [Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, Natl Sci Fdn, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA.
[Yablonovitch, Eli] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Yablonovitch, Eli] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Zhang, X (reprint author), Univ Calif Berkeley, Natl Sci Fdn, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA.; Zhang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM ramezani@berkeley.edu; yuanwang@berkeley.edu; eliy@eecs.berkeley.edu;
xiang@berkeley.edu
RI Wang, Yuan/F-7211-2011
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy
[DE-AC02-05-CH11231]; U.S. Air Force Office of Scientific Research
(AFOSR) MURI program [FA9550-12-1-0024]
FX This work was primarily funded by the Director, Office of Science,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division, of the U.S. Department of Energy under Contract No.
DE-AC02-05-CH11231. Calculation of the mode sensitivity was supported by
U.S. Air Force Office of Scientific Research (AFOSR) MURI program (No.
FA9550-12-1-0024). (Corresponding author: Xiang Zhang.)
NR 43
TC 0
Z9 0
U1 15
U2 29
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
EI 1558-4542
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD SEP-OCT
PY 2016
VL 22
IS 5
DI 10.1109/JSTQE.2016.2545644
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA DR5DW
UT WOS:000379924200001
ER
PT J
AU Li, WT
Ren, XT
Huang, YW
Yu, ZH
Mi, ZY
Tamura, N
Li, XD
Peng, F
Wang, L
AF Li, Wentao
Ren, Xiangting
Huang, Yanwei
Yu, Zhenhai
Mi, Zhongying
Tamura, Nobumichi
Li, Xiaodong
Peng, Fang
Wang, Lin
TI Phase transformation and fluorescent enhancement of ErF3 at high
pressure
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE Rare-earth trifluorides; Structure and fluorescence; Phase transitions
and enhancement of fluorescence; High pressure
ID LAF3; TRANSITION; STRAIN; NANOPARTICLES; CRYSTALS; LASER; IONS
AB Pressure-induced phase transformation and fluorescent properties of ErF3 were investigated here using in-situ synchrotron X-ray diffraction and photoluminescence up to 32.1 GPa at room temperature. Results showed that ErF3 underwent a reversible pressure-induced phase transition from the beta-YF3-type to the fluocerite LaF3-type at 9.8 GPa. The bulk moduli B-0 for low- and high-pressure phases were determined to be 130 and 208 GPa, respectively. Photoluminescencent studies showed that new emission lines belonging to the transition of H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2) appeared during phase transition, suggesting pressure-induced electronic band splitting. Remarkably, significant pressure-induced enhancement of photoluminescence was observed, which was attributed to lattice distortion of the material under high pressure. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Li, Wentao; Peng, Fang] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China.
[Li, Wentao; Ren, Xiangting; Huang, Yanwei; Yu, Zhenhai; Mi, Zhongying; Wang, Lin] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China.
[Tamura, Nobumichi] Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA.
[Li, Xiaodong] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
[Wang, Lin] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China.
[Wang, Lin] Carnegie Inst Sci, High Pressure Synerget Consortium, Geophys Lab, Argonne, IL 60439 USA.
RP Peng, F (reprint author), Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China.; Wang, L (reprint author), Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China.
EM pengfang@scu.edu.cn; wanglin@hpstar.ac.cn
FU National Natural Science Foundation of China, China Chinese Academy of
Sciences Fund [U1332104]; NSAF [U1530402]; Chinese Academy of Sciences
[KJCX2-SW-N03, KJCX2-SW-N20]
FX This work was supported by the joint fund of the National Natural
Science Foundation of China, China Chinese Academy of Sciences Fund
(Grant no. U1332104) and NSAF (Grant no. U1530402). The high pressure
XRD experiments were carried out at beamline 4W2 of the Beijing
Synchrotron Radiation Facility (BSRF), which is supported by the Chinese
Academy of Sciences (Grant no. KJCX2-SW-N03, KJCX2-SW-N20).
NR 32
TC 0
Z9 0
U1 6
U2 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
EI 1879-2766
J9 SOLID STATE COMMUN
JI Solid State Commun.
PD SEP
PY 2016
VL 242
BP 30
EP 35
DI 10.1016/j.ssc.2016.05.014
PG 6
WC Physics, Condensed Matter
SC Physics
GA DR1UI
UT WOS:000379690000007
ER
PT J
AU Brown, CS
Zhang, HB
AF Brown, C. S.
Zhang, Hongbin
TI Uncertainty quantification and sensitivity analysis with CASL Core
Simulator VERA-CS
SO ANNALS OF NUCLEAR ENERGY
LA English
DT Article
DE CASL; VERA-CS; Uncertainty quantification; Sensitivity analysis
AB VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics code under development by the Conscirtium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis. A 2 x 2 fuel assembly model was developed and Simulated by VERA-CS, and uncertainty quantification and Sensitivity analysis were performed with fourteen uncertain. input parameters. The minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surface temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. Parameters used as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Brown, C. S.] North Carolina State Univ, Dept Nucl Engn, 2500 Stinson Dr, Raleigh, NC 27695 USA.
[Zhang, Hongbin] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
RP Zhang, HB (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM csbrown3@ncsu.edu; Hongbin.Zhang@inl.gov
FU Office of Nuclear Energy of the U.S. Department of Energy
[DE-AC07-05ID14517]; U.S. Department of Energy [DE-AC07-05ID14517]
FX This research made use of the resources of the High Performance
Computing Center at Idaho National Laboratory, which is supported by the
Office of Nuclear Energy of the U.S. Department of Energy under Contract
No. DE-AC07-05ID14517. The authors would like to thank Andrew Godfrey
and Mark Baird at ORNL as well as Vefa Kucukboyaci and Yixing Sung at
Westinghouse for their assistance with VERA-CS. This manuscript has been
authored by Battelle Energy Alliance, LLC under Contract No.
DE-AC07-05ID14517 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a
nonexclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes.
NR 18
TC 1
Z9 1
U1 2
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0306-4549
J9 ANN NUCL ENERGY
JI Ann. Nucl. Energy
PD SEP
PY 2016
VL 95
BP 188
EP 201
DI 10.1016/j.anucene.2016.05.016
PG 14
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DQ7EG
UT WOS:000379369100021
ER
PT J
AU Bhagia, S
Nunez, A
Wyman, CE
Kumar, R
AF Bhagia, Samarthya
Nunez, Angelica
Wyman, Charles E.
Kumar, Rajeev
TI Robustness of two-step acid hydrolysis procedure for composition
analysis of poplar
SO BIORESOURCE TECHNOLOGY
LA English
DT Article
DE Compositional analysis; Lignocellulosic biomass; Poplar; Sulfuric acid
hydrolysis; Lignin-carbohydrate complex
AB The NREL standard procedure for lignocellulosic biomass composition has two steps: primary hydrolysis in 72% wt sulfuric acid at 30 degrees C for 1 h followed by secondary hydrolysis of the slurry in 4 wt% acid at 121 degrees C for 1 h. Although pointed out in the NREL procedure, the impact of particle size on composition has never been shown. In addition, the effects of primary hydrolysis time and separation of solids prior to secondary hydrolysis on composition have never been shown. Using poplar, it was found that particle sizes less than 0.250 mm significantly lowered the glucan content and increased the Klason lignin but did not affect xylan, acetate, or acid soluble lignin contents. Composition was unaffected for primary hydrolysis time between 30 and 90 min. Moreover, separating solids prior to secondary hydrolysis had negligible effect on composition suggesting that lignin and polysaccharides are completely separated in the primary hydrolysis stage. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Bhagia, Samarthya; Nunez, Angelica; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, 900 Univ Ave, Riverside, CA 92521 USA.
[Bhagia, Samarthya; Nunez, Angelica; Wyman, Charles E.; Kumar, Rajeev] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, 1084 Columbia Ave, Riverside, CA 92507 USA.
[Bhagia, Samarthya; Wyman, Charles E.; Kumar, Rajeev] Oak Ridge Natl Lab, BESC, POB 2008 MS6341, Oak Ridge, TN 37831 USA.
RP Wyman, CE (reprint author), Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, 1084 Columbia Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Bourns Coll Engn, 1084 Columbia Ave, Riverside, CA 92507 USA.
EM cewyman@engr.ucr.edu
FU Office of Biological and Environmental Research in the Department of
Energy (DOE) Office of Science through the BioEnergy Science Center
(BESC) at Oak Ridge National Laboratory [DE-PS02-06ER64304]; UCR
Hispanic Serving Institutions (HSI) Undergraduate Research Program
through the U. S. Department of Education; Ford Motor Company
FX This work was supported by the Office of Biological and Environmental
Research in the Department of Energy (DOE) Office of Science through the
BioEnergy Science Center (BESC) at Oak Ridge National Laboratory
(Contract DE-PS02-06ER64304). Stipend for undergraduate research was
awarded by UCR Hispanic Serving Institutions (HSI) Undergraduate
Research Program through the U. S. Department of Education. We thank
Daniel Lee, Department of Chemical and Environmental Engineering at UCR
for assistance in milling of poplar used in this study. We also
acknowledge the Center for Environmental Research and Technology
(CE-CERT) of the Bourns College of Engineering for providing the
facilities and the Ford Motor Company for funding the Chair in
Environmental Engineering that facilitates projects such as this one.
NR 8
TC 2
Z9 2
U1 10
U2 21
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0960-8524
EI 1873-2976
J9 BIORESOURCE TECHNOL
JI Bioresour. Technol.
PD SEP
PY 2016
VL 216
BP 1077
EP 1082
DI 10.1016/j.biortech.2016.04.138
PG 6
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA DQ9UX
UT WOS:000379555900133
PM 27282557
ER
PT J
AU Elrick-Barr, CE
Smith, TF
Preston, BL
Thomsen, DC
Baum, S
AF Elrick-Barr, Carmen E.
Smith, Timothy F.
Preston, Benjamin L.
Thomsen, Dana C.
Baum, Scott
TI How are coastal households responding to climate change?
SO ENVIRONMENTAL SCIENCE & POLICY
LA English
DT Article
DE Vulnerability; Resilience; Risk; Decision-making; Environmental hazards
ID BUILDING ADAPTIVE CAPACITY; CHANGE ADAPTATION; RISK; RESPONSIBILITIES;
AUSTRALIA; BEHAVIOR; VULNERABILITY; PERCEPTIONS; RESILIENCE; GOVERNANCE
AB In Australia, shared responsibility is a concept advocated to promote collective climate change adaptation by multiple actors and institutions. However, a shared response is often promoted in the absence of information regarding actions currently taken; in particular, there is limited knowledge regarding action occurring at the household scale. To address this gap, we examine household actions taken to address climate change and associated hazards in two Australian coastal communities. Mixed methods research is conducted to answer three questions: (1) what actions are currently taken (mitigation, actions to lobby for change or adaptation to climate impacts)? (2) why are these actions taken (e.g. are they consistent with capacity, experience, perceptions of risk); and (3) what are the implications for adaptation? We find that households are predominantly mitigating greenhouse gas emissions and that impact orientated adaptive actions are limited. Coping strategies are considered sufficient to mange climate risks, proving a disincentive for additional adaptive action. Influencing factors differ, but generally, risk perception and climate change belief are associated with action. However, the likelihood of more action is a function of homeownership and a tendency to plan ahead. Addressing factors that support or constrain household adaptive decision-making and action, from the physical (e.g. homeownership) to.the social (e.g. skills in planning and a culture of adapting to change) will be critical in increasing household participation in adaptation. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Elrick-Barr, Carmen E.; Smith, Timothy F.; Thomsen, Dana C.] Univ Sunshine Coast, Sustainabil Res Ctr, 90 Sippy Downs Dr, Sippy Downs, Qld 4556, Australia.
[Preston, Benjamin L.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA.
[Baum, Scott] Griffith Univ, Griffith Sch Environm, Nathan Campus,170 Kessels Rd, Nathan, Qld 4111, Australia.
RP Elrick-Barr, CE (reprint author), Univ Sunshine Coast, Sustainabil Res Ctr, 90 Sippy Downs Dr, Sippy Downs, Qld 4556, Australia.
EM celrick@usc.edu.au; tsmith5@usc.edu.au; prestonbl@ornl.gov;
dthomsen@usc.edu.au; s.baum@griffith.edu.au
OI Preston, Benjamin/0000-0002-7966-2386
FU Australian Research Council (ARC) through the project Community
Vulnerability and Extreme Events: Development of a Typology of Coastal
Settlement Vulnerability to Aid Adaptation Strategies' [DP1093583]; U.S.
Department of Energy [DE-AC05-00OR22725]
FX This research was supported by the Australian Research Council (ARC)
through the project Community Vulnerability and Extreme Events:
Development of a Typology of Coastal Settlement Vulnerability to Aid
Adaptation Strategies' (DP1093583). This manuscript has been authored in
part by UTBattelle, LLC under Contract No. DE-AC05-00OR22725 with the
U.S. Department of Energy. The United States Government and the
publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes. The Department of Energy will provide public access
to these results of federally sponsored research in accordance with the
DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).
NR 78
TC 0
Z9 0
U1 13
U2 27
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1462-9011
EI 1873-6416
J9 ENVIRON SCI POLICY
JI Environ. Sci. Policy
PD SEP
PY 2016
VL 63
BP 177
EP 186
DI 10.1016/j.envsci.2016.05.013
PG 10
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DR0ZJ
UT WOS:000379635300019
ER
PT J
AU Blankenship, D
Dobson, P
Garg, S
Ghassemi, A
Kohl, T
AF Blankenship, Douglas
Dobson, Patrick
Garg, Sabodh
Ghassemi, Ahmad
Kohl, Thomas
TI SPECIAL ISSUE: Enhanced Geothermal Systems: State of the Art Preface
SO GEOTHERMICS
LA English
DT Editorial Material
C1 [Blankenship, Douglas] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Dobson, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Garg, Sabodh] Leidos Inc, San Diego, CA 92121 USA.
[Ghassemi, Ahmad] Univ Oklahoma, Norman, OK 73019 USA.
[Kohl, Thomas] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany.
RP Garg, S (reprint author), Leidos Inc, San Diego, CA 92121 USA.
EM gargs@leidos.com
RI Dobson, Patrick/D-8771-2015; Kohl, Thomas/M-5704-2013
OI Dobson, Patrick/0000-0001-5031-8592;
NR 0
TC 0
Z9 0
U1 15
U2 19
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD SEP
PY 2016
VL 63
SI SI
BP 1
EP 1
DI 10.1016/j.geothermics.2016.04.001
PG 1
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA DR0XT
UT WOS:000379630900001
ER
PT J
AU Kelkar, S
WoldeGabriel, G
Rehfeldt, K
AF Kelkar, Sharad
WoldeGabriel, Giday
Rehfeldt, Kenneth
TI Lessons learned from the pioneering hot dry rock project at Fenton Hill,
USA
SO GEOTHERMICS
LA English
DT Article
DE EGS; HDR; Fenton Hill; Stimulation; Field test
ID HYDRAULIC FRACTURING EXPERIMENTS; GEOTHERMAL-ENERGY; NEW-MEXICO;
CRYSTALLINE ROCK; VALLES CALDERA; STRESS; RESERVOIRS; EXTRACTION;
SYSTEMS; FLOW
AB Interest in geothermal energy production has grown rapidly in recentyears due to the increasing demand for clean, renewable, domestic energy. Recent publications have suggested that geothermal energy from Enhanced Geothermal Systems could satisfy a large portion of the energy needs in the U.S. if the technology were implemented on a large scale. Pertinent to this goal are many of the lessons learned from the pioneering Hot Dry Rock project aimed at producing usable energy form the heat of the earth, conducted from 1970 to 1995 at Fenton Hill, New Mexico, USA. During this project, the Los Alamos National Laboratory created and tested two reservoirs at depths in the range of 2.8-3.5 km in crystalline rock formations underlying the Fenton Hill site. Thermal energies in the range of 3-10 MWt were produced demonstrating the technical feasibility of the concept. Many important lessons were learned regarding the creation, engineering and operation of such subsurface systems these lessons will prove valuable as the geothermal community moves towards the goal of realizing the immense potential of this ubiquitous renewable energy resource. The purpose of this paper is to provide a brief, easy to read overview of this pioneering project. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Kelkar, Sharad; WoldeGabriel, Giday] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA.
[Rehfeldt, Kenneth] Navarro Res & Engn, Oak Ridge, TN USA.
[Rehfeldt, Kenneth] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Kelkar, S (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA.
EM Kelkar@lanl.gov
FU U.S. Department of Energy- Geothermal Technologies Program Office
[DE-AC52-06NA25396]
FX This work was supported in part by the U.S. Department of Energy-
Geothermal Technologies Program Office under contract
No.DE-AC52-06NA25396. The authors gratefully acknowledge many useful and
knowledgeable discussions with Don Brown and Dave Duchane, who are
retired members of the HDR staff. We acknowledge Don Brown further for a
critical review of the manuscript.
NR 73
TC 2
Z9 2
U1 7
U2 23
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD SEP
PY 2016
VL 63
SI SI
BP 5
EP 14
DI 10.1016/j.geothermics.2015.08.008
PG 10
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA DR0XT
UT WOS:000379630900003
ER
PT J
AU Garcia, J
Hartline, C
Walters, M
Wright, M
Rutqvist, J
Dobson, PF
Jeanne, P
AF Garcia, Julio
Hartline, Craig
Walters, Mark
Wright, Melinda
Rutqvist, Jonny
Dobson, Patrick F.
Jeanne, Pierre
TI The Northwest Geysers EGS Demonstration Project, California Part 1:
Characterization and reservoir response to injection
SO GEOTHERMICS
LA English
DT Article
DE Enhanced Geothermal Systems; The Geysers; Induced seismicity; Reservoir
stimulation; Shear zones
ID MAGMATIC-HYDROTHERMAL SYSTEM; GEOTHERMAL-RESERVOIRS; FLUID INCLUSION;
FIELD
AB An Enhanced Geothermal System (EGS) Demonstration Project is currently underway in the Northwest Geysers. The project goal is to demonstrate the feasibility of stimulating a deep high-temperature reservoir (HTR) (up to 400 degrees C, 750 degrees F). Two previously abandoned wells, Prati State 31 (PS-31) and Prati 32 (P-32), were reopened and deepened to be used as an injection and production doublet to stimulate the HTR. The deepened portions of both wells have conductive temperature gradients of 10 degrees F/100 ft (182 degrees C/km), produce connate native fluids and magmatic gas, and the rocks were isotopically unexchanged by meteoric water. The ambient temperature meteoric water injected into these hot dry rocks has evidently created a permeability volume of several cubic kilometers as determined by seismic monitoring. Preliminary isotopic analyses of the injected and produced water indicate that 50-75% of the steam from the created EGS reservoir is injection-derived. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Garcia, Julio; Hartline, Craig; Walters, Mark; Wright, Melinda] Calpine Corp, Middletown, CA 95461 USA.
[Rutqvist, Jonny; Dobson, Patrick F.; Jeanne, Pierre] LBNL, Berkeley, CA 94720 USA.
RP Garcia, J (reprint author), Calpine Corp, Middletown, CA 95461 USA.
EM julio.garcia@calpine.com
RI Rutqvist, Jonny/F-4957-2015; Dobson, Patrick/D-8771-2015;
OI Rutqvist, Jonny/0000-0002-7949-9785; Dobson,
Patrick/0000-0001-5031-8592; Garcia, Julio/0000-0001-6917-4998; Walters,
Mark/0000-0001-8458-4813
FU Energy Efficiency and Renewable Energy, Geothermal Technologies Program,
of the U.S. Department of Energy under the U.S. Department of Energy
[DE-FC36-08G018201, DE-AC02-05CH11231]; Calpine Corporation
FX This work was conducted with funding by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Geothermal Technologies Program,
of the U.S. Department of Energy under the U.S. Department of Energy
Contract No. DE-FC36-08G018201 and No. DE-AC02-05CH11231, and by Calpine
Corporation.
NR 40
TC 2
Z9 2
U1 8
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD SEP
PY 2016
VL 63
SI SI
BP 97
EP 119
DI 10.1016/j.geothermics.2015.08.003
PG 23
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA DR0XT
UT WOS:000379630900009
ER
PT J
AU Rutqvist, J
Jeanne, P
Dobson, PF
Garcia, J
Hartline, C
Hutchings, L
Singh, A
Vasco, DW
Walters, M
AF Rutqvist, Jonny
Jeanne, Pierre
Dobson, Patrick F.
Garcia, Julio
Hartline, Craig
Hutchings, Lawrence
Singh, Ankit
Vasco, Donald W.
Walters, Mark
TI The Northwest Geysers EGS Demonstration Project, California - Part 2:
Modeling and interpretation
SO GEOTHERMICS
LA English
DT Article
DE The Geysers; EGS; Stimulation; Coupled THM Modeling; Seismicity; Seismic
tomography; Ground surface deformations
ID ENHANCED GEOTHERMAL SYSTEM; INDUCED EARTHQUAKES; FLUID-FLOW; RESERVOIR;
FIELD; ROCK; PERMEABILITY
AB In this paper, we summarize the results of coupled thermal, hydraulic, and mechanical (THM) modeling in support of the Northwest Geysers EGS Demonstration Project, which aims at enhancing production from a known High Temperature Reservoir (HTR) (280-400 degrees C) located under the conventional (240 degrees C) geothermal steam reservoir. The THM modeling was conducted to investigate geomechanical effects of cold-water injection during the stimulation of the EGS, first to predict the extent of the stimulation zone for a given injection schedule, and then to conduct interpretive analyses of the actual stimulation. By using a calibrated THM model based on historic injection and microseismic data at a nearby well, we could reasonably predict the extent of the stimulation zone around the injection well, at least for the first few months of injection. However, observed microseismic evolution and pressure responses over the one-year stimulation-injection revealed more heterogeneous behavior as a result of more complex geology, including a network of shear zones. Therefore, for an interpretive analysis of the one-year stimulation campaign, we included two sets of vertical shear zones within the model; a set of more permeable NW striking shear zones and a set of less permeable NE-striking shear zones. Our modeling indicates that the microseismic events in this system are related to shear reactivation of pre-existing fractures, triggered by the combined effects of injection-induced cooling around the injection well and rapid (but small) changes in steam pressure as far as a kilometer from the injection well. Overall, the integrated monitoring and modeling of microseismicity, ground surface deformations, reservoir pressure, fluid chemical composition, and seismic tomography depict an EGS system hydraulically bounded by some of the NE-striking low permeability shear zones, with the more permeable NW-striking shear zone providing liquid flow paths for stimulation deep (several kilometers) down into the HTR. The modeling indicates that a significant mechanical degradation (damage) inferred from seismic tomography, and potential changes in fracture porosity inferred from cross-well pressure responses, are related to shear rupture in the stimulation zone driven by both pressure and cooling effects. (C) 2015 The Authors. Published by Elsevier Ltd.
C1 [Rutqvist, Jonny; Jeanne, Pierre; Dobson, Patrick F.; Hutchings, Lawrence; Singh, Ankit; Vasco, Donald W.] LBNL, Berkeley, CA 94720 USA.
[Garcia, Julio; Hartline, Craig; Walters, Mark] Calpine Corp, Middletown, CA 95461 USA.
RP Rutqvist, J (reprint author), LBNL, Berkeley, CA 94720 USA.
EM Jrutqvist@lbl.gov
RI Rutqvist, Jonny/F-4957-2015; Dobson, Patrick/D-8771-2015; Vasco,
Donald/G-3696-2015
OI Rutqvist, Jonny/0000-0002-7949-9785; Dobson,
Patrick/0000-0001-5031-8592; Vasco, Donald/0000-0003-1210-8628
FU Energy Efficiency and Renewable Energy, Geothermal Technologies Program,
of the U.S. Department of Energy under the U.S. Department of Energy
[DE-AC02-05CH11231, DE-FC36-08GO18201]; Calpine Corporation
FX This work was conducted with funding by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Geothermal Technologies Program,
of the U.S. Department of Energy under the U.S. Department of Energy
Contract No. DE-AC02-05CH11231 and No. DE-FC36-08GO18201, and by Calpine
Corporation.
NR 44
TC 2
Z9 2
U1 14
U2 21
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD SEP
PY 2016
VL 63
SI SI
BP 120
EP 138
DI 10.1016/j.geothermics.2015.08.002
PG 19
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA DR0XT
UT WOS:000379630900010
ER
PT J
AU Benato, S
Hickman, S
Davatzes, NC
Taron, J
Spielman, P
Elsworth, D
Majer, EL
Boyle, K
AF Benato, Stefano
Hickman, Stephen
Davatzes, Nicholas C.
Taron, Joshua
Spielman, Paul
Elsworth, Derek
Majer, Ernest L.
Boyle, Katie
TI Conceptual model and numerical analysis of the Desert Peak EGS project:
Reservoir response to the shallow medium flow-rate hydraulic stimulation
phase
SO GEOTHERMICS
LA English
DT Article
DE Desert Peak; Enhanced geothermal systems; Reservoir stimulation
modeling; Induced seismicity
ID ENHANCED GEOTHERMAL SYSTEM; CALIFORNIA; GEYSERS; MICROSEISMICITY;
PERMEABILITY; SEISMICITY; INJECTIONS; ROCKS
AB A series of stimulation treatments were performed as part of the Engineered Geothermal System (EGS) experiment in the shallow open-hole section of Desert Peak well 27-15 (September 2010-November 2012). These injections at variable wellhead pressures, both below and above the magnitude of the least horizontal principal stress (S-hmin), produced injectivity gains consistent with hydraulically induced mechanical shear and tensile failure in the surrounding rock. A conceptual framework for the overall Desert Peak EGS experiment is developed and tested based on a synthesis of available structural and geological data. These data include down-hole fracture attributes, in situ stress conditions, pressure interference tests, geochemical tracer studies, and observed induced seismicity. Induced seismicity plays a key role in identifying the geometry of large-scale geological structures that could potentially serve as preferential flow paths during some of the stimulation phases. The numerical code FLAC3D is implemented to simulate the reservoir response to hydraulic stimulation and to investigate in situ conditions conducive to both tensile and shear failure. Results from the numerical analysis show that conditions for shear failure could have occurred along fractures associated with a large northeast-trending normal fault structure located similar to 400 m below the injection interval which coincides with the locations of most of the observed micro-seismicity. This structure may also provide a hydrologic connection between EGS well 27-15 and injection/production wells further to the south-southwest. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Benato, Stefano] Desert Res Inst, Div Hydrol Sci, Reno, NV 89512 USA.
[Hickman, Stephen; Taron, Joshua] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA.
[Davatzes, Nicholas C.] Temple Univ, Philadelphia, PA 19122 USA.
[Spielman, Paul] Ormat Nevada Inc, Reno, NV 89511 USA.
[Elsworth, Derek] Penn State Univ, University Pk, PA 16802 USA.
[Boyle, Katie] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Benato, S (reprint author), Desert Res Inst, Div Hydrol Sci, Reno, NV 89512 USA.
EM stefano.benato@gmail.com
FU Desert Research Institute through a DHS fund; Great Basin Center for
Geothermal Energy under a Geothermal Technology Program (GTP) Faculty
Seed Grant; Ormat Technologies, Inc.; Itasca Education Partnership
program
FX This work was supported by the Desert Research Institute through a DHS
fund, by the Great Basin Center for Geothermal Energy under a Geothermal
Technology Program (GTP) Faculty Seed Grant, by Ormat Technologies,
Inc., and by the Itasca Education Partnership program. The first author
wishes to acknowledge Prof. Jim Faulds, Prof. Greg Pohll and Dr. Jonny
Rutqvist for their comments/feedback while reviewing the document.
NR 54
TC 0
Z9 0
U1 16
U2 21
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD SEP
PY 2016
VL 63
SI SI
BP 139
EP 156
DI 10.1016/j.geothermics.2015.06.008
PG 18
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA DR0XT
UT WOS:000379630900011
ER
PT J
AU Yoo, J
Estrada-Perez, CE
Hassan, YA
AF Yoo, Junsoo
Estrada-Perez, Carlos E.
Hassan, Yassin A.
TI Experimental study on bubble dynamics and wall heat transfer arising
from a single nucleation site at subcooled flow boiling conditions -
Part 2: Data analysis on sliding bubble characteristics and associated
wall heat transfer
SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW
LA English
DT Article
DE Subcooled flow boiling; Single nucleation site; Bubble sliding; Bubble
coalescence; Sliding bubble velocity; Bubble size distribution; Boiling
heat transfer
ID DEPARTURE FREQUENCY; VERTICAL UPFLOW; NARROW CHANNEL; LOW-PRESSURES;
SYSTEM; FLUX; VISUALIZATION; DIAMETER; VELOCITY; BEHAVIOR
AB This second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubble characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles.
The results showed that sliding bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., u(r) < 0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size.
Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. In particular, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Yoo, Junsoo] Idaho Natl Lab, 2525 North Fremont Ave,POB 3860, Idaho Falls, ID 83415 USA.
[Estrada-Perez, Carlos E.; Hassan, Yassin A.] Texas A&M Univ, Dept Mech Engn, 100 MEOB, College Stn, TX 77843 USA.
[Hassan, Yassin A.] Texas A&M Univ, Dept Nucl Engn, 253 Bizzell West, College Stn, TX 77843 USA.
RP Yoo, J (reprint author), Idaho Natl Lab, 2525 North Fremont Ave,POB 3860, Idaho Falls, ID 83415 USA.
EM kaks2000@gmail.com
FU CASL (Consortium for Advanced Simulation of Light Water Reactors), an
Energy Innovation Hub under U.S. Department of Energy
[DE-AC05-00OR22725]
FX This research was supported by CASL (Consortium for Advanced Simulation
of Light Water Reactors), an Energy Innovation Hub under U.S. Department
of Energy Contract No. DE-AC05-00OR22725. The support is gratefully
acknowledged.
NR 43
TC 0
Z9 0
U1 13
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0301-9322
EI 1879-3533
J9 INT J MULTIPHAS FLOW
JI Int. J. Multiph. Flow
PD SEP
PY 2016
VL 84
BP 292
EP 314
DI 10.1016/j.ijmultiphaseflow.2016.04.019
PG 23
WC Mechanics
SC Mechanics
GA DQ9XM
UT WOS:000379562600024
ER
PT J
AU Mamontov, E
AF Mamontov, Eugene
TI A novel approach to neutron scattering instrumentation for probing
multiscale dynamics in soft and biological matter
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
DE neutron scattering; dynamics; bio/soft matter
ID WATER
AB We present a concept and ray-tracing simulation of a mechanical device that will enable inelastic neutron scattering measurements where the data at energy transfers from a few mu eV to several hundred meV can be collected in a single, gapless spectrum. Besides covering 5 orders of magnitude on the energy (time) scale, the device provides data over 2 orders of magnitude on the scattering momentum (length) scale in a single measurement. Such capabilities are geared primarily toward soft and biological matter, where the broad dynamical features of relaxation origin largely overlap with vibration features, thus necessitating gapless spectral coverage over several orders of magnitude in time and space. Furthermore, neutron scattering experiments with such a device are performed with a fixed neutron final energy, which enables measurements, with neutron energy loss in the sample, at arbitrarily low temperatures over the same broad spectral range. This capability is also invaluable in biological and soft matter research, as the variable temperature dependence of different relaxation components allows their separation in the scattering spectra as a function of temperature.
C1 [Mamontov, Eugene] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
RP Mamontov, E (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
EM mamontove@ornl.gov
RI Mamontov, Eugene/Q-1003-2015
OI Mamontov, Eugene/0000-0002-5684-2675
FU Laboratory Directed Research and Development Program [32112563];
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. DOE; U.S. DOE [DE-AC05-00OR22725]
FX This research was conducted with support from the Laboratory Directed
Research and Development Program (project 32112563) and the Scientific
User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. Oak
Ridge National Laboratory is managed by UTBattelle, LLC, for the U.S.
DOE under Contract No. DE-AC05-00OR22725.
NR 18
TC 0
Z9 0
U1 1
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD SEP 1
PY 2016
VL 28
IS 34
AR 345201
DI 10.1088/0953-8984/28/34/345201
PG 5
WC Physics, Condensed Matter
SC Physics
GA DQ9UU
UT WOS:000379555600010
PM 27355223
ER
PT J
AU Caldwell, A
Adli, E
Amorim, L
Apsimon, R
Argyropoulos, T
Assmann, R
Bachmann, AM
Batsch, E
Bauche, J
Olsen, VKB
Bernardini, M
Bingham, R
Biskup, B
Bohl, T
Bracco, C
Burrows, PN
Burt, G
Buttenschon, B
Butterworth, A
Cascella, M
Chattopadhyay, S
Chevallay, E
Cipiccia, S
Damerau, H
Deacon, L
Dirksen, R
Doebert, S
Dorda, U
Eisen, E
Farmer, J
Fartoukh, S
Fedosseev, V
Feldbaumer, E
Fiorito, R
Fonseca, R
Friebel, F
Geschonke, G
Goddard, B
Gorn, AA
Grulke, O
Gschwendtner, E
Hansen, J
Hessler, C
Hillenbrand, S
Hofle, W
Holloway, J
Huang, C
Huther, M
Jaroszynski, D
Jensen, L
Jolly, S
Joulaei, A
Kasim, M
Keeble, F
Kersevan, R
Kumar, N
Li, Y
Liu, S
Lopes, N
Lotov, KV
Lu, W
Machacek, J
Mandry, S
Martin, I
Martorelli, R
Martyanov, M
Mazzoni, S
Meddahi, M
Merminga, L
Mete, O
Minakov, VA
Mitchell, J
Moody, J
Muller, AS
Najmudin, Z
Noakes, TCQ
Norreys, P
Osterhoff, J
Oz, E
Pardons, A
Pepitone, K
Petrenko, A
Plyushchev, G
Pozimski, J
Pukhov, A
Reimann, O
Rieger, K
Roesler, S
Ruhl, H
Rusnak, T
Salveter, E
Savard, N
Schmidt, J
von der Schmitt, H
Seryi, A
Shaposhnikova, E
Sheng, ZM
Sherwood, R
Silva, L
Simon, F
Soby, L
Sosedkin, AP
Spitsyn, RI
Tajima, T
Tarkeshian, R
Timko, H
Trines, R
Tuckmantel, T
Tuev, PV
Turner, M
Velotti, E
Verzilov, V
Vieira, J
Vincke, H
Wei, Y
Welsch, CP
Wing, M
Xia, G
Yakimenko, V
Zhang, H
Zimmermann, F
AF Caldwell, A.
Adli, E.
Amorim, L.
Apsimon, R.
Argyropoulos, T.
Assmann, R.
Bachmann, A. -M.
Batsch, E.
Bauche, J.
Olsen, V. K. Berglyd
Bernardini, M.
Bingham, R.
Biskup, B.
Bohl, T.
Bracco, C.
Burrows, P. N.
Burt, G.
Buttenschoen, B.
Butterworth, A.
Cascella, M.
Chattopadhyay, S.
Chevallay, E.
Cipiccia, S.
Damerau, H.
Deacon, L.
Dirksen, R.
Doebert, S.
Dorda, U.
Eisen, E.
Farmer, J.
Fartoukh, S.
Fedosseev, V.
Feldbaumer, E.
Fiorito, R.
Fonseca, R.
Friebel, F.
Geschonke, G.
Goddard, B.
Gorn, A. A.
Grulke, O.
Gschwendtner, E.
Hansen, J.
Hessler, C.
Hillenbrand, S.
Hofle, W.
Holloway, J.
Huang, C.
Huether, M.
Jaroszynski, D.
Jensen, L.
Jolly, S.
Joulaei, A.
Kasim, M.
Keeble, F.
Kersevan, R.
Kumar, N.
Li, Y.
Liu, S.
Lopes, N.
Lotov, K. V.
Lu, W.
Machacek, J.
Mandry, S.
Martin, I.
Martorelli, R.
Martyanov, M.
Mazzoni, S.
Meddahi, M.
Merminga, L.
Mete, O.
Minakov, V. A.
Mitchell, J.
Moody, J.
Mueller, A. -S.
Najmudin, Z.
Noakes, T. C. Q.
Norreys, P.
Osterhoff, J.
Oez, E.
Pardons, A.
Pepitone, K.
Petrenko, A.
Plyushchev, G.
Pozimski, J.
Pukhov, A.
Reimann, O.
Rieger, K.
Roesler, S.
Ruhl, H.
Rusnak, T.
Salveter, E.
Savard, N.
Schmidt, J.
von der Schmitt, H.
Seryi, A.
Shaposhnikova, E.
Sheng, Z. M.
Sherwood, R.
Silva, L.
Simon, F.
Soby, L.
Sosedkin, A. P.
Spitsyn, R. I.
Tajima, T.
Tarkeshian, R.
Timko, H.
Trines, R.
Tueckmantel, T.
Tuev, P. V.
Turner, M.
Velotti, E.
Verzilov, V.
Vieira, J.
Vincke, H.
Wei, Y.
Welsch, C. P.
Wing, M.
Xia, G.
Yakimenko, V.
Zhang, H.
Zimmermann, F.
TI Path to AWAKE: Evolution of the concept
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC)
CY 2015
CL INFN, ITALY
SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN
HO INFN
DE Plasma wakefield acceleration; Proton driver; Self-modulation
instability
ID PLASMA-WAKEFIELD ACCELERATION; WAKE-FIELD ACCELERATOR; IN-CELL CODE;
ULTRARELATIVISTIC BEAM DYNAMICS; ELECTRON-BEAM; SIMULATION; BUNCHES;
PHYSICS; PULSE; CERN
AB This paper describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability - a key to an early realization of the concept. This is then followed by the historical development of the experimental design, where the critical issues that arose and their solutions are described. We conclude with the design of the experiment as it is being realized at CERN and some words on the future outlook. A summary of the AWAKE design and construction status as presented in this conference is given in Gschwendtner et al. [1]. (C) 2016 Published by Elsevier B.V.
C1 [Noakes, T. C. Q.] STFC Daresbury Lab, ASTeC, Accelerator Sci & Technol Ctr, Warrington WA4 4AD, Cheshire, England.
[Martin, I.] Aix Marseille Univ, IUSTI, CNRS, UMR 7343, Polytech Marseille, France.
[Fiorito, R.; Gorn, A. A.; Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P.; Spitsyn, R. I.; Tuev, P. V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia.
[Argyropoulos, T.; Bauche, J.; Bernardini, M.; Biskup, B.; Bohl, T.; Bracco, C.; Butterworth, A.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Doebert, S.; Fartoukh, S.; Fedosseev, V.; Feldbaumer, E.; Friebel, F.; Geschonke, G.; Goddard, B.; Gschwendtner, E.; Hessler, C.; Hillenbrand, S.; Hofle, W.; Jensen, L.; Kersevan, R.; Mazzoni, S.; Meddahi, M.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Roesler, S.; Salveter, E.; von der Schmitt, H.; Shaposhnikova, E.; Soby, L.; Timko, H.; Turner, M.; Velotti, E.; Vincke, H.; Zhang, H.; Zimmermann, F.] CERN, Geneva, Switzerland.
[Apsimon, R.; Burt, G.; Li, Y.; Mete, O.; Mitchell, J.; Wei, Y.; Welsch, C. P.; Xia, G.; Zhang, H.] Cockcroft Inst, Warrington WA4 4AD, Cheshire, England.
[Biskup, B.] Czech Tech Univ, Zikova 1903-4, Prague 16636 6, Czech Republic.
[Assmann, R.; Dorda, U.; Eisen, E.; Osterhoff, J.; Wing, M.] DESY, Notkestr 85, D-22607 Hamburg, Germany.
[Chattopadhyay, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Farmer, J.; Martorelli, R.; Pukhov, A.] Univ Dusseldorf, Moorenstr 5, D-40225 Dusseldorf, Germany.
[Amorim, L.; Fonseca, R.; Lopes, N.; Silva, L.; Vieira, J.] Univ Lisbon, Inst Super Tecn, GoLP Inst Plasmas & Fusao Nucl, Lisbon, Portugal.
[Lopes, N.; Najmudin, Z.; Pozimski, J.] Imperial Coll London, Blackett Lab, London SW7 2BW, England.
[Burrows, P. N.; Kasim, M.; Seryi, A.; Tueckmantel, T.] John Adams Inst Accelerator Sci, Oxford, England.
[Caldwell, A.; Butterworth, A.; Joulaei, A.; Mueller, A. -S.; Pardons, A.; Petrenko, A.; Pukhov, A.; Reimann, O.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany.
[Apsimon, R.; Burt, G.; Mitchell, J.] Univ Lancaster, Lancaster LA1 4YR, England.
[Huang, C.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Ruhl, H.; Tajima, T.] Univ Munich, D-80539 Munich, Germany.
[Kumar, N.] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany.
[Caldwell, A.; Bachmann, A. -M.; Batsch, E.; Huether, M.; Joulaei, A.; Machacek, J.; Martyanov, M.; Moody, J.; Oez, E.; Reimann, O.; Rieger, K.; Rusnak, T.; Savard, N.; von der Schmitt, H.; Simon, F.] Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany.
[Buttenschoen, B.; Grulke, O.] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany.
[Chattopadhyay, S.] Northern Illinois Univ, 1425 W Lincoln Hwy, De Kalb, IL 60115 USA.
[Gorn, A. A.; Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P.; Spitsyn, R. I.; Tuev, P. V.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Tarkeshian, R.] PSI, CH-5232 Villigen, Switzerland.
[Sheng, Z. M.] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China.
[Yakimenko, V.] SLAC Natl Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
[Sheng, Z. M.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Plyushchev, G.] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland.
[Huether, M.; Rieger, K.] Tech Univ Munich, Arcisstr 21, D-80333 Munich, Germany.
[Dirksen, R.; Liu, S.; Savard, N.; Verzilov, V.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
[Fiorito, R.; Lu, W.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Cascella, M.; Deacon, L.; Jolly, S.; Keeble, F.; Mandry, S.; Sherwood, R.; Wing, M.] UCL, Gower St, London WC1E 6BT, England.
[Wei, Y.; Welsch, C. P.; Zhang, H.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Li, Y.; Mete, O.; Xia, G.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Adli, E.; Olsen, V. K. Berglyd] Univ Oslo, N-0316 Oslo, Norway.
[Burrows, P. N.; Holloway, J.; Kasim, M.; Norreys, P.; Seryi, A.] Univ Oxford, Oxford OX1 2JD, England.
[Cipiccia, S.; Jaroszynski, D.; Sheng, Z. M.] Univ Strathclyde, 16 Richmond St, Glasgow G1 1XQ, Lanark, Scotland.
[Savard, N.] Univ Victoria, 3800 Finnerty Rd, Victoria, BC, Canada.
RP Caldwell, A (reprint author), Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany.
RI Sheng, Zheng-Ming/H-5371-2012; Assmann, Ralph/L-8457-2016; Lopes,
Nelson/C-6540-2009; Fonseca, Ricardo/B-7680-2009; pukhov,
alexander/C-8082-2016; Petrenko, Alexey/R-6313-2016; Lotov,
Konstantin/H-6217-2016; Fedosseev, Valentin/A-6240-2010; Cascella,
Michele/B-6156-2013; Tuev, Petr/R-7929-2016;
OI Huang, Chengkun/0000-0002-3176-8042; Amorim, Ligia/0000-0002-1445-0032;
Lopes, Nelson/0000-0001-8355-4727; Fonseca, Ricardo/0000-0001-6342-6226;
Petrenko, Alexey/0000-0002-7772-8206; Fedosseev,
Valentin/0000-0001-8767-1445; Cascella, Michele/0000-0003-2091-2501;
Biskup, Bartolomej/0000-0003-0833-3267; Farmer, John/0000-0002-6758-2127
NR 111
TC 5
Z9 5
U1 11
U2 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2016
VL 829
BP 3
EP 16
DI 10.1016/j.nima.2015.12.050
PG 14
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DQ4AB
UT WOS:000379144100002
ER
PT J
AU Lishilin, O
Gross, M
Brinkmann, R
Engel, J
Gruner, F
Kos, G
Krasilnikov, M
de la Ossa, AM
Mehrling, T
Osterhoff, J
Pathak, G
Philipp, S
Renier, Y
Richter, D
Schroeder, C
Schutze, R
Stephan, E
AF Lishilin, O.
Gross, M.
Brinkmann, R.
Engel, J.
Gruener, F.
Koss, G.
Krasilnikov, M.
de la Ossa, A. Martinez
Mehrling, T.
Osterhoff, J.
Pathak, G.
Philipp, S.
Renier, Y.
Richter, D.
Schroeder, C.
Schuetze, R.
Stephan, E.
TI First results of the plasma wakefield acceleration experiment at PITZ
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC)
CY 2015
CL INFN, ITALY
SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN
HO INFN
DE PWFA; Self-modulation instability; Heat pipe oven; Electron beam
scattering
AB The self-modulation instability of long particle beams was proposed as a new mechanism to produce driver beams for proton driven plasma wakefield acceleration (PWFA). The PWFA experiment at the Photo Injector Test facility at DESY, Zeuthen site (PITZ) was launched to experimentally demonstrate and study the self modulation of long electron beams in plasma. Key aspects for the experiment are the very flexible photocathode laser system, a plasma cell and well-developed beam diagnostics. In this contribution we report about the plasma cell design, preparatory experiments and the results of the first PWFA experiment at PITZ. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Lishilin, O.; Gross, M.; Engel, J.; Koss, G.; Krasilnikov, M.; Pathak, G.; Philipp, S.; Renier, Y.; Schuetze, R.; Stephan, E.] DESY, Deutsch Elektronen Synchrotron, Zeuthen, Germany.
[Brinkmann, R.; de la Ossa, A. Martinez; Mehrling, T.; Osterhoff, J.] DESY, Deutsch Elektronen Synchrotron, Hamburg, Germany.
[Gruener, F.] Univ Hamburg, UHH, Hamburg, Germany.
[Gruener, F.] Ctr Free Electron Laser Sci, CFEL, Hamburg, Germany.
[Richter, D.] Helmholtz Zentrum Berlin, Berlin, Germany.
[Schroeder, C.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Lishilin, O (reprint author), DESY, Deutsch Elektronen Synchrotron, Zeuthen, Germany.
EM osip.lishilin@desy.de
RI Gruner, Florian/M-1212-2016;
OI Gruner, Florian/0000-0001-8382-9225; Schroeder,
Carl/0000-0002-9610-0166; Mehrling, Timon J./0000-0002-1280-4642
NR 21
TC 0
Z9 0
U1 6
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2016
VL 829
BP 37
EP 42
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DQ4AB
UT WOS:000379144100007
ER
PT J
AU Schroeder, CB
Benedetti, C
Esarey, E
Leemans, WP
AF Schroeder, C. B.
Benedetti, C.
Esarey, E.
Leemans, W. P.
TI Laser-plasma-based linear collider using hollow plasma channels
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC)
CY 2015
CL INFN, ITALY
SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN
HO INFN
DE Laser-plasma accelerator; Linear collider
ID ELECTRON-ACCELERATORS
AB A linear electron-positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.] Lawrence Berkeley Natl Lab, BELLA Ctr, Berkeley, CA 94720 USA.
RP Schroeder, CB (reprint author), Lawrence Berkeley Natl Lab, BELLA Ctr, Berkeley, CA 94720 USA.
EM CBSchroeder@lbl.gov
OI Schroeder, Carl/0000-0002-9610-0166
NR 21
TC 0
Z9 0
U1 9
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2016
VL 829
BP 113
EP 116
DI 10.1016/j.nima.2016.03.001
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DQ4AB
UT WOS:000379144100022
ER
PT J
AU Zholents, A
Gai, W
Doran, S
Lindberg, R
Power, JG
Strelnikov, N
Sun, Y
Trakhtenberg, E
Vasserman, I
Jing, C
Kanareykin, A
Li, Y
Gao, Q
Shchegolkov, DY
Simakov, EI
AF Zholents, A.
Gai, W.
Doran, S.
Lindberg, R.
Power, J. G.
Strelnikov, N.
Sun, Y.
Trakhtenberg, E.
Vasserman, I.
Jing, C.
Kanareykin, A.
Li, Y.
Gao, Q.
Shchegolkov, D. Y.
Simakov, E. I.
TI A preliminary design of the collinear dielectric wakefield accelerator
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC)
CY 2015
CL INFN, ITALY
SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN
HO INFN
DE Wakefield; Dielectric; Beam breakup; BNS damping; Free-electron laser;
Quadrupole wiggler
AB A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from similar to 0.5 m long accelerator modules containing a vacuum chamber with dielectric lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.] ANL, Argonne, IL 60439 USA.
[Jing, C.; Kanareykin, A.; Li, Y.] Euclid Techlabs LLC, Solon, OH 44139 USA.
[Gao, Q.] Tsinghua Univ, Beijing, Peoples R China.
[Shchegolkov, D. Y.; Simakov, E. I.] LANL, Los Alamos, NM 87545 USA.
RP Zholents, A (reprint author), ANL, Argonne, IL 60439 USA.
OI Shchegolkov, Dmitry/0000-0002-0721-3397; Simakov,
Evgenya/0000-0002-7483-1152
NR 13
TC 2
Z9 2
U1 3
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2016
VL 829
BP 190
EP 193
DI 10.1016/j.nima.2016.02.003
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DQ4AB
UT WOS:000379144100040
ER
PT J
AU Teryaev, VE
Kazakov, SY
Hirshfield, JL
AF Teryaev, Vladimir E.
Kazakov, Sergey Yu.
Hirshfield, Jay L.
TI Multi-beam linear accelerator EVT
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC)
CY 2015
CL INFN, ITALY
SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN
HO INFN
DE Linear accelerator; Two-beam accelerator; Electron gun; Drive beam;
Accelerated beam; RF buncher
AB A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications. Published by Elsevier B.V.
C1 [Teryaev, Vladimir E.; Hirshfield, Jay L.] Omega P Inc, New Haven, CT 06510 USA.
[Kazakov, Sergey Yu.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Hirshfield, Jay L.] Yale Univ, New Haven, CT 06511 USA.
RP Teryaev, VE (reprint author), Omega P Inc, New Haven, CT 06510 USA.
EM viadimir_teryaev@mail.ru
NR 4
TC 0
Z9 0
U1 4
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2016
VL 829
BP 221
EP 223
DI 10.1016/j.nima.2016.03.066
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DQ4AB
UT WOS:000379144100045
ER
PT J
AU Lotov, KV
Vay, JL
AF Lotov, K. V.
Vay, J. -L.
TI Summary of working group 6: Theory and simulations
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC)
CY 2015
CL INFN, ITALY
SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN
HO INFN
DE Theory and numerical simulations; Plasma based accelerators; Laser
wakefield accelerator
AB The paper briefly summarizes the contributions presented during the working group 6 sessions on theory and simulations. (C) 2016 Published by Elsevier B.V.
C1 [Lotov, K. V.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Lotov, K. V.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Vay, J. -L.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA USA.
RP Lotov, KV (reprint author), Novosibirsk State Univ, Novosibirsk 630090, Russia.; Lotov, KV (reprint author), RAS, SB, Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
EM K.V.Lotov@inp.nsk.su
RI Lotov, Konstantin/H-6217-2016
NR 18
TC 0
Z9 0
U1 2
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2016
VL 829
BP 348
EP 349
DI 10.1016/j.nima.2015.12.014
PG 2
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DQ4AB
UT WOS:000379144100071
ER
PT J
AU Vay, JL
Lehe, R
Vincenti, H
Godfrey, BB
Haber, I
Lee, P
AF Vay, J. -L.
Lehe, R.
Vincenti, H.
Godfrey, B. B.
Haber, I.
Lee, P.
TI Recent advances in high-performance modeling of plasma-based
acceleration using the full PIC method
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC)
CY 2015
CL INFN, ITALY
SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN
HO INFN
DE Particle-in-cell; Particle accelerators; Plasma based accelerators;
Laser wakefield accelerator; Plasma simulations; Relativistic plasmas
ID NUMERICAL STABILITY; PARTICLE CODES; SIMULATIONS; ALGORITHM;
INSTABILITIES
AB Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers. (C) 2016 Published by Elsevier B.V.
C1 [Vay, J. -L.; Lehe, R.; Godfrey, B. B.] LBNL, Berkeley, CA 94720 USA.
[Vincenti, H.] CEA, Saclay, France.
[Godfrey, B. B.; Haber, I.] Univ Maryland, College Pk, MD 20742 USA.
[Lee, P.] Univ Paris Saclay, CNRS, LPGP, F-91405 Orsay, France.
RP Vay, JL (reprint author), LBNL, Berkeley, CA 94720 USA.
EM jlvay@lbl.gov
OI Godfrey, Brendan/0000-0003-2311-7060
NR 36
TC 1
Z9 1
U1 7
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2016
VL 829
BP 353
EP 357
DI 10.1016/j.nima.2015.12.033
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DQ4AB
UT WOS:000379144100073
ER
PT J
AU Lee, P
Audet, TL
Lehe, R
Vay, JL
Maynard, G
Cros, B
AF Lee, P.
Audet, T. L.
Lehe, R.
Vay, J. -L.
Maynard, G.
Cros, B.
TI Modeling laser-driven electron acceleration using WARP with Fourier
decomposition
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC)
CY 2015
CL INFN, ITALY
SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN
HO INFN
DE LPA; PIC; WARP; Ionization-induced injection
AB WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Lee, P.; Audet, T. L.; Maynard, G.; Cros, B.] Univ Paris Saclay, Univ Paris 11, CNRS, LPGP, F-91405 Orsay, France.
[Lehe, R.; Vay, J. -L.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Lee, P (reprint author), Univ Paris Saclay, Univ Paris 11, CNRS, LPGP, F-91405 Orsay, France.
EM patrick.lee@u-psud.fr
OI Lee, Patrick/0000-0003-4931-1021
NR 7
TC 1
Z9 1
U1 5
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2016
VL 829
BP 358
EP 362
DI 10.1016/j.nima.2015.12.036
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DQ4AB
UT WOS:000379144100074
ER
PT J
AU Pogorelsky, IV
Babzien, M
Ben-Zvi, I
Skaritka, J
Polyanskiy, MN
AF Pogorelsky, Igor V.
Babzien, Markus
Ben-Zvi, Ilan
Skaritka, John
Polyanskiy, Mikhail N.
TI BESTIA - The next generation ultra-fast CO2 laser for advanced
accelerator research
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article; Proceedings Paper
CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC)
CY 2015
CL INFN, ITALY
SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN
HO INFN
DE CO2 laser; Pulse compression; Strong field phenomena; Ion acceleration;
Laser wake field
ID PULSE AMPLIFICATION
AB Over the last two decades, BNL's ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. Our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multiterawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.] Brookhaven Natl Lab, Accelerator Tests Facil, Upton, NY 11973 USA.
RP Pogorelsky, IV (reprint author), Brookhaven Natl Lab, Accelerator Tests Facil, Upton, NY 11973 USA.
EM igar@bni.gov
NR 7
TC 3
Z9 3
U1 5
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD SEP 1
PY 2016
VL 829
BP 432
EP 437
DI 10.1016/j.nima.2015.11.126
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DQ4AB
UT WOS:000379144100090
ER
PT J
AU Rainwater, BH
Velisavljevic, N
Park, C
Sun, HB
Waller, GH
Tsoi, GM
Vohra, YK
Liu, ML
AF Rainwater, Ben H.
Velisavljevic, Nenad
Park, Changyong
Sun, Haibin
Waller, Gordon H.
Tsoi, Georgiy M.
Vohra, Yogesh K.
Liu, Meilin
TI High pressure structural study of samarium doped CeO2 oxygen vacancy
conductor - Insight into the dopant concentration relationship to the
strain effect in thin film ionic conductors
SO SOLID STATE IONICS
LA English
DT Article
DE Solid state ionics; Nanoionics; Solid oxide fuel cells; Strain effect;
Doped-ceria; Isothermal bulk modulus
ID X-RAY-DIFFRACTION; SOLID ELECTROLYTES; ACTIVATION-ENERGY; TRANSPORT;
SUPERLATTICES; TEMPERATURE; SIMULATION; MODULUS; OXIDES; MODEL
AB The bulk modulus of nanocrystalline, fluorite-structured samarium doped ceria, Sm0.2Ce0.8O1.9, has been investigated using synchrotron-based high-pressure X-ray diffraction technique. Experiments were carried out under both quasi-hydrostatic condition with silicon oil pressure transmitting medium (PTM) and nonhydrostatic conditions without PTM. The high pressure structural results indicate that the highly defected ionic conductor is stable up to 20 GPa and has a lower bulk modulus than what has been reported for undoped-CeO2. The isothermal bulk modulus of Sm0.2Ce0.8O1.9 is similar to 150-190 GPa compared to similar to 210-220 GPa for CeO2. The collected data experimentally verifies the effect of Sm3+ dopant and oxygen vacancy defect formation on bulk modulus in doped CeO2. The effect of modulus on misfit dislocation formation and dopant ion segregation is discussed in relation to a fundamental understanding of the strain effect in this important family of fast ionic conductors, with potential application as oxygen vacancy conducting solid state electrolytes. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Rainwater, Ben H.; Sun, Haibin; Waller, Gordon H.; Liu, Meilin] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr for Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA.
