FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Datye, A Li, L Zhang, W Wei, YJ Gao, YF Pharr, GM AF Datye, Amit Li, Lin Zhang, Wei Wei, Yujie Gao, Yanfei Pharr, George M. TI Extraction of Anisotropic Mechanical Properties From Nanoindentation of SiC-6H Single Crystals SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article DE nanoindentation; elastic and plastic anisotropy; basal slip ID SMALL STRESSED VOLUMES; SILICON-CARBIDE; INDENTATION; DEFORMATION; ORIENTATION; SLIP; PLASTICITY; MAGNESIUM; MG; BEHAVIOR AB Because brittle solids fail catastrophically during normal tension and compression testing, nanoindentation is often a useful alternative technique for measuring their mechanical properties and assessing their deformation characteristics. One practical question to be addressed in such studies is the relationship between the anisotropy in the uniaxial mechanical behavior to that in the indentation response. To this end, a systematic study of the mechanical behavior the 6H polytype of a hexagonal silicon carbide single crystal (SiC-6H) was performed using standard nanoindentation methods. The indentation elastic modulus and hardness measured using a Berkovich indenter at a peak load of 500 mN varied over a wide range of crystal orientation by only a few percent. The variation in modulus is shown to be consistent with an anisotropic elastic contact analysis based on the known single crystal elastic constants of the material. The variation in hardness is examined using a single crystal plasticity model that considers the anisotropy of slip in hexagonal crystals. When compared to experimental measurements, the analysis confirms that plasticity in SiC-6H is dominated by basal slip. An anisotropic elastic contact analysis provides insights into the relationship between the pop-in load, which characterizes the transition from elasticity to plasticity during nanoindentation testing, and the theoretical strength of the material. The observations and analyses lay the foundations for further examination of the deformation and failure mechanisms in anisotropic materials by nanoindentation techniques. C1 [Datye, Amit; Li, Lin; Zhang, Wei; Gao, Yanfei; Pharr, George M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Wei, Yujie] Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China. [Gao, Yanfei; Pharr, George M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Gao, YF; Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; Gao, YF; Pharr, GM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM pharr@utk.edu RI Gao, Yanfei/F-9034-2010; Wei, Yujie/A-3770-2009 OI Gao, Yanfei/0000-0003-2082-857X; Wei, Yujie/0000-0002-3213-7891 FU U.S. National Science Foundation [CMMI 0926798, DMR 1427812]; Natural Science Foundation of China [11425211] FX This research was supported by the U.S. National Science Foundation CMMI 0926798 (AD, LL, YFG) and DMR 1427812 (GMP), and the Natural Science Foundation of China 11425211 (YJW). Y.F.G. and G.M.P. are grateful to Dr. A.A. Wereszczak for his critical review of the manuscript. NR 32 TC 1 Z9 1 U1 10 U2 15 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 EI 1528-9036 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD SEP PY 2016 VL 83 IS 9 AR 091003 DI 10.1115/1.4033790 PG 7 WC Mechanics SC Mechanics GA DV2KS UT WOS:000382750000003 ER PT J AU DuPont, B Azam, R Proper, S Cotilla-Sanchez, E Hoyle, C Piacenza, J Oryshchyn, D Zitney, SE Bossart, S AF DuPont, Bryony Azam, Ridwan Proper, Scott Cotilla-Sanchez, Eduardo Hoyle, Christopher Piacenza, Joseph Oryshchyn, Danylo Zitney, Stephen E. Bossart, Stephen TI An Optimization Framework for Decision Making in Large, Collaborative Energy Supply Systems SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID POWER-SYSTEMS AB As demand for electricity in the U.S. continues to increase, it is necessary to explore the means through which the modern power supply system can accommodate both increasing affluence (which is accompanied by increased per-capita consumption) and the continually growing global population. Though there has been a great deal of research into the theoretical optimization of large-scale power systems, research into the use of an existing power system as a foundation for this growth has yet to be fully explored. Current successful and robust power generation systems that have significant renewable energy penetration-despite not having been optimized a priori-can be used to inform the advancement of modern power systems to accommodate the increasing demand for electricity. This work explores how an accurate and state-of-the-art computational model of a large, regional energy system can be employed as part of an overarching power systems optimization scheme that looks to inform the decision making process for next generation power supply systems. Research scenarios that explore an introductory multi-objective power flow analysis for a case study involving a regional portion of a large grid will be explored, along with a discussion of future research directions. C1 [DuPont, Bryony; Proper, Scott; Hoyle, Christopher] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. [Azam, Ridwan; Cotilla-Sanchez, Eduardo] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. [Piacenza, Joseph] Calif State Univ Fullerton, Mech Engn, Fullerton, CA 92834 USA. [Oryshchyn, Danylo; Zitney, Stephen E.; Bossart, Stephen] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP DuPont, B (reprint author), Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. FU National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL under RES [1100426] FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES Contract No. 1100426. NR 19 TC 0 Z9 0 U1 1 U2 1 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0195-0738 J9 J ENERG RESOUR-ASME JI J. Energy Resour. Technol.-Trans. ASME PD SEP PY 2016 VL 138 IS 5 AR 051601 DI 10.1115/1.4032521 PG 8 WC Energy & Fuels SC Energy & Fuels GA DV2MJ UT WOS:000382754400001 ER PT J AU Kodavasal, J Harms, K Srivastava, P Som, S Quan, S Richards, K Garcia, M AF Kodavasal, Janardhan Harms, Kevin Srivastava, Priyesh Som, Sibendu Quan, Shaoping Richards, Keith Garcia, Marta TI Development of a Stiffness-Based Chemistry Load Balancing Scheme, and Optimization of Input/Output and Communication, to Enable Massively Parallel High-Fidelity Internal Combustion Engine Simulations SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID COMPRESSION IGNITION COMBUSTION; MODEL; DURATION AB A closed-cycle gasoline compression ignition (GCI) engine simulation near top dead center (TDC) was used to profile the performance of a parallel commercial engine computational fluid dynamics (CFD) code, as it was scaled on up to 4096 cores of an IBM Blue Gene/Q (BG/Q) supercomputer. The test case has 9 x 10(6) cells near TDC, with a fixed mesh size of 0.15 mm, and was run on configurations ranging from 128 to 4096 cores. Profiling was done for a small duration of 0.11 crank angle degrees near TDC during ignition. Optimization of input/output (I/O) performance resulted in a significant speedup in reading restart files, and in an over 100-times speedup in writing restart files and files for postprocessing. Improvements to communication resulted in a 1400-times speedup in the mesh load balancing operation during initialization, on 4096 cores. An improved, "stiffness-based" algorithm for load balancing chemical kinetics calculations was developed, which results in an over three-times faster runtime near ignition on 4096 cores relative to the original load balancing scheme. With this improvement to load balancing, the code achieves over 78% scaling efficiency on 2048 cores, and over 65% scaling efficiency on 4096 cores, relative to 256 cores. C1 [Kodavasal, Janardhan; Som, Sibendu] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Harms, Kevin; Garcia, Marta] Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. [Srivastava, Priyesh; Quan, Shaoping; Richards, Keith] Convergent Sci Inc, 6400 Enterprise Lane, Madison, WI 53719 USA. RP Kodavasal, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jkodavasal@anl.gov; harms@alcf.anl.gov; priyesh.srivastava@convergecfd.com; ssom@anl.gov; shaoping.quan@convergecfd.com; krichards@convergecfd.com; mgarcia@alcf.anl.gov FU U.S. Department of Energy (DOE) Office of Science Laboratory [DE-AC02-06CH11357]; DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]; DOE Office of Science User Facility [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy (DOE) Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This research was funded by DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh, program manager at DOE, for his support. We gratefully acknowledge the computing resources provided on Fusion, an HPC cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract No. DE-AC02-06CH11357. The authors would like to thank Joseph Insley of the ALCF for help with visualization, and Dr. Joshua Strodtbeck of Convergent Science, Inc. for useful discussions. NR 38 TC 1 Z9 1 U1 1 U2 1 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0195-0738 J9 J ENERG RESOUR-ASME JI J. Energy Resour. Technol.-Trans. ASME PD SEP PY 2016 VL 138 IS 5 AR 052203 DI 10.1115/1.4032623 PG 11 WC Energy & Fuels SC Energy & Fuels GA DV2MJ UT WOS:000382754400015 ER PT J AU Saha, K Som, S Battistoni, M Li, YH Quan, SP Senecal, PK AF Saha, Kaushik Som, Sibendu Battistoni, Michele Li, Yanheng Quan, Shaoping Senecal, Peter Kelly TI Modeling of Internal and Near-Nozzle Flow for a Gasoline Direct Injection Fuel Injector SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID RELAXATION MODEL; ATOMIZATION; SPRAYS AB A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multihole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from the engine combustion network (ECN). Simulations have been carried out for a fixed needle lift. The effects of turbulence, compressibility, and noncondensable gases have been considered in this work. Standard k-epsilon turbulence model has been used to model the turbulence. Homogeneous relaxation model (HRM) coupled with volume of fluid (VOF) approach has been utilized to capture the phase-change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine nonflashing and evaporative, nonflashing and nonevaporative, and flashing conditions. Noticeable hole-to-hole variations have been observed in terms of mass flow rates for all the holes under all the operating conditions considered in this study. Inside the nozzle holes mild cavitationlike and in the near-nozzle region flash-boiling phenomena have been predicted when liquid fuel is subjected to superheated ambiance. Under favorable conditions, considerable flashing has been observed in the near-nozzle regions. An enormous volume is occupied by the gasoline vapor, formed by the flash boiling of superheated liquid fuel. Large outlet domain connecting the exits of the holes and the pressure outlet boundary appeared to be necessary leading to substantial computational cost. Volume-averaging instead of mass-averaging is observed to be more effective, especially for finer mesh resolutions. C1 [Saha, Kaushik; Som, Sibendu] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. [Battistoni, Michele] Univ Perugia, Dept Engn, I-106123 Perugia, Italy. [Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly] Convergent Sci Inc, Madison, WI 53719 USA. RP Saha, K (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ksaha@anl.gov; ssom@anl.gov; michele.battistoni@unipg.it; yanheng.li@convergecfd.com; shaoping.quan@convergecfd.com; senecal@convergecfd.com RI Battistoni, Michele/M-9194-2014 OI Battistoni, Michele/0000-0001-6807-9657 FU U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; DOEs Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"), a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This research was partially funded by DOEs Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh and Leo Breton, program manager at DOE, for his support. NR 28 TC 0 Z9 0 U1 7 U2 7 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0195-0738 J9 J ENERG RESOUR-ASME JI J. Energy Resour. Technol.-Trans. ASME PD SEP PY 2016 VL 138 IS 5 AR 052208 DI 10.1115/1.4032979 PG 11 WC Energy & Fuels SC Energy & Fuels GA DV2MJ UT WOS:000382754400020 ER PT J AU Salvi, AA Hoard, J Styles, D Assanis, D AF Salvi, Ashwin A. Hoard, John Styles, Dan Assanis, Dennis TI In Situ Thermophysical Properties of an Evolving Carbon Nanoparticle Based Deposit Layer Utilizing a Novel Infrared and Optical Methodology SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID GAS RECIRCULATION COOLERS; PARTICULATE DEPOSITION; FLOWS AB The use of exhaust gas recirculation (EGR) in internal combustion engines has significant impacts on engine combustion and emissions. EGR can be used to reduce in-cylinder NOx production, reduce fuel consumption, and enable advanced forms of combustion. To maximize the benefits of EGR, the exhaust gases are often cooled with liquid to gas heat exchangers. However, the build up of a fouling deposit layer from exhaust particulates and volatiles results in the decrease of heat exchanger efficiency, increasing the outlet temperature of the exhaust gases and decreasing the advantages of EGR. This paper presents an experimental data from a novel in situ measurement technique in a visualization rig during the development of a 378 mu m thick deposit layer. Measurements were performed every 6 hrs for up to 24 hrs. The results show a nonlinear increase in deposit thickness with an increase in layer surface area as deposition continued. Deposit surface temperature and temperature difference across the thickness of the layer was shown to increase with deposit thickness while heat transfer decreased. The provided measurements combine to produce deposit thermal conductivity. A thorough uncertainty analysis of the in situ technique is presented and suggests higher measurement accuracy at thicker deposit layers and with larger temperature differences across the layer. The interface and wall temperature measurements are identified as the strongest contributors to the measurement uncertainty. Due to instrument uncertainty, the influence of deposit thickness and temperature could not be determined. At an average deposit thickness of 378 mu m and at a temperature of 100 degrees C, the deposit thermal conductivity was determined to be 0.044 +/- 60.0062 W/m K at a 90% confidence interval based on instrument accuracy. C1 [Salvi, Ashwin A.] US DOE, ARPA E, 1000 Independence Ave SW, Washington, DC 20585 USA. [Hoard, John] Univ Michigan, Walter E Lay Automot Lab 1012, 1231 Beal Ave, Ann Arbor, MI 48109 USA. [Styles, Dan] Ford Motor Co, 2101 Village Rd, Dearborn, MI 48121 USA. [Assanis, Dennis] SUNY Stony Brook, 407 Adm Bldg, Stony Brook, NY 11794 USA. RP Salvi, AA (reprint author), US DOE, ARPA E, 1000 Independence Ave SW, Washington, DC 20585 USA. EM asalvi@umich.edu; hoardjw@umich.edu; dstyles@ford.com; dennis.assanis@stonybrook.edu FU Ford Motor Company FX The authors would like to thank Ford Motor Company for their financial and intellectual support. NR 31 TC 0 Z9 0 U1 3 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0195-0738 J9 J ENERG RESOUR-ASME JI J. Energy Resour. Technol.-Trans. ASME PD SEP PY 2016 VL 138 IS 5 AR 052207 DI 10.1115/1.4032942 PG 7 WC Energy & Fuels SC Energy & Fuels GA DV2MJ UT WOS:000382754400019 ER PT J AU Kambhampati, A Shioda, K Gould, LH Sharp, D Brown, LG Parashar, UD Hall, AJ AF Kambhampati, Anita Shioda, Kayoko Gould, L. Hannah Sharp, Donald Brown, Laura G. Parashar, Umesh D. Hall, Aron J. TI A State-by-State Assessment of Food Service Regulations for Prevention of Norovirus Outbreaks SO JOURNAL OF FOOD PROTECTION LA English DT Article DE Food service; Norovirus; Prevention; Regulation; Retail food code ID UNITED-STATES; ACUTE GASTROENTERITIS; NORWALK VIRUS; HANDLER; CONTAMINATION; TRANSMISSION AB Noroviruses are the leading cause of foodborne disease in the United States. Foodborne transmission of norovirus is often associated with contamination of food during preparation by an infected food worker. The U.S. Food and Drug Administration's Food Code provides model food safety regulations for preventing transmission of foodborne disease in restaurants; however, adoption of specific provisions is at the discretion of state and local governments. We analyzed the food service regulations of all 50 states and the District of Columbia (i.e., 51 states) to describe differences in adoption of norovirus-related Food Code provisions into state food service regulations. We then assessed potential correlations between adoption of these regulations and characteristics of foodborne norovirus outbreaks reported to the National Outbreak Reporting System from 2009 through 2014. Of the 51 states assessed, all (100%) required food workers to wash their hands, and 39 (76%) prohibited bare-hand contact with ready-to-eat food. Thirty states (59%) required exclusion of staff with vomiting and diarrhea until 24 h after cessation of symptoms. Provisions requiring a certified food protection manager (CFPM) and a response plan for contamination events (i.e., vomiting) were least commonly adopted; 26 states (51%) required a CFPM, and 8 (16%) required a response plan. Although not statistically significant, states that adopted the provisions prohibiting bare-hand contact (0.45 versus 0.74, P = 0.07), requiring a CFPM (0.38 versus 0.75, P = 0.09), and excluding ill staff for >= 24 h after symptom resolution (0.44 versus 0.73, P = 0.24) each reported fewer foodborne norovirus outbreaks per million person-years than did those states without these provisions. Adoption and compliance with federal recommended food service regulations may decrease the incidence of foodborne norovirus outbreaks. C1 [Kambhampati, Anita; Shioda, Kayoko; Parashar, Umesh D.; Hall, Aron J.] Ctr Dis Control & Prevent, Natl Ctr Immunizat & Resp Dis, Atlanta, GA 30333 USA. [Gould, L. Hannah; Sharp, Donald] Ctr Dis Control & Prevent, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA 30333 USA. [Brown, Laura G.] Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Atlanta, GA 30333 USA. [Kambhampati, Anita; Shioda, Kayoko] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. RP Kambhampati, A (reprint author), Ctr Dis Control & Prevent, Natl Ctr Immunizat & Resp Dis, Atlanta, GA 30333 USA.; Kambhampati, A (reprint author), Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. EM wyc4@cdc.gov FU U.S. Department of Energy; CDC; Agriculture and Food Research Initiative Competitive Grant from U.S. Department of Agriculture, National Institute of Food and Agriculture [2011-68003-30395] FX This research was supported in part by appointments to the Research Participation Program at the Centers for Disease Control and Prevention (A.K. and K.S.) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the CDC. This work was also supported in part by Agriculture and Food Research Initiative Competitive Grant 2011-68003-30395 from the U.S. Department of Agriculture, National Institute of Food and Agriculture. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the CDC. NR 31 TC 0 Z9 0 U1 5 U2 5 PU INT ASSOC FOOD PROTECTION PI DES MOINES PA 6200 AURORA AVE SUITE 200W, DES MOINES, IA 50322-2863 USA SN 0362-028X EI 1944-9097 J9 J FOOD PROTECT JI J. Food Prot. PD SEP PY 2016 VL 79 IS 9 BP 1527 EP 1536 DI 10.4315/0362-028X.JFP-16-088 PG 10 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA DV3DP UT WOS:000382801500008 PM 28221948 ER PT J AU Mani, A Tsai, FTC Kao, SC Naz, BS Ashfaq, M Rastogi, D AF Mani, Amir Tsai, Frank T. -C. Kao, Shih-Chieh Naz, Bibi S. Ashfaq, Moetasim Rastogi, Deeksha TI Conjunctive management of surface and groundwater resources under projected future climate change scenarios SO JOURNAL OF HYDROLOGY LA English DT Article DE Conjunctive use; Multi-reservoir system; Groundwater; Climate change; Uncertainty; Fractional programming ID FRACTIONAL-PROGRAMMING APPROACH; CHANGE IMPACT ASSESSMENT; WATER-RESOURCES; UNITED-STATES; QUANTIFYING UNCERTAINTY; GENETIC ALGORITHMS; BIAS CORRECTION; VIC-2L MODEL; LARGE-SCALE; OPTIMIZATION AB This study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydro climate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraints. (C) 2016 Elsevier B.V. All rights reserved. C1 [Mani, Amir; Tsai, Frank T. -C.] Louisiana State Univ, Dept Civil & Environm Engn, 3526G Patrick F Taylor Hall, Baton Rouge, LA 70803 USA. [Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Kao, Shih-Chieh; Naz, Bibi S.] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. [Ashfaq, Moetasim; Rastogi, Deeksha] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Tsai, FTC (reprint author), Louisiana State Univ, Dept Civil & Environm Engn, 3526G Patrick F Taylor Hall, Baton Rouge, LA 70803 USA. EM amani1@lsu.edu; ftsai@lsu.edu; kaos@ornl.gov; naz.bibi2007@gmail.com; mashfaq@ornl.gov; rastogid@ornl.gov RI Kao, Shih-Chieh/B-9428-2012; OI Kao, Shih-Chieh/0000-0002-3207-5328; Naz, Bibi/0000-0001-9888-1384 FU Louisiana Board of Regents [LEQSF(2012-15)-RD-A-03]; U.S. Geological Survey under (LWRRI) [G11AP20082]; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported in part by the Louisiana Board of Regents under award number LEQSF(2012-15)-RD-A-03 and by the U.S. Geological Survey under Grant/Cooperative Agreement No. G11AP20082 (through LWRRI). The authors acknowledge Brian Clark of USGS for providing the Sparta groundwater model, Pierre Sargent of USGS for providing water use data for northern Louisiana, and the Louisiana Sparta Ground Water Commission for providing technical reports. The LSU Center for Computation & Technology (CCT) and the High Performance Computing (HPC) are acknowledged for providing computing resources and technical assistance. This paper was coauthored by employees of the Oak Ridge National Laboratory, managed by UT Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the publisher, by accepting the article for publication, acknowledges that the United States government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States government purposes. NR 69 TC 1 Z9 1 U1 12 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD SEP PY 2016 VL 540 BP 397 EP 411 DI 10.1016/j.jhydrol.2016.06.021 PG 15 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DU5RR UT WOS:000382269500032 ER PT J AU Malama, B Kuhlman, KL Brauchler, R Bayer, P AF Malama, Bwalya Kuhlman, Kristopher L. Brauchler, Ralf Bayer, Peter TI Modeling cross-hole slug tests in an unconfined aquifer SO JOURNAL OF HYDROLOGY LA English DT Article DE Cross-hole slug tests; Multi-level; Unconfined aquifer; Hydraulic conductivity; Specific storage; Specific yield ID PARTIALLY PENETRATING WELLS; UNSATURATED FRACTURED TUFF; HYDRAULIC CHARACTERIZATION; NUMERICAL INVERSION; INTERFERENCE TESTS; WATER; FLOW; ROCK; APPLICABILITY; CONDUCTIVITY AB A modified version of a published slug test model for unconfined aquifers is applied to cross-hole slug test data collected in field tests conducted at the Widen site in Switzerland. The model accounts for water-table effects using the linearized kinematic condition. The model also accounts for inertial effects in source and observation wells. The primary objective of this work is to demonstrate applicability of this semi-analytical model to multi-well and multi-level pneumatic slug tests. The pneumatic perturbation was applied at discrete intervals in a source well and monitored at discrete vertical intervals in observation wells. The source and observation well pairs were separated by distances of up to 4 m. The analysis yielded vertical profiles of hydraulic conductivity, specific storage, and specific yield at observation well locations. The hydraulic parameter estimates are compared to results from prior pumping and single-well slug tests conducted at the site, as well as to estimates from particle size analyses of sediment collected from boreholes during well installation. The results are in general agreement with results from prior tests and are indicative of a sand and gravel aquifer. Sensitivity analysis show that model identification of specific yield is strongest at late-time. However, the usefulness of late-time data is limited due to the low signal-to-noise ratios. (C) 2016 Elsevier B.V. All rights reserved. C1 [Malama, Bwalya] Calif Polytech State Univ San Luis Obispo, Nat Resources Management & Environm Sci Dept, San Luis Obispo, CA 93407 USA. [Kuhlman, Kristopher L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Brauchler, Ralf] AF Consult Switzerland Ltd, Baden, Switzerland. [Bayer, Peter] ETH, Zurich, Switzerland. RP Malama, B (reprint author), Calif Polytech State Univ San Luis Obispo, Nat Resources Management & Environm Sci Dept, San Luis Obispo, CA 93407 USA. EM bmalama@scalpoly.edu RI Bayer, Peter/J-8245-2013; OI Bayer, Peter/0000-0003-4884-5873; Kuhlman, Kristopher/0000-0003-3397-3653 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 51 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD SEP PY 2016 VL 540 BP 784 EP 796 DI 10.1016/j.jhydrol.2016.06.060 PG 13 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DU5RR UT WOS:000382269500061 ER PT J AU Es-Said, OS Alcisto, J Guerra, J Jones, E Dominguez, A Hahn, M Ula, N Zeng, L Ramsey, B Mulazimoglu, H Li, YJ Miller, M Alrashid, J Papakyriakou, M Kalnaus, S Lee, EW Frazier, WE AF Es-Said, O. S. Alcisto, J. Guerra, J. Jones, E. Dominguez, A. Hahn, M. Ula, N. Zeng, L. Ramsey, B. Mulazimoglu, H. Li, Yong-Jun Miller, M. Alrashid, J. Papakyriakou, M. Kalnaus, S. Lee, E. W. Frazier, W. E. TI Effect of Cadmium Plating Thickness on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE 4340 steel; cadmium plating; Charpy impact test; hydrogen charging ID MECHANICAL-PROPERTIES; INDUCED CRACKING; EMBRITTLEMENT; TRANSPORT; BEHAVIOR; FRACTURE; MICROSTRUCTURE; DEFORMATION AB Hydrogen was intentionally introduced into ultra-high strength steel by cadmium plating. The purpose was to examine the effect of cadmium plate thickness and hence hydrogen on the impact energy of the steel. The AISI 4340 steel was austenitized at 1000 A degrees C for 1 h, water quenched, and tempered at temperatures between 257 and 593 A degrees C in order to achieve a range of targeted strength levels. The specimens were cadmium plated with 0.00508 mm (0.2 mils), 0.00762 mm (0.3 mils), and 0.0127 mm (0.5 mils). Results demonstrated that the uncharged specimens exhibited higher impact energy values when compared to the plated specimens at all tempering temperatures. The cadmium-plated specimens had very low Charpy impact values irrespective of their ultimate tensile strength values. The model of hydrogen transport by mobile dislocations to the fracture site appears to provide the most suitable explanation of the results. C1 [Es-Said, O. S.; Alcisto, J.; Guerra, J.; Jones, E.; Dominguez, A.; Miller, M.; Alrashid, J.; Papakyriakou, M.] Loyola Marymount Univ, Dept Mech Engn, Los Angeles, CA 90045 USA. [Hahn, M.] Northrop Grumman, Mat & Proc F35, Redondo Beach, CA 90278 USA. [Ula, N.] Loyola Marymount Univ, Dept Elect Engn, Los Angeles, CA 90045 USA. [Zeng, L.; Ramsey, B.] Sargent Aerosp & Def, Torrance, CA 90502 USA. [Mulazimoglu, H.] ALCOA Fastening Syst & Rings, Torrance, CA 90502 USA. [Li, Yong-Jun] Loyola Marymount Univ, Coll Sci & Engn, MANE Labs, Los Angeles, CA 90045 USA. [Kalnaus, S.] Oak Ridge Natl Lab, Computat Engn & Energy Sci Grp, Oak Ridge, TN USA. [Lee, E. W.; Frazier, W. E.] Naval Air Syst Command, Patuxent River, MD 20670 USA. RP Es-Said, OS (reprint author), Loyola Marymount Univ, Dept Mech Engn, Los Angeles, CA 90045 USA. EM oessaid@lmu.edu NR 44 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 EI 1544-1024 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD SEP PY 2016 VL 25 IS 9 BP 3606 EP 3614 DI 10.1007/s11665-016-2246-6 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA DV2JT UT WOS:000382747400008 ER PT J AU Chen, GQ Feng, ZL Zhu, YC Shi, QY AF Chen, Gaoqiang Feng, Zhili Zhu, Yucan Shi, Qingyu TI An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE frictional boundary condition; friction stir welding; heat generation; material flow; thermal-mechanical processing condition ID MATERIAL FLOW; ALUMINUM-ALLOY; HEAT-GENERATION; TOOL; MODEL; STEEL; VISUALIZATION AB For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, the lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. The simulated temperature field is validated by the good agreement to the experimental measurements. C1 [Chen, Gaoqiang; Zhu, Yucan; Shi, Qingyu] Tsinghua Univ, State Key Lab Tribol, 1 Tsinghua Yuan Pk, Beijing 100084, Peoples R China. [Chen, Gaoqiang; Zhu, Yucan; Shi, Qingyu] Tsinghua Univ, Dept Mech Engn, Key Lab Adv Mat Proc Technol, 1 Tsinghua Yuan Pk, Beijing 100084, Peoples R China. [Chen, Gaoqiang; Feng, Zhili] Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Chen, GQ; Shi, QY (reprint author), Tsinghua Univ, State Key Lab Tribol, 1 Tsinghua Yuan Pk, Beijing 100084, Peoples R China.; Chen, GQ; Shi, QY (reprint author), Tsinghua Univ, Dept Mech Engn, Key Lab Adv Mat Proc Technol, 1 Tsinghua Yuan Pk, Beijing 100084, Peoples R China.; Chen, GQ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM Gaoqiang.chen@hotmail.com; shqy@tsinghua.edu.cn FU National Natural Science Foundation of China [51375259]; National Science and Technology Major Project of the Ministry of Science and Technology of China [2012ZX04012-011]; China Scholarship Council [20130620105] FX The research was supported by the National Natural Science Foundation of China (Grant No. 51375259) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2012ZX04012-011). Besides, Gaoqiang Chen was supported by the China Scholarship Council (File No. 20130620105) for 2-year study at Oak Ridge National Laboratory. NR 37 TC 1 Z9 1 U1 17 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 EI 1544-1024 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD SEP PY 2016 VL 25 IS 9 BP 4016 EP 4023 DI 10.1007/s11665-016-2219-9 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA DV2JT UT WOS:000382747400051 ER PT J AU Martin, WE Srijanto, BR Collier, CP Vosch, T Richards, CI AF Martin, W. Elliott Srijanto, Bernadeta R. Collier, C. Patrick Vosch, Tom Richards, Christopher I. TI A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ENHANCED RAMAN-SCATTERING; FLUORESCENCE CORRELATION SPECTROSCOPY; NEAR-INFRARED FLUORESCENCE; PLASMON-COUPLED EMISSION; POLYELECTROLYTE MULTILAYERS; BOWTIE NANOANTENNAS; MICROSCOPY; NANORODS; NANOPARTICLES; EXCITATION AB The effect of gold and aluminum zero-mode waveguides (ZMWs) on the brightness of immobilized Single emitters was characterized by probing fluorophores that absorb in the green. and red regions of the visible spectrum. Aluminum ZMWs enhance the emission of Atto565 fluorophores upon green excitation, but they do not enhance the emission of Atto647N fluorophores upon red excitation. Gold ZMWs increase emission of both fluorophores with Atto647N showing enhancement that is threefold higher than that observed for Atto565. This work indicates that 200 nm gold ZMWs are better suited for Single Molecule fluorescence studies the red region of:the visible spectrum, while aluminum appears more-suited for the green region of the visible spectrum. C1 [Martin, W. Elliott; Richards, Christopher I.] Univ Kentucky, Dept Chem, 505 Rose St, Lexington, KY 40506 USA. [Srijanto, Bernadeta R.; Collier, C. Patrick] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vosch, Tom] Univ Copenhagen, Dept Chem, Nanosci Ctr, Univ Pk 5, DK-2100 Copenhagen, Denmark. RP Richards, CI (reprint author), Univ Kentucky, Dept Chem, 505 Rose St, Lexington, KY 40506 USA. EM chris.richards@uky.edu RI Srijanto, Bernadeta/D-4213-2016; Vosch, Tom/B-4234-2015 OI Srijanto, Bernadeta/0000-0002-1188-1267; Vosch, Tom/0000-0001-5435-2181 FU HFSP [RGY0081/2014]; "Center for Synthetic Biology" at Copenhagen Univ. by the UNIK research initiative of the Danish Ministry of Science, Technology and Innovation [09-065274]; bioSYNergy, Univ. of Copenhagen's Excellence Programme for Interdisciplinary Research FX C.I.R. and T.V. acknowledge support from HFSP (RGY0081/2014). T.V. gratefully acknowledges financial support from the "Center for Synthetic Biology" at Copenhagen Univ. funded by the UNIK research initiative of the Danish Ministry of Science, Technology and Innovation (Grant No. 09-065274) and bioSYNergy, Univ. of Copenhagen's Excellence Programme for Interdisciplinary Research. Fabrication of 200 nm gold ZMWs was conducted at the Center for Nanophase Materials Sciences, which is a Department of Energy Office of Science User Facility. NR 72 TC 0 Z9 0 U1 7 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 1 PY 2016 VL 120 IS 34 BP 6719 EP 6727 DI 10.1021/acs.jpca.6b03309 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DV0GU UT WOS:000382596800006 PM 27499174 ER PT J AU Lee, L Wilson, K AF Lee, Lance Wilson, Kevin TI The Reactive-Diffusive Length of OH and Ozone in Model Organic Aerosols SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HETEROGENEOUS OXIDATION; OLEIC-ACID; SUBMICRON SQUALANE; TRACER DIFFUSION; GAS-PHASE; RADICALS; CHEMISTRY; PRODUCTS; KINETICS; EMISSIONS AB A key step in the heterogeneous oxidation of atmospheric aerosols is the reaction of ozone (O-3) and hydroxyl radicals (OH) at the gas-particle interface. The formation of reaction products and free radical intermediates and their spatial distribution inside the particle is a sensitive function of the length over which these oxidants diffuse prior to reaction. The reactive-diffusive length of OH and ozone at organic aerosol interfaces is determined by observing the change in the effective uptake coefficient for size-selected model aerosols comprising a reactive core and a thin nanometer-sized (0-12 nm) organic shell. The core and shell materials are selected so that they are immiscible and adopt an assumed core-shell configuration. The results indicate a reactive-diffusive length of 1.4 run for hydroxyl (OH) radicals in squalane and 1.0 nm for ozone in squalene. Measurements for a purely diffusive system allow for an estimate for diffusion constant (1.6 x 10(-6) cm(2)/s) of ozone in squalane to be determined. The reactive-diffusive length offers a simple first order estimate of how shielding of aerosols by immiscible layers can alter estimates of oxidative lifetimes of aerosols in the atmosphere. C1 [Lee, Lance; Wilson, Kevin] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. RP Wilson, K (reprint author), Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. EM krwilson@lbl.gov FU Department of Energy's Office of Science Early Career Research Program; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Department of Energy's Office of Science Early Career Research Program and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 57 TC 1 Z9 1 U1 11 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 1 PY 2016 VL 120 IS 34 BP 6800 EP 6812 DI 10.1021/acs.jpca.6b05285 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DV0GU UT WOS:000382596800016 PM 27509443 ER PT J AU Cai, QX Wang, JG Wang, Y Mei, DH AF Cai, Qiuxia Wang, Jian-guo Wang, Yong Mei, Donghai TI First-Principles Thermodynamics Study of Spinel MgAl2O4 Surface Stability SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ATOMISTIC SIMULATION; IR CATALYSTS; BASIS-SET; OXIDATION; NANOPARTICLES; EFFICIENT; ETHANOL AB The surface stability of all possible terminations for three low-index (100, 110, 111) structures of spinel MgAl2O4 was studied using a first-principles-based thermodynamic approach. The surface Gibbs free energy results indicate that the 100_AlO2 termination is the most stable surface structure under ultrahigh vacuum at T = 1100 K regardless of an Al-poor or Al-rich condition. With increasing oxygen pressure, the 111_O-2(Al) termination becomes the most stable surface in the Al-rich condition. The oxygen vacancy formation is thermodynamically favorable over the 100_AlO2, 111_O-2(Al), and (111) structures with Mg/O connected terminations. On the basis of the surface Gibbs free energies for both perfect and defective surface terminations, 100_AlO2. and 111_O-2(Al) are the most dominant surfaces in Al-rich conditions tinder atmospheric conditions. This is, also consistent with our previously reported experimental observation. C1 [Cai, Qiuxia; Wang, Jian-guo] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Zhejiang, Peoples R China. [Cai, Qiuxia; Wang, Yong; Mei, Donghai] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Wang, JG (reprint author), Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Zhejiang, Peoples R China.; Wang, Y; Mei, DH (reprint author), Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.; Wang, Y (reprint author), Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM jgw@zjut.edu.cn; yong.wang@pnnl.gov; donghai.mei@pnnl.gov RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011 OI Mei, Donghai/0000-0002-0286-4182; FU National Energy Research Scientific Computing Center (NERSC); William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) FX The research described in this paper is part of the MS3 Initiative at the Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory Directed Research and Development Program (LDRD) at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy (DOE). The computing time was granted by the National Energy Research Scientific Computing Center (NERSC). Part of the computing time was also granted by a scientific theme user proposal in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. NR 39 TC 0 Z9 0 U1 24 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 1 PY 2016 VL 120 IS 34 BP 19087 EP 19096 DI 10.1021/acs.jpcc.6b02998 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DV0GV UT WOS:000382596900017 ER PT J AU Carpenter, TS Parkin, J Khalid, S AF Carpenter, Timothy S. Parkin, Jamie Khalid, Syma TI The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; LIPID-BILAYER; COMPUTER-SIMULATIONS; FORCE-FIELD; EQUILIBRIUM AB Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups provide a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. These results provide key insights for the development of novel antibiotics that target these bacteria. C1 [Carpenter, Timothy S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Parkin, Jamie; Khalid, Syma] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England. RP Khalid, S (reprint author), Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England. EM S.Khalid@soton.ac.uk RI Khalid, Syma/B-8108-2009 OI Khalid, Syma/0000-0002-3694-5044 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-685118] FX We acknowledge use of the Iridis III and IV supercomputers at the University of Southampton. We also thank Livermore Computing for the computing time. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-685118. NR 17 TC 1 Z9 1 U1 8 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 1 PY 2016 VL 7 IS 17 BP 3446 EP 3451 DI 10.1021/acs.jpclett.6b01399 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DV0JH UT WOS:000382603300026 PM 27518381 ER PT J AU Buck, C Yeh, MF AF Buck, Christian Yeh, Minfang TI Metal-loaded organic scintillators for neutrino physics SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review DE liquid scintillators; neutrinos; large scale detectors ID DOUBLE-BETA DECAY; LIQUID SCINTILLATOR; SOLAR NEUTRINOS; ENERGY-TRANSFER; LIGHT YIELD; DETECTOR; BOREXINO; TIME; SPECTROSCOPY; SYSTEM AB Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared. C1 [Buck, Christian] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Yeh, Minfang] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Buck, C (reprint author), Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. EM Christian.Buck@mpi-hd.mpg.de NR 112 TC 1 Z9 1 U1 4 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD SEP PY 2016 VL 43 IS 9 AR 093001 DI 10.1088/0954-3899/43/9/093001 PG 40 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DU6CB UT WOS:000382299600001 ER PT J AU Allu, S Kalnaus, S Simunovic, S Nanda, J Turner, JA Pannala, S AF Allu, S. Kalnaus, S. Simunovic, S. Nanda, J. Turner, J. A. Pannala, S. TI A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion; Modeling and simulation ID LITHIUM DEPOSITION; POROUS-ELECTRODES; MICROBATTERIES; ARCHITECTURES; CELLS; SIMULATIONS; TRANSPORT; CAPACITY AB In this paper we present a three-dimensional computational formulation for electrode-electrolyte electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allows for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem. (C) 2016 Elsevier B.V. All rights reserved. C1 [Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Pannala, S.] SABIC, Houston, TX USA. RP Allu, S (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM allus@ornl.gov OI Turner, John/0000-0003-2521-4091; allu, srikanth/0000-0003-2841-4398 FU U.S. Department of Energy [DE-AC05-00OR22725]; Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy FX This research at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725, was sponsored by the Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy. NR 38 TC 2 Z9 2 U1 10 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD SEP 1 PY 2016 VL 325 BP 42 EP 50 DI 10.1016/j.jpowsour.2016.06.001 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DT0HX UT WOS:000381165600006 ER PT J AU Song, BH Li, WD Yan, PF Oh, SM Wang, CM Manthiram, A AF Song, Bohang Li, Wangda Yan, Pengfei Oh, Seung-Min Wang, Chong-Min Manthiram, Arumugam TI A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Nickel-rich layered oxide; Lithium-rich layered oxide; Surface chemical stability; Pouch-type full cell ID ELECTROCHEMICAL PROPERTIES; CAPACITY; ELECTRODES; MN; CHEMISTRY; EVOLUTION; PHASE; FADE AB A facile synthesis method has been developed to prepare xLi(2)MnO(3)center dot(1-x)LiNi0.7Co0.5Mn0.15O2 (x = 0, 0.03, 0.07, 0.10, 0.20, and 0.30) cathode materials, combining the advantages of the high specific capacity of the Ni-rich layered phase and the surface chemical stability of the Li-rich layered phase. X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrochemical charge/discharge measurements confirm the formation of a Li-rich layered phase with C2/m symmetry. The high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) reveals a spatial relationship that the Li-rich nano-domain islands are integrated into the conventional Ni-rich layered matrix (R (3) over barm). Most importantly, this is the first time that Li-rich phase has been directly observed inside a particle at the nano-scale, when the overall composition of the layered oxide Li1+delta Ni1-y-z-delta MnyMzO2 (M = metal) is Ni-rich (>0.5) rather than Mn-rich (>0.5). Remarkably, the xLi(2)MnO(3)center dot(1-x)LiNi0.7Co0.15Mn0.15O2 cathodes with optimized x value shows superior electrochemical performance at C/3 rate: an initial capacity of 190 mA h g(-1) with 90% capacity retention after 400 cycles in a half cell and 73.5% capacity retention after 900 cycles in a pouch-type full cell. (C) 2016 Elsevier B.V. All rights reserved. C1 [Song, Bohang; Li, Wangda; Oh, Seung-Min; Manthiram, Arumugam] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Song, Bohang; Li, Wangda; Oh, Seung-Min; Manthiram, Arumugam] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Yan, Pengfei; Wang, Chong-Min] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Manthiram, A (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA.; Manthiram, A (reprint author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. EM manth@austin.utexas.edu RI yan, pengfei/E-4784-2016; Song, Bohang/F-8239-2016 OI yan, pengfei/0000-0001-6387-7502; Song, Bohang/0000-0002-6477-609X FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-EE0006447]; Welch Foundation [F-1254]; DOE's Office of Biological and Environmental Research; Department of Energy [DE-AC05-76RLO1830] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract no. DE-EE0006447 and Welch Foundation grant F-1254. The STEM work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. The authors acknowledge the assistance and valuable discussion with Dr. Pilgun Oh and Dr. Jin-Yun Liao. NR 36 TC 3 Z9 3 U1 40 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD SEP 1 PY 2016 VL 325 BP 620 EP 629 DI 10.1016/j.jpowsour.2016.06.056 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DT0HX UT WOS:000381165600071 ER PT J AU Lipson, AL Han, SD Kim, S Pan, BF Sa, NY Liao, C Fister, TT Burrell, AK Vaughey, JT Ingram, BJ AF Lipson, Albert L. Han, Sang-Don Kim, Soojeong Pan, Baofei Sa, Niya Liao, Chen Fister, Timothy T. Burrell, Anthony K. Vaughey, John T. Ingram, Brian J. TI Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE Nickel hexacyanoferrate; Magnesium battery; Calcium battery; XANES; Nonaqueous ID PRUSSIAN BLUE; COPPER HEXACYANOFERRATE; RECHARGEABLE BATTERIES; IRON HEXACYANOFERRATE; MAGNESIUM BATTERIES; CATHODE MATERIALS; OPEN FRAMEWORK; INSERTION; LITHIUM; 1ST-PRINCIPLES AB New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions from a nonaqueous electrolyte. This material has a relatively high insertion potential and low over potential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong; Pan, Baofei; Sa, Niya; Liao, Chen; Fister, Timothy T.; Burrell, Anthony K.; Vaughey, John T.; Ingram, Brian J.] Argonne Natl Lab, Joint Ctr Energy Storage Res, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Ingram, BJ (reprint author), Argonne Natl Lab, Joint Ctr Energy Storage Res, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM ingram@anl.gov RI BM, MRCAT/G-7576-2011; SA, NIYA/E-8521-2017 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. We would also like to acknowledge the use of the Center for Nanoscale Materials, supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT (APS sector 10BM) operations are supported by the Department of Energy and the MRCAT member institutions. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 29 TC 3 Z9 3 U1 46 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD SEP 1 PY 2016 VL 325 BP 646 EP 652 DI 10.1016/j.jpowsour.2016.06.019 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DT0HX UT WOS:000381165600075 ER PT J AU Shinozaki, K Morimoto, Y Pivovar, BS Kocha, SS AF Shinozaki, Kazuma Morimoto, Yu Pivovar, Bryan S. Kocha, Shyam S. TI Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation SO JOURNAL OF POWER SOURCES LA English DT Article DE Oxygen reduction reaction; Platinum; Platinum alloy; Neon ionomer; Rotating disk electrode method; Ionomer coverage ID ROTATING-DISK ELECTRODE; FUEL-CELL ELECTRODES; CATALYST LAYERS; ACID-SOLUTION; 111 SURFACE; THIN-FILM; PLATINUM; TRANSPORT; PEMFC; ADSORPTION AB The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particles located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed. (C) 2016 Elsevier B.V. All rights reserved. C1 [Shinozaki, Kazuma; Pivovar, Bryan S.; Kocha, Shyam S.] Natl Renewable Energy Lab, Electrochem Characterizat Labs, Golden, CO 80401 USA. [Shinozaki, Kazuma] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Shinozaki, Kazuma; Morimoto, Yu] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan. RP Shinozaki, K (reprint author), Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan. EM Shinozaki@mosk.tytlabs.co.jp FU U.S. Department of Energy, Fuel Cells Technologies Program [DE-AC36-08-GO28308]; Toyota Central RD Labs., Inc. FX Shyam S. Kocha gratefully acknowledges funding from the U.S. Department of Energy, Fuel Cells Technologies Program under Contract No. DE-AC36-08-GO28308 to the National Renewable Energy Laboratory. Kazuma Shinozaki's stay at NREL and CSM was funded by Toyota Central R&D Labs., Inc. We would like to acknowledge Umicore for providing their catalysts. NR 41 TC 1 Z9 1 U1 34 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD SEP 1 PY 2016 VL 325 BP 745 EP 751 DI 10.1016/j.jpowsour.2016.06.062 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DT0HX UT WOS:000381165600088 ER PT J AU Gupta, S Feng, J Chan, LJG Petzold, CJ Ralston, CY AF Gupta, Sayan Feng, Jun Chan, Leanne Jade G. Petzold, Christopher J. Ralston, Corie Y. TI Synchrotron X-ray footprinting as a method to visualize water in proteins SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE bound water; hydroxyl radical labeling; mass spectrometry; protein conformation; protein modification ID STRUCTURAL MASS-SPECTROMETRY; MOLECULAR-DYNAMICS SIMULATIONS; ZINC TRANSPORTER YIIP; HEART CYTOCHROME-C; NEUTRON-SCATTERING; CRYSTAL-STRUCTURE; RADICAL PROBE; ELECTROSPRAY-IONIZATION; 3-DIMENSIONAL STRUCTURE; HYDRATION DYNAMICS AB The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with proteinwater interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed. C1 [Gupta, Sayan; Ralston, Corie Y.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Feng, Jun] Lawrence Berkeley Natl Lab, Expt Syst, Adv Light Source, Berkeley, CA 94720 USA. [Chan, Leanne Jade G.; Petzold, Christopher J.] Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA. RP Ralston, CY (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. EM cyralston@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NIBIB [P30-EB0966]; Welcome Trust; NIH; DOE; Office of Science, Office of Biological and Environmental Research, US DOE [DE-AC02-05CH11231] FX We thank Rich Celestre for help with the studies performed at the Advanced Light Source. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The Center for Synchrotron Biosciences at the National Synchrotron Light Sources is supported by NIBIB under P30-EB0966. Studies on potassium channel work are supported by the Welcome Trust. Studies on YiiP are supported by NIH and DOE. Study on OCP is supported by NIH and DOE. This research used resources of the Joint BioEnergy Institute supported by the Office of Science, Office of Biological and Environmental Research, US DOE under contract DE-AC02-05CH11231. NR 102 TC 0 Z9 0 U1 9 U2 9 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2016 VL 23 BP 1056 EP 1069 DI 10.1107/S1600577516009024 PN 5 PG 14 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DU6CA UT WOS:000382299500001 PM 27577756 ER PT J AU Dufresne, EM Dunford, RW Kanter, EP Gao, Y Moon, S Walko, DA Zhang, XS AF Dufresne, Eric M. Dunford, Robert W. Kanter, Elliot P. Gao, Yuan Moon, Seoksu Walko, Donald A. Zhang, Xusheng TI Pink-beam focusing with a one-dimensional compound refractive lens SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE compound refractive lenses; pink beam; chromatic aberration ID RESOLVED SYNCHROTRON EXPERIMENTS AB The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 mu m-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm(-2) was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. A method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported. C1 [Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; Gao, Yuan; Moon, Seoksu; Walko, Donald A.; Zhang, Xusheng] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Dufresne, EM (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. EM dufresne@anl.gov OI Dufresne, Eric/0000-0002-2077-4754 FU US DOE [DE-AC02-06CH11357] FX The authors wish to thank Harold Gibson for technical support. This work was performed on the APS 7-ID beamline. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract No. DE-AC02-06CH11357. NR 12 TC 0 Z9 0 U1 5 U2 5 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2016 VL 23 BP 1082 EP 1086 DI 10.1107/S1600577516009310 PN 5 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DU6CA UT WOS:000382299500004 PM 27577759 ER PT J AU Zhou, L Huang, L Bouet, N Kaznatcheev, K Vescovi, M Dai, YF Li, SY Idir, M AF Zhou, Lin Huang, Lei Bouet, Nathalie Kaznatcheev, Konstantine Vescovi, Matthew Dai, Yifan Li, Shengyi Idir, Mourad TI New figuring model based on surface slope profile for grazing-incidence reflective optics SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE ion beam figuring; synchrotron optics; one-dimensional; surface slope ID MEASURING MACHINE; MIRRORS AB Surface slope profile is widely used in the metrology of grazing-incidence reflective optics instead of surface height profile. Nevertheless, the theoretical and experimental model currently used in deterministic optical figuring processes is based on surface height, not on surface slope. This means that the raw slope profile data from metrology need to be converted to height profile to perform the current height-based figuring processes. The inevitable measurement noise in the raw slope data will introduce significant cumulative error in the resultant height profiles. As a consequence, this conversion will degrade the determinism of the figuring processes, and will have an impact on the ultimate surface figuring results. To overcome this problem, an innovative figuring model is proposed, which directly uses the raw slope profile data instead of the usual height data as input for the deterministic process. In this paper, first the influence of the measurement noise on the resultant height profile is analyzed, and then a new model is presented; finally a demonstration experiment is carried out using a one-dimensional ion beam figuring process to demonstrate the validity of our approach. C1 [Zhou, Lin; Dai, Yifan; Li, Shengyi] Natl Univ Def Technol, Coll Mechatron Engn & Automat, 109 Deya Rd, Changsha 410073, Hunan, Peoples R China. [Zhou, Lin; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Idir, Mourad] Brookhaven Natl Lab, NSLS 2, POB 5000, Upton, NY 11973 USA. [Zhou, Lin; Dai, Yifan; Li, Shengyi] Hunan Key Lab Ultraprecis Machining Technol, 47 Yanzheng St, Changsha 410073, Hunan, Peoples R China. RP Idir, M (reprint author), Brookhaven Natl Lab, NSLS 2, POB 5000, Upton, NY 11973 USA. EM midir@bnl.gov FU US Department of Energy, Office of Science, Office of Basic Energy sciences [DE-AC-02-98CH10886]; National Natural Science Foundation of China [91323302]; Program for New Century Excellent Talents in University [NCET-13-0165] FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy sciences, under contract No. DE-AC-02-98CH10886. LZ was supported by the National Natural Science Foundation of China (No. 91323302) and the Program for New Century Excellent Talents in University (No. NCET-13-0165). The authors acknowledge Ray Conley for his support during the beginning of this project. NR 18 TC 0 Z9 0 U1 5 U2 5 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2016 VL 23 BP 1087 EP 1090 DI 10.1107/S1600577516010882 PN 5 PG 4 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DU6CA UT WOS:000382299500005 ER PT J AU Stoupin, S Antipov, S Butler, JE Kolyadin, AV Katrusha, A AF Stoupin, Stanislav Antipov, Sergey Butler, James E. Kolyadin, Alexander V. Katrusha, Andrey TI Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray monochromator; high heat load; diamond crystal; wavefront preservation ID MONOCHROMATOR; RESOLUTION; BEAMLINE AB Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm x 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm x 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 mu m x 13 mu m over the selected region were found to be less than 1 mu rad. C1 [Stoupin, Stanislav] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Antipov, Sergey; Butler, James E.] Euclid Techlabs LLC, Solon, OH USA. [Kolyadin, Alexander V.; Katrusha, Andrey] New Diamond Technol LLC, St Petersburg, Russia. RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM sstoupin@aps.anl.gov RI Butler, James/B-7965-2008 OI Butler, James/0000-0002-4794-7176 FU US Department of Energy, Office of Science [DE-AC02-06CH11357] FX K. Lang, R. Woods and J. Kirchman are acknowledged for technical support of the X-ray topography experiments. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 22 TC 0 Z9 0 U1 6 U2 6 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2016 VL 23 BP 1118 EP 1123 DI 10.1107/S1600577516011796 PN 5 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DU6CA UT WOS:000382299500010 PM 27577765 ER PT J AU Jones, MWM Phillips, NW van Riessen, GA Abbey, B Vine, DJ Nashed, YSG Mudie, ST Afshar, N Kirkham, R Chen, B Balaur, E de Jonge, MD AF Jones, Michael W. M. Phillips, Nicholas W. van Riessen, Grant A. Abbey, Brian Vine, David J. Nashed, Youssef S. G. Mudie, Stephen T. Afshar, Nader Kirkham, Robin Chen, Bo Balaur, Eugeniu de Jonge, Martin D. TI Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray fluorescence; scanning X-ray diffraction microscopy; ptychography ID PTYCHOGRAPHY; RESOLUTION; METALS AB Owing to its extreme sensitivity, quantitative mapping of elemental distributions via X-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both stepand fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated. C1 [Jones, Michael W. M.; Mudie, Stephen T.; Afshar, Nader; de Jonge, Martin D.] Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia. [Jones, Michael W. M.; Phillips, Nicholas W.; Abbey, Brian; Chen, Bo; Balaur, Eugeniu] La Trobe Univ, La Trobe Inst Mol Sci, ARC Ctr Excellence Adv Mol Imaging, Bundoora, Vic 3086, Australia. [Phillips, Nicholas W.] CSIRO Mfg, Parkville, Vic 3052, Australia. [van Riessen, Grant A.] La Trobe Univ, Dept Chem & Phys, La Trobe Inst Mol Sci, Bundoora, Vic 3086, Australia. [Vine, David J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Nashed, Youssef S. G.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Kirkham, Robin] CSIRO Mfg, Clayton, Vic 3168, Australia. [Jones, Michael W. M.] Queensland Univ Technol, Fac Hlth, Brisbane, Qld 4000, Australia. [Jones, Michael W. M.] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4000, Australia. RP Jones, MWM; de Jonge, MD (reprint author), Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia.; Jones, MWM (reprint author), La Trobe Univ, La Trobe Inst Mol Sci, ARC Ctr Excellence Adv Mol Imaging, Bundoora, Vic 3086, Australia.; Jones, MWM (reprint author), Queensland Univ Technol, Fac Hlth, Brisbane, Qld 4000, Australia.; Jones, MWM (reprint author), Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4000, Australia. EM mw.jones@qut.edu.au; martin.dejonge@synchrotron.org.au RI van Riessen, Grant/H-3840-2011 OI van Riessen, Grant/0000-0002-6240-7143 FU Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE); Australian Research Council (ARC) Centre of Excellence for Advanced Molecular Imaging FX We thank Dectris Ltd, Baden, Switzerland, for loan of the EIGER X 1M detector. This research was undertaken on the XFM beamline at the Australian Synchrotron, Victoria, Australia, and supported by the Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) (http://www.massive.org.au). The authors acknowledge the support of the Australian Research Council (ARC) Centre of Excellence for Advanced Molecular Imaging. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). NR 30 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2016 VL 23 BP 1151 EP 1157 DI 10.1107/S1600577516011917 PN 5 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DU6CA UT WOS:000382299500015 PM 27577770 ER PT J AU Chen, YY Sanchez, C Yue, Y Gonzalez, JM Parkinson, DY Liang, H AF Chen, Yunyun Sanchez, Carlos Yue, Yuan Gonzalez, Jorge M. Parkinson, Dilworth Y. Liang, Hong TI Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor) SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE synchrotron X-ray micro-tomography; K-edge subtraction; yttrium oxide nanoparticles; mealworms; particle distribution ID TROPHIC TRANSFER; TOMOGRAPHY AB Nanomaterials are being used in medicine, manufacturing and consumer products, but their effects on organisms and the environment are not well understood because of the difficulty in detecting them. Here dual-energy X-ray K-edge subtraction was used to track two-dimensional yttrium oxide nanoparticles (which can be found in such household objects as color televisions) in adult mealworms (Tenebrio molitor). The insects ingested nanoparticle-infused feed for different time periods, up to 24 h, and the nanoparticles could then be identified at several locations in the insects' head, thorax and abdomen, mostly within the digestive tract. In time, all particles were excreted. C1 [Chen, Yunyun; Yue, Yuan; Liang, Hong] Texas A&M Univ, Mat Sci & Engn, MS 3123, College Stn, TX 77843 USA. [Sanchez, Carlos; Liang, Hong] Texas A&M Univ, Mech Engn, MS 3123, College Stn, TX 77843 USA. [Gonzalez, Jorge M.] Calif State Univ Fresno, Dept Plant Sci, Fresno, CA 93740 USA. [Parkinson, Dilworth Y.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Liang, H (reprint author), Texas A&M Univ, Mat Sci & Engn, MS 3123, College Stn, TX 77843 USA.; Liang, H (reprint author), Texas A&M Univ, Mech Engn, MS 3123, College Stn, TX 77843 USA. EM hliang@tamu.edu RI Yue, Yuan/F-2177-2017 FU ALS fellowship; Provost's Assigned Time for Research; California State University Fresno; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX YYC was partially sponsored by an ALS fellowship. JMG was supported by the Provost's Assigned Time for Research (Summer 2015) and California State University Fresno, Research, Scholarship and Creative proposal Awarded (2014-2015). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. YYC, CS, YY and JMG conducted the experiments; YYC and JMG analyzed the data; DYP and HL designed the experiments; YYC, JMG, DYP and HL wrote the paper. All authors reviewed the manuscript. Authors state no competing financial interests. NR 24 TC 1 Z9 1 U1 7 U2 7 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2016 VL 23 BP 1197 EP 1201 DI 10.1107/S1600577516009942 PN 5 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DU6CA UT WOS:000382299500020 PM 27577775 ER PT J AU Logan, J Harder, R Li, LX Haskel, D Chen, P Winarski, R Fuesz, P Schlagel, D Vine, D Benson, C McNulty, I AF Logan, Jonathan Harder, Ross Li, Luxi Haskel, Daniel Chen, Pice Winarski, Robert Fuesz, Peter Schlagel, Deborah Vine, David Benson, Christa McNulty, Ian TI Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE Bragg coherent diffractive imaging; XMCD; nanomagnetism; strain ID CRYSTALS AB Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2 crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2 nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered. C1 [Logan, Jonathan; Winarski, Robert; McNulty, Ian] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Argonne, IL 60439 USA. [Harder, Ross; Li, Luxi; Haskel, Daniel; Fuesz, Peter; Benson, Christa] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. [Chen, Pice] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. [Schlagel, Deborah] Ames Lab, Div Mat Sci & Engn, 2405 Kooser Dr, Ames, IA 50011 USA. [Vine, David] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Logan, J (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Argonne, IL 60439 USA. EM jmlogan@anl.gov OI Chen, Pice/0000-0003-4401-5637; Logan, Jonathan/0000-0003-2554-9457 FU Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility [DE-AC02-06CH11357]; US Department of Energy Office of Science User Facility [DE-AC02-06CH11357]; [DE-AC02-07CH11358] FX Gd5Si2Ge2 single-crystal preparation was performed at the Ames Laboratory. Ames Laboratory is operated by Iowa State University under contract No DE-AC02-07CH11358. We would like to thank Vitalij Pecharsky for reading the manuscript and offering useful suggestions. We would also like to thank Carlos Giles, Zahirul Islam and Jonathan Lang for helpful discussions, and Dan Legnini and Huyue Zhao for engineering support. This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility under contract No. DE-AC02-06CH11357. This research used resources of the Advanced Photon Source, a US Department of Energy Office of Science User Facility operated by Argonne National Laboratory under contract No. DE-AC02-06CH11357. NR 18 TC 0 Z9 0 U1 4 U2 5 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2016 VL 23 BP 1210 EP 1215 DI 10.1107/S1600577516009632 PN 5 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DU6CA UT WOS:000382299500022 PM 27577777 ER PT J AU Cha, W Liu, WJ Harder, R Xu, RQ Fuoss, PH Hruszkewycz, SO AF Cha, Wonsuk Liu, Wenjun Harder, Ross Xu, Ruqing Fuoss, Paul H. Hruszkewycz, Stephan O. TI Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE coherent X-ray diffraction imaging; polychromatic X-ray diffraction; materials characterization ID MICRODIFFRACTION AB A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load. C1 [Cha, Wonsuk; Fuoss, Paul H.; Hruszkewycz, Stephan O.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Liu, Wenjun; Harder, Ross; Xu, Ruqing] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Hruszkewycz, SO (reprint author), Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. EM shrus@anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work, including use of the Advanced Photon Source, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. PHF and SOH were supported by US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 9 TC 1 Z9 1 U1 7 U2 7 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2016 VL 23 BP 1241 EP 1244 DI 10.1107/S1600577516010523 PN 5 PG 4 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DU6CA UT WOS:000382299500027 ER PT J AU Knapik, JJ Trone, DW Austin, KG Steelman, RA Farina, EK Lieberman, HR AF Knapik, Joseph J. Trone, Daniel W. Austin, Krista G. Steelman, Ryan A. Farina, Emily K. Lieberman, Harris R. TI Prevalence, Adverse Events, and Factors Associated with Dietary Supplement and Nutritional Supplement Use by US Navy and Marine Corps Personnel SO JOURNAL OF THE ACADEMY OF NUTRITION AND DIETETICS LA English DT Article DE Vitamin; Mineral; Prohormone; Sport drinks; Sport bars/gels ID ACUTE LIVER-INJURY; WEIGHT-LOSS; UNITED-STATES; GENDER-DIFFERENCES; NATIONAL-HEALTH; NO-XPLODE; CARE UTILIZATION; ACUTE HEPATITIS; OXYELITE PRO; HYDROXYCUT AB Background About 50% of Americans and 60% to 70% of US military personnel use dietary supplements, some of which have been associated with adverse events (AEs). Nutritional supplements like sport drinks and sport bars/gels are also commonly used by athletes and service members. Previous dietary supplement and nutritional supplement surveys were conducted on Army, Air Force, and Coast Guard personnel. Objective The aim of this cross-sectional study was to investigate dietary and nutritional supplement use in Navy and Marine Corps personnel, including the prevalence, types, factors associated with use, and AEs. Design A random sample of 10,000 Navy and Marine Corps personnel were contacted. Service members were asked to complete a detailed questionnaire describing their personal characteristics, supplement use, and AEs experienced. Results In total, 1,708 service members completed the questionnaire during August through December 2014, with 1,683 used for analysis. Overall, 73% reported using dietary supplements one or more times per week. The most commonly used dietary supplements (used one or more times per week) were multivitamins/multiminerals (48%), protein/amino acids (34%), combination products (33%), and individual vitamins and minerals (29%). About 31% of service members reported using five or more dietary supplements. Sport drinks and sport bars/gels were used by 45% and 23% of service members, respectively. Monthly expenditures on dietary supplements averaged $39; 31% of service members spent >=$50/mo. Multivariate logistic regression modeling indicated that female sex (women/men; odds ratio [OR]=1.76, 95% CI 1.32 to 2.36), higher educational level (college degree/no college degree; OR=2.23, 95% CI 1.62 to 3.30), higher body mass index (calculated as kg/m(2)) (>= 30/<25; OR=1.67, 95% CI 1.06 to 2.63), and a greater amount of resistance training (>= 271/0 to 45 min/week; OR=2.85, 95% CI 1.94 to 4.17) were associated with dietary supplement use. Twenty-two percent of dietary supplement users and 6% of nutritional supplement users reported one or more AEs. For combination products alone, 29% of users reported one or more AEs. Conclusions The prevalence of dietary supplement use in Navy and Marine Corps personnel was considerably higher than reported in civilian investigations for almost all types of dietary supplements, although similar to most other military services. Factors associated with dietary supplement use were similar to those reported in previous military and civilian investigations. Prevalence of self-reported AEs was very high, especially for combination products. C1 [Knapik, Joseph J.; Austin, Krista G.; Farina, Emily K.; Lieberman, Harris R.] US Army Res Inst Environm Med, Mil Nutr Div, 10 Gen Greene Ave, Natick, MA 01760 USA. [Knapik, Joseph J.; Steelman, Ryan A.] US Army Publ Hlth Ctr, Aberdeen Proving Ground, MD USA. [Knapik, Joseph J.; Austin, Krista G.; Farina, Emily K.] Oak Ridge Inst Sci & Educ, Belcamp, MD USA. [Trone, Daniel W.] Naval Hlth Res Ctr, San Diego, CA USA. RP Knapik, JJ (reprint author), US Army Res Inst Environm Med, Mil Nutr Div, 10 Gen Greene Ave, Natick, MA 01760 USA. EM joseph.j.knapik.ctr@mail.mil FU Knowledge Preservation Program at the US Army Research Institute of Environmental Medicine (USARIEM); Army Institute of Public Health (AIPH); Center Alliance for Nutrition and Dietary Supplement Research FX This research was supported in part by an appointment to the Knowledge Preservation Program at the US Army Research Institute of Environmental Medicine (USARIEM) and the Army Institute of Public Health (AIPH) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and USARIEM. Funding was also provided by the Center Alliance for Nutrition and Dietary Supplement Research. NR 81 TC 2 Z9 2 U1 9 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 2212-2672 EI 2212-2680 J9 J ACAD NUTR DIET JI J. Acad. Nutr. Diet. PD SEP PY 2016 VL 116 IS 9 BP 1423 EP 1442 DI 10.1016/j.jand.2016.02.015 PG 20 WC Nutrition & Dietetics SC Nutrition & Dietetics GA DU8QH UT WOS:000382478300009 PM 27083989 ER PT J AU Aubry, S Rhee, M Hommes, G Bulatov, VV Arsenlis, A AF Aubry, S. Rhee, M. Hommes, G. Bulatov, V. V. Arsenlis, A. TI Dislocation dynamics in hexagonal close-packed crystals SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Dislocation dynamics; Hexagonal close-packed; Composites dislocations ID HCP METALS; SLIP SYSTEMS; SIMULATIONS; MAGNESIUM; ALLOYS; DEFORMATION; JUNCTIONS; STRENGTH AB Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and nonlinear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of < c + a > and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. The results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulk crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale. Published by Elsevier Ltd. C1 [Aubry, S.; Rhee, M.; Hommes, G.; Bulatov, V. V.; Arsenlis, A.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RP Aubry, S (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Army Research Laboratory [W911NF-12-2-0022] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Also, research was sponsored by the Army Research Laboratory and was accomplished under cooperative agreement number W911NF-12-2-0022. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. NR 33 TC 0 Z9 0 U1 11 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD SEP PY 2016 VL 94 BP 105 EP 126 DI 10.1016/j.jmps.2016.04.019 PG 22 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA DU6RM UT WOS:000382342300007 ER PT J AU Runnels, B Beyerlein, IJ Conti, S Ortiz, M AF Runnels, Brandon Beyerlein, Irene J. Conti, Sergio Ortiz, Michael TI A relaxation method for the energy and morphology of grain boundaries and interfaces SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article ID FCC METALS; BCC METALS; PLASTIC-DEFORMATION; CRYSTAL-SURFACES; 100 PLANES; COPPER; GROWTH AB The energy density of crystal interfaces exhibits a characteristic "cusp" structure that renders it non-convex. Furthermore, crystal interfaces are often observed to be faceted, i.e., to be composed of flat facets in alternating directions. In this work, we forge a connection between these two observations by positing that the faceted morphology of crystal interfaces results from energy minimization. Specifically, we posit that the lack of convexity of the interfacial energy density drives the development of finely faceted microstructures and accounts for their geometry and morphology. We formulate the problem as a generalized minimal surface problem couched in a geometric measure-theoretical framework. We then show that the effective, or relaxed, interfacial energy density, with all possible interfacial morphologies accounted for, corresponds to the convexification of the bare or unrelaxed interfacial energy density, and that the requisite convexification can be attained by means of a faceting construction. We validate the approach by means of comparisons with experiment and atomistic simulations including symmetric and asymmetric tilt boundaries in face-centered cubic (FCC) and body-centered cubic (BCC) crystals. By comparison with simulated and experimental data, we show that this simple model of interfacial energy combined with a general microstructure construction based on convexification is able to replicate complex interfacial morphologies, including thermally induced morphological transitions. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Runnels, Brandon; Ortiz, Michael] CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. [Conti, Sergio] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany. RP Ortiz, M (reprint author), CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA. OI Runnels, Brandon/0000-0003-3043-5227; Conti, Sergio/0000-0001-7987-9174 FU NNSA's High Energy Density Laboratory Plasmas program [DE-NA0001805]; Los Alamos National Laboratory Seaborg Institute; Laboratory Directed Research and Development program [20140348ER]; DFG [SFB 1060] FX Brandon Runnels and Michael Ortiz would like to thank the NNSA's High Energy Density Laboratory Plasmas program under award #DE-NA0001805. Brandon Runnels additionally thanks the Los Alamos National Laboratory Seaborg Institute for support during Summer 2014. Irene Beyerlein would like to acknowledge support by a Laboratory Directed Research and Development program award number 20140348ER. Sergio Conti would like to acknowledge support of the DFG under SFB 1060. NR 46 TC 1 Z9 1 U1 7 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD SEP PY 2016 VL 94 BP 388 EP 408 DI 10.1016/j.jmps.2015.11.007 PG 21 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA DU6RM UT WOS:000382342300022 ER PT J AU Finnell, J AF Finnell, Joshua TI Nutshell SO LIBRARY JOURNAL LA English DT Book Review C1 [Finnell, Joshua] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Finnell, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD SEP 1 PY 2016 VL 141 IS 14 BP 100 EP 100 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA DV0IX UT WOS:000382602300141 ER PT J AU O'Bryhim, JR Parsons, ECM Gilmore, MP Lance, SL AF O'Bryhim, Jason R. Parsons, E. C. M. Gilmore, Michael P. Lance, Stacey L. TI Evaluating support for shark conservation among artisanal fishing communities in Costa Rica SO MARINE POLICY LA English DT Article DE Artisanal fishermen; Conservation; Sharks; Potential behaviors; Social surveys ID TRADITIONAL ECOLOGICAL KNOWLEDGE; FISHERIES; MANAGEMENT; SCIENCE; MARINE; TRADE AB Many shark populations have experienced severe declines in the past few decades due to increased demand for their products. As fisheries managers, conservation biologists, and other invested groups move to develop new conservation measures to better protect sharks it will be important to understand the potential reactions (behaviors) local fishermen will have to new regulations. To determine the potential behaviors local artisanal fishermen in Costa Rica would have toward new conservation measures for sharks a structured survey (n=72) was distributed to several fishing communities along Costa Rica's Pacific coast. Overall, 89% of fishermen felt that protecting sharks was important with 97% stating a willingness to support shark conservation. However, support dropped to 67% if they would have to change some of their fishing practices. Almost all fishermen surveyed (93%) were in support of the formation of marine protected areas (MPAs). Although, if MPAs restricted their current fishing practices support dropped to between 6% and 65% depending on the restrictiveness of regulations implemented in the MPA. The majority (86%) of the fishermen surveyed also indicated they would be more likely to support new legislative measures to protect sharks if they were included in the decision making process. The results suggest that artisanal fishermen in Costa Rica are willing to protect sharks, but only if their current fishing practices are minimally impacted. It is therefore important that mangers work with these communities to develop management plans that will provide the best protection possible for sharks while also garnering local support to ensure continued compliance. (C) 2016 Elsevier Ltd. All rights reserved. C1 [O'Bryhim, Jason R.; Parsons, E. C. M.] George Mason Univ, Dept Environm Sci & Policy, Fairfax, VA 22030 USA. [O'Bryhim, Jason R.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Gilmore, Michael P.] George Mason Univ, Sch Integrat Studies, Fairfax, VA 22030 USA. RP O'Bryhim, JR (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM jobryhim@gmail.com FU Rufford Foundation, United Kingdom [13921-1]; George Mason University, United States; Explorers Club Washington Group Exploration and Field Research Grant Program; Department of Energy, United States [DE-FC09-07SR22506]; George Mason University Human Subjects Review Board [8665] FX We would like to thank everyone in Costa Rica who helped make this research possible including: Dr. Ted Bradley, Randall Arauz, Maike Heidemeyer, Andy Bystrom, Taylor Clarke, Dr. Ingo Wehrtmann, PRETOMA, the University of Costa Rica, and the fishermen who were willing to participate in this research. We also would like to thank Chelsie Romulo for producing the map for this paper. Finally, we would like to thank the Rufford Foundation, United Kingdom (ref. number 13921-1) for being the main funding agency of this research as well as George Mason University, United States and the Explorers Club Washington Group Exploration and Field Research Grant Program for financial assistance. This research was also partially supported by the Department of Energy, United States under Award number DE-FC09-07SR22506 to the University of Georgia Research Foundation. Permission to conduct this research was granted by the George Mason University Human Subjects Review Board (Protocol #8665). NR 39 TC 0 Z9 0 U1 15 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0308-597X EI 1872-9460 J9 MAR POLICY JI Mar. Pol. PD SEP PY 2016 VL 71 BP 1 EP 9 DI 10.1016/j.marpol.2016.05.005 PG 9 WC Environmental Studies; International Relations SC Environmental Sciences & Ecology; International Relations GA DT6KT UT WOS:000381593800001 ER PT J AU Panova, O Chen, XC Bustillo, KC Ophus, C Bhatt, MP Balsara, N Minor, AM AF Panova, Ouliana Chen, X. Chelsea Bustillo, Karen C. Ophus, Colin Bhatt, Mahesh P. Balsara, Nitash Minor, Andrew M. TI Orientation mapping of semicrystalline polymers using scanning electron nanobeam diffraction SO MICRON LA English DT Article DE TEM; STEM; Spatially resolved; Diffraction; Crystal orientation; P3HT; Polymers; Locally resolved structure ID STRUCTURAL FEATURES; CRYSTAL-STRUCTURE; RADIATION-DAMAGE; MOLECULAR-WEIGHT; THIN-FILMS; POLY(3-HEXYLTHIOPHENE); MICROSCOPY; P3HT; POLY(3-ALKYLTHIOPHENES); MICROSTRUCTURE AB We demonstrate a scanning electron nanobeam diffraction technique that can be used for mapping the size and distribution of nanoscale crystalline regions in a polymer blend. In addition, it can map the relative orientation of crystallites and the degree of crystallinity of the material. The model polymer blend is a 50:50 w/w mixture of semicrystalline poly(3-hexylthiophene-2,5-diyl) (P3HT) and amorphous polystyrene (PS). The technique uses a scanning electron beam to raster across the sample and acquires a diffraction image at each probe position. Through image alignment and filtering, the diffraction image dataset enables mapping of the crystalline regions within the scanned area and construction of an orientation map. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Panova, Ouliana; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Panova, Ouliana; Bustillo, Karen C.; Ophus, Colin; Minor, Andrew M.] Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, Berkeley, CA USA. [Chen, X. Chelsea; Balsara, Nitash] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Chen, X. Chelsea; Bhatt, Mahesh P.; Balsara, Nitash] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Bhatt, Mahesh P.; Balsara, Nitash] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, Berkeley, CA USA. RP Minor, AM (reprint author), Univ Calif Berkeley, One Cyclotron Rd,MS 72, Berkeley, CA 94720 USA. EM aminor@lbl.gov FU Electron Microscopy of Soft Matter Program from the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC02-05CH11231] FX Primary funding for the work was provided by the Electron Microscopy of Soft Matter Program from the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The electron microscopy was performed as a user project at the Molecular Foundry at Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231. We wish to thank Christoph Gammer for writing the custom scripts to drive the diffraction mapping acquisition. NR 45 TC 0 Z9 0 U1 13 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-4328 J9 MICRON JI Micron PD SEP PY 2016 VL 88 BP 30 EP 36 DI 10.1016/j.micron.2016.05.008 PG 7 WC Microscopy SC Microscopy GA DT5NZ UT WOS:000381531200005 PM 27323282 ER PT J AU Johnson, RH Tutu, H AF Johnson, Raymond H. Tutu, Hlanganani TI Predictive Reactive Transport Modeling at a Proposed Uranium In Situ Recovery Site with a General Data Collection Guide SO MINE WATER AND THE ENVIRONMENT LA English DT Article DE Geochemical modeling; PHREEQC; Batch sorption ID GROUND-WATER AB Restoration of uranium in situ recovery (ISR) sites to predevelopment conditions is often very difficult. Future downgradient groundwater geochemistry can be evaluated using reactive transport modeling coupled with appropriate data collection. U.S. regulatory requirements specify that the geochemistry at the aquifer exemption boundary should never be affected, but compliance with this regulation has not been monitored at previous ISR sites. At the Dewey Burdock site near Edgemont, SD, USA, a change in groundwater flow direction created a scenario in which the oxidized side of a U roll-front deposit is downgradient of the ore zone. This increases the potential for future U transport, since conventional understanding of U geochemistry is that the reduced side provides more natural attenuation. Reactive transport modeling using U sorption parameters from batch sorption tests provides a predictive tool for future U transport. Prediction variations were tested using two different samples, considering different reaction assumptions and possible pH measurement errors. The results indicate a large range in U transport predictions, with high sensitivity to sorption parameters due to sample heterogeneity, pH, and the presence or absence of calcite. While the sample data set for these initial predictions was limited, the results highlight the need for additional calibration points and a thorough understanding of rock/water interactions in the downgradient zone. We provide a general data collection guide for steps in evaluating downgradient transport at future U ISR sites. These steps include core sampling in the downgradient and restored zones, along with batch sorption and column testing with restored and background groundwater in contact with the restored zone solid phase. Final reactive transport modeling will rely on high-quality calibration data from batch and column testing (plus any available field testing), but thorough site evaluation will also require appropriate long-term monitoring. C1 [Johnson, Raymond H.] US DOE, Navarro Res & Engn, Off Legacy Management, 2597 Legacy Way, Grand Junction, CO 81503 USA. [Tutu, Hlanganani] Univ Witwatersrand WITS, Inst Mol Sci, Sch Chem, P Bag X3, ZA-2050 Johannesburg, South Africa. RP Johnson, RH (reprint author), US DOE, Navarro Res & Engn, Off Legacy Management, 2597 Legacy Way, Grand Junction, CO 81503 USA. EM ray.johnson@lm.doe.gov; hlanganani.tutu@wits.ac.za FU U.S. Department of Energy Office of Legacy Management; University of Witwatersrand, South Africa FX Funding for this work was provided by the U.S. Department of Energy Office of Legacy Management. Additional funding was provided by the University of Witwatersrand, South Africa. We also thank Dr. James Stone (South Dakota School of Mines and Technology), the journal editors and two anonymous journal reviewers for additional comments that helped improve this manuscript. NR 22 TC 0 Z9 0 U1 8 U2 8 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1025-9112 EI 1616-1068 J9 MINE WATER ENVIRON JI Mine Water Environ. PD SEP PY 2016 VL 35 IS 3 BP 369 EP 380 DI 10.1007/s10230-015-0376-y PG 12 WC Water Resources SC Water Resources GA DU4PB UT WOS:000382193900011 ER PT J AU Hochstrasser, ML Taylor, DW Kornfeld, JE Nogales, E Doudna, JA AF Hochstrasser, Megan L. Taylor, David W. Kornfeld, Jack E. Nogales, Eva Doudna, Jennifer A. TI DNA Targeting by a Minimal CRISPR RNA-Guided Cascade SO MOLECULAR CELL LA English DT Article ID IN-VITRO RECONSTITUTION; PROCESSES PRE-CRRNA; R-LOOP FORMATION; CAS SYSTEMS; SURVEILLANCE COMPLEX; ESCHERICHIA-COLI; IMMUNE-SYSTEM; CRYSTAL-STRUCTURE; FUNCTIONAL-CHARACTERIZATION; EFFECTOR COMPLEXES AB Bacteria employ surveillance complexes guided by CRISPR (clustered, regularly interspaced, short palindromic repeats) RNAs (crRNAs) to target foreign nucleic acids for destruction. Although most type I and type III CRISPR systems require four or more distinct proteins to form multi-subunit surveillance complexes, the type I-C systems use just three proteins to achieve crRNA maturation and double-stranded DNA target recognition. We show that each protein plays multiple functional and structural roles: Cas5c cleaves pre-crRNAs and recruits Cas7 to position the RNA guide for DNA binding and unwinding by Cas8c. Cryoelectron microscopy reconstructions of free and DNA-bound forms of the Cascade/I-C surveillance complex reveal conformational changes that enable R-loop formation with distinct positioning of each DNA strand. This streamlined type I-C system explains how CRISPR pathways can evolve compact structures that retain full functionality as RNA-guided DNA capture platforms. C1 [Hochstrasser, Megan L.; Taylor, David W.; Nogales, Eva; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Taylor, David W.; Nogales, Eva; Doudna, Jennifer A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Kornfeld, Jack E.; Nogales, Eva; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Nogales, Eva; Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Taylor, David W.] Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA. RP Taylor, DW; Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Taylor, DW; Doudna, JA (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Taylor, DW (reprint author), Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA. EM dtaylor@utexas.edu; doudna@berkeley.edu FU Damon Runyon Cancer Research Foundation [DRG-2218-15] FX We thank R. Louder, A. Patel, E. Kellogg, P. Grob, T. Houweling, Z. Yu and C. Hong for expert electron microscopy assistance and S. Floor, P. Kranzusch, T. Liu, J. Nunez, S. Sternberg, S. Strutt, and R. Wilson for helpful discussions and critical reading of the manuscript. D.W.T. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-2218-15). J.A.D and E.N. are Howard Hughes Medical Institute Investigators. J.A.D. is a co-founder of Editas Medicine, Intellia Therapeutics, and Caribou Biosciences and a scientific advisor to Caribou, Intellia, eFFECTOR Therapeutics, and Driver. NR 50 TC 1 Z9 1 U1 20 U2 27 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD SEP 1 PY 2016 VL 63 IS 5 BP 840 EP 851 DI 10.1016/j.molcel.2016.07.027 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA DU9MO UT WOS:000382542000012 PM 27588603 ER PT J AU Voiry, D Fullon, R Yang, JE Silva, CDCE Kappera, R Bozkurt, I Kaplan, D Lagos, MJ Batson, PE Gupta, G Mohite, AD Dong, L Er, DQ Shenoy, VB Asefa, T Chhowalla, M AF Voiry, Damien Fullon, Raymond Yang, Jieun Castro e Silva, Cecilia de Carvalho Kappera, Rajesh Bozkurt, Ibrahim Kaplan, Daniel Lagos, Maureen J. Batson, Philip E. Gupta, Gautam Mohite, Aditya D. Dong, Liang Er, Dequan Shenoy, Vivek B. Asefa, Tewodros Chhowalla, Manish TI The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen SO NATURE MATERIALS LA English DT Article ID AMORPHOUS MOLYBDENUM SULFIDE; ACTIVE EDGE SITES; EVOLUTION REACTION; 2-DIMENSIONAL SEMICONDUCTORS; CATALYTIC-ACTIVITY; DISULFIDE; TRANSISTORS; GRAPHENE; CONTACTS; DEFECTS AB The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of similar to-0.1 V and similar to 50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER. C1 [Voiry, Damien; Fullon, Raymond; Yang, Jieun; Castro e Silva, Cecilia de Carvalho; Kappera, Rajesh; Bozkurt, Ibrahim; Lagos, Maureen J.; Batson, Philip E.; Chhowalla, Manish] Rutgers State Univ, Mat Sci & Engn, 607 Taylor Rd, Piscataway, NJ 08854 USA. [Kaplan, Daniel] US Army RDECOM ARDEC, Acoust & Networked Sensors Div, Picatinny Arsenal, NJ 07806 USA. [Lagos, Maureen J.; Batson, Philip E.] Rutgers State Univ, Dept Phys, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. [Lagos, Maureen J.; Batson, Philip E.] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, 607 Taylor Rd, Piscataway, NJ 08854 USA. [Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA. [Dong, Liang; Er, Dequan; Shenoy, Vivek B.] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. [Asefa, Tewodros] Rutgers State Univ, Dept Chem & Chem Biol, 610 Taylor Rd, Piscataway, NJ 08854 USA. [Asefa, Tewodros] Rutgers State Univ, Dept Chem & Biochem Engn, 98 Brett Rd, Piscataway, NJ 08854 USA. RP Chhowalla, M (reprint author), Rutgers State Univ, Mat Sci & Engn, 607 Taylor Rd, Piscataway, NJ 08854 USA. EM manish1@rci.rutgers.edu RI Voiry, Damien/G-3541-2016; OI Voiry, Damien/0000-0002-1664-2839; Kappera, Rajesh/0000-0003-1792-4405 FU NSF [DGE 0903661, ECCS 1128335, CAREER CHE-1004218, DMR-0968937, NanoEHS-1134289, 0959905]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-Brazil; Rutgers Energy Institute; LDRD program at LANL; US DOE, Office of Science, BES Award [DE-SC0005132]; US National Science Foundation [EFMA-542879, CMMI-1363203, CBET-1235870] FX M.C. and D.V. acknowledge financial support from NSF DGE 0903661 and ECCS 1128335. T.A. acknowledges financial assistance from NSF (CAREER CHE-1004218, DMR-0968937, NanoEHS-1134289, NSF-ACIF, and Special Creativity Grant).; C.d.C.C.e.S. acknowledges the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-Brazil, for a fellowship. J.Y. and M.C. acknowledge financial support from Rutgers Energy Institute. A.M. acknowledges LDRD program at LANL for funding this work. M.J.L. and P.E.B. acknowledge support from the US DOE, Office of Science, BES Award No. DE-SC0005132 and NSF No. 0959905. L.B., D.E., and V.B.S. acknowledge EFMA-542879, CMMI-1363203 and CBET-1235870 from the US National Science Foundation. NR 48 TC 18 Z9 18 U1 144 U2 170 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD SEP PY 2016 VL 15 IS 9 BP 1003 EP 1009 DI 10.1038/NMAT4660 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DU7YG UT WOS:000382429900019 PM 27295098 ER PT J AU Tsvetkov, N Lu, QY Sun, LX Crumlin, EJ Yildiz, B AF Tsvetkov, Nikolai Lu, Qiyang Sun, Lixin Crumlin, Ethan J. Yildiz, Bilge TI Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface SO NATURE MATERIALS LA English DT Article ID SENSITIZED SOLAR-CELLS; ELECTRONIC-STRUCTURE; FUEL-CELLS; EXCHANGE KINETICS; SPIN-STATE; THIN-FILMS; OXYGEN; CATHODE; SEGREGATION; PERFORMANCE AB Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO(3)) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr'(La)) by the positively charged oxygen vacancies (V-o(center dot center dot)) enriched at the surface. Here we show that reducing the surface V-o(center dot center dot) concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O-2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V-o(center dot center dot) and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 degrees C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss. C1 [Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; Yildiz, Bilge] MIT, Lab Electrochem Interfaces, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Tsvetkov, Nikolai; Sun, Lixin; Yildiz, Bilge] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Lu, Qiyang; Yildiz, Bilge] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Crumlin, Ethan J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Yildiz, B (reprint author), MIT, Lab Electrochem Interfaces, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Yildiz, B (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Yildiz, B (reprint author), MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM byildiz@mit.edu FU NSF CAREER Award of the National Science Foundation, Division of Materials Research, Ceramics Program [1055583]; National Aeronautics and Space Administration (NASA); NSF [DMR-1419807]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The authors are grateful for funding support from the NSF CAREER Award of the National Science Foundation, Division of Materials Research, Ceramics Program, Grant No. 1055583, and from the National Aeronautics and Space Administration (NASA) in support of the Mars Oxygen ISRU Experiment (MOXIE), an instrument on the Mars 2020 rover mission. We thank M. Youssef for useful discussions on the defects in LSC and Q. Liu for experiment assistance at Advanced Light Source Beamline 9.3.2. The authors also acknowledge the use of the Center for Materials Science and Engineering, an MRSEC Shared Experimental Facility of the NSF at MIT, supported by the NSF under award number DMR-1419807. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 7 Z9 7 U1 84 U2 122 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD SEP PY 2016 VL 15 IS 9 BP 1010 EP 1016 DI 10.1038/NMAT4659 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DU7YG UT WOS:000382429900020 PM 27295099 ER PT J AU Jiang, YW Carvalho-de-Souza, JL Wong, RCS Luo, ZQ Isheim, D Zuo, XB Nicholls, AW Jung, IW Yue, JP Liu, DJ Wang, YC De Andrade, V Xiao, XH Navrazhnykh, L Weiss, DE Wu, XY Seidman, DN Bezanilla, F Tian, BZ AF Jiang, Yuanwen Carvalho-de-Souza, Joao L. Wong, Raymond C. S. Luo, Zhiqiang Isheim, Dieter Zuo, Xiaobing Nicholls, Alan W. Jung, Il Woong Yue, Jiping Liu, Di-Jia Wang, Yucai De Andrade, Vincent Xiao, Xianghui Navrazhnykh, Luizetta Weiss, Dara E. Wu, Xiaoyang Seidman, David N. Bezanilla, Francisco Tian, Bozhi TI Heterogeneous silicon rnesostructures for lipid-supported bioelectric interfaces SO NATURE MATERIALS LA English DT Article ID POROUS SILICON; MESOPOROUS SILICON; THIN-FILMS; ELECTRONICS; NANOPARTICLES; CELLS; REDUCTION; NANOWIRES; DYNAMICS; TISSUES AB Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young's modulus that is 2-3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems. C1 [Jiang, Yuanwen; Luo, Zhiqiang; Wang, Yucai; Navrazhnykh, Luizetta; Weiss, Dara E.; Tian, Bozhi] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Jiang, Yuanwen; Wong, Raymond C. S.; Luo, Zhiqiang; Wang, Yucai; Tian, Bozhi] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Carvalho-de-Souza, Joao L.; Wong, Raymond C. S.; Bezanilla, Francisco] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Isheim, Dieter; Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Isheim, Dieter; Seidman, David N.] Northwestern Univ, NUCAPT, Evanston, IL 60208 USA. [Zuo, Xiaobing; De Andrade, Vincent; Xiao, Xianghui] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Nicholls, Alan W.] Univ Illinois, Res Resources Ctr, Chicago, IL 60607 USA. [Jung, Il Woong] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Wu, Xiaoyang] Univ Chicago, Ben May Dept Canc Res, Chicago, IL 60637 USA. [Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Bezanilla, Francisco; Tian, Bozhi] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA. RP Tian, BZ (reprint author), Univ Chicago, Dept Chem, Chicago, IL 60637 USA.; Tian, BZ (reprint author), Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.; Bezanilla, F (reprint author), Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA.; Bezanilla, F; Tian, BZ (reprint author), Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA. EM fbezanilla@uchicago.edu; btian@uchicago.edu RI Seidman, David/B-6697-2009; Wang, Yucai/A-1098-2017 OI Wang, Yucai/0000-0001-6046-2934 FU Air Force Office of Scientific Research [AFOSR FA9550-14-1-0175, FA9550-15-1-0285]; National Science Foundation (NSF CAREER) [DMR-1254637]; National Science Foundation (NSF MRSEC) [DMR 1420709]; Searle Scholars Foundation; National Institutes of Health [NIH GM030376]; University of Chicago Start-up Fund; NSF-MRI grant [DMR-0420532]; ONR-DURIP grant [N00014-0400798, N00014-0610539, N00014-0910781]; National Science Foundation's MRSEC programme [DMR-1121262]; MRI-R2 grant from the National Science Foundation [DMR-0959470]; Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [E-AC02-06CH11357]; DOE Office of Science [DE-AC02-06CH11357] FX This work is supported by the Air Force Office of Scientific Research (AFOSR FA9550-14-1-0175, FA9550-15-1-0285), the National Science Foundation (NSF CAREER, DMR-1254637; NSF MRSEC, DMR 1420709), the Searle Scholars Foundation, the National Institutes of Health (NIH GM030376), and the University of Chicago Start-up Fund. Atom-probe tomography was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT), whose APT was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781) grants. NUCAPT is a Research Facility at the Materials Research Center of Northwestern University, supported by the National Science Foundation's MRSEC programme (grant number DMR-1121262). Instrumentation at NUCAPT was further upgraded by the Initiative for Sustainability and Energy at Northwestern (ISEN). This work made use of the JEOL JEM-ARM200CF and JEOL JEM-3010 TEM in the Electron Microscopy Service (Research Resources Center, UIC). The acquisition of the UIC JEOL JEM-ARM200CF was supported by an MRI-R2 grant from the National Science Foundation (DMR-0959470). A portion of this work was performed at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. This research used the resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors thank D. Talapin, V. Srivastava, Y. Chen, J. Treger, T. Sun, Q. Guo, J. Jureller and R. N. S. Divan for providing technical support and stimulating discussions. NR 50 TC 2 Z9 2 U1 52 U2 57 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD SEP PY 2016 VL 15 IS 9 BP 1023 EP 1030 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DU7YG UT WOS:000382429900022 PM 27348576 ER PT J AU Gurdal, G Mccutchan, EA AF Gurdal, G. Mccutchan, E. A. TI Nuclear Data Sheets for A=70 SO NUCLEAR DATA SHEETS LA English DT Article ID LOW-LYING STATES; HIGH-SPIN STATES; EVEN ZN ISOTOPES; DECAY HALF-LIVES; ALPHA' INELASTIC-SCATTERING; DRIFTED GERMANIUM DETECTOR; THERMAL-NEUTRON CAPTURE; DOUBLE-BETA DECAY; 64ZN 66ZN 68ZN; 50 MEV PROTONS AB Spectroscopic data for all nuclei with mass number A=70 have been evaluated, and the corresponding level schemes from radioactive decay and reaction studies are presented. Since the previous evaluation, the half-life of Mn-70 has been measured and excited states in Fe-70 observed for the first time. Excited states in Ni-70 have been more extensively studied while Coulomb excitation and collinear laser spectroscopy measurements in Cu-70 have allowed for firm J pi assignments. Despite new measurements, there remain some discrepancies in half-lives of low lying states in Zn-70. New measurements have extended the knowledge of high-spin band structures in Ge-70 and As-70. This evaluation supersedes the prior A=70 evaluation of 2004Tu09. C1 [Gurdal, G.] Millsaps Coll, Dept Phys, Jackson, MS 39210 USA. [Mccutchan, E. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Gurdal, G (reprint author), Millsaps Coll, Dept Phys, Jackson, MS 39210 USA. FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946. NR 288 TC 0 Z9 0 U1 5 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD SEP-OCT PY 2016 VL 136 BP 1 EP 162 DI 10.1016/j.nds.2016.08.001 PG 162 WC Physics, Nuclear SC Physics GA DV0HG UT WOS:000382598000001 ER PT J AU Joye, SB Kleindienst, S Gilbert, JA Handley, KM Weisenhorn, P Overholt, WA Kostka, JE AF Joye, Samantha B. Kleindienst, Sara Gilbert, Jack A. Handley, Kim M. Weisenhorn, Pam Overholt, Will A. Kostka, Joel E. TI Responses of Microbial Communities to Hydrocarbon Exposures SO OCEANOGRAPHY LA English DT Article ID DEEP-WATER-HORIZON; GULF-OF-MEXICO; POLYCYCLIC AROMATIC-HYDROCARBONS; OIL-WELL BLOWOUT; DEGRADING BACTERIA; ALKANE DEGRADATION; ANAEROBIC BIODEGRADATION; MACONDO OIL; SPILL; DISPERSANTS AB The responses of microbial communities to hydrocarbon exposures are complex and variable, driven to a large extent by the nature of hydrocarbon infusion, local environmental conditions, and factors that regulate microbial physiology (e.g., substrate and nutrient availability). Although present at low abundance in the ocean, hydrocarbon-degrading seed populations are widely distributed, and they respond rapidly to hydrocarbon inputs at natural and anthropogenic sources. Microbiomes from environments impacted by hydrocarbon discharge may appear similar at a higher taxonomic rank (e.g., genus level) but diverge at increasing phylogenetic resolution (e.g., sub-OTU [operational taxonomic unit] levels). Such subtle changes are detectable by computational methods such as oligotyping or by genome reconstruction from metagenomic sequence data. The ability to reconstruct these genomes, and to characterize their transcriptional activities in different environmental contexts through metatranscriptomic mapping, is revolutionizing our ability to understand the diverse and adaptable microbial communities in marine ecosystems. Our knowledge of the environmental factors that regulate microbial hydrocarbon degradation and the efficiency with which marine hydrocarbon-degrading microbial communities bioremediate hydrocarbon contamination is incomplete. Moreover, detailed baseline descriptions of naturally occurring hydrocarbon-degrading microbial communities and a more robust understanding of the factors that regulate their activity are needed. C1 [Joye, Samantha B.] Univ Georgia, Dept Marine Sci, Arts & Sci, Athens, GA 30602 USA. [Kleindienst, Sara] Univ Tubingen, Microbial Ecol Grp, Ctr Appl Geosci, Tubingen, Germany. [Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Handley, Kim M.] Univ Auckland, Sch Biol Sci, Auckland, New Zealand. [Weisenhorn, Pam] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Overholt, Will A.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Kostka, Joel E.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Joye, SB (reprint author), Univ Georgia, Dept Marine Sci, Arts & Sci, Athens, GA 30602 USA. EM mjoye@uga.edu RI Kleindienst, Sara/O-9908-2016 OI Kleindienst, Sara/0000-0001-8304-9149 FU GoMRI "Ecosystem Impacts of Oil and Gas Inputs to the Gulf2" (ECOGIG-2) consortia; GoMRI "Center for Integrated Modeling and Analysis of the Gulf Ecosystem-2" (C-IMAGE-2) consortia; RFP-II program "Creating a predictive model of microbially mediated carbon remediation in the Gulf of Mexico (JAG)" FX We thank L. Nigro for assistance with the literature review and our colleagues in the Gulf of Mexico Research Initiative's (GoMRI) program for invigorating discussions on this topic. Funding for the preparation of this manuscript was provided by GoMRI's "Ecosystem Impacts of Oil and Gas Inputs to the Gulf2" (ECOGIG-2; SBJ) and the "Center for Integrated Modeling and Analysis of the Gulf Ecosystem-2" (C-IMAGE-2; JEC) consortia and RFP-II program "Creating a predictive model of microbially mediated carbon remediation in the Gulf of Mexico (JAG)." This is ECOGIG contribution no. 430. NR 69 TC 1 Z9 1 U1 26 U2 26 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD SEP PY 2016 VL 29 IS 3 SI SI BP 136 EP 149 DI 10.5670/oceanog.2016.78 PG 14 WC Oceanography SC Oceanography GA DU6OM UT WOS:000382334500020 ER PT J AU Koohbor, B Kidane, A Lu, WY AF Koohbor, Behrad Kidane, Addis Lu, Wei-Yang TI Characterizing the constitutive response and energy absorption of rigid polymeric foams subjected to intermediate-velocity impact SO POLYMER TESTING LA English DT Article DE Polymeric foam; Direct impact; Digital image correlation; Inertia; Energy absorption ID REPRESENTATIVE VOLUME ELEMENT; COMPRESSIVE RESPONSE; BEHAVIOR; MICROSTRUCTURES; BAR AB As an optimum energy-absorbing material system, polymeric foams are needed to dissipate the kinetic energy of an impact, while maintaining the impact force transferred to the protected object at a low level. Therefore, it is crucial to accurately characterize the load bearing and energy dissipation performance of foams at high strain rate loading conditions. There are certain challenges faced in the accurate measurement of the deformation response of foams due to their low mechanical impedance. In the present work, a non-parametric method is successfully implemented to enable the accurate assessment of the compressive constitutive response of rigid polymeric foams subjected to impact loading conditions. The method is based on stereovision high speed photography in conjunction with 3D digital image correlation, and allows for accurate evaluation of inertia stresses developed within the specimen during deformation time. Full-field distributions of stress, strain and strain rate are used to extract the local constitutive response of the material at any given location along the specimen axis. In addition, the effective energy absorbed by the material is calculated. Finally, results obtained from the proposed non parametric analysis are compared with data obtained from conventional test procedures. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Koohbor, Behrad; Kidane, Addis] Univ South Carolina, Dept Mech Engn, 300 Main St,Room A132, Columbia, SC 29208 USA. [Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA 94551 USA. RP Kidane, A (reprint author), Univ South Carolina, Dept Mech Engn, 300 Main St,Room A132, Columbia, SC 29208 USA. EM kidanea@cec.sc.edu RI Koohbor, Behrad/F-9771-2015; OI Koohbor, Behrad/0000-0002-5787-4644; , Addis/0000-0003-0830-0158 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9418 EI 1873-2348 J9 POLYM TEST JI Polym. Test PD SEP PY 2016 VL 54 BP 48 EP 58 DI 10.1016/j.polymertesting.2016.06.023 PG 11 WC Materials Science, Characterization & Testing; Polymer Science SC Materials Science; Polymer Science GA DV3CJ UT WOS:000382798300007 ER PT J AU Linville, JL Shen, YW Schoene, RP Nguyen, M Urgun-Demirtas, M Snyder, SW AF Linville, Jessica L. Shen, Yanwen Schoene, Robin P. Nguyen, Maximilian Urgun-Demirtas, Meltem Snyder, Seth W. TI Impact of trace element additives on anaerobic digestion of sewage sludge with in-situ carbon dioxide sequestration SO PROCESS BIOCHEMISTRY LA English DT Article DE Anaerobic digestion; Trace elements; Carbon dioxide sequestration; Olivine; Renewable methane production ID MICROBIAL COMMUNITY; METHANE PRODUCTION; BIOGAS PRODUCTION; WASTE-WATER; KINETICS; OPTIMIZATION; MODEL AB Anaerobic digestion (AD) of sludge at wastewater treatment plants can benefit from addition of essential trace metals such as iron, nickel and cobalt to increase biogas production for utilization in combined heat and power systems, fed into natural gas pipelines or as a vehicle fuel. This study evaluated the impact and benefits of Ni/Co and olivine addition to the digester at mesophilic temperatures. These additions supplement previously reported research in which iron-rich olivine (MgSiO4) was added to sequester CO2 in-situ during batch AD of sludge. Trace element addition has been shown to stimulate and stabilize biogas production and have a synergistic effect on the mineral carbonation process. AD with 5% w/v olivine and 1.5 mg/L Ni/Co addition had a 17.3% increase in methane volume, a 6% increase in initial exponential methane production rate and a 56% increase in methane yield (mL CH4/g CODdegraded) compared to the control due to synergistic trace element and olivine addition while maintaining 17.7% CO2 sequestration from olivine addition. Both first-order kinetic modeling and response surface methodology modeling confirmed the combined benefit of the trace elements and olivine addition. These results were significantly higher than previously reported results with olivine addition alone [1] (Linville et al., 2016). (C) 2016 Elsevier Ltd. All rights reserved. C1 [Linville, Jessica L.; Shen, Yanwen; Schoene, Robin P.; Nguyen, Maximilian; Urgun-Demirtas, Meltem; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Urgun-Demirtas, M (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Lemont, IL 60439 USA. EM demirtasmu@anl.gov FU California Energy Commission of California Government [ARV-10-003-01 SMUD]; [DE-AC02-06CH11357] FX This work was sponsored by via Sacramento Municipal Utilities by the California Energy Commission of California Government (ARV-10-003-01 SMUD). The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"), Argonne, a US Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government. The funding source for the work reported here did not have a role in study design, data collection, analysis, data interpretation, writing, or in the decision to publish. NR 46 TC 0 Z9 0 U1 16 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-5113 EI 1873-3298 J9 PROCESS BIOCHEM JI Process Biochem. PD SEP PY 2016 VL 51 IS 9 BP 1283 EP 1289 DI 10.1016/j.procbio.2016.06.003 PG 7 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering, Chemical SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering GA DU6UG UT WOS:000382349500020 ER PT J AU Gao, YF Bei, HB AF Gao, Yanfei Bei, Hongbin TI Strength statistics of single crystals and metallic glasses under small stressed volumes SO PROGRESS IN MATERIALS SCIENCE LA English DT Review DE Strength statistics; Intrinsic thermal-activation mechanism; Extrinsic stochastic mechanism; Universal relationship between strength and sample size ID ANISOTROPIC HALF-SPACES; SUBMICRON LENGTH SCALES; MO-ALLOY MICROPILLARS; ON-SUBSTRATE SYSTEMS; POP-IN BEHAVIOR; DISLOCATION NUCLEATION; INCIPIENT PLASTICITY; SIZE DEPENDENCE; YIELD STRENGTH; DEFORMATION MECHANISMS AB It has been well documented that plastic deformation of crystalline and amorphous metals/alloys shows a general trend of "smaller is stronger". The majority of the experimental and modeling studies along this line have been focused on finding and reasoning the scaling slope or exponent in the logarithmic plot of strength versus size. In contrast to this view, here we show that the universal picture should be the thermally activated nucleation mechanisms in small stressed volume, the stochastic behavior as to find the weakest links in intermediate sizes of the stressed volume, and the convolution of these two mechanisms with respect to variables such as indenter radius in nanoindentation pop-in, crystallographic orientation, pre-strain level, sample length as in uniaxial tests, and others. Experiments that cover the entire spectrum of length scales and a unified model that treats both thermal activation and spatial stochasticity have discovered new perspectives in understanding and correlating the strength statistics in a vast of observations in nanoindentation, micro-pillar compression, and fiber/whisker tension tests of single crystals and metallic glasses. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Gao, Yanfei; Bei, Hongbin] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Gao, Yanfei] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Gao, YF; Bei, HB (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM ygao7@utk.edu; beih@ornl.gov RI Gao, Yanfei/F-9034-2010; OI Gao, Yanfei/0000-0003-2082-857X; Bei, Hongbin/0000-0003-0283-7990 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 169 TC 2 Z9 2 U1 33 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6425 J9 PROG MATER SCI JI Prog. Mater. Sci. PD SEP PY 2016 VL 82 BP 118 EP 150 DI 10.1016/j.pmatsci.2016.05.002 PG 33 WC Materials Science, Multidisciplinary SC Materials Science GA DV0ER UT WOS:000382591300004 ER PT J AU Deur, A Brodsky, SJ de Teramond, GF AF Deur, Alexandre Brodsky, Stanley J. de Teramond, Guy F. TI The QCD running coupling SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS LA English DT Review DE QCD; Coupling constant; Non-perturbative; Renormalization; Infrared properties; Hadron physics ID SPIN STRUCTURE-FUNCTION; ABELIAN GAUGE-THEORIES; DEEP-INELASTIC-SCATTERING; YANG-MILLS THEORY; ANALYTIC PERTURBATION-THEORY; DEPENDENT STRUCTURE-FUNCTION; DYSON-SCHWINGER EQUATIONS; TO-LEADING ORDER; CHIRAL-SYMMETRY BREAKING; EFFECTIVE GLUON MASS AB We review the present theoretical and empirical knowledge for alpha(s), the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of us alpha(s)(Q(2)) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on alpha(s)(Q(2)) at high Q(2), as predicted by perturbative QCD, and its analytic behavior at small Q(2), based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of as alpha(s)(Q(2)) in the high momentum transfer domain of QCD. We review how alpha(s) is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior as alpha(s)(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale A and hadron masses. One can also identify a specific scale Q(0) which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including lattice QCD, the Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating their conflicting predictions, we discuss the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances in this difficult area, but also to suggest what could be an optimal definition of as alpha(s)(Q(2)) in order to bring better unity to the subject. (C) 2016 Elsevier B.V. All rights reserved. C1 [Deur, Alexandre] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Brodsky, Stanley J.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [de Teramond, Guy F.] Univ Costa Rica, San Jose, Costa Rica. RP Deur, A (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM deurpam@jlab.org; sjbth@slac.stanford.edu; gdt@asterix.crnet.cr FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177, DE-AC02-76SF00515] FX We thank Hans Guenter Dosch, David d'Enterria, John A. Gracey, Andrei L. Kataev, Cedric Lorce, Matin Mojaza, Christian Weiss, Xing-Gang Wu and Ma Yang for instructive discussions on as and related topics. We are grateful to A. Faessler for his invitation to write this review. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 and DE-AC02-76SF00515. SLAC-PUB-16448. NR 731 TC 7 Z9 7 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 EI 1873-2224 J9 PROG PART NUCL PHYS JI Prog. Part. Nucl. Phys. PD SEP PY 2016 VL 90 BP 1 EP 74 DI 10.1016/j.ppnp.2016.04.003 PG 74 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DU6RP UT WOS:000382342600001 ER PT J AU Cronauer, SL Briner, JP Kelley, SE Zimmerman, SRH Morlighem, M AF Cronauer, Sandra L. Briner, Jason P. Kelley, Samuel E. Zimmerman, Susan R. H. Morlighem, Mathieu TI Be-10 dating reveals early-middle Holocene age of the Drygalski Moraines in central West Greenland SO QUATERNARY SCIENCE REVIEWS LA English DT Article; Proceedings Paper CT 2nd International Conference of the Palaeo-Arctic-Spatial-and-Temporal-Gateways-Network (PAST Gateways) CY 2014 CL Trieste, ITALY SP Palaeo Arctic Spatial & Temporal Gateways Network DE Cosmogenic nuclide exposure dating; Greenland Ice Sheet; Proglacial-threshold lake; Holocene ID ICE STREAM SYSTEM; JAKOBSHAVN ISBRAE; THERMAL MAXIMUM; LAST RECESSION; SHEET; RETREAT; TEMPERATURE; HISTORY; CLIMATE; REGION AB We reconstruct the history of the Greenland Ice Sheet margin on the Nuussuaq Peninsula in central West Greenland through the Holocene using lake sediment analysis and cosmogenic Be-10 exposure dating of the prominent Drygalski Moraines. Erratics perched on bedrock outboard of the Drygalski Moraines constrain local deglaciation to similar to 9.9 +/- 0.6 ka (n = 2). Three Drygalski Moraine crests yield mean Be-10 ages of 8.6 +/- 0.4 ka (n = 2), 8.5 +/- 0.2 ka (n = 3), and 7.6 +/- 0.1 ka (n = 2) from outer to inner. Perched erratics between the inner two moraines average 7.8 +/- 0.1 ka (n = 2) and are consistent with the moraine ages. Sediments from a proglacial lake with a catchment area extending an estimated 2 km beneath (inland of) the present ice sheet terminus constrain an ice sheet minimum extent from 5.4 ka to 0.6 ka. The moraine chronology paired with the lake sediment stratigraphy reveals that the ice margin likely remained within similar to 2 km of its present position from similar to 9.9 to 5.4 ka. This unexpected early Holocene stability, preceded by rapid ice retreat and followed by minimum ice extent between similar to 5.4 and 0.6 ka, contrasts with many records of early Holocene warmth and the Northern Hemisphere summer insolation maximum. We suggest ice margin stability may instead be tied to adjacent ocean temperatures, which reached an optimum in the middle Holocene. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Cronauer, Sandra L.; Briner, Jason P.; Kelley, Samuel E.] Univ Buffalo, Dept Geol, 411 Cooke Hall, Buffalo, NY 14260 USA. [Zimmerman, Susan R. H.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, 7000 East Ave, Livermore, CA 94550 USA. [Morlighem, Mathieu] Univ Calif Irvine, Dept Earth Syst Sci, Croul Hall, Irvine, CA 92697 USA. [Kelley, Samuel E.] Univ Waterloo, Dept Earth & Environm Sci, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada. RP Briner, JP (reprint author), Univ Buffalo, Dept Geol, 411 Cooke Hall, Buffalo, NY 14260 USA. NR 53 TC 5 Z9 5 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD SEP 1 PY 2016 VL 147 SI SI BP 59 EP 68 DI 10.1016/j.quascirev.2015.08.034 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA DU7QK UT WOS:000382409500005 ER PT J AU Leung, MCK Hutson, MS Seifert, AW Spencer, RM Knudsen, TB AF Leung, Maxwell C. K. Hutson, M. Shane Seifert, Ashley W. Spencer, Richard M. Knudsen, Thomas B. TI Computational modeling and simulation of genital tubercle development SO REPRODUCTIVE TOXICOLOGY LA English DT Article; Proceedings Paper CT 44th Annual Conference of the European-Teratology-Society CY SEP 11-14, 2016 CL Dublin, IRELAND SP European Teratol Soc DE Agent-based model; Genital tubercle; Hypospadias; Computational toxicology ID TISSUE-SPECIFIC ROLES; EPITHELIAL-MESENCHYMAL TRANSFORMATION; REPRODUCTIVE-TRACT DEVELOPMENT; MATE GENITOURINARY SYSTEM; EXTERNAL GENITALIA; SONIC-HEDGEHOG; ANDROGEN RECEPTOR; ENDOCRINE DISRUPTION; URETHRAL DEVELOPMENT; DIVERSE MECHANISMS AB Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development. (C) 2016 Elsevier Inc. All rights reserved. C1 [Leung, Maxwell C. K.; Knudsen, Thomas B.] US EPA, Natl Ctr Computat Toxicol, Res Triangle Pk, NC 27711 USA. [Leung, Maxwell C. K.; Hutson, M. Shane] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Hutson, M. Shane] Vanderbilt Univ, Vanderbilt Inst Integrat Biosyst Res & Educ, Dept Phys & Astron, Nashville, TN 37235 USA. [Seifert, Ashley W.] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA. [Spencer, Richard M.] Lockheed Martin, Res Triangle Pk, NC 27709 USA. RP Leung, MCK; Knudsen, TB (reprint author), US EPA, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM leung.maxwell@epa.gov; knudsen.thomas@epa.gov OI Leung, Maxwell/0000-0003-1530-3306 NR 79 TC 0 Z9 0 U1 3 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0890-6238 J9 REPROD TOXICOL JI Reprod. Toxicol. PD SEP PY 2016 VL 64 SI SI BP 151 EP 161 DI 10.1016/j.reprotox.2016.05.005 PG 11 WC Reproductive Biology; Toxicology SC Reproductive Biology; Toxicology GA DU1GR UT WOS:000381956700013 PM 27180093 ER PT J AU Bakhti, S Tishchenko, AV Zambrana-Puyalto, X Bonod, N Dhuey, SD Schuck, PJ Cabrini, S Alayoglu, S Destouches, N AF Bakhti, Said Tishchenko, Alexandre V. Zambrana-Puyalto, Xavier Bonod, Nicolas Dhuey, Scott D. Schuck, P. James Cabrini, Stefano Alayoglu, Selim Destouches, Nathalie TI Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles SO SCIENTIFIC REPORTS LA English DT Article ID NEGATIVE REFRACTIVE-INDEX; METAL NANOPARTICLES; SURFACE-PLASMONS; NANOSTRUCTURES; SCATTERING; METAMATERIALS; NANOCLUSTERS; PERMEABILITY; FREQUENCIES; RESONATORS AB In this work we theoretically and experimentally analyze the resonant behavior of individual 3 x 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations. C1 [Bakhti, Said; Tishchenko, Alexandre V.; Destouches, Nathalie] Univ Lyon, UJM St Etienne, CNRS, Inst Opt Grad Sch,Lab Hubert Curien UMR 5516, F-42023 St Etienne, France. [Zambrana-Puyalto, Xavier; Bonod, Nicolas] Aix Marseille Univ, Cent Marseille, Inst Fresnel, CNRS, Marseille, France. [Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA. [Alayoglu, Selim] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA. RP Destouches, N (reprint author), Univ Lyon, UJM St Etienne, CNRS, Inst Opt Grad Sch,Lab Hubert Curien UMR 5516, F-42023 St Etienne, France. EM nathalie.destouches@univ-st-etienne.fr RI Bonod, Nicolas/F-3344-2014 FU LABEX MANUTECH-SISE of Universite de Lyon, within the program "Investissements d'Avenir" [ANR-10-LABX-0075, ANR-11-IDEX-0007]; ANR [12-NANO-0006]; A*MIDEX project - Investissements d'Avenir French Government program [ANR-11-IDEX-0001-02]; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX N.D. is grateful to Ali Belkacem, from the Chemical Sciences Division (CSD), Berkeley, for fruitful discussions and his support to initiate this joint work. This work was supported by the LABEX MANUTECH-SISE (ANR-10-LABX-0075) of Universite de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The authors thank ANR for its financial support in the framework of project PHOTOFLEX no. 12-NANO-0006. Work at Institut Fresnel has been carried out thanks to the support of the A*MIDEX project (no. ANR-11-IDEX-0001-02) funded by the Investissements d'Avenir French Government program managed by the French National Research Agency (ANR). Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 53 TC 0 Z9 0 U1 22 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 1 PY 2016 VL 6 AR 32061 DI 10.1038/srep32061 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU7AL UT WOS:000382365600001 PM 27580515 ER PT J AU Hu, ZQ Wang, XJ Nan, TX Zhou, ZY Ma, BH Chen, XQ Jones, JG Howe, BM Brown, GJ Gao, Y Lin, H Wang, ZG Guo, RD Chen, SY Shi, XL Shi, W Sun, HZ Budil, D Liu, M Sun, NX AF Hu, Zhongqiang Wang, Xinjun Nan, Tianxiang Zhou, Ziyao Ma, Beihai Chen, Xiaoqin Jones, John G. Howe, Brandon M. Brown, Gail J. Gao, Yuan Lin, Hwaider Wang, Zhiguang Guo, Rongdi Chen, Shuiyuan Shi, Xiaoling Shi, Wei Sun, Hongzhi Budil, David Liu, Ming Sun, Nian X. TI Non-Volatile Ferroelectric Switching of Ferromagnetic Resonance in NiFe/PLZT Multiferroic Thin Film Heterostructures SO SCIENTIFIC REPORTS LA English DT Article ID ELECTRIC-FIELD CONTROL; ROOM-TEMPERATURE; OXIDE HETEROSTRUCTURES; MAGNETIC-ANISOTROPY; SPIN POLARIZATION; TUNNEL-JUNCTIONS; ATOMIC LAYERS; VOLTAGE; MEMORY; CHARGE AB Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Nonvolatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices. C1 [Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Chen, Xiaoqin; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Sun, Nian X.] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. [Hu, Zhongqiang; Jones, John G.; Howe, Brandon M.; Brown, Gail J.] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Zhou, Ziyao; Liu, Ming] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China. [Zhou, Ziyao; Liu, Ming] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China. [Ma, Beihai] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. [Budil, David] Northeastern Univ, Dept Chem, Boston, MA 02115 USA. RP Sun, NX (reprint author), Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA.; Liu, M (reprint author), Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China.; Liu, M (reprint author), Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China. EM mingliu@mail.xjtu.edu.cn; n.sun@neu.edu RI Gao, Yuan/E-4277-2016; Liu, Ming/B-4143-2009 OI Gao, Yuan/0000-0002-2444-1180; Liu, Ming/0000-0002-6310-948X FU National Science Foundation [1160504]; NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems TANMS; W.M. Keck Foundation; Air Force Research Laboratory [FA8650-14-C-5706]; U.S. Department of Energy, Vehicle Technologies Program [DE-AC02-06CH11357]; Air Force Office of Scientific Research (AFOSR) FX This work was supported by the National Science Foundation Award 1160504, NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems TANMS, the W.M. Keck Foundation, and the Air Force Research Laboratory through Contract No. FA8650-14-C-5706. Work at Argonne was funded by the U.S. Department of Energy, Vehicle Technologies Program, under Contract No. DE-AC02-06CH11357. B.H. and G.B. gratefully acknowledge the financial support from the Air Force Office of Scientific Research (AFOSR). NR 54 TC 0 Z9 0 U1 34 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 1 PY 2016 VL 6 AR 32408 DI 10.1038/srep32408 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU6MS UT WOS:000382329800001 PM 27581071 ER PT J AU Alazizi, A Smith, D Erdemir, A Kim, SH AF Alazizi, Ala Smith, David Erdemir, Ali Kim, Seong H. TI Silane Treatment of Diamond-Like Carbon: Improvement of Hydrophobicity, Oleophobicity, and Humidity Tolerance of Friction SO TRIBOLOGY LETTERS LA English DT Article DE Diamond-like carbon; DLC; Humidity tolerance; Silane treatment ID TRIBOLOGICAL MOISTURE SENSITIVITY; CHEMICAL-VAPOR-DEPOSITION; RUN-IN BEHAVIOR; WATER-ADSORPTION; INTERNAL-STRESS; FILMS; WEAR; LUBRICATION; SI; SURFACES AB Hydrophobicity and humidity tolerance of the low friction behavior of hydrogenated diamond-like carbon (H-DLC) were improved via surface modification using vapor-phase chemical reactions with organic silanes at 250-280 degrees C. Water and hexadecane contact angles increased after silane treatments. Unlike pristine H-DLC which loses ultra-low friction behavior as soon as relative humidity (RH) increases to a few percent, silane-treated H-DLC films maintained a low friction behavior (with a coefficient less than 0.08) up to 30 % RH. Elemental analysis of the transfer films accumulated on the balls after friction tests indicated that the silane molecules not only decorated the topmost surface of the H-DLC, but also penetrated into and reacted with the subsurface. Surface roughness, water adsorption behavior, and hardness measurements also showed that silane treatment affected the surface morphology and subsurface porosity of the H-DLC film. C1 [Alazizi, Ala; Kim, Seong H.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Alazizi, Ala; Kim, Seong H.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Smith, David] SilcoTek Corp, Bellefonte, PA 16823 USA. [Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.; Kim, SH (reprint author), Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. EM shkim@engr.psu.edu FU National Science Foundation [CMMI-1131128]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation (Grant No. CMMI-1131128). Additional support was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office under Contract DE-AC02-06CH11357. The authors acknowledged Dr. Osman Eryilmaz for preparing H-DLC samples on silicon substrates for this study. NR 50 TC 0 Z9 0 U1 13 U2 13 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 EI 1573-2711 J9 TRIBOL LETT JI Tribol. Lett. PD SEP PY 2016 VL 63 IS 3 AR 43 DI 10.1007/s11249-016-0733-4 PG 11 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA DU7KD UT WOS:000382392200014 ER PT J AU Dwivedi, D Mohanty, BP Lesikar, BJ AF Dwivedi, Dipankar Mohanty, Binayak P. Lesikar, Bruce J. TI Impact of the Linked Surface Water-Soil Water-Groundwater System on Transport of E. coli in the Subsurface SO WATER AIR AND SOIL POLLUTION LA English DT Article DE E. coli transport; Seasonal variability; Septic tanks; Surface water and groundwater interaction ID SATURATED POROUS-MEDIA; ALLUVIAL GRAVEL AQUIFER; ESCHERICHIA-COLI; SAND COLUMNS; CRYPTOSPORIDIUM OOCYSTS; HYDRAULIC CONDUCTIVITY; BACTERIAL TRANSPORT; VIRUS TRANSPORT; MODEL; FILTRATION AB Escherichia coli (E. coli) contamination of groundwater (GW) and surface water (SW) occurs significantly through the subsurface from onsite wastewater treatment systems (OWTSs). However, E. coli transport in the subsurface remains inadequately characterized at the field scale, especially within the vadose zone. Therefore, the aim of this research is to investigate the impact of groundwater fluctuations (e.g., recharging, discharging conditions) and variable conditions in the vadose zone (e.g., pulses of E. coli flux) by characterizing E. coli fate and transport in a linked surface watersoil water-groundwater system (SW-SoW-GW). In particular, this study characterizes the impact of flow regimes on E. coli transport in the subsurface and evaluates the sensitivity of parameters that control the transport of E. coli in the SW-SoW-GW system. This study was conducted in Lake Granbury, which is an important water supply in north-central Texas providing water for over 250,000 people. Results showed that there was less removal of E. coli during groundwater recharge events as compared to GW discharge events. Also, groundwater and surface water systems largely control E. coli transport in the subsurface; however, temporal variability of E. coli can be explained by linking the SW-SoW-GW system. Moreover, sensitivity analysis revealed that saturated water content of the soil, total retention rate coefficient, and hydraulic conductivity are important parameters for E. coli transport in the subsurface. C1 [Dwivedi, Dipankar] Lawrence Berkeley Natl Lab, Earth & Environm Sci Area, Berkeley, CA 94720 USA. [Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA. [Lesikar, Bruce J.] Kaselco LLC Texas, Shiner, TX 77984 USA. RP Dwivedi, D (reprint author), Lawrence Berkeley Natl Lab, Earth & Environm Sci Area, Berkeley, CA 94720 USA. EM DDwivedi@lbl.gov FU EPA 319(h) grant; National Institute of Environmental Health Sciences [5R01ES015634]; Texas Water Resources Institute; Texas AM [02-130003] FX This research was supported by EPA 319(h) grant for TMDL in Texas streams and partly supported by the National Institute of Environmental Health Sciences (grant 5R01ES015634), Texas Water Resources Institute, and Texas A&M support a/c 02-130003. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. NR 73 TC 0 Z9 0 U1 17 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 EI 1573-2932 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD SEP PY 2016 VL 227 IS 9 AR 351 DI 10.1007/s11270-016-3053-2 PG 16 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA DV2OY UT WOS:000382761400059 ER PT J AU Cardenas, AJP O'Hagan, M AF Cardenas, Allan Jay P. O'Hagan, Molly TI Crystal structure of dimethylformamidium bis(trifluoromethanesulfonyl)amide: an ionic liquid SO ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS LA English DT Article DE crystal structure; ionic liquid; electrolyte; hydrogen bond AB At 100 K, the title molecular salt, C3H8NO+center dot C2F6NO4S2-, has orthorhombic (P2(1)2(1)2(1)) symmetry; the amino H atom of bis(trifluoromethanesulfonyl) amine (HNTf2) was transferred to the basic O atom of dimethylformamide (DMF) when the ionic liquid components were mixed. The structure displays an O-H center dot center dot center dot N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C-H center dot center dot center dot O interaction, generating an R-2(2) (7) loop. A further very weak C-H center dot center dot center dot O interaction generates an [001] chain. C1 [Cardenas, Allan Jay P.; O'Hagan, Molly] Pacific Northwest Natl Lab, POB 999 MSIN K2-57, Richland, WA 99352 USA. RP O'Hagan, M (reprint author), Pacific Northwest Natl Lab, POB 999 MSIN K2-57, Richland, WA 99352 USA. EM Molly.OHagan@pnnl.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2056-9890 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Crystallogr. Commun. PD SEP PY 2016 VL 72 BP 1290 EP + DI 10.1107/S2056989016012251 PN 9 PG 7 WC Crystallography SC Crystallography GA DU6CL UT WOS:000382301000016 PM 27920919 ER PT J AU Hong, YC Hensley, A McEwen, JS Wang, Y AF Hong, Yongchun Hensley, Alyssa McEwen, Jean-Sabin Wang, Yong TI Perspective on Catalytic Hydrodeoxygenation of Biomass Pyrolysis Oils: Essential Roles of Fe-Based Catalysts SO CATALYSIS LETTERS LA English DT Article DE Biofuel; Hydrodeoxygenation Lignin; Fe catalyst; Bimetallic catalyst; Pyrolysis oil ID GAS-PHASE HYDRODEOXYGENATION; H-2 DISSOCIATIVE ADSORPTION; FISCHER-TROPSCH SYNTHESIS; 1ST PRINCIPLES; BIO-OIL; M-CRESOL; GUAIACOL HYDRODEOXYGENATION; HYDROPROCESSING CATALYSTS; HYDROTREATING CATALYSTS; BIODIESEL PRODUCTION AB Catalytic fast pyrolysis is the most promising approach for biofuel production due to its simple process and versatility to handle lignocellulosic biomass feedstocks with varying and complex compositions. Compared with in situ catalytic fast pyrolysis, ex situ catalytic pyrolysis has the flexibility of optimizing the pyrolysis step and catalytic process individually to improve the quality of pyrolysis oil (stability, oxygen content, acid number, etc.) and to maximize the carbon efficiency in the conversion of biomass to pyrolysis oil. Hydrodeoxygenation is one of the key catalytic functions in ex situ catalytic fast pyrolysis. Recently, Fe-based catalysts have been reported to exhibit superior catalytic properties in the hydrodeoxygenation of model compounds in pyrolysis oil, which potentially makes the ex situ pyrolysis of biomass commercially viable due to the abundance and low cost of Fe. Here, we briefly summarize the recent progress on Fe-based catalysts for the hydrodeoxygenation of biomass, and provide perspectives on how to further improve Fe-based catalysts (activity and stability) for their potential applications in the emerging area of biomass conversion. C1 [Hong, Yongchun; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Hong, Yongchun; Wang, Yong] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [McEwen, Jean-Sabin] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [McEwen, Jean-Sabin] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. RP Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.; Wang, Y (reprint author), Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM yong.wang@pnnl.gov FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-FG02-05ER15712, DE-SC0014560]; Department of Energy's Office of Biological and Environmental Research FX Y. W. and Y. H. acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under award numbers DE-FG02-05ER15712. J.-S. M. and A. H. acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under award number DE-SC0014560. A portion of the research was performed at Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). NR 129 TC 1 Z9 1 U1 39 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD SEP PY 2016 VL 146 IS 9 BP 1621 EP 1633 DI 10.1007/s10562-016-1770-1 PG 13 WC Chemistry, Physical SC Chemistry GA DU2AD UT WOS:000382011600001 ER PT J AU Magee, JW Palomino, RM White, MG AF Magee, Joseph W. Palomino, Robert M. White, Michael G. TI Infrared Spectroscopy Investigation of Fe-Promoted Rh Catalysts Supported on Titania and Ceria for CO Hydrogenation SO CATALYSIS LETTERS LA English DT Article DE Heterogeneous catalysis; Infrared spectroscopy; CO Hydrogenation; FeRh alloy; Ethanol ID WATER-GAS-SHIFT; CARBON-MONOXIDE; HIGH-PRESSURE; RHODIUM CATALYSTS; SIO2-SUPPORTED RH; ETHANOL SYNTHESIS; IRON CATALYSTS; FT-IR; SYNGAS; ADSORPTION AB The nature of the promotional effect of Fe addition to Rh/TiO2 and Rh/CeO2 catalysts for CO hydrogenation was investigated using FT-IR spectroscopy in an ultrahigh vacuum compatible transmission IR cell. CO adsorption experiments on Rh and FeRh showed vibrational signatures characteristic of linear and bridge bound CO on Rh-0 as well as geminal-dicarbonyl species associated with Rh+. Compared to TiO2, the CeO2-supported catalysts show increased dispersion, reflected by decreased particle size, and a lower signal for linear versus geminal-dicarbonyl bonded CO. The absorption frequencies for CO on Rh/CeO2 are also redshifted relative to Rh/TiO2, which results from a weaker Rh-CO interaction, likely due to the increased reducibility of the CeO2 support. Upon addition of Fe, a new spectral feature is observed and attributed to CO bound to Rh in close contact with Fe, likely as a surface alloy. CO hydrogenation on (Fe)Rh catalysts on both supports was also studied. Compared to bare Rh, Fe containing catalysts promote formate and methoxy species on the surface at lower temperature (180 A degrees C), which suggests an enhancement in methanol selectivity by Fe addition. At higher temperatures (220 A degrees C), the spectral features appear similar, further confirming the role of Fe as a disrupter of large Rh-0 crystallites and regulator of CO dissociation and CH4 formation. C1 [Magee, Joseph W.; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Palomino, Robert M.; White, Michael G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP White, MG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; White, MG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM jmagee@bnl.gov; rpalomino@bnl.gov; mgwhite@bnl.gov OI Palomino, Robert/0000-0003-4476-3512 FU Brookhaven National Laboratory [DE-SC0012704]; Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences FX The work was carried out at Brookhaven National Laboratory under Contract No. DE-SC0012704 with the U.S Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences. The authors gratefully acknowledge Dr. Jordi Llorca of the Technical University of Catalonia (Barcelona, Spain) for performing electron microscopy characterization of the catalysts used in these experiments. NR 47 TC 0 Z9 0 U1 17 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD SEP PY 2016 VL 146 IS 9 BP 1771 EP 1779 DI 10.1007/s10562-016-1801-y PG 9 WC Chemistry, Physical SC Chemistry GA DU2AD UT WOS:000382011600014 ER PT J AU Dane, M Gonis, A AF Dane, Markus Gonis, Antonios TI On the v-Representabilty Problem in Density Functional Theory: Application to Non-Interacting Systems SO COMPUTATION LA English DT Article DE density functional theory; v-representability; constrained search ID SELF-INTERACTION PROBLEM; UPSILON-REPRESENTABILITY; ELECTRON-DENSITIES; CONSTRUCTION; ORBITALS AB Based on a computational procedure for determining the functional derivative with respect to the density of any antisymmetric N- particle wave function for a non-interacting system that leads to the density, we devise a test as to whether or not a wave function known to lead to a given density corresponds to a solution of a Schrdinger equation for some potential. We examine explicitly the case of non-interacting systems described by Slater determinants. Numerical examples for the cases of a one-dimensional square-well potential with infinite walls and the harmonic oscillator potential illustrate the formalism. C1 [Dane, Markus; Gonis, Antonios] Lawrence Livermore Natl Lab, POB 808,L-372, Livermore, CA 94551 USA. RP Dane, M (reprint author), Lawrence Livermore Natl Lab, POB 808,L-372, Livermore, CA 94551 USA. EM daene1@llnl.gov; gonis1@llnl.gov RI Dane, Markus/H-6731-2013 OI Dane, Markus/0000-0001-9301-8469 NR 22 TC 1 Z9 1 U1 3 U2 3 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2079-3197 J9 COMPUTATION JI Computation PD SEP PY 2016 VL 4 IS 3 AR 24 DI 10.3390/computation4030024 PG 13 WC Mathematics, Interdisciplinary Applications SC Mathematics GA DU8RB UT WOS:000382480300002 ER PT J AU Houde, S Spurlock, CA AF Houde, Sebastien Spurlock, C. Anna TI Minimum Energy Efficiency Standards for Appliances: Old and New Economic Rationales SO ECONOMICS OF ENERGY & ENVIRONMENTAL POLICY LA English DT Article DE Appliances; Minimum Energy Efficiency Standards; Energy Efficiency Policy ID FUEL-ECONOMY; QUALITY STANDARDS; DISCOUNT RATES; GASOLINE PRICES; COMPETITION; COSTS; CONSUMPTION; INNOVATION; PURCHASE; POLICIES AB We revisit Hausman and Joskow (1982)'s economic rationales for appliance minimum energy efficiency standards. In addition to the four market failures they argued could justify appliance standards energy prices below marginal social cost, consumers underestimating energy prices, consumer discount rates above social discount rates, and principal-agent problems we discuss two additional market failures that are relevant and potentially economically important in this context: market power and innovation market failures. We highlight puzzles uncovered by recent empirical results, and suggest directions future research should take to better understand the normative implications of appliance standards. C1 [Houde, Sebastien] Univ Maryland, Dept Agr & Resource Econ, College Pk, MD 20742 USA. [Spurlock, C. Anna] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Houde, S (reprint author), Univ Maryland, Dept Agr & Resource Econ, College Pk, MD 20742 USA. EM shoude@umd.edu; caspurlock@lbl.gov FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Thank you to Catherine Wolfram, Paul Joskow, Louis-Gaetan Giraudet, Larry Dale, and Louis-Benoit Desroches for comments and suggestions. NR 68 TC 0 Z9 0 U1 4 U2 4 PU INT ASSOC ENERGY ECONOMICS PI CLEVELAND PA 28790 CHAGRIN BLVD, STE 210, CLEVELAND, OH 44122 USA SN 2160-5882 EI 2160-5890 J9 ECON ENERGY ENV POL JI Econ. Energy Environ. Policy PD SEP PY 2016 VL 5 IS 2 BP 65 EP 83 DI 10.5547/2160-5890.5.2.shou PG 19 WC Economics; Environmental Studies SC Business & Economics; Environmental Sciences & Ecology GA DU3HL UT WOS:000382101300005 ER PT J AU Fleck, SC Churchwell, MI Doerge, DR Teeguarden, JG AF Fleck, Stefanie C. Churchwell, Mona I. Doerge, Daniel R. Teeguarden, Justin G. TI Urine and serum biomonitoring of exposure to environmental estrogens II: Soy isoflavones and zearalenone in pregnant women SO FOOD AND CHEMICAL TOXICOLOGY LA English DT Article DE Soy isoflavones; Zearalenone; Exposure; Pregnancy; Biomonitoring; Endocrine disruptors ID SPRAGUE-DAWLEY RATS; BREAST-CANCER RISK; PHYSIOLOGICAL CONCENTRATIONS; MYCOTOXIN EXPOSURE; PLACENTAL-TRANSFER; RECEPTOR-ALPHA; GENISTEIN; DIETARY; GROWTH; PHARMACOKINETICS AB Urine and serum biomonitoring was used to measure internal exposure to selected dietary estrogens in a cohort of 30 pregnant women. Exposure was measured over a period comprising one-half day in the field (6 h) and one day in a clinic (24 h). Biomonitoring of the dietary phytoestrogens genistein (GEN), daidzein (DDZ) and equol (EQ), as well as the mycoestrogen, zearalenone (ZEN) and its congeners, was conducted using UPLC-MS/MS. Biomonitoring revealed evidence of internal exposure to naturally occurring dietary estrogens during pregnancy. Urinary concentrations of total GEN, DDZ and EQ were similar to levels reported for general adult U.S. population. Measurable concentrations of total (parent and metabolites) GEN, DDZ and EQ were present in 240, 207 and 2 of 270 serum samples, respectively. Six out of 30 subjects had measurable concentrations of unconjugated GEN and/or DDZ in serum between 0.6 and 7.1 nM. Urine to serum total isoflavone ratios for GEN, DDZ and EQ were 13, 47, and 180, respectively. ZEN and its reductive metabolite, alpha-zearalenol (alpha-ZEL), were present in pregnant women (11 out of 30 subjects) as conjugates at levels near the limit of quantification. The average total urinary concentration was 0.10 mu g/L for ZEN and 0.11 mu g/L for alpha-ZEL. (C) 2016 Published by Elsevier Ltd. C1 [Fleck, Stefanie C.; Churchwell, Mona I.; Doerge, Daniel R.] US FDA, Div Biochem Toxicol, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA. [Teeguarden, Justin G.] Pacific Northwest Natl Lab, Hlth Effects & Exposure Sci, Richland, WA 99352 USA. [Teeguarden, Justin G.