[Velisavljevic, Nenad] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Park, Changyong] Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA.
[Tsoi, Georgiy M.; Vohra, Yogesh K.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA.
RP Rainwater, BH (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Ctr for Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA.
RI Liu, Meilin/E-5782-2010; Park, Changyong/A-8544-2008
OI Liu, Meilin/0000-0002-6188-2372; Park, Changyong/0000-0002-3363-5788
FU National Science Foundation [DGE-1148903, DMR-1410320]; Department of
Energy ARPA-E REBELS Program [DE-AR0000502]; Los Alamos National
Laboratory (LANL) [DE-AC52-06NA25396]; DOE-NNSA [DE-NA0001974,
DE-NA0002014]; DOE-BES [DE-FG02-99ER45775]; NSF; US DOE
[DE-AC02-06CH11357]
FX This work was supported by the National Science Foundation under Grant
Nos. DGE-1148903 and DMR-1410320, Department of Energy ARPA-E REBELS
Program under award number DE-AR0000502, and Los Alamos National
Laboratory (LANL) operated by LANS, LLC for the DOE-NNSA under Contract
No. DE-AC52-06NA25396. Portions of this work were performed at HPCAT
(Sector 16), Advanced Photon Source (APS), Argonne National Laboratory.
HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974
and DOE-BES under Award No. DE-FG02-99ER45775, with partial
instrumentation funding by NSF. Use of the Advanced Photon Source, an
Office of Science User Facility operated for the US Department of Energy
(DOE) Office of Science by Argonne National Laboratory, was supported by
the US DOE under Contract No. DE-AC02-06CH11357. YKV would like to
acknowledge support from the DOE-NNSA under Award No. DE-NA0002014.
NR 36
TC 0
Z9 0
U1 17
U2 40
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-2738
EI 1872-7689
J9 SOLID STATE IONICS
JI Solid State Ion.
PD SEP
PY 2016
VL 292
BP 59
EP 65
DI 10.1016/j.ssi.2016.05.010
PG 7
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA DR0YP
UT WOS:000379633100010
ER
PT J
AU Mao, J
Ma, MZ
Liu, PP
Hu, JH
Shao, GS
Battaglia, V
Dai, KH
Liu, G
AF Mao, Jing
Ma, Mengze
Liu, Panpan
Hu, Junhua
Shao, Guosheng
Battaglia, Vince
Dai, Kehua
Liu, Gao
TI The effect of cobalt doping on the morphology and electrochemical
performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material
SO SOLID STATE IONICS
LA English
DT Article
DE High-voltage spinel; Lithium nickel manganese oxide; Lithium chemical
diffusion coefficient; Cycling performance; Rate performance
ID LITHIUM-ION BATTERIES; 55 DEGREES-C; RATE CAPABILITY;
LICR0.2NI0.4MN1.4O4 SPINEL; PARTICLE-SIZE; LIMN1.5NI0.5O4; TEMPERATURE;
FE; ELECTRODE; PROGRESS
AB To reveal the effects of Co-doping on the electrochemical performance of micro-sized LiNi0.5Mn1.5O4 (LNMO), undoped LNMO and Co-doped LiCo0.1Ni0.45Mn1.45O4 (LCoNMO) are synthesized via a PVP-combustion method and calcined at 1000 degrees C for 6 h. SEM and XRD analyses suggest that Co-doping decreases the particle size and the Li2Ni1-zO2 impurity at the calcination temperature of 1000 degrees C. LCoNMO has much better rate capability while its specific capacity at C/5 is 10% lower than that of LNMO. At 15 C rate, their specific capacities are closed, and the LCoNMO delivers 86.2% capacity relative to C/5, and this value for LNMO is only 77.0%. The D-Li + values determined by potential intermittent titration technique (PITT) test of LCoNMO are 1-2 times higher than that of LNMO in most SOC region. The LCoNMO shows very excellent cycling performance, which is the best value compared with literatures. After 1000 cycles, the LCoNMO still delivers 94.1% capacity. Moreover, its coulombic efficiency and energy efficiency keep at 99.84% and over 973% during 1 C. cycling, respectively. (C) 2015 Published by Elsevier B.V.
C1 [Mao, Jing; Ma, Mengze; Liu, Panpan; Hu, Junhua; Shao, Guosheng] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China.
[Mao, Jing; Ma, Mengze; Liu, Panpan; Hu, Junhua; Shao, Guosheng] Zhengzhou Univ, Int Joint Res Lab Low Carbon Environm Mat Henan P, Zhengzhou 450002, Peoples R China.
[Mao, Jing; Battaglia, Vince; Dai, Kehua; Liu, Gao] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resource Div, Energy Technol Area, Berkeley, CA 94720 USA.
[Dai, Kehua] Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China.
RP Liu, G (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resource Div, Energy Technol Area, Berkeley, CA 94720 USA.; Dai, KH (reprint author), Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China.
EM daikh@smm.neu.edu.cn; gliu@lbl.gov
RI Shao, Guosheng/C-2143-2016
OI Shao, Guosheng/0000-0003-1498-7929
FU National Natural Science Foundation of China [51204038, U1504521];
Fundamental Research Funds for the Central. Universities of China
[N110802002, L1502004]; Energy Efficiency, Vehicle Technologies Office
of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the National Natural Science Foundation of
China (51204038, U1504521) and the Fundamental Research Funds for the
Central. Universities of China (N110802002, L1502004). This work was
also supported by the Assistant Secretary for Energy Efficiency, Vehicle
Technologies Office of the U.S. Department of Energy, under the Advanced
Battery Materials Research (BMR) Program and Applied Battery Research
(ABR) Program under contract No. DE-AC02-05CH11231.
NR 45
TC 1
Z9 1
U1 28
U2 55
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-2738
EI 1872-7689
J9 SOLID STATE IONICS
JI Solid State Ion.
PD SEP
PY 2016
VL 292
BP 70
EP 74
DI 10.1016/j.ssi.2016.05.008
PG 5
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA DR0YP
UT WOS:000379633100012
ER
PT J
AU Sati, M
Lindstrom, P
Rossignac, J
AF Sati, Mukul
Lindstrom, Peter
Rossignac, Jarek
TI eBits: Compact stream of mesh refinements for remote visualization
SO COMPUTER-AIDED DESIGN
LA English
DT Article; Proceedings Paper
CT Symposium on Solid and Physical Modelling (SPM)
CY JUN 20-24, 2016
CL Berlin, GERMANY
DE Triangle mesh compression; Remote visualization; Level of detail;
Selective transmission; Local refinement; Triangle collapse
ID TRIANGLE MESHES; POLYGONAL MODELS; COMPRESSION; EDGEBREAKER
AB We focus on applications where a remote client needs to visualize or process a complex, manifold triangle mesh, M, but only in a relatively small, user controlled, Region of Interest (RoI) at a time. The client first downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse. On each client initiated RoI modification request, the server pushes to the client a selected subset of these VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the RoI is always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using less than 2.5 bits per new full resolution RoI triangle when the RoI has more than 2000 vertices to transmit the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the RoI by small increments). The effectiveness of eBits results from several novel ideas and novel variations of previous solutions. We represent the VERs using persistent labels so that they can be applied in different orders within a given LoD. The server maintains a shadow copy of the client's mesh. To avoid sending IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact encoding of its death tag the LoD at which it will be expanded if it lies in the RoI or transmit vertex masks for the RoI and its neighboring vertices. We also propose a three-step simplification that reduces the overall transmission cost by increasing both the simplification effectiveness and the regularity of the valences in the resulting meshes. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Sati, Mukul; Rossignac, Jarek] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA.
[Lindstrom, Peter] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Sati, M (reprint author), Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA.
EM mukul@gatech.edu; pl@llnl.gov; jarek@cc.gatech.edu
OI Lindstrom, Peter/0000-0003-3817-4199
NR 31
TC 0
Z9 0
U1 3
U2 4
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0010-4485
EI 1879-2685
J9 COMPUT AIDED DESIGN
JI Comput.-Aided Des.
PD SEP
PY 2016
VL 78
SI SI
BP 168
EP 178
DI 10.1016/j.cad.2016.05.016
PG 11
WC Computer Science, Software Engineering
SC Computer Science
GA DQ3JN
UT WOS:000379098700017
ER
PT J
AU Chatterjee, K
Venkataraman, A
Garbaciak, T
Rotella, J
Sangid, MD
Beaudoin, AJ
Kenesei, P
Park, JS
Pilchak, AL
AF Chatterjee, K.
Venkataraman, A.
Garbaciak, T.
Rotella, J.
Sangid, M. D.
Beaudoin, A. J.
Kenesei, P.
Park, J-S.
Pilchak, A. L.
TI Study of grain-level deformation and residual stresses in Ti-7Al under
combined bending and tension using high energy diffraction microscopy
(HEDM)
SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
LA English
DT Article
DE High energy diffraction microscopy; Ti-7Al alloy; Stress gradient;
Stress triaxiality; Slip tendency
ID X-RAY-DIFFRACTION; TI-6AL-4V TITANIUM-ALLOY; TI-AL ALLOYS;
ELASTIC-CONSTANTS; CRYSTAL PLASTICITY; INDIVIDUAL GRAINS; FRACTURE
LOCUS; STRAIN TENSOR; SINGLE-GRAIN; CREEP
AB In-situ high energy diffraction microscopy (HEDM) experiments are carried out to analyze the state of combined bending and tension in a Ti-7Al alloy under room temperature creep. Grain-level elastic strain tensors are evaluated from HEDM data. Atomistic calculations are used to predict elastic constants of Ti-7Al, to be used in determination of stress from strain. The stress gradient and residual stresses are successfully determined, which allows the demarcation between macroqmicro-level residual stresses. A cluster of three neighboring grains are identified that highlight the variation of mean and effective stress between grains. Crystallographic orientations and slip characteristics are analyzed for the selected grains. It is inferred that the interfaces between loaded grains with markedly different stress triaxiality and slip tendency are potential spots for material damage. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Chatterjee, K.; Garbaciak, T.; Beaudoin, A. J.] Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA.
[Venkataraman, A.; Rotella, J.; Sangid, M. D.] Purdue Univ, Sch Aeronaut & Astronaut Engn, 701 W Stadium Ave, W Lafayette, IN 47907 USA.
[Kenesei, P.; Park, J-S.] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Lemont, IL 60439 USA.
[Pilchak, A. L.] US Air Force, Res Lab, Mat & Mfg Directorate AFRL RXCM, Wright Patterson AFB, OH 45433 USA.
RP Beaudoin, AJ (reprint author), Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA.
EM abeaudoi@illinois.edu
FU Air Force Office of Scientific Research [FA9550-14-1-0369,
FA9550-14-1-0284]; US Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-AC02-06CH11357]
FX A. Beaudoin and K. Chatterjee are supported by the Air Force Office of
Scientific Research under Contract No. FA9550-14-1-0369. M. D. Sangid,
A. Venkataraman, and J. Rotella acknowledge support from the Air Force
Office of Scientific Research under Contract No. FA9550-14-1-0284. The
use of Advance Photon Source is granted by the US Department of Energy,
Office of Science, Office of Basic Energy Sciences under Contract No.
DE-AC02-06CH11357. We thank Drs. Paul A. Shade, Todd J. Turner, Michael
Mills, and David Rugg for interesting conversations.
NR 80
TC 1
Z9 1
U1 16
U2 23
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0020-7683
EI 1879-2146
J9 INT J SOLIDS STRUCT
JI Int. J. Solids Struct.
PD SEP
PY 2016
VL 94-95
BP 35
EP 49
DI 10.1016/j.ijsolstr.2016.05.010
PG 15
WC Mechanics
SC Mechanics
GA DQ5VE
UT WOS:000379272500003
ER
PT J
AU Muransky, O
Hamelin, CJ
Hosseinzadeh, F
Prime, MB
AF Muransky, O.
Hamelin, C. J.
Hosseinzadeh, F.
Prime, M. B.
TI Mitigating cutting-induced plasticity in the contour method. Part 2:
Numerical analysis
SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
LA English
DT Article
DE Residual stress; Contour method; Finite element modelling
ID RESIDUAL-STRESS MEASUREMENT; FIELDS
AB Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile from an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. This cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Muransky, O.; Hamelin, C. J.] ANSTO, Inst Mat Engn, Lucas Heights, NSW, Australia.
[Hosseinzadeh, F.] Open Univ, Mat Engn, Milton Keynes MK7 7AA, Bucks, England.
[Prime, M. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Muransky, O (reprint author), ANSTO, Inst Mat Engn, Lucas Heights, NSW, Australia.
EM ondrej.muransky@ansto.gov.au
OI Prime, Michael/0000-0002-4098-5620
FU NeT programme
FX Residual stress measurements and weld simulations produced under the
auspices of the NeT programme via Task Group 4 have significantly
advanced best-practice guidelines for treatment of WRS and post-weld
plastic strain, adding considerable value to the present work. The
authors are also grateful for insightful discussions regarding
computational weld mechanics with Prof. M.C. Smith (University of
Manchester) and Dr. P.J. Bendeich (ANSTO).
NR 26
TC 2
Z9 2
U1 2
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0020-7683
EI 1879-2146
J9 INT J SOLIDS STRUCT
JI Int. J. Solids Struct.
PD SEP
PY 2016
VL 94-95
BP 254
EP 262
DI 10.1016/j.ijsolstr.2015.12.033
PG 9
WC Mechanics
SC Mechanics
GA DQ5VE
UT WOS:000379272500020
ER
PT J
AU Chen, YC
Manna, S
Narayanan, B
Wang, ZW
Reimanis, IE
Ciobanu, CV
AF Chen, Yachao
Manna, Sukriti
Narayanan, Badri
Wang, Zhongwu
Reimanis, Ivar E.
Ciobanu, Cristian V.
TI Pressure-induced phase transformation in beta-eucryptite: An X-ray
diffraction and density functional theory study
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Density functional theory; XRD; Eucryptite; Ceramics
ID TOTAL-ENERGY CALCULATIONS; EARTHS LOWER MANTLE; WAVE BASIS-SET;
THERMAL-EXPANSION; IONIC-CONDUCTIVITY; CATHODE MATERIALS; LI-DIFFUSION;
HIGH-QUARTZ; LIALSIO4; RUBY
AB Certain alumino-silicates display exotic properties enabled by their framework structure made of corner-sharing tetrahedral rigid units. Using in situ diamond-anvil cell x-ray diffraction (XRD), we study the pressure-induced transformation of beta eucryptite, a prototypical alumino-silicate that undergoes a phase transformation at moderate pressures. The atomic structure and symmetry group of the new pressure-stabilized phase has not yet been reported. Based on density functional theory studies and Rietveld analysis of XRD patterns, we find that the new phase belongs to the Pna2(1) space group and report its atomic structure. Furthermore, we discover two other possible pressure-stabilized polymorphs, P1c1 and Pca2(1). (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Chen, Yachao; Narayanan, Badri; Reimanis, Ivar E.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA.
[Manna, Sukriti; Ciobanu, Cristian V.] Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA.
[Wang, Zhongwu] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA.
[Narayanan, Badri] Argonne Natl Lab, Nanosci & Technol Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Reimanis, IE (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA.; Ciobanu, CV (reprint author), Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA.
EM reimanis@mines.edu; cciobanu@mines.edu
RI Ciobanu, Cristian/B-3580-2009
FU U.S. Department of Energy's Office of Basic Energy Sciences
[DE-FG02-07ER46397]; NSF; NIH/NIGMS via NSF [DMR-1332208]
FX We gratefully acknowledge the support of U.S. Department of Energy's
Office of Basic Energy Sciences through grant no. DE-FG02-07ER46397.
CHESS is supported by the NSF and NIH/NIGMS via NSF award DMR-1332208.
NR 42
TC 0
Z9 0
U1 6
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD SEP
PY 2016
VL 122
BP 64
EP 67
DI 10.1016/j.scriptamat.2016.05.005
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA DQ1KG
UT WOS:000378959300015
ER
PT J
AU McBriarty, ME
Ellis, DE
AF McBriarty, Martin E.
Ellis, Donald E.
TI Cation synergies affect ammonia adsorption over VOX and (V,W)O-X
dispersed on alpha-Al2O3 (0001) and alpha-Fe2O3 (0001)
SO SURFACE SCIENCE
LA English
DT Article
DE Nitric oxide reduction; Vanadium oxide; Oxide support; Ammonia
adsorption; Electronic structure; Density functional theory
ID SELECTIVE CATALYTIC-REDUCTION; VANADIUM-OXIDE CATALYSTS; INITIO
MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; BOND-VALENCE PARAMETERS;
ATOMIC-SCALE VIEW; WAVE BASIS-SET; NITRIC-OXIDE; SCR REACTION;
MECHANISTIC ASPECTS
AB The catalytic behavior of oxide-supported metal oxide species depends on the nature of the support and the presence of co-catalysts. We use density functional theory (DFT) to explore the relationship between the structure and chemical behavior of vanadium oxide in light of its industrial use for the selective catalytic reduction of nitric oxide with ammonia (NO-SCR). The relative stabilities of dispersed VOX monomers, dimers, and long-chain oligomers on two model oxide support surfaces with similar structure but drastically different chemical behavior, alpha-Al2O3 (0001) and alpha-Fe2O3 (0001), are determined. The effect of added tungsten, known to promote NO-SCR, is also investigated on the relatively inert alpha-Al2O3 (0001) support. We find that the adsorption behavior of NH3, representing the first step of the NO-SCR reaction, depends strongly on the VOX local structure. Protonation of NH3 to NH4+ over surface hydroxyls is energetically favorable over VOX-WOX dimers and VOX oligomers, which are stabilized by the reducible alpha-Fe2O3 (0001) support. (C) 2016 Elsevier B.V. All rights reserved.
C1 [McBriarty, Martin E.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Ellis, Donald E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[Ellis, Donald E.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP McBriarty, ME (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA.
EM mcbriarty@u.northwestern.edu
OI McBriarty, Martin/0000-0002-7802-3267
FU National Science Foundation [DGE-0824162]; Institute for Catalysis in
Energy Processes (U.S. Department of Energy (DOE)) [DE-FG02-03ER15457]
FX M.E.M. was supported by a National Science Foundation Graduate Research
Fellowship under Grant DGE-0824162. M.E.M. and D.E.E. were supported in
part by the Institute for Catalysis in Energy Processes (U.S. Department
of Energy (DOE) under Contract DE-FG02-03ER15457). Computational
equipment support was provided by the Initiative for Sustainability and
Energy at Northwestern University. Atomic structure and charge density
plots were made using VESTA software [73].
NR 73
TC 0
Z9 0
U1 20
U2 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
EI 1879-2758
J9 SURF SCI
JI Surf. Sci.
PD SEP
PY 2016
VL 651
BP 41
EP 50
DI 10.1016/j.susc.2016.03.015
PG 10
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA DQ3MD
UT WOS:000379105500007
ER
PT J
AU Eren, B
Zherebetskyy, D
Hao, YB
Patera, LL
Wang, LW
Somorjai, GA
Salmeron, M
AF Eren, Baran
Zherebetskyy, Danylo
Hao, Yibo
Patera, Laerte L.
Wang, Lin-Wang
Somorjai, Gabor A.
Salmeron, Miquel
TI One-dimensional nanoclustering of the Cu(100) surface under CO gas in
the mbar pressure range
SO SURFACE SCIENCE
LA English
DT Article
DE Cu(100); Carbon monoxide; Nanoclustering; HPSTM; DFT
ID SCANNING TUNNELING MICROSCOPE; RAY PHOTOELECTRON-SPECTROSCOPY; METHANOL
SYNTHESIS; COPPER SURFACES; ADSORPTION; CATALYST; CHEMISTRY; OXIDATION;
COVERAGE; CU(110)
AB The bulk terminated Cu(100) surface becomes unstable in the presence of CO at room temperature when the pressure reaches the mbar range. Scanning tunneling microscopy images show that above 0.25 mbar the surface forms nanoclusters with CO attached to peripheral Cu atoms. At 20 mbar and above 3-atom wide one-dimensional nanoclusters parallel to < 001 > directions cover the surface, with CO on every Cu atom, increasing in density up to 115 mbar. Density functional theory explains the findings as a result of the detachment of Cu atoms from step edges caused by the stronger binding of CO relative to that on flat terraces. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Eren, Baran; Zherebetskyy, Danylo; Hao, Yibo; Patera, Laerte L.; Wang, Lin-Wang; Somorjai, Gabor A.; Salmeron, Miquel] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Zherebetskyy, Danylo] Nanosys Inc, Milpitas, CA 95035 USA.
[Patera, Laerte L.] CNR IOM, Lab TASC, Str Statale 14,Km 163-5, I-34149 Trieste, Italy.
[Patera, Laerte L.] Univ Trieste, Dept Phys, Via A Valerio 2, I-34127 Trieste, Italy.
[Patera, Laerte L.] Univ Trieste, CENMAT, Via A Valerio 2, I-34127 Trieste, Italy.
[Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Salmeron, M (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Salmeron, M (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM mbsalmeron@lbl.gov
RI Eren, Baran/A-9644-2013;
OI Patera, Laerte/0000-0002-6214-5681
FU Office of Basic Energy Sciences (BES), Division of Materials Sciences
and Engineering, of the U.S. Department of Energy (DOE) through the
Chemical and Mechanical Properties of Surfaces, Interfaces
[DE-AC02-05CH11231, FWP KC3101]; "Organic/Inorganic Nanocomposite
Materials" program; Office of Science of the U.S. DOE; Innovative and
Novel Computational Impact on Theory and Experiment (INCITE) project
FX This work was supported by the Office of Basic Energy Sciences (BES),
Division of Materials Sciences and Engineering, of the U.S. Department
of Energy (DOE) under contract no. DE-AC02-05CH11231, through the
Chemical and Mechanical Properties of Surfaces, Interfaces (FWP KC3101).
The calculations by D.Z. and L.-W.W. were supported by the
"Organic/Inorganic Nanocomposite Materials" program. It used resources
of the National Energy Research Scientific Computing Center which is
supported by the Office of Science of the U.S. DOE. The computation also
used the resources of Oak Ridge Leadership Computing Facility (OLCF)
with the computational time allocated by the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) project.
NR 33
TC 3
Z9 3
U1 15
U2 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
EI 1879-2758
J9 SURF SCI
JI Surf. Sci.
PD SEP
PY 2016
VL 651
BP 210
EP 214
DI 10.1016/j.susc.2016.04.016
PG 5
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA DQ3MD
UT WOS:000379105500029
ER
PT J
AU Cho, H
AF Cho, Herman
TI Dependence of nuclear quadrupole resonance transitions on the electric
field gradient asymmetry parameter for nuclides with half-integer spins
SO ATOMIC DATA AND NUCLEAR DATA TABLES
LA English
DT Article
DE NQR spectroscopy; Nuclear quadrupole moments; Electric field gradient;
Electronic structure
ID MAGNETIC-RESONANCE; SPECTRA; SOLIDS; CHEMISTRY; MOMENTS; ORBIT; NMR
AB Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Cho, Herman] Pacific NW Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA.
RP Cho, H (reprint author), Pacific NW Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA.
EM hm.cho@pnnl.gov
FU U.S. Department of Energy Office of Science, Office of Basic Energy
Sciences, Heavy Element Chemistry program
FX This material is based upon work supported by the U.S. Department of
Energy Office of Science, Office of Basic Energy Sciences, Heavy Element
Chemistry program.
NR 27
TC 0
Z9 0
U1 8
U2 11
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0092-640X
EI 1090-2090
J9 ATOM DATA NUCL DATA
JI Atom. Data Nucl. Data Tables
PD SEP-NOV
PY 2016
VL 111
BP 29
EP 40
DI 10.1016/j.adt.2016.02.003
PG 12
WC Physics, Atomic, Molecular & Chemical; Physics, Nuclear
SC Physics
GA DP7DQ
UT WOS:000378659800002
ER
PT J
AU Chen, HL
Meng, LY
Chen, SH
Jiao, Y
Liu, YM
AF Chen, Hailong
Meng, Lingyi
Chen, Shaohua
Jiao, Yang
Liu, Yongming
TI Numerical investigation of microstructure effect on mechanical
properties of bi-continuous and particulate reinforced composite
materials
SO COMPUTATIONAL MATERIALS SCIENCE
LA English
DT Article
DE Voxel-based analysis; Microstructure; Homogenization; Fracture;
Composites
ID PORE-SPACE RECONSTRUCTION; MULTIPLE-POINT STATISTICS; METAL-MATRIX
COMPOSITES; HETEROGENEOUS MATERIALS; FRACTURE SIMULATION; 2D; ALGORITHM;
MODELS; MEDIA
AB In this paper, numerical simulations are proposed to investigate mechanical properties of bi-continuous and particulate reinforced composite materials using a non-local voxel-based discrete computational model. Special focus of this article is the effect of 3D microstructure and its heterogeneity on elastic deformation and fracture behaviors. First, a review on model formulation is presented. Model parameters are derived in terms of material constants using the concept of energy equivalency. Interface representation and numerical homogenization scheme are discussed. Following this, numerical investigations on the effects of interface properties and inclusion characteristics, i.e. the volume fraction and material constants, on homogenized elastic constants and fracture behaviors of statistically isotropic bi-phase composites are performed. The effective elastic constants predicted by the proposed model agree well with analytical results. Fracture simulation demonstrates good capability of the proposed model for the microstructure-sensitive failure analysis. Conclusions and future work are drawn based on the proposed study. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Chen, Hailong; Chen, Shaohua; Jiao, Yang; Liu, Yongming] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA.
[Meng, Lingyi] S China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510641, Guangdong, Peoples R China.
[Chen, Hailong] Idaho Natl Lab, Fuels Modeling & Simulat, Idaho Falls, ID 83402 USA.
RP Liu, YM (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA.
EM Yongming.Liu@asu.edu
RI Chen, Hailong/C-7197-2017
OI Chen, Hailong/0000-0002-6564-7230
FU DARPA [N66001-14-1-4036]
FX This work is partially supported by DARPA under Grant No.
N66001-14-1-4036.
NR 39
TC 1
Z9 1
U1 7
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0256
EI 1879-0801
J9 COMP MATER SCI
JI Comput. Mater. Sci.
PD SEP
PY 2016
VL 122
BP 288
EP 294
DI 10.1016/j.commatsci.2016.05.037
PG 7
WC Materials Science, Multidisciplinary
SC Materials Science
GA DP5DT
UT WOS:000378516900031
ER
PT J
AU Ren, BY
Zhong, DK
Sun, YG
Zhao, XH
Zhang, QJ
Liu, Y
Jurow, M
Sun, ML
Zhang, ZS
Zhao, Y
AF Ren, Bao-Yi
Zhong, Dao-Kun
Sun, Ya-Guang
Zhao, Xiang-Hua
Zhang, Qi-Jian
Liu, Yi
Jurow, Matthew
Sun, Ming-Li
Zhang, Zhen-Song
Zhao, Yi
TI Quinolyl functionalized spiro[fluorene-9,9 '-xanthene] host materials
with bipolar characteristics for green and red phosphorescent organic
light-emitting diodes
SO ORGANIC ELECTRONICS
LA English
DT Article
DE PhOLEDs; Host materials; Spiro[fluorene-9,9 '-xanthene]; Quinoline;
Substitution effect
ID ACTIVATED DELAYED FLUORESCENCE; RIGID-ROD POLYQUINOLINES; HOLE-TRANSPORT
MATERIAL; PEROVSKITE SOLAR-CELLS; HIGHLY EFFICIENT RED; INTERMOLECULAR
PI-PI; ELECTROLUMINESCENT DEVICES; PHOSPHINE OXIDE;
ELECTROPHOSPHORESCENT DEVICES; UNIVERSAL HOST
AB Spiro[fluorene-9,9'-xanthene] (SFX) bipolar hosts bearing one, two and three quinolyl substituents, namely SFX-bPy, SFX-DbPy and SFX-TbPy, were designed and synthesized for phosphorescent organic light emitting diodes (PhOLEDs). The successive substitution of quinoline at 20, 2 and 70 positions of SFX results in reduced LUMO energy levels while leaving the HOMO energy levels nearly intact. The impact of quinoline substitution in these SFX-based hosts on PhOLED performance was investigated in detail through green and red model devices. For the green emitting devices, the device based on SFX-bPy host showed better performance (23.6 cd A(-1), 23.4 lm W-1, 6.3%) due to high triplet energy level (T-1) and balanced carriers-transporting ability. In contrast, for the red PhOLED devices, the device hosted by SFX-DbPy displayed higher performance (15.8 cd A(-1), 16.0 lm W-1, 9.1%), attributable to the well matched T-1 and separated frontier molecular orbitals. This work thus sheds light on the rational design of SFX-based bipolar hosts for more efficient PhOLEDs. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Ren, Bao-Yi; Zhong, Dao-Kun; Sun, Ya-Guang] Shenyang Univ Chem Technol, Coll Appl Chem, Key Lab Inorgan Mol Based Chem Liaoning Prov, Shenyang 110142, Peoples R China.
[Zhao, Xiang-Hua] Xinyang Normal Univ, Coll Chem & Chem Engn, Xinyang 464000, Peoples R China.
[Zhang, Qi-Jian; Liu, Yi; Jurow, Matthew] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, One Cyclotron Rd, Berkeley, CA 94720 USA.
[Sun, Ming-Li] Northeast Forestry Univ, Coll Sci, Dept Chem, Harbin 150040, Peoples R China.
[Zhang, Zhen-Song; Zhao, Yi] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China.
RP Zhao, XH (reprint author), Xinyang Normal Univ, Coll Chem & Chem Engn, Xinyang 464000, Peoples R China.; Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, One Cyclotron Rd, Berkeley, CA 94720 USA.; Sun, ML (reprint author), Northeast Forestry Univ, Coll Sci, Dept Chem, Harbin 150040, Peoples R China.
EM 4773zxh@163.com; yliu@lbl.gov; sml98@163.com
RI Liu, yi/A-3384-2008;
OI Liu, yi/0000-0002-3954-6102; Sun, Yaguang/0000-0001-5850-0938
FU National Natural Scince Foundation of China [61405170]; Molecular
Foundry, through Office of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy [DE-AC02-05CH11231]; Students Sustentation
Fund of Xinyang Normal University [2014-DXS-136]
FX We express our sincere gratitude to the Doctoral Research Foundation of
Liaoning Province (20131091), National Natural Scince Foundation of
China (grant no. 61405170) and Students Sustentation Fund of Xinyang
Normal University (No. 2014-DXS-136). Y. L. acknowledges the support
from the Molecular Foundry, a user facility supported through the Office
of Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy, under Contract No. DE-AC02-05CH11231.
NR 57
TC 0
Z9 0
U1 30
U2 71
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1566-1199
EI 1878-5530
J9 ORG ELECTRON
JI Org. Electron.
PD SEP
PY 2016
VL 36
BP 140
EP 147
DI 10.1016/j.orgel.2016.06.006
PG 8
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA DP5NO
UT WOS:000378544500019
ER
PT J
AU Horowitz, KAW
Fu, R
Woodhouse, M
AF Horowitz, Kelsey A. W.
Fu, Ran
Woodhouse, Michael
TI An analysis of glass-glass CIGS manufacturing costs
SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
LA English
DT Article
DE CIGS; Photovoltaic; Co-evaporation; Selenization; Manufacturing cost
analysis; LCOE
ID CU(IN,GA)SE-2 SOLAR-CELLS; THICKNESS
AB This article examines current cost drivers and potential avenues to reduced cost for monolithic, glass glass Cu(In,Ga)(Se,S)(2) (CIGS) modules by constructing a comprehensive bottom-up cost model. For a reference case where sputtering plus batch sulfurization after selenization (SAS) is employed, we compute a manufacturing cost of $69/m(2) if the modules are made in the United States at a 1 GW/year production volume. At 14% module efficiency, this corresponds to a manufacturing cost of $0.49/W-DC and a minimum sustainable price (MSP) of $0.67/W-DC. We estimate that MSP could vary within 20% of this value given the range of quoted input prices, and existing variations in module design, manufacturing processes, and manufacturing location. Potential for reduction in manufacturing costs to below $0.40/W-DC may be possible if average production module efficiencies can be increased above 17% without increasing $/m(2) costs; even lower costs could be achieved if $/m(2) costs could be reduced, particularly via innovations in the CIGS deposition process or balance-of-module elements. We present the impact on cost of regional factors, CIGS deposition method, device design, and price fluctuations. One metric of competitiveness-levelized cost of energy (LCOE) - is also assessed for several U.S. locations and compared to that of standard multi-crystalline silicon (m(c-Si)) and cadmium telluride (CdTe). (C) 2016 Elsevier B.V. All rights reserved.
C1 [Horowitz, Kelsey A. W.; Fu, Ran; Woodhouse, Michael] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
RP Horowitz, KAW (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM Kelsey.Horowitz@nrel.gov
FU Solar Energy Technologies Office of the U.S. Department of Energy
[DE-AC36-08GO28308]
FX The authors thank the Solar Energy Technologies Office of the U.S.
Department of Energy for funding this work through Contract no.
DE-AC36-08GO28308. We thank Lorelle Mansfield, Kannan Ramanathan, Miguel
Contreras, Karlynn Cory, and Donald Chung for insightful discussion.
Finally, we would like to acknowledge the significant contribution from
all our industry collaborators, who provided data and feedback that made
this study possible.
NR 29
TC 1
Z9 1
U1 21
U2 40
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0248
EI 1879-3398
J9 SOL ENERG MAT SOL C
JI Sol. Energy Mater. Sol. Cells
PD SEP
PY 2016
VL 154
BP 1
EP 10
DI 10.1016/j.solmat.2016.04.029
PG 10
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DP5WT
UT WOS:000378569600001
ER
PT J
AU O'Brien, TA
Kashinath, K
Cavanaugh, NR
Collins, WD
O'Brien, JP
AF O'Brien, Travis A.
Kashinath, Karthik
Cavanaugh, Nicholas R.
Collins, William D.
O'Brien, John P.
TI A fast and objective multidimensional kernel density estimation method:
fastKDE
SO COMPUTATIONAL STATISTICS & DATA ANALYSIS
LA English
DT Article
DE Empirical characteristic function; ECF; Kernel density estimation;
Histogram; Nonuniform FFT; NuFFT; Multidimensional; KDE
AB Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the ROE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchia and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so.
A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10(5) samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior. (C) 2016 The Authors and Lawrence Berkeley National Laboratory. Published by Elsevier B.V. This is an open access article under the CC BY license.
C1 [O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.; Collins, William D.; O'Brien, John P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[O'Brien, Travis A.] Univ Calif Davis, Davis, CA 95616 USA.
[Collins, William D.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[O'Brien, John P.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA.
RP O'Brien, TA (reprint author), 1 Cyclotron Rd,MS74R-316C, Berkeley, CA USA.
EM TAOBrien@lbl.gov
RI Collins, William/J-3147-2014; O'Brien, Travis/M-5250-2013; Kashinath,
Karthik/B-2265-2015;
OI Collins, William/0000-0002-4463-9848; O'Brien,
Travis/0000-0002-6643-1175; Kashinath, Karthik/0000-0002-9311-5215;
Cavanaugh, Nicholas/0000-0002-7638-4501
FU Office of Science, Office of Biological and Environmental Research of
the US Department of Energy Regional and Global Climate Modeling Program
(RGCM) [ESD13052]; National Energy Research Scientific Computing Center
(NERSC) [m1949, m1517]; Office of Science of the US Department of Energy
[DE-AC02-05CH11231]
FX The authors would like to thank two anonymous reviewers whose comments
greatly helped improve the quality of the manuscript. The authors would
also like to thank Dr. Chris Paciorek of UCB for helpful comments in the
framing of the manuscript. This research was supported by the Director,
Office of Science, Office of Biological and Environmental Research of
the US Department of Energy Regional and Global Climate Modeling Program
(RGCM) (ESD13052) and used resources of the National Energy Research
Scientific Computing Center (NERSC) (m1949 and m1517), also supported by
the Office of Science of the US Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 23
TC 1
Z9 1
U1 3
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-9473
EI 1872-7352
J9 COMPUT STAT DATA AN
JI Comput. Stat. Data Anal.
PD SEP
PY 2016
VL 101
BP 148
EP 160
DI 10.1016/j.csda.2016.02.014
PG 13
WC Computer Science, Interdisciplinary Applications; Statistics &
Probability
SC Computer Science; Mathematics
GA DP4CY
UT WOS:000378444200012
ER
PT J
AU Linley, TJ
Krogstad, EJ
Nims, MK
Langshaw, RB
AF Linley, Timothy J.
Krogstad, Eirik J.
Nims, Megan K.
Langshaw, Russell B.
TI Geochemical signatures in fin rays provide a nonlethal method to
distinguish the natal rearing streams of endangered juvenile Chinook
Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington
SO FISHERIES RESEARCH
LA English
DT Article
DE Fin ray geochemistry
ID INDUCTIVELY-COUPLED PLASMA; SPOT LEIOSTOMUS-XANTHURUS; WESTSLOPE
CUTTHROAT TROUT; STABLE-ISOTOPE ANALYSIS; UPPER COLUMBIA-RIVER; OTOLITH
CHEMISTRY; LIFE-HISTORY; WATER CHEMISTRY; FRESH-WATER; RAINBOW-TROUT
AB Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collected from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and Sr-87/Sr-86 by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and Sr-87/Sr-86 were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and Sr-87/Sr-86 ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and Sr-87/Sr-86 correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.] Pacific NW Natl Lab, Earth Syst Sci Div, Richland, WA USA.
[Langshaw, Russell B.] Publ Util Dist Grant Cty 2, Washington, DC USA.
[Langshaw, Russell B.] Ecosyst Insights, Mesa, AZ USA.
RP Linley, TJ (reprint author), Pacific NW Natl Lab, Earth Syst Sci Div, Richland, WA USA.
EM Timothy.Linley@pnnl.gov; Russell@ecoinsights.us
FU Priest Rapids Coordinating Committee (PRCC) No-Net Impact Fund
FX We thank Liz Alexander and Matt Newburn of the Environmental and
Molecular Sciences Laboratory (EMSL) for their support and assistance
with the ICP-MS analyses, Valerie Cullinan (PNNL) for statistical help,
and the Washington Department of Fish and Wildlife (Andrew Murdoch, Mike
Hughes) and the NOAA Northwest Fisheries Science Center (Mike Ford,
Sharon Howard) for providing the fin-ray samples. Additional thanks to
Jill Janak and Kathleen Carter from PNNL for their help in preparing the
manuscript, and for the constructive comments from two anonymous
reviewers. Funding for this study was provided by the Priest Rapids
Coordinating Committee (PRCC) No-Net Impact Fund. The PRCC includes
representatives NOAA Fisheries, U.S. Fish & Wildlife Service, Washington
Department of Fish & Wildlife, Colville Confederated Tribes, Yakama
Nation, Confederated Tribes of the Umatilla Reservation and Grant County
Public Utility District.
NR 99
TC 0
Z9 0
U1 5
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0165-7836
EI 1872-6763
J9 FISH RES
JI Fish Res.
PD SEP
PY 2016
VL 181
BP 234
EP 246
DI 10.1016/j.fishres.2016.04.004
PG 13
WC Fisheries
SC Fisheries
GA DP0LS
UT WOS:000378181900023
ER
PT J
AU Guo, XY
Hu, B
Wei, CD
Sun, JG
Jung, YG
Li, L
Knapp, J
Zhang, J
AF Guo, Xingye
Hu, Bin
Wei, Changdong
Sun, Jiangang
Jung, Yeon-Gil
Li, Li
Knapp, James
Zhang, Jing
TI Image-based multi-scale simulation and experimental validation of
thermal conductivity of lanthanum zirconate
SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
LA English
DT Article
DE Lanthanum zirconate; Thermal conductivity; Molecular dynamics; Finite
element; Microstructure; Imaging; Flash laser technique; Pulsed thermal
imaging-multilayer analysis
ID NONEQUILIBRIUM MOLECULAR-DYNAMICS; BARRIER COATINGS; PORES
AB Lanthanum zirconate (La2Zr2O7) is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high-temperature phase stability. In this work, a novel image-based multi-scale simulation framework combining molecular dynamics (MD) and finite element (FE) calculations is proposed to study the thermal conductivity of La2Zr2O7 coatings. Since there is no experimental data of single crystal La2Zr2O7 thermal conductivity, a reverse non-equilibrium molecular dynamics (reverse NEMD) approach is first employed to compute the temperature-dependent thermal conductivity of single crystal La2Zr2O7. The single crystal data is then passed to a FE model which takes into account of realistic thermal barrier coating microstructures. The predicted thermal conductivities from the FE model are in good agreement with experimental validations using both flash laser technique and pulsed thermal imaging-multilayer analysis. The framework proposed in this work provides a powerful tool for future design of advanced coating systems. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Guo, Xingye; Zhang, Jing] Indiana Univ Purdue Univ, Dept Mech Engn, Indianapolis, IN 46202 USA.
[Hu, Bin] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA.
[Wei, Changdong] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA.
[Sun, Jiangang] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Jung, Yeon-Gil] Changwon Natl Univ, Sch Nano & Adv Mat Engn, Chang Won 641773, Gyeongnam, South Korea.
[Li, Li; Knapp, James] Praxair Surface Technol, Indianapolis, IN 46222 USA.
RP Zhang, J (reprint author), Indiana Univ Purdue Univ, Dept Mech Engn, Indianapolis, IN 46202 USA.
EM jz29@iupui.edu
OI Zhang, Jing/0000-0002-8200-5117
FU U.S. Department of Energy [DE-FE0008868]; Indiana University Research
Support Funds Grant (RSFG); International Research Development Fund
(IRDF); National Research Foundation of Korea (NRF) grant - Korean
Government (MEST) [2011-0030058]; Changwon National University; U.S.
Department of Energy, Office of Fossil Energy, Crosscutting Research
Program; Novel Functionally Graded Thermal Barrier Coatings in
Coal-fired Power Plant Turbines
FX J.Z. acknowledges the financial support provided by the U.S. Department
of Energy (Award Number: DE-FE0008868; Project Title: Novel Functionally
Graded Thermal Barrier Coatings in Coal-fired Power Plant Turbines;
Program Manager: Richard Dunst) and Indiana University Research Support
Funds Grant (RSFG) and International Research Development Fund (IRDF).
Y.J. acknowledges the financial support provided by a National Research
Foundation of Korea (NRF) grant funded by the Korean Government (MEST)
(2011-0030058), and by Changwon National University in 2015-2016. J.S.
acknowledges the support provided by the U.S. Department of Energy,
Office of Fossil Energy, Crosscutting Research Program.
NR 31
TC 1
Z9 1
U1 9
U2 34
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0017-9310
EI 1879-2189
J9 INT J HEAT MASS TRAN
JI Int. J. Heat Mass Transf.
PD SEP
PY 2016
VL 100
BP 34
EP 38
DI 10.1016/j.ijheatmasstransfer.2016.04.067
PG 5
WC Thermodynamics; Engineering, Mechanical; Mechanics
SC Thermodynamics; Engineering; Mechanics
GA DP2ZI
UT WOS:000378361700004
ER
PT J
AU Forsberg, U
Rudolph, D
Andersson, LL
Di Nitto, A
Dullmann, CE
Fahlander, C
Gates, JM
Golubev, P
Gregorich, KE
Gross, CJ
Herzberg, RD
Hessberger, FP
Khuyagbaatar, J
Kratz, JV
Rykaczewski, K
Sarmiento, LG
Schadel, M
Yakushev, A
Aberg, S
Ackermann, D
Block, M
Brand, H
Carlsson, BG
Cox, D
Derkx, X
Dobaczewski, J
Eberhardt, K
Even, J
Gerl, J
Jager, E
Kindler, B
Krier, J
Kojouharov, I
Kurz, N
Lommel, B
Mistry, A
Mokry, C
Nazarewicz, W
Nitsche, H
Omtvedt, JP
Papadakis, P
Ragnarsson, I
Runke, J
Schaffner, H
Schausten, B
Shi, Y
Thorle-Pospiech, P
Torres, T
Traut, T
Trautmann, N
Tuerler, A
Ward, A
Ward, DE
Wiehl, N
AF Forsberg, U.
Rudolph, D.
Andersson, L. -L.
Di Nitto, A.
Duellmann, Ch. E.
Fahlander, C.
Gates, J. M.
Golubev, P.
Gregorich, K. E.
Gross, C. J.
Herzberg, R. -D.
Hessberger, F. P.
Khuyagbaatar, J.
Kratz, J. V.
Rykaczewski, K.
Sarmiento, L. G.
Schaedel, M.
Yakushev, A.
Aberg, S.
Ackermann, D.
Block, M.
Brand, H.
Carlsson, B. G.
Cox, D.
Derkx, X.
Dobaczewski, J.
Eberhardt, K.
Even, J.
Gerl, J.
Jaeger, E.
Kindler, B.
Krier, J.
Kojouharov, I.
Kurz, N.
Lommel, B.
Mistry, A.
Mokry, C.
Nazarewicz, W.
Nitsche, H.
Omtvedt, J. P.
Papadakis, P.
Ragnarsson, I.
Runke, J.
Schaffner, H.
Schausten, B.
Shi, Yue
Thoerle-Pospiech, P.
Torres, T.
Traut, T.
Trautmann, N.
Tuerler, A.
Ward, A.
Ward, D. E.
Wiehl, N.
TI Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in
the reaction Ca-48+Am-243
SO NUCLEAR PHYSICS A
LA English
DT Article
DE Superheavy elements; Element 115; Uup; alpha decay; Spontaneous fission
ID 115 DECAY CHAINS; SUPERHEAVY ELEMENTS; HEAVIEST ELEMENTS; NUCLEI; TASCA;
HEAVY; SPECTROSCOPY; SIMULATION; SEPARATOR; CHEMISTRY
AB Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated alpha-decay chains associated With the production of element Z = 115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel (289)115 due to the fact that these recoil-alpha-alpha-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil-alpha-alpha-fission decay chains, as well as some of the recoil-alpha-alpha-fission and recoil-alpha-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel (288)115. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Forsberg, U.; Rudolph, D.; Fahlander, C.; Golubev, P.; Sarmiento, L. G.; Aberg, S.; Carlsson, B. G.; Ragnarsson, I.; Ward, D. E.] Lund Univ, S-22100 Lund, Sweden.
[Andersson, L. -L.; Duellmann, Ch. E.; Hessberger, F. P.; Khuyagbaatar, J.; Block, M.; Derkx, X.; Eberhardt, K.; Even, J.; Mistry, A.; Mokry, C.; Thoerle-Pospiech, P.; Wiehl, N.] Helmholtz Inst Mainz, D-55099 Mainz, Germany.
[Di Nitto, A.; Duellmann, Ch. E.; Kratz, J. V.; Block, M.; Derkx, X.; Eberhardt, K.; Mokry, C.; Thoerle-Pospiech, P.; Traut, T.; Trautmann, N.; Wiehl, N.] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany.
[Duellmann, Ch. E.; Hessberger, F. P.; Schaedel, M.; Yakushev, A.; Ackermann, D.; Block, M.; Brand, H.; Gerl, J.; Jaeger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Runke, J.; Schaffner, H.; Schausten, B.; Torres, T.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany.
[Gates, J. M.; Gregorich, K. E.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Gross, C. J.; Rykaczewski, K.; Nazarewicz, W.; Shi, Yue] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Herzberg, R. -D.; Cox, D.; Mistry, A.; Papadakis, P.; Ward, A.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Schaedel, M.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan.
[Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, PL-00681 Warsaw, Poland.
[Dobaczewski, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
[Nazarewicz, W.; Shi, Yue] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Nazarewicz, W.; Shi, Yue] Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA.
[Omtvedt, J. P.] Univ Oslo, N-0315 Oslo, Norway.
[Tuerler, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
[Tuerler, A.] Univ Bern, CH-5232 Villigen, Switzerland.
[Even, J.] Univ Groningen, KVI Ctr Adv Radiat Technol, NL-9747 AA Groningen, Netherlands.
[Papadakis, P.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland.
RP Forsberg, U (reprint author), Lund Univ, S-22100 Lund, Sweden.
EM ulrika.forsberg@nuclear.lu.se
RI Block, Michael/I-2782-2015; Even, Julia/K-1186-2016; Rudolph,
Dirk/D-4259-2009; Turler, Andreas/D-3913-2014
OI Block, Michael/0000-0001-9282-8347; Even, Julia/0000-0002-6314-9094;
Rudolph, Dirk/0000-0003-1199-3055; Turler, Andreas/0000-0002-4274-1056
FU European Community FP7 - Capacities ENSAR [262010]; Royal Physiographic
Society in Lund; Euroball Owners Committee; Swedish Research Council;
German BMBF; U.S. Department of Energy, Office of Science (Stewardship
Science Academic Alliances program) [DOE-DE-NA0002574]; UK Science and
Technology Facilities Council; U.S. Department of Energy, Office of
Science (NUCLEI SciDAC-3 Collaboration) [DE-SC0008511]
FX The authors would like to thank the ion-source and the accelerator staff
at GSI. This work is supported by the European Community FP7 -
Capacities ENSAR No. 262010, the Royal Physiographic Society in Lund,
the Euroball Owners Committee, the Swedish Research Council, the German
BMBF, the U.S. Department of Energy, Office of Science, under Award
Numbers DOE-DE-NA0002574 (the Stewardship Science Academic Alliances
program) and DE-SC0008511 (NUCLEI SciDAC-3 Collaboration), and the UK
Science and Technology Facilities Council.
NR 56
TC 10
Z9 10
U1 9
U2 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD SEP
PY 2016
VL 953
BP 117
EP 138
DI 10.1016/j.nuclphysa.2016.04.025
PG 22
WC Physics, Nuclear
SC Physics
GA DP4IX
UT WOS:000378460700007
ER
PT J
AU Zhao, L
Shaffer, F
Robinson, B
King, T
D'Ambrose, C
Pan, Z
Gao, F
Miller, RS
Conmy, RN
Boufadel, MC
AF Zhao, Lin
Shaffer, Franklin
Robinson, Brian
King, Thomas
D'Ambrose, Christopher
Pan, Zhong
Gao, Feng
Miller, Richard S.
Conmy, Robyn N.
Boufadel, Michel C.
TI Underwater oil jet: Hydrodynamics and droplet size distribution
SO CHEMICAL ENGINEERING JOURNAL
LA English
DT Article
DE Subsurface oil release; Oil spill; Large scale experiment; Plume
trajectory; Droplet size distribution; Ohmsett wave tank
ID WATER-HORIZON OIL; GAS BLOWOUTS; BUOYANT JETS; SUBSEA OIL; CRUDE-OIL;
FLOW-RATE; MODEL; BREAKUP; SIMULATION; ATOMIZATION
AB We conducted a large scale experiment of underwater oil release of 6.3 L/s through a 25.4 mm (one inch) horizontal pipe. Detailed measurements of plume trajectory, velocity, oil droplet size distribution, and oil holdup were obtained. The obtained experimental data were used for the validation of the models JETLAG and VDROP-J. Key findings include: (1) formation of two plumes, one due to momentum and subsequently plume buoyancy, and another due mostly to the buoyancy of individual oil droplets that separate upward from the first plume; (2) modeling results indicated that the traditional miscible plume models matched the momentum and buoyancy plume, but were not able to simulate the upward motion plume induced by individual oil droplets; (3) high resolution images in the jet primary breakup region showed the formation of ligaments and drops in a process known as "primary breakup". These threads re-entered the plume to re-break in a process known as "secondary breakup"; (4) the plume velocity was highly heterogeneous with regions of high velocity surrounded by stagnant regions for various durations. The results from this study revealed that the primary breakup is a key factor for quantifying the droplet size distribution which plays a crucial role in determining the ultimate fate and transport of the released oil in the marine environment. The observed spatial heterogeneity in the oil plume implies that the effectiveness of applied dispersants may vary greatly when applying directly in the discharged oil flow. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Zhao, Lin; D'Ambrose, Christopher; Pan, Zhong; Gao, Feng; Boufadel, Michel C.] New Jersey Inst Technol, Dept Civil & Environm Engn, Ctr Nat Resources Dev & Protect, Newark, NJ 07102 USA.
[Shaffer, Franklin] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Robinson, Brian; King, Thomas] Bedford Inst Oceanog, Dept Fisheries & Oceans, Dartmouth, NS, Canada.
[Miller, Richard S.] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA.
[Conmy, Robyn N.] US EPA, Natl Risk Management Res Lab, Off Res & Dev, Cincinnati, OH 45268 USA.
RP Boufadel, MC (reprint author), New Jersey Inst Technol, Dept Civil & Environm Engn, Ctr Nat Resources Dev & Protect, Newark, NJ 07102 USA.
EM boufadel@gmail.com
FU Bureau of Safety and Environmental Enforcement [1027]; Department of
Fisheries and Ocean Canada (DFO) [F5211-130060]; Gulf of Mexico Research
Initiative through the Consortium DROPPS II
FX This research was made possible through funding from the Bureau of
Safety and Environmental Enforcement, Project # 1027 (2014); the
Department of Fisheries and Ocean Canada (DFO), Contract No.
F5211-130060; and the Gulf of Mexico Research Initiative through the
Consortium DROPPS II. Data are publicly available through the Gulf of
Mexico Research Initiative Information & Data Cooperative (GRIIDC) at
https://data.gulfresearchinitiative.org (doi:10.7266/N7D798DN). However,
no endorsement of these sponsors is implied.
NR 35
TC 1
Z9 1
U1 14
U2 58
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 1385-8947
EI 1873-3212
J9 CHEM ENG J
JI Chem. Eng. J.
PD SEP 1
PY 2016
VL 299
BP 292
EP 303
DI 10.1016/j.cej.2016.04.061
PG 12
WC Engineering, Environmental; Engineering, Chemical
SC Engineering
GA DO5ON
UT WOS:000377832500035
ER
PT J
AU Movshovitz, N
Nimmo, F
Korycansky, DG
Asphaug, E
Owen, JM
AF Movshovitz, N.
Nimmo, F.
Korycansky, D. G.
Asphaug, E.
Owen, J. M.
TI Impact disruption of gravity-dominated bodies: New simulation data and
scaling
SO ICARUS
LA English
DT Article
DE Collisional physics; Planetesimals; Planetary formation
ID LATE HEAVY BOMBARDMENT; OUTER SOLAR-SYSTEM; CATASTROPHIC DISRUPTION;
NUMERICAL SIMULATIONS; CRATERING RATES; POSSIBLE ORIGIN; GIANT PLANETS;
LATE-STAGE; COLLISIONS; SATELLITES
AB We present results from a suite of 169 hydrocode simulations of collisions between planetary bodies with radii from 100 to 1000 km. The simulation data are used to derive a simple scaling law for the threshold for catastrophic disruption, defined as a collision that leads to half the total colliding mass escaping the system post impact For a target radius 100 <= R-T <= 1000km and a mass M-T and a projectile radius r(p) <= R-T and mass m(p) we find that a head-on impact with velocity magnitude v is catastrophic if the kinetic energy of the system in the center of mass frame, K = 0.5M(T)m(p)v(2)/(M-T + m(p)), exceeds a threshold value K* that is a few times U = (3/5)GM(T)(2)/R-T (3/5)Gm(p)(2)/r(p) GM(T)m(p)(R-T r(p)), the gravitational binding energy of the system at the moment of impact; G is the gravitational constant. In all head-on collision runs we find K* = (5.5 +/- 2.9)U. Oblique impacts are catastrophic when the fraction of kinetic energy contained in the volume of the projectile intersecting the target during impact exceeds similar to 2K* for 30 degrees impacts and similar to 3.5K* for 45 degrees impacts. We compare predictions made with this scaling to those made with existing scaling laws in the literature extrapolated from numerical studies on smaller targets. We find significant divergence between predictions where in general our results suggest a lower threshold for disruption except for highly oblique impacts with r(p) << R-T. This has implications for the efficiency of collisional grinding in the asteroid belt (Morbidelli et al., [2009] Icarus, 204, 558-573), Kuiper belt (Greenstreet et al., [2015] Icarus, 258, 267-288), and early Solar System accretion (Chambers [2013], Icarus, 224, 43-56). (C) 2016 Elsevier Inc. All rights reserved.
C1 [Movshovitz, N.; Nimmo, F.; Korycansky, D. G.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
[Asphaug, E.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA.
[Owen, J. M.] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Movshovitz, N (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
EM nmovshov@ucsc.edu
OI Movshovitz, Naor/0000-0001-5583-0042
FU NASA PGG grant [NNX13AR66G]; NASA Origins grant [NNX11AK60G-002]
FX We wish to thank our funding sources for this project. Research by N.M.,
D.G.K., and E.A. was supported by NASA PG&G grant NNX13AR66G. Research
by F.N. was supported by NASA Origins grant NNX11AK60G-002.
NR 41
TC 1
Z9 1
U1 2
U2 2
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD SEP 1
PY 2016
VL 275
BP 85
EP 96
DI 10.1016/j.icarus.2016.04.018
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DO8FB
UT WOS:000378016900006
ER
PT J
AU Nettelmann, N
Wang, K
Fortney, JJ
Hamel, S
Yellamilli, S
Bethkenhagen, M
Redmer, R
AF Nettelmann, N.
Wang, K.
Fortney, J. J.
Hamel, S.
Yellamilli, S.
Bethkenhagen, M.
Redmer, R.
TI Uranus evolution models with simple thermal boundary layers
SO ICARUS
LA English
DT Article
DE Uranus; Neptune; Planetary Evolution
ID GIANT PLANETS; INTERIOR MODELS; ENERGY-BALANCE; NEPTUNE; JUPITER;
ATMOSPHERES; CONVECTION; SATURN; WATER; MASS
AB The strikingly low luminosity of Uranus (T-eff similar or equal to T-eq) constitutes a long-standing challenge to our understanding of Ice Giant planets. Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. Proceeding step by step, we confirm that adiabatic models yield cooling times that are too long, even when uncertainties in the ice:rock ratio (I:R) are taken into account. We then argue that the transition between the ice/rock-rich interior and the HA-le-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary and adjust it to reproduce the low luminosity. Due to this thermal boundary, the deep interior of the Uranus models are up to 2-3 warmer than adiabatic models, necessitating the presence of rocks in the deep interior with a possible I:R of 1 x solar. Finally, we allow for an equilibrium evolution (T-eff similar or equal to T-eq) that begun prior to the present day, which would therefore no longer require the current era to be a "special time" in Uranus' evolution. In this scenario, the thermal boundary leads to more rapid cooling of the outer envelope. When T-eff similar or equal to T-eq is reached, a shallow, subadiabatic zone in the atmosphere begins to develop. Its depth is adjusted to meet the luminosity constraint. This work provides a simple foundation for future Ice Giant structure and evolution models, that can be improved by properly treating the heat and particle fluxes in the diffusive zones. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Nettelmann, N.; Fortney, J. J.] Univ Rostock, Inst Phys, Albert Einstein Str 23, D-18051 Rostock, Germany.
[Hamel, S.; Bethkenhagen, M.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
[Nettelmann, N.; Bethkenhagen, M.; Redmer, R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA.
[Wang, K.] Castilleja High Sch, Palo Alto, CA USA.
[Yellamilli, S.] Saratoga High Sch, Saratoga, CA USA.
[Yellamilli, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Wang, K.; Yellamilli, S.] UCSC 2014, Sci Internship Program, Santa Cruz, CA USA.
RP Nettelmann, N (reprint author), Univ Rostock, Inst Phys, Albert Einstein Str 23, D-18051 Rostock, Germany.
EM nadine.nettelmann@uni-rostock.de
OI Yellamilli, Shivaram/0000-0001-9209-4830
FU NASA [NNH12AU441, NNX11AJ40G-001]; German Science Foundation (DFG) [SFB
652]; NSF [AST-1010017]
FX We thank the two anonymous referees for constructive comments. NN thanks
R. Helled and M. Podolak for interesting conversations, and participants
of the Workshop on Ice Giant Planets 2014 in Laurel, MD, for fruitful
discussions. We gratefully acknowledge the funding support from NASA
under Contract No. NNH12AU441. MB and RR acknowledge support from the
German Science Foundation (DFG) via SFB 652 and the computation time
provided by the North-German Supercomputing Alliance (HLRN) and the ITMZ
of the University of Rostock. JJF acknowledges support from NSF grant
AST-1010017 and NASA grant NNX11AJ40G-001.
NR 60
TC 0
Z9 0
U1 6
U2 10
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD SEP 1
PY 2016
VL 275
BP 107
EP 116
DI 10.1016/j.icarus.2016.04.008
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DO8FB
UT WOS:000378016900008
ER
PT J
AU Makarova, OV
Adams, DL
Divan, R
Rosenmann, D
Zhu, PX
Li, SH
Amstutz, P
Tang, CM
AF Makarova, Olga V.
Adams, Daniel L.
Divan, Ralu
Rosenmann, Daniel
Zhu, Peixuan
Li, Shuhong
Amstutz, Platte
Tang, Cha-Mei
TI Polymer microfilters with nanostructured surfaces for the culture of
circulating cancer cells
SO MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS
LA English
DT Article
DE Tumor cell culture; Structured culture; RIE treated polymer;
Nanostructure; Surface topography
ID TUMOR-CELLS; ALUMINUM-OXIDE; PRECISION MICROFILTERS; EFFICIENT CAPTURE;
ANODIC ALUMINA; FABRICATION; CARCINOMA; ARRAYS; DEVICE; MICRO
AB There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nano scale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. (C) 2016 The Authors. Published by Elsevier B.V.
C1 [Makarova, Olga V.] Creatv MicroTech Inc, 2242 West Harrison St, Chicago, IL 60612 USA.
[Adams, Daniel L.] Create MicroTech Inc, 1 Deer Pk Dr, Monmouth Jct, NJ 08852 USA.
[Divan, Ralu; Rosenmann, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei] Create MicroTech Inc, 11609 Lake Potomac Dr, Potomac, MD 20854 USA.
RP Adams, DL (reprint author), Create MicroTech Inc, 1 Deer Pk Dr, Monmouth Jct, NJ 08852 USA.
EM dan@creatvmicrotech.com
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; Maryland TEDCO under MTTCF Phase I award
FX Use of the Center for Nanoscale Materials, an Office of Science user
Facility, Argonne National Laboratory was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. This research was funded
in part by Maryland TEDCO under MTTCF Phase I award.
NR 35
TC 1
Z9 1
U1 15
U2 59
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0928-4931
EI 1873-0191
J9 MAT SCI ENG C-MATER
JI Mater. Sci. Eng. C-Mater. Biol. Appl.
PD SEP 1
PY 2016
VL 66
BP 193
EP 198
DI 10.1016/j.msec.2016.04.075
PG 6
WC Materials Science, Biomaterials
SC Materials Science
GA DO4FK
UT WOS:000377737000023
PM 27207054
ER
PT J
AU Knox, AS
Paller, MH
Milliken, CE
Redder, TM
Wolfe, JR
Seaman, J
AF Knox, Anna Sophia
Paller, Michael H.
Milliken, Charles E.
Redder, Todd M.
Wolfe, John R.
Seaman, John
TI Environmental impact of ongoing sources of metal contamination on
remediated sediments
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Metals; Passive caps; Active caps; Remediated sediment; Bioavailability;
Re-contamination
ID SEQUESTERING AGENTS; AQUEOUS-SOLUTION; BIOAVAILABILITY
AB A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. (c) 2016 Elsevier B.V. All rights reserved.
C1 [Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.] Savannah River Natl Lab, Aiken, SC 29808 USA.
[Redder, Todd M.; Wolfe, John R.] LimnoTech, Ann Arbor, MI 48108 USA.
[Seaman, John] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
RP Knox, AS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA.
EM anna.knox@srn.doe.gov; michael.paller@srnl.doe.gov;
charles.milliken@srnl.doe.gov; tredder@limno.com; jwolfe@limno.com;
seaman@srel.uga.edu
FU DoD Strategic Environmental Research and Development Program (SERDP) [ER
2427]; U.S. Department of Energy [DE-AC09-798861048]
FX This work was sponsored by the DoD Strategic Environmental Research and
Development Program (SERDP) under project ER 2427. The SRNL is operated
by Savannah River Nuclear Solutions, LLC for the U.S. Department of
Energy under Contract DE-AC09-798861048.
NR 33
TC 2
Z9 2
U1 16
U2 44
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD SEP 1
PY 2016
VL 563
BP 108
EP 117
DI 10.1016/j.scitotenv.2016.04.050
PG 10
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DO4ZG
UT WOS:000377792800012
PM 27135572
ER
PT J
AU Kenwell, A
Navarre-Sitchler, A
Prugue, R
Spear, JR
Hering, AS
Maxwell, RM
Carroll, RH
Williams, KH
AF Kenwell, Amy
Navarre-Sitchler, Alexis
Prugue, Rodrigo
Spear, John R.
Hering, Amanda S.
Maxwell, Reed M.
Carroll, RosemaryW. H.
Williams, Kenneth H.
TI Using geochemical indicators to distinguish high biogeochemical activity
in floodplain soils and sediments
SO SCIENCE OF THE TOTAL ENVIRONMENT
LA English
DT Article
DE Microbial DNA; Extractable metals; Floodplain geochemistry
ID LARGE RIVER FLOODPLAIN; REACTIVE TRANSPORT; DENITRIFYING BACTERIA;
ORGANIC-CARBON; RIPARIAN ZONE; FIELD-SCALE; DENITRIFICATION; PCR;
HETEROGENEITY; TRANSFORMATIONS
AB A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial "hotspots") in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Kenwell, Amy; Navarre-Sitchler, Alexis; Prugue, Rodrigo; Maxwell, Reed M.] Colorado Sch Mines, Hydrol Sci & Engn Program, 1500 Illinois St, Golden, CO 80401 USA.
[Spear, John R.] Colorado Sch Mines, Dept Civil & Environm Engn, 1500 Illinois St, Golden, CO 80401 USA.
[Hering, Amanda S.] Colorado Sch Mines, Dept Appl Math & Stat, 1500 Illinois St, Golden, CO 80401 USA.
[Carroll, RosemaryW. H.] Desert Res Inst, Div Hydrol Sci, 2215 Raggio Pkwy, Reno, NV 89512 USA.
[Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Navarre-Sitchler, A (reprint author), Colorado Sch Mines, Hydrol Sci & Engn Program, 1500 Illinois St, Golden, CO 80401 USA.
EM asitchle@mines.edu
RI Navarre-Sitchler, Alexis/J-3389-2014; Williams, Kenneth/O-5181-2014
OI Williams, Kenneth/0000-0002-3568-1155
FU Subsurface Science Scientific Focus Area at Lawrence Berkeley National
Laboratory - U.S. Department of Energy, Office of Science, Office of
Biological and Environmental Research [DE-737 AC02-05CH11231]; Natural
Sciences and Engineering Research Council of Canada (NSERC); Marathon
Oil Corporation
FX This material is based upon work supported as part of the Subsurface
Science Scientific Focus Area at Lawrence Berkeley National Laboratory
funded by the U.S. Department of Energy, Office of Science, Office of
Biological and Environmental Research under Award Number DE-737
AC02-05CH11231. A. Kenwell was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and R. Prugue was
supported by the Marathon Oil Corporation through student fellowships.
We thank four anonymous reviewers whose comments greatly improved the
manuscript.
NR 38
TC 0
Z9 0
U1 17
U2 54
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0048-9697
EI 1879-1026
J9 SCI TOTAL ENVIRON
JI Sci. Total Environ.
PD SEP 1
PY 2016
VL 563
BP 386
EP 395
DI 10.1016/j.scitotenv.2016.04.014
PG 10
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DO4ZG
UT WOS:000377792800041
PM 27145490
ER
PT J
AU Shin, Y
Liu, W
Schwenzer, B
Manandhar, S
Chase-Woods, D
Engelhard, MH
Devanathan, R
Fifield, LS
Bennett, WD
Ginovska, B
Gotthold, DW
AF Shin, Yongsoon
Liu, Wei
Schwenzer, Birgit
Manandhar, Sandeep
Chase-Woods, Dylan
Engelhard, Mark H.
Devanathan, Ram
Fifield, Leonard S.
Bennett, Wendy D.
Ginovska, Bojana
Gotthold, David W.
TI Graphene oxide membranes with high permeability and selectivity for
dehumidification of air
SO CARBON
LA English
DT Article
ID POLY(BUTYLENE TEREPHTHALATE); BLOCK-COPOLYMERS; GAS SEPARATION;
WATER-VAPOR; ENERGY; PERMEATION; BEHAVIOR; SYSTEM; SHEETS
AB Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of freestanding GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N-2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 10(5) Barrer and a water vapor permeance of 1.01 x 10(-5) mol/m(2)sPa, while the nitrogen permeability was below the system's detection limit, yielding a selectivity >10(4) in 80% relative humidity (RH) air at 30.8 degrees C. The results show great potential for a range of energy conversion and environmental applications. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Shin, Yongsoon; Schwenzer, Birgit; Ginovska, Bojana] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
[Liu, Wei; Chase-Woods, Dylan; Devanathan, Ram; Fifield, Leonard S.; Bennett, Wendy D.; Gotthold, David W.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
[Manandhar, Sandeep; Engelhard, Mark H.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
[Manandhar, Sandeep] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA.
[Chase-Woods, Dylan] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
RP Gotthold, DW (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
EM david.gotthold@pnnl.gov
OI Devanathan, Ram/0000-0001-8125-4237; Manandhar,
Sandeep/0000-0001-8613-5317
FU DOE's Office of Biological and Environmental Research (BER) at PNNL
FX The research described in this paper is part of the Materials Synthesis,
Simulation, and across the Scale (MS3) Initiative at Pacific
Northwest National Laboratory (PNNL). It was conducted under the
Laboratory Directed Research and Development Program at PNNL, a
multi-program national laboratory operated by Battelle for the U.S.
Department of Energy. A portion of the research was performed using the
Environmental Molecular Sciences Laboratory (EMSL)
(http://www.emsl.pnl.gov; user proposal #48749), a national scientific
user facility sponsored by the DOE's Office of Biological and
Environmental Research (BER) and located at PNNL.
NR 30
TC 2
Z9 2
U1 18
U2 61
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
EI 1873-3891
J9 CARBON
JI Carbon
PD SEP
PY 2016
VL 106
BP 164
EP 170
DI 10.1016/j.carbon.2016.05.023
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA DO1NI
UT WOS:000377544900020
ER
PT J
AU Melaet, G
Ralston, WT
Liu, WC
Somorjai, GA
AF Melaet, Gerome
Ralston, Walter T.
Liu, Wen-Chi
Somorjai, Gabor A.
TI Product distribution change in the early stages of carbon monoxide
hydrogenation over cobalt magnesium Fischer-Tropsch catalyst
SO CATALYSIS TODAY
LA English
DT Article; Proceedings Paper
CT 249th ACS National Meeting and Exposition
CY MAR 22-26, 2015
CL Denver, CO
DE Fischer-Tropsch synthesis; CO hydrogenation; Cobalt; Transient
experiments; Time-resolved; Temporal analysis of products
ID PARTICLE-SIZE; TRANSIENT KINETICS; CO HYDROGENATION; SYNTHESIS GAS
AB The catalytic hydrogenation of carbon monoxide, known as the Fischer-Tropsch process, is a technologically important, complex multipath reaction which produces long chain hydrocarbons. In order to access the initial kinetics and the mechanism, we developed a reactor that provides information under non-steady state conditions. We tested a CoMgO catalyst and monitored the initial product formation within 2 s of exposure to CO as well as the time dependence of high molecular weight products (in a 60 s window) and found drastic changes in the product selectivity. The probability for forming branched isomers (C-4 and C-5) peaks in the first 25 s, and within that time frame no unsaturated products were detected. The subsequent decline (at 35 to 40 s) of branched isomers coincides with the detection of olefins (from C-2 to C-5) and the change in carbon coverage at the surface of the catalyst. This indicates a change in the reaction pathway. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Melaet, Gerome; Ralston, Walter T.; Liu, Wen-Chi; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Ralston, Walter T.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Melaet, Gerome; Liu, Wen-Chi; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM Somorjai@berkeley.edu
OI Liu, Wen-Chi/0000-0002-0810-9014
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Chemical Sciences, Geosciences, and Biosciences Division
[DE-AC02-05CH11231]
FX The present paper was submitted in honor of Dr. Jens Rostrup-Nielsen.
The authors want to thank the Molecular Foundry of the Lawrence National
Laboratory for the help in the SEM and EDS (Proposal #3806). This work
was supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and
Biosciences Division under Contract DE-AC02-05CH11231
NR 18
TC 0
Z9 0
U1 13
U2 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
EI 1873-4308
J9 CATAL TODAY
JI Catal. Today
PD SEP 1
PY 2016
VL 272
BP 69
EP 73
DI 10.1016/j.cattod.2016.03.027
PG 5
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA DN9GA
UT WOS:000377386300011
ER
PT J
AU Dorier, M
Yildiz, O
Ibrahim, S
Orgerie, AC
Antoniu, G
AF Dorier, Matthieu
Yildiz, Orcun
Ibrahim, Shadi
Orgerie, Anne-Cecile
Antoniu, Gabriel
TI On the energy footprint of I/O management in Exascale HPC systems
SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
LA English
DT Article
DE Exascale computing; Energy; I/O; Dedicated cores; Dedicated nodes;
Damaris
AB The advent of unprecedentedly scalable yet energy hungry Exascale supercomputers poses a major challenge in sustaining a high performance-per-watt ratio. With I/O management acquiring a crucial role in supporting scientific simulations, various I/O management approaches have been proposed to achieve high performance and scalability. However, the details of how these approaches affect energy consumption have not been studied yet. Therefore, this paper aims to explore how much energy a supercomputer consumes while running scientific simulations when adopting various I/O management approaches. In particular, we closely examine three radically different I/O schemes including time partitioning, dedicated cores, and dedicated nodes. To do so, we implement the three approaches within the Damaris I/O middleware and perform extensive experiments with one of the target HPC applications of the Blue Waters sustained-petaflop supercomputer project: the CM1 atmospheric model. Our experimental results obtained on the French Grid'5000 platform highlight the differences among these three approaches and illustrate in which way various configurations of the application and of the system can impact performance and energy consumption. Moreover, we propose and validate a mathematical model that estimates the energy consumption of a HPC simulation under different I/O approaches. Our proposed model gives hints to pre-select the most energy-efficient I/O approach for a particular simulation on a particular HPC system and therefore provides a step towards energy-efficient HPC simulations in Exascale systems. To the best of our knowledge, our work provides the first in-depth look into the energy-performance tradeoffs of I/O management approaches. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Dorier, Matthieu] ENS Rennes, IRISA, Rennes, France.
[Dorier, Matthieu] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Yildiz, Orcun; Ibrahim, Shadi; Antoniu, Gabriel] Inria Rennes Bretagne Atlantique, Rennes, France.
[Orgerie, Anne-Cecile] CNRS, IRISA, Rennes, France.
RP Ibrahim, S (reprint author), Inria Rennes Bretagne Atlantique, Rennes, France.
EM shadi.ibrahim@inria.fr
OI Dorier, Matthieu/0000-0001-9293-2021
NR 36
TC 0
Z9 0
U1 9
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-739X
EI 1872-7115
J9 FUTURE GENER COMP SY
JI Futur. Gener. Comp. Syst.
PD SEP
PY 2016
VL 62
BP 17
EP 28
DI 10.1016/j.future.2016.03.002
PG 12
WC Computer Science, Theory & Methods
SC Computer Science
GA DN8FZ
UT WOS:000377315900002
ER
PT J
AU Margolin, LG
AF Margolin, L. G.
TI A strain space framework for numerical hyperplasticity
SO MATHEMATICS AND COMPUTERS IN SIMULATION
LA English
DT Article
DE Numerical plasticity; Hyperplasticity; Wilkins' method
ID EULERIAN COMPUTING METHOD; PLASTICITY THEORY; HYPO-ELASTICITY; FLOW
SPEEDS; ENERGY
AB Numerical simulations of high strain rate plastic flow have historically been built in a hypoelastic framework and use radial return (Wilkins' method) as the solution algorithm. We show how each of these choices can lead to inaccurate and possibly nonconvergent results. We describe an alternative solution procedure based on a simple multiple time scale perturbation theory that is stable, accurate, computationally efficient and simple to implement. Further extension of these results then leads to a strain space formulation that has additional computational advantages. We illustrate our development with numerical experiments.
This paper is dedicated to my friend and colleague Christo Christov on the occasion of his 60th birthday, in recognition of his many important and creative contributions to the formulation of continuum mechanics. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
C1 [Margolin, L. G.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RP Margolin, LG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM len@lanl.gov
NR 23
TC 0
Z9 0
U1 3
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4754
EI 1872-7166
J9 MATH COMPUT SIMULAT
JI Math. Comput. Simul.
PD SEP
PY 2016
VL 127
SI SI
BP 178
EP 188
DI 10.1016/j.matcom.2012.06.016
PG 11
WC Computer Science, Interdisciplinary Applications; Computer Science,
Software Engineering; Mathematics, Applied
SC Computer Science; Mathematics
GA DM7BT
UT WOS:000376508600013
ER
PT J
AU Chong, XY
Kim, KJ
Li, EW
Zhang, YJ
Ohodnicki, PR
Chang, CH
Wang, AX
AF Chong, Xinyuan
Kim, Ki-Joong
Li, Erwen
Zhang, Yujing
Ohodnicki, Paul R.
Chang, Chih-Hung
Wang, Alan X.
TI Near-infrared absorption gas sensing with metal-organic framework on
optical fibers
SO SENSORS AND ACTUATORS B-CHEMICAL
LA English
DT Article
DE Infrared absorption; Fiber-optic sensors; Metal-organic; Framework; Gas
sensors
ID DRUG-DELIVERY; HYDROGEN STORAGE; WATER-VAPOR; CO2; ADSORPTION;
SEPARATION; SUBSTRATE; CATALYSIS; MIXTURES; REMOVAL
AB Despite significant advantages in terms of portability and cost, near-infrared (NIR) gas sensing still remains a great challenge due to its relatively weak overtone absorption from the fundamental vibrational bond absorption at the mid-IR frequency. In this paper, we demonstrated ultra-sensitive NIR gas sensing for carbon dioxide (CO2) at 1.57 mu m wavelength through nanoporous Cu-BTC (BTC = benzene-1,3,5-tricarboxylate) metal-organic framework (MOF) coated single-mode optical fiber. For the first time, we obtained high-resolution NIR spectroscopy of CO2 sorbed in MOF without seeing any rotational side band, indicating that the tightly confined gas molecules in the MOF pores do not have any freedom of rotation. Real-time measurement of the mixed gas flow of CO2 and Ar showed different response time depending on the concentration of CO2, which is attributed to the complex sorption mechanism of CO2 in Cu-BTC MOF. Most importantly, we realized ultra-low detection limit of CO2 (<20 ppm) with only 5 cm long Cu-BTC MOF thin film coated on single-mode optical fibers. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Chong, Xinyuan; Li, Erwen; Wang, Alan X.] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA.
[Kim, Ki-Joong; Zhang, Yujing; Chang, Chih-Hung] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA.
[Ohodnicki, Paul R.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Ohodnicki, Paul R.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA.
RP Wang, AX (reprint author), Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA.
EM wang@eecs.oregonstate.edu
FU National Energy Technology Laboratory's (NETL) [DE-FE0004000]; National
Science Foundation [1449383]; Graduate Student Fellowship from NETL
FX This technical effort was performed in support of the National Energy
Technology Laboratory's (NETL) research under the RES contract
DE-FE0004000 and the National Science Foundation under grant No.
1449383. Xinyuan Chong and Yujing Zhang are sponsored by the Graduate
Student Fellowship from NETL.
NR 50
TC 1
Z9 1
U1 57
U2 158
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-4005
J9 SENSOR ACTUAT B-CHEM
JI Sens. Actuator B-Chem.
PD SEP
PY 2016
VL 232
BP 43
EP 51
DI 10.1016/j.snb.2016.03.135
PG 9
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA DL2RO
UT WOS:000375483000006
ER
PT J
AU Wang, PB
Lu, XN
Yang, X
Wang, W
Xu, DG
AF Wang, Panbao
Lu, Xiaonan
Yang, Xu
Wang, Wei
Xu, Dianguo
TI An Improved Distributed Secondary Control Method for DC Microgrids With
Enhanced Dynamic Current Sharing Performance
SO IEEE TRANSACTIONS ON POWER ELECTRONICS
LA English
DT Article
DE Current sharing; dc microgrid (MG); droop control; low-bandwidth
communication (LBC); secondary control
ID ADAPTIVE DROOP CONTROL; HIERARCHICAL CONTROL; CONTROL STRATEGY;
DECENTRALIZED CONTROL; VOLTAGE; MANAGEMENT; SYSTEMS; COMMUNICATION;
CONVERTERS; DESIGN
AB This paper proposes an improved distributed secondary control scheme for dc microgrids (MGs), aiming at overcoming the drawbacks of conventional droop control method. The proposed secondary control scheme can remove the dc voltage deviation and improve the current sharing accuracy by using voltage-shifting and slope-adjusting approaches simultaneously. Meanwhile, the average value of droop coefficients is calculated, and then it is controlled by an additional controller included in the distributed secondary control layer to ensure that each droop coefficient converges at a reasonable value. Hence, by adjusting the droop coefficient, each participating converter has equal output impedance, and the accurate proportional load current sharing can be achieved with different line resistances. Furthermore, the current sharing performance in steady and transient states can be enhanced by using the proposed method. The effectiveness of the proposed method is verified by detailed experimental tests based on a 3 x 1 kW prototype with three interface converters.
C1 [Wang, Panbao; Yang, Xu; Wang, Wei; Xu, Dianguo] Harbin Inst Technol, Dept Elect Engn, Harbin 150001, Peoples R China.
[Lu, Xiaonan] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
RP Wang, PB; Yang, X; Wang, W; Xu, DG (reprint author), Harbin Inst Technol, Dept Elect Engn, Harbin 150001, Peoples R China.; Lu, XN (reprint author), Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
EM wangpanbao@hit.edu.cn; primerxu@aol.com; xiaonan.lu@anl.gov;
wangwei602@hit.edu.cn; xudiang@hit.edu.cn
FU National Nature Science Foundation of China [51477033]
FX This work was supported by the National Nature Science Foundation of
China ( 51477033). Recommended for publication by Associate Editor S.
Mazumder.
NR 39
TC 3
Z9 4
U1 8
U2 40
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8993
EI 1941-0107
J9 IEEE T POWER ELECTR
JI IEEE Trans. Power Electron.
PD SEP
PY 2016
VL 31
IS 9
BP 6658
EP 6673
DI 10.1109/TPEL.2015.2499310
PG 16
WC Engineering, Electrical & Electronic
SC Engineering
GA DH9FM
UT WOS:000373101800056
ER
PT J
AU Cuevas-Maraver, J
Kevrekidis, PG
Saxena, A
Cooper, F
Khare, A
Comech, A
Bender, CM
AF Cuevas-Maraver, Jesus
Kevrekidis, Panayotis G.
Saxena, Avadh
Cooper, Fred
Khare, Avinash
Comech, Andrew
Bender, Carl M.
TI Solitary Waves of a PT-Symmetric Nonlinear Dirac Equation
SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS
LA English
DT Article
DE Nonlinear dynamical systems; nonlinear differential equations;
bifurcation
ID FIELD-THEORIES; LINEAR INSTABILITY; STABILITY; ENERGY
AB In this study we consider we consider a prototypical example of a PT-symmetric Dirac model. We discuss the underlying linear limit of the model and identify the threshold of the PT-phase transition in an analytical form. We then focus on the examination of the nonlinear model. We consider the continuation in the PT-symmetric model of the solutions of the corresponding Hamiltonianmodel and find that the solutions can be continued robustly as stable ones all the way up to thePT-transition threshold. In the latter, they degenerate into linearwaves. We also examine the dynamics of the model. Given the stability of the waveforms in the PT-exact phase, we consider them as initial conditions for parameters outside of that phase. We find that both oscillatory dynamics and exponential growth may arise, depending on the size of the corresponding " quench". The former can be characterized by an interesting form of bifrequency solutions that have been predicted on the basis of the SU(1, 1) symmetry. Finally, we explore some special, analytically tractable, but not PT-symmetric solutions in the massless limit of the model.
C1 [Cuevas-Maraver, Jesus] Univ Seville, Dept Fis Aplicada 1, Nonlinear Phys Grp, Escuela Politecn Super, Seville 41011, Spain.
[Cuevas-Maraver, Jesus] Univ Seville, Inst Matemat, IMUS, E-41012 Seville, Spain.
[Kevrekidis, Panayotis G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA.
[Kevrekidis, Panayotis G.; Saxena, Avadh; Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Kevrekidis, Panayotis G.; Saxena, Avadh; Cooper, Fred] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA.
[Khare, Avinash] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India.
[Comech, Andrew] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA.
[Comech, Andrew] Inst Informat Transmiss Problems, Moscow 127994, Russia.
[Bender, Carl M.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
RP Cuevas-Maraver, J (reprint author), Univ Seville, Dept Fis Aplicada 1, Nonlinear Phys Grp, Escuela Politecn Super, Seville 41011, Spain.
EM jcuevas@us.es; kevrekid@math.umass.edu; avadh@lanl.gov;
fredcath@earthlink.net; khare@physics.unipune.ac.in;
comech@math.tamu.edu; cmb@wuphys.wustl.edu
RI Cuevas-Maraver, Jesus/A-1255-2008
OI Cuevas-Maraver, Jesus/0000-0002-7162-5759
FU Indian National Science Academy (INSA); Center for Non Linear Studies;
Los Alamos National Laboratory
FX A. Khare wishes to thank Indian National Science Academy (INSA) for the
award of INSA Senior Scientist Position. P.G. Kevrekidis gratefully
acknowledges the hospitality and support of the Center for Non Linear
Studies and the Los Alamos National Laboratory.
NR 47
TC 1
Z9 1
U1 2
U2 64
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1077-260X
EI 1558-4542
J9 IEEE J SEL TOP QUANT
JI IEEE J. Sel. Top. Quantum Electron.
PD SEP-OCT
PY 2016
VL 22
IS 5
AR 5000109
DI 10.1109/JSTQE.2015.2485607
PG 9
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA CY8OE
UT WOS:000366667400001
ER
PT J
AU Favaro, M
Jeong, B
Ross, PN
Yano, J
Hussain, Z
Liu, Z
Crumlin, EJ
AF Favaro, Marco
Jeong, Beomgyun
Ross, Philip N.
Yano, Junko
Hussain, Zahid
Liu, Zhi
Crumlin, Ethan J.
TI Unravelling the electrochemical double layer by direct probing of the
solid/liquid interface
SO NATURE COMMUNICATIONS
LA English
DT Article
ID RAY PHOTOELECTRON-SPECTROSCOPY; ELECTRICAL DOUBLE-LAYER;
WATER-MOLECULES; ABSORPTION SPECTROSCOPY; OXYGEN REDUCTION; LIQUID
INTERFACE; SURFACE SCIENCE; STERN LAYER; ELECTRODES; ELECTROCATALYSIS
AB The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.
C1 [Favaro, Marco; Jeong, Beomgyun; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.] Lawrence Berkeley Natl Lab, Adv Light Source, One Cyclotron Rd, Berkeley, CA 94720 USA.
[Favaro, Marco; Yano, Junko] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, One Cyclotron Rd, Berkeley, CA 94720 USA.
[Favaro, Marco] Lawrence Berkeley Natl Lab, Div Chem Sci, One Cyclotron Rd, Berkeley, CA 94720 USA.
[Jeong, Beomgyun] Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Ertl Ctr Electrochem & Catalysis, Gwangju 500712, South Korea.
[Jeong, Beomgyun] Gwangju Inst Sci & Technol, Ctr Adv Xray Sci, Gwangju 500712, South Korea.
[Ross, Philip N.] Lawrence Berkeley Natl Lab, Div Mat Sci, One Cyclotron Rd, Berkeley, CA 94720 USA.
[Yano, Junko] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, One Cyclotron Rd, Berkeley, CA 94720 USA.
[Liu, Zhi] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China.
[Liu, Zhi] ShanghaiTech Univ, Sch Phys Sci & Technol, Div Photon Sci & Condensed Matter Phys, Shanghai 200031, Peoples R China.
[Crumlin, Ethan J.] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, One Cyclotron Rd, Berkeley, CA 94720 USA.
RP Liu, Z; Crumlin, EJ (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, One Cyclotron Rd, Berkeley, CA 94720 USA.; Liu, Z (reprint author), Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China.; Liu, Z (reprint author), ShanghaiTech Univ, Sch Phys Sci & Technol, Div Photon Sci & Condensed Matter Phys, Shanghai 200031, Peoples R China.; Crumlin, EJ (reprint author), Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, One Cyclotron Rd, Berkeley, CA 94720 USA.
EM zliu2@mail.sim.ac.cn; ejcrumlin@lbl.gov
RI Liu, Zhi/B-3642-2009;
OI Liu, Zhi/0000-0002-8973-6561; Favaro, Marco/0000-0002-3502-8332
FU Office of Science, Office of Basic Energy Science (BES), of the U.S.
Department of Energy (DOE) [DE-SC0004993]; Joint Center for Energy
Storage Research (JCESR), DOE Energy Innovation Hubs; Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]; National Natural Science Foundation of China
[11227902]; CAS-Shanghai Science Research Center [CAS-SSRC-YH-2015-01]
FX This work was supported through the Office of Science, Office of Basic
Energy Science (BES), of the U.S. Department of Energy (DOE) under award
no. DE-SC0004993 to the Joint Center for Artificial Photosynthesis
(JCAP) and as part of the Joint Center for Energy Storage Research
(JCESR), DOE Energy Innovation Hubs.; The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.; Z.L. thanks the support from National Natural
Science Foundation of China under Contract No. 11227902. This work was
also partially supported by CAS-Shanghai Science Research Center, Grant
No.: CAS-SSRC-YH-2015-01.
NR 55
TC 3
Z9 3
U1 22
U2 22
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD AUG 31
PY 2016
VL 7
AR 12695
DI 10.1038/ncomms12695
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EH6KI
UT WOS:000391881500001
PM 27576762
ER
PT J
AU Stone, G
Ophus, C
Birol, T
Ciston, J
Lee, CH
Wang, K
Fennie, CJ
Schlom, DG
Alem, N
Gopalan, V
AF Stone, Greg
Ophus, Colin
Birol, Turan
Ciston, Jim
Lee, Che-Hui
Wang, Ke
Fennie, Craig J.
Schlom, Darrell G.
Alem, Nasim
Gopalan, Venkatraman
TI Atomic scale imaging of competing polar states in a Ruddlesden-Popper
layered oxide
SO NATURE COMMUNICATIONS
LA English
DT Article
ID BILBAO CRYSTALLOGRAPHIC SERVER; TOTAL-ENERGY CALCULATIONS;
AUGMENTED-WAVE METHOD; GIANT MAGNETORESISTANCE; COMPLEX OXIDES;
BASIS-SET; PEROVSKITES; INTERFACES; CHEMISTRY; HETEROSTRUCTURES
AB Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), A(n+1)BnO(3n+1), thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Angstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.
C1 [Stone, Greg; Lee, Che-Hui; Alem, Nasim; Gopalan, Venkatraman] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Stone, Greg; Lee, Che-Hui; Alem, Nasim; Gopalan, Venkatraman] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
[Ophus, Colin; Ciston, Jim] Lawrence Berkeley Natl Lab, Natl Ctr Elect Microscopy Mol Foundry, Berkeley, CA 94720 USA.
[Birol, Turan] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA.
[Lee, Che-Hui; Schlom, Darrell G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA.
[Wang, Ke] Penn State Univ, Mat Res Inst, Mat Characterizat Lab, University Pk, PA 16802 USA.
[Fennie, Craig J.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA.
[Schlom, Darrell G.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA.
RP Gopalan, V (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.; Gopalan, V (reprint author), Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
EM vgopalan@psu.edu
RI Birol, Turan/D-1948-2012
OI Birol, Turan/0000-0001-5174-3320
FU Center for Nanoscale Science, a National Science Foundation center
[DMR-1420620]; NSF [DMR-1210588, DMR-1056441]; Office of Science, Office
of Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]; Rutgers Center for Materials Theory
FX G.S., C.-H.L., D.G.S., V.G. and N.A. were primarily supported by the
Center for Nanoscale Science, a National Science Foundation center
through Grant number DMR-1420620. G.S. and V.G. also received partial
support from NSF Grant number DMR-1210588. Work at the Molecular Foundry
was supported by the Office of Science, Office of Basic Energy Sciences,
of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231.
T.B. was supported by the Rutgers Center for Materials Theory. C.J.F.
acknowledges support from the NSF Grant number DMR-1056441. We would
like to thank Marissa Libbee for her helpful guidance preparing TEM
samples. We would also like to thank Roman Engel-Herbert for useful
discussions and Haiying Wang with sample prep.
NR 47
TC 0
Z9 0
U1 14
U2 14
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD AUG 31
PY 2016
VL 7
AR 12572
DI 10.1038/ncomms12572
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EH6GD
UT WOS:000391870000001
PM 27578622
ER
PT J
AU Yang, Y
Yang, MJ
Zhu, K
Johnson, JC
Berry, JJ
van de Lagemaat, J
Beard, MC
AF Yang, Ye
Yang, Mengjin
Zhu, Kai
Johnson, Justin C.
Berry, Joseph J.
van de lagemaat, Jao
Beard, Matthew C.
TI Large polarization-dependent exciton optical Stark effect in lead iodide
perovskites
SO NATURE COMMUNICATIONS
LA English
DT Article
ID SEMICONDUCTOR-LASER; QUANTUM-DOT; SPIN
AB A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.
C1 [Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de lagemaat, Jao; Beard, Matthew C.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.
RP Yang, Y; Beard, MC (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.
EM ye.yang@nrel.gov; matt.beard@nrel.gov
OI BEARD, MATTHEW/0000-0002-2711-1355; Yang, Mengjin/0000-0003-2019-4298
FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences of the US Department of Energy through the Solar
Photochemistry programme [DE-AC36-08GO28308]; US Department of Energy,
Office of Energy Efficiency and Renewable Energy, Solar Energy
Technologies Office
FX This work was supported by the Division of Chemical Sciences,
Geosciences, and Biosciences, Office of Basic Energy Sciences of the US
Department of Energy through the Solar Photochemistry programme under
contract DE-AC36-08GO28308 to the National Renewable Energy Laboratory,
Golden, Colorado. Perovskite films were supplied from the Hybrid
Perovskite Solar Cell program of the National Center for Photovoltaics
funded by the US Department of Energy, Office of Energy Efficiency and
Renewable Energy, Solar Energy Technologies Office.
NR 33
TC 1
Z9 1
U1 4
U2 4
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD AUG 31
PY 2016
VL 7
AR 12613
DI 10.1038/ncomms12613
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EH6GW
UT WOS:000391872000001
PM 27577007
ER
PT J
AU Zhang, WG
Mao, JH
Zhu, W
Jain, AK
Liu, K
Brown, JB
Karpen, GH
AF Zhang, Weiguo
Mao, Jian-Hua
Zhu, Wei
Jain, Anshu K.
Liu, Ke
Brown, James B.
Karpen, Gary H.
TI Centromere and kinetochore gene misexpression predicts cancer patient
survival and response to radiotherapy and chemotherapy
SO NATURE COMMUNICATIONS
LA English
DT Article
ID CELL LUNG-CANCER; CENP-A; BREAST-CANCER; CHROMOSOMAL INSTABILITY;
ADJUVANT CHEMOTHERAPY; GENOMIC INSTABILITY; MITOTIC CHECKPOINT;
DRUG-SENSITIVITY; DNA-DAMAGE; ANEUPLOIDY
AB Chromosomal instability (CIN) is a hallmark of cancer that contributes to tumour heterogeneity and other malignant properties. Aberrant centromere and kinetochore function causes CIN through chromosome missegregation, leading to aneuploidy, rearrangements and micronucleus formation. Here we develop a Centromere and kinetochore gene Expression Score (CES) signature that quantifies the centromere and kinetochore gene misexpression in cancers. High CES values correlate with increased levels of genomic instability and several specific adverse tumour properties, and prognosticate poor patient survival for breast and lung cancers, especially early-stage tumours. They also signify high levels of genomic instability that sensitize cancer cells to additional genotoxicity. Thus, the CES signature forecasts patient response to adjuvant chemotherapy or radiotherapy. Our results demonstrate the prognostic and predictive power of the CES, suggest a role for centromere misregulation in cancer progression, and support the idea that tumours with extremely high CIN are less tolerant to specific genotoxic therapies.
C1 [Zhang, Weiguo; Mao, Jian-Hua; Karpen, Gary H.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, One Cyclotron Rd,Mailstop 977, Berkeley, CA 94720 USA.
[Zhang, Weiguo; Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Zhu, Wei] Cellular Biomed Grp Inc, Dept Translat Bioinformat, Level 5,Bldg 1,333 Guiping Rd, Shanghai 200233, Peoples R China.
[Jain, Anshu K.] Yale Univ, Dept Therapeut Radiol, Yale Sch Med, New Haven, CT 06510 USA.
[Jain, Anshu K.] Ashland Bellefonte Canc Ctr, 122 St Christopher Dr, Ashland, KY 41101 USA.
[Liu, Ke; Brown, James B.] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, One Cyclotron Rd,Mailstop 977, Berkeley, CA 94720 USA.
[Liu, Ke; Brown, James B.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA.
[Brown, James B.] Univ Birmingham, Dept Environm Bioinformat, Birmingham B15 2TT, W Midlands, England.
RP Karpen, GH (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, One Cyclotron Rd,Mailstop 977, Berkeley, CA 94720 USA.; Karpen, GH (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Zhu, W (reprint author), Cellular Biomed Grp Inc, Dept Translat Bioinformat, Level 5,Bldg 1,333 Guiping Rd, Shanghai 200233, Peoples R China.
EM wzhang2@lbl.gov; ghkarpen@lbl.gov
FU NIH [R01 GM066272, GM119011, CA116481]
FX We are grateful to members of the Karpen lab and Dr Hao Tang for
critical reading of the manuscript, Ms Hannah K. Connolly from the UCSF
breast cancer SPORE for her enthusiastic support and Mr Kevin Peet for
editorial assistance. We thank Dr Joe Gray for the breast cancer data
set with radiotherapy information, Drs Hao Tang and Yang Xie for
normalized GSE42127 data set, Dr K.J. Gao for neo-therapy data
associated with GSE20685, and Dr Balazs Gyorffy for technical assistance
on K-M Plotter database. We thank TCGA, Broad Institute, Cancer Genome
Project at Sanger Institute and K-M Plotter for maintaining critical
public databases and services. We apologize to numerous colleagues in
the centromere and kinetochore field for being unable to cite many
important papers due to space limitations. This work was supported by
NIH grants R01 GM066272 and GM119011 (G.H.K.) and CA116481 (J.-H.M.).
NR 80
TC 0
Z9 0
U1 0
U2 0
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD AUG 31
PY 2016
VL 7
AR 12619
DI 10.1038/ncomms12619
PG 15
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EH6GY
UT WOS:000391872200001
PM 27577169
ER
PT J
AU Gallis, MA
Koehler, TP
Torczynski, JR
Plimpton, SJ
AF Gallis, M. A.
Koehler, T. P.
Torczynski, J. R.
Plimpton, S. J.
TI Direct simulation Monte Carlo investigation of the Rayleigh-Taylor
instability
SO PHYSICAL REVIEW FLUIDS
LA English
DT Article
ID GAS-FLOWS; FLUIDS; TRANSITION; TURBULENCE; FUSION; GAIN
AB The Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters the self-similar regime, in agreement with experimental observations. For the conditions simulated, diffusion can influence the initial instability growth significantly.
C1 [Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA.
[Plimpton, S. J.] Sandia Natl Labs, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA.
RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA.
EM magalli@sandia.gov
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Sandia National Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. The authors
would like to thank Dr. D. J. Rader and Dr. S. N. Kempka of Sandia
National Laboratories and Professor D. I. Pullin of the California
Institute of Technology for many useful discussions and suggestions.
SPARTA is an open-source DSMC code available from Ref. [44].