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. RP Teeguarden, JG (reprint author), 902 Battelle Blvd, Richland, WA 99352 USA. EM stefanie.fleck@fda.hhs.gov; mona.churchwell@fda.hhs.gov; daniel.doerge@fda.hhs.gov; jt@pnnl.gov NR 46 TC 1 Z9 1 U1 13 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0278-6915 EI 1873-6351 J9 FOOD CHEM TOXICOL JI Food Chem. Toxicol. PD SEP PY 2016 VL 95 BP 19 EP 27 DI 10.1016/j.fct.2016.05.021 PG 9 WC Food Science & Technology; Toxicology SC Food Science & Technology; Toxicology GA DT9PX UT WOS:000381835900003 PM 27255803 ER PT J AU Bowman, WM Bowman, JD AF Bowman, Warigia M. Bowman, J. David TI Censorship or self-control? Hate speech, the state and the voter in the Kenyan election of 2013 SO JOURNAL OF MODERN AFRICAN STUDIES LA English DT Article ID SOCIAL MEDIA; POLITICAL-CHANGE; INTERNET; MOBILIZATION; VIOLENCE; DEMOCRATIZATION; AFRICA AB In 2013, the Kenyan government adopted a hybrid censorship strategy that relied on regulation, the presence of a strong security state, and the willingness of Kenyans to self-censor. The goal of this censorship strategy was to ensure a peaceful election. This study examines two issues. First, it investigates steps taken by the Kenyan government to minimise hate speech. Second, it explores how efforts to minimise hate speech affected citizen communications over SMS during the 2013 election. An initial round of qualitative data was gathered (n = 101) through a structured exit interview administered election week. A statistically significant, representative sample of quantitative data was gathered by a reputable Kenyan polling firm (n 2000). Both sets of empirical data indicate that Kenyan citizens cooperated in large part with efforts to limit political speech. Yet speech was not always completely peaceful'. Rather, voters used electronic media to insult, offend, and express contentious political views as well as express peace speech. This study argues that the empirical evidence suggests hate speech over text messages during the Kenyan election declined between 2008 and 2013. C1 [Bowman, Warigia M.] Univ Arkansas, Clinton Sch Publ Serv, 1200 President Clinton Ave, Little Rock, AR 72201 USA. [Bowman, J. David] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Bowman, WM (reprint author), Univ Arkansas, Clinton Sch Publ Serv, 1200 President Clinton Ave, Little Rock, AR 72201 USA. EM wbowman@clintonschool.uasys.edu; bowmanjd@ornl.gov FU University of Arkansas Clinton School of Public Service FX We wish to express our deepest gratitude for the work of our colleagues on the Kenya Information Communications Technology List ('Kictanet'). Specifically, we would like to thank our colleagues Michael Kipsang Bullut, Grace Githaiga, Wambui Ngugi, Brian Munyao Longwe, Mwendwa Kivuva, Abraham Mulwo, Muchiri Nyaggah, and Norbert Wildermuth for helping to collect the data that form the foundation of this paper. Thank you also to the University of Arkansas Clinton School of Public Service for funding part of the research upon which this paper is based. We would also like to thank participants of the Kenya Elections Workshop held in June 2013 for their comments, which helped improve this paper. We are particularly grateful to Tom Wolf of IPSOS Synovate. We would also like to thank Dorina Bekoe, Fodei Batty, Paola Cavallari and Florence Muema as well as two anonymous reviewers from JMAS for their valuable insights. Finally, my thanks go to Kimani Njogu of Twaweza Publishing, for his elegant Kiswahili translations. NR 53 TC 0 Z9 0 U1 7 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-278X EI 1469-7777 J9 J MOD AFR STUD JI J. Mod. Afr. Stud. PD SEP PY 2016 VL 54 IS 3 BP 495 EP 531 DI 10.1017/S0022278X16000380 PG 37 WC Area Studies SC Area Studies GA DU7FR UT WOS:000382379300006 ER PT J AU Duenas, ME Carlucci, L Lee, YJ AF Duenas, Maria Emilia Carlucci, Laura Lee, Young Jin TI Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Mass spectrometry imaging; MALDI; Matrix; Recrystallization; Maize; Lipids; High spatial resolution ID MASS-SPECTROMETRY; LATENT FINGERMARKS; TOF MS; TISSUE; SUBLIMATION; METABOLITES; EFFICIENCY AB Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 mu m spatial resolution. C1 [Duenas, Maria Emilia; Carlucci, Laura; Lee, Young Jin] US DOE, Ames Lab, Ames, IA 50011 USA. [Duenas, Maria Emilia; Lee, Young Jin] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. RP Lee, YJ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.; Lee, YJ (reprint author), Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. EM yjlee@iastate.edu FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE [DE-AC02-07CH11358] FX The authors acknowledge support for this work by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The Ames Laboratory is operated by Iowa State University under DOE Contract DE-AC02-07CH11358. NR 13 TC 0 Z9 0 U1 11 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD SEP PY 2016 VL 27 IS 9 BP 1575 EP 1578 DI 10.1007/s13361-016-1422-0 PG 4 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA DT1YR UT WOS:000381278500016 PM 27349253 ER PT J AU Bannister, ME Meyer, FW Hijazi, H Unocic, KA Garrison, LM Parish, CM AF Bannister, M. E. Meyer, F. W. Hijazi, H. Unocic, K. A. Garrison, L. M. Parish, C. M. TI Surface morphologies of He-implanted tungsten SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 21st International Workshop on Inelastic Ion-Surface Collisions (IISC) CY OCT 18-23, 2015 CL Donostia San Sebastian, SPAIN DE He nanofuzz formation; Tungsten surface modification; Plasma wall interactions ID THERMAL-DESORPTION; HELIUM AB Surface morphologies of tungsten surfaces, both polycrystalline and single-crystal [1 1 0], were investigated using SEM and FIB/SEM techniques after implantations at elevated surfaces temperatures (1200-1300 K) using well-characterized, mono-energetic He ion beams with a wide range of ion energies (218 eV-250 keV). Nanofuzz was observed on polycrystalline tungsten (PCW) following implantation of 100-keV He ions at a flux threshold of 0.9 x 10(16) cm(-2) s(-1), but not following 200-keV implantations with similar fluxes. No nanofuzz formation was observed on single-crystal [1 1 0] tungsten (SCW), despite fluxes exceeding those demonstrated previously to produce nanofuzz on polycrystalline tungsten. Pre-damaging the single-crystal tungsten with implanted C impurity interstitials did not significantly affect the, surface morphologies resulting from the high-flux He ion implantations. The main factor leading to the different observed surface structures for the pristine and C-implanted single-crystal W samples appeared to be the peak He ion flux characterizing the different exposures. It was speculated that nano fuzz formation was not observed for any SCW target exposures because of increased incubation fluences required for such targets. (C) 2016 Published by Elsevier B.V. C1 [Bannister, M. E.; Meyer, F. W.; Hijazi, H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Unocic, K. A.; Garrison, L. M.; Parish, C. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Hijazi, H.] Aix Marseille Univ, CNRS, PIIM UMR 7345, F-13397 Marseille, France. RP Bannister, ME (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM bannisterme@ornl.gov RI Parish, Chad/J-8381-2013; Garrison, Lauren/S-2526-2016; OI Garrison, Lauren/0000-0002-5673-8333; Bannister, Mark E./0000-0002-9572-8154 NR 30 TC 0 Z9 0 U1 6 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 1 PY 2016 VL 382 BP 76 EP 81 DI 10.1016/j.nimb.2016.05.003 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DU7RY UT WOS:000382413500015 ER PT J AU Dong, T Van Wychen, S Nagle, N Pienkos, PT Laurens, LML AF Dong, T. Van Wychen, S. Nagle, N. Pienkos, P. T. Laurens, L. M. L. TI Impact of biochemical composition on susceptibility of algal biomass to acid-catalyzed pretreatment for sugar and lipid recovery SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Algae; Biorefinery; Biomass composition; Lipids; Carbohydrates; Bioethanol; Renewable diesel; Process economics ID HIGH-PRESSURE HOMOGENIZATION; CELL DISRUPTION; ASSISTED EXTRACTION; BIOFUELS PRODUCTION; CHLORELLA-VULGARIS; MICROALGAE; OIL; HYDROLYSIS; PARAMETERS; ULTRASOUND AB One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We focus on the impact of compositional characteristics of biomass on the susceptibility to pretreatment in order to maximize the valorization of algal biomass conversion for biofuels and bioproducts. The release of monomeric carbohydrates in the aqueous phase and extractability of the lipid fraction was measured based a response surface methodology to find significant explanatory variables and interaction terms. We studied the effect of harvest timing on the conversion yields, using three algal strains; Chlorella vulgaris and Scenedesmus acutus and Nannochloropsis granulata representing three different nutritionalmetabolic phases. Four cultivation conditions of high (>= 90 gallon gasoline equivalent/ton biomass) value for a combined sugar- and lipid-based biofuels process were identified. These four conditions represent eithermid or late stage harvest cultivation regimes. The results indicate that acid pretreatment has potential to be applicable for a vast range of biomass samples to obtain high energy yields, but that the exact conditions and optima are dependent on the strain and likely the starting composition of the biomass. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Dong, T.; Van Wychen, S.; Nagle, N.; Pienkos, P. T.; Laurens, L. M. L.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Laurens, LML (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Lieve.Laurens@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy as part of the BioEnergy Technology Office (BETO) [1.3.4.300, 1.3.1.200, 1.3.4.201]; National Renewable Energy, Sustainable Algal Biofuels Consortium project - DOE [DE-EE0003372] FX We thank Drs. JohnMcGowen and Thomas Dempster (AzCATI, ASU, Mesa, AZ) for providing the biomass used for this work. We acknowledge technical assistance from Nicholas Sweeney and Deborah Hyman for the help with microscopy and HPLC analysis of carbohydrates, respectively, for this work. The work presented here was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy as part of the BioEnergy Technology Office (BETO) task #1.3.4.300, 1.3.1.200 and 1.3.4.201, and as part of the Sustainable Algal Biofuels Consortium project, funded under DOE Award # DE-EE0003372. NR 29 TC 0 Z9 0 U1 16 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD SEP PY 2016 VL 18 BP 69 EP 77 DI 10.1016/j.algal.2016.06.004 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DT8NV UT WOS:000381748800009 ER PT J AU Novoveska, L Zapata, AKM Zabolotney, JB Atwood, MC Sundstrom, ER AF Novoveska, Lucie Zapata, Anastasia K. M. Zabolotney, Jeffrey B. Atwood, Matthew C. Sundstrom, Eric R. TI Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgae cultivation; Polyculture; Wastewater treatment; Offshore photobioreactors; Biofuel ID ALGAL BIOFUEL PRODUCTION; PHYTOPLANKTON COMMUNITIES; DIVERSITY; COMPETITION; STABILITY; BIODIESEL; DEMAND; BATCH AB Algae Systems LLC has designed and implemented a novel approach to wastewater treatment in which municipal wastewater is used to cultivate microalgae in modular, offshore photobioreactors (PBRs). At the Algae Systems plant in Daphne AL, this process was used to treat up to 50,000 gal/day of incoming raw wastewater. A combination of algae nutrient uptake, aeration by photosynthetically produced oxygen, and dewatering via suspended air flotation removed 75% of total nitrogen, 93% of total phosphorus and 92% BOD from influent wastewater. Offshore PBRs contained evolving polycultures of microalgae and associated heterotrophs, with community composition shifting based on the dynamic external and internal environment. During one year of operation, microalgae composition shifted from dominance of Scenedesmus dimorphus to a diverse polyculture dominated by genus Chlorella, Cryptomonas and Scenedesmus. "The more, the merrier" approach to species richness produced resilient communities, enabling efficient nutrient uptake due to niche complementarity and eliminating process downtime due to biological disruptions. The resulting biomass was suitable for fuel conversion via hydrothermal liquefaction due to consistent lipid content, low ash content, and consistent elemental composition. Biomass production rates ranged from 3.5 to 22.7 g/m(2)/day during continuous operation, with productivity predominantly driven by temperature and frequency of harvest. (C) 2016 Elsevier B.V. All rights reserved. C1 [Novoveska, Lucie; Zapata, Anastasia K. M.; Zabolotney, Jeffrey B.; Atwood, Matthew C.; Sundstrom, Eric R.] Algae Syst LLC, 6321 Jordan Rd, Daphne, AL 36526 USA. [Zabolotney, Jeffrey B.] Univ S Alabama, Dept Biol, Mobile, AL 36688 USA. [Novoveska, Lucie] Dauphin Isl Sea Lab, 101 Bienville Blvd, Dauphin Isl, AL 36528 USA. [Zapata, Anastasia K. M.] Algae Energy, 2460 Ind Pk Blvd, Cumming, GA 30041 USA. [Sundstrom, Eric R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Novoveska, L (reprint author), Algae Syst LLC, 6321 Jordan Rd, Daphne, AL 36526 USA.; Novoveska, L (reprint author), Dauphin Isl Sea Lab, 101 Bienville Blvd, Dauphin Isl, AL 36528 USA. FU Algae Systems LLC FX Funding was provided by Algae Systems LLC. We would like to thank our talented offshore crew and the operation team. Tom Dempster (AzCATI) and Eric Brunden provided valuable insight. We thank Daphne Utilities for their continuous support. We also thank two anonymous reviewers for their critical contributions to the manuscript. NR 52 TC 4 Z9 4 U1 29 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD SEP PY 2016 VL 18 BP 86 EP 94 DI 10.1016/j.algal.2016.05.033 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DT8NV UT WOS:000381748800011 ER PT J AU Pegallapati, AK Frank, ED AF Pegallapati, Ambica K. Frank, Edward D. TI Energy use and greenhouse gas emissions from an algae fractionation process for producing renewable diesel SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Algae; Life-cycle analysis; Greenhouse gas emissions; Biofuels; Renewable energy ID BIOFUELS AB In one approach to algal biofuel production, lipids are extracted and converted to renewable diesel and non-lipid remnants are converted to biogas, which is used for renewable heat and power to support the process. Since biofuel economics benefit from increased fuel yield, the National Renewable Energy Laboratory analyzed an alternative pathway that extracts lipids and also makes ethanol from carbohydrates in the biomass. In this paper, we examine the environmental sustainability of this "fractionation pathway" through life-cycle analysis (LCA) of greenhouse gas emissions and energy use. When the feedstock productivity was 30 (18) g/m(2)/d, this pathway emitted 31 (36) gCO(2)e/MJ of total fuel, which is less than the emissions associated with conventional low sulfur petroleum diesel (96 gCO(2)e/MJ). The fractionation pathway performed well in this model despite the diversion of carbon to the ethanol fuel. (C) 2016 Elsevier B.V. All rights reserved. C1 [Pegallapati, Ambica K.; Frank, Edward D.] Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Frank, ED (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave, Argonne, IL 60439 USA. EM apegallapati@anl.gov; efrank@anl.gov FU Bioenergy Technologies Office in the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy; Argonne, a US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX We would like to thank Ryan Davis and Jennifer Markham from the National Renewable Energy Laboratory for data and for helpful comments. This work was sponsored by the Bioenergy Technologies Office in the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 12 TC 0 Z9 0 U1 15 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD SEP PY 2016 VL 18 BP 235 EP 240 DI 10.1016/j.algal.2016.06.019 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DT8NV UT WOS:000381748800026 ER PT J AU Qiu, DR Xie, M Dai, JC An, WX Wei, HH Tian, CY Kempher, ML Zhou, AF He, ZL Gu, BH Zhou, JZ AF Qiu, Dongru Xie, Ming Dai, Jingcheng An, Weixing Wei, Hehong Tian, Chunyuan Kempher, Megan L. Zhou, Aifen He, Zhili Gu, Baohua Zhou, Jizhong TI Differential Regulation of the Two Ferrochelatase Paralogues in Shewanella loihica PV-4 in Response to Environmental Stresses SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HEME-BIOSYNTHESIS PATHWAY; LIGHT-SENSITIVE MUTANTS; PROTOPORPHYRIN-IX; ESCHERICHIA-COLI; ONEIDENSIS MR-1; SYSTEMS BIOLOGY; SIGMA-FACTORS; GENES; GENUS; IDENTIFICATION AB Determining the function and regulation of paralogues is important in understanding microbial functional genomics and environmental adaptation. Heme homeostasis is crucial for the survival of environmental microorganisms. Most Shewanella species encode two paralogues of ferrochelatase, the terminal enzyme in the heme biosynthesis pathway. The function and transcriptional regulation of two ferrochelatase genes, hemH1 and hemH2, were investigated in Shewanella loihica PV-4. The disruption of hemH1 but not hemH2 resulted in a significant accumulation of extracellular protoporphyrin IX (PPIX), the precursor to heme, and decreased intracellular heme levels. hemH1 was constitutively expressed, and the expression of hemH2 increased when hemH1 was disrupted. The transcription of hemH1 was regulated by the housekeeping sigma factor RpoD and potentially regulated by OxyR, while hemH2 appeared to be regulated by the oxidative stress-associated sigma factor RpoE2. When an oxidative stress condition was mimicked by adding H2O2 to the medium or exposing the culture to light, PPIX accumulation was suppressed in the Delta hemH1 mutant. Consistently, transcriptome analysis indicated enhanced iron uptake and suppressed heme synthesis in the Delta hemH1 mutant. These data indicate that the two paralogues are functional in the heme synthesis pathway but regulated by environmental conditions, providing insights into the understanding of bacterial response to environmental stresses and a great potential to commercially produce porphyrin compounds. IMPORTANCE Shewanella is capable of utilizing a variety of electron acceptors for anaerobic respiration because of the existence of multiple c-type cytochromes in which heme is an essential component. The cytochrome-mediated electron transfer across cellular membranes could potentially be used for biotechnological purposes, such as electricity generation in microbial fuel cells and dye decolorization. However, the mechanism underlying the regulation of biosynthesis of heme and cytochromes is poorly understood. Our study has demonstrated that two ferrochelatase genes involved in heme biosynthesis are differentially regulated in response to environmental stresses, including light and reactive oxygen species. This is an excellent example showing how bacteria have evolved to maintain cellular heme homeostasis. More interestingly, the high yields of extracellular protoporphyrin IX by the Shewanella loihica PV-4 mutants could be utilized for commercial production of this valuable chemical via bacterial fermentation. C1 [Qiu, Dongru; Dai, Jingcheng; An, Weixing; Wei, Hehong] Chinese Acad Sci, Inst Hydrobiol, Wuhan, Peoples R China. [Qiu, Dongru; Dai, Jingcheng; An, Weixing; Wei, Hehong] Univ Chinese Acad Sci, Beijing, Peoples R China. [Qiu, Dongru; Xie, Ming; Kempher, Megan L.; Zhou, Aifen; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Gen, Norman, OK 73019 USA. [Tian, Chunyuan] Hubei Engn Univ, Sch Life Sci & Technol, Xiaogan, Peoples R China. [Gu, Baohua] Oak Ridge Natl Lab, Div Earth Sci, Oak Ridge, TN 37831 USA. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China. RP Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Gen, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.; Zhou, JZ (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China. EM jzhou@ou.edu FU DOE [DE-FG02-07ER64383]; Chinese Academy of Sciences [Y15103-1-401]; One-Hundred Scholar Award; [WO2014144329 A2] FX This work was supported by DOE grant DE-FG02-07ER64383 to J.Z. and the Chinese Academy of Sciences grant Y15103-1-401 and One-Hundred Scholar Award to D.Q.; J.Z., D.Q., Z.H., and M.X. have a potential financial conflict of interest resulting from a published patent application (no. WO2014144329 A2) regarding the Shewanella-based production of protoporphyrin IX. NR 39 TC 0 Z9 0 U1 17 U2 17 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2016 VL 82 IS 17 BP 5077 EP 5088 DI 10.1128/AEM.00203-16 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DT5DI UT WOS:000381500700003 PM 27287322 ER PT J AU Chen, J Garcia, HE AF Chen, Jun Garcia, Humberto E. TI Economic optimization of operations for hybrid energy systems under variable markets SO APPLIED ENERGY LA English DT Article DE Hybrid energy systems; Renewable; Operations optimization; Economic analysis; Power market ID ELECTRICITY MARKET; COMBINED HEAT; MICRO-GRIDS; STORAGE; GENERATION; MANAGEMENT; DESIGN AB Hybrid energy systems (HES) have been proposed to be an important element to enable increasing penetration of clean energy. This paper proposes a methodology for operations optimization to maximize their economic value based on predicted renewable generation and market information. A multi environment computational platform for performing such operations optimization is also developed. To compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulation results of two specific HES configurations illustrate the proposed methodology and computational capability. Economic advantages of such operations optimizer and associated flexible operations are demonstrated by comparing the economic performance of flexible operations with that of constant operations. Sensitivity analysis with respect to market variability and prediction error are also performed. Published by Elsevier Ltd. C1 [Chen, Jun; Garcia, Humberto E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Garcia, HE (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM humberto.garcia@inl.gov OI Chen, Jun/0000-0002-0934-8519 FU Energy Security Initiative (ESI); Nuclear-Renewable Energy Systems Program at Idaho National Laboratory (INL) under the U.S. Department of Energy [DE-AC-07-05ID14517] FX This research is supported by the Energy Security Initiative (ESI) and the Nuclear-Renewable Energy Systems Program at Idaho National Laboratory (INL) under the U.S. Department of Energy contract DE-AC-07-05ID14517. The authors would like to acknowledge the assistance of Mr. Wesley R. Deason and Dr. Michael G. McKellar in providing part of cost parameters, and the leadership of Dr. Richard D. Boardman and Dr. Shannon M. Bragg-Sitton in the Nuclear-Renewable Energy Systems Program at INL. NR 63 TC 9 Z9 9 U1 4 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD SEP 1 PY 2016 VL 177 BP 11 EP 24 DI 10.1016/j.apenergy.2016.05.056 PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DS2OR UT WOS:000380623900002 ER PT J AU Yin, RX Kara, EC Li, YP DeForest, N Wang, K Yong, TY Stadler, M AF Yin, Rongxin Kara, Emre C. Li, Yaping DeForest, Nicholas Wang, Ke Yong, Taiyou Stadler, Michael TI Quantifying flexibility of commercial and residential loads for demand response using setpoint changes SO APPLIED ENERGY LA English DT Article DE Demand response; Thermostatically controlled loads; Regression models; Two-state model; Simplified DR potential estimation ID BUILDING ENERGY PERFORMANCE; ANCILLARY SERVICE; SMART APPLIANCES; HVAC SYSTEMS; OPTIMIZATION; MODEL; PILOT; IDENTIFICATION; CONSUMPTION; INTEGRATION AB This paper presents a novel demand response estimation framework for residential and commercial buildings using a combination of EnergyPlus and two-state models for thermostatically controlled loads. Specifically, EnergyPlus models for commercial and multi-dwelling residential units are applied to construct exhaustive datasets (i.e., with more than 300M data points) that capture the detailed load response and complex thermodynamics of several building types. Subsequently, regression models are fit to each dataset to predict DR potential based on key inputs, including hour of day, set point change and outside air temperature. For single residential units, and residential thermostatically controlled loads (i.e. water heaters and refrigerators) a two-state model from the literature is applied. For commercial office building and Multiple Dwelling Units (MDUs) building, the fitted regression model can predict DR potential with 80-90% accuracy for more than 90% of data points. The coefficients of, determination (i.e. R-2 value) range between 0.54 and 0.78 for the office buildings and 0.39-0.81 for MDUs, respectively. The proposed framework is then validated for commercial buildings through a comparison with a dataset composed of 11 buildings during 12 demand response events. In addition, the use of the proposed simplified DR estimation framework is presented in terms of two cases (1) peak load shed prediction in an individual building and (2) aggregated DR up/down capacity from a large-scale group of different buildings. Published by Elsevier Ltd. C1 [Yin, Rongxin; Kara, Emre C.; DeForest, Nicholas; Stadler, Michael] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA USA. [Li, Yaping; Wang, Ke; Yong, Taiyou] China Elect Power Res Inst, Beijing, Peoples R China. [Kara, Emre C.] SLAC Natl Accelerator Lab, Grid Integrat Syst & Mobil Grp, Menlo Pk, CA USA. RP Yin, RX (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA USA. EM ryin@lbl.gov FU State Grid Corporation of China Project (Study on Key Technologies for Power and Frequency Control of System with Source-Grid-Load Interactions) [DZN17201300197] FX The work described in this study was coordinated by the Grid Integration Group of Lawrence Berkeley National Laboratory and was supported by the State Grid Corporation of China Project (DZN17201300197, Study on Key Technologies for Power and Frequency Control of System with Source-Grid-Load Interactions). NR 54 TC 3 Z9 3 U1 16 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD SEP 1 PY 2016 VL 177 BP 149 EP 164 DI 10.1016/j.apenergy.2016.05.090 PG 16 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DS2OR UT WOS:000380623900014 ER PT J AU Zhang, CY Wang, Q Wang, JH Korpas, M Pinson, P Ostergaard, J Khodayar, ME AF Zhang, Chunyu Wang, Qi Wang, Jianhui Korpas, Magnus Pinson, Pierre Ostergaard, Jacob Khodayar, Mohammad E. TI Trading strategies for distribution company with stochastic distributed energy resources SO APPLIED ENERGY LA English DT Article DE Distributed energy resources (DERs); Proactive distribution company (PDISCO); Electricity markets; Bilevel game-theoretic model; Multi-period AC power flow; Mathematical program with equilibrium constraints (MPEC); Mathematical program with primal and dual constraints (MPPDC) ID DISTRIBUTION-SYSTEM; DEMAND RESPONSE; GENERATION; OPERATION; MARKET; LOAD; MICROGRIDS; DEVICES; MODEL; WIND AB This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower-level (LL) problems include the TL day-ahead market and scenario-based real-time markets, respectively with the objectives of maximizing social welfare and minimizing operation cost. The upper-level (UL) problem is to maximize the PDISCO's profit across these markets. The PDISCO's strategic offers/bids interactively influence the outcomes of each market. Since the LL problems are linear and convex, while the UL problem is non-linear and non-convex, an equivalent primal-dual approach is used to reformulate this bilevel model to a solvable mathematical program with equilibrium constraints (MPEC). The effectiveness of the proposed model is verified by case studies. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zhang, Chunyu; Korpas, Magnus] Norwegian Univ Sci & Technol, Dept Elect Power Engn, Trondheim, Norway. [Wang, Qi; Pinson, Pierre; Ostergaard, Jacob] Tech Univ Denmark, Ctr Elect Power & Energy, Lyngby, Denmark. [Wang, Jianhui] Argonne Natl Lab, Energy Syst Div, Argonne, IL USA. [Khodayar, Mohammad E.] So Methodist Univ, Dept Elect Engn, Dallas, TX USA. RP Wang, JH (reprint author), Argonne Natl Lab, Energy Syst Div, Argonne, IL USA. EM chunyu.zhang@ntnu.no; qiwa@elektro.dtu.dk; jianhui.wang@anl.gov; magnus.korpas@ntnu.no; ppin@elektro.dtu.dk; joe@elektro.dtu.dk; mkhodayar@smu.edu FU Research Council of Norway [255209]; Danish iPower Platform Project [10-095378]; U.S. Department of Energy (DOE)'s Office of Electricity Delivery and Energy Reliability FX The authors would like to acknowledge the support from the Research Council of Norway under Grant 255209, the Danish iPower Platform Project under Grant 10-095378, and the U.S. Department of Energy (DOE)'s Office of Electricity Delivery and Energy Reliability. NR 24 TC 2 Z9 2 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD SEP 1 PY 2016 VL 177 BP 625 EP 635 DI 10.1016/j.apenergy.2016.05.143 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DS2OR UT WOS:000380623900052 ER PT J AU Mo, JK Kang, ZY Yang, GQ Retterer, ST Cullen, DA Toops, TJ Green, JB Zhang, FY AF Mo, Jingke Kang, Zhenye Yang, Gaoqiang Retterer, Scott T. Cullen, David A. Toops, Todd J. Green, Johney B., Jr. Zhang, Feng-Yuan TI Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting SO APPLIED ENERGY LA English DT Article DE Proton exchange membrane fuel; cells/electrolyzer cells; Liquid/gas diffusion layers; Hydrogen production; Water splitting; Performance and efficiency ID ELECTROLYTE FUEL-CELL; MICROPOROUS LAYER; BIPOLAR PLATES; PERFORMANCE; MEMBRANE; ENERGY; TRANSPORT; OPTIMIZATION; MEDIA; DURABILITY AB In this study, a novel titanium thin LGDL with well-tunable pore morphologies was developed by employing nano-manufacturing and was applied in a standard PEMEC. The LGDL tests show significant performance improvements. The operating voltages required at a current density of 2.0 A/cm(2) were as low as 1.69 V, and its efficiency reached a report high of up to 88%. The new thin and flat LGDL with well-tunable straight pores has been demonstrated to remarkably reduce the ohmic, interfacial and transport losses. In addition, well-tunable features, including pore size, pore shape, pore distribution, and thus porosity and permeability, will be very valuable for developing PEMEC models and for validation of its simulations with optimal and repeatable performance. The LGDL thickness reduction from greater than 350 mu m of conventional LGDLs to 25 mu m will greatly decrease the weight and volume of PEMEC stacks, and represents a new direction for future developments of low-cost PEMECs with high performance. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Mo, Jingke; Kang, Zhenye; Yang, Gaoqiang; Zhang, Feng-Yuan] Univ Tennessee, UT Space Inst, Dept Mech Aerosp & Biomed Engn, Nanodynam & High Efficiency Lab Prop & Power Nano, Knoxville, TN 37388 USA. [Retterer, Scott T.; Cullen, David A.; Toops, Todd J.; Green, Johney B., Jr.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Zhang, FY (reprint author), Univ Tennessee, UT Space Inst, Dept Mech Aerosp & Biomed Engn, Nanodynam & High Efficiency Lab Prop & Power Nano, Knoxville, TN 37388 USA. EM fzhang@utk.edu RI Green, Johney/B-3391-2017; OI Green, Johney/0000-0003-2383-7260; Cullen, David/0000-0002-2593-7866; Zhang, Feng-Yuan/0000-0003-2535-0966 FU U.S. Department of Energy's National Energy Technology Laboratory [DE-FE0011585]; DOE Office of Basic Energy Sciences FX The authors greatly appreciate the support from U.S. Department of Energy's National Energy Technology Laboratory under Award DE-FE0011585. The research was partially performed at ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by DOE Office of Basic Energy Sciences. The authors also wish to express their appreciations to Dr. Bo Han, Stuart Steen, William C. Barnhill, Alexander Terekhov, Douglas Warnberg, Kate Lansford, Andrew Mays, and Rong Chen for their help. NR 51 TC 6 Z9 6 U1 7 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD SEP 1 PY 2016 VL 177 BP 817 EP 822 DI 10.1016/j.apenergy.2016.05.154 PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DS2OR UT WOS:000380623900068 ER PT J AU Dong, T Knoshaug, EP Pienkos, PT Laurens, LML AF Dong, Tao Knoshaug, Eric P. Pienkos, Philip T. Laurens, Lieve M. L. TI Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review SO APPLIED ENERGY LA English DT Article DE Oleaginous microorganism; Lipid; Wet extraction; Mass transfer; Cell disruption; Biofuel ID PULSED-ELECTRIC-FIELD; HIGH-PRESSURE HOMOGENIZATION; YEAST RHODOSPORIDIUM-TORULOIDES; ENZYME-ASSISTED EXTRACTION; CELL-WALL DEGRADATION; FED-BATCH CULTURE; BIODIESEL PRODUCTION; CHLORELLA-VULGARIS; SOLVENT-EXTRACTION; MICROALGAL BIOMASS AB Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. This paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention to cell disruption and lipid mass transfer to support extraction from wet biomass. (C) 2016 The Author(s). Published by Elsevier Ltd. C1 [Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; Laurens, Lieve M. L.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80228 USA. RP Laurens, LML (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80228 USA. EM Lieve.Laurens@nrel.gov FU DOE Bioenergy Technology Office (BETO) [DE-AC36-08GO28308] FX This work was supported by the DOE Bioenergy Technology Office (BETO) under Contract no. DE-AC36-08GO28308. Special thanks to Nick Sweeney for photomicrographs, and Jacob Kruger for conducting HPH on algae biomass. NR 190 TC 1 Z9 1 U1 22 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD SEP 1 PY 2016 VL 177 BP 879 EP 895 DI 10.1016/j.apenergy.2016.06.002 PG 17 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DS2OR UT WOS:000380623900073 ER PT J AU Marquardt, D Kucerka, N Wassall, SR Harroun, TA Katsaras, J AF Marquardt, Drew Kucerka, Norbert Wassall, Stephen R. Harroun, Thad A. Katsaras, John TI Cholesterol's location in lipid bilayers SO CHEMISTRY AND PHYSICS OF LIPIDS LA English DT Article DE Cholesterol; Sterol; Membrane dynamics; Membrane structure; Lipid domains ID MOLECULAR-DYNAMICS SIMULATIONS; NUCLEAR-MAGNETIC-RESONANCE; ACYL-CHAIN UNSATURATION; FLIP-FLOP; NEUTRON-DIFFRACTION; PHASE-DIAGRAM; DEUTERIUM NMR; MODEL SYSTEMS; PHOSPHATIDYLCHOLINE BILAYERS; PHOSPHOLIPID-BILAYERS AB It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered L-0 phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the L-0 phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown - at least in some bilayers - to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid-water interface. In this article we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies. (C) 2016 Elsevier Ireland Ltd. All rights reserved. C1 [Marquardt, Drew] Graz Univ, Inst Mol Biosci, Div Biophys, NAWI Graz, Humboldtstr 50-3, A-8010 Graz, Austria. [Marquardt, Drew] BioTechMed Graz, Graz, Austria. [Kucerka, Norbert] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna 141980, Moscow Region, Russia. [Kucerka, Norbert] Comenius Univ, Dept Phys Chem Drugs, Fac Pharm, Bratislava 83232, Slovakia. [Wassall, Stephen R.