NR 50
TC 2
Z9 2
U1 4
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-990X
J9 PHYS REV FLUIDS
JI Phys. Rev. Fluids
PD AUG 31
PY 2016
VL 1
IS 4
AR 043403
DI 10.1103/PhysRevFluids.1.043403
PG 20
WC Physics, Fluids & Plasmas
SC Physics
GA EF3IL
UT WOS:000390217900001
ER
PT J
AU Aaboud, M
Aad, G
Abbott, B
Abdallah, J
Abdinov, O
Abeloos, B
Aben, R
AbouZeid, OS
Abraham, NL
Abramowicz, H
Abreu, H
Abreu, R
Abulaiti, Y
Acharya, BS
Adamczyk, L
Adams, DL
Adelman, J
Adomeit, S
Adye, T
Affolder, AA
Agatonovic-Jovin, T
Agricola, J
Aguilar-Saavedra, JA
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Aring;kesson, TPA
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
Verzini, MJA
Aleksa, M
Aleksandrov, IN
Alexa, C
Alexander, G
Alexopoulos, T
Alhroob, M
Ali, B
Aliev, M
Alimonti, G
Alison, J
Alkire, SP
Allbrooke, BMM
Allen, BW
Allport, PP
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Alstaty, M
Gonzalez, BA
Piqueras, DA
Alviggi, MG
Amadio, BT
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Dos Santos, SPA
Amorim, A
Amoroso, S
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anders, JK
Anderson, KJ
Andreazza, A
Andrei, V
Angelidakis, S
Angelozzi, I
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, AV
Anjos, N
Annovi, A
Antel, C
Antonelli, M
Antonov, A
Anulli, F
Aoki, M
Bella, LA
Arabidze, G
Arai, Y
Araque, JP
Arce, ATH
Arduh, FA
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Armitage, LJ
Arnaez, O
Arnold, H
Arratia, M
Arslan, O
Artamonov, A
Artoni, G
Artz, S
Asai, S
Asbah, N
Ashkenazi, A
Aring;sman, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Augsten, K
Avolio, G
Axen, B
Ayoub, MK
Azuelos, G
Baak, MA
Baas, AE
Baca, MJ
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Bagiacchi, P
Bagnaia, P
Bai, Y
Baines, JT
Baker, OK
Baldin, EM
Balek, P
Balestri, T
Balli, F
Balunas, WK
Banas, E
Banerjee, S
Bannoura, AAE
Barak, L
Barberio, EL
Barberis, D
Barbero, M
Barillari, T
Barisits, MS
Barklow, T
Barlow, N
Barnes, SL
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Navarro, LB
Barreiro, F
da Costa, JBG
Bartoldus, R
Barton, AE
Bartos, P
Basalaev, A
Bassalat, A
Bates, RL
Batista, SJ
Batley, JR
Battaglia, M
Bauce, M
Bauer, F
Bawa, HS
Beacham, JB
Beattie, MD
Beau, T
Beauchemin, PH
Bechtle, P
Beck, HP
Becker, K
Becker, M
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bednyakov, VA
Bedognetti, M
Bee, CP
Beemster, LJ
Beermann, TA
Begel, M
Behr, JK
Belanger-Champagne, C
Bell, AS
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belotskiy, K
Beltramello, O
Belyaev, NL
Benary, O
Benchekroun, D
Bender, M
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Benitez, J
Benjamin, DP
Bensinger, JR
Bentvelsen, S
Beresford, L
Beretta, M
Berge, D
Kuutmann, EB
Berger, N
Beringer, J
Berlendis, S
Bernard, NR
Bernius, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertoli, G
Bertolucci, F
Bertram, IA
Bertsche, C
Bertsche, D
Besjes, GJ
Bylund, OB
Bessner, M
Besson, N
Betancourt, C
Bethani, A
Bethke, S
Bevan, AJ
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Biedermann, D
Bielski, R
Biesuz, NV
Biglietti, M
De Mendizabal, JB
Billoud, TRV
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Biondi, S
Bisanz, T
Bjergaard, DM
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Blunier, S
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Bock, C
Boehler, M
Boerner, D
Bogaerts, JA
Bogavac, D
Bogdanchikov, AG
Bohm, C
Boisvert, V
Bokan, P
Bold, T
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Bortfeldt, J
Bortoletto, D
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Sola, JDB
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Boutle, SK
Boveia, A
Boyd, J
Boyko, IR
Bracinik, J
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Madden, WDB
Brendlinger, K
Brennan, AJ
Brenner, L
Brenner, R
Bressler, S
Bristow, TM
Britton, D
Britzger, D
Brochu, FM
Brock, I
Brock, R
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Broughton, JH
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Bruni, A
Bruni, G
Bruni, LS
Brunt, BH
Bruschi, M
Bruscino, N
Bryant, P
Bryngemark, L
Buanes, T
Buat, Q
Buchholz, P
Buckley, AG
Budagov, IA
Buehrer, F
Bugge, MK
Bulekov, O
Bullock, D
Burckhart, H
Burdin, S
Burgard, CD
Burghgrave, B
Burka, K
Burke, S
Burmeister, I
Burr, JTP
Busato, E
Buscher, D
Buscher, V
Bussey, P
Butler, JM
Buttar, CM
Butterworth, JM
Butti, P
Buttinger, W
Buzatu, A
Buzykaev, AR
Urban, SC
Caforio, D
Cairo, VM
Cakir, O
Calace, N
Calafiura, P
Calandri, A
Calderini, G
Calfayan, P
Callea, G
Caloba, LP
Lopez, SC
Calvet, D
Calvet, S
Calvet, TP
Toro, RC
Camarda, S
Camarri, P
Cameron, D
Armadans, RC
Camincher, C
Campana, S
Campanelli, M
Camplani, A
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Carbone, RM
Cardarelli, R
Cardillo, F
Carli, I
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Casper, DW
Castaneda-Miranda, E
Castelijn, R
Castelli, A
Gimenez, VC
Castro, NF
Catinaccio, A
Catmore, JR
Cattai, A
Caudron, J
Cavaliere, V
Cavallaro, E
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Alberich, LC
Cerio, BC
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chan, SK
Chan, YL
Chang, P
Chapman, JD
Charlton, DG
Chatterjee, A
Chau, CC
Barajas, CAC
Che, S
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, K
Chen, S
Chen, S
Chen, X
Chen, Y
Cheng, HC
Cheng, HJ
Cheng, Y
Cheplakov, A
Cheremushkina, E
El Moursli, RC
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Chiarelli, G
Chiodini, G
Chisholm, AS
Chitan, A
Chizhov, MV
Choi, K
Chomont, AR
Chouridou, S
Chow, BKB
Christodoulou, V
Chromek-Burckhart, D
Chudoba, J
Chuinard, AJ
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Cinca, D
Cindro, V
Cioara, IA
Ciocca, C
Ciocio, A
Cirotto, F
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, BL
Clark, MR
Clark, PJ
Clarke, RN
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Colasurdo, L
Cole, B
Colijn, AP
Collot, J
Colombo, T
Compostella, G
Muino, PC
Coniavitis, E
Connell, SH
Connelly, IA
Consorti, V
Constantinescu, S
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cormier, KJR
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Crawley, SJ
Cree, G
Crepe-Renaudin, S
Crescioli, F
Cribbs, WA
Ortuzar, MC
Cristinziani, M
Croft, V
Crosetti, G
Cueto, A
Donszelmann, TC
Cummings, J
Curatolo, M
Cuth, J
Czirr, H
Czodrowski, P
D'amen, G
D'Auria, S
D'Onofrio, M
De Sousa, MJDS
Da Via, C
Dabrowski, W
Dado, T
Dai, T
Dale, O
Dallaire, F
Dallapiccola, C
Dam, M
Dandoy, JR
Dang, NP
Daniells, AC
Dann, NS
Danninger, M
Hoffmann, MD
Dao, V
Darbo, G
Darmora, S
Dassoulas, J
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, M
Davison, P
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Benedetti, A
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Maria, A
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dedovich, DV
Dehghanian, N
Deigaard, I
Del Gaudio, M
Del Peso, J
Del Prete, T
Delgove, D
Deliot, F
Delitzsch, CM
Dell'Acqua, A
Dell'Asta, L
Dell'Orso, M
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
DeMarco, DA
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Denysiuk, D
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Dette, K
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Clemente, WK
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Diaconu, C
Diamond, M
Dias, FA
Diaz, MA
Diehl, EB
Dietrich, J
Diglio, S
Dimitrievska, A
Dingfelder, J
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
Djuvsland, JI
do Vale, MAB
Dobos, D
Dobre, M
Doglioni, C
Dolejsi, J
Dolezal, Z
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova, MT
Doyle, AT
Drechsler, E
Dris, M
Du, Y
Duarte-Campderros, J
Duchovni, E
Duckeck, G
Ducu, OA
Duda, D
Dudarev, A
Dudder, AC
Duffield, EM
Duflot, L
Duhrssen, M
Dumancic, M
Dunford, M
Yildiz, HD
Duren, M
Durglishvili, A
Duschinger, D
Dutta, B
Dyndal, M
Eckardt, C
Ecker, KM
Edgar, RC
Edwards, NC
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
El Kacimi, M
Ellajosyula, V
Ellert, M
Elles, S
Ellinghaus, F
Elliot, AA
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Ennis, JS
Erdmann, J
Ereditato, A
Ernis, G
Ernst, J
Ernst, M
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Ezhilov, A
Fabbri, F
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farina, C
Farina, EM
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Giannelli, MF
Favareto, A
Fawcett, WJ
Fayard, L
Fedin, OL
Fedorko, W
Feigl, S
Feligioni, L
Feng, C
Feng, EJ
Feng, H
Fenyuk, AB
Feremenga, L
Martinez, PF
Perez, SF
Ferrando, J
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthaut, F
Fincke-Keeler, M
Finelli, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, A
Fischer, C
Fischer, J
Fisher, WC
Flaschel, N
Fleck, I
Fleischmann, P
Fletcher, GT
Fletcher, RRM
Flick, T
Floderus, A
Castillo, LRF
Flowerdew, MJ
Forcolin, GT
Formica, A
Forti, A
Foster, AG
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Francis, D
Franconi, L
Franklin, M
Frate, M
Fraternali, M
Freeborn, D
Fressard-Batraneanu, SM
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fusayasu, T
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gach, GP
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, LG
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gao, J
Gao, Y
Gao, YS
Walls, FMG
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Bravo, AG
Gasnikova, K
Gatti, C
Gaudiello, A
Gaudio, G
Gauthier, L
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Gecse, Z
Gee, CNP
Geich-Gimbel, C
Geisen, M
Geisler, MP
Gemme, C
Genest, MH
Geng, C
Gentile, S
Gentsos, C
George, S
Gerbaudo, D
Gershon, A
Ghasemi, S
Ghazlane, H
Ghneimat, M
Giacobbe, B
Giagu, S
Giannetti, P
Gibbard, B
Gibson, SM
Gignac, M
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giorgi, FM
Giorgi, FM
Giraud, PF
Giromini, P
Giugni, D
Giuli, F
Giuliani, C
Giulini, M
Gjelsten, K
Gkaitatzis, S
Gkialas, I
Gkougkousis, EL
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Goblirsch-Kolb, M
Godlewski, J
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Goncalo, R
Da Costa, JGPF
Gonella, G
Gonella, L
Gongadze, A
de la Hoz, SG
Parra, GG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gossling, C
Gostkin, MI
Goudet, CR
Goujdami, D
Goussiou, AG
Govender, N
Gozani, E
Graber, L
Grabowska-Bold, I
Gradin, POJ
Grafstrom, P
Gramling, J
Gramstad, E
Grancagnolo, S
Gratchev, V
Gravila, PM
Gray, HM
Graziani, E
Greenwood, ZD
Grefe, C
Gregersen, K
Gregor, IM
Grenier, P
Grevtsov, K
Griffiths, J
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grivaz, JF
Groh, S
Grohs, JP
Gross, E
Grosse-Knetter, J
Grossi, GC
Grout, ZJ
Guan, L
Guan, W
Guenther, J
Guescini, F
Guest, D
Gueta, O
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Guo, J
Guo, Y
Gupta, R
Gupta, S
Gustavino, G
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddad, N
Hadef, A
Hagebock, S
Hajduk, Z
Hakobyan, H
Haleem, M
Haley, J
Halladjian, G
Hallewell, GD
Hamacher, K
Hamal, P
Hamano, K
Hamilton, A
Hamity, GN
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Haney, B
Hanisch, S
Hanke, P
Hanna, R
Hansen, JB
Hansen, JD
Hansen, MC
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Hariri, F
Harkusha, S
Harrington, RD
Harrison, PF
Hartjes, F
Hartmann, NM
Hasegawa, M
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauser, R
Hauswald, L
Havranek, M
Hawkes, CM
Hawkings, RJ
Hayakawa, D
Hayden, D
Hays, CP
Hays, JM
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, JJ
Heinrich, L
Heinz, C
Hejbal, J
Helary, L
Hellman, S
Helsens, C
Henderson, J
Henderson, RCW
Heng, Y
Henkelmann, S
Correia, AMH
Henrot-Versille, S
Herbert, GH
Herget, V
Jimenez, YH
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hetherly, JW
Hickling, R
Higon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillier, SJ
Hinchliffe, I
Hines, E
Hinman, RR
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoenig, F
Hohn, D
Holmes, TR
Homann, M
Hong, TM
Hooberman, BH
Hopkins, WH
Horii, Y
Horton, AJ
Hostachy, JY
Hou, S
Hoummada, A
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hrynevich, A
Hsu, C
Hsu, PJ
Hsu, SC
Hu, D
Hu, Q
Hu, S
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Huo, P
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Ideal, E
Idrissi, Z
Iengo, P
Igonkina, O
Iizawa, T
Ikegami, Y
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Ince, T
Introzzi, G
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Ishijima, N
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ito, F
Ponce, JMI
Iuppa, R
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jabbar, S
Jackson, B
Jackson, P
Jain, V
Jakobi, KB
Jakobs, K
Jakobsen, S
Jakoubek, T
Jamin, DO
Jana, DK
Jansen, E
Jansky, R
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanneau, F
Jeanty, L
Jejelava, J
Jeng, GY
Jennens, D
Jenni, P
Jeske, C
Jezequel, S
Ji, H
Jia, J
Jiang, H
Jiang, Y
Jiggins, S
Pena, JJ
Jin, S
Jinaru, A
Jinnouchi, O
Johansson, P
Johns, KA
Johnson, WJ
Jon-And, K
Jones, G
Jones, RWL
Jones, S
Jones, TJ
Jongmanns, J
Jorge, PM
Jovicevic, J
Ju, X
Rozas, AJ
Kohler, MK
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kahn, SJ
Kaji, T
Kajomovitz, E
Kalderon, CW
Kaluza, A
Kama, S
Kamenshchikov, A
Kanaya, N
Kaneti, S
Kanjir, L
Kantserov, VA
Kanzaki, J
Kaplan, B
Kaplan, LS
Kapliy, A
Kar, D
Karakostas, K
Karamaoun, A
Karastathis, N
Kareem, MJ
Karentzos, E
Karnevskiy, M
Karpov, SN
Karpova, ZM
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kasahara, K
Kashif, L
Kass, RD
Kastanas, A
Kataoka, Y
Kato, C
Katre, A
Katzy, J
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazanin, VF
Keeler, R
Kehoe, R
Keller, JS
Kempster, JJ
Kentaro, K
Keoshkerian, H
Kepka, O
Kersevan, BP
Kersten, S
Keyes, RA
Khader, M
Khalil-zada, F
Khanov, A
Kharlamov, AG
Khoo, TJ
Khovanskiy, V
Khramov, E
Khubua, J
Kido, S
Kilby, CR
Kim, HY
Kim, SH
Kim, YK
Kimura, N
Kind, OM
King, BT
King, M
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kiuchi, K
Kivernyk, O
Kladiva, E
Klein, MH
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klioutchnikova, T
Kluge, EE
Kluit, P
Kluth, S
Knapik, J
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, A
Kobayashi, D
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koehler, NM
Koffas, T
Koffeman, E
Koi, T
Kolanoski, H
Kolb, M
Koletsou, I
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Kortner, O
Kortner, S
Kosek, T
Kostyukhin, VV
Kotwal, A
Kourkoumeli-Charalampidi, A
Kourkoumelis, C
Kouskoura, V
Kowalewska, AB
Kowalewski, R
Kowalski, TZ
Kozakai, C
Kozanecki, W
Kozhin, AS
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasny, MW
Krasznahorkay, A
Kravchenko, A
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Krizka, K
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Krumnack, N
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kucuk, H
Kuday, S
Kuechler, JT
Kuehn, S
Kugel, A
Kuger, F
Kuhl, A
Kuhl, T
Kukhtin, V
Kukla, R
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunigo, T
Kupco, A
Kurashige, H
Kurochkin, YA
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
Kwan, T
Kyriazopoulos, D
La Rosa, A
Navarro, JLLR
La Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Lammers, S
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lanfermann, MC
Lang, VS
Lange, JC
Lankford, AJ
Lanni, F
Lantzsch, K
Lanza, A
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Manghi, FL
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Lazovich, T
Lazzaroni, M
Le, B
Le Dortz, O
Le Guirriec, E
Le Quilleuc, EP
LeBlanc, M
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, SC
Lee, L
Lefebvre, B
Lefebvre, G
Lefebvre, M
Legger, F
Leggett, C
Lehan, A
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzi, B
Leone, R
Leone, S
Leonidopoulos, C
Leontsinis, S
Lerner, G
Leroy, C
Lesage, AAJ
Lester, CG
Levchenko, M
Leveque, J
Levin, D
Levinson, LJ
Levy, M
Lewis, D
Leyko, AM
Leyton, M
Li, B
Li, C
Li, H
Li, HL
Li, L
Li, L
Li, Q
Li, S
Li, X
Li, Y
Liang, Z
Liberti, B
Liblong, A
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limosani, A
Lin, SC
Lin, TH
Lindquist, BE
Lionti, AE
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, H
Liu, H
Liu, J
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, YL
Liu, Y
Livan, M
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loebinger, FK
Loevschall-Jensen, AE
Loew, KM
Loginov, A
Lohse, T
Lohwasser, K
Lokajicek, M
Long, BA
Long, JD
Long, RE
Longo, L
Looper, KA
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Solis, AL
Lorenz, J
Martinez, NL
Losada, M
Losel, PJ
Lou, X
Lounis, A
Love, J
Love, PA
Lu, H
Lu, N
Lubatti, HJ
Luci, C
Lucotte, A
Luedtke, C
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Luzi, PM
Lynn, D
Lysak, R
Lytken, E
Lyubushkin, V
Ma, H
Ma, LL
Ma, Y
Maccarrone, G
Macchiolo, A
Macdonald, CM
Macek, B
Miguens, JM
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeda, J
Maeland, S
Maeno, T
Maevskiy, A
Magradze, E
Mahlstedt, J
Maiani, C
Maidantchik, C
Maier, AA
Maier, T
Maio, A
Majewski, S
Makida, Y
Makovec, N
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyukov, S
Mamuzic, J
Mancini, G
Mandelli, B
Mandelli, L
Mandic, I
Maneira, J
de Andrade, LM
Ramos, JM
Mann, A
Manousos, A
Mansoulie, B
Mansour, JD
Mantifel, R
Mantoani, M
Manzoni, S
Mapelli, L
Marceca, G
March, L
Marchiori, G
Marcisovsky, M
Marjanovic, M
Marley, DE
Marroquim, F
Marsden, SP
Marshall, Z
Marti-Garcia, S
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, M
Outschoorn, VIM
Martin-Haugh, S
Martoiu, VS
Martyniuk, AC
Marx, M
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massa, L
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Mattig, P
Mattmann, J
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazza, SM
Mc Fadden, NC
Mc Goldrick, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McClymont, LI
McDonald, EF
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Melini, D
Garcia, BRM
Melo, M
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mergelmeyer, S
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Theenhausen, HMZ
Miano, F
Middleton, RP
Miglioranzi, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Milesi, M
Milic, A
Miller, DW
Mills, C
Milov, A
Milstead, DA
Minaenko, AA
Minami, Y
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mistry, KP
Mitani, T
Mitrevski, J
Mitsou, VA
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Mohapatra, S
Molander, S
Moles-Valls, R
Monden, R
Mondragon, MC
Monig, K
Monk, J
Monnier, E
Montalbano, A
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Morange, N
Moreno, D
Llacer, MM
Morettini, P
Mori, D
Mori, T
Morii, M
Morinaga, M
Morisbak, V
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Mortensen, SS
Morvaj, L
Mosidze, M
Moss, J
Motohashi, K
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mueller, F
Mueller, J
Mueller, RSP
Mueller, T
Muenstermann, D
Mullen, P
Mullier, GA
Sanchez, FJM
Quijada, JAM
Murray, WJ
Musheghyan, H
Muskinja, M
Myagkov, AG
Myska, M
Nachman, BP
Nackenhorst, O
Nagai, K
Nagai, R
Nagano, K
Nagasaka, Y
Nagata, K
Nagel, M
Nagy, E
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Garcia, RFN
Narayan, R
Villar, DIN
Naryshkin, I
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Negri, A
Negrini, M
Nektarijevic, S
Nellist, C
Nelson, A
Nemecek, S
Nemethy, P
Nepomuceno, A
Nessi, M
Neubauer, MS
Neumann, M
Neves, RM
Nevski, P
Newman, PR
Nguyen, DH
Manh, TN
Nickerson, RB
Nicolaidou, R
Nielsen, J
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolopoulos, K
Nilsen, JK
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Nooney, T
Norberg, S
Nordberg, M
Norjoharuddeen, N
Novgorodova, O
Nowak, S
Nozaki, M
Nozka, L
Ntekas, K
Nurse, E
Nuti, F
O'grady, F
O'Neil, DC
O'Rourke, AA
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, I
Ochoa-Ricoux, JP
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Oide, H
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Seabra, LFO
Pino, SAO
Damazio, DO
Olszewski, A
Olszowska, J
Onofre, A
Onogi, K
Onyisi, PUE
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Orr, RS
Osculati, B
Ospanov, R
Garzon, GOY
Otono, H
Ouchrif, M
Ould-Saada, F
Ouraou, A
Oussoren, KP
Ouyang, Q
Owen, M
Owen, RE
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Rodriguez, LP
Aranda, CP
Pagacova, M
Griso, SP
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palazzo, S
Palestini, S
Palka, M
Pallin, D
Panagiotopoulou, ES
Pandini, CE
Vazquez, JGP
Pani, P
Panitkin, S
Pantea, D
Paolozzi, L
Papadopoulou, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, AJ
Parker, MA
Parker, KA
Parodi, F
Parsons, JA
Parzefall, U
Pascuzzi, VR
Pasqualucci, E
Passaggio, S
Pastore, F
Pasztor, G
Pataraia, S
Pater, JR
Pauly, T
Pearce, J
Pearson, B
Pedersen, LE
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Penc, O
Peng, C
Peng, H
Penwell, J
Peralva, BS
Perego, MM
Perepelitsa, DV
Codina, EP
Perini, L
Pernegger, H
Perrella, S
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petroff, P
Petrolo, E
Petrov, M
Petrucci, F
Pettersson, NE
Peyaud, A
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piccinini, M
Pickering, MA
Piegaia, R
Pilcher, JE
Pilkington, AD
Pin, AWJ
Pinamonti, M
Pinfold, JL
Pingel, A
Pires, S
Pirumov, H
Pitt, M
Plazak, L
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Pluth, D
Poettgen, R
Poggioli, L
Pohl, D
Polesello, G
Poley, A
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Astigarraga, MEP
Pralavorio, P
Pranko, A
Prell, S
Price, D
Price, LE
Primavera, M
Prince, S
Prokofiev, K
Prokoshin, F
Protopopescu, S
Proudfoot, J
Przybycien, M
Puddu, D
Purohit, M
Puzo, P
Qian, J
Qin, G
Qin, Y
Quadt, A
Quayle, WB
Queitsch-Maitland, M
Quilty, D
Raddum, S
Radeka, V
Radescu, V
Radhakrishnan, SK
Radloff, P
Rados, P
Ragusa, F
Rahal, G
Raine, JA
Rajagopalan, S
Rammensee, M
Rangel-Smith, C
Ratti, MG
Rauscher, F
Rave, S
Ravenscroft, T
Ravinovich, I
Raymond, M
Read, AL
Readioff, NP
Reale, M
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Rehnisch, L
Reichert, J
Reisin, H
Rembser, C
Ren, H
Rescigno, M
Resconi, S
Rezanova, OL
Reznicek, P
Rezvani, R
Richter, R
Richter, S
Richter-Was, E
Ricken, O
Ridel, M
Rieck, P
Riegel, CJ
Rieger, J
Rifki, O
Rijssenbeek, M
Rimoldi, A
Rimoldi, M
Rinaldi, L
Ristic, B
Ritsch, E
Riu, I
Rizatdinova, F
Rizvi, E
Rizzi, C
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
Roda, C
Rodina, Y
Perez, AR
Rodriguez, DR
Roe, S
Rogan, CS
Rohne, O
Romaniouk, A
Romano, M
Saez, SMR
Adam, ER
Rompotis, N
Ronzani, M
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, P
Rosenthal, O
Rosien, NA
Rossetti, V
Rossi, E
Rossi, LP
Rosten, JHN
Rosten, R
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rurikova, Z
Rusakovich, NA
Ruschke, A
Russell, HL
Rutherfoord, JP
Ruthmann, N
Ryabov, YF
Rybar, M
Rybkin, G
Ryu, S
Ryzhov, A
Rzehorz, GF
Saavedra, AF
Sabato, G
Sacerdoti, S
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Saha, P
Sahinsoy, M
Saimpert, M
Saito, T
Sakamoto, H
Sakurai, Y
Salamanna, G
Salamon, A
Loyola, JES
Salek, D
De Bruin, PHS
Salihagic, D
Salnikov, A
Salt, J
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sammel, D
Sampsonidis, D
Sanchez, A
Sanchez, J
Martinez, VS
Sandaker, H
Sandbach, RL
Sander, HG
Sandhoff, M
Sandoval, C
Sandstroem, R
Sankey, DPC
Sannino, M
Sansoni, A
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Sapronov, A
Saraiva, JG
Sarrazin, B
Sasaki, O
Sasaki, Y
Sato, K
Sauvage, G
Sauvan, E
Savage, G
Savard, P
Savic, N
Sawyer, C
Sawyer, L
Saxon, J
Sbarra, C
Sbrizzi, A
Scanlon, T
Scannicchio, DA
Scarcella, M
Scarfone, V
Schaarschmidt, J
Schacht, P
Schachtner, BM
Schaefer, D
Schaefer, L
Schaefer, R
Schaeffer, J
Schaepe, S
Schaetzel, S
Schafer, U
Schaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Schiavi, C
Schier, S
Schillo, C
Schioppa, M
Schlenker, S
Schmidt-Sommerfeld, KR
Schmieden, K
Schmitt, C
Schmitt, S
Schmitz, S
Schneider, B
Schnoor, U
Schoeffel, L
Schoening, A
Schoenrock, BD
Schopf, E
Schott, M
Schovancova, J
Schramm, S
Schreyer, M
Schuh, N
Schulte, A
Schultens, MJ
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwartzman, A
Schwarz, TA
Schweiger, H
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Sciolla, G
Scuri, F
Scutti, F
Searcy, J
Seema, P
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekhon, K
Sekula, SJ
Seliverstov, DM
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Sessa, M
Seuster, R
Severini, H
Sfiligoj, T
Sforza, F
Sfyrla, A
Shabalina, E
Shaikh, NW
Shan, LY
Shang, R
Shank, JT
Shapiro, M
Shatalov, PB
Shaw, K
Shaw, SM
Shcherbakova, A
Shehu, CY
Sherwood, P
Shi, L
Shimizu, S
Shimmin, CO
Shimojima, M
Shiyakova, M
Shmeleva, A
Saadi, DS
Shochet, MJ
Shojaii, S
Shrestha, S
Shulga, E
Shupe, MA
Sicho, P
Sickles, AM
Sidebo, PE
Sidiropoulou, O
Sidorov, D
Sidoti, A
Siegert, F
Sijacki, D
Silva, J
Silverstein, SB
Simak, V
Simic, L
Simion, S
Simioni, E
Simmons, B
Simon, D
Simon, M
Sinervo, P
Sinev, NB
Sioli, M
Siragusa, G
Sivoklokov, SY
Sjlin, J
Skinner, MB
Skottowe, HP
Skubic, P
Slater, M
Slavicek, T
Slawinska, M
Sliwa, K
Slovak, R
Smakhtin, V
Smart, BH
Smestad, L
Smiesko, J
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, MNK
Smith, RW
Smizanska, M
Smolek, K
Snesarev, AA
Snyder, S
Sobie, R
Socher, F
Soffer, A
Soh, DA
Sokhrannyi, G
Sanchez, CAS
Solar, M
Soldatov, EY
Soldevila, U
Solodkov, AA
Soloshenko, A
Solovyanov, OV
Solovyev, V
Sommer, P
Son, H
Song, HY
Sood, A
Sopczak, A
Sopko, V
Sorin, V
Sosa, D
Sotiropoulou, CL
Soualah, R
Soukharev, AM
South, D
Sowden, BC
Spagnolo, S
Spalla, M
Spangenberg, M
Spano, F
Sperlich, D
Spettel, F
Spighi, R
Spigo, G
Spiller, LA
Spousta, M
St Denis, RD
Stabile, A
Stamen, R
Stamm, S
Stanecka, E
Stanek, RW
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, GH
Stark, J
Staroba, P
Starovoitov, P
Starz, S
Staszewski, R
Steinberg, P
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoicea, G
Stolte, P
Stonjek, S
Stradling, AR
Straessner, A
Stramaglia, ME
Strandberg, J
Strandberg, S
Strandlie, A
Strauss, M
Strizenec, P
Strhmer, R
Strom, DM
Stroynowski, R
Strubig, A
Stucci, SA
Stugu, B
Styles, NA
Su, D
Su, J
Suchek, S
Sugaya, Y
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, S
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, S
Svatos, M
Swiatlowski, M
Sykora, I
Sykora, T
Ta, D
Taccini, C
Tackmann, K
Taenzer, J
Taffard, A
Tafirout, R
Taiblum, N
Takai, H
Takashima, R
Takeshita, T
Takubo, Y
Talby, M
Talyshev, AA
Tan, KG
Tanaka, J
Tanaka, M
Tanaka, R
Tanaka, S
Tannenwald, BB
Araya, ST
Tapprogge, S
Tarem, S
Tartarelli, GF
Tas, P
Tasevsky, M
Tashiro, T
Tassi, E
Delgado, AT
Tayalati, Y
Taylor, AC
Taylor, GN
Taylor, PTE
Taylor, W
Teischinger, FA
Teixeira-Dias, P
Temming, KK
Temple, D
Ten Kate, H
Teng, PK
Teoh, JJ
Tepel, F
Terada, S
Terashi, K
Terron, J
Terzo, S
Testa, M
Teuscher, RJ
Theveneaux-Pelzer, T
Thomas, JP
Thomas-Wilsker, J
Thompson, EN
Thompson, PD
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Tibbetts, MJ
Torres, RET
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tipton, P
Tisserant, S
Todome, K
Todorov, T
Todorova-Nova, S
Tojo, J
Tokar, S
Tokushuku, K
Tolley, E
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Tong, B
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Trefzger, T
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Trischuk, W
Trocme, B
Trofymov, A
Troncon, C
Trottier-McDonald, M
Trovatelli, M
Truong, L
Trzebinski, M
Trzupek, A
Tseng, JCL
Tsiareshka, PV
Tsipolitis, G
Tsirintanis, N
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsui, KM
Tsukerman, II
Tsulaia, V
Tsuno, S
Tsybychev, D
Tu, Y
Tudorache, A
Tudorache, V
Tuna, AN
Tupputi, SA
Turchikhin, S
Turecek, D
Turgeman, D
Turra, R
Turvey, AJ
Tuts, PM
Tyndel, M
Ucchielli, G
Ueda, I
Ughetto, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Unverdorben, C
Urban, J
Urquijo, P
Urrejola, P
Usai, G
Usanova, A
Vacavant, L
Vacek, V
Vachon, B
Valderanis, C
Santurio, EV
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Ferrer, JAV
Van Denwollenberg, W
Van der Deijl, PC
van der Graaf, H
van Eldik, N
van Gemmeren, P
Van Nieuwkoop, J
Van Vulpen, I
Van Woerden, MC
Vanadia, M
Vandelli, W
Vanguri, R
Vaniachine, A
Vankov, P
Vardanyan, G
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vasquez, JG
Vazeille, F
Schroeder, TV
Veatch, J
Veeraraghavan, V
Veloce, LM
Veloso, F
Veneziano, S
Ventura, A
Venturi, M
Venturi, N
Venturini, A
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Viazlo, O
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Vigani, L
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinogradov, VB
Vittori, C
Vivarelli, I
Vlachos, S
Vlasak, M
Vogel, M
Vokac, P
Volpi, G
Volpi, M
Von der Schmitt, H
Von Toerne, E
Vorobel, V
Vorobev, K
Vos, M
Voss, R
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, P
Wagner, W
Wahlberg, H
Wahrmund, S
Wakabayashi, J
Walder, J
Walker, R
Walkowiak, W
Wallangen, V
Wang, C
Wang, C
Wang, F
Wang, H
Wang, H
Wang, J
Wang, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, T
Wang, W
Wang, X
Wanotayaroj, C
Warburton, A
Ward, CP
Wardrope, DR
Washbrook, A
Watkins, PM
Watson, AT
Watson, MF
Watts, G
Watts, S
Waugh, BM
Webb, S
Weber, MS
Weber, SW
Webster, JS
Weidberg, AR
Weinert, B
Weingarten, J
Weiser, C
Weits, H
Wells, PS
Wenaus, T
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, MD
Werner, P
Wessels, M
Wetter, J
Whalen, K
Whallon, NL
Wharton, AM
White, A
White, MJ
White, R
Whiteson, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wildauer, A
Wilk, F
Wilkens, HG
Williams, HH
Williams, S
Willis, C
Willocq, S
Wilson, JA
Wingerter-Seez, I
Winklmeier, F
Winston, OJ
Winter, BT
Wittgen, M
Wittkowski, J
Wolf, TMH
Wolter, MW
Wolters, H
Worm, SD
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wu, M
Wu, M
Wu, SL
Wu, X
Wu, Y
Wyatt, TR
Wynne, BM
Xella, S
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yamaguchi, D
Yamaguchi, Y
Yamamoto, A
Yamamoto, S
Yamanaka, T
Yamauchi, K
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, Y
Yang, Z
Yao, WM
Yap, YC
Yasu, Y
Yatsenko, E
Wong, KHY
Ye, J
Ye, S
Yeletskikh, I
Yen, AL
Yildirim, E
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJS
Youssef, S
Yu, DR
Yu, J
Yu, JM
Yu, J
Yuan, L
Yuen, SPY
Yusuff, I
Zabinski, B
Zaidan, R
Zaitsev, AM
Zakharchuk, N
Zalieckas, J
Zaman, A
Zambito, S
Zanello, L
Zanzi, D
Zeitnitz, C
Zeman, M
Zemla, A
Zeng, JC
Zeng, Q
Zengel, K
Zenin, O
Zenis, T
Zerwas, D
Zhang, D
Zhang, F
Zhang, G
Zhang, H
Zhang, J
Zhang, L
Zhang, R
Zhang, R
Zhang, X
Zhang, Z
Zhao, X
Zhao, Y
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, C
Zhou, L
Zhou, L
Zhou, M
Zhou, N
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhukov, K
Zibell, A
Zieminska, D
Zimine, NI
Zimmermann, C
Zimmermann, S
Zinonos, Z
Zinser, M
Ziolkowski, M
Zivkovic, L
Zobernig, G
Zoccoli, A
zur Nedden, M
Zwalinski, L
AF Aaboud, M.
Aad, G.
Abbott, B.
Abdallah, J.
Abdinov, O.
Abeloos, B.
Aben, R.
AbouZeid, O. S.
Abraham, N. L.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaiti, Y.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Adelman, J.
Adomeit, S.
Adye, T.
Affolder, A. A.
Agatonovic-Jovin, T.
Agricola, J.
Aguilar-Saavedra, J. A.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akerstedt, H.
Akesson, T. P. A.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albrand, S.
Verzini, M. J. Alconada
Aleksa, M.
Aleksandrov, I. N.
Alexa, C.
Alexander, G.
Alexopoulos, T.
Alhroob, M.
Ali, B.
Aliev, M.
Alimonti, G.
Alison, J.
Alkire, S. P.
Allbrooke, B. M. M.
Allen, B. W.
Allport, P. P.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Alstaty, M.
Gonzalez, B. Alvarez
Piqueras, D. Alvarez
Alviggi, M. G.
Amadio, B. T.
Amako, K.
Coutinho, Y. Amaral
Amelung, C.
Amidei, D.
Dos Santos, S. P. Amor
Amorim, A.
Amoroso, S.
Amundsen, G.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anders, J. K.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Angelidakis, S.
Angelozzi, I.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antel, C.
Antonelli, M.
Antonov, A.
Anulli, F.
Aoki, M.
Bella, L. Aperio
Arabidze, G.
Arai, Y.
Araque, J. P.
Arce, A. T. H.
Arduh, F. A.
Arguin, J-F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Armitage, L. J.
Arnaez, O.
Arnold, H.
Arratia, M.
Arslan, O.
Artamonov, A.
Artoni, G.
Artz, S.
Asai, S.
Asbah, N.
Ashkenazi, A.
Asman, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Atkinson, M.
Atlay, N. B.
Augsten, K.
Avolio, G.
Axen, B.
Ayoub, M. K.
Azuelos, G.
Baak, M. A.
Baas, A. E.
Baca, M. J.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Bagiacchi, P.
Bagnaia, P.
Bai, Y.
Baines, J. T.
Baker, O. K.
Baldin, E. M.
Balek, P.
Balestri, T.
Balli, F.
Balunas, W. K.
Banas, E.
Banerjee, Sw.
Bannoura, A. A. E.
Barak, L.
Barberio, E. L.
Barberis, D.
Barbero, M.
Barillari, T.
Barisits, M-S
Barklow, T.
Barlow, N.
Barnes, S. L.
Barnett, B. M.
Barnett, R. M.
Barnovska, Z.
Baroncelli, A.
Barone, G.
Barr, A. J.
Navarro, L. Barranco
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Bartoldus, R.
Barton, A. E.
Bartos, P.
Basalaev, A.
Bassalat, A.
Bates, R. L.
Batista, S. J.
Batley, J. R.
Battaglia, M.
Bauce, M.
Bauer, F.
Bawa, H. S.
Beacham, J. B.
Beattie, M. D.
Beau, T.
Beauchemin, P. H.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, M.
Beckingham, M.
Becot, C.
Beddall, A. J.
Beddall, A.
Bednyakov, V. A.
Bedognetti, M.
Bee, C. P.
Beemster, L. J.
Beermann, T. A.
Begel, M.
Behr, J. K.
Belanger-Champagne, C.
Bell, A. S.
Bella, G.
Bellagamba, L.
Bellerive, A.
Bellomo, M.
Belotskiy, K.
Beltramello, O.
Belyaev, N. L.
Benary, O.
Benchekroun, D.
Bender, M.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Benitez, J.
Benjamin, D. P.
Bensinger, J. R.
Bentvelsen, S.
Beresford, L.
Beretta, M.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Beringer, J.
Berlendis, S.
Bernard, N. R.
Bernius, C.
Bernlochner, F. U.
Berry, T.
Berta, P.
Bertella, C.
Bertoli, G.
Bertolucci, F.
Bertram, I. A.
Bertsche, C.
Bertsche, D.
Besjes, G. J.
Bylund, O. Bessidskaia
Bessner, M.
Besson, N.
Betancourt, C.
Bethani, A.
Bethke, S.
Bevan, A. J.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Biedermann, D.
Bielski, R.
Biesuz, N. V.
Biglietti, M.
De Mendizabal, J. Bilbao
Billoud, T. R. V.
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Biondi, S.
Bisanz, T.
Bjergaard, D. M.
Black, C. W.
Black, J. E.
Black, K. M.
Blackburn, D.
Blair, R. E.
Blanchard, J. -B.
Blazek, T.
Bloch, I.
Blocker, C.
Blum, W.
Blumenschein, U.
Blunier, S.
Bobbink, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Bock, C.
Boehler, M.
Boerner, D.
Bogaerts, J. A.
Bogavac, D.
Bogdanchikov, A. G.
Bohm, C.
Boisvert, V.
Bokan, P.
Bold, T.
Boldyrev, A. S.
Bomben, M.
Bona, M.
Boonekamp, M.
Borisov, A.
Borissov, G.
Bortfeldt, J.
Bortoletto, D.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Sola, J. D. Bossio
Boudreau, J.
Bouffard, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Boutle, S. K.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bracinik, J.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Madden, W. D. Breaden
Brendlinger, K.
Brennan, A. J.
Brenner, L.
Brenner, R.
Bressler, S.
Bristow, T. M.
Britton, D.
Britzger, D.
Brochu, F. M.
Brock, I.
Brock, R.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brosamer, J.
Brost, E.
Broughton, J. H.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Bruni, A.
Bruni, G.
Bruni, L. S.
Brunt, B. H.
Bruschi, M.
Bruscino, N.
Bryant, P.
Bryngemark, L.
Buanes, T.
Buat, Q.
Buchholz, P.
Buckley, A. G.
Budagov, I. A.
Buehrer, F.
Bugge, M. K.
Bulekov, O.
Bullock, D.
Burckhart, H.
Burdin, S.
Burgard, C. D.
Burghgrave, B.
Burka, K.
Burke, S.
Burmeister, I.
Burr, J. T. P.
Busato, E.
Buscher, D.
Buscher, V.
Bussey, P.
Butler, J. M.
Buttar, C. M.
Butterworth, J. M.
Butti, P.
Buttinger, W.
Buzatu, A.
Buzykaev, A. R.
Urban, S. Cabrera
Caforio, D.
Cairo, V. M.
Cakir, O.
Calace, N.
Calafiura, P.
Calandri, A.
Calderini, G.
Calfayan, P.
Callea, G.
Caloba, L. P.
Lopez, S. Calvente
Calvet, D.
Calvet, S.
Calvet, T. P.
Toro, R. Camacho
Camarda, S.
Camarri, P.
Cameron, D.
Armadans, R. Caminal
Camincher, C.
Campana, S.
Campanelli, M.
Camplani, A.
Campoverde, A.
Canale, V.
Canepa, A.
Bret, M. Cano
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capua, M.
Caputo, R.
Carbone, R. M.
Cardarelli, R.
Cardillo, F.
Carli, I.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Casolino, M.
Casper, D. W.
Castaneda-Miranda, E.
Castelijn, R.
Castelli, A.
Gimenez, V. Castillo
Castro, N. F.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Caudron, J.
Cavaliere, V.
Cavallaro, E.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Alberich, L. Cerda
Cerio, B. C.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cerv, M.
Cervelli, A.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chan, S. K.
Chan, Y. L.
Chang, P.
Chapman, J. D.
Charlton, D. G.
Chatterjee, A.
Chau, C. C.
Barajas, C. A. Chavez
Che, S.
Cheatham, S.
Chegwidden, A.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, K.
Chen, S.
Chen, S.
Chen, X.
Chen, Y.
Cheng, H. C.
Cheng, H. J.
Cheng, Y.
Cheplakov, A.
Cheremushkina, E.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Chevalier, L.
Chiarella, V.
Chiarelli, G.
Chiodini, G.
Chisholm, A. S.
Chitan, A.
Chizhov, M. V.
Choi, K.
Chomont, A. R.
Chouridou, S.
Chow, B. K. B.
Christodoulou, V.
Chromek-Burckhart, D.
Chudoba, J.
Chuinard, A. J.
Chwastowski, J. J.
Chytka, L.
Ciapetti, G.
Ciftci, A. K.
Cinca, D.
Cindro, V.
Cioara, I. A.
Ciocca, C.
Ciocio, A.
Cirotto, F.
Citron, Z. H.
Citterio, M.
Ciubancan, M.
Clark, A.
Clark, B. L.
Clark, M. R.
Clark, P. J.
Clarke, R. N.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Colasurdo, L.
Cole, B.
Colijn, A. P.
Collot, J.
Colombo, T.
Compostella, G.
Muino, P. Conde
Coniavitis, E.
Connell, S. H.
Connelly, I. A.
Consorti, V.
Constantinescu, S.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cormier, K. J. R.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Corso-Radu, A.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cottin, G.
Cowan, G.
Cox, B. E.
Cranmer, K.
Crawley, S. J.
Cree, G.
Crepe-Renaudin, S.
Crescioli, F.
Cribbs, W. A.
Ortuzar, M. Crispin
Cristinziani, M.
Croft, V.
Crosetti, G.
Cueto, A.
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Cuth, J.
Czirr, H.
Czodrowski, P.
D'amen, G.
D'Auria, S.
D'Onofrio, M.
De Sousa, M. J. Da Cunha Sargedas
Da Via, C.
Dabrowski, W.
Dado, T.
Dai, T.
Dale, O.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Dandoy, J. R.
Dang, N. P.
Daniells, A. C.
Dann, N. S.
Danninger, M.
Hoffmann, M. Dano
Dao, V.
Darbo, G.
Darmora, S.
Dassoulas, J.
Dattagupta, A.
Davey, W.
David, C.
Davidek, T.
Davies, M.
Davison, P.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Benedetti, A.
De Castro, S.
De Cecco, S.
De Groot, N.
de Jong, P.
De la Torre, H.
De Lorenzi, F.
De Maria, A.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dedovich, D. V.
Dehghanian, N.
Deigaard, I.
Del Gaudio, M.
Del Peso, J.
Del Prete, T.
Delgove, D.
Deliot, F.
Delitzsch, C. M.
Dell'Acqua, A.
Dell'Asta, L.
Dell'Orso, M.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
DeMarco, D. A.
Demers, S.
Demichev, M.
Demilly, A.
Denisov, S. P.
Denysiuk, D.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deterre, C.
Dette, K.
Deviveiros, P. O.
Dewhurst, A.
Dhaliwal, S.
Di Ciaccio, A.
Di Ciaccio, L.
Di Clemente, W. K.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Di Valentino, D.
Diaconu, C.
Diamond, M.
Dias, F. A.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Diglio, S.
Dimitrievska, A.
Dingfelder, J.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
Djuvsland, J. I.
do Vale, M. A. B.
Dobos, D.
Dobre, M.
Doglioni, C.
Dolejsi, J.
Dolezal, Z.
Donadelli, M.
Donati, S.
Dondero, P.
Donini, J.
Dopke, J.
Doria, A.
Dova, M. T.
Doyle, A. T.
Drechsler, E.
Dris, M.
Du, Y.
Duarte-Campderros, J.
Duchovni, E.
Duckeck, G.
Ducu, O. A.
Duda, D.
Dudarev, A.
Dudder, A. Chr.
Duffield, E. M.
Duflot, L.
Duhrssen, M.
Dumancic, M.
Dunford, M.
Yildiz, H. Duran
Duren, M.
Durglishvili, A.
Duschinger, D.
Dutta, B.
Dyndal, M.
Eckardt, C.
Ecker, K. M.
Edgar, R. C.
Edwards, N. C.
Eifert, T.
Eigen, G.
Einsweiler, K.
Ekelof, T.
El Kacimi, M.
Ellajosyula, V.
Ellert, M.
Elles, S.
Ellinghaus, F.
Elliot, A. A.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Enari, Y.
Endner, O. C.
Ennis, J. S.
Erdmann, J.
Ereditato, A.
Ernis, G.
Ernst, J.
Ernst, M.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Esposito, B.
Etienvre, A. I.
Etzion, E.
Evans, H.
Ezhilov, A.
Fabbri, F.
Fabbri, L.
Facini, G.
Fakhrutdinov, R. M.
Falciano, S.
Falla, R. J.
Faltova, J.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farina, C.
Farina, E. M.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Giannelli, M. Faucci
Favareto, A.
Fawcett, W. J.
Fayard, L.
Fedin, O. L.
Fedorko, W.
Feigl, S.
Feligioni, L.
Feng, C.
Feng, E. J.
Feng, H.
Fenyuk, A. B.
Feremenga, L.
Martinez, P. Fernandez
Perez, S. Fernandez
Ferrando, J.
Ferrari, A.
Ferrari, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiedler, F.
Filipcic, A.
Filipuzzi, M.
Filthaut, F.
Fincke-Keeler, M.
Finelli, K. D.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, A.
Fischer, C.
Fischer, J.
Fisher, W. C.
Flaschel, N.
Fleck, I.
Fleischmann, P.
Fletcher, G. T.
Fletcher, R. R. M.
Flick, T.
Floderus, A.
Castillo, L. R. Flores
Flowerdew, M. J.
Forcolin, G. T.
Formica, A.
Forti, A.
Foster, A. G.
Fournier, D.
Fox, H.
Fracchia, S.
Francavilla, P.
Franchini, M.
Francis, D.
Franconi, L.
Franklin, M.
Frate, M.
Fraternali, M.
Freeborn, D.
Fressard-Batraneanu, S. M.
Friedrich, F.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fusayasu, T.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gabrielli, A.
Gabrielli, A.
Gach, G. P.
Gadatsch, S.
Gadomski, S.
Gagliardi, G.
Gagnon, L. G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallop, B. J.
Gallus, P.
Galster, G.
Gan, K. K.
Gao, J.
Gao, Y.
Gao, Y. S.
Walls, F. M. Garay
Garcia, C.
Navarro, J. E. Garcia
Garcia-Sciveres, M.
Gardner, R. W.
Garelli, N.
Garonne, V.
Bravo, A. Gascon
Gasnikova, K.
Gatti, C.
Gaudiello, A.
Gaudio, G.
Gauthier, L.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Gecse, Z.
Gee, C. N. P.
Geich-Gimbel, Ch.
Geisen, M.
Geisler, M. P.
Gemme, C.
Genest, M. H.
Geng, C.
Gentile, S.
Gentsos, C.
George, S.
Gerbaudo, D.
Gershon, A.
Ghasemi, S.
Ghazlane, H.
Ghneimat, M.
Giacobbe, B.
Giagu, S.
Giannetti, P.
Gibbard, B.
Gibson, S. M.
Gignac, M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gilles, G.
Gingrich, D. M.
Giokaris, N.
Giordani, M. P.
Giorgi, F. M.
Giorgi, F. M.
Giraud, P. F.
Giromini, P.
Giugni, D.
Giuli, F.
Giuliani, C.
Giulini, M.
Gjelsten, K.
Gkaitatzis, S.
Gkialas, I.
Gkougkousis, E. L.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glaysher, P. C. F.
Glazov, A.
Goblirsch-Kolb, M.
Godlewski, J.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Goncalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, G.
Gonella, L.
Gongadze, A.
de la Hoz, S. Gonzalez
Parra, G. Gonzalez
Gonzalez-Sevilla, S.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Gossling, C.
Gostkin, M. I.
Goudet, C. R.
Goujdami, D.
Goussiou, A. G.
Govender, N.
Gozani, E.
Graber, L.
Grabowska-Bold, I.
Gradin, P. O. J.
Grafstrom, P.
Gramling, J.
Gramstad, E.
Grancagnolo, S.
Gratchev, V.
Gravila, P. M.
Gray, H. M.
Graziani, E.
Greenwood, Z. D.
Grefe, C.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Grevtsov, K.
Griffiths, J.
Grillo, A. A.
Grimm, K.
Grinstein, S.
Gris, Ph.
Grivaz, J. -F.
Groh, S.
Grohs, J. P.
Gross, E.
Grosse-Knetter, J.
Grossi, G. C.
Grout, Z. J.
Guan, L.
Guan, W.
Guenther, J.
Guescini, F.
Guest, D.
Gueta, O.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gumpert, C.
Guo, J.
Guo, Y.
Gupta, R.
Gupta, S.
Gustavino, G.
Gutierrez, P.
Ortiz, N. G. Gutierrez
Gutschow, C.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haber, C.
Hadavand, H. K.
Haddad, N.
Hadef, A.
Hagebock, S.
Hajduk, Z.
Hakobyan, H.
Haleem, M.
Haley, J.
Halladjian, G.
Hallewell, G. D.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamilton, A.
Hamity, G. N.
Hamnett, P. G.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Haney, B.
Hanisch, S.
Hanke, P.
Hanna, R.
Hansen, J. B.
Hansen, J. D.
Hansen, M. C.
Hansen, P. H.
Hara, K.
Hard, A. S.
Harenberg, T.
Hariri, F.
Harkusha, S.
Harrington, R. D.
Harrison, P. F.
Hartjes, F.
Hartmann, N. M.
Hasegawa, M.
Hasegawa, Y.
Hasib, A.
Hassani, S.
Haug, S.
Hauser, R.
Hauswald, L.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hayakawa, D.
Hayden, D.
Hays, C. P.
Hays, J. M.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heim, T.
Heinemann, B.
Heinrich, J. J.
Heinrich, L.
Heinz, C.
Hejbal, J.
Helary, L.
Hellman, S.
Helsens, C.
Henderson, J.
Henderson, R. C. W.
Heng, Y.
Henkelmann, S.
Correia, A. M. Henriques
Henrot-Versille, S.
Herbert, G. H.
Herget, V.
Jimenez, Y. Hernandez
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hetherly, J. W.
Hickling, R.
Higon-Rodriguez, E.
Hill, E.
Hill, J. C.
Hiller, K. H.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hinman, R. R.
Hirose, M.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoenig, F.
Hohn, D.
Holmes, T. R.
Homann, M.
Hong, T. M.
Hooberman, B. H.
Hopkins, W. H.
Horii, Y.
Horton, A. J.
Hostachy, J-Y.
Hou, S.
Hoummada, A.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hrynevich, A.
Hsu, C.
Hsu, P. J.
Hsu, S. -C.
Hu, D.
Hu, Q.
Hu, S.
Huang, Y.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Huo, P.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibragimov, I.
Iconomidou-Fayard, L.
Ideal, E.
Idrissi, Z.
Iengo, P.
Igonkina, O.
Iizawa, T.
Ikegami, Y.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Ilic, N.
Ince, T.
Introzzi, G.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Ishijima, N.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ito, F.
Ponce, J. M. Iturbe
Iuppa, R.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jabbar, S.
Jackson, B.
Jackson, P.
Jain, V.
Jakobi, K. B.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansky, R.
Janssen, J.
Janus, M.
Jarlskog, G.
Javadov, N.
Javurek, T.
Jeanneau, F.
Jeanty, L.
Jejelava, J.
Jeng, G. -Y.
Jennens, D.
Jenni, P.
Jeske, C.
Jezequel, S.
Ji, H.
Jia, J.
Jiang, H.
Jiang, Y.
Jiggins, S.
Pena, J. Jimenez
Jin, S.
Jinaru, A.
Jinnouchi, O.
Johansson, P.
Johns, K. A.
Johnson, W. J.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, S.
Jones, T. J.
Jongmanns, J.
Jorge, P. M.
Jovicevic, J.
Ju, X.
Rozas, A. Juste
Kohler, M. K.
Kaczmarska, A.
Kado, M.
Kagan, H.
Kagan, M.
Kahn, S. J.
Kaji, T.
Kajomovitz, E.
Kalderon, C. W.
Kaluza, A.
Kama, S.
Kamenshchikov, A.
Kanaya, N.
Kaneti, S.
Kanjir, L.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kaplan, L. S.
Kapliy, A.
Kar, D.
Karakostas, K.
Karamaoun, A.
Karastathis, N.
Kareem, M. J.
Karentzos, E.
Karnevskiy, M.
Karpov, S. N.
Karpova, Z. M.
Karthik, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kasahara, K.
Kashif, L.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Kato, C.
Katre, A.
Katzy, J.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazanin, V. F.
Keeler, R.
Kehoe, R.
Keller, J. S.
Kempster, J. J.
Kentaro, K.
Keoshkerian, H.
Kepka, O.
Kersevan, B. P.
Kersten, S.
Keyes, R. A.
Khader, M.
Khalil-zada, F.
Khanov, A.
Kharlamov, A. G.
Khoo, T. J.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kido, S.
Kilby, C. R.
Kim, H. Y.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kind, O. M.
King, B. T.
King, M.
King, S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kiss, F.
Kiuchi, K.
Kivernyk, O.
Kladiva, E.
Klein, M. H.
Klein, M.
Klein, U.
Kleinknecht, K.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klioutchnikova, T.
Kluge, E. -E.
Kluit, P.
Kluth, S.
Knapik, J.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Kobayashi, A.
Kobayashi, D.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koehler, N. M.
Koffas, T.
Koffeman, E.
Koi, T.
Kolanoski, H.
Kolb, M.
Koletsou, I.
Komar, A. A.
Komori, Y.
Kondo, T.
Kondrashova, N.
Koneke, K.
Konig, A. C.
Kono, T.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Kopke, L.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A. A.
Korolkov, I.
Korolkova, E. V.
Kortner, O.
Kortner, S.
Kosek, T.
Kostyukhin, V. V.
Kotwal, A.
Kourkoumeli-Charalampidi, A.
Kourkoumelis, C.
Kouskoura, V.
Kowalewska, A. B.
Kowalewski, R.
Kowalski, T. Z.
Kozakai, C.
Kozanecki, W.
Kozhin, A. S.
Kramarenko, V. A.
Kramberger, G.
Krasnopevtsev, D.
Krasny, M. W.
Krasznahorkay, A.
Kravchenko, A.
Kretz, M.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, P.
Krizka, K.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Kruger, H.
Krumnack, N.
Kruse, A.
Kruse, M. C.
Kruskal, M.
Kubota, T.
Kucuk, H.
Kuday, S.
Kuechler, J. T.
Kuehn, S.
Kugel, A.
Kuger, F.
Kuhl, A.
Kuhl, T.
Kukhtin, V.
Kukla, R.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunigo, T.
Kupco, A.
Kurashige, H.
Kurochkin, Y. A.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
Kwan, T.
Kyriazopoulos, D.
La Rosa, A.
Navarro, J. L. La Rosa
La Rotonda, L.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Lammers, S.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lanfermann, M. C.
Lang, V. S.
Lange, J. C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Lanza, A.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Manghi, F. Lasagni
Lassnig, M.
Laurelli, P.
Lavrijsen, W.
Law, A. T.
Laycock, P.
Lazovich, T.
Lazzaroni, M.
Le, B.
Le Dortz, O.
Le Guirriec, E.
Le Quilleuc, E. P.
LeBlanc, M.
LeCompte, T.
Ledroit-Guillon, F.
Lee, C. A.
Lee, S. C.
Lee, L.
Lefebvre, B.
Lefebvre, G.
Lefebvre, M.
Legger, F.
Leggett, C.
Lehan, A.
Miotto, G. Lehmann
Lei, X.
Leight, W. A.
Leisos, A.
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Leney, K. J. C.
Lenz, T.
Lenzi, B.
Leone, R.
Leone, S.
Leonidopoulos, C.
Leontsinis, S.
Lerner, G.
Leroy, C.
Lesage, A. A. J.
Lester, C. G.
Levchenko, M.
Leveque, J.
Levin, D.
Levinson, L. J.
Levy, M.
Lewis, D.
Leyko, A. M.
Leyton, M.
Li, B.
Li, C.
Li, H.
Li, H. L.
Li, L.
Li, L.
Li, Q.
Li, S.
Li, X.
Li, Y.
Liang, Z.
Liberti, B.
Liblong, A.
Lichard, P.
Lie, K.
Liebal, J.
Liebig, W.
Limosani, A.
Lin, S. C.
Lin, T. H.
Lindquist, B. E.
Lionti, A. E.
Lipeles, E.
Lipniacka, A.
Lisovyi, M.
Liss, T. M.
Lister, A.
Litke, A. M.
Liu, B.
Liu, D.
Liu, H.
Liu, H.
Liu, J.
Liu, J. B.
Liu, K.
Liu, L.
Liu, M.
Liu, M.
Liu, Y. L.
Liu, Y.
Livan, M.
Lleres, A.
Merino, J. Llorente
Lloyd, S. L.
Lo Sterzo, F.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loebinger, F. K.
Loevschall-Jensen, A. E.
Loew, K. M.
Loginov, A.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Long, B. A.
Long, J. D.
Long, R. E.
Longo, L.
Looper, K. A.
Lopes, L.
Mateos, D. Lopez
Paredes, B. Lopez
Paz, I. Lopez
Solis, A. Lopez
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Losel, P. J.
Lou, X.
Lounis, A.
Love, J.
Love, P. A.
Lu, H.
Lu, N.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Luedtke, C.
Luehring, F.
Lukas, W.
Luminari, L.
Lundberg, O.
Lund-Jensen, B.
Luzi, P. M.
Lynn, D.
Lysak, R.
Lytken, E.
Lyubushkin, V.
Ma, H.
Ma, L. L.
Ma, Y.
Maccarrone, G.
Macchiolo, A.
Macdonald, C. M.
Macek, B.
Miguens, J. Machado
Madaffari, D.
Madar, R.
Maddocks, H. J.
Mader, W. F.
Madsen, A.
Maeda, J.
Maeland, S.
Maeno, T.
Maevskiy, A.
Magradze, E.
Mahlstedt, J.
Maiani, C.
Maidantchik, C.
Maier, A. A.
Maier, T.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Malaescu, B.
Malecki, Pa.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyukov, S.
Mamuzic, J.
Mancini, G.
Mandelli, B.
Mandelli, L.
Mandic, I.
Maneira, J.
de Andrade Filho, L. Manhaes
Ramos, J. Manjarres
Mann, A.
Manousos, A.
Mansoulie, B.
Mansour, J. D.
Mantifel, R.
Mantoani, M.
Manzoni, S.
Mapelli, L.
Marceca, G.
March, L.
Marchiori, G.
Marcisovsky, M.
Marjanovic, M.
Marley, D. E.
Marroquim, F.
Marsden, S. P.
Marshall, Z.
Marti-Garcia, S.
Martin, B.
Martin, T. A.
Martin, V. J.
Latour, B. Martin Dit
Martinez, M.
Outschoorn, V. I. Martinez
Martin-Haugh, S.
Martoiu, V. S.
Martyniuk, A. C.
Marx, M.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massa, L.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Mattig, P.
Mattmann, J.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazza, S. M.
Mc Fadden, N. C.
Mc Goldrick, G.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McClymont, L. I.
McDonald, E. F.
Mcfayden, J. A.
Mchedlidze, G.
McMahon, S. J.
McPherson, R. A.
Medinnis, M.
Meehan, S.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineck, C.
Meirose, B.
Melini, D.
Garcia, B. R. Mellado
Melo, M.
Meloni, F.
Mengarelli, A.
Menke, S.
Meoni, E.
Mergelmeyer, S.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J-P.
Meyer, J.
Zu Theenhausen, H. Meyer
Miano, F.
Middleton, R. P.
Miglioranzi, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Milesi, M.
Milic, A.
Miller, D. W.
Mills, C.
Milov, A.
Milstead, D. A.
Minaenko, A. A.
Minami, Y.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mistry, K. P.
Mitani, T.
Mitrevski, J.
Mitsou, V. A.
Miucci, A.
Miyagawa, P. S.
Mjornmark, J. U.
Moa, T.
Mochizuki, K.
Mohapatra, S.
Molander, S.
Moles-Valls, R.
Monden, R.
Mondragon, M. C.
Monig, K.
Monk, J.
Monnier, E.
Montalbano, A.
Berlingen, J. Montejo
Monticelli, F.
Monzani, S.
Moore, R. W.
Morange, N.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Mori, D.
Mori, T.
Morii, M.
Morinaga, M.
Morisbak, V.
Moritz, S.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Mortensen, S. S.
Morvaj, L.
Mosidze, M.
Moss, J.
Motohashi, K.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Muanza, S.
Mudd, R. D.
Mueller, F.
Mueller, J.
Mueller, R. S. P.
Mueller, T.
Muenstermann, D.
Mullen, P.
Mullier, G. A.
Sanchez, F. J. Munoz
Quijada, J. A. Murillo
Murray, W. J.
Musheghyan, H.
Muskinja, M.
Myagkov, A. G.
Myska, M.
Nachman, B. P.
Nackenhorst, O.
Nagai, K.
Nagai, R.
Nagano, K.
Nagasaka, Y.
Nagata, K.
Nagel, M.
Nagy, E.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Garcia, R. F. Naranjo
Narayan, R.
Villar, D. I. Narrias
Naryshkin, I.
Naumann, T.
Navarro, G.
Nayyar, R.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Negri, A.
Negrini, M.
Nektarijevic, S.
Nellist, C.
Nelson, A.
Nemecek, S.
Nemethy, P.
Nepomuceno, A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neves, R. M.
Nevski, P.
Newman, P. R.
Nguyen, D. H.
Manh, T. Nguyen
Nickerson, R. B.
Nicolaidou, R.
Nielsen, J.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolopoulos, K.
Nilsen, J. K.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Nooney, T.
Norberg, S.
Nordberg, M.
Norjoharuddeen, N.
Novgorodova, O.
Nowak, S.
Nozaki, M.
Nozka, L.
Ntekas, K.
Nurse, E.
Nuti, F.
O'grady, F.
O'Neil, D. C.
O'Rourke, A. A.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Obermann, T.
Ocariz, J.
Ochi, A.
Ochoa, I.
Ochoa-Ricoux, J. P.
Oda, S.
Odaka, S.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohman, H.
Oide, H.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Seabra, L. F. Oleiro
Pino, S. A. Olivares
Damazio, D. Oliveira
Olszewski, A.
Olszowska, J.
Onofre, A.
Onogi, K.
Onyisi, P. U. E.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Orr, R. S.
Osculati, B.
Ospanov, R.
Otero y Garzon, G.
Otono, H.
Ouchrif, M.
Ould-Saada, F.
Ouraou, A.
Oussoren, K. P.
Ouyang, Q.
Owen, M.
Owen, R. E.
Ozcan, V. E.
Ozturk, N.
Pachal, K.
Pages, A. Pacheco
Rodriguez, L. Pacheco
Aranda, C. Padilla
Pagacova, M.
Griso, S. Pagan
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Palazzo, S.
Palestini, S.
Palka, M.
Pallin, D.
Panagiotopoulou, E. St.
Pandini, C. E.
Vazquez, J. G. Panduro
Pani, P.
Panitkin, S.
Pantea, D.
Paolozzi, L.
Papadopoulou, Th. D.
Papageorgiou, K.
Paramonov, A.
Hernandez, D. Paredes
Parker, A. J.
Parker, M. A.
Parker, K. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pascuzzi, V. R.
Pasqualucci, E.
Passaggio, S.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Pater, J. R.
Pauly, T.
Pearce, J.
Pearson, B.
Pedersen, L. E.
Pedersen, M.
Lopez, S. Pedraza
Pedro, R.
Peleganchuk, S. V.
Penc, O.
Peng, C.
Peng, H.
Penwell, J.
Peralva, B. S.
Perego, M. M.
Perepelitsa, D. V.
Codina, E. Perez
Perini, L.
Pernegger, H.
Perrella, S.
Peschke, R.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petroff, P.
Petrolo, E.
Petrov, M.
Petrucci, F.
Pettersson, N. E.
Peyaud, A.
Pezoa, R.
Phillips, P. W.
Piacquadio, G.
Pianori, E.
Picazio, A.
Piccaro, E.
Piccinini, M.
Pickering, M. A.
Piegaia, R.
Pilcher, J. E.
Pilkington, A. D.
Pin, A. W. J.
Pinamonti, M.
Pinfold, J. L.
Pingel, A.
Pires, S.
Pirumov, H.
Pitt, M.
Plazak, L.
Pleier, M. -A.
Pleskot, V.
Plotnikova, E.
Plucinski, P.
Pluth, D.
Poettgen, R.
Poggioli, L.
Pohl, D.
Polesello, G.
Poley, A.
Policicchio, A.
Polifka, R.
Polini, A.
Pollard, C. S.
Polychronakos, V.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Pospisil, S.
Potamianos, K.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Astigarraga, M. E. Pozo
Pralavorio, P.
Pranko, A.
Prell, S.
Price, D.
Price, L. E.
Primavera, M.
Prince, S.
Prokofiev, K.
Prokoshin, F.
Protopopescu, S.
Proudfoot, J.
Przybycien, M.
Puddu, D.
Purohit, M.
Puzo, P.
Qian, J.
Qin, G.
Qin, Y.
Quadt, A.
Quayle, W. B.
Queitsch-Maitland, M.
Quilty, D.
Raddum, S.
Radeka, V.
Radescu, V.
Radhakrishnan, S. K.
Radloff, P.
Rados, P.
Ragusa, F.
Rahal, G.
Raine, J. A.
Rajagopalan, S.
Rammensee, M.
Rangel-Smith, C.
Ratti, M. G.
Rauscher, F.
Rave, S.
Ravenscroft, T.
Ravinovich, I.
Raymond, M.
Read, A. L.
Readioff, N. P.
Reale, M.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Rehnisch, L.
Reichert, J.
Reisin, H.
Rembser, C.
Ren, H.
Rescigno, M.
Resconi, S.
Rezanova, O. L.
Reznicek, P.
Rezvani, R.
Richter, R.
Richter, S.
Richter-Was, E.
Ricken, O.
Ridel, M.
Rieck, P.
Riegel, C. J.
Rieger, J.
Rifki, O.
Rijssenbeek, M.
Rimoldi, A.
Rimoldi, M.
Rinaldi, L.
Ristic, B.
Ritsch, E.
Riu, I.
Rizatdinova, F.
Rizvi, E.
Rizzi, C.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Roda, C.
Rodina, Y.
Perez, A. Rodriguez
Rodriguez, D. Rodriguez
Roe, S.
Rogan, C. S.
Rohne, O.
Romaniouk, A.
Romano, M.
Saez, S. M. Romano
Adam, E. Romero
Rompotis, N.
Ronzani, M.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, P.
Rosenthal, O.
Rosien, N. -A.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rosten, J. H. N.
Rosten, R.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rudolph, M. S.
Ruhr, F.
Ruiz-Martinez, A.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Russell, H. L.
Rutherfoord, J. P.
Ruthmann, N.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryu, S.
Ryzhov, A.
Rzehorz, G. F.
Saavedra, A. F.
Sabato, G.
Sacerdoti, S.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Saha, P.
Sahinsoy, M.
Saimpert, M.
Saito, T.
Sakamoto, H.
Sakurai, Y.
Salamanna, G.
Salamon, A.
Loyola, J. E. Salazar
Salek, D.
De Bruin, P. H. Sales
Salihagic, D.
Salnikov, A.
Salt, J.
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sammel, D.
Sampsonidis, D.
Sanchez, A.
Sanchez, J.
Martinez, V. Sanchez
Sandaker, H.
Sandbach, R. L.
Sander, H. G.
Sandhoff, M.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sannino, M.
Sansoni, A.
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Sapronov, A.
Saraiva, J. G.
Sarrazin, B.
Sasaki, O.
Sasaki, Y.
Sato, K.
Sauvage, G.
Sauvan, E.
Savage, G.
Savard, P.
Savic, N.
Sawyer, C.
Sawyer, L.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scanlon, T.
Scannicchio, D. A.
Scarcella, M.
Scarfone, V.
Schaarschmidt, J.
Schacht, P.
Schachtner, B. M.
Schaefer, D.
Schaefer, L.
Schaefer, R.
Schaeffer, J.
Schaepe, S.
Schaetzel, S.
Schafer, U.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Schiavi, C.
Schier, S.
Schillo, C.
Schioppa, M.
Schlenker, S.
Schmidt-Sommerfeld, K. R.
Schmieden, K.
Schmitt, C.
Schmitt, S.
Schmitz, S.
Schneider, B.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schoenrock, B. D.
Schopf, E.
Schott, M.
Schovancova, J.
Schramm, S.
Schreyer, M.
Schuh, N.
Schulte, A.
Schultens, M. J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwartzman, A.
Schwarz, T. A.
Schweiger, H.
Schwemling, Ph.
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Sciolla, G.
Scuri, F.
Scutti, F.
Searcy, J.
Seema, P.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekhon, K.
Sekula, S. J.
Seliverstov, D. M.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Sessa, M.
Seuster, R.
Severini, H.
Sfiligoj, T.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shaikh, N. W.
Shan, L. Y.
Shang, R.
Shank, J. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Shaw, S. M.
Shcherbakova, A.
Shehu, C. Y.
Sherwood, P.
Shi, L.
Shimizu, S.
Shimmin, C. O.
Shimojima, M.
Shiyakova, M.
Shmeleva, A.
Saadi, D. Shoaleh
Shochet, M. J.
Shojaii, S.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Sicho, P.
Sickles, A. M.
Sidebo, P. E.
Sidiropoulou, O.
Sidorov, D.
Sidoti, A.
Siegert, F.
Sijacki, Dj.
Silva, J.
Silverstein, S. B.
Simak, V.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simon, D.
Simon, M.
Sinervo, P.
Sinev, N. B.
Sioli, M.
Siragusa, G.
Sivoklokov, S. Yu.
Sjlin, J.
Skinner, M. B.
Skottowe, H. P.
Skubic, P.
Slater, M.
Slavicek, T.
Slawinska, M.
Sliwa, K.
Slovak, R.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smiesko, J.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, M. N. K.
Smith, R. W.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snyder, S.
Sobie, R.
Socher, F.
Soffer, A.
Soh, D. A.
Sokhrannyi, G.
Sanchez, C. A. Solans
Solar, M.
Soldatov, E. Yu.
Soldevila, U.
Solodkov, A. A.
Soloshenko, A.
Solovyanov, O. V.
Solovyev, V.
Sommer, P.
Son, H.
Song, H. Y.
Sood, A.
Sopczak, A.
Sopko, V.
Sorin, V.
Sosa, D.
Sotiropoulou, C. L.
Soualah, R.
Soukharev, A. M.
South, D.
Sowden, B. C.
Spagnolo, S.
Spalla, M.
Spangenberg, M.
Spano, F.
Sperlich, D.
Spettel, F.
Spighi, R.
Spigo, G.
Spiller, L. A.
Spousta, M.
St Denis, R. D.
Stabile, A.
Stamen, R.
Stamm, S.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, G. H.
Stark, J.
Staroba, P.
Starovoitov, P.
Starz, S.
Staszewski, R.
Steinberg, P.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoicea, G.
Stolte, P.
Stonjek, S.
Stradling, A. R.
Straessner, A.
Stramaglia, M. E.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strauss, M.
Strizenec, P.
Strhmer, R.
Strom, D. M.
Stroynowski, R.
Strubig, A.
Stucci, S. A.
Stugu, B.
Styles, N. A.
Su, D.
Su, J.
Suchek, S.
Sugaya, Y.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, S.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, S.
Svatos, M.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Ta, D.
Taccini, C.
Tackmann, K.
Taenzer, J.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takai, H.
Takashima, R.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A. A.
Tan, K. G.
Tanaka, J.
Tanaka, M.
Tanaka, R.
Tanaka, S.
Tannenwald, B. B.
Araya, S. Tapia
Tapprogge, S.
Tarem, S.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tashiro, T.
Tassi, E.
Delgado, A. Tavares
Tayalati, Y.
Taylor, A. C.
Taylor, G. N.
Taylor, P. T. E.
Taylor, W.
Teischinger, F. A.
Teixeira-Dias, P.
Temming, K. K.
Temple, D.
Ten Kate, H.
Teng, P. K.
Teoh, J. J.
Tepel, F.
Terada, S.
Terashi, K.
Terron, J.
Terzo, S.
Testa, M.
Teuscher, R. J.
Theveneaux-Pelzer, T.
Thomas, J. P.
Thomas-Wilsker, J.
Thompson, E. N.
Thompson, P. D.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Tibbetts, M. J.
Torres, R. E. Ticse
Tikhomirov, V. O.
Tikhonov, Yu. A.
Timoshenko, S.
Tipton, P.
Tisserant, S.
Todome, K.
Todorov, T.
Todorova-Nova, S.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tolley, E.
Tomlinson, L.
Tomoto, M.
Tompkins, L.
Toms, K.
Tong, B.
Torrence, E.
Torres, H.
Pastor, E. Torr
Toth, J.
Touchard, F.
Tovey, D. R.
Trefzger, T.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Trischuk, W.
Trocme, B.
Trofymov, A.
Troncon, C.
Trottier-McDonald, M.
Trovatelli, M.
Truong, L.
Trzebinski, M.
Trzupek, A.
Tseng, J. C-L.
Tsiareshka, P. V.
Tsipolitis, G.
Tsirintanis, N.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsui, K. M.
Tsukerman, I. I.
Tsulaia, V.
Tsuno, S.
Tsybychev, D.
Tu, Y.
Tudorache, A.
Tudorache, V.
Tuna, A. N.
Tupputi, S. A.
Turchikhin, S.
Turecek, D.
Turgeman, D.
Turra, R.
Turvey, A. J.
Tuts, P. M.
Tyndel, M.
Ucchielli, G.
Ueda, I.
Ughetto, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Ungaro, F. C.
Unno, Y.
Unverdorben, C.
Urban, J.
Urquijo, P.
Urrejola, P.
Usai, G.
Usanova, A.
Vacavant, L.
Vacek, V.
Vachon, B.
Valderanis, C.
Santurio, E. Valdes
Valencic, N.
Valentinetti, S.
Valero, A.
Valery, L.
Valkar, S.
Ferrer, J. A. Valls
Van denWollenberg, W.
Van der Deijl, P. C.
van der Graaf, H.
van Eldik, N.
van Gemmeren, P.
Van Nieuwkoop, J.
Van Vulpen, I.
Van Woerden, M. C.
Vanadia, M.
Vandelli, W.
Vanguri, R.
Vaniachine, A.
Vankov, P.
Vardanyan, G.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vasquez, J. G.
Vazeille, F.
Schroeder, T. Vazquez
Veatch, J.
Veeraraghavan, V.
Veloce, L. M.
Veloso, F.
Veneziano, S.
Ventura, A.
Venturi, M.
Venturi, N.
Venturini, A.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Viazlo, O.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Vigani, L.
Villa, M.
Perez, M. Villaplana
Vilucchi, E.
Vincter, M. G.
Vinogradov, V. B.
Vittori, C.
Vivarelli, I.
Vlachos, S.
Vlasak, M.
Vogel, M.
Vokac, P.
Volpi, G.
Volpi, M.
Von der Schmitt, H.
Von Toerne, E.
Vorobel, V.
Vorobev, K.
Vos, M.
Voss, R.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Vuillermet, R.
Vukotic, I.
Vykydal, Z.
Wagner, P.
Wagner, W.
Wahlberg, H.
Wahrmund, S.
Wakabayashi, J.
Walder, J.
Walker, R.
Walkowiak, W.
Wallangen, V.
Wang, C.
Wang, C.
Wang, F.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, K.
Wang, R.
Wang, S. M.
Wang, T.
Wang, T.
Wang, W.
Wang, X.
Wanotayaroj, C.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Washbrook, A.
Watkins, P. M.
Watson, A. T.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, B. M.
Webb, S.
Weber, M. S.
Weber, S. W.
Webster, J. S.
Weidberg, A. R.
Weinert, B.
Weingarten, J.
Weiser, C.
Weits, H.
Wells, P. S.
Wenaus, T.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, M. D.
Werner, P.
Wessels, M.
Wetter, J.
Whalen, K.
Whallon, N. L.
Wharton, A. M.
White, A.
White, M. J.
White, R.
Whiteson, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wildauer, A.
Wilk, F.
Wilkens, H. G.
Williams, H. H.
Williams, S.
Willis, C.
Willocq, S.
Wilson, J. A.
Wingerter-Seez, I.
Winklmeier, F.
Winston, O. J.
Winter, B. T.
Wittgen, M.
Wittkowski, J.
Wolf, T. M. H.
Wolter, M. W.
Wolters, H.
Worm, S. D.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wu, M.
Wu, M.
Wu, S. L.
Wu, X.
Wu, Y.
Wyatt, T. R.
Wynne, B. M.
Xella, S.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yamaguchi, D.
Yamaguchi, Y.
Yamamoto, A.
Yamamoto, S.
Yamanaka, T.
Yamauchi, K.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, H.
Yang, Y.
Yang, Z.
Yao, W-M.
Yap, Y. C.
Yasu, Y.
Yatsenko, E.
Wong, K. H. Yau
Ye, J.
Ye, S.
Yeletskikh, I.
Yen, A. L.
Yildirim, E.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J. S.
Youssef, S.
Yu, D. R.
Yu, J.
Yu, J. M.
Yu, J.
Yuan, L.
Yuen, S. P. Y.
Yusuff, I.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zakharchuk, N.
Zalieckas, J.
Zaman, A.
Zambito, S.
Zanello, L.
Zanzi, D.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zeng, J. C.
Zeng, Q.
Zengel, K.
Zenin, O.
Zenis, T.
Zerwas, D.
Zhang, D.
Zhang, F.
Zhang, G.
Zhang, H.
Zhang, J.
Zhang, L.
Zhang, R.
Zhang, R.
Zhang, X.
Zhang, Z.
Zhao, X.
Zhao, Y.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, C.
Zhou, L.
Zhou, L.
Zhou, M.
Zhou, N.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhukov, K.
Zibell, A.
Zieminska, D.
Zimine, N. I.
Zimmermann, C.
Zimmermann, S.
Zinonos, Z.
Zinser, M.
Ziolkowski, M.
Zivkovic, L.
Zobernig, G.
Zoccoli, A.
zur Nedden, M.
Zwalinski, L.
CA ATLAS Collaboration
TI Measurement of exclusive gamma gamma -> W+W- production and search for
exclusive Higgs boson production in pp collisions at root s=8 TeV using
the ATLAS detector
SO PHYSICAL REVIEW D
LA English
DT Article
ID 2-PHOTON PROCESSES; LHC; PHYSICS
AB Searches for exclusively produced W boson pairs in the process pp(gamma gamma) -> pW(+) W- p and an exclusively produced Higgs boson in the process pp(gg) -> pHp have been performed using e(+/-) mu(-/+) final states. These measurements use 20.2 fb(-1) of pp collisions collected by the ATLAS experiment at a center-of-mass energy root s = 8 TeV at the LHC. Exclusive production of W+ W- consistent with the Standard Model prediction is found with 3.0 sigma significance. The exclusive W+ W- production cross section is determined to be sigma(gamma gamma -> W+ W- -> e(+/-) mu(-/+) X) = 6.9 +/- 2.2(stat) +/- 1.4(sys) fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95% confidence level as -1.7 x 10(-6) < a(0)(W) / Lambda(2) < 1.7 x 10(-6) GeV-2 and -6.4 x 10(-6) < a(C)(W) / Lambda(2) < 6.3 x 10(-6) GeV-2. A 95% confidence-level upper limit on the total production cross section for an exclusive Higgs boson is set to 1.2 pb.
C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
[Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey.
[Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Aloisio, A.; Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France.
[Aloisio, A.; Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA.
[Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Aloisio, A.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan.
[Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rizzi, C.; Perez, A. Rodriguez; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain.
[Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Aloisio, A.; Alonso, A.; Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Navarro, J. E. Garcia; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Aloisio, A.; Alonso, A.; Amadio, B. T.; Amorim, A.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Navarro, J. E. Garcia; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany.
[Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Allport, P. P.; Aloisio, A.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys Engn, Gaziantep, Turkey.
[Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey.
[Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey.
[Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Sidoti, A.; Ucchielli, G.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy.
[Alberghi, G. L.; Aloisio, A.; Alonso, A.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy.
[Aloisio, A.; Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; Von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Phy Inst, Bonn, Germany.
[Ahlen, S. P.; Aloisio, A.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA.
[Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Goblirsch-Kolb, M.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; de Andrade Filho, L. Manhaes; Peralva, B. S.] Fed Univ Juiz De Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil.
[do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil.
[Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stucci, S. A.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
Transilvania Univ Brasov, Brasov, Romania.
[Alexa, C.; Aloisio, A.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania.
Univ Politehn Bucuresti, Bucharest, Romania.
[Gravila, P. M.] West Univ Timisoara, Timisoara, Romania.
[Sola, J. D. Bossio; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England.
[Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada.
[Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backhaus, M.; Barak, L.; Barisits, M-S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hanisch, S.; Hawkings, R. J.; Helary, L.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; Van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Aloisio, A.; Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Aloisio, A.; Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Li, C.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Aloisio, A.; Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, PKU CHEP, Shanghai, Peoples R China.
[Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France.
[Aloisio, A.; Boumediene, D.; Busato, E.; Calvet, D.; Chomont, A. R.; Donini, J.; Gris, Ph.; Pallin, D.; Santoni, C.; Simon, D.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France.
[Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Frascati, Italy.
[Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy.
[Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland.
[Aloisio, A.; Alonso, A.; Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland.
[Aloisio, A.; Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX USA.
[Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany.
[Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany.
[Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Gossling, C.; Homann, M.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Aloisio, A.; Alonso, A.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Pino, S. A. Olivares; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland.
[Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
[Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruhr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany.
[Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy.
[Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia.
[Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, High Energy Phys Inst, Tbilisi, Rep of Georgia.
[Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Inst Phys 2, Giessen, Germany.
[Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland.
[Agricola, J.; Bindi, M.; Bisanz, T.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Aloisio, A.; Berlendis, S.; Bethani, A.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France.
[Aloisio, A.; Alonso, A.; Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Phys Inst, Heidelberg, Germany.
[Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
[Bortolotto, V.; Orlando, N.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
[Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Kowloon, Hong Kong, Peoples R China.
[Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Guenther, J.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia.
[Aloisio, A.; Alonso, A.; Amako, K.; Amorim, A.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan.
[Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan.
[Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto, Japan.
[Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan.
[Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina.
[Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina.
[Aloisio, A.; Alonso, A.; Amorim, A.; Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England.
[Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy.
[Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy.
[Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England.
[Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia.
[Armitage, L. J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England.
[Aloisio, A.; Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England.
[Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France.
[Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden.
[Barreiro, F.; Lopez, S. Calvente; Cueto, A.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain.
[Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Caputo, R.; Cuth, J.; Dudder, A. Chr.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] Aix Marseille Univ, CPPM, Marseille, France.
[Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] CNRS IN2P3, Marseille, France.
[Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia.
[Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy.
[Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy.
[Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus.
[Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Aloisio, A.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia.
[Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia.
Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Aloisio, A.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany.
[Aloisio, A.; Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Koehler, N. M.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; Terzo, S.; Von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Munich, Germany.
[Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Aloisio, A.; Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan.
[Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.] Univ Napoli, Dipartimento Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van denWollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; Van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands.
[Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van denWollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; Van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands.
[Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia.
[Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA.
[Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan.
[Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK USA.
[Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic.
[Abreu, R.; Allen, B. W.; Brau, J. E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France.
[Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Aloisio, A.; Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy.
[Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy.
[Brendlinger, K.; Haney, B.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Reichert, J.; Thomson, E.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] Kurchatov Inst, Natl Res Ctr, BP Konstantinov Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Andreazza, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal.
[Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
Univ Nova Lisboa, Dept Fis, Caparica, Portugal.
Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal.
[Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic.
[Aloisio, A.; Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Staroba, P.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Vaniachine, A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys Protvino, Protvino, Russia.
[Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England.
[Anulli, F.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Vanadia, M.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
Sapienza Univ Roma, Dipartimento Fis, Rome, Italy.
[Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy.
[Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco.
[Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco.
[El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France.
[AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torr; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany.
[Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada.
[Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia.
[Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa.
[Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Abulaiti, Y.; Akerstedt, H.; Aloisio, A.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjlin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden.
[Abulaiti, Y.; Akerstedt, H.; Aloisio, A.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjlin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden.
[Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden.
[Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Abraham, N. L.; Allbrooke, B. M. M.; Aloisio, A.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia.
[Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Soffer, A.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel.
[Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel.
[Gentsos, C.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece.
[Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Aloisio, A.; Alonso, A.; Amorim, A.; Andreazza, A.; Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Mori, T.; Morinaga, M.; Nakamura, T.; Nobe, T.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan.
[Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan.
[Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada.
[Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada.
[Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Pinamonti, M.; Serkin, L.; Shaw, K.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy.
[Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy.
[Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Aloisio, A.; Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Aloisio, A.; Alonso, A.; Piqueras, D. Alvarez; Amorim, A.; Andreazza, A.; Angerami, A.; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Aloisio, A.; Alonso, A.; Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Piqueras, D. Alvarez; Ferrer, A.; Fuster, J.; Garcia, C.; Higon-Rodriguez, E.; Lacasta, C.; Mamuzic, J.; Melini, D.; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Valero, A.; Ferrer, J. A. Valls] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain.
[Aloisio, A.; Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain.
[Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Aloisio, A.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; LeBlanc, M.; Lefebvre, M.; Pearce, J.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England.
[Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Balek, P.; Bressler, S.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel.
[Aloisio, A.; Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
[Herget, V.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strhmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wrzburg, Germany.
[Bannoura, A. A. E.; Boerner, D.; Ellinghaus, F.; Ernis, G.; Gilles, G.; Hirschbuehl, D.; Riegel, C. J.; Tepel, F.; Zeitnitz, C.] Berg Univ Wuppertal, Fak Math & Nat Wissensch, Fachgrp Phys, Wuppertal, Germany.
[Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Ideal, E.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia.
[Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France.
[Acharya, B. S.] Kings Coll London, Dept Phys, London, England.
[Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan.
[Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Lin, S. C.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia.
[Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada.
[Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA.
[Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland.
[Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain.
[Castro, N. F.] Univ Porto, Dept Fis & Astron, Fac Ciencias, Oporto, Portugal.
[Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Ottawa, ON, Canada.
[Ducu, O. A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia.
[Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa.
[Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain.
[Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan.
[Igonkina, O.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia.
[Jenni, P.] CERN, Geneva, Switzerland.
[Khubua, J.] Georgian Tech Univ GTU, Tbilisi, Rep of Georgia.
[Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Leisos, A.] Hellen Open Univ, Patras, Greece.
Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei, Taiwan.
[Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia.
[Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary.
[Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy.
[Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China.
[Shiyakova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy INRNE, Sofia, Bulgaria.
[Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia.
[Song, H. Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia.
[Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary.
[Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany.
[Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia.
[Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France.
[Zhang, R.] CNRS IN2P3, Marseille, France.
RI Chekulaev, Sergey/O-1145-2015; Lazzaroni, Massimo/N-3675-2015;
Prokoshin, Fedor/E-2795-2012; Warburton, Andreas/N-8028-2013; Owen,
Mark/Q-8268-2016; Gladilin, Leonid/B-5226-2011; Livan,
Michele/D-7531-2012; Ventura, Andrea/A-9544-2015; Mashinistov,
Ruslan/M-8356-2015; Gutierrez, Phillip/C-1161-2011; White,
Ryan/E-2979-2015; Kantserov, Vadim/M-9761-2015; Li, Liang/O-1107-2015;
Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Mitsou,
Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015; Zhukov,
Konstantin/M-6027-2015; Snesarev, Andrey/H-5090-2013; Solodkov,
Alexander/B-8623-2017; Tikhomirov, Vladimir/M-6194-2015; Doyle,
Anthony/C-5889-2009; Zaitsev, Alexandre/B-8989-2017; Carli,
Ina/C-2189-2017; Guo, Jun/O-5202-2015; Villa, Mauro/C-9883-2009;
Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015
OI Lazzaroni, Massimo/0000-0002-4094-1273; Prokoshin,
Fedor/0000-0001-6389-5399; Warburton, Andreas/0000-0002-2298-7315; Owen,
Mark/0000-0001-6820-0488; Gladilin, Leonid/0000-0001-9422-8636; Livan,
Michele/0000-0002-5877-0062; Ventura, Andrea/0000-0002-3368-3413;
Mashinistov, Ruslan/0000-0001-7925-4676; White,
Ryan/0000-0003-3589-5900; Kantserov, Vadim/0000-0001-8255-416X; Li,
Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday,
Sinan/0000-0002-0116-5494; Mitsou, Vasiliki/0000-0002-1533-8886;
Camarri, Paolo/0000-0002-5732-5645; Solodkov,
Alexander/0000-0002-2737-8674; Tikhomirov, Vladimir/0000-0002-9634-0581;
Doyle, Anthony/0000-0001-6322-6195; Zaitsev,
Alexandre/0000-0002-4961-8368; Carli, Ina/0000-0002-0411-1141; Guo,
Jun/0000-0001-8125-9433; Villa, Mauro/0000-0002-9181-8048; Peleganchuk,
Sergey/0000-0003-0907-7592;
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil;
NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS,
China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech
Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark;
DNSRC, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia;
BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong
SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN,
Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO,
Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal;
MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian
Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS,
Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg
Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of
Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK,
Turkey; STFC, United Kingdom; DOE, USA; NSF, USA; BCKDF; Canada Council,
Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT,
Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC,
European Union; FP7, European Union; Horizon, European Union; Marie
Sklodowska-Curie Actions, European Union; Investissement d'Avenir Labex,
France; Investissement d'Avenir Idex, France; ANR, France; Region
Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany;
AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales
programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF,
Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de
Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society, United
Kingdom; Leverhulme Trust, United Kingdom
FX We thank CERN for the very successful operation of the LHC, as well as
the support staff from our institutions without whom ATLAS could not be
operated efficiently. We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS,
Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,
Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS,
Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC,
Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and
MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and
Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST,
Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland;
FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian
Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS,
Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg
Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva,
Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and
NSF, USA. In addition, individual groups and members have received
support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada,
FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7,
Horizon 2020 and Marie Sklodowska-Curie Actions, European Union;
Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and
Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany;
Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and
the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat
de Catalunya, Generalitat Valenciana, Spain; the Royal Society and
Leverhulme Trust, United Kingdom. The crucial computing support from all
WLCG partners is acknowledged gratefully, in particular, from CERN, the
ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway,
Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy),
NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), BNL (USA),
the Tier-2 facilities worldwide and large non-WLCG resource providers.
Major contributors of computing resources are listed in Ref. [74].
NR 73
TC 2
Z9 2
U1 26
U2 26
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD AUG 31
PY 2016
VL 94
IS 3
AR 032011
DI 10.1103/PhysRevD.94.032011
PG 32
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DV6LH
UT WOS:000383046500001
ER
PT J
AU Artamonov, AV
Bassalleck, B
Bhuyan, B
Blackmore, EW
Bryman, DA
Chen, S
Chiang, IH
Christidi, IA
Cooper, PS
Diwan, MV
Frank, JS
Fujiwara, T
Hu, J
Ives, J
Izmaylov, AO
Jaffe, DE
Kabe, S
Kettell, SH
Khabibullin, MM
Khotjantsev, AN
Kitching, P
Kobayashi, M
Komatsubara, TK
Konaka, A
Kudenko, YG
Landsberg, LG
Lewis, B
Li, KK
Littenberg, LS
Macdonald, JA
Mildenberger, J
Mineev, OV
Miyajima, M
Mizouchi, K
Muramatsu, N
Nakano, T
Nomachi, M
Nomura, T
Numao, T
Obraztsov, VF
Omata, K
Patalakha, DI
Poutissou, R
Redlinger, G
Sato, T
Sekiguchi, T
Shaikhiev, AT
Shinkawa, T
Strand, RC
Sugimoto, S
Tamagawa, Y
Tschirhart, R
Tsunemi, T
Vavilov, DV
Viren, B
Wang, Z
Wei, HY
Yershov, NV
Yoshimura, Y
Yoshioka, T
AF Artamonov, A. V.
Bassalleck, B.
Bhuyan, B.
Blackmore, E. W.
Bryman, D. A.
Chen, S.
Chiang, I-H.
Christidi, I. -A.
Cooper, P. S.
Diwan, M. V.
Frank, J. S.
Fujiwara, T.
Hu, J.
Ives, J.
Izmaylov, A. O.
Jaffe, D. E.
Kabe, S.
Kettell, S. H.
Khabibullin, M. M.
Khotjantsev, A. N.
Kitching, P.
Kobayashi, M.
Komatsubara, T. K.
Konaka, A.
Kudenko, Yu. G.
Landsberg, L. G.
Lewis, B.
Li, K. K.
Littenberg, L. S.
Macdonald, J. A.
Mildenberger, J.
Mineev, O. V.
Miyajima, M.
Mizouchi, K.
Muramatsu, N.
Nakano, T.
Nomachi, M.
Nomura, T.
Numao, T.
Obraztsov, V. F.
Omata, K.
Patalakha, D. I.
Poutissou, R.
Redlinger, G.
Sato, T.
Sekiguchi, T.
Shaikhiev, A. T.
Shinkawa, T.
Strand, R. C.
Sugimoto, S.
Tamagawa, Y.
Tschirhart, R.
Tsunemi, T.
Vavilov, D. V.
Viren, B.
Wang, Zhe
Wei, Hanyu
Yershov, N. V.
Yoshimura, Y.
Yoshioka, T.
CA E949 Collaboration
TI Search for the rare decay K+ -> mu(+) nu(nu)over-bar nu
SO PHYSICAL REVIEW D
LA English
DT Article
AB Evidence of the K+ -> mu(+) nu(nu) over bar nu decay was searched for using E949 ( Brookhaven National Laboratory, USA) experimental data with an exposure of 1.70 x 10(12) stopped kaons. The data sample is dominated by the background process K+ -> mu(+) nu(mu)gamma. An upper limit on the decay rate Gamma(K+ -> mu(+) nu(nu) over bar nu) < 2.4 x 10(-6)Gamma(K+ -> all) at 90% confidence level was set assuming the standard model muon spectrum. The data are presented in such a way as to allow calculation of rates for any assumed mu(+) spectrum.
C1 [Artamonov, A. V.; Landsberg, L. G.; Obraztsov, V. F.; Patalakha, D. I.; Vavilov, D. V.] Inst High Energy Phys, Protvino 142280, Moscow Region, Russia.
[Bassalleck, B.; Lewis, B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Bhuyan, B.; Chiang, I-H.; Diwan, M. V.; Frank, J. S.; Jaffe, D. E.; Kettell, S. H.; Li, K. K.; Littenberg, L. S.; Redlinger, G.; Strand, R. C.; Viren, B.; Wang, Zhe] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Blackmore, E. W.; Chen, S.; Hu, J.; Konaka, A.; Macdonald, J. A.; Mildenberger, J.; Numao, T.; Poutissou, R.; Vavilov, D. V.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
[Bryman, D. A.; Ives, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Chen, S.; Wang, Zhe; Wei, Hanyu] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.
[Christidi, I. -A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Cooper, P. S.; Tschirhart, R.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Fujiwara, T.; Mizouchi, K.; Nomura, T.; Tsunemi, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan.
[Izmaylov, A. O.; Khabibullin, M. M.; Khotjantsev, A. N.; Kudenko, Yu. G.; Mineev, O. V.; Shaikhiev, A. T.; Yershov, N. V.] RAS, Inst Nucl Res, 60 October Revolut Prospect 7a, Moscow 117312, Russia.
[Kabe, S.; Kobayashi, M.; Komatsubara, T. K.; Nomura, T.; Omata, K.; Sato, T.; Sekiguchi, T.; Sugimoto, S.; Tsunemi, T.; Yoshimura, Y.; Yoshioka, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan.
[Kitching, P.] Univ Alberta, Ctr Subat Res, Edmonton, AB T6G 2N5, Canada.
[Kudenko, Yu. G.] Moscow Inst Phys & Technol, Moscow 141700, Russia.
[Kudenko, Yu. G.] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow 115409, Russia.
[Miyajima, M.; Tamagawa, Y.] Univ Fukui, Dept Appl Phys, 3-9-1 Bunkyo, Fukui, Fukui 9108507, Japan.
[Muramatsu, N.; Nakano, T.] Osaka Univ, Nucl Phys Res Ctr, 10-1 Mihogaoka, Osaka 5670047, Japan.
[Nomachi, M.] Osaka Univ, Lab Nucl Studies, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan.
[Shinkawa, T.] Natl Def Acad, Dept Appl Phys, Yokosuka, Kanagawa 2398686, Japan.
[Christidi, I. -A.] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India.
[Frank, J. S.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece.
[Kabe, S.; Landsberg, L. G.; Macdonald, J. A.; Sugimoto, S.] 1 Nathan Hale Dr, Setauket, NY 11733 USA.
[Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Taihaku Ku, Sendai, Miyagi 9820826, Japan.
[Yoshioka, T.] Kyushu Univ, Dept Phys, Higashi Ku, Fukuoka 8128581, Japan.
RP Artamonov, AV (reprint author), Inst High Energy Phys, Protvino 142280, Moscow Region, Russia.
RI Wei, Hanyu/D-7291-2017
OI Wei, Hanyu/0000-0003-1973-4912
FU Russian Science Foundation [14-12-00560]; U.S. Department of Energy;
Ministry of Education, Culture, Sports, Science and Technology of Japan
through the Japan-U.S. Cooperative Research Program in High Energy
Physics; Natural Sciences and Engineering Research Council [157985];
National Research Council of Canada; National Natural Science Foundation
of China; Tsinghua University Initiative Scientific Research Program
FX This research was supported in part by Grant #14-12-00560 of the Russian
Science Foundation, the U.S. Department of Energy, the Ministry of
Education, Culture, Sports, Science and Technology of Japan through the
Japan-U.S. Cooperative Research Program in High Energy Physics and under
Grant-in-Aids for Scientific Research, the Natural Sciences and
Engineering Research Council (Grant no. 157985) and the National
Research Council of Canada, National Natural Science Foundation of
China, and the Tsinghua University Initiative Scientific Research
Program.
NR 9
TC 0
Z9 0
U1 2
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD AUG 31
PY 2016
VL 94
IS 3
AR 032012
DI 10.1103/PhysRevD.94.032012
PG 6
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DV6LH
UT WOS:000383046500002
ER
PT J
AU Love, CN
Winzeler, ME
Beasley, R
Scott, DE
Nunziata, SO
Lance, SL
AF Love, Cara N.
Winzeler, Megan E.
Beasley, Rochelle
Scott, David E.
Nunziata, Schyler O.
Lance, Stacey L.
TI Patterns of amphibian infection prevalence across wetlands on the
Savannah River Site, South Carolina, USA
SO DISEASES OF AQUATIC ORGANISMS
LA English
DT Article
DE Batrachochytrium; Chytrid; Metals; Ranavirus; Wetland
ID AMBYSTOMA-TIGRINUM VIRUS; BATRACHOCHYTRIUM-DENDROBATIDIS; POPULATION
DECLINES; CHYTRID FUNGUS; WIDESPREAD OCCURRENCE; DISEASE DYNAMICS;
BUFO-TERRESTRIS; RANAVIRUS; CHYTRIDIOMYCOSIS; MORTALITY
AB Amphibian diseases, such as chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) and ranaviral disease caused by ranaviruses, are often linked to global amphibian population declines, yet the ecological dynamics of both pathogens are poorly understood. The goal of our study was to determine the baseline prevalence, pathogen loads, and co-infection rate of Bd and ranavirus across the Savannah River Site (SRS) in South Carolina, USA, a region with rich amphibian diversity and a history of amphibian-based research. We tested over 1000 individuals, encompassing 21 amphibian species from 11 wetlands for both Bd and ranavirus. The prevalence of Bd across individuals was 9.7%. Using wetland means, the mean (+/- SE) Bd prevalence was 7.9 +/- 2.9%. Among toad species, Anaxyrus terrestris had 95 and 380% greater odds of being infected with Bd than Scaphiopus holbrookii and Gastrophryne carolinensis, respectively. Odds of Bd infection in adult A. terrestris and Lithobates sphenocephalus were 75 to 77% greater in metal-contaminated sites. The prevalence of ranavirus infections across all individuals was 37.4%. Mean wetland ranavirus prevalence was 29.8 +/- 8.8% and was higher in post-metamorphic individuals than in aquatic larvae. Ambystoma tigrinum had 83 to 85% higher odds of ranavirus infection than A. opacum and A. talpoideum. We detected a 4.8% co-infection rate, with individuals positive for ranavirus having a 5% higher occurrence of Bd. In adult Anaxyrus terrestris, odds of Bd infection were 13% higher in ranavirus-positive animals and odds of co-infection were 23% higher in contaminated wetlands. Overall, we found the pathogen prevalence varied by wetland, species, and life stage.
C1 [Love, Cara N.; Winzeler, Megan E.; Beasley, Rochelle; Scott, David E.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Love, Cara N.; Winzeler, Megan E.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA.
[Nunziata, Schyler O.] Univ Kentucky, Dept Biol Sci, Lexington, KY 40506 USA.
RP Lance, SL (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
EM lance@srel.uga.edu
OI Winzeler, Megan/0000-0002-0361-1582
FU US Department of Energy [DE-FC09-07SR22506]; DOE National Nuclear
Security Administration
FX We thank C. Muletz and N. McInerney for providing the Bd standards, P.
Johnson for providing the oligo sequence for the ranavirus standard, and
J. Hoverman and S. Kimble for assistance with optimizing the ranavirus
qPCR. A. L. Bryan and D. Soteropolous provided field and laboratory
assistance, and R. W. Flynn, C. Rumrill, S. Weir, A. Coleman, J.
O'Bryhim and 2 anonymous reviewers provided valuable comments on earlier
versions of the manuscript. This research was partially supported by US
Department of Energy under Award Number DE-FC09-07SR22506 to the
University of Georgia Research Foundation, and was also made possible by
the status of the SRS as a National Environmental Research Park (NERP),
as well as the protection of research wetlands in the SRS Set-Aside
Program. Project funding was provided by the DOE National Nuclear
Security Administration. Animals were collected under SCDNR permit
#G-09-03 following IACUC procedures (AUP A2009 10-175-Y2-A0) from the
University of Georgia.
NR 70
TC 0
Z9 0
U1 13
U2 14
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 0177-5103
EI 1616-1580
J9 DIS AQUAT ORGAN
JI Dis. Aquat. Org.
PD AUG 31
PY 2016
VL 121
IS 1
BP 1
EP 14
DI 10.3354/dao03039
PG 14
WC Fisheries; Veterinary Sciences
SC Fisheries; Veterinary Sciences
GA DX2ZV
UT WOS:000384243300001
PM 27596855
ER
PT J
AU Tran, AP
Dafflon, B
Hubbard, SS
Kowalsky, MB
Long, P
Tokunaga, TK
Williams, KH
AF Anh Phuong Tran
Dafflon, Baptiste
Hubbard, Susan S.
Kowalsky, Michael B.
Long, Philip
Tokunaga, Tetsu K.
Williams, Kenneth H.
TI Quantifying shallow subsurface water and heat dynamics using coupled
hydrological-thermal-geophysical inversion
SO HYDROLOGY AND EARTH SYSTEM SCIENCES
LA English
DT Article
ID ELECTRICAL-RESISTIVITY TOMOGRAPHY; DATA INCORPORATING TOPOGRAPHY;
GROUND-PENETRATING RADAR; DC RESISTIVITY; SOIL-MOISTURE; TIME-LAPSE;
HYDROGEOPHYSICAL INVERSION; HYDRAULIC-PROPERTIES; TEMPERATURE;
CONDUCTIVITY
AB Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme - which is based on a nonisothermal, multiphase hydrological model - provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.
C1 [Anh Phuong Tran; Dafflon, Baptiste; Hubbard, Susan S.; Kowalsky, Michael B.; Long, Philip; Tokunaga, Tetsu K.; Williams, Kenneth H.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Div, Earth & Environm Sci Area, Berkeley, CA 94720 USA.
RP Tran, AP (reprint author), Lawrence Berkeley Natl Lab, Climate & Ecosyst Div, Earth & Environm Sci Area, Berkeley, CA 94720 USA.
EM aptran@lbl.gov
RI Hubbard, Susan/E-9508-2010; Long, Philip/F-5728-2013; Tokunaga,
Tetsu/H-2790-2014; Williams, Kenneth/O-5181-2014; Dafflon,
Baptiste/G-2441-2015; Tran, Anh Phuong/G-1911-2015
OI Long, Philip/0000-0003-4152-5682; Tokunaga, Tetsu/0000-0003-0861-6128;
Williams, Kenneth/0000-0002-3568-1155; Tran, Anh
Phuong/0000-0002-7703-6621
FU Sub-surface Science Scientific Focus Area - US Department of Energy,
Office of Science, Office of Biological and Environmental Research
[DE-AC02-05CH11231]
FX This material is based upon work supported as part of the Sub-surface
Science Scientific Focus Area funded by the US Department of Energy,
Office of Science, Office of Biological and Environmental Research under
award number DE-AC02-05CH11231. The authors would like to thank Stefan
Finsterle for providing iTOUGH2 codes and support, and Thomas Gunther
for providing the BERT codes.
NR 54
TC 0
Z9 0
U1 7
U2 7
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1027-5606
EI 1607-7938
J9 HYDROL EARTH SYST SC
JI Hydrol. Earth Syst. Sci.
PD AUG 31
PY 2016
VL 20
IS 8
BP 3477
EP 3491
DI 10.5194/hess-20-3477-2016
PG 15
WC Geosciences, Multidisciplinary; Water Resources
SC Geology; Water Resources
GA DW8GM
UT WOS:000383892900001
ER
PT J
AU Fu, SF
Zhu, CZ
Song, JH
Engelhard, M
Xia, HB
Du, D
Lin, YH
AF Fu, Shaofang
Zhu, Chengzhou
Song, Junhua
Engelhard, Mark
Xia, Haibing
Du, Dan
Lin, Yuehe
TI PdCuPt Nanocrystals with Multibranches for Enzyme-Free Glucose Detection
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE branched nanocrystals; alloys; galvanic replacement reaction;
enzyme-free biosensors; glucose detection
ID ELECTROCHEMICAL SYNTHESIS; ONE-STEP; GRAPHENE; SENSORS; NANOSTRUCTURES;
NANOWIRES; PLATINUM; ELECTROOXIDATION; NANOCOMPOSITES; NANOPARTICLES
AB By carefully controlling the synthesis condition, branched PtCu bimetallic templates were synthesized in aqueous solution. After the galvanic replacement reaction between PtCu templates and the Pt precursors, PdCuPt trimetallic nanocrystals with branched structures were obtained. Owing to the open structure and the optimized composition, the electrochemical experimental results reveal that the PdCuPt trimetallic nanocrystals possess high electrocatalytic activity, selectivity and stability for the oxidation of glucose in alkaline solution. In detail, a detection limit of 1.29 mu M and a sensitivity of 378 mu A/mM/cm(2) are achieved. The good electrocatalytic performance should be attributed to the unique branched nanostructure as well as the synergistic effect among metals. The superior catalytic properties suggest that these nanocrystals are promising for enzyme-free detection of glucose.
C1 [Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Du, Dan; Lin, Yuehe] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
[Engelhard, Mark; Lin, Yuehe] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Xia, Haibing] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.
RP Lin, YH (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.; Lin, YH (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
EM yuehe.lin@wsu.edu
RI Zhu, Chengzhou/M-3566-2014; Xia, Haibing/A-8711-2008; FU,
SHAOFANG/D-2328-2016
OI Xia, Haibing/0000-0003-2262-7958; FU, SHAOFANG/0000-0002-7871-6573
FU Washington State University, USA
FX This work was supported by a start-up funding of Washington State
University, USA.
NR 32
TC 1
Z9 1
U1 24
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD AUG 31
PY 2016
VL 8
IS 34
BP 22196
EP 22200
DI 10.1021/acsami.6b06158
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DU9CP
UT WOS:000382514100042
PM 27494365
ER
PT J
AU Wu, XH
Xu, GL
Zhong, GM
Gong, ZL
McDonald, MJ
Zheng, SY
Fu, RQ
Chen, ZH
Amine, K
Yang, Y
AF Wu, Xuehang
Xu, Gui-Liang
Zhong, Guiming
Gong, Zhengliang
McDonald, Matthew J.
Zheng, Shiyao
Fu, Riqiang
Chen, Zonghai
Amine, Khalil
Yang, Yong
TI Insights into the Effects of Zinc Doping on Structural Phase Transition
of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium
Ion Batteries
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE sodium ion battery; cathode material; Zn doping sodium nickel manganese
oxide; structural transition
ID ELECTROCHEMICAL PROPERTIES; POSITIVE ELECTRODE; RATE PERFORMANCE; NA
BATTERIES; LITHIUM; STABILITY; SUBSTITUTION; CAPACITY; STORAGE
AB P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for :,applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ X-ray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SS-NMR) techniques was carried out to gain a deep insight into the :structural evolution of P-2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) :during cycling. In situ HEXRD and ex situ TEM. measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni4+/Ni3+/Ni2+ redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.
C1 [Wu, Xuehang; Zhong, Guiming; McDonald, Matthew J.; Zheng, Shiyao; Yang, Yong] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China.
[Wu, Xuehang; Zhong, Guiming; McDonald, Matthew J.; Zheng, Shiyao; Yang, Yong] Xiamen Univ, Dept Chem, Xiamen 361005, Fujian, Peoples R China.
[Gong, Zhengliang; Yang, Yong] Xiamen Univ, Sch Energy Res, Xiamen 361005, Peoples R China.
[Xu, Gui-Liang; Chen, Zonghai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Wu, Xuehang] Guangxi Univ, Collaborat Innovat Ctr Renewable Energy Mat, Nanning 530004, Guangxi, Peoples R China.
[Fu, Riqiang] Natl High Magnet Field Lab, 1800 East Paul Dirac Dr, Tallahassee, FL 32310 USA.
RP Yang, Y (reprint author), Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China.; Yang, Y (reprint author), Xiamen Univ, Dept Chem, Xiamen 361005, Fujian, Peoples R China.; Yang, Y (reprint author), Xiamen Univ, Sch Energy Res, Xiamen 361005, Peoples R China.
EM yyang@xmu.edu.cn
RI Chen, Zhong/G-4601-2010; Yang, Yong/G-4650-2010; XU,
GUILIANG/F-3804-2017
FU National Natural Science Foundation of China [21233004, 21473148,
21428303]; National Basic Research Program of China (973 program)
[2011CB935903]
FX The authors acknowledge financial support of their research from the
National Natural Science Foundation of China (Grant Nos. 21233004,
21473148, and 21428303) and the National Basic Research Program of China
(973 program, Grant No. 2011CB935903). We sincerely acknowledge Dr. W.
Wen and other staff of the XAFS beamline of Shanghai Synchrotron
Radiation Facility for their support. R.F. is also indebted to the
support for being a PCOSS fellow by the State Key Lab of Physical
Chemistry of Solid Surfaces, Xiamen University, China.
NR 39
TC 4
Z9 4
U1 65
U2 78
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD AUG 31
PY 2016
VL 8
IS 34
BP 22227
EP 22237
DI 10.1021/acsami.6b06701
PG 11
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DU9CP
UT WOS:000382514100046
PM 27494351
ER
PT J
AU Steinmann, V
Chakraborty, R
Rekemeyer, PH
Hartman, K
Brandt, RE
Polizzotti, A
Yang, CX
Moriarty, T
Gradecak, S
Gordon, RG
Buonassisi, T
AF Steinmann, Vera
Chakraborty, Rupak
Rekemeyer, Paul H.
Hartman, Katy
Brandt, Riley E.
Polizzotti, Alex
Yang, Chuanxi
Moriarty, Tom
Gradecak, Silvija
Gordon, Roy G.
Buonassisi, Tonio
TI A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in
Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material
System
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE thin-films; photovoltaics; novel absorber materials; tin sulfide; device
shunting; performance reliability
ID DEFECT-TOLERANT SEMICONDUCTORS; ATOMIC LAYER DEPOSITION;
PHOTOVOLTAIC-DEVICE; ENERGY CONVERSION
AB As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing "false-negative" results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 degrees C) to stimulate grain growth, followed by a much thinner, low-temperature (200 degrees C) absorber deposition. At a lower process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5X superior shunt resistance R-sh with smaller standard error sigma(Rsh). Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.
C1 [Steinmann, Vera; Chakraborty, Rupak; Hartman, Katy; Brandt, Riley E.; Polizzotti, Alex; Buonassisi, Tonio] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
[Rekemeyer, Paul H.; Gradecak, Silvija] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Yang, Chuanxi; Gordon, Roy G.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
[Moriarty, Tom] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Steinmann, V (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
EM vsteinma@mit.edu; buonassisi@mit.edu
OI Rekemeyer, Paul/0000-0002-5901-9027
FU TOTAL SA grant; Engineering Research Center Program of the National
Science Foundation; Office of Energy Efficiency and Renewable Energy of
the Department of Energy under NSF [EEC-1041895]; U.S. Department of
Energy through SunShot Initiative [DE-EE0005329]; Alexander von Humboldt
foundation; MITei/TOTAL Energy fellowship; NSF GRFP; NSF [DMR-08-19762,
ECS-0335765]; Center for Nanoscale Systems at Harvard University
FX The authors thank K. Emery from the cell certification team at the
National Renewable Energy Laboratory for his assistance with current
density voltage measurements, M. L. Castillo for her help with substrate
preparation, and J. R Poindexter and R.L.Z. Hoye for fruitful scientific
discussions. This work was supported by a TOTAL SA grant, by the
Engineering Research Center Program of the National Science Foundation,
by the Office of Energy Efficiency and Renewable Energy of the
Department of Energy under NSF Cooperative Agreement No. EEC-1041895,
and by the U.S. Department of Energy through the SunShot Initiative
under contract DE-EE0005329. V.S., R.C., R.E.B., and A.P. acknowledge
the support of the Alexander von Humboldt foundation, a MITei/TOTAL
Energy fellowship, and two NSF GRFP fellowships, respectively. This work
made use of the Center for Materials Science and Engineering at MIT
which is supported by the NSF under award DMR-08-19762, and the Center
for Nanoscale Systems at Harvard University which is supported by NSF
under award ECS-0335765.
NR 29
TC 0
Z9 0
U1 9
U2 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD AUG 31
PY 2016
VL 8
IS 34
BP 22664
EP 22670
DI 10.1021/acsami.6b07198
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DU9CP
UT WOS:000382514100098
PM 27494110
ER
PT J
AU Woods, TA
Mendez, HM
Ortega, S
Shi, XR
Marx, D
Bai, JF
Moxley, RA
Nagaraja, TG
Graves, SW
Deshpande, A
AF Woods, Travis A.
Mendez, Heather M.
Ortega, Sandy
Shi, Xiaorong
Marx, David
Bai, Jianfa
Moxley, Rodney A.
Nagaraja, T. G.
Graves, Steven W.
Deshpande, Alina
TI Development of 11-Plex MOL-PCR Assay for the Rapid Screening of Samples
for Shiga Toxin-Producing Escherichia coil
SO FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY
LA English
DT Article
DE STEC; MOL-PCR; multiplex PCR; Shiga toxin; EHEC
ID MAJOR VIRULENCE FACTORS; MULTIPLEX PCR; CATTLE FECES; COLI INFECTIONS;
O157 SEROGROUPS; UNITED-STATES; GENES; O145; O111; O103
AB Strains of Shiga toxin-producing Escherichia coli (STEC) are a serious threat to the health, with approximately half of the STEC related food-borne illnesses attributable to contaminated beef. We developed an assay that was able to screen samples for several important STEC associated serogroups (O26, O45, O103, O104, O111, O121, O145, O157) and three major virulence factors (eae, stx(1), stx(2)) in a rapid and multiplexed format using the Multiplex oligonucleotide ligation-PCR (MOL-PCR) assay chemistry. This assay detected unique STEC DNA signatures and is meant to be used on samples from various sources related to beef production, providing a multiplex and high-throughput complement to the multiplex PCR assays currently in use. Multiplex oligonucleotide ligation-PCR (MOL-PCR) is a nucleic acid-based assay chemistry that relies on flow cytometry/image cytometry and multiplex microsphere arrays for the detection of nucleic acid-based signatures present in target agents. The STEC MOL-PCR assay provided greater than 90% analytical specificity across all sequence markers designed when tested against panels of DNA samples that represent different STEC serogroups and toxin gene profiles. This paper describes the development of the 11-plex assay and the results of its validation. This highly multiplexed, but more importantly dynamic and adaptable screening assay allows inclusion of additional signatures as they are identified in relation to public health. As the impact of STEC associated illness on public health is explored additional information on classification will be needed on single samples; thus, this assay can serve as the backbone for a complex screening system.
C1 [Woods, Travis A.; Mendez, Heather M.; Graves, Steven W.] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA.
[Mendez, Heather M.] New Mexico Consortium, Los Alamos, NM USA.
[Ortega, Sandy] Univ Rochester, Translat Biomed Sci, Rochester, NY USA.
[Shi, Xiaorong; Bai, Jianfa; Nagaraja, T. G.] Kansas State Univ, Coll Vet Med, Dept Diagnost Med Pathobiol, Manhattan, KS 66506 USA.
[Marx, David] Univ Nebraska Lincoln, Dept Stat, Lincoln, NE USA.
[Moxley, Rodney A.] Univ Nebraska Lincoln, Sch Vet Med & Biomed Sci, Lincoln, NE USA.
[Deshpande, Alina] Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA.
RP Deshpande, A (reprint author), Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA.
EM deshpande_a@lanl.gov
FU U.S. Department of Agriculture (USDA), National Institute of Food and
Agriculture [2012-68003-30155]
FX This material is based on work that is supported by the U.S. Department
of Agriculture (USDA), National Institute of Food and Agriculture under
award 2012-68003-30155.
NR 35
TC 0
Z9 0
U1 2
U2 2
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 2235-2988
J9 FRONT CELL INFECT MI
JI Front. Cell. Infect. Microbiol.
PD AUG 31
PY 2016
VL 6
AR 92
DI 10.3389/fcimb.2016.00092
PG 12
WC Immunology; Microbiology
SC Immunology; Microbiology
GA DU5VY
UT WOS:000382282700001
PM 27630828
ER
PT J
AU Azad, A
Rajwa, B
Pothen, A
AF Azad, Ariful
Rajwa, Bartek
Pothen, Alex
TI Immunophenotype Discovery, Hierarchical Organization, and Template-Based
Classification of Flow Cytometry Samples
SO FRONTIERS IN ONCOLOGY
LA English
DT Article
DE flow cytometry; clusters; meta-clusters; template; matching;
classification
ID ACUTE MYELOID-LEUKEMIA; CELL-POPULATIONS; EXPRESSION; PROGNOSIS;
IDENTIFICATION; COMPENSATION; DISTANCE; DISPLAY
AB We describe algorithms for discovering immunophenotypes from large collections of flow cytometry samples and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters), a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class) that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples while ignoring noise and small sample-specific variations. We have applied the template-based scheme to analyze several datasets, including one representing a healthy immune system and one of acute myeloid leukemia (AML) samples. The last task is challenging due to the phenotypic heterogeneity of the several subtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML and were able to distinguish acute promyelocytic leukemia (APL) samples with the markers provided. Clinically, this is helpful since APL has a different treatment regimen from other subtypes of AML. Core algorithms used in our data analysis are available in the flowMatch package at www.bioconductor.org. It has been downloaded nearly 6,000 times since 2014.
C1 [Azad, Ariful] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA USA.
[Rajwa, Bartek] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA.
[Pothen, Alex] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA.
RP Pothen, A (reprint author), Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA.
EM apothen@purdue.edu
RI Rajwa, Bartek/B-3169-2009
OI Rajwa, Bartek/0000-0001-7540-8236
FU NIBIB NIH HHS [R21 EB015707]
NR 60
TC 0
Z9 0
U1 1
U2 1
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 2234-943X
J9 FRONT ONCOL
JI Front. Oncol.
PD AUG 31
PY 2016
VL 6
AR 188
DI 10.3389/fonc.2016.00188
PG 20
WC Oncology
SC Oncology
GA DU5XI
UT WOS:000382286600001
PM 27630823
ER
PT J
AU Park, W
Park, SJ
Cho, S
Shin, H
Jung, YS
Lee, B
Na, K
Kim, DH
AF Park, Wooram
Park, Sin-Jung
Cho, Soojeong
Shin, Heejun
Jung, Young-Seok
Lee, Byeongdu
Na, Kun
Kim, Dong-Hyun
TI Intermolecular Structural Change for Thermoswitchable Polymeric
Photosensitizer
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AQUEOUS METHYLCELLULOSE SOLUTIONS; PHOTODYNAMIC THERAPY; SINGLET OXYGEN;
FIBRILLAR STRUCTURE; GOLD NANORODS; CANCER; HYDROXYPROPYLCELLULOSE;
WATER; NANOPARTICLES; PHEOPHORBIDE
AB We developed a thermoswitchable polymeric photosensitizer (T-PPS) by conjugating PS (Pheophorbide-a, PPb-a) to a. temperature-responsive polymer backbone of biacoinpatible hydroxypropyl cellulose. Self-quenched PS molecules linked in close proximity by pi-pi stacking in T-PPS were easily transited to an active monomeric state by the temperature-induced phase transition of polymer backbones. The temperature: responsive intermolecular interaction changes of PS Molecules in T-PPS were demonstrated in synchrotron small-angle X-ray scattering and UV-vis spectrophotometer analysis. The T-PPS allowed switchable activation and synergistically enhanced cancer cell killing effect at the hyperthermia temperature (45 degrees C). Our developed T-PPS has the considerable potential not only as a new class of photomedicine in clinics but also as a biosensor based on temperature responsiveness.
C1 [Park, Wooram; Cho, Soojeong; Kim, Dong-Hyun] Northwestern Univ, Dept Radiol, Feinberg Sch Med, Chicago, IL 60611 USA.
[Kim, Dong-Hyun] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA.
[Park, Sin-Jung; Shin, Heejun; Jung, Young-Seok; Na, Kun] Catholic Univ Korea, Dept Biotechnol, Ctr Photomed, Bucheon Si 14662, Gyeonggi Do, South Korea.
[Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Park, Sin-Jung] Univ Illinois, Coll Pharm, Dept Biopharmaceut Sci, Chicago, IL 60612 USA.
RP Kim, DH (reprint author), Northwestern Univ, Dept Radiol, Feinberg Sch Med, Chicago, IL 60611 USA.; Kim, DH (reprint author), Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA.; Na, K (reprint author), Catholic Univ Korea, Dept Biotechnol, Ctr Photomed, Bucheon Si 14662, Gyeonggi Do, South Korea.; Lee, B (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM blee@aps.anl.gov; kna6997@catholic.ac.kr; dhkim@northwestern.edu
OI Kim, Dong-Hyun/0000-0001-6815-3319
FU NCI [R01CA141047, R21CA173491, R21EB017986, R21CA185274]; NIBIB; Basic
Research Laboratory (BRL) Program through the National Research
Foundation of Korea (NRF) - Korean government (MSIP) [2015R1A4A1042350];
MICCoM as part of the Computational Materials Sciences Program - U.S.
Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division; DOE Office of Science
[DE-AC02-06CH11357]
FX This work was supported by four grants R01CA141047, R21CA173491,
R21EB017986, and R21CA185274 from the NCI and NIBIB. This research was
also supported by the Basic Research Laboratory (BRL) Program (no.
2015R1A4A1042350), through the National Research Foundation of Korea
(NRF) grant funded by the Korean government (MSIP). B.L. was supported
by MICCoM as part of the Computational Materials Sciences Program funded
by the U.S. Department of Energy, Office of Science, Basic Energy
Sciences, Materials Sciences and Engineering Division. This work used
resources of the Advanced Photon Source, a U.S. Department of Energy
(DOE) Office of Science User Facility operated for the DOE Office of
Science by Argonne National Laboratory under contract no.
DE-AC02-06CH11357.
NR 44
TC 1
Z9 1
U1 30
U2 39
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 31
PY 2016
VL 138
IS 34
BP 10734
EP 10737
DI 10.1021/jacs.6b04875
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DU9CH
UT WOS:000382513300005
PM 27535204
ER
PT J
AU Zhao, YB
Lee, SY
Becknell, N
Yaghi, OM
Angell, CA
AF Zhao, Yingbo
Lee, Seung-Yul
Becknell, Nigel
Yaghi, Omar M.
Angell, C. Austen
TI Nanoporous Transparent MOF Glasses with Accessible Internal Surface
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID METAL-ORGANIC FRAMEWORKS; FORMING LIQUIDS; PHASE-TRANSITION; AMORPHOUS
ICE; COORDINATION; TEMPERATURE; SOLIDS; NETWORKS; CRYSTALS; STATE
AB While glassy materials can be made from virtually every class of liquid (metallic, molecular, covalent, and ionic), to date, formation of glasses in which structural units impart porosity on the nanoscopic level remains Undeveloped. In view of the well-established porosity of metal organic frameworks (MOFs) and the flexibility of 'their design, we have sought to combine their formation principles with the general versatility of glassy materials. Although the preparation of glassy MOFs can be achieved by amorphization 'of crystalline frameworks, transparent glassy MOFs exhibiting permanent porosity accessible to gases are yet to be reported. Here, we present a generalizable chemical strategy for making such MOF glasses by assembly from viscous solutions of metal node and organic strut and subsequent evaporation of a plasticizer modulator solvent. This process yields glasses With 300 m(2)/g internal surface area (obtained' from N-2 adsorption isotherms) and a 2 nm pore pore separation. On a volumetric basis, this porosity (0.33 cm(3)/cm(3)) is 3 times that of the early MOFs (0.11 cm(3)/cm(3) for MOF-2) and within range of the most porous MOFs known (0.60 cm(3)/cm(3) for MOF-5). We believe the porosity originates from a 3D covalent network as evidenced by the disappearance-of the glass transition signature as the solvent is removed and the highly cross-linked nanostructure builds up. Our work represents an important step forward in translating the versatility and porosity of MOFs to glassy materials.
C1 [Zhao, Yingbo; Becknell, Nigel; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Zhao, Yingbo; Becknell, Nigel; Yaghi, Omar M.] Kavli Energy NanoSci Inst Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Lee, Seung-Yul; Angell, C. Austen] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA.
[Yaghi, Omar M.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia.
RP Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), Kavli Energy NanoSci Inst Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Angell, CA (reprint author), Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA.; Yaghi, OM (reprint author), King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia.
EM yaghi@berkeley.edu; caa@asu.edu
OI Yaghi, Omar/0000-0002-5611-3325; Becknell, Nigel/0000-0001-7857-6841
FU Office of Science, Office of Basic Energy Sciences, U.S. Department of
Energy [DE-AC02- 05CH11231]; U.S. Department of Energy
[DE-AC02-05CH11231, 6920968]; BASF SE (Ludwigshafen, Germany); King
Abdulaziz City for Science and Technology (Riyadh, Saudi Arabia); Suzhou
Industrial Park fellowship
FX This work made use of facilities at the Molecular Foundry and Advanced
Light Source BL 10.3.2. The Advanced Light Source and Molecular Foundry
are supported by the Director, Office of Science, Office of Basic Energy
Sciences, U.S. Department of Energy, under Contract No. DE-AC02-
05CH11231. We acknowledge Mr. N. Kornienko for help on the MOF thin film
preparation, Dr. Y. Ma and Prof. O. Terasaki for discussions on TEM, Dr.
J. Guo and Dr. X. Feng for help and discussion of the EXAFS study, Dr.
H. Furukawa for help on the density measurement, and Mr. J. Yang for
help and discussion on nitrogen isotherm measurements. S.-Y.L. and
C.A.A. acknowledge support of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231, Subcontract No. 6920968, under the
Batteries for Advanced Transportation Technologies Program. Partial
financial support for aspects of the synthesis and porosity measurements
is provided to O.M.Y. by BASF SE (Ludwigshafen, Germany) and King
Abdulaziz City for Science and Technology (Riyadh, Saudi Arabia). Y.Z.
acknowledges support of the Suzhou Industrial Park fellowship.
NR 40
TC 1
Z9 1
U1 77
U2 95
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 31
PY 2016
VL 138
IS 34
BP 10818
EP 10821
DI 10.1021/jacs.6b07078
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DU9CH
UT WOS:000382513300026
PM 27539546
ER
PT J
AU Catarineu, NR
Schoedel, A
Urban, P
Morla, MB
Trickett, CA
Yaghi, OM
AF Catarineu, Noelle R.
Schoedel, Alexander
Urban, Philipp
Morla, Maureen B.
Trickett, Christopher A.
Yaghi, Omar M.
TI Two Principles of Reticular Chemistry Uncovered in a Metal Organic
Framework of Heterotritopic Linkers and Infinite Secondary Building
Units
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID FUNCTIONAL-GROUPS; POROUS CRYSTALS; COORDINATION; POLYMERS
AB Structural diversity of metal organic frameworks (MOFs) has been largely limited to linkers with at most two different types of coordinating groups. MOFs constructed from linkers with three or more nonidentical coordinating groups have not been explored. Here, we report a robust and porous crystalline MOF, Zo(3)(PBSP)(2) or MOF-910, constructed from a novel linker PBSP(phenylyne-1-benzoate, 3-benzosemiquinonate, 5-oxidopyridine) bearing three distinct types of coordinative functionality. The MOF adopts a complex and previously unreported topology termed tto. Our study suggests that simple, symmetric linkers are not a necessity for formation of crystalline extended structures and that new, more complex topologies are attainable with irregular, heterotopic linkers. This work illustrates two principles of reticular chemistry: first, selectivity for helical over straight rod secondary building units (SBUs) is achievable with polyheterotopic linkers, and second, the pitch of the resulting helical SBUs may be fine-tuned based on the metrics of the polyheterotopic linker.
C1 [Catarineu, Noelle R.; Schoedel, Alexander; Urban, Philipp; Morla, Maureen B.; Trickett, Christopher A.; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Div Mat Sci, Lawrence Berkeley Natl Lab,Kavli Energy NanoSci I, Berkeley, CA 94720 USA.
[Yaghi, Omar M.] King Fahd Univ Petr & Minerals, Dhahran 34464, Saudi Arabia.
RP Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Div Mat Sci, Lawrence Berkeley Natl Lab,Kavli Energy NanoSci I, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), King Fahd Univ Petr & Minerals, Dhahran 34464, Saudi Arabia.
EM yaghi@berkeley.edu
RI Schoedel, Alexander/B-3971-2013;
OI Schoedel, Alexander/0000-0001-6548-9300; Yaghi, Omar/0000-0002-5611-3325
FU BASF SE (Ludwigshafen, Germany); NSF; UC Berkeley Graduate Division;
German Research Foundation (DFG) [PU 286/1-1, SCHO 1639/1-1]; Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX Financial support for this work was provided by BASF SE (Ludwigshafen,
Germany). N.R.C. thanks the NSF for a Graduate Research Fellowship and
the UC Berkeley Graduate Division for a Chancellor's Fellowship. A.S.
and P.U. acknowledge the German Research Foundation (DFG, PU 286/1-1 and
SCHO 1639/1-1) for financial support. We thank Wenjia Ma and Elena
Lopez-Maya for technical assistance with MOF synthesis, Drs. Adam Duong,
Michael O'Keeffe, and Hans-Beat Burgi for useful discussions, Dr.
Ruchira Chatterjee for assistance with EPR measurements, and Drs. Kevin
J. Gagnon and Simon J. Teat for help collecting single-crystal XRD data
at Beamline 11.3.1 of the Advanced Light Source at Lawrence Berkeley
National Lab, which is supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 36
TC 5
Z9 5
U1 50
U2 58
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 31
PY 2016
VL 138
IS 34
BP 10826
EP 10829
DI 10.1021/jacs.6b07267
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DU9CH
UT WOS:000382513300028
PM 27517606
ER
PT J
AU Mostofian, B
Cai, CM
Smith, MD
Petridis, L
Cheng, XL
Wyman, CE
Smith, JC
AF Mostofian, Barmak
Cai, Charles M.
Smith, Micholas Dean
Petridis, Loukas
Cheng, Xiaolin
Wyman, Charles E.
Smith, Jeremy C.
TI Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass
for Bioenergy Applications
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID PARTICLE MESH EWALD; LIGNOCELLULOSIC BIOMASS; CELLULOSE MICROFIBRILS;
MOLECULAR-DYNAMICS; IONIC LIQUIDS; TETRAHYDROFURAN-WATER; CRYSTALLINE
CELLULOSE; SOLVATION STRUCTURES; ETHANOL-PRODUCTION; BIOGAS PRODUCTION
AB Pretreatment facilitates more complete deconstruction of plant biomass to enable more economic production of lignocellulosic biofuels and byproducts. Various co-solvent pretreatments have demonstrated advantages relative to aqueous-only methods by enhancing lignin removal to allow unfettered access to cellulose. However, there is a limited mechanistic understanding of the interactions between the co-solvents and cellulose that impedes further improvement of such pretreatment methods. Recently, tetrahydrofuran (THF) has been identified as a highly effective co-solvent for the pretreatment and fractionation of biomass. To elucidate the mechanism of the THF water interactions with cellulose, we pair simulation and experimental data demonstrating that enhanced solubilization of cellulose can be achieved by the THF water co-solvent system at equivolume mixtures and moderate temperatures (<445 K). The simulations show that THF and water spontaneously phase separate on the local surface of a cellulose fiber, owing to hydrogen bonding of water molecules with the hydrophilic cellulose faces and stacking of THF molecules on the hydrophobic faces. Furthermore, a single fully solvated cellulose chain is shown to be preferentially bound by water molecules in the THF water mixture. In light of these findings, co-solvent reactions were performed on microcrystalline cellulose and maple wood to show thatTHF significantly enhanced cellulose deconstruction and lignocellulose solubilization at simulation conditions, enabling a highly versatile and efficient biomass pretreatment and fractionation method.
C1 [Mostofian, Barmak; Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA.
[Mostofian, Barmak] Oak Ridge Natl Lab, Joint Inst Biol Sci, Oak Ridge, TN 37830 USA.
[Mostofian, Barmak; Cai, Charles M.; Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Wyman, Charles E.; Smith, Jeremy C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA.
[Cai, Charles M.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, Riverside, CA 92507 USA.
[Cai, Charles M.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, Riverside, CA 92521 USA.
[Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA.
RP Smith, JC (reprint author), Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA.; Smith, JC (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA.; Smith, JC (reprint author), Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA.
EM smithjc@ornl.gov
RI Petridis, Loukas/B-3457-2009; smith, jeremy/B-7287-2012;
OI Petridis, Loukas/0000-0001-8569-060X; smith, jeremy/0000-0002-2978-3227;
Smith, Micholas/0000-0002-0777-7539
FU BioEnergy Science Center, a U.S. Department of Energy (DOE) Bioenergy
Research Center - Office of Biological and Environmental Research in the
DOE Office of Science; INCITE - DOE Office of Science
[DE-AC05-00OR22725]; U.S. DOE [DE-AC05-00OR22725]; Department of Energy
FX The authors thank Yunqiao Pu from the Oak Ridge National Laboratory for
helpful discussions regarding the CELF pretreatment method. This
research was funded by the BioEnergy Science Center, a U.S. Department
of Energy (DOE) Bioenergy Research Center supported by the Office of
Biological and Environmental Research in the DOE Office of Science. This
research used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory under an INCITE award, which is
supported by the DOE Office of Science under Contract no.
DE-AC05-00OR22725. This manuscript has been authored by UT Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. DOE. The Department
of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan
(http://energy.goy/downloads/doe-public-access-plan).
NR 67
TC 0
Z9 0
U1 32
U2 39
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 31
PY 2016
VL 138
IS 34
BP 10869
EP 10878
DI 10.1021/jacs.6b03285
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA DU9CH
UT WOS:000382513300036
PM 27482599
ER
PT J
AU Rudolf, JD
Dong, LB
Cao, HN
Hatzos-Skintges, C
Osipiuk, J
Endres, M
Chang, CY
Ma, M
Babnigg, G
Joachimiak, A
Phillips, GN
Shen, B
AF Rudolf, Jeffrey D.
Dong, Liao-Bin
Cao, Hongnan
Hatzos-Skintges, Catherine
Osipiuk, Jerzy
Endres, Michael
Chang, Chin-Yuan
Ma, Ming
Babnigg, Gyorgy
Joachimiak, Andrzej
Phillips, George N., Jr.
Shen, Ben
TI Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from
Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID TERPENE SYNTHASES; OXIDOSQUALENE CYCLASE; FARNESYL DIPHOSPHATE;
FUNCTIONAL-ANALYSIS; CRYSTAL-STRUCTURE; ABIES-GRANDIS; BIOSYNTHESIS;
BIOLOGY; SQUALENE; CLONING
AB Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.
C1 [Rudolf, Jeffrey D.; Dong, Liao-Bin; Chang, Chin-Yuan; Ma, Ming; Shen, Ben] Scripps Res Inst, Dept Chem, Jupiter, FL 33458 USA.
[Cao, Hongnan; Phillips, George N., Jr.] Rice Univ, Dept Biosci, Houston, TX 77005 USA.
[Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Shen, Ben] Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL 33458 USA.
[Shen, Ben] Scripps Res Inst, Nat Prod Lib Initiat, Jupiter, FL 33458 USA.
RP Shen, B (reprint author), Scripps Res Inst, Dept Chem, Jupiter, FL 33458 USA.; Shen, B (reprint author), Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL 33458 USA.; Shen, B (reprint author), Scripps Res Inst, Nat Prod Lib Initiat, Jupiter, FL 33458 USA.
EM shenb@scripps.edu
FU National Institute of General Medical Sciences Protein Structure
Initiative [GM094585, GM098248]; National Institutes of Health
[GM109456, GM114353]; U.S. Department of Energy, Office of Biological
and Environmental Research [DE-AC02-06CH11357]
FX We thank Prof. C. Dale Poulter at the University of Utah for the
generous gift of GGSPP. This work is supported in part by the National
Institute of General Medical Sciences Protein Structure Initiative
Grants GM094585 (AJ) and GM098248 (G.N.P.), and National Institutes of
Health Grants GM109456 (G.N.P.) and GM114353 (BS). The use of Structural
Biology Center beamlines at the Advanced Photon Source was supported by
U.S. Department of Energy, Office of Biological and Environmental
Research grant DE-AC02-06CH11357 (AJ).
NR 59
TC 3
Z9 3
U1 11
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 31
PY 2016
VL 138
IS 34
BP 10905
EP 10915
DI 10.1021/jacs.6b04317
PG 11
WC Chemistry, Multidisciplinary
SC Chemistry
GA DU9CH
UT WOS:000382513300040
PM 27490479
ER
PT J
AU de Oteyza, DG
Paz, AP
Chen, YC
Pedramrazi, Z
Riss, A
Wickenburg, S
Tsai, HZ
Fischer, FR
Crommie, MF
Rubio, A
AF de Oteyza, Dimas G.
Perez Paz, Alejandro
Chen, Yen-Chia
Pedramrazi, Zahra
Riss, Alexander
Wickenburg, Sebastian
Tsai, Hsin-Zon
Fischer, Felix R.
Crommie, Michael F.
Rubio, Angel
TI Noncovalent Dimerization after Enediyne Cyclization on Au(111)
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID BERGMAN CYCLIZATION; SURFACE; POLYPHENYLENE; THERMOLYSIS; DERIVATIVES;
CHEMISTRY; BENZYNE
AB We investigate the thermally induced cyclization of 1,2-bis(2-phenylethynyl)benzene on Au(111) using scanning tunneling microscopy and computer simulations. Cyclization of sterically hindered enediynes is known to proceed via two competing mechanisms in solution: a classic C-1-C-6 (Bergman) or a C-1-C-5 cyclization pathway. On Au(111), we find that the C-1-C-5 cyclization is suppressed and that the C-1-C-6 cyclization yields a highly strained bicyclic olefin whose surface chemistry was hitherto unknown. The C-1-C-6 product self assembles into discrete noncovalently bound dimers on the surface. The reaction mechanism and driving forces behind noncovalent association are discussed in light of density functional theory calculations.
C1 [de Oteyza, Dimas G.] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain.
[de Oteyza, Dimas G.] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain.
[Perez Paz, Alejandro; Rubio, Angel] Univ Basque Country, CFM CSIC UPV EHU MPC, Nanobio Spect Grp, San Sebastian 20018, Spain.
[Perez Paz, Alejandro; Rubio, Angel] Univ Basque Country, CFM CSIC UPV EHU MPC, ETSF, San Sebastian 20018, Spain.
[Chen, Yen-Chia; Pedramrazi, Zahra; Riss, Alexander; Wickenburg, Sebastian; Tsai, Hsin-Zon; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Fischer, Felix R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Fischer, Felix R.; Crommie, Michael F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Fischer, Felix R.; Crommie, Michael F.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.
[Fischer, Felix R.; Crommie, Michael F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Rubio, Angel] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
[Rubio, Angel] Ctr Free Electron Laser Sci CFEL, Luruper Chaussee 149, D-22761 Hamburg, Germany.
RP de Oteyza, DG (reprint author), Donostia Int Phys Ctr, E-20018 San Sebastian, Spain.; de Oteyza, DG (reprint author), Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain.
EM d_oteyza@ehu.eus
RI de Oteyza, Dimas/H-5955-2013; DONOSTIA INTERNATIONAL PHYSICS CTR.,
DIPC/C-3171-2014; Rubio, Angel/A-5507-2008; CSIC-UPV/EHU,
CFM/F-4867-2012
OI de Oteyza, Dimas/0000-0001-8060-6819; Rubio, Angel/0000-0003-2060-3151;
FU U.S. Department of Energy Office of Basic Energy Sciences Nanomachine
Program [DE-AC02-05CH11231]; Office of Naval Research BRC Program;
European Research Council [ERC-2010-AdG-267374-DYNamo,
ERC-2014-STG-635919-SURFINK]; Grupos Consolidados UPV/EHU del Gobiemo
Vasco [IT-578-13]; Ayuda para la Especializacion de Personal
Investigador del Vicerrectorado de Investigation de la UPV/EHU; Spanish
"Juan de la Cierva-incorporacion" program [IJCI-2014-20147];
[FIS2013-46159-C3-1-P]
FX Research was supported by the U.S. Department of Energy Office of Basic
Energy Sciences Nanomachine Program under Contract No. DE-AC02-05CH11231
(STM imaging), by the Office of Naval Research BRC Program (molecular
synthesis), by the European Research Council Grants
ERC-2010-AdG-267374-DYNamo and ERC-2014-STG-635919-SURFINK
(computational resources and surface analysis, respectively), by Spanish
Grant No. FIS2013-46159-C3-1-P (simulated reaction landscape), and by
Grupos Consolidados UPV/EHU del Gobiemo Vasco No. IT-578-13 (simulated
dimer binding energy). A.P.P. acknowledges postdoctoral fellowship
support from "Ayuda para la Especializacion de Personal Investigador del
Vicerrectorado de Investigation de la UPV/EHU-2013" and from the Spanish
"Juan de la Cierva-incorporacion" program (IJCI-2014-20147). E. Goiri is
acknowledged for help and discussion on the statistical analysis of
interparticle distances.
NR 25
TC 2
Z9 2
U1 22
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 31
PY 2016
VL 138
IS 34
BP 10963
EP 10967
DI 10.1021/jacs.6b05203
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA DU9CH
UT WOS:000382513300046
PM 27490459
ER
PT J
AU Hadt, RG
Hayes, D
Brodsky, CN
Ullmann, AM
Casa, DM
Upton, MH
Nocera, DG
Chen, LX
AF Hadt, Ryan G.
Hayes, Dugan
Brodsky, Casey N.
Ullmann, Andrew M.
Casa, Diego M.
Upton, Mary H.
Nocera, Daniel G.
Chen, Lin X.
TI X-ray Spectroscopic Characterization of Co(IV) and Metal-Metal
Interactions in Co4O4: Electronic Structure Contributions to the
Formation of High-Valent States Relevant to the Oxygen Evolution
Reaction
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID WATER OXIDATION CATALYSTS; COBALT(III)-OXO CUBANE CLUSTERS; DIFFERENTIAL
ORBITAL COVALENCY; MIXED-VALENCE; ABSORPTION-SPECTROSCOPY; EVOLVING
CATALYST; L-EDGE; ELECTROCHEMICAL PROPERTIES; MAGNETIC-PROPERTIES;
METHANE OXIDATION
AB The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary Xray spectroscopies coupled to DFT calculations to study Co(III)(4)O-4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (K beta RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the tag-based redox-active molecular orbital. K beta RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal metal coupling across Co4O4. Guided by the data, calculations show that electron hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E-0 over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal metal and antibonding interactions across the cluster.
C1 [Hadt, Ryan G.; Hayes, Dugan; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA.
[Casa, Diego M.; Upton, Mary H.] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA.
[Chen, Lin X.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
[Brodsky, Casey N.; Ullmann, Andrew M.; Nocera, Daniel G.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
RP Chen, LX (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA.; Chen, LX (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Nocera, DG (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
EM dnocera@fas.harvard.edu; lchen@anl.gov
FU Division of Chemical Sciences, Biosciences, Office of Basic Energy
Science (OBES), DOE [DE-AC02-06CH11357]; U.S. DOE Office of Science
[DE-SC0009758]; Joseph J. Katz Postdoctoral Fellowship at Argonne
National Laboratory (ANL); National Science Foundation's Graduate
Research Fellowship
FX Work at ANL was supported by funding from the Division of Chemical
Sciences, Biosciences, Office of Basic Energy Science (OBES), DOE
through Grant DE-AC02-06CH11357. Synchrotron facilities were provided by
the Advanced Photon Source (APS) and Advanced Light Source (ALS)
operated by DOE BES. Work at Harvard was performed under a grant from
the U.S. DOE Office of Science (DE-SC0009758). D.H. is supported by the
Joseph J. Katz Postdoctoral Fellowship at Argonne National Laboratory
(ANL). C.N.B. acknowledges the National Science Foundation's Graduate
Research Fellowship. We acknowledge Sungsik Lee for assistance in making
Co K-edge measurements and Robert Schoenlein and Amy Cordones-Hahn for
assistance in making Co L-edge measurements. We acknowledge Edward
Solomon, Michael Mara, Thomas Kroll, and Bryce Anderson for helpful
discussions. We gratefully acknowledge the computing resources provided
on Blues and Fusion, both high-performance computing clusters operated
by the Laboratory Computing Resource Center at ANL.
NR 112
TC 4
Z9 4
U1 76
U2 90
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 31
PY 2016
VL 138
IS 34
BP 11017
EP 11030
DI 10.1021/jacs.6b04663
PG 14
WC Chemistry, Multidisciplinary
SC Chemistry
GA DU9CH
UT WOS:000382513300053
PM 27515121
ER
PT J
AU Winiarski, MJ
Wiendlocha, B
Golab, S
Kushwaha, SK
Wisniewski, P
Kaczorowski, D
Thompson, JD
Cava, RJ
Klimczuk, T
AF Winiarski, M. J.
Wiendlocha, B.
Golab, S.
Kushwaha, S. K.
Wisniewski, P.
Kaczorowski, D.
Thompson, J. D.
Cava, R. J.
Klimczuk, T.
TI Superconductivity in CaBi2
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID TRANSITION-TEMPERATURE; TOPOLOGICAL INSULATORS; CRYSTAL-STRUCTURE;
YBSB2; SR
AB Superconductivity is observed with critical temperature T-c = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) angstrom, b = 17.081(2) angstrom and c = 4.611(1) angstrom. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at T-c is Delta C/gamma T-c = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient gamma = 4.1 mJ mol(-1) K-2 and the Debye temperature Theta(D) = 157 K. The electron-phonon coupling strength is lambda(el-ph) = 0.59, and the thermodynamic critical field H-c is low, between 111 and 124 Oe CaBi2 is a moderate coupling type-I superconductor. Results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin-orbit coupling and electronic property anisotropy. We find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.
C1 [Winiarski, M. J.; Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland.
[Wiendlocha, B.; Golab, S.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Aleja Mickiewicza 30, PL-30059 Krakow, Poland.
[Kushwaha, S. K.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
[Wisniewski, P.; Kaczorowski, D.] Polish Acad Sci, Inst Low Temp & Struct Res, PNr 1410, PL-50950 Wroclaw, Poland.
[Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Winiarski, MJ; Klimczuk, T (reprint author), Gdansk Univ Technol, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland.
EM mwiniarski@mif.pg.gda.pl; tomasz.klimczuk@pg.gda.pl
RI Wisniewski, Piotr/C-8952-2011; Winiarski, Michal/G-6243-2016;
Wiendlocha, Bartlomiej/G-4121-2011; Kushwaha, Satya/B-8287-2017
OI Wisniewski, Piotr/0000-0002-6741-2793; Winiarski,
Michal/0000-0001-9083-8066; Wiendlocha, Bartlomiej/0000-0001-9536-7216;
Kushwaha, Satya/0000-0002-3169-969X
FU National Science Centre (Poland) [DEC-2012/07/E/ST3/00584]; Polish
Ministry of Science and Higher Education; Department of Energy Division
of Basic Energy Sciences [DE-FG02-98ER45706]; Department of Energy,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering
FX The research performed at the Gdansk University of Technology was
supported by the National Science Centre (Poland) grant
(DEC-2012/07/E/ST3/00584). B. W. was partially supported by the Polish
Ministry of Science and Higher Education. The research at Princeton was
supported by the Department of Energy Division of Basic Energy Sciences,
Grant DE-FG02-98ER45706. Work at Los Alamos was performed under the
auspices of the Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering.
NR 42
TC 0
Z9 0
U1 23
U2 31
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
EI 1463-9084
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PD AUG 31
PY 2016
VL 18
IS 31
BP 21737
EP 21745
DI 10.1039/c6cp02856j
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DT3YV
UT WOS:000381418000083
PM 27435423
ER
PT J
AU Kundu, J
Pascal, T
Prendergast, D
Whitelam, S
AF Kundu, Joyjit
Pascal, Tod
Prendergast, David
Whitelam, Stephen
TI Selective gas capture via kinetic trapping
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID METAL-ORGANIC FRAMEWORKS; POSTCOMBUSTION CARBON CAPTURE; MOLECULAR
SIMULATION; SWING ADSORPTION; DIOXIDE CAPTURE; CO2 ADSORPTION;
HIGH-CAPACITY; SEPARATION; SITES; DIFFUSION
AB Conventional approaches to the capture of CO2 by metal-organic frameworks focus on equilibrium conditions, and frameworks that contain little CO2 in equilibrium are often rejected as carbon-capture materials. Here we use a statistical mechanical model, parameterized by quantum mechanical data, to suggest that metal-organic frameworks can be used to separate CO2 from a typical flue gas mixture when used under nonequilibrium conditions. The origin of this selectivity is an emergent gas-separation mechanism that results from the acquisition by different gas types of different mobilities within a crowded framework. The resulting distribution of gas types within the framework is in general spatially and dynamically heterogeneous. Our results suggest that relaxing the requirement of equilibrium can substantially increase the parameter space of conditions and materials for which selective gas capture can be effected.
C1 [Kundu, Joyjit; Pascal, Tod; Prendergast, David; Whitelam, Stephen] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Kundu, J; Whitelam, S (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
EM jkundu@lbl.gov; swhitelam@lbl.gov
FU Center for Gas Separations Relevant to Clean Energy Technologies, an
Energy Frontier Research Center - U.S. Department of Energy, Office of
Science, Basic Energy Sciences [DE-SC0001015]; Office of Science, Office
of Basic Energy Sciences of the U.S. Department of Energy; Batteries for
Advanced Transportation Technologies program [DE-AC02-05CH11231]; Office
of Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX We thank Pieremanuele Canepa and Rebecca Siegelman for discussions, and
Rebecca Siegelman and Jeff Martell for comments on the manuscript. JK
was supported by the Center for Gas Separations Relevant to Clean Energy
Technologies, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Basic Energy Sciences under
Award number DE-SC0001015. DP and SW were partially supported by the
same Center, and by the Office of Science, Office of Basic Energy
Sciences of the U.S. Department of Energy. TP acknowledges support from
the Batteries for Advanced Transportation Technologies program,
administered by the Assistant Secretary for Energy Efficiency and
Renewable Energy, Office of Vehicle Technologies of the U.S. Department
of Energy under Contract DE-AC02-05CH11231. This work was done as part
of a User Project at the Molecular Foundry at Lawrence Berkeley National
Laboratory, supported by the Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. The simulations were performed at the compute cluster
Vulcan, managed by the High Performance Computing Services Group, at
Lawrence Berkeley National Laboratory.
NR 43
TC 1
Z9 1
U1 12
U2 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
EI 1463-9084
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PD AUG 31
PY 2016
VL 18
IS 31
BP 21760
EP 21766
DI 10.1039/c6cp03940e
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DT3YV
UT WOS:000381418000085
PM 27435033
ER
PT J
AU Dubuis, G
Yacoby, Y
Zhou, H
He, X
Bollinger, AT
Pavuna, D
Pindak, R
Bozovic, I
AF Dubuis, Guy
Yacoby, Yizhak
Zhou, Hua
He, Xi
Bollinger, Anthony T.
Pavuna, Davor
Pindak, Ron
Bozovic, Ivan
TI Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating
SO SCIENTIFIC REPORTS
LA English
DT Article
ID INTERFACE SUPERCONDUCTIVITY; INSULATOR-TRANSITION; SURFACE; OXIDES
AB We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms.
C1 [Dubuis, Guy] Victoria Univ Wellington, Robinson Res Inst, MacDiarmid Inst Adv Mat & Nanotechnol, Lower Hutt 5046, New Zealand.
[Dubuis, Guy; Bollinger, Anthony T.; Bozovic, Ivan] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Dubuis, Guy; Pavuna, Davor] Ecole Polytech Fed Lausanne, LPMC, CH-1015 Lausanne, Switzerland.
[Yacoby, Yizhak] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel.
[Zhou, Hua] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.
[He, Xi; Bozovic, Ivan] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA.
[Pindak, Ron] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
RP Pindak, R (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
EM pindak@bnl.gov
RI Dubuis, Guy/A-6849-2012
OI Dubuis, Guy/0000-0002-8199-4953
FU DOE Office of Science by Argonne National Laboratory
[DE-AC02-06CH11357]; Israel Science Foundation under ISF-Grant
[1005/11]; U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences [DE-SC0012704]; Gordon and Betty Moore Foundation's
EPiQS Initiative [GBMF4410]
FX This research used resources of the Advanced Photon Source, a U.S.
Department of Energy (DOE) Office of Science User Facility operated for
the DOE Office of Science by Argonne National Laboratory under Contract
No. DE-AC02-06CH11357. H.Z. was supported by the same contract; Y.Y. by
the Israel Science Foundation under ISF-Grant No. 1005/11; R.P. by the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-SC0012704; G.D. and D.P. by the
Laboratory for Physics of Complex Matter (EPFL) and the Swiss National
Science Foundation, I.B. and A.T.B. by the U.S. Department of Energy,
Basic Energy Sciences, Materials Sciences and Engineering Division. X.H.
by the Gordon and Betty Moore Foundation's EPiQS Initiative through
Grant GBMF4410.
NR 34
TC 1
Z9 1
U1 13
U2 14
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD AUG 31
PY 2016
VL 6
AR 32378
DI 10.1038/srep32378
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DU5HG
UT WOS:000382242200001
PM 27578237
ER
PT J
AU Bennett, JG
AF Bennett, Joel G.
TI A Representative volume model for a CNT composite material
SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
LA English
DT Article
DE solids; micromechanics; composites; damage; constitutive equations
ID MICROMECHANICAL ANALYSIS; ELASTIC PROPERTIES
AB The concept of a Representative Volume Model' is used in combination with Equivalent Mechanical Strain' or Aboudi's Average Strain' theorem to illustrate how a carbon nanotube reinforced composite material constitutive law for a nano-composite material can be implemented into a finite element program for modeling structural applications. Current methods of modeling each individual composite layer to build up an element composed of carbon nanotube reinforced composite material may not be the best approach for modeling structural applications of this composite. The approach presented here is based upon presentations given at the National Science Foundation-Civil and Mechanical Systems division workshop at John Hopkins University in 2004, which is referred to in this paper as the Williams-Baxter approach. This approach is also used to demonstrate that damage modeling can be included as was suggested in this workshop. Copyright (c) 2015 John Wiley & Sons, Ltd.
C1 [Bennett, Joel G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM joelnjackie@gmail.com
NR 16
TC 0
Z9 0
U1 1
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0029-5981
EI 1097-0207
J9 INT J NUMER METH ENG
JI Int. J. Numer. Methods Eng.
PD AUG 31
PY 2016
VL 107
IS 9
BP 723
EP 732
DI 10.1002/nme.5182
PG 10
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications
SC Engineering; Mathematics
GA DS6MB
UT WOS:000380894800001
ER
PT J
AU Shen, CF
Ge, MY
Luo, LL
Fang, X
Liu, YH
Zhang, AY
Rong, JP
Wang, CM
Zhou, CW
AF Shen, Chenfei
Ge, Mingyuan
Luo, Langli
Fang, Xin
Liu, Yihang
Zhang, Anyi
Rong, Jiepeng
Wang, Chongmin
Zhou, Chongwu
TI In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon
Nanostructures
SO SCIENTIFIC REPORTS
LA English
DT Article
ID SIZE-DEPENDENT FRACTURE; LITHIUM BATTERY ANODES; LONG CYCLE LIFE;
ELECTROCHEMICAL LITHIATION; PHASE-TRANSITION; ION BATTERIES;
HIGH-CAPACITY; NANOWIRES; NANOPARTICLES; ELECTRODES
AB In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 mu m, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.
C1 [Shen, Chenfei; Ge, Mingyuan; Fang, Xin; Zhang, Anyi; Rong, Jiepeng; Zhou, Chongwu] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA.
[Ge, Mingyuan] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
[Luo, Langli; Wang, Chongmin] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Liu, Yihang; Zhou, Chongwu] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA.
RP Zhou, CW (reprint author), Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA.; Zhou, CW (reprint author), Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA.
EM chongwuz@usc.edu
RI Shen, Chenfei/A-2471-2016; Luo, Langli/B-5239-2013; Zhou,
Chongwu/F-7483-2010;
OI Shen, Chenfei/0000-0001-8635-3429; Luo, Langli/0000-0002-6311-051X
FU Brookhaven National Laboratory - U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-SC0012704]; Assistant
Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle
Technologies of the U.S. Department of Energy under the Batteries for
Advanced Battery Materials Research (BMR) [DE-AC02-05CH11231, 6951379];
DOE's Office of Biological and Environmental Research
FX A portion of the TEM images used in this article were generated at the
Center for Electron Microscopy and Microanalysis, University of Southern
California. M.G. finished the research reported in this paper at
University of Southern California, and contributed to discussions after
he joined Brookhaven National Laboratory. M.G. acknowledged the support
of Brookhaven National Laboratory, which was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-SC0012704. C.W. was supported by the
Assistant Secretary for Energy Efficiency and Renewable Energy, Office
of Vehicle Technologies of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231, Subcontract No. 6951379 under the Batteries for
Advanced Battery Materials Research (BMR). The in situ TEM work was
conducted in the William R. Wiley Environmental Molecular Sciences
Laboratory (EMSL), a national scientific user facility sponsored by
DOE's Office of Biological and Environmental Research and located at
PNNL.
NR 37
TC 0
Z9 0
U1 12
U2 12
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD AUG 30
PY 2016
VL 6
AR 31334
DI 10.1038/srep31334
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA EH7QI
UT WOS:000391967200001
PM 27571919
ER
PT J
AU Chen, D
Liu, ZQ
Fast, J
Ban, JM
AF Chen, Dan
Liu, Zhiquan
Fast, Jerome
Ban, Junmei
TI Simulations of sulfate-nitrate-ammonium (SNA) aerosols during the
extreme haze events over northern China in October 2014
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID HETEROGENEOUS CHEMISTRY; FORMATION MECHANISM; NITROGEN-DIOXIDE; MODELING
SYSTEM; SULFUR-DIOXIDE; REGIONAL HAZE; EAST-ASIA; WRF-CHEM; NO X;
EMISSIONS
AB Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 mu g m(-3) occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 mu g m(-3)), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous/aqueous reactions. As the parameterizations of those heterogeneous reactions are not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3- to-HNO3 reaction rates that depend on relative humidity were applied, which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory were likely important factors contributing to those peak PM2.5 concentrations.
C1 [Chen, Dan; Liu, Zhiquan; Ban, Junmei] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
[Fast, Jerome] Pacific Northwest Natl Lab, Richland, WA USA.
RP Chen, D; Liu, ZQ (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
EM dchen@ucar.edu; liuz@ucar.edu
RI Chen, Dan/R-4486-2016
FU IBM Research China; National Science Foundation; U.S. Department of
Energy's Atmospheric System Research (ASR) program [KP17010000/57131]
FX This work was partially funded by IBM Research China. NCAR is sponsored
by the National Science Foundation. Jerome Fast was supported by the
U.S. Department of Energy's Atmospheric System Research (ASR) program
(KP17010000/57131). The authors thank Lin Zhang at Peking University for
his great help on the application of aqueous reactions in the model. We
also thank Daven Henze, Douglas Lowe, and Ravan Ahmadov for their
helpful discussions. We are grateful to the referees for their helpful
comments.
NR 57
TC 0
Z9 1
U1 39
U2 39
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PD AUG 30
PY 2016
VL 16
IS 16
BP 10707
EP 10724
DI 10.5194/acp-16-10707-2016
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DW6EZ
UT WOS:000383743600001
ER
PT J
AU Eilenberg, H
Weiner, I
Ben-Zvi, O
Pundak, C
Marmari, A
Liran, O
Wecker, MS
Milrad, Y
Yacoby, I
AF Eilenberg, Haviva
Weiner, Iddo
Ben-Zvi, Oren
Pundak, Carmel
Marmari, Abigail
Liran, Oded
Wecker, Matt S.
Milrad, Yuval
Yacoby, Iftach
TI The dual effect of a ferredoxin-hydrogenase fusion protein in vivo:
successful divergence of the photosynthetic electron flux towards
hydrogen production and elevated oxygen tolerance
SO BIOTECHNOLOGY FOR BIOFUELS
LA English
DT Article
DE H-2 production; Ferredoxin; Hydrogenase; Oxygen sensitivity; Fusion
enzyme; Chlamydomonas reinhardtii
ID ALGA CHLAMYDOMONAS-REINHARDTII; H-2 PRODUCTION; PHOTOPRODUCTION;
EXPRESSION; CELLS; IDENTIFICATION; BIOSENSOR; SYSTEM; GENE; FNR
AB Background: Hydrogen photo-production in green algae, catalyzed by the enzyme [FeFe]-hydrogenase (HydA), is considered a promising source of renewable clean energy. Yet, a significant increase in hydrogen production efficiency is necessary for industrial scale-up. We have previously shown that a major challenge to be resolved is the inferior competitiveness of HydA with NADPH production, catalyzed by ferredoxin-NADP7(+)-reductase (FNR). In this work, we explored the in vivo hydrogen production efficiency of Fd-HydA, where the electron donor ferredoxin (Fd) is fused to HydA and expressed in the model organism Chlamydomonas reinhardtii.
Results: We show that once the Fd-HydA fusion gene is expressed in micro-algal cells of C. reinhardtii, the fusion enzyme is able to intercept photosynthetic electrons and use them for efficient hydrogen production, thus supporting the previous observations made in vitro. We found that Fd-HydA has a similar to 4.5-fold greater photosynthetic hydrogen production rate standardized for hydrogenase amount (PHPRH) than that of the native HydA in vivo. Furthermore, we provide evidence suggesting that the fusion protein is more resistant to oxygen than the native HydA.
Conclusions: The in vivo photosynthetic activity of the Fd-HydA enzyme surpasses that of the native HydA and shows higher oxygen tolerance. Therefore, our results provide a solid platform for further engineering efforts towards efficient hydrogen production in microalgae through the expression of synthetic enzymes.
C1 [Eilenberg, Haviva; Weiner, Iddo; Ben-Zvi, Oren; Pundak, Carmel; Marmari, Abigail; Liran, Oded; Milrad, Yuval; Yacoby, Iftach] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Mol Biol & Ecol Plants, IL-69978 Tel Aviv, Israel.
[Wecker, Matt S.] GeneBiologics LLC, Boulder, CO 80303 USA.
[Wecker, Matt S.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Yacoby, I (reprint author), Tel Aviv Univ, George S Wise Fac Life Sci, Dept Mol Biol & Ecol Plants, IL-69978 Tel Aviv, Israel.
EM iftachy@tau.ac.il
FU KAMIN, the Ministry of Economics State of Israel [3798]
FX This research was funded by KAMIN, Contract Number: 3798, the Ministry
of Economics State of Israel.
NR 31
TC 0
Z9 0
U1 13
U2 13
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1754-6834
J9 BIOTECHNOL BIOFUELS
JI Biotechnol. Biofuels
PD AUG 30
PY 2016
VL 9
AR 182
DI 10.1186/s13068-016-0601-3
PG 10
WC Biotechnology & Applied Microbiology; Energy & Fuels
SC Biotechnology & Applied Microbiology; Energy & Fuels
GA DV6BP
UT WOS:000383016000004
PM 27582874
ER
PT J
AU Tang, AH
Wang, G
AF Tang, A. H.
Wang, G.
TI Procedure for measuring photon and vector meson circular polarization
variation with respect to the reaction plane in relativistic heavy-ion
collisions
SO PHYSICAL REVIEW C
LA English
DT Article
ID PAIR PRODUCTION
AB The electromagnetic (EM) field pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system and causes photons emitted in upper and lower hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, owing to the global vorticity, is also possible. In this paper, we lay out a procedure to measure the variation of the circular polarization with respect to the reaction plane in relativistic heavy-ion collisions for massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper and lower hemispheres to identify and quantify such effects.
C1 [Tang, A. H.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Wang, G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
RP Tang, AH (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
FU U.S. Department of Energy [DE-AC02-98CH10886, DE-FG02-89ER40531,
DE-FG02-88ER40424]
FX We would like to thank D. Kharzeev, M. Lisa, Y. Yin, and Y. Zhang for
fruitful discussions. We thank Y. Yin and Y. Zhang for reading the
manuscript and providing comments. A.T. was supported by the U.S.
Department of Energy under Grants No. DE-AC02-98CH10886 and No.
DE-FG02-89ER40531. G.W. was supported by the U.S. Department of Energy
under Grant No. DE-FG02-88ER40424.
NR 21
TC 1
Z9 1
U1 2
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD AUG 30
PY 2016
VL 94
IS 2
AR 024920
DI 10.1103/PhysRevC.94.024920
PG 5
WC Physics, Nuclear
SC Physics
GA DU4IU
UT WOS:000382177100008
ER
PT J
AU Bonnett, C
Troxel, MA
Hartley, W
Amara, A
Leistedt, B
Becker, MR
Bernstein, GM
Bridle, SL
Bruderer, C
Busha, MT
Kind, MC
Childress, MJ
Castander, FJ
Chang, C
Crocce, M
Davis, TM
Eifler, TF
Frieman, J
Gangkofner, C
Gaztanaga, E
Glazebrook, K
Gruen, D
Kacprzak, T
King, A
Kwan, J
Lahav, O
Lewis, G
Lidman, C
Lin, H
MacCrann, N
Miquel, R
O'Neill, CR
Palmese, A
Peiris, HV
Refregier, A
Rozo, E
Rykoff, ES
Sadeh, I
Sanchez, C
Sheldon, E
Uddin, S
Wechsler, RH
Zuntz, J
Abbott, T
Abdalla, FB
Allam, S
Armstrong, R
Banerji, M
Bauer, AH
Benoit-Levy, A
Bertin, E
Brooks, D
Buckley-Geer, E
Burke, DL
Capozzi, D
Rosell, AC
Carretero, J
Cunha, CE
D'Andrea, CB
da Costa, LN
DePoy, DL
Desai, S
Diehl, HT
Dietrich, JP
Doel, P
Neto, AF
Fernandez, E
Flaugher, B
Fosalba, P
Gerdes, DW
Gruendl, RA
Honscheid, K
Jain, B
James, DJ
Jarvis, M
Kim, AG
Kuehn, K
Kuropatkin, N
Li, TS
Lima, M
Maia, MAG
March, M
Marshall, JL
Martini, P
Melchior, P
Miller, CJ
Neilsen, E
Nichol, RC
Nord, B
Ogando, R
Plazas, AA
Reil, K
Romer, AK
Roodman, A
Sako, M
Sanchez, E
Santiago, B
Smith, RC
Soares-Santos, M
Sobreira, F
Suchyta, E
Swanson, MEC
Tarle, G
Thaler, J
Thomas, D
Vikram, V
Walker, AR
AF Bonnett, C.
Troxel, M. A.
Hartley, W.
Amara, A.
Leistedt, B.
Becker, M. R.
Bernstein, G. M.
Bridle, S. L.
Bruderer, C.
Busha, M. T.
Kind, M. Carrasco
Childress, M. J.
Castander, F. J.
Chang, C.
Crocce, M.
Davis, T. M.
Eifler, T. F.
Frieman, J.
Gangkofner, C.
Gaztanaga, E.
Glazebrook, K.
Gruen, D.
Kacprzak, T.
King, A.
Kwan, J.
Lahav, O.
Lewis, G.
Lidman, C.
Lin, H.
MacCrann, N.
Miquel, R.
O'Neill, C. R.
Palmese, A.
Peiris, H. V.
Refregier, A.
Rozo, E.
Rykoff, E. S.
Sadeh, I.
Sanchez, C.
Sheldon, E.
Uddin, S.
Wechsler, R. H.
Zuntz, J.
Abbott, T.
Abdalla, F. B.
Allam, S.
Armstrong, R.
Banerji, M.
Bauer, A. H.
Benoit-Levy, A.
Bertin, E.
Brooks, D.
Buckley-Geer, E.
Burke, D. L.
Capozzi, D.
Carnero Rosell, A.
Carretero, J.
Cunha, C. E.
D'Andrea, C. B.
da Costa, L. N.
DePoy, D. L.
Desai, S.
Diehl, H. T.
Dietrich, J. P.
Doel, P.
Fausti Neto, A.
Fernandez, E.
Flaugher, B.
Fosalba, P.
Gerdes, D. W.
Gruendl, R. A.
Honscheid, K.
Jain, B.
James, D. J.
Jarvis, M.
Kim, A. G.
Kuehn, K.
Kuropatkin, N.
Li, T. S.
Lima, M.
Maia, M. A. G.
March, M.
Marshall, J. L.
Martini, P.
Melchior, P.
Miller, C. J.
Neilsen, E.
Nichol, R. C.
Nord, B.
Ogando, R.
Plazas, A. A.
Reil, K.
Romer, A. K.
Roodman, A.
Sako, M.
Sanchez, E.
Santiago, B.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Suchyta, E.
Swanson, M. E. C.
Tarle, G.
Thaler, J.
Thomas, D.
Vikram, V.
Walker, A. R.
CA Dark Energy Survey Collaboration
TI Redshift distributions of galaxies in the Dark Energy Survey Science
Verification shear catalogue and implications for weak lensing
SO PHYSICAL REVIEW D
LA English
DT Article
ID STAR-FORMING GALAXIES; LARGE-SCALE STRUCTURE; PHOTO-Z PERFORMANCE; VLT
DEEP SURVEY; PHOTOMETRIC REDSHIFTS; DATA RELEASE; PRECISION COSMOLOGY;
SURVEY REQUIREMENTS; SHAPE MEASUREMENT; NEURAL-NETWORKS
AB We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model-or machine learning-based photometric redshift methods-ANNZ2, BPZ calibrated against BCC-Ufig simulations, SKYNET, and TPZ-are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z's. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 +/- 0.01 over the range 0.3 < z < 1.3, we construct three tomographic bins with means of z = {0.45; 0.67; 1.00}. These bins each have systematic uncertainties delta z <= 0.05 in the mean of the fiducial SKYNET photo-z (dz). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of sigma(8) of approximately 3%. This shift is within the one sigma statistical errors on sigma(8) for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Sigma(crit), finding levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.
C1 [Bonnett, C.; Miquel, R.; Sanchez, C.; Carretero, J.; Fernandez, E.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Troxel, M. A.; Bridle, S. L.; MacCrann, N.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England.
[Hartley, W.; Amara, A.; Bruderer, C.; Chang, C.; Kacprzak, T.; Refregier, A.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland.
[Leistedt, B.; Lahav, O.; Palmese, A.; Peiris, H. V.; Sadeh, I.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Becker, M. R.; Busha, M. T.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.
[Becker, M. R.; Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Cunha, C. E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
[Bernstein, G. M.; Eifler, T. F.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[King, A.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia.
[Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
[Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[Castander, F. J.; Crocce, M.; Gaztanaga, E.; Bauer, A. H.; Carretero, J.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain.
[Eifler, T. F.; Abdalla, F. B.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Frieman, J.; Lin, H.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Flaugher, B.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Kwan, J.; Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
[Lidman, C.; Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain.
[Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Glazebrook, K.; Uddin, S.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia.
[Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile.
[Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Banerji, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England.
[Bertin, E.] Inst Astrophys, CNRS, UMR 7095, F-75014 Paris, France.
[Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] Lab Interinst Eastron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Desai, S.] Univ Munich, Dept Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Gangkofner, C.; Sheldon, E.; Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Gruen, D.; Dietrich, J. P.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Gerdes, D. W.; Miller, C. J.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Honscheid, K.; Martini, P.; Melchior, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA.
[Kim, A. G.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA.
[Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Sanchez, E.] CIEMAT, Madrid, Spain.
[Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil.
[Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil.
[Lewis, G.] South East Phys Network, SEPnet, Southampton, Hants, England.
[Davis, T. M.; O'Neill, C. R.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia.
[Childress, M. J.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
[Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA.
[Gangkofner, C.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.
RP Bonnett, C (reprint author), Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
RI Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010; Davis,
Tamara/A-4280-2008; Gaztanaga, Enrique/L-4894-2014;
OI Ogando, Ricardo/0000-0003-2120-1154; Davis, Tamara/0000-0002-4213-8783;
Gaztanaga, Enrique/0000-0001-9632-0815; Abdalla,
Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658
FU European Research Council [240672]; DFG Cluster of Excellence Origin and
Structure of the Universe; U.S. Department of Energy; U.S. National
Science Foundation; Ministry of Science and Education of Spain; Science
and Technology Facilities Council of the United Kingdom; Higher
Education Funding Council for England; National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign; Kavli Institute of Cosmological Physics at the
University of Chicago; Center for Cosmology and Astro-Particle Physics
at the Ohio State University; Mitchell Institute for Fundamental Physics
and Astronomy at Texas AM University; Financiadora de Estudos e
Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do
Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche
Forschungsgemeinschaft; National Science Foundation [AST-1138766];
MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de
Excelencia Severo Ochoa [SEV-2012-0234]; ERDF funds from the European
Union; Argonne National Laboratory; University of California at Santa
Cruz; University of Cambridge; Centro de Investigaciones Energeticas,
Medioambientales y Tecnologicas-Madrid; University of Chicago;
University College London; DES-Brazil Consortium; Eidgenossische
Technische Hochschule (ETH) Zurich; Fermi National Accelerator
Laboratory; University of Edinburgh; University of Illinois at
Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut
de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory;
Ludwig-Maximilians Universitat and the associated Excellence Cluster
Universe; University of Michigan; National Optical Astronomy
Observatory; University of Nottingham; Ohio State University; University
of Pennsylvania; University of Portsmouth; SLAC National Accelerator
Laboratory, Stanford University; University of Sussex; Texas AM
University; Australian Astronomical Observatory [A/2013B/012];
Australian Research Council Centre of Excellence for All-sky
Astrophysics (CAASTRO) [CE110001020]; Swiss National Science Foundation
[200021_14944, 200021_143906]; Alfred P. Sloan Foundation; National
Science Foundation; U.S. Department of Energy Office of Science;
University of Arizona; Brazilian Participation Group; Brookhaven
National Laboratory; Carnegie Mellon University; University of Florida;
French Participation Group; German Participation Group; Harvard
University; Instituto de Astrofisica de Canarias; Michigan State/Notre
Dame/JINA Participation Group; Johns Hopkins University; Max Planck
Institute for Astrophysics; Max Planck Institute for Extraterrestrial
Physics; New Mexico State University; New York University; Pennsylvania
State University; Princeton University; Spanish Participation Group;
University of Tokyo; University of Utah; Vanderbilt University;
University of Virginia; University of Washington; Yale University; ESO
Telescopes at the La Silla Paranal Observatory [179.A-2004, 177.A-3016]
FX We are grateful for the extraordinary contributions of our CTIO
colleagues and the DECam Construction, Commissioning and Science
Verification teams in achieving the excellent instrument and telescope
conditions that have made this work possible. The success of this
project also relies critically on the expertise and dedication of the
DES Data Management group. M. T., S. B., N. M., and J. Z. acknowledge
support from the European Research Council in the form of a Starting
Grant with number 240672. D. G. acknowledges the support by the DFG
Cluster of Excellence Origin and Structure of the Universe. Funding for
the DES Projects has been provided by the U.S. Department of Energy, the
U.S. National Science Foundation, the Ministry of Science and Education
of Spain, the Science and Technology Facilities Council of the United
Kingdom, the Higher Education Funding Council for England, the National
Center for Supercomputing Applications at the University of Illinois at
Urbana-Champaign, the Kavli Institute of Cosmological Physics at the
University of Chicago, the Center for Cosmology and Astro-Particle
Physics at the Ohio State University, the Mitchell Institute for
Fundamental Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa
do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the
Deutsche Forschungsgemeinschaft and the Collaborating Institutions in
the Dark Energy Survey. C. G. acknowledges the support by the DFG
Cluster of Excellence Origin and Structure of the Universe. The DES data
management system is supported by the National Science Foundation under
Grant Number AST-1138766. The DES participants from Spanish institutions
are partially supported by MINECO under grants AYA2012-39559,
ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa
SEV-2012-0234, some of which include ERDF funds from the European Union.
The Collaborating Institutions are Argonne National Laboratory, the
University of California at Santa Cruz, the University of Cambridge,
Centro de Investigaciones Energeticas, Medioambientales y
Tecnologicas-Madrid, the University of Chicago, University College
London, the DES-Brazil Consortium, the Eidgenossische Technische
Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the
University of Edinburgh, the University of Illinois at Urbana-Champaign,
the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica
d'Altes Energies, Lawrence Berkeley National Laboratory, the
Ludwig-Maximilians Universitat and the associated Excellence Cluster
Universe, the University of Michigan, the National Optical Astronomy
Observatory, the University of Nottingham, The Ohio State University,
the University of Pennsylvania, the University of Portsmouth, SLAC
National Accelerator Laboratory, Stanford University, the University of
Sussex, and Texas A&M University. Based in part on observations taken at
the Australian Astronomical Observatory under program A/2013B/012. Parts
of this research were conducted by the Australian Research Council
Centre of Excellence for All-sky Astrophysics (CAASTRO), through project
number CE110001020. This work was supported in part by grants
200021_14944 and 200021_143906 from the Swiss National Science
Foundation. Funding for SDSS-III has been provided by the Alfred P.
Sloan Foundation, the Participating Institutions, the National Science
Foundation, and the U.S. Department of Energy Office of Science.; r The
SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the
Astrophysical Research Consortium for the Participating Institutions of
the SDSS-III Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Laboratory, Carnegie
Mellon University, University of Florida, the French Participation
Group, the German Participation Group, Harvard University, the Instituto
de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA
Participation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max Planck
Institute for Extraterrestrial Physics, New Mexico State University, New
York University, Ohio State University, Pennsylvania State University,
University of Portsmouth, Princeton University, the Spanish
Participation Group, University of Tokyo, University of Utah, Vanderbilt
University, University of Virginia, University of Washington, and Yale
University. Based on observations made with ESO Telescopes at the La
Silla Paranal Observatory under programme ID 179.A-2004. Based on
observations made with ESO Telescopes at the La Silla Paranal
Observatory under programme ID 177.A-3016. This paper is Fermilab
publication FERMILAB-PUB-15-306 and DES publication DES2015-0060. This
paper has gone through internal review by the DES Collaboration.
NR 95
TC 10
Z9 10
U1 4
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD AUG 30
PY 2016
VL 94
IS 4
AR 042005
DI 10.1103/PhysRevD.94.042005
PG 26
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DU4IW
UT WOS:000382177300001
ER
PT J
AU Isley, SC
Stern, PC
Carmichael, SP
Joseph, KM
Arent, DJ
AF Isley, Steven C.
Stern, Paul C.
Carmichael, Scott P.
Joseph, Karun M.
Arent, Douglas J.
TI Online purchasing creates opportunities to lower the life cycle carbon
footprints of consumer products
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE carbon footprint; online experiments; carbon offset; ecolabels
ID ENERGY-CONSUMPTION; EMISSIONS
AB A major barrier to transitions to environmental sustainability is that consumers lack information about the full environmental footprints of their purchases. Sellers' incentives do not support reducing the footprints unless customers have such information and are willing to act on it. We explore the potential of modern information technology to lower this barrier by enabling firms to inform customers of products' environmental footprints at the point of purchase and easily offset consumers' contributions through bundled purchases of carbon offsets. Using online stated choice experiments, we evaluated the effectiveness of several inexpensive features that firms in four industries could implement with existing online user interfaces for consumers. These examples illustrate the potential for firms to lower their overall carbon footprints while improving customer satisfaction by lowering the "soft costs" to consumers of proenvironmental choices. Opportunities such as these likely exist wherever firms possess environmentally relevant data not accessible to consumers or when transaction costs make proenvironmental action difficult.
C1 [Isley, Steven C.; Carmichael, Scott P.; Joseph, Karun M.; Arent, Douglas J.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Stern, Paul C.] Natl Acad Sci Engn & Med, Board Environm Change & Soc, Div Behav & Social Sci & Educ, Washington, DC 20001 USA.
[Stern, Paul C.] Norwegian Univ Sci & Technol, Dept Psychol, N-7491 Trondheim, Norway.
RP Isley, SC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM Steven.Isley@nrel.gov
NR 44
TC 0
Z9 0
U1 11
U2 11
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 30
PY 2016
VL 113
IS 35
BP 9780
EP 9785
DI 10.1073/pnas.1522211113
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DV7BL
UT WOS:000383090700047
PM 27528670
ER
PT J
AU Riley, R
Haridas, S
Wolfe, KH
Lopes, MR
Hittinger, CT
Goker, M
Salamov, AA
Wisecaver, JH
Long, TM
Calvey, CH
Aerts, AL
Barry, KW
Choi, C
Clum, A
Coughlan, AY
Deshpande, S
Douglass, AP
Hanson, SJ
Klenk, HP
LaButti, KM
Lapidus, A
Lindquist, EA
Lipzen, AM
Meier-Kolthoff, JP
Ohm, RA
Otillar, RP
Pangilinan, JL
Peng, Y
Rokas, A
Rosa, CA
Scheuner, C
Sibirny, AA
Slot, JC
Stielow, JB
Sun, H
Kurtzman, CP
Blackwell, M
Grigoriev, IV
Jeffries, TW
AF Riley, Robert
Haridas, Sajeet
Wolfe, Kenneth H.
Lopes, Mariana R.
Hittinger, Chris Todd
Goeker, Markus
Salamov, Asaf A.
Wisecaver, Jennifer H.
Long, Tanya M.
Calvey, Christopher H.
Aerts, Andrea L.
Barry, Kerrie W.
Choi, Cindy
Clum, Alicia
Coughlan, Aisling Y.
Deshpande, Shweta
Douglass, Alexander P.
Hanson, Sara J.
Klenk, Hans-Peter
LaButti, Kurt M.
Lapidus, Alla
Lindquist, Erika A.
Lipzen, Anna M.
Meier-Kolthoff, Jan P.
Ohm, Robin A.
Otillar, Robert P.
Pangilinan, Jasmyn L.
Peng, Yi
Rokas, Antonis
Rosa, Carlos A.
Scheuner, Carmen
Sibirny, Andriy A.
Slot, Jason C.
Stielow, J. Benjamin
Sun, Hui
Kurtzman, Cletus P.
Blackwell, Meredith
Grigoriev, Igor V.
Jeffries, Thomas W.
TI Comparative genomics of biotechnologically important yeasts
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE genomics; bioenergy; biotechnological yeasts; genetic code; microbiology
ID HORIZONTAL GENE-TRANSFER; SACCHAROMYCES-CEREVISIAE; PICHIA-STIPITIS;
EVOLUTION; CODE; SEQUENCE; MECHANISM; PATHWAY; COMPLEX; ORIGIN
AB Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Ourwell-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as L-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.
C1 [Riley, Robert; Haridas, Sajeet; Salamov, Asaf A.; Aerts, Andrea L.; Barry, Kerrie W.; Choi, Cindy; Clum, Alicia; Deshpande, Shweta; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lipzen, Anna M.; Ohm, Robin A.; Otillar, Robert P.; Pangilinan, Jasmyn L.; Peng, Yi; Sun, Hui; Grigoriev, Igor V.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA.
[Wolfe, Kenneth H.; Coughlan, Aisling Y.; Douglass, Alexander P.; Hanson, Sara J.] Univ Coll Dublin, Sch Med, Conway Inst, Dublin 4, Ireland.
[Lopes, Mariana R.; Hittinger, Chris Todd] Univ Wisconsin, Genet Biotechnol Ctr, Lab Genet, Madison, WI 53706 USA.
[Lopes, Mariana R.; Rosa, Carlos A.] Univ Fed Minas Gerais, Inst Ciencias Biol, Dept Microbiol, BR-31270901 Belo Horizonte, MG, Brazil.
[Hittinger, Chris Todd] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA.
[Goeker, Markus; Klenk, Hans-Peter; Meier-Kolthoff, Jan P.; Scheuner, Carmen; Stielow, J. Benjamin] Leibniz Inst, Deutsch Sammlung Mikroorganismen & Zellkulturen, D-38124 Braunschweig, Germany.
[Wisecaver, Jennifer H.; Rokas, Antonis] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37235 USA.
[Long, Tanya M.; Jeffries, Thomas W.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA.
[Long, Tanya M.] USDA, Forest Prod Lab, Madison, WI 53726 USA.
[Calvey, Christopher H.] Xylome Corp, Madison, WI 53719 USA.
[Klenk, Hans-Peter] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England.
[Sibirny, Andriy A.] Natl Acad Sci Ukraine, Inst Cell Biol, Dept Mol Genet & Biotechnol, UA-79005 Lvov, Ukraine.
[Sibirny, Andriy A.] Univ Rzeszow, Dept Biotechnol & Microbiol, PL-35601 Rzeszow, Poland.
[Slot, Jason C.] Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA.
[Stielow, J. Benjamin] Royal Netherlands Acad Arts & Sci, Cent Bur Schimmelcultures Fungal Biodivers Ctr, NL-3508 AD Utrecht, Netherlands.
[Kurtzman, Cletus P.] ARS, Natl Ctr Agr Utilizat Res, USDA, Peoria, IL 61604 USA.
[Blackwell, Meredith] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA.
[Blackwell, Meredith] Univ South Carolina, Dept Biol Sci, Columbia, SC 29208 USA.
[Lapidus, Alla] St Petersburg State Univ, Ctr Algorithm Biotechnol, St Petersburg 199004, Russia.
[Ohm, Robin A.] Univ Utrecht, Dept Biol, Microbiol, NL-3508 Utrecht, Netherlands.
RP Grigoriev, IV (reprint author), Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA.; Jeffries, TW (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA.
EM IVGrigoriev@lbl.gov; twjeffri@wisc.edu
RI Ohm, Robin/I-6689-2016; Lapidus, Alla/I-4348-2013;
OI Lapidus, Alla/0000-0003-0427-8731; Calvey,
Christopher/0000-0002-7330-4983; Meier-Kolthoff, Jan
Philipp/0000-0001-9105-9814; Wolfe, Kenneth/0000-0003-4992-4979
FU Office of Science of the US DOE [DE-AC02-05CH11231]; National Science
Foundation [DEB-1442148, DEB-0072741, 0417180]; DOE Great Lakes
Bioenergy Research Center; DOE Office of Science Grant [BER
DE-FC02-07ER64494]; US Department of Agriculture (USDA) National
Institute of Food and Agriculture Hatch Project [1003258]; European
Research Council Grant [268893]; Science Foundation Ireland Grant
[13/IA/1910]; Wellcome Trust; Coordenacao de Aperfeicoamento de Pessoal
de Nivel Superior [7371/13-6]; Pew Charitable Trusts; Alexander von
Humboldt Foundation; Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico-CNPq; DOE Great Lakes Bioenergy Research Center DOE Office
of Science Grant [BER DE-FC02-07ER64494]; USDA, Forest Products
Laboratory
FX We thank Marco A. Soares for computational advice. K.H.W. thanks G.
Cagney, E. Dillon, and K. Wynne (University College Dublin Conway
Institute Proteomics Core Facility) for help with MS. M.B. thanks Drs.
S. O. Suh, H. Urbina, and N. H. Nguyen and numerous Louisiana State
University undergraduates for their assistance. The work conducted by
the US Department of Energy (DOE) Joint Genome Institute, a DOE Office
of Science User Facility, is supported by Office of Science of the US
DOE Contract DE-AC02-05CH11231. This material is based on work supported
by National Science Foundation Grant DEB-1442148 (to C.T.H. and C.P.K.)
and supported in part by DOE Great Lakes Bioenergy Research Center, DOE
Office of Science Grant BER DE-FC02-07ER64494, and US Department of
Agriculture (USDA) National Institute of Food and Agriculture Hatch
Project 1003258. K.H.W. acknowledges European Research Council Grant
268893, Science Foundation Ireland Grant 13/IA/1910, and the Wellcome
Trust. M.R.L. acknowledges a fellowship from the Coordenacao de
Aperfeicoamento de Pessoal de Nivel Superior (process no. 7371/13-6).
C.T.H. is a Pew Scholar in the Biomedical Sciences and an Alfred Toepfer
Faculty Fellow, which are supported by the Pew Charitable Trusts and the
Alexander von Humboldt Foundation, respectively. C.A.R. acknowledges
support from the Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico-CNPq. Funding from National Science Foundation Grants
DEB-0072741 (to M.B.) and 0417180 (to M.B.) supported discovery and
study of many new yeast strains that contributed to this study. T.W.J.
acknowledges DOE Great Lakes Bioenergy Research Center DOE Office of
Science Grant BER DE-FC02-07ER64494 and the USDA, Forest Products
Laboratory for financial support.
NR 47
TC 7
Z9 7
U1 13
U2 15
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 30
PY 2016
VL 113
IS 35
BP 9882
EP 9887
DI 10.1073/pnas.1603941113
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DV7BL
UT WOS:000383090700064
PM 27535936
ER
PT J
AU Hanaor, DAH
Hu, L
Kan, WH
Proust, G
Foley, M
Karaman, I
Radovic, M
AF Hanaor, D. A. H.
Hu, L.
Kan, W. H.
Proust, G.
Foley, M.
Karaman, I.
Radovic, M.
TI Compressive performance and crack propagation in Al alloy/Ti2AlC
composites
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE MAX phase; Ti2AlC; XRM Tomography, Crack propagation
ID CARBIDE-ALUMINUM COMPOSITES; MECHANICAL-PROPERTIES; MATRIX COMPOSITES;
CRYSTAL-STRUCTURE; POROUS TI2ALC; STRESS-STRAIN; MAX PHASES;
TEMPERATURE; BEHAVIOR; TI3SIC2
AB Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While "the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Hanaor, D. A. H.; Kan, W. H.; Proust, G.] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia.
[Karaman, I.; Radovic, M.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA.
[Foley, M.] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia.
[Hu, L.] US DOE, Ames Lab, Ames, IA 50011 USA.
RP Hanaor, DAH (reprint author), Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia.
EM dorian.hanaor@sydney.edu.au
FU U.S. Air Force Office of Scientific Research, MURI Program
[FA9550-09-1-0686]; US National Science Foundation [NSF-1233792];
International Program Development Fund, at the University of Sydney; DVC
Research/International Research Collaboration Award, at the University
of Sydney
FX We acknowledge access to XRM facilities of the Australian Microscopy &
Microanalysis Research Facility at the Australian Centre for Microscopy
& Microanalysis at the University of Sydney. This work was further
supported by the U.S. Air Force Office of Scientific Research, MURI
Program (FA9550-09-1-0686) and US National Science Foundation
(NSF-1233792) to Texas A&M University. The authors would like to thank
the program manager Dr. David Stargel for his support. In addition, the
authors are also grateful for the support of the International Program
Development Fund and DVC Research/International Research Collaboration
Award, at the University of Sydney.
NR 47
TC 2
Z9 2
U1 4
U2 5
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
EI 1873-4936
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD AUG 30
PY 2016
VL 672
BP 247
EP 256
DI 10.1016/j.msea.2016.06.073
PG 10
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA DU1EZ
UT WOS:000381952300028
ER
PT J
AU Maezawa, Y
Petreczky, P
AF Maezawa, Y.
Petreczky, P.
TI Quark masses and strong coupling constant in 2+1 flavor QCD
SO PHYSICAL REVIEW D
LA English
DT Article
AB We present a determination of the strange, charm, and bottom quark masses as well as the strong coupling constant in 2 + 1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be m(c)/m(s) = 11.877(91) and m(b)/m(c) = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: alpha(s)(mu = m(c)) = 0.3697(85) and m(c)(mu = m(c)) = 1.267(12) GeV. Our result for as corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value alpha(s)(mu = M-Z, n(f) = 5) = 0.11622(84).
C1 [Maezawa, Y.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068317, Japan.
[Petreczky, P.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Maezawa, Y (reprint author), Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068317, Japan.
FU U.S. Department of Energy [DE-SC0012704]
FX This work was supported by U.S. Department of Energy under Contract No.
DE-SC0012704. The calculations have been carried out on USQCD clusters
in Jlab. We thank Christian Hoebling for useful discussions on the form
of continuum extrapolations.
NR 42
TC 1
Z9 1
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD AUG 30
PY 2016
VL 94
IS 3
AR 034507
DI 10.1103/PhysRevD.94.034507
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DU4IV
UT WOS:000382177200003
ER
PT J
AU Mantysaari, H
Schenke, B
AF Mantysaari, Heikki
Schenke, Bjorn
TI Revealing proton shape fluctuations with incoherent diffraction at high
energy
SO PHYSICAL REVIEW D
LA English
DT Article
ID LARGE MOMENTUM-TRANSFER; PB-PB COLLISIONS; VECTOR-MESONS; J/PSI MESONS;
SMALL-X; EXCLUSIVE ELECTROPRODUCTION; ELASTIC ELECTROPRODUCTION; PARTON
DISTRIBUTIONS; ROOT-S(NN)=2.76 TEV; QCD ANALYSIS
AB The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J/psi mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For. meson production, we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of geometric fluctuations.
C1 [Mantysaari, Heikki; Schenke, Bjorn] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Mantysaari, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
FU DOE [DE-SC0012704]; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX We thank E. Aschenauer, T. Lappi, S. Schlichting, M. Strikman, T.
Ullrich, and R. Venugopalan for discussions. This work was supported
under DOE Contract No. DE-SC0012704. This research used resources of the
National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. B. P. S. acknowledges a DOE Office of Science
Early Career Award.
NR 112
TC 1
Z9 1
U1 1
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD AUG 30
PY 2016
VL 94
IS 3
AR 034042
DI 10.1103/PhysRevD.94.034042
PG 16
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DU4IV
UT WOS:000382177200002
ER
PT J
AU Morrow, R
Taylor, AE
Singh, DJ
Xiong, J
Rodan, S
Wolter, AUB
Wurmehl, S
Buchner, B
Stone, MB
Kolesnikov, AI
Aczel, AA
Christianson, AD
Woodward, PM
AF Morrow, Ryan
Taylor, Alice E.
Singh, D. J.
Xiong, Jie
Rodan, Steven
Wolter, A. U. B.
Wurmehl, Sabine
Buechner, Bernd
Stone, M. B.
Kolesnikov, A. I.
Aczel, Adam A.
Christianson, A. D.
Woodward, Patrick M.
TI Spin-orbit coupling control of anisotropy, ground state and frustration
in 5d(2) Sr2MgOsO6
SO SCIENTIFIC REPORTS
LA English
DT Article
ID DOUBLE PEROVSKITES; MAGNETIC-PROPERTIES; CRYSTAL-GROWTH; TRANSITION;
OSMIUM
AB The influence of spin-orbit coupling (SOC) on the physical properties of the 5d(2) system Sr2MgOsO6 is probed via a combination of magnetometry, specific heat measurements, elastic and inelastic neutron scattering, and density functional theory calculations. Although a significant degree of frustration is expected, we find that Sr2MgOsO6 orders in a type I antiferromagnetic structure at the remarkably high temperature of 108 K. The measurements presented allow for the first accurate quantification of the size of the magnetic moment in a 5d(2) system of 0.60(2) mu(beta)-a significantly reduced moment from the expected value for such a system. Furthermore, significant anisotropy is identified via a spin excitation gap, and we confirm by first principles calculations that SOC not only provides the magnetocrystalline anisotropy, but also plays a crucial role in determining both the ground state magnetic order and the size of the local moment in this compound. Through comparison to Sr2ScOsO6, it is demonstrated that SOC-induced anisotropy has the ability to relieve frustration in 5d(2) systems relative to their 5d(3) counterparts, providing an explanation of the high TN found in Sr2MgOsO6.
C1 [Morrow, Ryan; Xiong, Jie; Woodward, Patrick M.] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA.
[Taylor, Alice E.; Stone, M. B.; Aczel, Adam A.; Christianson, A. D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[Singh, D. J.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
[Rodan, Steven; Wolter, A. U. B.; Wurmehl, Sabine; Buechner, Bernd] Leibniz Inst Solid State & Mat Res Dresden IFW, D-01171 Dresden, Germany.
[Wurmehl, Sabine; Buechner, Bernd] Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany.
[Kolesnikov, A. I.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Christianson, A. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RP Morrow, R (reprint author), Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA.
EM r.c.morrow@ifw-dresden.de
RI Stone, Matthew/G-3275-2011; christianson, andrew/A-3277-2016; Wurmehl,
Sabine/A-5872-2009
OI Stone, Matthew/0000-0001-7884-9715; christianson,
andrew/0000-0003-3369-5884;
FU Center for Emergent Materials an NSF Materials Research Science and
Engineering Center [DMR-1420451]; Deutsche Forschungsgemeinschaft DFG
[WU595/5-1]; National Science Foundation [DMR-1107637]; DFG [WU 595/3-3,
SFB 1143]; US Department of Energy, Office of Science, Basic Energy
Sciences (BES), Scientific User Facilities Division; Department of
Energy S3TEC Energy Frontier Research Center
[DE-SC0001299/DE-FG02-09ER46577]; U.S. Department of Energy
[DE-AC05-000R22725]
FX Support for this research was provided by the Center for Emergent
Materials an NSF Materials Research Science and Engineering Center
(DMR-1420451), and in the framework of the materials world network
(Deutsche Forschungsgemeinschaft DFG project no. WU595/5-1 and National
Science Foundation (DMR-1107637)). S. Wurmehl gratefully acknowledges
funding by DFG in project WU 595/3-3 (Emmy Noether program) and by DFG
in SFB 1143. Research using Oak Ridge National Laboratory's Spallation
Neutron Source and High Flux Isotope Reactor facilities was sponsored by
the US Department of Energy, Office of Science, Basic Energy Sciences
(BES), Scientific User Facilities Division. Work at the University of
Missouri (DJS) was funded through the Department of Energy S3TEC Energy
Frontier Research Center, award DE-SC0001299/DE-FG02-09ER46577. The
authors would like to acknowledge S. Calder and M. D. Lumsden for
helpful discussions, and the authors also thankfully acknowledge Ashfia
Huq for experimental assistance with POWGEN data collection. This
manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doepublic-access-plan).
NR 53
TC 1
Z9 1
U1 19
U2 25
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD AUG 30
PY 2016
VL 6
AR 32462
DI 10.1038/srep32462
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DU4CI
UT WOS:000382159000001
PM 27571715
ER
PT J
AU Yuan, ZL
Druzhinina, IS
Labbe, J
Redman, R
Qin, Y
Rodriguez, R
Zhang, CL
Tuskan, GA
Lin, FC
AF Yuan, Zhilin
Druzhinina, Irina S.
Labbe, Jessy
Redman, Regina
Qin, Yuan
Rodriguez, Russell
Zhang, Chulong
Tuskan, Gerald A.
Lin, Fucheng
TI Specialized Microbiome of a Halophyte and its Role in Helping Non-Host
Plants to Withstand Salinity
SO SCIENTIFIC REPORTS
LA English
DT Article
ID 16S RIBOSOMAL-RNA; PSEUDOMONAS-FLUORESCENS WCS365; COMPETITIVE ROOT
COLONIZATION; BACTERIAL COMMUNITIES; FUNGAL ASSEMBLAGES; STRESS
TOLERANCE; HIGH-THROUGHPUT; RHIZOSPHERE; DIVERSITY; EVOLUTION
AB Root microbiota is a crucial determinant of plant productivity and stress tolerance. Here, we hypothesize that the superior halo-tolerance of seepweed Suaeda salsa is tightly linked to a specialized belowground microbiome. To test this hypothesis, we performed a phylogenetic trait-based framework analysis based on bacterial 16S rRNA gene and fungal nuclear rRNA internal transcribed spacer profiling. Data showed that the dominant alpha-proteobacteria and gamma-proteobacteria communities in bulk soil and root endosphere tend to be phylogenetically clustered and at the same time exhibit phylogenetic over-dispersion in rhizosphere. Likewise, the dominant fungal genera occurred at high phylogenetic redundancy. Interestingly, we found the genomes of rhizospheric and endophytic bacteria associated with S. salsa to be enriched in genes contributing to salt stress acclimatization, nutrient solubilization and competitive root colonization. A wide diversity of rhizobacteria with similarity to known halotolerant taxa further supported this interpretation. These findings suggest that an ecological patterned root-microbial interaction strategy has been adopted in S. salsa system to confront soil salinity. We also demonstrated that the potential core microbiome members improve non-host plants growth and salt tolerance. This work provides a platform to improve plant fitness with halophytes-microbial associates and novel insights into the functions of plant microbiome under salinity.
C1 [Yuan, Zhilin; Qin, Yuan] Chinese Acad Forestry, Inst Subtrop Forestry, Hangzhou, Zhejiang, Peoples R China.
[Druzhinina, Irina S.] TU Wien, Inst Chem Engn, Res Area Biochem Technol, Vienna, Austria.
[Labbe, Jessy; Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Redman, Regina; Rodriguez, Russell] Adapt Symbiot Technol, Seattle, WA USA.
[Rodriguez, Russell] Univ Washington, Dept Biol, Seattle, WA 98195 USA.
[Zhang, Chulong; Lin, Fucheng] Zhejiang Univ, Inst Biotechnol, State Key Lab Rice Biol, Hangzhou, Zhejiang, Peoples R China.
RP Yuan, ZL (reprint author), Chinese Acad Forestry, Inst Subtrop Forestry, Hangzhou, Zhejiang, Peoples R China.; Labbe, J (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
EM yuanzl@caf.ac.cn; labbejj@ornl.gov
RI Tuskan, Gerald/A-6225-2011; Labbe, Jessy/G-9532-2011
OI Tuskan, Gerald/0000-0003-0106-1289; Labbe, Jessy/0000-0003-0368-2054
FU Non-Profit Sector Special Research Fund of the Chinese Academy of
Forestry [RISF2013005]; National Natural Science Foundation of China
[31370704]; Austrian Science Fund (FWF) [P 25745]; Genomic Science
Program, U.S. Department of Energy, Office of Science, Biological and
Environmental Research; Plant-Microbe Interfaces Scientific Focus Area;
U.S. Department of Energy [DE-AC05-00OR22725]
FX This research was supported financially by the Non-Profit Sector Special
Research Fund of the Chinese Academy of Forestry (RISF2013005) and the
National Natural Science Foundation of China (No. 31370704). ISD was
supported by the Austrian Science Fund (FWF): project number P 25745. JL
was supported by the Genomic Science Program, U.S. Department of Energy,
Office of Science, Biological and Environmental Research as part of the
Plant-Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov).
Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the
U.S. Department of Energy under contract DE-AC05-00OR22725. We would
like to extend our sincerest thanks and great appreciation to Prof. Jeff
Dangl, the University of North Carolina at Chapel Hill for his useful
suggestions and technical assistance.
NR 79
TC 3
Z9 3
U1 15
U2 28
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD AUG 30
PY 2016
VL 6
AR 32467
DI 10.1038/srep32467
PG 13
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DU4CL
UT WOS:000382159400001
PM 27572178
ER
PT J
AU Su, X
Lin, CK
Wang, XP
Maroni, VA
Ren, Y
Johnson, CS
Lu, WQ
AF Su, Xin
Lin, Chikai
Wang, Xiaoping
Maroni, Victor A.
Ren, Yang
Johnson, Christopher S.
Lu, Wenquan
TI A new strategy to mitigate the initial capacity loss of lithium ion
batteries
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Hard carbon; Initial capacity loss; Li5FeO4 (LFO); Lithium source
additive; Lithium ion battery
ID ELECTROCHEMICAL-BEHAVIOR; SILICON MONOXIDE; ANODE CELL; NANOSTRUCTURES
AB Hard carbon (non-graphitizable) and related materials, like tin, tin oxide, silicon, and silicon oxide, have a high theoretical lithium delivery capacity (>550 mAh/g depending on their structural and chemical properties) but unfortunately they also exhibit a large initial capacity loss (ICL) that overrides the true reversible capacity in a full cell. Overcoming the large ICL of hard carbon in a full-cell lithium-ion battery (LIB) necessitates a new strategy wherein a sacrificial lithium source additive, such as, Li5FeO4 (LFO), is inserted on the cathode side. Full batteries using hard carbon coupled with LFO-LiCoO2 (LCO) are currently under development at our laboratory. We find that the reversible capacity of a cathode containing LFO can be increased by 14%. Furthermore, the cycle performance of full cells with LFO additive is improved from <90% to >95%. We show that the LFO additive not only can address the irreversible capacity loss of the anode, but can also provide the additional lithium ion source required to mitigate the lithium loss caused by side reactions. In addition, we have explored the possibility to achieve higher capacity with hard carbon, whereby the energy density of full cells can be increased from ca. 300 Wh/kg to >400 Wh/kg. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Su, Xin; Lin, Chikai; Wang, Xiaoping; Maroni, Victor A.; Johnson, Christopher S.; Lu, Wenquan] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Ren, Yang] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA.
RP Lu, WQ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM suxin81@gmail.com; chikai.moses.lin@gmail.com; xiaoping.wang@anl.gov;
maroni@anl.gov; ren@aps.anl.gov; cjohnson@anl.gov; luw@anl.gov
FU U.S. Department of Energy (DOE) Office of Energy Efficiency and
Renewable Energy (EERE) Vehicle Technologies Office; U.S. Department of
Energy Office of Science Laboratory [DE-AC02-06CH11357]
FX We gratefully acknowledge support from the U.S. Department of Energy
(DOE) Office of Energy Efficiency and Renewable Energy (EERE) Vehicle
Technologies Office. Part of this work was performed at the Electron
Microscopy Center for Materials Research, the Center for Nanoscale
Materials, and the Advanced Photon Source, all of which are facilities
of the Office of Science (SC) located at Argonne National Laboratory, a
U.S. Department of Energy Office of Science Laboratory operated under
Contract No. DE-AC02-06CH11357.
NR 15
TC 1
Z9 1
U1 36
U2 59
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD AUG 30
PY 2016
VL 324
BP 150
EP 157
DI 10.1016/j.jpowsour.2016.05.063
PG 8
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA DR7JU
UT WOS:000380076700019
ER
PT J
AU Brooks, KP
Bowden, ME
Karkamkar, AJ
Houghton, AY
Autrey, ST
AF Brooks, Kriston P.
Bowden, Mark E.
Karkamkar, Abhijeet J.
Houghton, Adrian Y.
Autrey, S. Thomas
TI Coupling of exothermic and endothermic hydrogen storage materials
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Chemical hydrogen storage; Fuel cell; Reaction coupling; Kinetic
modeling
ID AMMONIA-BORANE; CATALYTIC HYDROLYSIS; REGENERATION; BOROHYDRIDE;
RELEASE; METHANOLYSIS; GENERATION; FUEL; H-2
AB Chemical hydrogen storage (CHS) materials are a high-storage-density alternative to the gaseous compressed hydrogen currently used to provide hydrogen for fuel cell vehicles. One of the challenges of CHS materials is addressing the energy barriers required to break the chemical bonds and release the hydrogen. Coupling CHS reactions that are endothermic and exothermic during dehydrogenation can improve onboard energy efficiency and thermal control for the system, making such materials viable. Acceptable coupling between reactions requires both thermodynamic and kinetic considerations. In this work, models were developed to predict the reaction enthalpy and rate required to achieve high conversions for both reactions based on experimental measurements. Modeling results show that the coupling efficiency of exothermic and endothermic reactions is more sensitive to the ratio of the exothermic and endothermic enthalpies than to the ratio of the rates of the two steps. Modeling results also show that a slower endothermic step rate is desirable to permit sufficient heating of the reactor by the exothermic step. We look at two examples of a sequential and parallel reaction scheme and provide some of the first published insight into the required temperature range to maximize the hydrogen release from 1,2-BN cyclohexane and indoline. (C) 2016 Published by Elsevier B.V.
C1 [Brooks, Kriston P.; Bowden, Mark E.; Karkamkar, Abhijeet J.; Houghton, Adrian Y.; Autrey, S. Thomas] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA.
RP Brooks, KP (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA.
EM Kriston.brooks@pnnl.gov; Mark.bowden@pnnl.gov; Abhi.Karhamkar@pnnl.gov;
Adrian.houghton@pnnl.gov; Tom.autrey@pnnl.gov
FU U.S. Department of Energy; Department of Energy [DE-AC05-76RLO1830]
FX This work was done at PNNL and sponsored by the U.S. Department of
Energy. Special thanks to Dr. Shih-Yuan Liu (Boston College) for
providing the CBN materials and directing this project. The authors
would also like to thank Ned Stetson and Grace Ordaz for their
outstanding support. Battelle operates PNNL for the Department of Energy
under contract DE-AC05-76RLO1830.
NR 33
TC 0
Z9 0
U1 14
U2 42
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD AUG 30
PY 2016
VL 324
BP 170
EP 178
DI 10.1016/j.jpowsour.2016.05.067
PG 9
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA DR7JU
UT WOS:000380076700021
ER
PT J
AU Wang, ZY
Lee, JZ
Xin, HLL
Han, LL
Grillon, N
Guy-Bouyssou, D
Bouyssou, E
Proust, M
Meng, YS
AF Wang, Ziying
Lee, Jungwoo Z.
Xin, Huolin L.
Han, Lili
Grillon, Nathanael
Guy-Bouyssou, Delphine
Bouyssou, Emilien
Proust, Marina
Meng, Ying Shirley
TI Effects of cathode electrolyte interfacial (CEI) layer on long term
cycling of all-solid-state thin-film batteries
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Lithium-ion battery; Thin-film battery; Interfacial phenomena; Interface
resistance; Solid electrolyte
ID RECHARGEABLE LITHIUM BATTERIES; LI-ION BATTERIES; OXIDES;
1ST-PRINCIPLES; INTERCALATION; STABILITY
AB All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte electrode interfaces will be critical to improve performance. In this study, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grew in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 degrees C. The stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Wang, Ziying; Lee, Jungwoo Z.; Meng, Ying Shirley] Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA.
[Xin, Huolin L.; Han, Lili] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Grillon, Nathanael; Guy-Bouyssou, Delphine; Bouyssou, Emilien; Proust, Marina] STMicroelectronics, CS 97155, F-37071 Tours 2, France.
RP Meng, YS (reprint author), Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA.
EM shmeng@ucsd.edu
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-SC0002357]; STMicroelectronics; U.S. DOE Office of Science Facility,
at Brookhaven National Laboratory [DE-SC0012704]
FX We would also like to acknowledge the funding for the characterization
of all-solid-state battery by the U.S. Department of Energy, Office of
Basic Energy Sciences, under award number DE-SC0002357. The authors
acknowledge the partial funding support and sample fabrication from
STMicroelectronics. This research used resources of the Center for
Functional Nanomaterials, which is a U.S. DOE Office of Science
Facility, at Brookhaven National Laboratory under Contract No.
DE-SC0012704.
NR 23
TC 0
Z9 0
U1 63
U2 99
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD AUG 30
PY 2016
VL 324
BP 342
EP 348
DI 10.1016/j.jpowsour.2016.05.098
PG 7
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA DR7JU
UT WOS:000380076700041
ER
PT J
AU Reshetenko, T
Serov, A
Artyushkova, K
Matanovic, I
Stariha, S
Atanassov, P
AF Reshetenko, Tatyana
Serov, Alexey
Artyushkova, Kateryna
Matanovic, Ivana
Stariha, Sarah
Atanassov, Plamen
TI Tolerance of non-platinum group metals cathodes proton exchange membrane
fuel cells to air contaminants
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Non-platinum group metals catalysts; PEMFC; Airborne contaminants;
Segmented cell; XPS; DFT
ID OXYGEN REDUCTION REACTION; DENSITY-FUNCTIONAL THEORY; ELECTROCHEMICAL
IMPEDANCE SPECTROSCOPY; BRILLOUIN-ZONE INTEGRATIONS; INITIO
MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD;
CARBON-MONOXIDE; PEMFC PERFORMANCE; NITROGEN-OXIDES
AB The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-N-x sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O-2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Reshetenko, Tatyana] Univ Hawaii, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA.
[Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Stariha, Sarah; Atanassov, Plamen] Univ New Mexico, Dept Chem & Biol Engn, UNM Ctr Microengn Mat, Albuquerque, NM 87131 USA.
[Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Reshetenko, T (reprint author), Univ Hawaii, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA.
EM tatyanar@hawaii.edu
FU Office of Biological and Environmental Research of the Department of
Energy located at Pacific Northwest National Laboratory [48823]; Office
of Science of the U.S. Department of Energy [DE-AC02-05CH11231];
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy [CNMS2015-027]; DOE-EERE Fuel Cell Technology
Program [FC132]; Office of Naval Research [N00014-11-1-0391]
FX Computational work was performed using the computational resources of
EMSL, a national scientific user facility sponsored by the Office of
Biological and Environmental Research of the Department of Energy
located at Pacific Northwest National Laboratory (award number 48823);
NERSC, supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231; and CNMS, sponsored at Oak
Ridge National Laboratory by the Scientific User Facilities Division,
Office of Basic Energy Sciences, U.S. Department of Energy (award
CNMS2015-027). This work was supported in part by the DOE-EERE Fuel Cell
Technology Program FC132 (subcontract to Northeastern University, with
PI Sanjeev Mukerjee). T. Reshetenko is grateful for the funding from the
Office of Naval Research (N00014-11-1-0391) and the Hawaiian Electric
Company for their ongoing support of the Hawaii Sustainable Energy
Research Facility. This paper has been designated LA-UR-15-29303.
NR 92
TC 4
Z9 4
U1 26
U2 37
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD AUG 30
PY 2016
VL 324
BP 556
EP 571
DI 10.1016/j.jpowsour.2016.05.090
PG 16
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA DR7JU
UT WOS:000380076700064
ER
PT J
AU Bzdak, A
Koch, V
Liao, JF
AF Bzdak, Adam
Koch, Volker
Liao, Jinfeng
TI Particle correlations and the chiral magnetic effect
SO EUROPEAN PHYSICAL JOURNAL A
LA English
DT Review
ID HEAVY-ION COLLISIONS; VIOLATION; TRANSPORT
AB In this contribution we will discuss current measurements of particle correlations and their implication for possible local parity violation in heavy-ion collisions.
C1 [Bzdak, Adam] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland.
[Koch, Volker] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.
[Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.
[Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA.
RP Bzdak, A (reprint author), AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland.
EM bzdak@fis.agh.edu.pl; vkoch@lbl.gov; liaoji@indiana.edu
FU Ministry of Science and Higher Education (MNiSW); Foundation for Polish
Science; National Science Centre (Narodowe Centrum Nauki)
[DEC-2014/15/B/ST2/00175]; Office of Basic Energy Sciences, Division of
Nuclear Sciences, of the U.S. Department of Energy [DE-AC03-76SF00098];
DOE [DE-AC02-98CH10886]; NSF [PHY-1352368]; RIKEN BNL Research Center;
[DEC-2013/09/B/ST2/00497]
FX AB was supported by the Ministry of Science and Higher Education
(MNiSW), by funding from the Foundation for Polish Science, and by the
National Science Centre (Narodowe Centrum Nauki), Grant No.
DEC-2014/15/B/ST2/00175, and in part by DEC-2013/09/B/ST2/00497. VK was
supported by the Director, Office of Science, Office of High Energy and
Nuclear Physics, Division of Nuclear Physics, and by the Office of Basic
Energy Sciences, Division of Nuclear Sciences, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098 and DOE Contract No.
DE-AC02-98CH10886. JL was partly supported by the NSF (Grant No.
PHY-1352368) and by the RIKEN BNL Research Center.
NR 28
TC 0
Z9 0
U1 2
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6001
EI 1434-601X
J9 EUR PHYS J A
JI Eur. Phys. J. A
PD AUG 29
PY 2016
VL 52
IS 8
AR 265
DI 10.1140/epja/i2016-16265-0
PG 6
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA DZ7FC
UT WOS:000386029300001
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Abdinov, O
Abeloos, B
Aben, R
AbouZeid, OS
Abraham, NL
Abramowicz, H
Abreu, H
Abreu, R
Abulaiti, Y
Acharya, BS
Adamczyk, L
Adams, DL
Adelman, J
Adomeit, S
Adye, T
Older, AAAF
Agatonovic-Jovin, T
Agricola, J
Aguilar-Saavedra, JA
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Aring;kesson, TPA
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
Verzini, MJA
Aleksa, M
Aleksandrov, N
Alexa, C
Alexander, G
Alexopoulos, T
Alhroob, M
Aliev, M
Alimonti, G
Alison, J
Alkire, SP
Allbrooke, BMM
Allen, BW
Allport, PP
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Alstaty, M
Gonzalez, BA
Piqueras, DA
Alviggi, MG
Amadio, BT
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Amor Dos Santo, SP
Amorim, A
Amoroso, S
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anders, JK
Anderson, KJ
Andreazza, A
Andrei, V
Angelidakis, S
Angelozzi, I
Anger, P
Angerami, A
Fi, FA
Anisenkov, AV
Anjos, N
Annovi, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Bella, LA
Arabidze, G
Arai, Y
Araque, JP
Arce, ATH
Arduh, FA
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Armitage, LJ
Arnaez, O
Arnold, H
Arratia, M
Arslan, O
Artamonov, A
Artoni, G
Artz, S
Asai, S
Asbah, N
Ashkenazi, A
Aring;sman, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Augsten, K
Avolio, G
Axen, B
Ayoub, MK
Azuelos, G
Baak, MA
Baas, AE
Baca, MJ
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Bagiacchi, P
Bagnaia, P
Bai, Y
Baines, JT
Baker, OK
Baldin, EM
Balek, P
Balestri, T
Balli, F
Balunas, WK
Banas, E
Banerjee, S
Bannoura, AAE
Barak, L
Barberio, EL
Barberis, D
Barbero, M
Barillari, T
Barklow, T
Barlow, N
Barnes, SL
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Barranco Navarro, L
Barreiro, F
Da Costa, JBG
Bartoldus, R
Barton, AE
Bartos, P
Basalaev, A
Bassalat, A
Bates, RL
Batista, SJ
Batley, JR
Battaglia, M
Bauce, M
Bauer, F
Bawa, HS
Beacham, JB
Beattie, MD
Beau, T
Beauchemin, PH
Bechtle, P
Beck, HP
Becker, K
Becker, M
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bednyakov, VA
Bedognetti, M
Bee, CP
Beemster, LJ
Beermann, TA
Begel, M
Behr, JK
Belanger-Champagne, C
Bell, AS
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belotskiy, K
Beltramello, O
Belyaev, NL
Benary, O
Benchekroun, D
Bender, M
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Benitez, J
Benjamin, DP
Bensinger, JR
Bentvelsen, S
Beresford, L
Beretta, M
Berge, D
Kuutmann, EB
Berger, N
Beringer, J
Berlendis, S
Bernard, NR
Bernius, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertoli, G
Bertolucci, F
Bertram, IA
Bertsche, C
Bertsche, D
Besjes, GJ
Bylund, OB
Bessner, M
Besson, N
Betancourt, C
Bethke, S
Bevan, AJ
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Biedermann, D
Bielski, R
Biesuz, NV
Biglietti, M
De Mendizabal, JB
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Biondi, S
Bjergaard, DM
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blanco, JE
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Blunier, S
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Bock, C
Boehler, M
Boerner, D
Bogaerts, JA
Bogavac, D
Bogdanchikov, AG
Bohm, C
Boisvert, V
Bokan, P
Bold, T
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Bortfeldt, J
Bortoletto, D
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Sola, JDB
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Boutle, SK
Boveia, A
Boyd, J
Boyko, IR
Bracinik, J
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Madden, WDB
Brendlinger, K
Brennan, AJ
Brenner, L
Brenner, R
Bressler, S
Bristow, TM
Britton, D
Britzger, D
Brochu, FM
Brock, I
Brock, R
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Broughton, JH
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Bruni, A
Bruni, G
Brunt, B
Bruschi, M
Bruscino, N
Bryant, P
Bryngemark, L
Buanes, T
Buat, Q
Buchholz, P
Buckley, AG
Budagov, IA
Buehrer, F
Bugge, MK
Bulekov, O
Bullock, D
Burckhart, H
Burdin, S
Burgard, CD
Burghgrave, B
Burka, K
Burke, S
Burmeister, I
Busato, E
Buscher, D
Buscher, V
Bussey, P
Butler, JM
Buttar, CM
Butterworth, JM
Butti, P
Buttinger, W
Buzatu, A
Buzykaev, AR
Urban, SC
Caforio, D
Cairo, VM
Cakir, O
Calace, N
Calafiura, P
Calandri, A
Calderini, G
Calfayan, P
Caloba, LP
Calvet, D
Calvet, S
Calvet, TP
Toro, RC
Camarda, S
Camarri, P
Cameron, D
Armadans, RC
Camincher, C
Campana, S
Campanelli, M
Camplani, A
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Carbone, RM
Cardarelli, R
Cardillo, F
Carli, I
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Casper, DW
Castaneda-Miranda, E
Castelijn, R
Castelli, A
Castillo Gimenez, V
Castro, NF
Catinaccio, A
Catmore, JR
Cattai, A
Caudron, J
Cavaliere, V
Cavallaro, E
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerda Alberich, L
Cerio, BC
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chan, SK
Chan, YL
Chang, P
Chapman, JD
Charlton, DG
Chatterjee, A
Chau, CC
Barajas, CAC
Che, S
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, K
Chen, S
Chen, S
Chen, X
Chen, Y
Cheng, HC
Cheng, HJ
Cheng, Y
Cheplakov, A
Cheremushkina, E
Cherkaoui El Moursli, R
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Chiarelli, G
Chiodini, G
Chisholm, AS
Chitan, A
Chizhov, MV
Choi, K
Chomont, AR
Chouridou, S
Chow, BKB
Christodoulou, V
Chromek-Burckhart, D
Chudoba, J
Chuinard, AJ
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Cinca, D
Cindro, V
Cioara, IA
Ciocio, A
Cirotto, F
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, BL
Clark, MR
Clark, PJ
Clarke, RN
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Colasurdo, L
Cole, B
Colijn, AP
Collot, J
Colombo, T
Compostella, G
Muino, PC
Coniavitis, E
Connell, SH
Connelly, IA
Consorti, V
Constantinescu, S
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cormier, KJR
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Crawley, SJ
Cree, G
Crepe-Renaudin, S
Crosetti, G
Donszelmann, TC
Cummings, J
Curatolo, M
Cuth, J
Cuthbert, C
Czirr, H
Czodrowski, P
D'amen, G
D'Auria, S
D'Onofrio, M
De Sousa, MJDS
Da Via, C
Dabrowski, W
Dado, T
Dai, T
Dale, O
Dallaire, F
Dallapiccola, C
Dam, M
Dandoy, JR
Dang, NP
Daniells, AC
Dann, NS
Danninger, M
Hoffmann, MD
Dao, V
Darbo, G
Darmora, S
Dassoulas, J
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, M
Davison, P
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Benedetti, A
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Maria, A
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBDV
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dedovich, DV
Dehghanian, N
Deigaard, I
Del Gaudio, M
Del Peso, J
Del Prete, T
Delgove, D
Deliot, F
Delitzsch, CM
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Dell'Orso, M
Della Pietra, M
Della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
DeMarco, DA
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Denysiuk, D
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Dette, K
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Clemente, WK
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Diaconu, C
Diamond, M
Dias, FA
Diaz, MA
Diehl, EB
Dietrich, J
Diglio, S
Dimitrievska, A
Dingfelder, J
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
Djuvsland, JI
do Vale, MAB
Dobos, D
Dobre, M
Doglioni, C
Dohmae, T
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova, MT
Doyle, AT
Drechsler, E
Dris, M
Du, Y
Duarte-Campderros, J
Duchovni, E
Duckeck, G
Ducu, OA
Duda, D
Dudarev, A
Duflot, L
Duguid, L
Duhrssen, M
Dumancic, M
Dunford, M
Yildiz, HD
Duren, M
Durglishvili, A
Duschinger, D
Dutta, B
Dyndal, M
Eckardt, C
Ecker, KM
Edgar, RC
Edwards, NC
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
El Kacimi, M
Ellajosyula, V
Ellert, M
Elles, S
Ellinghaus, F
Elliot, AA
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Endo, M
Ennis, JS
Erdmann, J
Ereditato, A
Ernis, G
Ernst, J
Ernst, M
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Ezhilov, A
Fabbri, F
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farina, C
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Giannelli, MF
Favareto, A
Fawcett, WJ
Fayard, L
Fedin, OL
Fedorko, W
Feigl, S
Feligioni, L
Feng, C
Feng, EJ
Feng, H
Fenyuk, AB
Feremenga, L
Martinez, PF
Perez, SF
Ferrando, J
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthaut, F
Fincke-Keeler, M
Finelli, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, A
Fischer, C
Fischer, J
Fisher, WC
Flaschel, N
Fleck, I
Fleischmann, P
Fletcher, GT
Fletcher, RRM
Flick, T
Floderus, A
Castillo, LRF
Flowerdew, MJ
Forcolin, GT
Formica, A
Forti, A
Foster, AG
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Francis, D
Franconi, L
Franklin, M
Frate, M
Fraternali, M
Freeborn, D
Fressard-Batraneanu, SM
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fusayasu, T
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gach, GP
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, LG
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gao, J
Gao, Y
Gao, YS
Walls, FMG
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Bravo, AG
Gatti, C
Gaudiello, A
Gaudio, G
Gaur, B
Gauthier, L
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Gecse, Z
Gee, CNP
Geich-Gimbel, C
Geisler, MP
Gemme, C
Genest, MH
Geng, C
Gentile, S
George, S
Gerbaudo, D
Gershon, A
Ghasemi, S
Ghazlane, H
Ghneimat, M
Giacobbe, B
Giagu, S
Giannetti, P
Gibbard, B
Gibson, SM
Gignac, M
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giorgi, FM
Giorgi, FM
Giraud, PF
Giromini, P
Giugni, D
Giuli, F
Giuliani, C
Giulini, M
Gjelsten, BK
Gkaitatzis, S
Gkialas, I
Gkougkousis, EL
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Goblirsch-Kolb, M
Godlewski, J
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Gon, R
Da Costa, JGPF
Gonella, L
Gongadze, A
de la Hoz, SG
Parra, GG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gossling, C
Gostkin, MI
Goudet, CR
Goujdami, D
Goussiou, AG
Govender, N
Gozani, E
Graber, L
Grabowska-Bold, I
Gradin, POJ
Grafstrom, P
Gramling, J
Gramstad, E
Grancagnolo, S
Gratchev, V
Gray, HM
Graziani, E
Greenwood, ZD
Grefe, C
Gregersen, K
Gregor, IM
Grenier, P
Grevtsov, K
Griffiths, J
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grivaz, JF
Groh, S
Grohs, JP
Gross, E
Grosse-Knetter, J
Grossi, GC
Grout, ZJ
Guan, L
Guan, W
Guenther, J
Guescini, F
Guest, D
Gueta, O
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Guo, J
Guo, Y
Gupta, S
Gustavino, G
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddad, N
Hadef, A
Haefner, P
Hagebock, S
Hajduk, Z
Hakobyan, H
Haleem, M
Haley, J
Halladjian, G
Hallewell, GD
Hamacher, K
Hamal, P
Hamano, K
Hamilton, A
Hamity, GN
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Haney, B
Hanke, P
Hanna, R
Hansen, JB
Hansen, JD
Hansen, MC
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Hariri, F
Harkusha, S
Harrington, RD
Harrison, PF
Hartjes, F
Hartmann, NM
Hasegawa, M
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauser, R
Hauswald, L
Havranek, M
Hawkes, CM
Hawkings, RJ
Hayden, D
Hays, CP
Hays, JM
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, JJ
Heinrich, L
Heinz, C
Hejbal, J
Helary, L
Hellman, S
Helsens, C
Henderson, J
Henderson, RCW
Heng, Y
Henkelmann, S
Correia, AMH
Henrot-Versille, S
Herbert, GH
Jimenez, YH
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hetherly, JW
Hickling, R
Higon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillier, SJ
Hinchliffe, I
Hines, E
Hinman, RR
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoenig, F
Hohlfeld, M
Hohn, D
Holmes, TR
Homann, M
Hong, TM
Hooberman, BH
Hopkins, WH
Horii, Y
Horton, AJ
Hostachy, JY
Hou, S
Hoummada, A
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hrynevich, A
Hsu, C
Hsu, PJ
Hsu, SC
Hu, D
Hu, Q
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hulsing, TA
Huo, P
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Ideal, E
Idrissi, Z
Iengo, P
Igonkina, O
Iizawa, T
Ikegami, Y
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Ince, T
Introzzi, G
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ito, F
Ponce, JMI
Iuppa, R
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jabbar, S
Jackson, B
Jackson, M
Jackson, P
Jain, V
Jakobi, KB
Jakobs, K
Jakobsen, S
Jakoubek, T
Jamin, DO
Jana, DK
Jansen, E
Jansky, R
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanneau, F
Jeanty, L
Jejelava, J
Jeng, GY
Jennens, D
Jenni, P
Jentzsch, J
Jeske, C
Jezequel, S
Ji, H
Jia, J
Jiang, H
Jiang, Y
Jiggins, S
Pena, JJ
Jin, S
Jinaru, A
Jinnouchi, O
Johansson, P
Johns, KA
Johnson, WJ
Jon-And, K
Jones, G
Jones, RWL
Jones, S
Jones, TJ
Jongmanns, J
Jorge, PM
Jovicevic, J
Ju, X
Rozas, AJ
Kohler, MK
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kahn, SJ
Kajomovitz, E
Kalderon, CW
Kaluza, A
Kama, S
Kamenshchikov, A
Kanaya, N
Kaneti, S
Kanjir, L
Kantserov, VA
Kanzaki, J
Kaplan, B
Kaplan, LS
Kapliy, A
Kar, D
Karakostas, K
Karamaoun, A
Karastathis, N
Kareem, MJ
Karentzos, E
Karnevskiy, M
Karpov, SN
Karpova, ZM
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kasahara, K
Kashif, L
Kass, RD
Kastanas, A
Kataoka, Y
Kato, C
Katre, A
Katzy, J
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Keeler, R
Kehoe, R
Keller, JS
Kempster, JJ
Kentaro, K
Keoshkerian, H
Kepka, O
Sevan, BPK
Kersten, S
Keyes, RA
Khalil-Zada, F
Khanov, A
Kharlamov, AG
Khoo, TJ
Khovanskiy, V
Khramov, E
Khubua, J
Kido, S
Kim, HY
Kim, SH
Kim, YK
Kimura, N
Kind, OM
King, BT
King, M
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kiuchi, K
Kivernyk, O
Kladiva, E
Klein, MH
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klioutchnikova, T
Kluge, EE
Kluit, P
Kluth, S
Knapik, J
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, A
Kobayashi, D
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koffas, T
Koffeman, E
Koi, T
Kolanoski, H
Kolb, M
Koletsou, I
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Kortner, O
Kortner, S
Kosek, T
Kostyukhin, VV
Kotwal, A
Kourkoumeli-Charalampidi, A
Kourkoumelis, C
Kouskoura, V
Kowalewska, AB
Kowalewski, R
Kowalski, TZ
Kozakai, C
Kozanecki, W
Kozhin, AS
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasny, MW
Krasznahorkay, A
Kraus, JK
Kravchenko, A
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Krizka, K
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Krumnack, N
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kucuk, H
Kuday, S
Kuechler, JT
Kuehn, S
Kugel, A
Kuger, F
Kuhl, A
Kuhl, T
Kukhtin, V
Kukla, R
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunigo, T
Kupco, A
Kurashige, H
Kurochkin, YA
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
Kwan, T
Kyriazopoulos, D
La Rosa, A
Navarro, JLL
La Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Lammers, S
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lange, JC
Lankford, AJ
Lanni, F
Lantzsch, K
Lanza, A
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Manghi, FL
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Lazovich, T
Lazzaroni, M
Le, B
Le Dortz, O
Le Guirriec, E
Le Quilleuc, EP
LeBlanc, M
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, SC
Lee, L
Lefebvre, G
Lefebvre, M
Legger, F
Leggett, C
Lehan, A
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzi, B
Leone, R
Leone, S
Leonidopoulos, C
Leontsinis, S
Lerner, G
Leroy, C
Lesage, AAJ
Lester, CG
Levchenko, M
Leveque, J
Levin, D
Levinson, LJ
Levy, M
Leyko, AM
Leyton, M
Li, B
Li, H
Li, HL
Li, L
Li, L
Li, Q
Li, S
Li, X
Li, Y
Liang, Z
Liberti, B
Liblong, A
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limosani, A
Lin, SC
Lin, TH
Lindquist, BE
Lionti, AE
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, H
Liu, H
Liu, J
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, YL
Liu, Y
Livan, M
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loebinger, FK
Loevschall-Jensen, AE
Loew, KM
Loginov, A
Lohse, T
Lohwasser, K
Lokajicek, M
Long, BA
Long, JD
Long, RE
Longo, L
Looper, KA
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Solis, AL
Lorenz, J
Martinez, NL
Losada, M
Losel, PJ
Lou, X
Lounis, A
Love, J
Love, PA
Lu, H
Lu, N
Lubatti, HJ
Luci, C
Lucotte, A
Luedtke, C
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Lynn, D
Lysak, R
Lytken, E
Lyubushkin, V
Ma, H
Ma, LL
Ma, Y
Maccarrone, G
Macchiolo, A
Macdonald, CM
Macek, B
Miguens, JM
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeda, J
Maeland, S
Maeno, T
Maevskiy, A
Magradze, E
Mahlstedt, J
Maiani, C
Maidantchik, C
Maier, AA
Maier, T
Maio, A
Majewski, S
Makida, Y
Makovec, N
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyukov, S
Mamuzic, J
Mancini, G
Mandelli, B
Mandelli, L
Mandic, I
Maneira, J
de Andrade, LM
Ramos, JM
Mann, A
Mansoulie, B
Mansour, JD
Mantifel, R
Mantoani, M
Manzoni, S
Mapelli, L
Marceca, G
March, L
Marchiori, G
Marcisovsky, M
Marjanovic, M
Marley, DE
Marroquim, F
Marsden, SP
Marshall, Z
Marti-Garcia, S
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, M
Martin-Haugh, S
Martoiu, VS
Martyniuk, AC
Marx, M
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massa, L
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Mattig, P
Mattmann, J
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazza, SM
Mc Fadden, NC
Mc Goldrick, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McClymont, LI
McDonald, EF
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Melini, D
Garcia, BRM
Melo, M
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mergelmeyer, S
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Zu Theenhausen, HM
Miano, F
Middleton, RP
Miglioranzi, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Milesi, M
Milic, A
Miller, DW
Mills, C
Milov, A
Milstead, DA
Minaenko, AA
Minami, Y
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mistry, KP
Mitani, T
Mitrevski, J
Mitsou, VA
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Mohapatra, S
Molander, S
Moles-Valls, R
Monden, R
Mondragon, MC
Monig, K
Monk, J
Monnier, E
Montalbano, A
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Morange, N
Moreno, D
Llacer, MM
Morettini, P
Mori, D
Mori, T
Morii, M
Morinaga, M
Morisbak, V
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Mortensen, SS
Morvaj, L
Mosidze, M
Moss, J
Motohashi, K
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mullier, GA
Sanchez, FJM
Quijada, JAM
Murray, WJ
Musheghyan, H
Muskinja, M
Myagkov, AG
Myska, M
Nachman, BP
Nackenhorst, O
Nagai, K
Nagai, R
Nagano, K
Nagasaka, Y
Nagata, K
Nagel, M
Nagy, E
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Garcia, RFN
Narayan, R
Villar, DIN
Naryshkin, I
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Nef, PD
Negri, A
Negrini, M
Nektarijevic, S
Nellist, C
Nelson, A
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neves, RM
Nevski, P
Newman, PR
Nguyen, DH
Manh, TN
Nickerson, RB
Nicolaidou, R
Nielsen, J
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolopoulos, K
Nilsen, JK
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Nooney, T
Norberg, S
Nordberg, M
Norjoharuddeen, N
Novgorodova, O
Nowak, S
Nozaki, M
Nozka, L
Ntekas, K
Nurse, E
Nuti, F
O'grady, F
O'Neil, DC
O'Rourke, AA
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, I
Ochoa-Ricoux, JP
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Oide, H
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Seabra, LFO
Pino, SAO
Damazio, DO
Olszewski, A
Olszowska, J
Onofre, A
Onogi, K
Onyisi, PUE
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Orr, RS
Osculati, B
Ospanov, R
Garzon, GOY
Otono, H
Ouchrif, M
Ould-Saada, F
Ouraou, A
Oussoren, KP
Ouyang, Q
Owen, M
Owen, RE
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Aranda, CP
Pagacova, M
Griso, SP
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palestini, S
Palka, M
Pallin, D
Palma, A
Panagiotopoulou, ES
Pandini, CE
Vazquez, JGP
Pani, P
Panitkin, S
Pantea, D
Paolozzi, L
Papadopoulou, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, AJ
Parker, MA
Parker, KA
Parodi, F
Parsons, JA
Parzefall, U
Pascuzzi, VR
Pasqualucci, E
Passaggio, S
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Pater, JR
Pauly, T
Pearce, J
Pearson, B
Pedersen, LE
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Pelikan, D
Penc, O
Peng, C
Peng, H
Penwell, J
Peralva, BS
Perego, MM
Perepelitsa, V
Codina, EP
Perini, L
Pernegger, H
Perrella, S
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petroff, P
Petrolo, E
Petrov, M
Petrucci, F
Pettersson, NE
Peyaud, A
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piccinini, M
Pickering, MA
Piegaia, R
Pilcher, JE
Pilkington, AD
Pin, AWJ
Pinamonti, M
Pinfold, JL
Pingel, A
Pires, S
Pirumov, H
Pitt, M
Plazak, L
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Pluth, D
Poettgen, R
Poggioli, L
Pohl, D
Polesello, G
Poley, A
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Astigarraga, MEP
Pralavorio, P
Pranko, A
Prell, S
Price, D
Price, LE
Primavera, M
Prince, S
Proissl, M
Prokofiev, K
Prokoshin, F
Protopopescu, S
Proudfoot, J
Przybycien, M
Puddu, D
Puldon, D
Purohit, M
Puzo, P
Qian, J
Qin, G
Qin, Y
Quadt, A
Quayle, WB
Queitsch-Maitland, M
Quilty, D
Raddum, S
Radeka, V
Radescu, V
Radhakrishnan, SK
Radloff, P
Rados, P
Ragusa, F
Rahal, G
Raine, JA
Rajagopalan, S
Rammensee, M
Rangel-Smith, C
Ratti, MG
Rauscher, F
Rave, S
Ravenscroft, T
Ravinovich, I
Raymond, M
Read, AL
Readioff, NP
Reale, M
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Rehnisch, L
Reichert, J
Reisin, H
Rembser, C
Ren, H
Rescigno, M
Resconi, S
Rezanova, OL
Reznicek, P
Rezvani, R
Richter, R
Richter, S
Richter-Was, E
Ricken, O
Ridel, M
Rieck, P
Riegel, CJ
Rieger, J
Rifki, O
Rijssenbeek, M
Rimoldi, A
Rimoldi, M
Rinaldi, L
Ristic, B
Ritsch, E
Riu, I
Rizatdinova, F
Rizvi, E
Rizzi, C
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
Roda, C
Rodina, Y
Perez, AP
Rodriguez, DR
Roe, S
Rogan, CS
Rohne, O
Romaniouk, A
Romano, M
Saez, SMR
Adam, ER
Rompotis, N
Ronzani, M
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, P
Rosenthal, O
Rosien, NA
Rossetti, V
Rossi, E
Rossi, LP
Rosten, JHN
Rosten, R
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rurikova, Z
Rusakovich, NA
Ruschke, A
Russell, HL
Rutherfoord, JP
Ruthmann, N
Ryabov, YF
Rybar, M
Rybkin, G
Ryu, S
Ryzhov, A
Rzehorz, GF
Saavedra, AF
Sabato, G
Sacerdoti, S
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Saha, P
Sahinsoy, M
Saimpert, M
Saito, T
Sakamoto, H
Sakurai, Y
Salamanna, G
Salamon, A
Loyola, JES
Salek, D
De Bruin, PHS
Salihagic, D
Salnikov, A
Salt, J
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sammel, D
Sampsonidis, D
Sanchez, A
Sanchez, J
Martinez, VS
Sandaker, H
Sandbach, RL
Sander, HG
Sandhoff, M
Sandoval, C
Sandstroem, R
Sankey, DPC
Sannino, M
Sansoni, A
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Sapronov, A
Saraiva, JG
Sarrazin, B
Sasaki, O
Sasaki, Y
Sato, K
Sauvage, G
Sauvan, E
Savage, G
Savard, P
Sawyer, C
Sawyer, L
Saxon, J
Sbarra, C
Sbrizzi, A
Scanlon, T
Scannicchio, DA
Scarcella, M
Scarfone, V
Schaarschmidt, J
Schacht, P
Schachtner, BM
Schaefer, D
Schaefer, R
Schaeffer, J
Schaepe, S
Schaetzel, S
Schafer, U
Schaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Schiavi, C
Schier, S
Schillo, C
Schioppa, M
Schlenker, S
Schmieden, K
Schmitt, C
Schmitt, S
Schmitz, S
Schneider, B
Schnoor, U
Schoeffel, L
Schoening, A
Schoenrock, BD
Schopf, E
Schott, M
Schovancova, J
Schramm, S
Schreyer, M
Schuh, N
Schultens, MJ
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwartzman, A
Schwarz, TA
Schwegler, P
Schweiger, H
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Sciolla, G
Scuri, F
Scutti, F
Searcy, J
Seema, P
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekhon, K
Sekula, SJ
Seliverstov, DM
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Sessa, M
Seuster, R
Severini, H
Sfiligoj, T
Sforza, F
Sfyrla, A
Shabalina, E
Shaikh, NW
Shan, LY
Shang, R
Shank, JT
Shapiro, M
Shatalov, PB
Shaw, K
Shaw, SM
Shcherbakova, A
Shehu, CY
Sherwood, P
Shi, L
Shimizu, S
Shimmin, CO
Shimojima, M
Shiyakova, M
Shmeleva, A
Saadi, DS
Shochet, MJ
Shojaii, S
Shrestha, S
Shulga, E
Shupe, MA
Sicho, P
Sidebo, PE
Sidiropoulou, O
Sidorov, D
Sidoti, A
Siegert, F
Sijacki, D
Silva, J
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simon, D
Simon, M
Sinervo, P
Sinev, NB
Sioli, M
Siragusa, G
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skinner, MB
Skottowe, HP
Skubic, P
Slater, M
Slavicek, T
Slawinska, M
Sliwa, K
Slovak, R
Smakhtin, V
Smart, BH
Smestad, L
Smiesko, J
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, MNK
Smith, RW
Smizanska, M
Smolek, K
Snesarev, AA
Snyder, S
Sobie, R
Socher, F
Soffer, A
Soh, DA
Sokhrannyi, G
Sanchez, CAS
Solar, M
Soldatov, EY
Soldevila, U
Solodkov, AA
Soloshenko, A
Solovyanov, OV
Solovyev, V
Sommer, P
Son, H
Song, HY
Sood, A
Sopczak, A
Sopko, V
Sorin, V
Sosa, D
Sotiropoulou, CL
Soualah, R
Soukharev, AM
South, D
Sowden, BC
Spagnolo, S
Spalla, M
Spangenberg, M
Spano, F
Sperlich, D
Spettel, F
Spighi, R
Spigo, G
Spiller, LA
Spousta, M
Denis, RDS
Stabile, A
Stamen, R
Stamm, S
Stanecka, E
Stanek, RW
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, GH
Stark, J
Staroba, P
Starovoitov, P
Starz, S
Staszewski, R
Steinberg, P
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoicea, G
Stolte, P
Stonjek, S
Stradling, AR
Straessner, A
Stramaglia, ME
Strandberg, J
Strandberg, S
Strandlie, A
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Stroynowski, R
Strubig, A
Stucci, SA
Stugu, B
Styles, NA
Su, D
Su, J
Subramaniam, R
Suchek, S
Sugaya, Y
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, S
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, S
Svatos, M
Swiatlowski, M
Sykora, I
Sykora, T
Ta, D
Taccini, C
Tackmann, K
Taenzer, J
Taffard, A
Tafirout, R
Taiblum, N
Takai, H
Takashima, R
Takeshita, T
Takubo, Y
Talby, M
Talyshev, AA
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tannenwald, BB
Araya, ST
Tapprogge, S
Tarem, S
Tartarelli, GF
Tas, P
Tasevsky, M
Tashiro, T
Tassi, E
Delgado, AT
Tayalati, Y
Taylor, AC
Taylor, GN
Taylor, PTE
Taylor, W
Teischinger, FA
Teixeira-Dias, P
Temming, KK
Temple, D
Ten Kate, H
Teng, PK
Teoh, JJ
Tepel, F
Terada, S
Terashi, K
Terron, J
Terzo, S
Testa, M
Teuscher, RJ
Theveneaux-Pelzer, T
Thomas, JP
Thomas-Wilsker, J
Thompson, EN
Thompson, PD
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Tibbetts, MJ
Torres, RET
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tipton, P
Tisserant, S
Todome, K
Todorov, T
Todorova-Nova, S
Tojo, J
Tokar, S
Tokushuku, K
Tolley, E
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Tong, B
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Trefzger, T
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Trischuk, W
Trocme, B
Trofymov, A
Troncon, C
Trottier-McDonald, M
Trovatelli, M
Truong, L
Trzebinski, M
Trzupek, A
Tseng, JCL
Tsiareshka, PV
Tsipolitis, G
Tsirintanis, N
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsui, KM
Tsukerman, II
Tsulaia, V
Tsuno, S
Tsybychev, D
Tudorache, A
Tudorache, V
Tuna, AN
Tupputi, SA
Turchikhin, S
Turecek, D
Turgeman, D
Turra, R
Turvey, AJ
Tuts, PM
Tyndel, M
Ucchielli, G
Ueda, I
Ueno, R
Ughetto, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Unverdorben, C
Urban, J
Urquijo, P
Urrejola, P
Usai, G
Usanova, A
Vacavant, L
Vacek, V
Vachon, B
Valderanis, C
Santurio, EV
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Vallecorsa, S
Ferrer, JAV
Van Den Wollenberg, W
Van Der Deijl, PC
van der Geer, R
van der Graaf, H
van Eldik, N
van Gemmeren, P
Van Nieuwkoop, J
van Vulpen, I
van Woerden, MC
Vanadia, M
Vandelli, W
Vanguri, R
Vaniachine, A
Vankov, P
Vardanyan, G
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vasquez, JG
Vazeille, F
Schroeder, TV
Veatch, J
Veloce, LM
Veloso, F
Veneziano, S
Ventura, A
Venturi, M
Venturi, N
Venturini, A
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Viazlo, O
Vichou, I
Boeriu, OEV
Viehhauser, GHA
Viel, S
Vigani, L
Vigne, R
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinogradov, VB
Vittori, C
Vivarelli, I
Vlachos, S
Vlasak, M
Vogel, M
Vokac, P
Volpi, G
Volpi, M
von der Schmitt, H
von Toerne, E
Vorobel, V
Vorobev, K
Vos, M
Voss, R
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, P
Wagner, W
Wahlberg, H
Wahrmund, S
Wakabayashi, J
Walder, J
Walker, R
Walkowiak, W
Wallangen, V
Wang, C
Wang, C
Wang, F
Wang, H
Wang, H
Wang, J
Wang, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, T
Wang, X
Wanotayaroj, C
Warburton, A
Ward, CP
Wardrope, DR
Washbrook, A
Watkins, PM
Watson, AT
Watson, MF
Watts, G
Watts, S
Waugh, BM
Webb, S
Weber, MS
Weber, SW
Webster, JS
Weidberg, AR
Weinert, B
Weingarten, J
Weiser, C
Weits, H
Wells, PS
Wenaus, T
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Wessels, M
Wetter, J
Whalen, K
Whallon, NL
Wharton, AM
White, A
White, MJ
White, R
Whiteson, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wildauer, A
Wilk, F
Wilkens, HG
Williams, HH
Williams, S
Willis, C
Willocq, S
Wilson, JA
Wingerter-Seez, I
Winklmeier, F
Winston, OJ
Winter, BT
Wittgen, M
Wittkowski, J
Wollstadt, SJ
Wolter, MW
Wolters, H
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wu, M
Wu, M
Wu, SL
Wu, X
Wu, Y
Wyatt, TR
Wynne, BM
Xella, S
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yakabe, R
Yamaguchi, D
Yamaguchi, Y
Yamamoto, A
Yamamoto, S
Yamanaka, T
Yamauchi, K
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, Y
Yang, Z
Yao, WM
Yap, YC
Yasu, Y
Yatsenko, E
Wong, KHY
Ye, J
Ye, S
Yeletskikh, I
Yen, AL
Yildirim, E
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJS
Youssef, S
Yu, DR
Yu, J
Yu, JM
Yu, J
Yuan, L
Yuen, SPY
Yusuff, I
Zabinski, B
Zaidan, R
Zaitsev, AM
Zakharchuk, N
Zalieckas, J
Zaman, A
Zambito, S
Zanello, L
Zanzi, D
Zeitnitz, C
Zeman, M
Zemla, A
Zeng, JC
Zeng, Q
Zengel, K
Zenin, O
Zenis, T
Zerwas, D
Zhang, D
Zhang, F
Zhang, G
Zhang, H
Zhang, J
Zhang, L
Zhang, R
Zhang, R
Zhang, X
Zhang, Z
Zhao, X
Zhao, Y
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, C
Zhou, L
Zhou, L
Zhou, M
Zhou, N
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhukov, K
Zibell, A
Zieminska, D
Zimine, NI
Zimmermann, C
Zimmermann, S
Zinonos, Z
Zinser, M
Ziolkowski, M
Zivkovic, L
Zobernig, G
Zoccoli, A
Zur Nedden, M
Zurzolo, G
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Abdinov, O.
Abeloos, B.
Aben, R.
AbouZeid, O. S.
Abraham, N. L.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaiti, Y.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Adelman, J.
Adomeit, S.
Adye, T.
Older, A. A. A. Ff
Agatonovic-Jovin, T.
Agricola, J.
Aguilar-Saavedra, J. A.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akerstedt, H.
Akesson, T. P. A.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albrand, S.
Alconada Verzini, M. J.
Aleksa, M.
Aleksandrov, N.
Alexa, C.
Alexander, G.
Alexopoulos, T.
Alhroob, M.
Aliev, M.
Alimonti, G.
Alison, J.
Alkire, S. P.
Allbrooke, B. M. M.
Allen, B. W.
Allport, P. P.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Alstaty, M.
Gonzalez, B. Alvarez
Alvarez Piqueras, D.
Alviggi, M. G.
Amadio, B. T.
Amako, K.
Amaral Coutinho, Y.
Amelung, C.
Amidei, D.
Amor Dos Santos, S. P.
Amorim, A.
Amoroso, S.
Amundsen, G.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anders, J. K.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Angelidakis, S.
Angelozzi, I.
Anger, P.
Angerami, A.
Fi, F. Anghinol
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Bella, L. Aperio
Arabidze, G.
Arai, Y.
Araque, J. P.
Arce, A. T. H.
Arduh, F. A.
Arguin, J-F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Armitage, L. J.
Arnaez, O.
Arnold, H.
Arratia, M.
Arslan, O.
Artamonov, A.
Artoni, G.
Artz, S.
Asai, S.
Asbah, N.
Ashkenazi, A.
Asman, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Atkinson, M.
Atlay, N. B.
Augsten, K.
Avolio, G.
Axen, B.
Ayoub, M. K.
Azuelos, G.
Baak, M. A.
Baas, A. E.
Baca, M. J.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Bagiacchi, P.
Bagnaia, P.
Bai, Y.
Baines, J. T.
Baker, O. K.
Baldin, E. M.
Balek, P.
Balestri, T.
Balli, F.
Balunas, W. K.
Banas, E.
Banerjee, Sw.
Bannoura, A. A. E.
Barak, L.
Barberio, E. L.
Barberis, D.
Barbero, M.
Barillari, T.
Barklow, T.
Barlow, N.
Barnes, S. L.
Barnett, B. M.
Barnett, R. M.
Barnovska, Z.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barranco Navarro, L.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Bartoldus, R.
Barton, A. E.
Bartos, P.
Basalaev, A.
Bassalat, A.
Bates, R. L.
Batista, S. J.
Batley, J. R.
Battaglia, M.
Bauce, M.
Bauer, F.
Bawa, H. S.
Beacham, J. B.
Beattie, M. D.
Beau, T.
Beauchemin, P. H.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, M.
Beckingham, M.
Becot, C.
Beddall, A. J.
Beddall, A.
Bednyakov, V. A.
Bedognetti, M.
Bee, C. P.
Beemster, L. J.
Beermann, T. A.
Begel, M.
Behr, J. K.
Belanger-Champagne, C.
Bell, A. S.
Bella, G.
Bellagamba, L.
Bellerive, A.
Bellomo, M.
Belotskiy, K.
Beltramello, O.
Belyaev, N. L.
Benary, O.
Benchekroun, D.
Bender, M.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Benitez, J.
Benjamin, D. P.
Bensinger, J. R.
Bentvelsen, S.
Beresford, L.
Beretta, M.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Beringer, J.
Berlendis, S.
Bernard, N. R.
Bernius, C.
Bernlochner, F. U.
Berry, T.
Berta, P.
Bertella, C.
Bertoli, G.
Bertolucci, F.
Bertram, I. A.
Bertsche, C.
Bertsche, D.
Besjes, G. J.
Bylund, O. Bessidskaia
Bessner, M.
Besson, N.
Betancourt, C.
Bethke, S.
Bevan, A. J.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Biedermann, D.
Bielski, R.
Biesuz, N. V.
Biglietti, M.
De Mendizabal, J. Bilbao
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Biondi, S.
Bjergaard, D. M.
Black, C. W.
Black, J. E.
Black, K. M.
Blackburn, D.
Blair, R. E.
Blanchard, J. -B.
Blanco, J. E.
Blazek, T.
Bloch, I.
Blocker, C.
Blum, W.
Blumenschein, U.
Blunier, S.
Bobbink, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Bock, C.
Boehler, M.
Boerner, D.
Bogaerts, J. A.
Bogavac, D.
Bogdanchikov, A. G.
Bohm, C.
Boisvert, V.
Bokan, P.
Bold, T.
Boldyrev, A. S.
Bomben, M.
Bona, M.
Boonekamp, M.
Borisov, A.
Borissov, G.
Bortfeldt, J.
Bortoletto, D.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Sola, J. D. Bossio
Boudreau, J.
Bouffard, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Boutle, S. K.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bracinik, J.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Madden, W. D. Breaden
Brendlinger, K.
Brennan, A. J.
Brenner, L.
Brenner, R.
Bressler, S.
Bristow, T. M.
Britton, D.
Britzger, D.
Brochu, F. M.
Brock, I.
Brock, R.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brosamer, J.
Brost, E.
Broughton, J. H.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Bruni, A.
Bruni, G.
Brunt, B. H.
Bruschi, M.
Bruscino, N.
Bryant, P.
Bryngemark, L.
Buanes, T.
Buat, Q.
Buchholz, P.
Buckley, A. G.
Budagov, I. A.
Buehrer, F.
Bugge, M. K.
Bulekov, O.
Bullock, D.
Burckhart, H.
Burdin, S.
Burgard, C. D.
Burghgrave, B.
Burka, K.
Burke, S.
Burmeister, I.
Busato, E.
Buescher, D.
Buescher, V.
Bussey, P.
Butler, J. M.
Buttar, C. M.
Butterworth, J. M.
Butti, P.
Buttinger, W.
Buzatu, A.
Buzykaev, A. R.
Urban, S. Cabrera
Caforio, D.
Cairo, V. M.
Cakir, O.
Calace, N.
Calafiura, P.
Calandri, A.
Calderini, G.
Calfayan, P.
Caloba, L. P.
Calvet, D.
Calvet, S.
Calvet, T. P.
Toro, R. Camacho
Camarda, S.
Camarri, P.
Cameron, D.
Armadans, R. Caminal
Camincher, C.
Campana, S.
Campanelli, M.
Camplani, A.
Campoverde, A.
Canale, V.
Canepa, A.
Bret, M. Cano
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capua, M.
Caputo, R.
Carbone, R. M.
Cardarelli, R.
Cardillo, F.
Carli, I.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Casolino, M.
Casper, D. W.
Castaneda-Miranda, E.
Castelijn, R.
Castelli, A.
Castillo Gimenez, V.
Castro, N. F.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Caudron, J.
Cavaliere, V.
Cavallaro, E.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerda Alberich, L.
Cerio, B. C.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cerv, M.
Cervelli, A.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chan, S. K.
Chan, Y. L.
Chang, P.
Chapman, J. D.
Charlton, D. G.
Chatterjee, A.
Chau, C. C.
Barajas, C. A. Chavez
Che, S.
Cheatham, S.
Chegwidden, A.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, K.
Chen, S.
Chen, S.
Chen, X.
Chen, Y.
Cheng, H. C.
Cheng, H. J.
Cheng, Y.
Cheplakov, A.
Cheremushkina, E.
Cherkaoui El Moursli, R.
Chernyatin, V.
Cheu, E.
Chevalier, L.
Chiarella, V.
Chiarelli, G.
Chiodini, G.
Chisholm, A. S.
Chitan, A.
Chizhov, M. V.
Choi, K.
Chomont, A. R.
Chouridou, S.
Chow, B. K. B.
Christodoulou, V.
Chromek-Burckhart, D.
Chudoba, J.
Chuinard, A. J.
Chwastowski, J. J.
Chytka, L.
Ciapetti, G.
Ciftci, A. K.
Cinca, D.
Cindro, V.
Cioara, I. A.
Ciocio, A.
Cirotto, F.
Citron, Z. H.
Citterio, M.
Ciubancan, M.
Clark, A.
Clark, B. L.
Clark, M. R.
Clark, P. J.
Clarke, R. N.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Colasurdo, L.
Cole, B.
Colijn, A. P.
Collot, J.
Colombo, T.
Compostella, G.
Muino, P. Conde
Coniavitis, E.
Connell, S. H.
Connelly, I. A.
Consorti, V.
Constantinescu, S.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cormier, K. J. R.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Corso-Radu, A.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cottin, G.
Cowan, G.
Cox, B. E.
Cranmer, K.
Crawley, S. J.
Cree, G.
Crepe-Renaudin, S.
Crosetti, G.
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Cuth, J.
Cuthbert, C.
Czirr, H.
Czodrowski, P.
D'amen, G.
D'Auria, S.
D'Onofrio, M.
Da Cunha Sargedas De Sousa, M. J.
Da Via, C.
Dabrowski, W.
Dado, T.
Dai, T.
Dale, O.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Dandoy, J. R.
Dang, N. P.
Daniells, A. C.
Dann, N. S.
Danninger, M.
Hoffmann, M. Dano
Dao, V.
Darbo, G.
Darmora, S.
Dassoulas, J.
Dattagupta, A.
Davey, W.
David, C.
Davidek, T.
Davies, M.
Davison, P.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Benedetti, A.
De Castro, S.
De Cecco, S.
De Groot, N.
de Jong, P.
De la Torre, H.
De Lorenzi, F.
De Maria, A.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dedovich, D. V.
Dehghanian, N.
Deigaard, I.
Del Gaudio, M.
Del Peso, J.
Del Prete, T.
Delgove, D.
Deliot, F.
Delitzsch, C. M.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Dell'Orso, M.
Della Pietra, M.
Della Volpe, D.
Delmastro, M.
Delsart, P. A.
Deluca, C.
DeMarco, D. A.
Demers, S.
Demichev, M.
Demilly, A.
Denisov, S. P.
Denysiuk, D.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deterre, C.
Dette, K.
Deviveiros, P. O.
Dewhurst, A.
Dhaliwal, S.
Di Ciaccio, A.
Di Ciaccio, L.
Di Clemente, W. K.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Di Valentino, D.
Diaconu, C.
Diamond, M.
Dias, F. A.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Diglio, S.
Dimitrievska, A.
Dingfelder, J.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
Djuvsland, J. I.
do Vale, M. A. B.
Dobos, D.
Dobre, M.
Doglioni, C.
Dohmae, T.
Dolejsi, J.
Dolezal, Z.
Dolgoshein, B. A.
Donadelli, M.
Donati, S.
Dondero, P.
Donini, J.
Dopke, J.
Doria, A.
Dova, M. T.
Doyle, A. T.
Drechsler, E.
Dris, M.
Du, Y.
Duarte-Campderros, J.
Duchovni, E.
Duckeck, G.
Ducu, O. A.
Duda, D.
Dudarev, A.
Duflot, L.
Duguid, L.
Duhrssen, M.
Dumancic, M.
Dunford, M.
Yildiz, H. Duran
Dueren, M.
Durglishvili, A.
Duschinger, D.
Dutta, B.
Dyndal, M.
Eckardt, C.
Ecker, K. M.
Edgar, R. C.
Edwards, N. C.
Eifert, T.
Eigen, G.
Einsweiler, K.
Ekelof, T.
El Kacimi, M.
Ellajosyula, V.
Ellert, M.
Elles, S.
Ellinghaus, F.
Elliot, A. A.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Enari, Y.
Endner, O. C.
Endo, M.
Ennis, J. S.
Erdmann, J.
Ereditato, A.
Ernis, G.
Ernst, J.
Ernst, M.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Esposito, B.
Etienvre, A. I.
Etzion, E.
Evans, H.
Ezhilov, A.
Fabbri, F.
Fabbri, L.
Facini, G.
Fakhrutdinov, R. M.
Falciano, S.
Falla, R. J.
Faltova, J.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farina, C.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Giannelli, M. Faucci
Favareto, A.
Fawcett, W. J.
Fayard, L.
Fedin, O. L.
Fedorko, W.
Feigl, S.
Feligioni, L.
Feng, C.
Feng, E. J.
Feng, H.
Fenyuk, A. B.
Feremenga, L.
Fernandez Martinez, P.
Fernandez Perez, S.
Ferrando, J.
Ferrari, A.
Ferrari, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiedler, F.
Filipcic, A.
Filipuzzi, M.
Filthaut, F.
Fincke-Keeler, M.
Finelli, K. D.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, A.
Fischer, C.
Fischer, J.
Fisher, W. C.
Flaschel, N.
Fleck, I.
Fleischmann, P.
Fletcher, G. T.
Fletcher, R. R. M.
Flick, T.
Floderus, A.
Castillo, L. R. Flores
Flowerdew, M. J.
Forcolin, G. T.
Formica, A.
Forti, A.
Foster, A. G.
Fournier, D.
Fox, H.
Fracchia, S.
Francavilla, P.
Franchini, M.
Francis, D.
Franconi, L.
Franklin, M.
Frate, M.
Fraternali, M.
Freeborn, D.
Fressard-Batraneanu, S. M.
Friedrich, F.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fusayasu, T.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gabrielli, A.
Gabrielli, A.
Gach, G. P.
Gadatsch, S.
Gadomski, S.
Gagliardi, G.
Gagnon, L. G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallop, B. J.
Gallus, P.
Galster, G.
Gan, K. K.
Gao, J.
Gao, Y.
Gao, Y. S.
Garay Walls, F. M.
Garcia, C.
Garcia Navarro, J. E.
Garcia-Sciveres, M.
Gardner, R. W.
Garelli, N.
Garonne, V.
Bravo, A. Gascon
Gatti, C.
Gaudiello, A.
Gaudio, G.
Gaur, B.
Gauthier, L.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Gecse, Z.
Gee, C. N. P.
Geich-Gimbel, Ch.
Geisler, M. P.
Gemme, C.
Genest, M. H.
Geng, C.
Gentile, S.
George, S.
Gerbaudo, D.
Gershon, A.
Ghasemi, S.
Ghazlane, H.
Ghneimat, M.
Giacobbe, B.
Giagu, S.
Giannetti, P.
Gibbard, B.
Gibson, S. M.
Gignac, M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gilles, G.
Gingrich, D. M.
Giokaris, N.
Giordani, M. P.
Giorgi, F. M.
Giorgi, F. M.
Giraud, P. F.
Giromini, P.
Giugni, D.
Giuli, F.
Giuliani, C.
Giulini, M.
Gjelsten, B. K.
Gkaitatzis, S.
Gkialas, I.
Gkougkousis, E. L.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glaysher, P. C. F.
Glazov, A.
Goblirsch-Kolb, M.
Godlewski, J.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Gon, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
Gongadze, A.
Gonzalez de la Hoz, S.
Parra, G. Gonzalez
Gonzalez-Sevilla, S.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Goessling, C.
Gostkin, M. I.
Goudet, C. R.
Goujdami, D.
Goussiou, A. G.
Govender, N.
Gozani, E.
Graber, L.
Grabowska-Bold, I.
Gradin, P. O. J.
Grafstrom, P.
Gramling, J.
Gramstad, E.
Grancagnolo, S.
Gratchev, V.
Gray, H. M.
Graziani, E.
Greenwood, Z. D.
Grefe, C.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Grevtsov, K.
Griffiths, J.
Grillo, A. A.
Grimm, K.
Grinstein, S.
Gris, Ph.
Grivaz, J. -F.
Groh, S.
Grohs, J. P.
Gross, E.
Grosse-Knetter, J.
Grossi, G. C.
Grout, Z. J.
Guan, L.
Guan, W.
Guenther, J.
Guescini, F.
Guest, D.
Gueta, O.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gumpert, C.
Guo, J.
Guo, Y.
Gupta, S.
Gustavino, G.
Gutierrez, P.
Ortiz, N. G. Gutierrez
Gutschow, C.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haber, C.
Hadavand, H. K.
Haddad, N.
Hadef, A.
Haefner, P.
Hageboeck, S.
Hajduk, Z.
Hakobyan, H.
Haleem, M.
Haley, J.
Halladjian, G.
Hallewell, G. D.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamilton, A.
Hamity, G. N.
Hamnett, P. G.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Haney, B.
Hanke, P.
Hanna, R.
Hansen, J. B.
Hansen, J. D.
Hansen, M. C.
Hansen, P. H.
Hara, K.
Hard, A. S.
Harenberg, T.
Hariri, F.
Harkusha, S.
Harrington, R. D.
Harrison, P. F.
Hartjes, F.
Hartmann, N. M.
Hasegawa, M.
Hasegawa, Y.
Hasib, A.
Hassani, S.
Haug, S.
Hauser, R.
Hauswald, L.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hayden, D.
Hays, C. P.
Hays, J. M.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heim, T.
Heinemann, B.
Heinrich, J. J.
Heinrich, L.
Heinz, C.
Hejbal, J.
Helary, L.
Hellman, S.
Helsens, C.
Henderson, J.
Henderson, R. C. W.
Heng, Y.
Henkelmann, S.
Correia, A. M. Henriques
Henrot-Versille, S.
Herbert, G. H.
Hernandez Jimenez, Y.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hetherly, J. W.
Hickling, R.
Higon-Rodriguez, E.
Hill, E.
Hill, J. C.
Hiller, K. H.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hinman, R. R.
Hirose, M.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoenig, F.
Hohlfeld, M.
Hohn, D.
Holmes, T. R.
Homann, M.
Hong, T. M.
Hooberman, B. H.
Hopkins, W. H.
Horii, Y.
Horton, A. J.
Hostachy, J-Y.
Hou, S.
Hoummada, A.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hrynevich, A.
Hsu, C.
Hsu, P. J.
Hsu, S. -C.
Hu, D.
Hu, Q.
Huang, Y.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Huelsing, T. A.
Huo, P.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibragimov, I.
Iconomidou-Fayard, L.
Ideal, E.
Idrissi, Z.
Iengo, P.
Igonkina, O.
Iizawa, T.
Ikegami, Y.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Ilic, N.
Ince, T.
Introzzi, G.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ito, F.
Ponce, J. M. Iturbe
Iuppa, R.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jabbar, S.
Jackson, B.
Jackson, M.
Jackson, P.
Jain, V.
Jakobi, K. B.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansky, R.
Janssen, J.
Janus, M.
Jarlskog, G.
Javadov, N.
Javurek, T.
Jeanneau, F.
Jeanty, L.
Jejelava, J.
Jeng, G. -Y.
Jennens, D.
Jenni, P.
Jentzsch, J.
Jeske, C.
Jezequel, S.
Ji, H.
Jia, J.
Jiang, H.
Jiang, Y.
Jiggins, S.
Jimenez Pena, J.
Jin, S.
Jinaru, A.
Jinnouchi, O.
Johansson, P.
Johns, K. A.
Johnson, W. J.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, S.
Jones, T. J.
Jongmanns, J.
Jorge, P. M.
Jovicevic, J.
Ju, X.
Rozas, A. Juste
Kohler, M. K.
Kaczmarska, A.
Kado, M.
Kagan, H.
Kagan, M.
Kahn, S. J.
Kajomovitz, E.
Kalderon, C. W.
Kaluza, A.
Kama, S.
Kamenshchikov, A.
Kanaya, N.
Kaneti, S.
Kanjir, L.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kaplan, L. S.
Kapliy, A.
Kar, D.
Karakostas, K.
Karamaoun, A.
Karastathis, N.
Kareem, M. J.
Karentzos, E.
Karnevskiy, M.
Karpov, S. N.
Karpova, Z. M.
Karthik, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kasahara, K.
Kashif, L.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Kato, C.
Katre, A.
Katzy, J.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazama, S.
Kazanin, V. F.
Keeler, R.
Kehoe, R.
Keller, J. S.
Kempster, J. J.
Kentaro, K.
Keoshkerian, H.
Kepka, O.
Sevan, B. P. Ker
Kersten, S.
Keyes, R. A.
Khalil-zada, F.
Khanov, A.
Kharlamov, A. G.
Khoo, T. J.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kido, S.
Kim, H. Y.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kind, O. M.
King, B. T.
King, M.
King, S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kiss, F.
Kiuchi, K.
Kivernyk, O.
Kladiva, E.
Klein, M. H.
Klein, M.
Klein, U.
Kleinknecht, K.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klioutchnikova, T.
Kluge, E. -E.
Kluit, P.
Kluth, S.
Knapik, J.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Kobayashi, A.
Kobayashi, D.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koffas, T.
Koffeman, E.
Koi, T.
Kolanoski, H.
Kolb, M.
Koletsou, I.
Komar, A. A.
Komori, Y.
Kondo, T.
Kondrashova, N.
Koeneke, K.
Konig, A. C.
Kono, T.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Koepke, L.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A. A.
Korolkov, I.
Korolkova, E. V.
Kortner, O.
Kortner, S.
Kosek, T.
Kostyukhin, V. V.
Kotwal, A.
Kourkoumeli-Charalampidi, A.
Kourkoumelis, C.
Kouskoura, V.
Kowalewska, A. B.
Kowalewski, R.
Kowalski, T. Z.
Kozakai, C.
Kozanecki, W.
Kozhin, A. S.
Kramarenko, V. A.
Kramberger, G.
Krasnopevtsev, D.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J. K.
Kravchenko, A.
Kretz, M.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, P.
Krizka, K.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Krumnack, N.
Kruse, A.
Kruse, M. C.
Kruskal, M.
Kubota, T.
Kucuk, H.
Kuday, S.
Kuechler, J. T.
Kuehn, S.
Kugel, A.
Kuger, F.
Kuhl, A.
Kuhl, T.
Kukhtin, V.
Kukla, R.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunigo, T.
Kupco, A.
Kurashige, H.
Kurochkin, Y. A.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
Kwan, T.
Kyriazopoulos, D.
La Rosa, A.
La Rosa Navarro, J. L.
La Rotonda, L.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Lammers, S.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lange, J. C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Lanza, A.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Manghi, F. Lasagni
Lassnig, M.
Laurelli, P.
Lavrijsen, W.
Law, A. T.
Laycock, P.
Lazovich, T.
Lazzaroni, M.
Le, B.
Le Dortz, O.
Le Guirriec, E.
Le Quilleuc, E. P.
LeBlanc, M.
LeCompte, T.
Ledroit-Guillon, F.
Lee, C. A.
Lee, S. C.
Lee, L.
Lefebvre, G.
Lefebvre, M.
Legger, F.
Leggett, C.
Lehan, A.
Miotto, G. Lehmann
Lei, X.
Leight, W. A.
Leisos, A.
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Leney, K. J. C.
Lenz, T.
Lenzi, B.
Leone, R.
Leone, S.
Leonidopoulos, C.
Leontsinis, S.
Lerner, G.
Leroy, C.
Lesage, A. A. J.
Lester, C. G.
Levchenko, M.
Leveque, J.
Levin, D.
Levinson, L. J.
Levy, M.
Leyko, A. M.
Leyton, M.
Li, B.
Li, H.
Li, H. L.
Li, L.
Li, L.
Li, Q.
Li, S.
Li, X.
Li, Y.
Liang, Z.
Liberti, B.
Liblong, A.
Lichard, P.
Lie, K.
Liebal, J.
Liebig, W.
Limosani, A.
Lin, S. C.
Lin, T. H.
Lindquist, B. E.
Lionti, A. E.
Lipeles, E.
Lipniacka, A.
Lisovyi, M.
Liss, T. M.
Lister, A.
Litke, A. M.
Liu, B.
Liu, D.
Liu, H.
Liu, H.
Liu, J.
Liu, J. B.
Liu, K.
Liu, L.
Liu, M.
Liu, M.
Liu, Y. L.
Liu, Y.
Livan, M.
Lleres, A.
Merino, J. Llorente
Lloyd, S. L.
Lo Sterzo, F.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loebinger, F. K.
Loevschall-Jensen, A. E.
Loew, K. M.
Loginov, A.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Long, B. A.
Long, J. D.
Long, R. E.
Longo, L.
Looper, K. A.
Lopes, L.
Mateos, D. Lopez
Paredes, B. Lopez
Lopez Paz, I.
Solis, A. Lopez
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Loesel, P. J.
Lou, X.
Lounis, A.
Love, J.
Love, P. A.
Lu, H.
Lu, N.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Luedtke, C.
Luehring, F.
Lukas, W.
Luminari, L.
Lundberg, O.
Lund-Jensen, B.
Lynn, D.
Lysak, R.
Lytken, E.
Lyubushkin, V.
Ma, H.
Ma, L. L.
Ma, Y.
Maccarrone, G.
Macchiolo, A.
Macdonald, C. M.
Macek, B.
Machado Miguens, J.
Madaffari, D.
Madar, R.
Maddocks, H. J.
Mader, W. F.
Madsen, A.
Maeda, J.
Maeland, S.
Maeno, T.
Maevskiy, A.
Magradze, E.
Mahlstedt, J.
Maiani, C.
Maidantchik, C.
Maier, A. A.
Maier, T.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Malaescu, B.
Malecki, Pa.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyukov, S.
Mamuzic, J.
Mancini, G.
Mandelli, B.
Mandelli, L.
Mandic, I.
Maneira, J.
Manhaes de Andrade Filho, L.
Ramos, J. Manjarres
Mann, A.
Mansoulie, B.
Mansour, J. D.
Mantifel, R.
Mantoani, M.
Manzoni, S.
Mapelli, L.
Marceca, G.
March, L.
Marchiori, G.
Marcisovsky, M.
Marjanovic, M.
Marley, D. E.
Marroquim, F.
Marsden, S. P.
Marshall, Z.
Marti-Garcia, S.
Martin, B.
Martin, T. A.
Martin, V. J.
Latour, B. Martin Dit
Martinez, M.
Martin-Haugh, S.
Martoiu, V. S.
Martyniuk, A. C.
Marx, M.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massa, L.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Maettig, P.
Mattmann, J.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazza, S. M.
Mc Fadden, N. C.
Mc Goldrick, G.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McClymont, L. I.
McDonald, E. F.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
McMahon, S. J.
McPherson, R. A.
Medinnis, M.
Meehan, S.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineck, C.
Meirose, B.
Melini, D.
Garcia, B. R. Mellado
Melo, M.
Meloni, F.
Mengarelli, A.
Menke, S.
Meoni, E.
Mergelmeyer, S.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J-P.
Meyer, J.
Zu Theenhausen, H. Meyer
Miano, F.
Middleton, R. P.
Miglioranzi, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Milesi, M.
Milic, A.
Miller, D. W.
Mills, C.
Milov, A.
Milstead, D. A.
Minaenko, A. A.
Minami, Y.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mistry, K. P.
Mitani, T.
Mitrevski, J.
Mitsou, V. A.
Miucci, A.
Miyagawa, P. S.
Mjornmark, J. U.
Moa, T.
Mochizuki, K.
Mohapatra, S.
Molander, S.
Moles-Valls, R.
Monden, R.
Mondragon, M. C.
Moenig, K.
Monk, J.
Monnier, E.
Montalbano, A.
Berlingen, J. Montejo
Monticelli, F.
Monzani, S.
Moore, R. W.
Morange, N.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Mori, D.
Mori, T.
Morii, M.
Morinaga, M.
Morisbak, V.
Moritz, S.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Mortensen, S. S.
Morvaj, L.
Mosidze, M.
Moss, J.
Motohashi, K.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Muanza, S.
Mudd, R. D.
Mullier, G. A.
Sanchez, F. J. Munoz
Quijada, J. A. Murillo
Murray, W. J.
Musheghyan, H.
Muskinja, M.
Myagkov, A. G.
Myska, M.
Nachman, B. P.
Nackenhorst, O.
Nagai, K.
Nagai, R.
Nagano, K.
Nagasaka, Y.
Nagata, K.
Nagel, M.
Nagy, E.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Garcia, R. F. Naranjo
Narayan, R.
Villar, D. I. Narrias
Naryshkin, I.
Naumann, T.
Navarro, G.
Nayyar, R.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Nef, P. D.
Negri, A.
Negrini, M.
Nektarijevic, S.
Nellist, C.
Nelson, A.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neves, R. M.
Nevski, P.
Newman, P. R.
Nguyen, D. H.
Manh, T. Nguyen
Nickerson, R. B.
Nicolaidou, R.
Nielsen, J.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolopoulos, K.
Nilsen, J. K.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Nooney, T.
Norberg, S.
Nordberg, M.
Norjoharuddeen, N.
Novgorodova, O.
Nowak, S.
Nozaki, M.
Nozka, L.
Ntekas, K.
Nurse, E.
Nuti, F.
O'grady, F.
O'Neil, D. C.
O'Rourke, A. A.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Obermann, T.
Ocariz, J.
Ochi, A.
Ochoa, I.
Ochoa-Ricoux, J. P.
Oda, S.
Odaka, S.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohman, H.
Oide, H.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Oleiro Seabra, L. F.
Pino, S. A. Olivares
Damazio, D. Oliveira
Olszewski, A.
Olszowska, J.
Onofre, A.
Onogi, K.
Onyisi, P. U. E.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Orr, R. S.
Osculati, B.
Ospanov, R.
Otero Y Garzon, G.
Otono, H.
Ouchrif, M.
Ould-Saada, F.
Ouraou, A.
Oussoren, K. P.
Ouyang, Q.
Owen, M.
Owen, R. E.
Ozcan, V. E.
Ozturk, N.
Pachal, K.
Pacheco Pages, A.
Padilla Aranda, C.
Pagacova, M.
Griso, S. Pagan
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Palestini, S.
Palka, M.
Pallin, D.
Palma, A.
Panagiotopoulou, E. St.
Pandini, C. E.
Vazquez, J. G. Panduro
Pani, P.
Panitkin, S.
Pantea, D.
Paolozzi, L.
Papadopoulou, Th. D.
Papageorgiou, K.
Paramonov, A.
Hernandez, D. Paredes
Parker, A. J.
Parker, M. A.
Parker, K. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pascuzzi, V. R.
Pasqualucci, E.
Passaggio, S.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Pater, J. R.
Pauly, T.
Pearce, J.
Pearson, B.
Pedersen, L. E.
Pedersen, M.
Pedraza Lopez, S.
Pedro, R.
Peleganchuk, S. V.
Pelikan, D.
Penc, O.
Peng, C.
Peng, H.
Penwell, J.
Peralva, B. S.
Perego, M. M.
Perepelitsa, V.
Codina, E. Perez
Perini, L.
Pernegger, H.
Perrella, S.
Peschke, R.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petroff, P.
Petrolo, E.
Petrov, M.
Petrucci, F.
Pettersson, N. E.
Peyaud, A.
Pezoa, R.
Phillips, P. W.
Piacquadio, G.
Pianori, E.
Picazio, A.
Piccaro, E.
Piccinini, M.
Pickering, M. A.
Piegaia, R.
Pilcher, J. E.
Pilkington, A. D.
Pin, A. W. J.
Pinamonti, M.
Pinfold, J. L.
Pingel, A.
Pires, S.
Pirumov, H.
Pitt, M.
Plazak, L.
Pleier, M. -A.
Pleskot, V.
Plotnikova, E.
Plucinski, P.
Pluth, D.
Poettgen, R.
Poggioli, L.
Pohl, D.
Polesello, G.
Poley, A.
Policicchio, A.
Polifka, R.
Polini, A.
Pollard, C. S.
Polychronakos, V.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Pospisil, S.
Potamianos, K.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Astigarraga, M. E. Pozo
Pralavorio, P.
Pranko, A.
Prell, S.
Price, D.
Price, L. E.
Primavera, M.
Prince, S.
Proissl, M.
Prokofiev, K.
Prokoshin, F.
Protopopescu, S.
Proudfoot, J.
Przybycien, M.
Puddu, D.
Puldon, D.
Purohit, M.
Puzo, P.
Qian, J.
Qin, G.
Qin, Y.
Quadt, A.
Quayle, W. B.
Queitsch-Maitland, M.
Quilty, D.
Raddum, S.
Radeka, V.
Radescu, V.
Radhakrishnan, S. K.
Radloff, P.
Rados, P.
Ragusa, F.
Rahal, G.
Raine, J. A.
Rajagopalan, S.
Rammensee, M.
Rangel-Smith, C.
Ratti, M. G.
Rauscher, F.
Rave, S.
Ravenscroft, T.
Ravinovich, I.
Raymond, M.
Read, A. L.
Readioff, N. P.
Reale, M.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Rehnisch, L.
Reichert, J.
Reisin, H.
Rembser, C.
Ren, H.
Rescigno, M.
Resconi, S.
Rezanova, O. L.
Reznicek, P.
Rezvani, R.
Richter, R.
Richter, S.
Richter-Was, E.
Ricken, O.
Ridel, M.
Rieck, P.
Riegel, C. J.
Rieger, J.
Rifki, O.
Rijssenbeek, M.
Rimoldi, A.
Rimoldi, M.
Rinaldi, L.
Ristic, B.
Ritsch, E.
Riu, I.
Rizatdinova, F.
Rizvi, E.
Rizzi, C.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Roda, C.
Rodina, Y.
Rodriguez Perez, A.
Rodriguez Rodriguez, D.
Roe, S.
Rogan, C. S.
Rohne, O.
Romaniouk, A.
Romano, M.
Saez, S. M. Romano
Romero Adam, E.
Rompotis, N.
Ronzani, M.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, P.
Rosenthal, O.
Rosien, N. -A.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rosten, J. H. N.
Rosten, R.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rudolph, M. S.
Ruehr, F.
Ruiz-Martinez, A.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Russell, H. L.
Rutherfoord, J. P.
Ruthmann, N.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryu, S.
Ryzhov, A.
Rzehorz, G. F.
Saavedra, A. F.
Sabato, G.
Sacerdoti, S.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Saha, P.
Sahinsoy, M.
Saimpert, M.
Saito, T.
Sakamoto, H.
Sakurai, Y.
Salamanna, G.
Salamon, A.
Loyola, J. E. Salazar
Salek, D.
De Bruin, P. H. Sales
Salihagic, D.
Salnikov, A.
Salt, J.
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sammel, D.
Sampsonidis, D.
Sanchez, A.
Sanchez, J.
Sanchez Martinez, V.
Sandaker, H.
Sandbach, R. L.
Sander, H. G.
Sandhoff, M.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sannino, M.
Sansoni, A.
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Sapronov, A.
Saraiva, J. G.
Sarrazin, B.
Sasaki, O.
Sasaki, Y.
Sato, K.
Sauvage, G.
Sauvan, E.
Savage, G.
Savard, P.
Sawyer, C.
Sawyer, L.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scanlon, T.
Scannicchio, D. A.
Scarcella, M.
Scarfone, V.
Schaarschmidt, J.
Schacht, P.
Schachtner, B. M.
Schaefer, D.
Schaefer, R.
Schaeffer, J.
Schaepe, S.
Schaetzel, S.
Schaefer, U.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Schiavi, C.
Schier, S.
Schillo, C.
Schioppa, M.
Schlenker, S.
Schmieden, K.
Schmitt, C.
Schmitt, S.
Schmitz, S.
Schneider, B.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schoenrock, B. D.
Schopf, E.
Schott, M.
Schovancova, J.
Schramm, S.
Schreyer, M.
Schuh, N.
Schultens, M. J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwartzman, A.
Schwarz, T. A.
Schwegler, Ph.
Schweiger, H.
Schwemling, Ph.
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Sciolla, G.
Scuri, F.
Scutti, F.
Searcy, J.
Seema, P.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekhon, K.
Sekula, S. J.
Seliverstov, D. M.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Sessa, M.
Seuster, R.
Severini, H.
Sfiligoj, T.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shaikh, N. W.
Shan, L. Y.
Shang, R.
Shank, J. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Shaw, S. M.
Shcherbakova, A.
Shehu, C. Y.
Sherwood, P.
Shi, L.
Shimizu, S.
Shimmin, C. O.
Shimojima, M.
Shiyakova, M.
Shmeleva, A.
Saadi, D. Shoaleh
Shochet, M. J.
Shojaii, S.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Sicho, P.
Sidebo, P. E.
Sidiropoulou, O.
Sidorov, D.
Sidoti, A.
Siegert, F.
Sijacki, Dj.
Silva, J.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simon, D.
Simon, M.
Sinervo, P.
Sinev, N. B.
Sioli, M.
Siragusa, G.
Sivoklokov, S. Yu.
Sjolin, J.
Sjursen, T. B.
Skinner, M. B.
Skottowe, H. P.
Skubic, P.
Slater, M.
Slavicek, T.
Slawinska, M.
Sliwa, K.
Slovak, R.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smiesko, J.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, M. N. K.
Smith, R. W.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snyder, S.
Sobie, R.
Socher, F.
Soffer, A.
Soh, D. A.
Sokhrannyi, G.
Sanchez, C. A. Solans
Solar, M.
Soldatov, E. Yu.
Soldevila, U.
Solodkov, A. A.
Soloshenko, A.
Solovyanov, O. V.
Solovyev, V.
Sommer, P.
Son, H.
Song, H. Y.
Sood, A.
Sopczak, A.
Sopko, V.
Sorin, V.
Sosa, D.
Sotiropoulou, C. L.
Soualah, R.
Soukharev, A. M.
South, D.
Sowden, B. C.
Spagnolo, S.
Spalla, M.
Spangenberg, M.
Spano, F.
Sperlich, D.
Spettel, F.
Spighi, R.
Spigo, G.
Spiller, L. A.
Spousta, M.
Denis, R. D. St.
Stabile, A.
Stamen, R.
Stamm, S.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, G. H.
Stark, J.
Staroba, P.
Starovoitov, P.
Starz, S.
Staszewski, R.
Steinberg, P.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoicea, G.
Stolte, P.
Stonjek, S.
Stradling, A. R.
Straessner, A.
Stramaglia, M. E.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Stroynowski, R.
Strubig, A.
Stucci, S. A.
Stugu, B.
Styles, N. A.
Su, D.
Su, J.
Subramaniam, R.
Suchek, S.
Sugaya, Y.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, S.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, S.
Svatos, M.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Ta, D.
Taccini, C.
Tackmann, K.
Taenzer, J.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takai, H.
Takashima, R.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A. A.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tannenwald, B. B.
Araya, S. Tapia
Tapprogge, S.
Tarem, S.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tashiro, T.