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. [Harroun, Thad A.; Katsaras, John] Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. [Katsaras, John] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Katsaras, John] Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Katsaras, John] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Marquardt, D (reprint author), Graz Univ, Inst Mol Biosci, Div Biophys, NAWI Graz, Humboldtstr 50-3, A-8010 Graz, Austria.; Marquardt, D (reprint author), BioTechMed Graz, Graz, Austria.; Katsaras, J (reprint author), Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. EM drew.marquardt@uni-graz.at; katsarasj@ornl.gov OI Katsaras, John/0000-0002-8937-4177 FU VEGA grant [1/0916/16]; collaborative SR-JINR program [04-4-1121-2015/2017]; Scientific User Facilities Division of the DOE Office of Basic Energy Sciences under US DOE [DE-AC05-00OR22725] FX DM thanks Georg Pabst for his support. NK is supported through the VEGA grant 1/0916/16 and collaborative SR-JINR program under theme 04-4-1121-2015/2017, JK is supported through the Scientific User Facilities Division of the DOE Office of Basic Energy Sciences under US DOE Contract No. DE-AC05-00OR22725. NR 114 TC 1 Z9 1 U1 17 U2 32 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-3084 EI 1873-2941 J9 CHEM PHYS LIPIDS JI Chem. Phys. Lipids PD SEP PY 2016 VL 199 SI SI BP 17 EP 25 DI 10.1016/j.chemphyslip.2016.04.001 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DT9PC UT WOS:000381833800004 PM 27056099 ER PT J AU Haaskjold, YL Bolkan, HA Krogh, KO Jongopi, J Lundeby, KM Mellesmo, S Garces, PSJ Josendal, O Opstad, A Svensen, E Fuentes, LMZ Kamara, AS Riera, M Arranz, J Roberts, DP Stamper, PD Austin, P Moosa, AJ Marke, D Hassan, S Eide, GE Berg, A Blomberg, B AF Haaskjold, Yngvar Lunde Bolkan, Hakon Angell Krogh, Kurt Osthuus Jongopi, James Lundeby, Karen Marie Mellesmo, Sindre Jose Garces, Pedro San Josendal, Ola Opstad, Asmund Svensen, Erling Zabala Fuentes, Luis Matias Kamara, Alfred Sandy Riera, Melchor Arranz, Javier Roberts, David P. Stamper, Paul D. Austin, Paula Moosa, Alfredo J. Marke, Dennis Hassan, Shoaib Eide, Geir Egil Berg, Ase Blomberg, Bjorn TI Clinical Features of and Risk Factors for Fatal Ebola Virus Disease, Moyamba District, Sierra Leone, December 2014 February 2015 SO EMERGING INFECTIOUS DISEASES LA English DT Article ID HEMORRHAGIC-FEVER; WEST-AFRICA; HOLDING UNITS; OUTBREAK; EPIDEMIC; OUTCOMES; TRANSMISSION; MANAGEMENT; FREETOWN; ORIGIN AB The 2013-2016 outbreak of Ebola virus disease (EVD) in West Africa infected >28,000 people, including >11,000 who died, and disrupted social life in the region. We retrospectively studied clinical signs and symptoms and risk factors for fatal outcome among 31 Ebola virus positive patients admitted to the Ebola Treatment Center in Moyamba District, Sierra Leone. We found a higher rate of bleeding manifestations than reported elsewhere during the outbreak. Significant predictors for death were shorter time from symptom onset to admission, male sex, high viral load on initial laboratory testing, severe pain, diarrhea, bloody feces, and development of other bleeding manifestations during hospitalization. These risk factors for death could be used to identify patients in need of more intensive medical support. The lack of fever in as many as one third of EVD cases may have implications for temperature-screening practices and case definitions. C1 [Haaskjold, Yngvar Lunde; Josendal, Ola; Svensen, Erling; Eide, Geir Egil; Blomberg, Bjorn] Haukeland Hosp, Bergen, Norway. [Bolkan, Hakon Angell; Krogh, Kurt Osthuus; Mellesmo, Sindre] St Olav Hosp, Trondheim, Norway. [Jongopi, James; Kamara, Alfred Sandy; Moosa, Alfredo J.; Marke, Dennis] Moyamba Dist Hosp, Moyamba, Sierra Leone. [Lundeby, Karen Marie] Oslo Univ Hosp, Oslo, Norway. [Jose Garces, Pedro San; Zabala Fuentes, Luis Matias; Arranz, Javier] Med Mundo, Madrid, Spain. [Opstad, Asmund] Haraldsplass Diaconal Hosp, Bergen, Norway. [Svensen, Erling; Eide, Geir Egil; Blomberg, Bjorn] Univ Bergen, Bergen, Norway. [Riera, Melchor] Hosp Son Espases, Palma De Mallorca, Spain. [Arranz, Javier] Inst Invest Palma IDISPA, Madrid, Spain. [Roberts, David P.; Stamper, Paul D.] MRIGlobal, Rockville, MD USA. [Austin, Paula] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Hassan, Shoaib] FELTP Publ Hlth, Islamabad, Pakistan. [Berg, Ase] Stavanger Univ Hosp, Stavanger, Norway. RP Blomberg, B (reprint author), Haukeland Hosp, Dept Med, Post Box 1400, N-5021 Bergen, Norway. EM bjorn.blomberg@uib.no OI Arranz, Javier/0000-0003-0728-9751 NR 38 TC 0 Z9 0 U1 14 U2 14 PU CENTERS DISEASE CONTROL PI ATLANTA PA 1600 CLIFTON RD, ATLANTA, GA 30333 USA SN 1080-6040 EI 1080-6059 J9 EMERG INFECT DIS JI Emerg. Infect. Dis PD SEP PY 2016 VL 22 IS 9 BP 1537 EP 1544 DI 10.3201/eid2209.151621 PG 8 WC Immunology; Infectious Diseases SC Immunology; Infectious Diseases GA DU1GJ UT WOS:000381955900002 PM 27268303 ER PT J AU Bubbosh, P AF Bubbosh, Paul TI FROM LAB TO MARKET SO FOREIGN AFFAIRS LA English DT Letter C1 [Bubbosh, Paul] US DOE, Energy Secur Div, Washington, DC 20585 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU COUNCIL FOREIGN RELAT IONS INC PI NEW YORK PA HAROLD PRATT HOUSE, 58 E 68TH ST, NEW YORK, NY 10065 USA SN 0015-7120 J9 FOREIGN AFF JI Foreign Aff. PD SEP-OCT PY 2016 VL 95 IS 5 BP 192 EP 192 PG 1 WC International Relations SC International Relations GA DT1KG UT WOS:000381240500077 ER PT J AU Beckingham, LE Mitnick, EH Steefel, CI Zhang, S Voltolini, M Swift, AM Yang, L Cole, DR Sheets, JM Ajo-Franklin, JB DePaolo, DJ Mito, S Xue, ZQ AF Beckingham, Lauren E. Mitnick, Elizabeth H. Steefel, Carl I. Zhang, Shuo Voltolini, Marco Swift, Alexander M. Yang, Li Cole, David R. Sheets, Julia M. Ajo-Franklin, Jonathan B. DePaolo, Donald J. Mito, Saeko Xue, Ziqiu TI Evaluation of mineral reactive surface area estimates for prediction of reactivity of a multi-mineral sediment SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Reactive surface area; CO2 sequestration; Mineral reaction rates ID BASALTIC GLASS DISSOLUTION; SOLUTION SATURATION STATE; KAOLINITE DISSOLUTION; DEGREES-C; NUMERICAL-SIMULATION; DIOPSIDE DISSOLUTION; FELDSPAR DISSOLUTION; QUARTZ DISSOLUTION; AQUEOUS-SOLUTIONS; CONTINUUM SCALE AB Our limited understanding of mineral reactive surface area contributes to significant uncertainties in quantitative simulations of reactive chemical transport in subsurface processes. Continuum formulations for reactive transport typically use a number of different approximations for reactive surface area, including geometric, specific, and effective surface area. In this study, reactive surface area estimates are developed and evaluated for their ability to predict dissolution rates in a well-stirred flow-through reactor experiment using disaggregated samples from the Nagaoka pilot CO2 injection site (Japan). The disaggregated samples are reacted with CO2 acidified synthetic brine under conditions approximating the field conditions and the evolution of solute concentrations in the reactor effluent is tracked over time. The experiments, carried out in fluid-dominated conditions at a pH of 3.2 for 650 h, resulted in substantial dissolution of the sample and release of a disproportionately large fraction of the divalent cations. Traditional reactive surface area estimation methods, including an adjusted geometric surface area and a BET-based surface area, are compared to a newly developed image-based method. Continuum reactive transport modeling is used to determine which of the reactive surface area models provides the best match with the effluent chemistry from the well-stirred reactor. The modeling incorporates laboratory derived mineral dissolution rates reported in the literature and the initial modal mineralogy of the Nagaoka sediment was determined from scanning electron microscopy (SEM) characterization. The closest match with the observed steady-state effluent concentrations was obtained using specific surface area estimates from the image-based approach supplemented by literature-derived BET measurements. To capture the evolving effluent chemistry, particularly over the first 300 h of the experiment, it was also necessary to account for the grain size distribution in the sediment and the presence of a highly reactive volcanic glass phase that shows preferential cation leaching. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Beckingham, Lauren E.; Steefel, Carl I.; Voltolini, Marco; Yang, Li; Ajo-Franklin, Jonathan B.; DePaolo, Donald J.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Mitnick, Elizabeth H.; Zhang, Shuo; DePaolo, Donald J.] Univ Calif Berkeley, Earth & Planetary Sci, Berkeley, CA 94720 USA. [Swift, Alexander M.; Cole, David R.; Sheets, Julia M.] Ohio State Univ, Mendenhall Lab 275, 125 South Oval Mall, Columbus, OH 43210 USA. [Mito, Saeko; Xue, Ziqiu] Res Inst Innovat Technol Earth RITE, 9-2 Kizugawadai, Kizugawa, Kyoto 6190292, Japan. [Beckingham, Lauren E.] Auburn Univ, Harbert Engn Ctr 211, Auburn, AL 36830 USA. RP Beckingham, LE (reprint author), Auburn Univ, Dept Civil Engn, Auburn, AL 36830 USA. EM leb@auburn.edu RI Ajo-Franklin, Jonathan/G-7169-2015; Steefel, Carl/B-7758-2010; Voltolini, Marco/G-2781-2015; OI Mito, Saeko/0000-0001-7647-8674; Zhang, Shuo/0000-0002-2170-4299 FU Center for Nanoscale Control of Geologic CO2 (NCGC), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-05CH11231]; Ministry of Economy, Trade and Industry (METI) FX This work was supported as part of the Center for Nanoscale Control of Geologic CO2 (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231. Rock sample collection at the Nagaoka pilot CO2 injection site was financed by Ministry of Economy, Trade and Industry (METI) under the contract of "Research and Development of Underground Storage for Carbon Dioxide". NR 96 TC 0 Z9 0 U1 24 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2016 VL 188 BP 310 EP 329 DI 10.1016/j.gca.2016.05.040 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DS4LN UT WOS:000380752700018 ER PT J AU Wang, YG Gelabert, A Michel, FM Choi, Y Gescher, J Ona-Nguema, G Eng, PJ Bargar, JR Farges, F Spormann, AM Brown, GE AF Wang, Yingge Gelabert, Alexandre Michel, F. Marc Choi, Yongseong Gescher, Johannes Ona-Nguema, Georges Eng, Peter J. Bargar, John R. Farges, Francois Spormann, Alfred M. Brown, Gordon E., Jr. TI Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Shewanella oneidensis; Biofilms; Metal-oxide surface; Sorption; Pb; Zn; Hematite; Alumina; X-ray standing wave; LP-XSW-FY; Metal partitioning; Diffusion; Kinetics ID BURKHOLDERIA-CEPACIA BIOFILMS; BOND-VALENCE DETERMINATION; OXIDE-WATER INTERFACES; RAY STANDING-WAVE; BACTERIAL SURFACES; MICROBIAL BIOFILMS; ZINC SORPTION; HEMATITE 0001; INFRARED-SPECTROSCOPY; COMPETITIVE-BINDING AB Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of alpha-Al2O3 and alpha-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) surfaces at low Pb concentration ([Pb] = 10(-7) M) and then increasingly partitions into the biofilm coatings at higher concentrations (10(-6) to 10(-4) M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10(-7) to 10(-4) M). In comparison, the alpha-Al2O3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, alpha-Al2O3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) at [Me(II)] of 10(-7) M; at 10(-5) M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10(-5) M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb L-III-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be complexed by carboxyl groups in S. oneidensis biofilms after 3-h exposure at pH 6.0 and [Me(II)] = 10(-5) M. In contrast with Burkholderia cepacia, which was used in our previous studies of monolayer biofilm-coated metal-oxide surfaces (Templeton et al., 2001), S. oneidensis MR-1 forms relatively thick biofilm coatings (6-20 mu m) that are rich in reactive functional groups and are expected to dominate metal-ion adsorption. Our results show that even thick and highly reactive biofilms like S. oneidensis do not cause much change in the intrinsic chemical reactivities of the underlying metal-oxide surfaces with respect to aqueous Pb(II) and Zn(II) and don't block reactive sites on the metal-oxide surfaces; instead they reduce the rate of Pb(II) and Zn(II) sorption onto these surfaces. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; Farges, Francois; Brown, Gordon E., Jr.] Stanford Univ, Sch Earth Energy & Environm Sci, Dept Geol Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Gelabert, Alexandre] Univ Paris Diderot, Aqueous Geochem Grp, Sorbonne Paris Cite, Inst Phys Globe Paris,UMR 7154,CNRS, F-75013 Paris, France. [Michel, F. Marc; Bargar, John R.; Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Choi, Yongseong] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. [Gescher, Johannes] Karlsruhe Inst Technol, Inst Appl Biosci, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany. [Gescher, Johannes; Spormann, Alfred M.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Ona-Nguema, Georges] Univ Paris 06, IMPMC, UMR 7590, F-75015 Paris, France. [Eng, Peter J.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Farges, Francois] Museum Natl Hist Nat, USM 201, Paris, France. [Farges, Francois] Museum Natl Hist Nat, CNRS, UMR 7160, Paris, France. [Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Brown, GE (reprint author), Stanford Univ, Sch Earth Energy & Environm Sci, Dept Geol Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA.; Brown, GE (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Brown, GE (reprint author), SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM gordon.brown@stanford.edu FU U.S. National Science Foundation [CHE-0431425]; DOE-Office of Biological and Environmental Research through the Science Focus Area at the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory; U.S. DOE Office of Basic Energy Sciences; GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source, Argonne National Laboratory; U.S. National Science Foundation - Earth Sciences [EAR-0622171]; U.S. Department of Energy - Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This study was supported by U.S. National Science Foundation Grant CHE-0431425 (Stanford Environmental Molecular Science Institute) and by the DOE-Office of Biological and Environmental Research through the Science Focus Area at the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory. The XSW and EXAFS data reported in this paper were collected at the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, which is supported by the U.S. DOE Office of Basic Energy Sciences, and at the GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source, Argonne National Laboratory. GeoSoilEnviroCARS is supported by the U.S. National Science Foundation - Earth Sciences (EAR-0622171) and the U.S. Department of Energy - Geosciences (DE-FG02-94ER14466). The Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Carmen Cordova for help with the biofilm growth and Sanjit Ghose for help with XSW data collection at the APS. We also wish to thank three anonymous reviewers for suggestions that clarified the manuscript as well as GCA Editor Marc Norman and former GCA Associate Editor Roy Wogelius for their patience during the revision process. NR 94 TC 3 Z9 3 U1 22 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2016 VL 188 BP 368 EP 392 DI 10.1016/j.gca.2016.04.052 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DS4LN UT WOS:000380752700021 ER PT J AU Wang, YG Gelabert, A Michel, FM Choi, Y Eng, PJ Spormann, AM Brown, GE AF Wang, Yingge Gelabert, Alexandre Michel, F. Marc Choi, Yongseong Eng, Peter J. Spormann, Alfred M. Brown, Gordon E., Jr. TI Effect of biofilm coatings at metal-oxide/water interfaces II: Competitive sorption between Pb(II) and Zn(II) at Shewanella oneidensis/metal-oxide/water interfaces SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Shewanella oneidensis; Biofilm; Metal-oxide surface; Competitive sorption; Pb; Zn; Hematite; Alumina; X-ray standing wave; LP-XSW-FY; Metal partitioning ID RAY STANDING WAVES; AMORPHOUS IRON OXYHYDROXIDE; CHEMICAL-EQUILIBRIUM MODEL; BOND-VALENCE DETERMINATION; OXIDE-WATER INTERFACES; ELECTROCHEMICAL INTERFACES; SURFACE COMPLEXATION; POLY(ACRYLIC ACID); AQUEOUS-SOLUTIONS; HEAVY-METALS AB Competitive sorption of Pb(II) and Zn(II) on Shewanella oneidensis MR-1 biofilm-coated single-crystal alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) surfaces was investigated using long-period X-ray standing wave-florescence yield (LP-XSW-FY) spectroscopy. In situ partitioning of aqueous Pb(II) and Zn(II) between the biofilms and underlying metal-oxide substrates was probed following exposure of these complex interfaces to equi-molar Pb and Zn solutions (0.01 M NaNO3 as background electrolyte, pH = 6.0, and 3-h equilibration time). At higher Pb and Zn concentrations (>= 10(-5) M), more than 99% of these ions partitioned into the biofilms at S. oneidensis/alpha-Al2O3 (1-102)/water interfaces, which is consistent with the partitioning behavior of both Pb(II) or Zn(II) in single-metal-ion experiments. Thus, no apparent competitive effects were found in this system at these relatively high metal-ion concentrations. However, at lower equi-molar concentrations (<= 10(-6) M), Pb(II) and Zn(II) partitioning in the same system changed significantly compared to the single-metal-ion systems. The presence of Zn(II) decreased Pb(II) partitioning onto alpha-Al2O3 (1-10 2) substantially (similar to 52% to similar to 13% at 10(-7) M, and similar to 23% to similar to 5% at 10(-6) M), whereas the presence of Pb(II) caused more Zn(II) to partition onto alpha-Al2O3 (1-102) surfaces (similar to 15% to similar to 28% at 10(-7) M, and similar to 1% to similar to 7% at 10(-6) M). The higher observed partitioning of Zn(II) (similar to 28%) at the alpha-Al2O3 (1-102) surfaces compared to Pb(II) (similar to 13%) in the mixed-metal-ion systems at the lowest concentration (10(-7) M) suggests that Zn(II) is slightly favored over Pb(II) for sorption sites on alpha-Al2O3 (1-102) surfaces under our experimental conditions. Competitive sorption of Pb(II) and Zn(II) at S. oneidensis/alpha-Fe2O3 (0001)/water interfaces at equi-molar metal-ion concentrations of <= 10(-6) M showed that the presence of Pb(II) ions decreased Zn(II) partitioning onto alpha-Fe2O3 (0001) significantly (similar to 45% to <1% at 10(-7) M, and similar to 41% to 3% at 10(-6) M), whereas adding Zn(II) caused only small changes in Pb(II) partitioning (similar to 59% to similar to 47% at 10(-7) M, and similar to 26% to similar to 23% at 10(-6) M), suggesting that Pb(II) strongly outcompetes Zn(II) for sorption sites on S. oneidensis-coated alpha-Fe2O3 (0001) surfaces. Our study implies that caution should be taken when applying results obtained from partitioning studies of single-metal-ion systems to mixed-metal-ion systems at complex biofilm/mineral interfaces. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; Brown, Gordon E., Jr.] Stanford Univ, Sch Earth Energy & Environm Sci, Dept Geol Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Gelabert, Alexandre] Univ Paris 07, Dept Earth Sci, IMPMC, IPGP,CNRS,UMR 7590, F-75015 Paris, France. [Michel, F. Marc] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Choi, Yongseong] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. [Eng, Peter J.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Spormann, Alfred M.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Michel, F. Marc] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. RP Wang, YG (reprint author), Stanford Univ, Sch Earth Energy & Environm Sci, Dept Geol Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. EM wang.yingge@gmail.com FU U.S. National Science Foundation [CHE-0431425]; National Science Foundation Earth Sciences [EAR-1128799]; U.S. Department of Energy - Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This study was supported by U.S. National Science Foundation Grant CHE-0431425 (Stanford Environmental Molecular Science Institute). The LP-XSW-FY data reported here were obtained at GeoSoilEnviroCARS (Advanced Photon Source Sector 13) at the Advanced Photon Source, Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation Earth Sciences (EAR-1128799) and the U.S. Department of Energy - Geosciences (DE-FG02-94ER14466). The Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We also wish to thank two anonymous reviewers for helpful comments and thank GCA Editor Dr. Marc Norman and former GCA Associate Editor Dr. Roy Wogelius for their patience during the revision process. NR 57 TC 1 Z9 1 U1 12 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2016 VL 188 BP 393 EP 406 DI 10.1016/j.gca.2016.04.054 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DS4LN UT WOS:000380752700022 ER PT J AU Wang, YG Michel, FM Choi, Y Eng, PJ Levard, C Siebner, H Gu, BH Bargar, JR Brown, GE AF Wang, Yingge Michel, F. Marc Choi, Yongseong Eng, Peter J. Levard, Clement Siebner, Hagar Gu, Baohua Bargar, John R. Brown, Gordon E., Jr. TI Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Humic acid; Pb; Cu; Zn; Ca; Metal-oxide surfaces; Single crystal; X-ray standing wave; LP-XSW-FY; Metal partitioning; Hematite; Alumina; pH effect ID RAY STANDING WAVES; NATURAL ORGANIC-MATTER; ION-BINDING; X-RAYS; COMPETITIVE ADSORPTION; MINERAL SURFACES; HEMATITE 0001; IRON-OXIDE; ELECTROCHEMICAL INTERFACES; DYNAMICAL DIFFRACTION AB Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (similar to 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: alpha-Al2O3 (00 01), alpha-Al2O3 (1-102), and alpha-Fe2O3 (0001). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the alpha-Fe2O3 (0001) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the alpha-Al2O3 (1-102) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated alpha-Al2O3 (1-102) surfaces in samples without the addition of calcium. However, the amounts of Pb(II) mobilized from the ESHA coatings onto the alpha-Al2O3 (1-102) surfaces increased from 40% (no added Ca) to 58% (with 2 mM Ca) after 72 h of reaction time, possibly due to displacement of Pb(II) by Ca(II) from binding sites in the ESHA coatings. In contrast, Pb(II), Cu(II), and Zn(II) present in the ESHA coatings were found to be unreactive with the alpha-Al2O3 (0001) surface. The observed reactivities of the three ESHA-coated metal-oxide surfaces with respect to metal-ion sorption are consistent with the trend observed for the uncoated metal-oxide surfaces: alpha-Fe2O3 (0001) > alpha-Al2O3 (1-102) > alpha-Al2O3 (0001). In addition, Pb(II) partitioning onto alpha-Al2O3 (1-102) surfaces increased with increasing pH from 4.0 to 9.0 as a result of the increasingly negative surface charge. These results show that intrinsic properties (nature of binding sites, binding affinities, and surface charge) of the ESHA coatings and metal-oxide surfaces, as well as external parameters such as pH and competing ions, are key factors governing the distribution and speciation of metal ions at complex NOM/mineral interfaces. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wang, Yingge; Michel, F. Marc; Levard, Clement; Siebner, Hagar; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol Sci, Surface & Aqueous Geochem Grp, Sch Earth Energy & Environm Sci, Stanford, CA 94305 USA. [Michel, F. Marc; Bargar, John R.; Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Choi, Yongseong] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. [Eng, Peter J.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Brown, GE (reprint author), Stanford Univ, Dept Geol Sci, Surface & Aqueous Geochem Grp, Sch Earth Energy & Environm Sci, Stanford, CA 94305 USA.; Brown, GE (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, MS 69,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Brown, GE (reprint author), SLAC Natl Accelerator Lab, Dept Photon Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM gordon.brown@stanford.edu FU U.S. National Science Foundation [CHE-0431425]; U.S. National Science Foundation-Center for Environmental Implications for Nanotechnology (based at Duke University) (U.S. National Science Foundation) [EF-0830093]; U.S. National Science Foundation - Earth Sciences [EAR-1128799]; U.S. Department of Energy - Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was supported by U.S. National Science Foundation Grant CHE-0431425 (Stanford Environmental Molecular Science Institute) and by the U.S. National Science Foundation-Center for Environmental Implications for Nanotechnology (based at Duke University) (U.S. National Science Foundation Cooperative Agreement EF-0830093). The LP-XSW-FY data reported in this paper were collected at GeoSoilEnviroCARS (Advanced Photon Source Sector 13) at the Advanced Photon Source, Argonne National Laboratory. GeoSoilEnviroCARS is supported by the U.S. National Science Foundation - Earth Sciences (EAR-1128799) and the U.S. Department of Energy - Geosciences (DE-FG02-94ER14466). The Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We wish to thank Guangchao Li (Stanford University) for ICP-AES analysis and Prof. Zhenan Bao (Chemical Engineering, Stanford University) for allowing us to use her spin coater. We also wish to thank three reviewers for their valuable suggestions. The STXM data reported in this paper were collected at the Advanced Light Source, Lawrence Berkeley National Laboratory. The Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 75 TC 0 Z9 0 U1 26 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2016 VL 188 BP 407 EP 423 DI 10.1016/j.gca.2016.05.009 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DS4LN UT WOS:000380752700023 ER PT J AU Wesnousky, SG Briggs, RW Caffee, MW Ryerson, FJ Finkel, RC Owen, LA AF Wesnousky, Steven G. Briggs, Richard W. Caffee, Marc W. Ryerson, F. J. Finkel, Robert C. Owen, Lewis A. TI Terrestrial cosmogenic surface exposure dating of glacial and associated landforms in the Ruby Mountains-East Humboldt Range of central Nevada and along the northeastern flank of the Sierra Nevada SO GEOMORPHOLOGY LA English DT Article DE Geomorphology; Moraines; Cosmogenic dating; Sierra Nevada; Ruby Mountains-East Humboldt Range ID HIMALAYAN-TIBETAN OROGEN; DENUDATION RATES; PLEISTOCENE GLACIATION; QUATERNARY GLACIATION; CENTRAL KARAKORAM; GREAT-BASIN; ICE AGES; BE-10; MORAINES; AL-26 AB Deposits near Lamoille in the Ruby Mountains-East Humboldt Range of central Nevada and at Woodfords on the eastern edge of the Sierra Nevada each record two distinct glacial advances. We compare independent assessments of terrestrial cosmogenic nuclide (TCN) surface exposure ages for glacial deposits that we have determined to those obtained by others at the two sites. At each site, TCN ages of boulders on moraines of the younger advance are between 15 and 30 ka and may be associated with marine oxygen isotope stage (MIS) 2. At Woodfords, TCN ages of boulders on the moraine of the older advance are younger than similar to 60 ka and possibly formed during MIS 4, whereas boulders on the correlative outwash surface show ages approaching 140 ka (similar to MIS 6). The TCN ages of boulders on older glacial moraine at Woodfords thus appear to severely underestimate the true age of the glacial advance responsible for the deposit. The same is possibly true at Lamoille where clasts sampled from the moraine of the oldest advance have ages ranging between 20 and 40 ka with a single outlier age of similar to 80 ka The underestimations are attributed to the degradation and denudation of older moraine crests. Noting that boulder ages on the older advances at each site overlap significantly with MIS 2. We speculate that erosion of the older moraines has been episodic, with a pulse of denudation accompanying the inception of MIS 2 glaciation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wesnousky, Steven G.] Univ Nevada, Ctr Neotecton Studies, 1664 North Virginia St, Reno, NV 89557 USA. [Briggs, Richard W.] US Geol Survey, 1711 Illinois St, Golden, CO 80401 USA. [Caffee, Marc W.] Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA. [Ryerson, F. J.; Finkel, Robert C.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, L-202,7000 East Ave, Livermore, CA 94550 USA. [Owen, Lewis A.] Univ Cincinnati, POB 210013, Cincinnati, OH 45221 USA. RP Wesnousky, SG (reprint author), Univ Nevada, Ctr Neotecton Studies, 1664 North Virginia St, Reno, NV 89557 USA. EM wesnousky@unr.edu; rbriggs@usgs.gov; mcaffee@purdue.edu; ryerson1@llnl.gov; owenls@ucmail.uc.edu OI Ryerson, Frederick/0000-0002-6235-4408; Briggs, Richard/0000-0001-8108-0046 FU USGS Grants [G15AP00088, G14AP00048] FX The manuscript has benefited from the critical and constructive comments of Jaako Pukonen, Ben Laabs and two anonymous reviewers. We give particular thanks to Editor Richard Marston for his time and careful comments that improved the manuscript. Anne-Sophie Meriaux assisted with sample preparation. This research was supported in part by USGS Grants G15AP00088 and G14AP00048. Center for Neotectonics Contribution No. 68. NR 51 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X EI 1872-695X J9 GEOMORPHOLOGY JI Geomorphology PD SEP 1 PY 2016 VL 268 BP 72 EP 81 DI 10.1016/j.geomorph.2016.04.027 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA DT0JA UT WOS:000381168600008 ER PT J AU Daley, TM Miller, DE Dodds, K Cook, P Freifeld, BM AF Daley, T. M. Miller, D. E. Dodds, K. Cook, P. Freifeld, B. M. TI Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama SO GEOPHYSICAL PROSPECTING LA English DT Article DE Acquisition; Borehole Geophysics; Seismics; Fibre-optic DAS AB A modular borehole monitoring concept has been implemented to provide a suite of well-based monitoring tools that can be deployed cost effectively in a flexible and robust package. The initial modular borehole monitoring system was deployed as part of a CO2 injection test operated by the Southeast Regional Carbon Sequestration Partnership near Citronelle, Alabama. The Citronelle modular monitoring system transmits electrical power and signals, fibre-optic light pulses, and fluids between the surface and a reservoir. Additionally, a separate multi-conductor tubing-encapsulated line was used for borehole geophones, including a specialized clamp for casing clamping with tubing deployment. The deployment of geophones and fibre-optic cables allowed comparison testing of distributed acoustic sensing. We designed a large source effort (>64 sweeps per source point) to test fibre-optic vertical seismic profile and acquired data in 2013. The native measurement in the specific distributed acoustic sensing unit used (an iDAS from Silixa Ltd) is described as a localized strain rate. Following a processing flow of adaptive noise reduction and rebalancing the signal to dimensionless strain, improvement from repeated stacking of the source was observed. Conversion of the rebalanced strain signal to equivalent velocity units, via a scaling by local apparent velocity, allows quantitative comparison of distributed acoustic sensing and geophone data in units of velocity. We see a very good match of uncorrelated time series in both amplitude and phase, demonstrating that velocity-converted distributed acoustic sensing data can be analyzed equivalent to vertical geophones. We show that distributed acoustic sensing data, when averaged over an interval comparable to typical geophone spacing, can obtain signal-to-noise ratios of 18 dB to 24 dB below clamped geophones, a result that is variable with noise spectral amplitude because the noise characteristics are not identical. With vertical seismic profile processing, we demonstrate the effectiveness of downgoing deconvolution from the large spatial sampling of distributed acoustic sensing data, along with improved upgoing reflection quality. We conclude that the extra source effort currently needed for tubing-deployed distributed acoustic sensing vertical seismic profile, as part of a modular monitoring system, is well compensated by the extra spatial sampling and lower deployment cost as compared with conventional borehole geophones. C1 [Daley, T. M.; Cook, P.; Freifeld, B. M.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Miller, D. E.] Silixa Ltd, Elstree, England. RP Daley, TM (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tmdaley@lbl.gov RI Daley, Thomas/G-3274-2015; Freifeld, Barry/F-3173-2010; Cook, Paul/I-4788-2016 OI Daley, Thomas/0000-0001-9445-0843; FU CO2 Capture Project; Lawrence Berkeley Laboratory [DE-AC02-05CH11231] FX We would like to thank the CO2 Capture Project for support of the modular borehole monitoring (MBM) concept, development, and deployment. We thank the SECARB team, including Jerry Hill of SSEB, Rob Trautz of EPRI, George Koperna and Dave Riestenberg of ARI, and Gary Dittmar of Denbury. Acquisition of seismic data (geophone and DAS) was assisted by Dale Adessi of SR2020 and Michelle Robertson of LBNL. We would like to thank Bjorn Paulsson and John Thornburg of Paulsson, Inc. for the fabrication and deployment support of MBM geophones. This paper was greatly improved by the efforts of the anonymous reviewers and the editor. This work was supported by the CO2 Capture Project, and performed by Lawrence Berkeley Laboratory under Contract No. DE-AC02-05CH11231. NR 20 TC 1 Z9 1 U1 7 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0016-8025 EI 1365-2478 J9 GEOPHYS PROSPECT JI Geophys. Prospect. PD SEP PY 2016 VL 64 IS 5 BP 1318 EP 1334 DI 10.1111/1365-2478.12324 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DS6UI UT WOS:000380917900008 ER PT J AU Rosenberg, G Haghnegahdar, P Goddard, P Carr, P Wu, KS de Prado, ML AF Rosenberg, Gili Haghnegahdar, Poya Goddard, Phil Carr, Peter Wu, Kesheng de Prado, Marcos Lopez TI Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer SO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING LA English DT Article DE Optimal trading trajectory; portfolio optimization; quantum annealing ID PORTFOLIO SELECTION PROBLEM; MINIMUM TRANSACTION LOTS; ALGORITHM; COSTS AB We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques. C1 [Rosenberg, Gili; Goddard, Phil] 1QBit, Vancouver, BC V6C 2B5, Canada. [Haghnegahdar, Poya] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Carr, Peter] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA. [Wu, Kesheng] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de Prado, Marcos Lopez] Guggenheim Partners LLC, New York, NY 10017 USA. [de Prado, Marcos Lopez] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Rosenberg, G (reprint author), 1QBit, Vancouver, BC V6C 2B5, Canada. EM gili.rosenberg@1qbit.com; phagh-neg@phas.ubc.ca; phil.goddard@1qbit.com; Peter.P.Carr@morganstanley.com; kwu@lbl.gov; Marcos.LopezDePrado@guggenheimpartners.com FU 1QB Information Technologies (1QBit); Mitacs FX This work was supported by 1QB Information Technologies (1QBit) and Mitacs. The guest editor coordinating the review of this manuscript was Daniel. P. Palomar. NR 48 TC 1 Z9 1 U1 3 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1932-4553 EI 1941-0484 J9 IEEE J-STSP JI IEEE J. Sel. Top. Signal Process. PD SEP PY 2016 VL 10 IS 6 BP 1053 EP 1060 DI 10.1109/JSTSP.2016.2574703 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA DT4XA UT WOS:000381483500008 ER PT J AU Kou, F Yang, SL Zhang, LH Teat, SJ Tian, GX AF Kou, Fei Yang, Suliang Zhang, Lihua Teat, Simon J. Tian, Guoxin TI Complexation of Ho(III) with tetraalkyl-diglycolamide in aqueous solutions and a solid state compared in organic solutions of solvent extraction SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE Ho(III); Diglycolamide; Solvent extraction; Crystallography; Spectrophotometry ID MUTUAL SEPARATION; TODGA; LANTHANIDES; ACTINIDES; AM(III); SYSTEM; IONS; N,N'-DIMETHYL-N,N'-DIHEXYL-3-OXAPENTANEDIAMIDE; N,N,N',N'-TETRAETHYLDIGLYCOLAMIDE; COMBINATION AB The complexation of Ho(III) with tetramethyl-diglycolamide (TMDGA) and N,N'-dimethyl-N,N'-dioctyldiglycolamide (DMDODGA) were investigated with spectrophotometry and X-ray crystallography. Single crystals of a solid compound HoL3(ClO4)(3) (L = TMDGA) were grown from aqueous solutions by slow evaporation. The crystal structure of HoL3(ClO4)(3) shows that in the solid compound Ho(III) is coordinated by nine oxygen atoms from three tridentate TMDGA molecules in a distorted tricapped trigonal prism (TCTP) geometry. In aqueous solution, three successive complex species, HoL3+, HoL23+, and HoL33+ (L = TMDGA) were identified and their stability constants were determined to be 2.20 +/- 0.09, 4.48 +/- 0.18, 5.88 +/- 0.18, respectively, with spectral titration method at 25 degrees C and 1 M ionic strength (1 M NaNO3). The UV-Vis absorption/reflection spectra of the 1:3 species HoL33+ (L = TMDGA) in aqueous solution/solid state HoL3(ClO4)(3) compound were very well comparable to the absorption spectra of the extracted samples of Ho(III) with DMDODGA in various organic solvents in solvent extraction. The similarity in the spectra suggest that Ho(III) in the extracted samples is also coordinated by three tridentate DMDODGA with similar coordination geometry as that in HoL33+ (L = TMDGA) in aqueous solution/solid HoL3(ClO4)(3) compound. In the organic phase of solvent extraction with DMDODGA as extractant, the nitrate anions do not directly bond to Ho(III) in the extracted complex but just act as far away counter -ion to neutralize the positive charge of HoL33+ (L = DMDODGA), and the diluents do not have much influence on the formation of the extracted Ho(III)-DMDODGA complex. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kou, Fei; Yang, Suliang; Zhang, Lihua; Tian, Guoxin] China Inst Atom Chem, Radiochem Dept, Beijing 102413, Peoples R China. [Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Tian, Guoxin] Harbin Engn Univ, Coll Nucl Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China. RP Yang, SL; Tian, GX (reprint author), China Inst Atom Chem, Radiochem Dept, Beijing 102413, Peoples R China. EM gtian@ciae.ac.cn FU National Natural Science Foundation of China [91426302]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Natural Science Foundation of China (91426302). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 29 TC 1 Z9 1 U1 8 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 EI 1879-0259 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD SEP PY 2016 VL 71 BP 41 EP 44 DI 10.1016/j.inoche.2016.06.035 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DT9PV UT WOS:000381835700010 ER PT J AU Rasmusson, K Rasmusson, M Tsang, Y Niemi, A AF Rasmusson, K. Rasmusson, M. Tsang, Y. Niemi, A. TI A simulation study of the effect of trapping model, geological heterogeneity and injection strategies on CO2 trapping SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CCS; Capillary trapping; Hysteresis; Injection strategies; Residual trapping; Solubility trapping ID GOVERNING MULTIPHASE FLOW; CARBON-DIOXIDE; RELATIVE PERMEABILITY; SALINE AQUIFERS; RESERVOIR CONDITIONS; CAPILLARY FORCES; DISSOLUTION; STORAGE; SEQUESTRATION; HELETZ AB Industrial CO2 emissions to the atmosphere can be reduced through geological storage, where the gas is injected into the subsurface and trapped by several mechanisms. Residual and solubility trapping are two important processes providing trapping, and their effectiveness ultimately determines the feasibility of geological storage. By means of numerical modeling, a systematic analysis was made concerning the factors potentially affecting trapping, to guide the planned injection experiments at the Heletz test injection site. The effect of enhanced-trapping injection strategies along with the role of geological heterogeneity and the choice of trapping model (TM) were evaluated. The results showed that adding chase-fluid stages to a conventional CO2 injection enhanced the trapping. Taking into account the geological heterogeneity decreased trapping, as this retarded the buoyant migration, resulting in less imbibition and residual trapping. The choice of TM was significant, with the simplified Land TM producing the highest trapping, and the Aissaoui TM the lowest. The results stress the importance of using an appropriate TM as well as heterogeneity model for the site in question for any predictive modeling of CO2 sequestration, as different assumptions may lead to significant discrepancies in the predicted trapping. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Rasmusson, K.; Rasmusson, M.; Tsang, Y.; Niemi, A.] Uppsala Univ, Dept Earth Sci, Villavagen 16, S-75236 Uppsala, Sweden. [Tsang, Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Rasmusson, K (reprint author), Uppsala Univ, Dept Earth Sci, Villavagen 16, S-75236 Uppsala, Sweden. EM kristina.rasmusson@geo.uu.se; maria.rasmusson@geo.uu.se; yttsang@lbl.gov; auli.niemi@geo.uu.se FU European Community's 7th Framework Programme (project MUSTANG) [227286]; EU FP7 R&D program (project TRUST) [309067] FX lThe research leading to these results is supported by funding from the European Community's 7th Framework Programme FP7/2007-2013 under grant agreement no. 227286 (project MUSTANG) and the EU FP7 R&D program under grant agreement no. 309067 (project TRUST), which is gratefully acknowledged. We would like to thank S.M. Benson at Stanford University for providing us with experimental data for the characteristic functions. We would also like to thank two anonymous reviewers for their review and constructive comments for improvement of the manuscript. NR 58 TC 1 Z9 1 U1 8 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2016 VL 52 BP 52 EP 72 DI 10.1016/j.ijggc.2016.06.020 PG 21 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DT8GQ UT WOS:000381728300006 ER PT J AU Serno, S Johnson, G LaForce, TC Ennis-King, J Haese, RR Boreham, CJ Paterson, L Freifeld, BM Cook, PJ Kirste, D Haszeldine, RS Gilfillan, SMV AF Serno, Sascha Johnson, Gareth LaForce, Tara C. Ennis-King, Jonathan Haese, Ralf R. Boreham, Christopher J. Paterson, Lincoln Freifeld, Barry M. Cook, Paul J. Kirste, Dirk Haszeldine, R. Stuart Gilfillan, Stuart M. V. TI Using oxygen isotopes to quantitatively assess residual CO2 saturation during the CO2CRC Otway Stage 2B Extension residual saturation test SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Residual saturation; Oxygen isotopes; Otway; Geochemical tracer; CO2 storage ID CARBON-DIOXIDE STORAGE; THERMOMINERAL WATERS; DISSOLUTION TEST; FRACTIONATION; INJECTION; DISPOSAL; EXCHANGE; AQUIFERS; SITE; H2O AB Residual CO2 trapping is a key mechanism of secure CO2 storage, an essential component of the Carbon Capture and Storage technology. Estimating the amount of CO2 that will be residually trapped in a saline aquifer formation remains a significant challenge. Here, we present the first oxygen isotope ratio (delta O-18) measurements from a single-well experiment, the CO2CRC Otway 2B Extension, used to estimate levels of residual trapping of CO2. Following the initiation of the drive to residual saturation in the reservoir, reservoir water delta O-18 decreased, as predicted from the baseline isotope ratios of water and CO2, over a time span of only a few days. The isotope shift in the near-wellbore reservoir water is the result of isotope equilibrium exchange between residual CO2 and water. For the region further away from the well, the isotopic shift in the reservoir water can also be explained by isotopic exchange with mobile CO2 from ahead of the region driven to residual, or continuous isotopic exchange between water and residual CO2 during its back-production, complicating the interpretation of the change in reservoir water delta O-18 in terms of residual saturation. A small isotopic distinction of the baseline water and CO2 delta O-18, together with issues encountered during the field experiment procedure, further prevents the estimation of residual CO2 saturation levels from oxygen isotope changes without significant uncertainty. The similarity of oxygen isotope-based near-wellbore saturation levels and independent estimates based on pulsed neutron logging indicates the potential of using oxygen isotope as an effective inherent tracer for determining residual saturation on a field scale within a few days. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Serno, Sascha; Johnson, Gareth; Haszeldine, R. Stuart; Gilfillan, Stuart M. V.] Univ Edinburgh, Sch Geosci, Grant Inst, Kings Bldg,James Hutton Rd, Edinburgh EH9 3FE, Midlothian, Scotland. [LaForce, Tara C.; Ennis-King, Jonathan; Haese, Ralf R.; Boreham, Christopher J.; Paterson, Lincoln; Kirste, Dirk] Univ Melbourne, Ltd CO2CRC, Carlton, Vic 3010, Australia. [LaForce, Tara C.; Ennis-King, Jonathan; Paterson, Lincoln] CSIRO Energy, Private Bag 10, Clayton, Vic 3169, Australia. [Haese, Ralf R.] Univ Melbourne, Sch Earth Sci, Carlton, Vic 3010, Australia. [Boreham, Christopher J.] Geosci Australia, GPO Box 378, Canberra, ACT 2601, Australia. [Freifeld, Barry M.; Cook, Paul J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kirste, Dirk] Simon Fraser Univ, Dept Earth Sci, Burnaby, BC V5A 1S6, Canada. RP Serno, S (reprint author), Univ Edinburgh, Sch Geosci, Grant Inst, Kings Bldg,James Hutton Rd, Edinburgh EH9 3FE, Midlothian, Scotland. EM Sascha.Serno@ed.ac.uk RI Freifeld, Barry/F-3173-2010; Cook, Paul/I-4788-2016 FU UK CCS Research Centre (UKCCSRC) through Call 2 grant; ECR International Travel Exchange Fund; EPSRC as part of the RCUK Energy Programme; CO2CRC; AGOS; COSPL; Australian government through CRC programme; Carbon Storage Program, U.S. DOE, Assistant Secretary for Fossil Energy, Office of Clean Coal and Carbon Management through the NETL FX This work was supported by funding from the UK CCS Research Centre (UKCCSRC) through the Call 2 grant to S.M.V.G., GJ. and R.S.S., and the ECR International Travel Exchange Fund to S.S. The UKCCSRC is funded by the EPSRC as part of the RCUK Energy Programme. Funding for the Otway 2B Extension comes through CO2CRC, AGOS and COSPL. The authors acknowledge the funding provided by the Australian government through its CRC programme to support this CO2CRC research project. C.J.B. publishes with the permission of the CEO, Geoscience Australia. Funding for the group from the Lawrence Berkeley National Laboratory was provided by the Carbon Storage Program, U.S. DOE, Assistant Secretary for Fossil Energy, Office of Clean Coal and Carbon Management through the NETL. We would like to thank Sue Golding and Kim Baublys for conducting stable isotope measurements at the Stable Isotope Geochemistry Laboratory of the School of Earth Sciences, University of Queensland, Australia. We appreciate the help in sample collection from Jay Black, Hong Phuc Vu and the field operating team under the supervision of Rajindar Singh. The paper was improved by constructive comments from two anonymous reviewers. NR 53 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2016 VL 52 BP 73 EP 83 DI 10.1016/j.ijggc.2016.06.019 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DT8GQ UT WOS:000381728300007 ER PT J AU Pawar, RJ Bromhal, GS Chu, SP Dilmore, RM Oldenburg, CM Stauffer, PH Zhang, YQ Guthrie, GD AF Pawar, Rajesh J. Bromhal, Grant S. Chu, Shaoping Dilmore, Robert M. Oldenburg, Curtis M. Stauffer, Philip H. Zhang, Yingqi Guthrie, George D. TI The National Risk Assessment Partnership's integrated assessment model for carbon storage: A tool to support decision making amidst uncertainty SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Risk assessment; Risk quantification; CO2 sequestration; Risk profiles; Integrated assessment model; Reduced order models; NRAP ID REDUCED-ORDER MODELS; DEEP SALINE AQUIFERS; CO2 STORAGE; GEOLOGICAL SEQUESTRATION; INDUCED SEISMICITY; BRINE LEAKAGE; SYSTEM MODEL; DIOXIDE; SENSITIVITY; MANAGEMENT AB The US DOE-funded National Risk Assessment Partnership (NRAP) has developed an integrated assessment model (NRAP-IAM-CS) that can be used to simulate carbon dioxide (CO2) injection, migration, and associated impacts at a geologic carbon storage site. The model, NRAP-IAM-CS, incorporates a system modeling-based approach while taking into account the full subsurface system from the storage reservoir to groundwater aquifers and the atmosphere. The approach utilizes reduced order models (ROMs) that allow fast computations of entire system performance even for periods of hundreds to thousands of years. The ROMs are run in Monte Carlo mode allowing estimation of uncertainties of the entire system without requiring long computational times. The NRAP-IAM-CS incorporates ROMs that realistically represent several key processes and properties of storage reservoirs, wells, seals, and groundwater aquifers. Results from the NRAP-IAM-CS model are used to quantify risk profiles for selected parameter distributions of reservoir properties, seal properties, numbers of wells, well properties, thief zones, and groundwater aquifer properties. A series of examples is used to illustrate how the risk under different storage conditions evolves over time, both during injection, in the near-term post injection period, and over the long term. It is also shown how results from NRAP-IAM-CS can be used to investigate the importance of different parameters on risk of leakage and risk of groundwater contamination under different storage conditions. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Pawar, Rajesh J.; Chu, Shaoping; Stauffer, Philip H.; Guthrie, George D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bromhal, Grant S.; Dilmore, Robert M.] Natl Energy Technol Lab, South Pk Township, PA USA. [Oldenburg, Curtis M.; Zhang, Yingqi] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Pawar, RJ (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div EES 16, Los Alamos, NM 87545 USA. EM rajesh@lanl.gov RI Oldenburg, Curtis/L-6219-2013; OI Oldenburg, Curtis/0000-0002-0132-6016; Stauffer, Philip/0000-0002-6976-221X FU U.S. Department of Energy's (DOE) Office of Fossil Energy's Crosscutting Research program FX This work was completed as part of the National Risk Assessment Partnership (NRAP) project. Support for this project came from the U.S. Department of Energy's (DOE) Office of Fossil Energy's Crosscutting Research program. The authors wish to acknowledge Traci Rodosta and M. Kylee Rice (NETL Strategic Center for Coal) and Mark Ackiewicz (DOE Office of Fossil Energy) for programmatic guidance, direction, and support. The authors also wish to acknowledge contributions from researchers across the NRAP technical teams, who developed ROMs that are implemented in the NRAP-IAM-CS model. NR 44 TC 5 Z9 5 U1 5 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2016 VL 52 BP 175 EP 189 DI 10.1016/j.ijggc.2016.06.015 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DT8GQ UT WOS:000381728300015 ER PT J AU Trainor-Guitton, W Mansoor, K Sun, YW Carroll, S AF Trainor-Guitton, Whitney Mansoor, Kayyum Sun, Yunwei Carroll, Susan TI Merits of pressure and geochemical data as indicators of CO2/brine leakage into a heterogeneous, sedimentary aquifer SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 storage; CO2 and brine leakage; Monitoring Reactive transport; Detectability ID SHALLOW GROUNDWATER SYSTEM; CO2 LEAKAGE; CARBON SEQUESTRATION; UNCERTAINTY QUANTIFICATION; ELECTRICAL-RESISTIVITY; SITE; STORAGE; PERFORMANCE; MIGRATION; IMPACTS AB This study assesses the merits of pressure data and geochemical data as indicators of a combined CO2/brine leakage into a heterogeneous, sedimentary aquifer. We simulate the changes in three aquifer responses (pressure, total dissolved solids (TDS), and pH) due to CO2/brine leakage at an abandoned well with an uncertain location and hypothesize that these changes can only be observed from a single shallow monitoring well, mimicking the low density of observation wells for the considered aquifer. Specifically, detection likelihoods are calculated to describe how frequently pressure, TDS, and pH signals will coincide with a leak for observations made at different distances and times from the initiation of the CO2/brine leakage rate. The pressure signal gives a more spatially extensive signal than either TDS or pH, and pressure detection probabilities increase upstream of flow barriers (pressurizing-affect). The pH and TDS rebound down-stream of the flow barriers. When only considering the samples that experience the highest leakage volumes, there is a 50% likelihood of detecting a pressure change 400 m away at times >= 30 years. However, the TDS and pH detection likelihoods are <20% at 100 m distance for times >= 30 years. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Trainor-Guitton, Whitney] Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA. [Trainor-Guitton, Whitney; Mansoor, Kayyum; Sun, Yunwei; Carroll, Susan] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Trainor-Guitton, W (reprint author), Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA. EM wtrainor@mines.edu FU U.S. Department of Energy's (DOE's) Office of Fossil Energy's Cross-cutting Research program FX This work is part of the National Risk Assessment Partnership (NRAP) which is supported by the U.S. Department of Energy's (DOE's) Office of Fossil Energy's Cross-cutting Research program. NR 30 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2016 VL 52 BP 237 EP 249 DI 10.1016/j.ijggc.2016.07.002 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DT8GQ UT WOS:000381728300020 ER PT J AU Keating, E Bacon, D Carroll, S Mansoor, K Sun, YW Zheng, LE Harp, D Dai, ZX AF Keating, Elizabeth Bacon, Diana Carroll, Susan Mansoor, Kayyum Sun, Yunwei Zheng, Liange Harp, Dylan Dai, Zhenxue TI Applicability of aquifer impact models to support decisions at CO2 sequestration sites SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon sequestration; Groundwater impacts; Risk assessment; Reduced-order modeling ID DISSOLUTION KINETICS; GEOCHEMICAL IMPACTS; EVALUATING IMPACTS; POTABLE AQUIFERS; CARBON-DIOXIDE; SHALLOW; LEAKAGE; GROUNDWATER; ADSORPTION; FIELD AB The National Risk Assessment Partnership has developed a suite of tools to assess and manage risk at CO2 sequestration sites. This capability includes polynomial or look-up table based reduced-order models (ROMs) that predict the impact of CO2 and brine leaks on overlying aquifers. The development of these computationally-efficient models and the underlying reactive transport simulations they emulate has been documented elsewhere (Carroll et al, 2014a,b; Dal et al., 2014: Keating et al., 2016). In this paper, we seek to demonstrate applicability of ROM-based analysis by considering what types of decisions and aquifer types would benefit from the ROM analysis. We present four hypothetical examples where applying ROMs, in ensemble mode, could support decisions during a geologic CO2 sequestration project. These decisions pertain to site selection, site characterization, monitoring network evaluation, and health impacts. In all cases, we consider potential brine/CO2 leak rates at the base of the aquifer to be uncertain. We show that derived probabilities provide information relevant to the decision at hand. Although the ROMs were developed using site-specific data from two aquifers (High Plains and Edwards), the models accept aquifer characteristics as variable inputs and so they may have more broad applicability. We conclude that pH and TDS predictions are the most transferable to other aquifers based on the analysis of the nine water quality metrics (pH, TDS, 4 trace metals, 3 organic compounds). Guidelines are presented for determining the aquifer types for which the ROMs should be applicable. (C) Published by Elsevier Ltd. C1 [Keating, Elizabeth; Harp, Dylan; Dai, Zhenxue] Los Alamos Natl Lab, Earth & Environm Sci Div, MS T003, Los Alamos, NM 87545 USA. [Bacon, Diana] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. [Carroll, Susan; Mansoor, Kayyum; Sun, Yunwei] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Zheng, Liange] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Keating, E (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, MS T003, Los Alamos, NM 87545 USA. EM ekeating@lanl.gov; Diana.Bacon@pnnl.gov; carroll6@llnl.gov; mansoor1@llnl.gov; sun4@llnl.gov; lzheng@lbl.gov; dharp@lanl.gov; daiz@lanl.gov RI zheng, liange/B-9748-2011; OI zheng, liange/0000-0002-9376-2535; Dai, Zhenxue/0000-0002-0805-7621 FU DOE Office of Fossil Energy's Crosscutting Research program FX This work was completed as part of National Risk Assessment Partnership (NRAP) project. Support for this project came from the DOE Office of Fossil Energy's Crosscutting Research program. The authors wish to acknowledge Robert Romanosky (NETL Strategic Center for Coal) and Regis Conrad (DOE Office of Fossil Energy) for programmatic guidance, direction, and support. Additionally, this work benefited greatly from thoughtful comments from three anonymous reviewers. NR 51 TC 0 Z9 0 U1 6 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2016 VL 52 BP 319 EP 330 DI 10.1016/j.ijggc.2016.07.001 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DT8GQ UT WOS:000381728300025 ER PT J AU Rhiger, DR Smith, EP Kolasa, BP Kim, JK Klem, JF Hawkins, SD AF Rhiger, David R. Smith, Edward P. Kolasa, Borys P. Kim, Jin K. Klem, John F. Hawkins, Samuel D. TI Analysis of III-V Superlattice nBn Device Characteristics SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Infrared; nBn; III-V material; superlattice; InAs/InAsSb; capacitance measurements AB Mid-wavelength infrared nBn detectors built with III-V superlattice materials have been tested by means of both capacitance and direct-current methods. By combining the results, it is possible to achieve clear separation of the two components of dark current, namely the generation-recombination (GR) current due to the Shockley-Read-Hall mechanism in the depletion region, and the diffusion current from the neutral region. The GR current component is unambiguously identified by two characteristics: (a) it is a linear function of the depletion width, and (b) its activation energy is approximately one-half the bandgap. The remaining current is shown to be due to diffusion because of its activation energy equaling the full bandgap. In addition, the activation energy of the total measured dark current in each local region of the temperature-bias parameter space is evaluated. We show the benefits of capacitance analysis applied to the nBn device and review some of the requirements for correct measurements. The carrier concentration of the unintentionally doped absorber region is found to be 1.2 x 10(14) cm(-3) n-type. It is shown that the depletion region resides almost entirely within the absorber. Also, the doping in the nBn barrier is found to be 4 x 10(15) cm(-3) p-type. Minority-carrier lifetimes estimated from the dark current components are on the order of 10 mu s. C1 [Rhiger, David R.; Smith, Edward P.; Kolasa, Borys P.] Raytheon Vis Syst, 75 Coromar Dr, Goleta, CA 93117 USA. [Kim, Jin K.; Klem, John F.; Hawkins, Samuel D.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Rhiger, DR (reprint author), Raytheon Vis Syst, 75 Coromar Dr, Goleta, CA 93117 USA. EM drhiger@raytheon.com NR 19 TC 2 Z9 2 U1 10 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD SEP PY 2016 VL 45 IS 9 BP 4646 EP 4653 DI 10.1007/s11664-016-4545-y PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DS9CM UT WOS:000381080000022 ER PT J AU Yoo, W Sim, A AF Yoo, Wucherl Sim, Alex TI Time-Series Forecast Modeling on High-Bandwidth Network Measurements SO JOURNAL OF GRID COMPUTING LA English DT Article DE Data modeling; Time series; Prediction model; Network measurements; Network traffic ID AVAILABLE BANDWIDTH; TCP THROUGHPUT AB With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. We have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and the AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements. C1 [Yoo, Wucherl; Sim, Alex] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Yoo, W (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wyoo@lbl.gov FU Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Chris Tracy, Jon Dugan, Brian Tierney, Inder Monga, and Gregory Bell at ESnet; Arie Shoshani, K. John Wu, Joy Bonaguro, and Jay Krous at LBNL; Richard Carlson at Dept. of Energy. NR 38 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 EI 1572-9184 J9 J GRID COMPUT JI J. Comput. PD SEP PY 2016 VL 14 IS 3 BP 463 EP 476 DI 10.1007/s10723-016-9368-9 PG 14 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA DT0FP UT WOS:000381158800005 ER PT J AU Glosser, D Kutchko, B Benge, G Crandall, D Ley, MT AF Glosser, D. Kutchko, B. Benge, G. Crandall, D. Ley, M. T. TI Relationship between operational variables, fundamental physics and foamed cement properties in lab and field generated foamed cement slurries SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE Energy; Foamed cement; Wellbores; Engineering ID PASTE AB Foamed cement is a critical component for wellbore stability. The mechanical performance of a foamed cement depends on its microstructure, which in turn depends on the preparation method and attendant operational variables. Determination of cement stability for field use is based on laboratory testing protocols governed by API Recommended Practice 10B-4 (API RP 10B-4, 2015). However, laboratory and field operational variables contrast considerably in terms of scale, as well as slurry mixing and foaming processes. Here, laboratory and field operational processes are characterized within a physics-based framework. It is shown that the "atomization energy" imparted by the high pressure injection of nitrogen gas into the field mixed foamed cement slurry is - by a significant margin - the highest energy process, and has a major impact on the void system in the cement slurry. There is no analog for this high energy exchange in current laboratory cement preparation and testing protocols. Quantifying the energy exchanges across the laboratory and field processes provides a basis for understanding relative impacts of these variables on cement structure, and can ultimately lead to the development of practices to improve cement testing and performance. Published by Elsevier B.V. C1 [Glosser, D.; Kutchko, B.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Glosser, D.] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA. [Crandall, D.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Benge, G.] Benge Consulting, The Woodlands, TX USA. [Ley, M. T.] Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA. RP Kutchko, B (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM Barbara.Kutchko@netl.doe.gov FU U.S. Department of Energy FX This work was completed as part of National Energy Technology Laboratory (NETL) research for the Department of Energy's Complementary Research Program under Section 999 of the Energy Policy Act of 2005. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. The authors wish to acknowledge Roy Long (NETL Strategic Center for Natural Gas and Oil) and Elena Melchert (DOE Office of Fossil Energy) for programmatic guidance, direction, and support. The authors would like to thank Bryan Tennant, Karl Jarvis and Roger Lapeer for making the CT scanner lab functional. Thanks to Rick Spaulding and Jim Fazio for superior laboratory assistance. The authors extend a special thanks to Erick Cunningham and Woody Lawrence, and to Kelly Rose and Jen Bauer. DBG would also like to thank S. Miaskeiwicz, E. Anish, the Millers, Russell Schwartz, and the Arnolds. NR 27 TC 0 Z9 1 U1 6 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD SEP PY 2016 VL 145 BP 66 EP 76 DI 10.1016/j.petrol.2016.03.014 PG 11 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA DT9PU UT WOS:000381835600006 ER PT J AU Dhuwe, A Klara, A Sullivan, J Lee, J Cummings, S Beckman, E Enick, R Perry, R AF Dhuwe, Aman Klara, Alex Sullivan, James Lee, Jason Cummings, Stephen Beckman, Eric Enick, Robert Perry, Robert TI Assessment of solubility and viscosity of ultra-high molecular weight polymeric thickeners in ethane, propane and butane for miscible EOR SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE Ethane; Propane; Butane; Thickener; Ultrahigh molecular weight polymer; Poly-alpha-olefin ID THERMODYNAMIC PROPERTY MODEL; PRESSURE PHASE-BEHAVIOR; CARBON-DIOXIDE; POLY(ETHYLENE-CO-METHYL ACRYLATE); N-BUTANE; SYSTEMS; EQUILIBRIA; COPOLYMER; OIL; CO2 AB Natural gas liquid (NGL), a mixture consisting primarily of ethane, propane, and butane, is an excellent enhanced oil recovery (EOR) solvent. However, NGL is typically about ten times less viscous than the crude oil within the carbonate or sandstone porous media, which causes the NGL to finger through the rock toward production wells resulting in low volumetricsweep efficiency in five-spot patterns or during a linear drive displacement. The viscosity of candidate polymeric NGL thickeners is measured with a windowed, close-clearance falling ball viscometer, and an expression for the average shear rate associated with this type of viscometer is derived. High molecular weight polydimethyl siloxane (PDMS, MW 9.8 10(5)) can thicken ethane, propane and butane, but the viscosity enhancement is very modest (e.g. a doubling of butane viscosity with 2% PDMS at 7 MPa and 25 degrees C), making field application of PDMS unlikely. A dilute concentration of a drag-reducing agent (DRA) poly-alpha-olefin that has an average molecular weight greater than 2.0 10(7) is more promising as a potential thickener for liquid butane, liquid propane and liquid or supercritical ethane. The DRA polymer, which is introduced as an extremely viscous 1% or 2% solution in hexane, is soluble in butane and propane at 25-60 degrees C and concentrations up to at least 0.5 wt% at pressures slightly above the vapor pressure of butane or propane. The DRA polymer is much more difficult to dissolve in ethane, however, requiring pressures of more than 20 MPa. The DRA polymer is especially effective for thickening butane (e.g. a 4.8-fold viscosity increase at 25 degrees C, 55.16 MPa and 0.2 wt% DRA). The DRA is less effective for increasing propane viscosity (e.g. a 2.3-fold viscosity increase at the same conditions), and even less effective for thickening ethane. In general, viscosity enhancement increases with decreasing temperature, increasing pressure, and an increase in the carbon number of the light alkane, which are reflective of increased NGL solvent strength at low temperature and high pressure. Practical application of DRA during EOR may be hindered, however, by the relatively high concentration (similar to 5000 ppm) of DRA polymer required for order-of-magnitude viscosity increases, very high pressure requirements for DRA dissolution if the ethane content of the NGL is high, and the large amount of hexane that would have to be introduced if the DRA polymer if it is introduced as a solution in hexane. (C) 2016 Elsevier B.V. All rights reserved. C1 [Dhuwe, Aman; Sullivan, James; Lee, Jason; Cummings, Stephen; Beckman, Eric; Enick, Robert] Univ Pittsburgh, Swanson Sch Engn, Dept Chem & Petr Engn, 940 Benedum Engn Hall,3700 OHara St, Pittsburgh, PA 15261 USA. [Klara, Alex] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA. [Enick, Robert] US DOE, Natl Energy Technol Lab, Off Res & Dev, Pittsburgh, PA 15236 USA. [Perry, Robert] GE Global Res, Res Circle, Niskayuna, NY 12309 USA. RP Enick, R (reprint author), Univ Pittsburgh, Swanson Sch Engn, Dept Chem & Petr Engn, 940 Benedum Engn Hall,3700 OHara St, Pittsburgh, PA 15261 USA. EM rme@pitt.edu FU U.S. Department of Energy Advanced Research Project Agency-Energy (ARPA-E) [DE-AR0000292] FX This work was supported by the U.S. Department of Energy Advanced Research Project Agency-Energy (ARPA-E) (Contract No. DE-AR0000292). The authors are grateful to them for their support. We would also like to express our appreciation to Lubrizol for their enthusiastic support of the newly formed Lubrizol Innovation Collaboration in the Department of Chemical and Petroleum Engineering at the Swanson School of Engineering at the University of Pittsburgh. NR 48 TC 2 Z9 2 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD SEP PY 2016 VL 145 BP 266 EP 278 DI 10.1016/j.petrol.2016.05.018 PG 13 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA DT9PU UT WOS:000381835600024 ER PT J AU Yu, HJ Takeuchi, H Takeuchi, M Liu, Q Kantharia, J Haltiwanger, RS Li, HL AF Yu, Hongjun Takeuchi, Hideyuki Takeuchi, Megumi Liu, Qun Kantharia, Joshua Haltiwanger, Robert S. Li, Huilin TI Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations SO NATURE CHEMICAL BIOLOGY LA English DT Article ID O-GLCNAC TRANSFERASE; SQUAMOUS-CELL CARCINOMA; CANCER; GLUCOSYLTRANSFERASE; MECHANISM; DIFFRACTION; PATHWAY; GLYCOSYLTRANSFERASES; XYLOSYLTRANSFERASE; GLYCOSYLATION AB Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development, including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi's critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary and ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence,C-X-S-X-(P/A)-C and a conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling-Degos disease are clustered around the enzyme active site and adversely affect its activity. Our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling. C1 [Yu, Hongjun; Liu, Qun; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Takeuchi, Hideyuki; Takeuchi, Megumi; Haltiwanger, Robert S.] Univ Georgia, Complex Carbohydrate Res Ctr, 220 Riverbend Rd, Athens, GA 30602 USA. [Kantharia, Joshua; Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Li, HL (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.; Haltiwanger, RS (reprint author), Univ Georgia, Complex Carbohydrate Res Ctr, 220 Riverbend Rd, Athens, GA 30602 USA.; Li, HL (reprint author), SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. EM rhalti@uga.edu; hli@bnl.gov FU NIH [GM061126, AG029979]; SBU-BNL; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357] FX We thank members of the Li and Haltiwanger labs for critical comments on this work, as well as S. Singh Johar for technical assistance. The work was supported by the NIH (grants GM061126 (to R.S.H.) and AG029979 (to H.L.)) and SBU-BNL (seed grant to R.S.H. and H.L.). We acknowledge access to beamlines X25, X29 and X4A at NSLS, Brookhaven National Laboratory and LRL-CAT at APS, Argonne National Laboratory, and we thank the staff at these beamlines. NSLS and APS were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract nos. DE-AC02-98CH10886 and DE-AC02-06CH11357, respectively. Use of the Lilly Research Laboratories Collaborative Access Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon Source was provided by Eli Lilly Company, which operates the facility. The results published here are in part based on data generated by the TCGA Research Network (http://cancergenome.nih.gov/). H.L. dedicates this work to the loving memory of his son Paul J. Li. NR 52 TC 0 Z9 0 U1 7 U2 7 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1552-4450 EI 1552-4469 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD SEP PY 2016 VL 12 IS 9 BP 735 EP + DI 10.1038/nchembio.2135 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DU5MF UT WOS:000382255100016 PM 27428513 ER PT J AU Souhan, B Chen, CP Lu, M Stein, A Bakhru, H Grote, RR Bergman, K Green, WMJ Osgood, RM AF Souhan, Brian Chen, Christine P. Lu, Ming Stein, Aaron Bakhru, Hassaram Grote, Richard R. Bergman, Keren Green, William M. J. Osgood, Richard M., Jr. TI Ar+-Implanted Si-Waveguide Photodiodes for Mid-Infrared Detection SO PHOTONICS LA English DT Article DE silicon; photodetectors; integrated optics devices ID ERROR-FREE OPERATION; MU-M; INFRARED PHOTODIODES; AVALANCHE PHOTODIODE; SILICON; PHOTODETECTORS; MODULATION; BANDWIDTH; MODE; BAND AB Complementary metal-oxide-semiconductor (CMOS)-compatible Ar+-implanted Si-waveguide p-i-n photodetectors operating in the mid-infrared (2.2 to 2.3 mu m wavelengths) are demonstrated at room temperature. Responsivities exceeding 21 mA/ W are measured at a 5 V reverse bias with an estimated internal quantum efficiency of 3.1%-3.7%. The dark current is found to vary from a few nanoamps down to less than 11 pA after post-implantation annealing at 350 degrees C. Linearity is demonstrated over four orders of magnitude, confirming a single-photon absorption process. The devices demonstrate a higher thermal processing budget than similar Si+-implanted devices and achieve higher responsivity after annealing up to 350 degrees C. C1 [Souhan, Brian] US Mil Acad, Photon Res Ctr, West Point, NY 10996 USA. [Chen, Christine P.; Bergman, Keren] Columbia Univ, Dept Elect Engn, 500 W 120th St, New York, NY 10027 USA. [Lu, Ming; Stein, Aaron] Brookhaven Natl Lab, Ctr Funct Nanomat, POB 5000, Upton, NY 11973 USA. [Bakhru, Hassaram] SUNYPOLY, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Grote, Richard R.] Univ Penn, Dept Elect & Syst Engn, 200 S 33rd St, Philadelphia, PA 19104 USA. [Green, William M. J.] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA. [Osgood, Richard M., Jr.] Columbia Univ, Microelect Sci Labs, 500 W 120th St, New York, NY 10027 USA. RP Souhan, B (reprint author), US Mil Acad, Photon Res Ctr, West Point, NY 10996 USA. EM brian.souhan@gmail.com; cpc2143@columbia.edu; mlu@bnl.gov; stein@bnl.gov; hbakhru@sunypoly.edu; rgrote@seas.upenn.edu; bergman@ee.columbia.edu; wgreen@us.ibm.com; osgood@columbia.edu NR 27 TC 0 Z9 0 U1 6 U2 8 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2304-6732 J9 PHOTONICS JI Photonics PD SEP PY 2016 VL 3 IS 3 AR 46 DI 10.3390/photonics3030046 PG 8 WC Optics SC Optics GA DT9ZG UT WOS:000381860400006 ER PT J AU Hommel, R Siegwolf, R Zavadlav, S Arend, M Schaub, M Galiano, L Haeni, M Kayler, ZE Gessler, A AF Hommel, R. Siegwolf, R. Zavadlav, S. Arend, M. Schaub, M. Galiano, L. Haeni, M. Kayler, Z. E. Gessler, A. TI Impact of interspecific competition and drought on the allocation of new assimilates in trees SO PLANT BIOLOGY LA English DT Article DE Carbon isotope labelling; mean residence time; osmotic adjustment; phloem transport; respiration ID BEECH FAGUS-SYLVATICA; CARBON-ISOTOPE COMPOSITION; RECENTLY FIXED CARBON; EUROPEAN BEECH; ACER-PLATANOIDES; CLIMATE-CHANGE; NORWAY SPRUCE; NITROGEN-COMPOUNDS; RESIDENCE TIME; FOREST AB In trees, the interplay between reduced carbon assimilation and the inability to transport carbohydrates to the sites of demand under drought might be one of the mechanisms leading to carbon starvation. However, we largely lack knowledge on how drought effects on new assimilate allocation differ between species with different drought sensitivities and how these effects are modified by interspecific competition. We assessed the fate of C-13 labelled assimilates in above- and belowground plant organs and in root/rhizosphere respired CO2 in saplings of drought-tolerant Norway maple (Acer platanoides) and drought-sensitive European beech (Fagus sylvatica) exposed to moderate drought, either in mono- or mixed culture. While drought reduced stomatal conductance and photosynthesis rates in both species, both maintained assimilate transport belowground. Beech even allocated more new assimilate to the roots under moderate drought compared to non-limited water supply conditions, and this pattern was even more pronounced under interspecific competition. Even though maple was a superior competitor compared to beech under non-limited soil water conditions, as indicated by the changes in above- and belowground biomass of both species in the interspecific competition treatments, we can state that beech was still able to efficiently allocate new assimilate belowground under combined drought and interspecific competition. This might be seen as a strategy to maintain root osmotic potential and to prioritise root functioning. Our results thus show that beech tolerates moderate drought stress plus competition without losing its ability to supply belowground tissues. It remains to be explored in future work if this strategy is also valid during long-term drought exposure. C1 [Hommel, R.; Kayler, Z. E.; Gessler, A.] Inst Landscape Biogeochem, Leibniz Ctr Agr Landscape Res ZALF, Muncheberg, Germany. [Siegwolf, R.] Paul Scherrer Inst, Lab Atmospher Chem Stable Isotopes & Ecosyst Flux, Villigen, Switzerland. [Zavadlav, S.] Dept Forest Physiol & Genet, Ljubljana, Slovenia. [Arend, M.; Schaub, M.; Galiano, L.; Haeni, M.; Gessler, A.] Swiss Fed Inst Forest Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland. [Galiano, L.] Univ Freiburg, Inst Hydrol, Freiburg, Germany. [Gessler, A.] Berlin Brandenburg Inst Adv Biodivers Res BBIB, Berlin, Germany. [Kayler, Z. E.] US Forest Serv, USDA, Northern Res Stn, Lawrence Livermore Natl Lab, Livermore, CA USA. RP Gessler, A (reprint author), Swiss Fed Inst Forest Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland. EM arthur.gessler@wsl.ch RI Gessler, Arthur/C-7121-2008; Arend, Matthias/L-7795-2013; Galiano, Lucia/P-1818-2016; Haeni, Matthias/A-3446-2013; Schaub, Marcus/E-4874-2012 OI Gessler, Arthur/0000-0002-1910-9589; Galiano, Lucia/0000-0003-0123-1882; Haeni, Matthias/0000-0003-3977-2166; Schaub, Marcus/0000-0002-0158-8892 FU Deutsche Forschungsgemeinschaft [GE 1090/8-1, GE 1090/9-1] FX The authors are grateful to Eva Hilbig for continuous support during all labelling experiments, and Johannes Bruckhoff for preparing the custom chambers. Special thanks to Katja Felsmann, Ruth Lamparter, Kirstin Jansen, Lucia Atanet, Susanne Remus, Florian Reverey, Richard Hommel, Rainer Hentschel and Martin Hentschel for huge help during the harvests and analyses. We thank Stephan Wirth for the supply of the Picarro. The project was funded by the Deutsche Forschungsgemeinschaft (Grant numbers: GE 1090/8-1 and 9-1). NR 69 TC 3 Z9 3 U1 31 U2 52 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1435-8603 EI 1438-8677 J9 PLANT BIOLOGY JI Plant Biol. PD SEP PY 2016 VL 18 IS 5 BP 785 EP 796 DI 10.1111/plb.12461 PG 12 WC Plant Sciences SC Plant Sciences GA DS8IT UT WOS:000381027400006 PM 27061772 ER PT J AU Jones-Albertus, R Feldman, D Fu, R Horowitz, K Woodhouse, M AF Jones-Albertus, Rebecca Feldman, David Fu, Ran Horowitz, Kelsey Woodhouse, Michael TI Technology advances needed for photovoltaics to achieve widespread grid price parity SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE economics; LCOE; photovoltaics AB To quantify the potential value of technological advances to the photovoltaics (PV) sector, this paper examines the impact of changes to key PV module and system parameters on the levelized cost of energy (LCOE). The parameters selected include module manufacturing cost, efficiency, degradation rate, and service lifetime. NREL's System Advisor Model (SAM) is used to calculate the lifecycle cost per kilowatt-hour (kWh) for residential, commercial, and utility scale PV systems within the contiguous United States, with a focus on utility scale. Different technological pathways are illustrated that may achieve the Department of Energy's SunShot goal of PV electricity that is at grid price parity with conventional electricity sources. In addition, the impacts on the 2015 baseline LCOE due to changes to each parameter are shown. These results may be used to identify research directions with the greatest potential to impact the cost of PV electricity. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Jones-Albertus, Rebecca] US DOE, Off Energy Efficiency & Renewable Energy, Solar Energy Technol Off, Washington, DC 20585 USA. [Feldman, David; Fu, Ran; Horowitz, Kelsey; Woodhouse, Michael] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA. RP Jones-Albertus, R (reprint author), US DOE, Off Energy Efficiency & Renewable Energy, Solar Energy Technol Off, Washington, DC 20585 USA.; Woodhouse, M (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA.; Woodhouse, M (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Washington, DC USA. EM rebecca.jones-albertus@ee.doe.gov; michael.woodhouse@nrel.gov NR 14 TC 3 Z9 3 U1 13 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD SEP PY 2016 VL 24 IS 9 BP 1272 EP 1283 DI 10.1002/pip.2755 PG 12 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DS7LJ UT WOS:000380964700010 ER PT J AU Ward, JS Remo, T Horowitz, K Woodhouse, M Sopori, B VanSant, K Basore, P AF Ward, J. Scott Remo, Timothy Horowitz, Kelsey Woodhouse, Michael Sopori, Bhushan VanSant, Kaitlyn Basore, Paul TI Techno-economic analysis of three different substrate removal and reuse strategies for III-V solar cells SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE photovoltaics; III-V; substrate; reuse ID EPITAXIAL LIFT-OFF; HIGH-EFFICIENCY; SI; TECHNOLOGY; CRACKING; FILMS AB The high cost of wafers suitable for epitaxial deposition of III-V solar cells has been a primary barrier to widespread use of these cells in low-concentration and one-sun terrestrial solar applications. A possible solution is to reuse the substrate many times, thus spreading its cost across many cells. We performed a bottom-up techno-economic analysis of three different strategies for substrate reuse in high-volume manufacturing: epitaxial lift-off, spalling, and the use of a porous germanium release layer. The analysis shows that the potential cost reduction resulting from substrate reuse is limited in all three strategies--not by the number of reuse cycles achievable, but by the costs that are incurred in each cycle to prepare the substrate for another epitaxial deposition. The dominant substrate-preparation cost component is different for each of the three strategies, and the cost-ranking of these strategies is subject to change if future developments substantially reduce the cost of epitaxial deposition. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Ward, J. Scott; Remo, Timothy; Horowitz, Kelsey; Woodhouse, Michael; Sopori, Bhushan; VanSant, Kaitlyn; Basore, Paul] Natl Renewable Energy Lab, Golden, CO USA. RP Ward, JS (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM scott.ward@nrel.gov FU US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; DOE Solar Energy Technologies Office [DE-EE00025784] FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding provided by the DOE Solar Energy Technologies Office under agreement DE-EE00025784 for "PV Partnering & Business Development." The US Government and the publisher, by accepting the article for publication, acknowledge that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes. NR 27 TC 1 Z9 1 U1 8 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD SEP PY 2016 VL 24 IS 9 BP 1284 EP 1292 DI 10.1002/pip.2776 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DS7LJ UT WOS:000380964700011 ER PT J AU Ginley, D Granqvist, CG Kiriakidis, G Klein, A Kamiya, T Hosono, H AF Ginley, David Granqvist, Claes-G. Kiriakidis, George Klein, Andreas Kamiya, Toshio Hosono, Hideo TI 9th International Symposium on Transparent Oxide and Related Materials for Electronics and Optics (TOEO9) Preface SO THIN SOLID FILMS LA English DT Editorial Material C1 [Ginley, David] NREL, Golden, CO 80401 USA. [Granqvist, Claes-G.] Uppsala Univ, Uppsala, Sweden. [Kiriakidis, George] Univ Crete, Rethimnon, Greece. [Klein, Andreas] Tech Univ Darmstadt, Darmstadt, Germany. [Kamiya, Toshio; Hosono, Hideo] Tokyo Tech, Tokyo, Japan. RP Ginley, D (reprint author), NREL, Golden, CO 80401 USA. RI Kamiya, Toshio/E-8615-2014; Kiriakidis, George/G-9685-2011 OI Kamiya, Toshio/0000-0002-8358-240X; NR 0 TC 0 Z9 0 U1 3 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD SEP 1 PY 2016 VL 614 BP 43 EP 43 DI 10.1016/j.tsf.2016.07.054 PN B PG 1 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA DS8KW UT WOS:000381033200001 ER PT J AU de Souza, MM Oostrom, M White, MD da Silva, GC Barbosa, MC AF de Souza, Michelle Matos Oostrom, Mart White, Mark D. da Silva, Gerson Cardoso, Jr. Barbosa, Maria Claudia TI Simulation of Subsurface Multiphase Contaminant Extraction Using a Bioslurping Well Model SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Well model; Bioslurping; STOMP; Multiphase extraction; LNAPL recovery ID NUMERICAL RESERVOIR SIMULATION; NONAQUEOUS PHASE LIQUIDS; POROUS-MEDIA; UNCONFINED AQUIFERS; FLOW; HYDROCARBON; PERMEABILITY; REMEDIATION; MIGRATION; RECOVERY AB Subsurface simulation of multiphase extraction from wells is notoriously difficult. Explicit representation of well geometry requires small grid resolution, potentially leading to large computational demands. To reduce the problem dimensionality, multiphase extraction is mostly modeled using vertically averaged approaches. In this paper, a multiphase well model approach is presented as an alternative to simplify the application. The well model, a multiphase extension of the classic Peaceman model, has been implemented in the STOMP simulator. The numerical solution approach accounts for local conditions and gradients in the exchange of fluids between the well and the aquifer. Advantages of this well model implementation include the option to simulate the effects of well characteristics and operation. Simulations were conducted investigating the effects of extraction location, applied vacuum pressure, and a number of hydraulic properties. The obtained results were all consistent and logical. A major outcome of the test simulations is that, in contrast to common recommendations to extract from either the gas-NAPL or the NAPL-aqueous phase interface, the optimum extraction location should be in between these two levels. The new model implementation was also used to simulate extraction at a field site in Brazil. The simulation shows a good match with the field data, suggesting that the new STOMP well module may correctly represent oil removal. The field simulations depend on the quality of the site conceptual model, including the porous media and contaminant properties and the boundary and extraction conditions adopted. The new module may potentially be used to design field applications and analyze extraction data. C1 [de Souza, Michelle Matos; Barbosa, Maria Claudia] Univ Fed Rio de Janeiro, COPPE UFRJ, Civil Engn Program, Pedro Calmon Ave,POB 68506, Rio De Janeiro, RJ, Brazil. [Oostrom, Mart; White, Mark D.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [da Silva, Gerson Cardoso, Jr.] Univ Fed Rio de Janeiro, Dept Geol, CCMN, Athos da Silveira Ramos Ave 274, Rio De Janeiro, RJ, Brazil. RP de Souza, MM (reprint author), Univ Fed Rio de Janeiro, COPPE UFRJ, Civil Engn Program, Pedro Calmon Ave,POB 68506, Rio De Janeiro, RJ, Brazil. EM mmsouza79@gmail.com; mart.oostrom@pnnl.gov; mark.white@pnnl.gov; gerson@acd.ufrj.br; mclaudia@coc.ufrj.br RI da Silva Jr., Gerson/C-5767-2013 OI da Silva Jr., Gerson/0000-0002-7160-0893 FU Department of Energy (DOE) [DE-AC06-76RLO 1830]; National Counsel of Technological and Scientific Development (CNPq); Science without Borders Program (CAPES-Ciencia sem fronteiras) FX Pacific Northwest National Laboratory (PNNL) is operated by the Battelle Memorial Institute for the Department of Energy (DOE) under Contract DE-AC06-76RLO 1830. Part of the work was completed by the senior author as a visiting scholar at the Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility of the United States Department of Energy's Office of Biological and Environmental Research operated by the Pacific Northwest National Laboratory (PNNL). The senior author is grateful to the Brazilian agencies-National Counsel of Technological and Scientific Development (CNPq) and the Science without Borders Program (CAPES-Ciencia sem fronteiras)-for a research scholarship under which this work was carried out. NR 49 TC 0 Z9 0 U1 5 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 EI 1573-1634 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD SEP PY 2016 VL 114 IS 3 BP 649 EP 673 DI 10.1007/s11242-016-0738-3 PG 25 WC Engineering, Chemical SC Engineering GA DU3EZ UT WOS:000382094900002 ER PT J AU Vine, EL Jones, CM AF Vine, Edward L. Jones, Christopher M. TI Competition, carbon, and conservation: Assessing the energy savings potential of energy efficiency competitions SO ENERGY RESEARCH & SOCIAL SCIENCE LA English DT Article DE Energy efficiency; Competition; Persistence; Behavior; Comparative feedback; Social norms ID CONSUMPTION; RISK AB Competition has become an increasingly popular strategy to engage individuals in energy and resource conservation; however, there has not been an objective, independent review of existing competition programs focusing on the reduction of energy use. This paper attempts to address this shortcoming. This paper reviews a representative selection of completed and ongoing energy reduction competitions in the United States and uses the lessons learned to provide best practice guidance on the design, implementation, and evaluation of future programs. Four key research questions are addressed in this study: How effective have competitions been at changing behavior and reducing energy? How long do energy savings persist after the end of competitions? Under what circumstances are competitions more or less effective? What are common best practices for the design, implementation and evaluation of energy and resource conservation competitions? The primary target audiences for this paper are electric and natural gas utilities seeking to broaden their portfolio of behavior-based interventions, as well as potential designers, implementers and evaluators of energy reduction competitions. Our intention is to improve the effectiveness of competitions and to suggest when competition may or may not be an effective strategy to save energy over the long term. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Vine, Edward L.] Calif Inst Energy & Environm, Berkeley, CA USA. [Jones, Christopher M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Vine, EL (reprint author), Lawrence Berkeley Natl Lab, CIEE, Bldg 90-2128, Berkeley, CA 94720 USA. EM elvine@lbl.gov NR 49 TC 0 Z9 0 U1 4 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-6296 EI 2214-6326 J9 ENERGY RES SOC SCI JI Energy Res. Soc. Sci. PD SEP PY 2016 VL 19 BP 158 EP 176 DI 10.1016/j.erss.2016.06.013 PG 19 WC Environmental Studies SC Environmental Sciences & Ecology GA DT7BJ UT WOS:000381640400017 ER PT J AU McManamay, R Brewer, S Jager, H Troia, M AF McManamay, Ryan A. Brewer, Shannon K. Jager, Henriette I. Troia, Matthew J. TI Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs SO ENVIRONMENTAL MANAGEMENT LA English DT Article DE Dams; Rivers; Regulation; Policy; Environmental flow; Hydrology ID MODIFYING DAM OPERATIONS; HYDROLOGIC ALTERATION; ECOLOGICAL RESPONSES; RESERVOIR OPERATION; RIVER ECOSYSTEMS; FISH ASSEMBLAGE; STREAM; WATER; HABITAT; REGIME AB The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments. C1 [McManamay, Ryan A.; Jager, Henriette I.; Troia, Matthew J.] Oak Ridge Natl Lab, Div Environm Sci, 1 Bethel Valley Rd,MS-6351,POB 2008, Oak Ridge, TN 37831 USA. [Brewer, Shannon K.] Oklahoma State Univ, US Geol Survey, Oklahoma Cooperat Fish & Wildlife Res Unit, Stillwater, OK 74078 USA. RP McManamay, R (reprint author), Oak Ridge Natl Lab, Div Environm Sci, 1 Bethel Valley Rd,MS-6351,POB 2008, Oak Ridge, TN 37831 USA. EM mcmanamayra@ornl.gov FU US Department of Energy [AC05-00OR22725]; Department of Energy FX This manuscript has been authored by employees of UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic-access-plan). NR 88 TC 0 Z9 0 U1 12 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-152X EI 1432-1009 J9 ENVIRON MANAGE JI Environ. Manage. PD SEP PY 2016 VL 58 IS 3 BP 365 EP 385 DI 10.1007/s00267-016-0726-y PG 21 WC Environmental Sciences SC Environmental Sciences & Ecology GA DS3IM UT WOS:000380676300001 PM 27344163 ER PT J AU Gao, J Zhang, AP Lam, SK Zhang, XS Thomson, AM Lin, E Jiang, KJ Clarke, LE Edmonds, JA Kyle, PG Yu, S Zhou, YY Zhou, S AF Gao, Ji Zhang, Aiping Lam, Shu Kee Zhang, Xuesong Thomson, Allison M. Lin, Erda Jiang, Kejun Clarke, Leon E. Edmonds, James A. Kyle, Page G. Yu, Sha Zhou, Yuyu Zhou, Sheng TI An integrated assessment of the potential of agricultural and forestry residues for energy production in China SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE bioenergy; carbon tax; carbon capture and storage; climate policy; integrated assessment; residue biomass ID ORGANIC-CARBON STOCKS; CO2 CONCENTRATIONS; PROJECTED CHANGES; RURAL CHINA; LAND-USE; BIOMASS; MITIGATION; BIOENERGY; SYSTEMS; STORAGE AB Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ of the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world. C1 [Gao, Ji; Zhang, Aiping; Lin, Erda] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China. [Lam, Shu Kee] Univ Melbourne, Crop & Soil Sci Sect, Fac Vet & Agr Sci, Melbourne, Vic 3010, Australia. [Zhang, Xuesong; Clarke, Leon E.; Edmonds, James A.; Kyle, Page G.; Yu, Sha] Pacific Northwest Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Zhang, Xuesong; Clarke, Leon E.; Edmonds, James A.; Kyle, Page G.; Yu, Sha] Univ Maryland, College Pk, MD 20740 USA. [Zhang, Xuesong] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Thomson, Allison M.] Alliance Sustainable Agr, Field Market, 777 N Capitol St NE,Suite 803, Washington, DC 20002 USA. [Jiang, Kejun] ERI, Beijing 100038, Peoples R China. [Zhou, Yuyu] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA 50011 USA. [Zhou, Sheng] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. RP Lin, E (reprint author), Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China.; Jiang, KJ (reprint author), ERI, Beijing 100038, Peoples R China. EM lined@ami.ac.cn; kjiang@eri.org.cn OI Lam, Shu Kee/0000-0001-7943-5004 FU Ministry of Science and Technology of the People's Republic of China [2013BAD11B03, 2012CB955801]; National Natural Science Foundation of China [71373142] FX This work was supported by the Ministry of Science and Technology of the People's Republic of China (2013BAD11B03 and 2012CB955801) and the National Natural Science Foundation of China (71373142). NR 60 TC 0 Z9 0 U1 12 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-1693 EI 1757-1707 J9 GCB BIOENERGY JI GCB Bioenergy PD SEP PY 2016 VL 8 IS 5 BP 880 EP 893 DI 10.1111/gcbb.12305 PG 14 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA DS6SR UT WOS:000380913500004 ER PT J AU Morris, GP Hu, ZB Grabowski, PP Borevitz, JO de Graaff, MA Miller, RM Jastrow, JD AF Morris, Geoffrey P. Hu, Zhenbin Grabowski, Paul P. Borevitz, Justin O. de Graaff, Marie-Anne Miller, R. Michael Jastrow, Julie D. TI Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE big bluestem; biomass feedstock; cultivars; ecotype; fertilization; low-input high-diversity; polymorphism; switchgrass; tallgrass prairie; yield ID SWITCHGRASS PANICUM-VIRGATUM; BIG BLUESTEM; CELLULOSIC ETHANOL; PLANT COMMUNITY; US MIDWEST; REGISTRATION; GRASSLAND; FEEDSTOCK; MONOCULTURES; MANAGEMENT AB The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008-2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars - under low or high species diversity, with or without nitrogen inputs - and quantified establishment, biomass yield, and biomass composition. In one experiment (agronomic trial'), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (diversity gradient'), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks. C1 [Morris, Geoffrey P.; Hu, Zhenbin] Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA. [Grabowski, Paul P.] USDA ARS Dairy Forage Res Ctr, Madison, WI 53706 USA. [Borevitz, Justin O.] Australian Natl Univ, Res Sch Biol, Acton, ACT 2601, Australia. [de Graaff, Marie-Anne] Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA. [Miller, R. Michael; Jastrow, Julie D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Morris, GP (reprint author), Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA. EM gpmorris@ksu.edu OI Morris, Geoffrey/0000-0002-3067-3359 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-06CH11357]; Argonne/UChicago Energy Initiative; USDA-NIFA [2010-03894]; USDA-AFRI [2012-67010-20069]; National Institutes of Health Training Grant [T32 GM007197] FX Funding for this research was provided by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under contract DE-AC02-06CH11357 to Argonne National Laboratory (RMM and JDJ). Additional support was provided by the Argonne/UChicago Energy Initiative to RMM and JOB, USDA-NIFA grant 2010-03894 to RMM, and a USDA-AFRI grant 2012-67010-20069 to M-AG, JDJ, and GPM. PPG was partially supported by National Institutes of Health Training Grant T32 GM007197. We thank Timothy Vugteveen, Whitney Panneton, Nina Noah, Jeremy Lederhouse, Scott Hofmann, Susan Kirt Alterio, Kelly Moran Sturner, and Cheryl Martin for technical assistance, and two anonymous reviewers for helpful comments and suggestions. NR 77 TC 0 Z9 0 U1 11 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-1693 EI 1757-1707 J9 GCB BIOENERGY JI GCB Bioenergy PD SEP PY 2016 VL 8 IS 5 BP 1000 EP 1014 DI 10.1111/gcbb.12309 PG 15 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA DS6SR UT WOS:000380913500012 PM 27668013 ER PT J AU Ma, TH Li, CJ Lu, ZM AF Ma, Tuhua Li, Changjiang Lu, Zhiming TI Geographical environment determinism for discovery of mineral deposits SO JOURNAL OF GEOCHEMICAL EXPLORATION LA English DT Article DE Mineral resources; Spatial distribution; Geographic environments; Undiscovered deposit number; Exploration level; Power-law (fractal) model ID LAW; DISTRIBUTIONS AB The spatial distribution of metallic mineral deposits discovered in China during 1901 to 2007 shows that nearly 85% of the total 2906 metallic mineral deposits with the magnitude greater than medium-size are located on the southeastern side of the famous Heihe-Tengchong "geo-demographic demarcation line". This spatial pattern is consistent with the population distribution of China, indicating that the spatial distribution of discovered mineral deposits may be related to exploration level that is strongly restricted by the geographic environments. We found that the number of discovered deposits per unit area in explored regions increases with the exploration level, following a power-law model. From this model, if the geological, geochemical and geophysical exploration in the NW region of the geo-demographic demarcation line reaches the same level as that in the SE region of the line, about 2000 metallic mineral deposits with magnitudes greater than medium-size remain to be discovered in the NW region of China. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ma, Tuhua; Li, Changjiang] Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China. [Lu, Zhiming] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. RP Li, CJ (reprint author), Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China. EM zjigmr@mail.hz.zj.cn FU Special Fund from Zhejiang Provincial Government, China [98] FX This study was partially funded by the Special Fund from Zhejiang Provincial Government, China (zjcx. 2011 No. 98). We would like to thank the editor and two anonymous reviewers for their valuable comments and suggestions, which have improved the paper. NR 24 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-6742 EI 1879-1689 J9 J GEOCHEM EXPLOR JI J. Geochem. Explor. PD SEP PY 2016 VL 168 BP 163 EP 168 DI 10.1016/j.gexplo.2016.07.001 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DT7DV UT WOS:000381648200013 ER PT J AU Tan, L Snead, LL Katoh, Y AF Tan, L. Snead, L. L. Katoh, Y. TI Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Precipitates; Strengthening; Toughness; ODS ferritic steel; Reduced activation ferritic-martensitic steels ID LOW-CYCLE FATIGUE; MECHANICAL-PROPERTIES; RAFM STEEL; PRECIPITATION BEHAVIOR; CREEP DEFORMATION; LAVES PHASE; MICROSTRUCTURE; STRENGTH; TUNGSTEN; IMPACT AB International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above similar to 500 degrees C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys. (C) 2016 Elsevier B.V. All rights reserved. C1 [Tan, L.; Katoh, Y.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Snead, L. L.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Tan, L (reprint author), One Bethel Valley Rd,POB 2008,MS-6136, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009 OI Tan, Lizhen/0000-0002-3418-2450 FU U.S. Department of Energy, Office of Science, Fusion Energy Sciences; U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Enabling Technology FY Award; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the U.S. Department of Energy, Office of Science, Fusion Energy Sciences and Office of Nuclear Energy, Nuclear Energy Enabling Technology FY 2012 Award. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. NR 49 TC 3 Z9 3 U1 11 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 42 EP 49 DI 10.1016/j.jnucmat.2016.05.037 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500006 ER PT J AU Koyanagi, T Katoh, Y Ozawa, K Shimoda, K Hinoki, T Snead, LL AF Koyanagi, Takaaki Katoh, Yutai Ozawa, Kazumi Shimoda, Kazuya Hinoki, Tatsuya Snead, Lance L. TI Neutron-irradiation creep of silicon carbide materials beyond the initial transient SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SIC/SIC COMPOSITES; SIC FIBERS; ELEVATED-TEMPERATURES; BEHAVIOR; GROWTH; STEELS; DPA AB Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. The materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber-reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 degrees C up to 30 dpa with initial bend stresses of up to similar to 1 GPa for the fibers and similar to 300 MPa for the other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is similar to 1 x 10(-7) [dpa(-1) MPa-1] at 430-750 degrees C for the range of 1-30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial micro-structures-such as grain boundary, crystal orientation, and secondary phases-increase with increasing irradiation temperature. (C) 2016 Elsevier B.V. All rights reserved. C1 [Koyanagi, Takaaki; Katoh, Yutai] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ozawa, Kazumi] Japan Atom Energy Agcy, Aomori 0393212, Japan. [Shimoda, Kazuya; Hinoki, Tatsuya] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. [Snead, Lance L.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Koyanagi, T (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd,A-154 Bldg 4500S, Oak Ridge, TN 37831 USA. EM koyanagit@ornl.gov RI Koyanagi, Takaaki/D-9841-2017 OI Koyanagi, Takaaki/0000-0001-7272-4049 FU Office of Fusion Energy Sciences, U.S. Department of Energy [DE-C05-00OR22725]; UT-Battelle, LLC; US-Japan TITAN Collaboration on Fusion Blanket Technology and Materials; High Flux Isotope Reactor - Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-C05-00OR22725 with UT-Battelle, LLC, and the US-Japan TITAN Collaboration on Fusion Blanket Technology and Materials. Research was supported in part by the High Flux Isotope Reactor, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. The authors would like to gratefully acknowledge contributions to pre- and post-irradiation experiments from F. C. Montgomery, C. M. Silva, A. M. Williams, P. S. Tedder, C. Shih and M. R. McAlister at Oak Ridge National Laboratory, and M. Fukuda at Tohoku University. NR 34 TC 0 Z9 0 U1 6 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 97 EP 111 DI 10.1016/j.jnucmat.2016.06.006 PG 15 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500013 ER PT J AU Guo, XF Wu, D Xu, HW Burns, PC Navrotsky, A AF Guo, Xiaofeng Wu, Di Xu, Hongwu Burns, Peter C. Navrotsky, Alexandra TI Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE UO2; Studtite; Calorimetry; Enthalpy of formation; Nuclear fuel alteration ID HIGH-TEMPERATURE CALORIMETRY; NUCLEAR-FUEL; URANIUM PEROXIDE; URANYL PEROXIDE; METASTUDTITE; STABILITY; DISSOLUTION; DIRECTIONS; CORROSION; PROGRESS AB The thermal decomposition of studtite (UO2)O-2(H2O)(2)center dot 2H(2)O results in a series of intermediate X-ray amorphous materials with general composition UO3+x (x = 0, 0.5, 1). As an extension of a structural study on U2O7., this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solution calorimetry. The thermodynamic data demonstrate the metastability of the amorphous UO3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO3+x materials that pose the risk of significant O2 gas. Quantitative knowledge of the energy landscape of amorphous UO3+x was provided for stability analysis and assessment of conditions for decomposition. (C) 2016 Elsevier B.V. All rights reserved. C1 [Guo, Xiaofeng; Xu, Hongwu] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. [Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Wu, Di] Washington State Univ, Gene & Lina Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA. [Burns, Peter C.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. [Burns, Peter C.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.; Navrotsky, A (reprint author), Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. EM anavrotsky@ucdavis.edu RI Wu, Di/A-3039-2014; OI Wu, Di/0000-0001-6879-321X; Xu, Hongwu/0000-0002-0793-6923 FU Materials Science of Actinides, an Energy Frontier Research Center - the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001089]; Seaborg postdoctoral fellowship from the Laboratory Directed Research and Development (LDRD) program, through the G. T. Seaborg Institute, of Los Alamos National Laboratory (LANL); DOE [DE-AC52-06NA25396] FX Calorimetric studies at UC Davis and data analysis were supported by the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DESC0001089. X. G was supported by a Seaborg postdoctoral fellowship from the Laboratory Directed Research and Development (LDRD) program, through the G. T. Seaborg Institute, of Los Alamos National Laboratory (LANL), which is operated by Los Alamos National Security LLC, under DOE Contract DE-AC52-06NA25396. We thank Sabrina Labs and Dirk Bosbach for providing the initial studtite sample. NR 31 TC 3 Z9 3 U1 16 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 158 EP 163 DI 10.1016/j.jnucmat.2016.06.014 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500020 ER PT J AU Miao, YB Mo, K Yao, TK Lian, J Fortner, J Jamison, L Xu, RQ Yacout, AM AF Miao, Yinbin Mo, Kun Yao, Tiankai Lian, Jie Fortner, Jeffrey Jamison, Laura Xu, Ruqing Yacout, Abdellatif M. TI Correlation between crystallographic orientation and surface faceting in UO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Uranium dioxide; Surface faceting; Morphology; Synchrotron diffraction; Scanning electron microscopy ID F/M ODS STEEL; VICINAL SURFACES; GAS-RELEASE; FUEL; SYNCHROTRON; ENERGY; NANOPARTICLES; LEED; FERRITE/MARTENSITE; MICROSTRUCTURE AB Here coordinated experimental efforts to quantitatively correlate crystallographic orientation and surface faceting features in UO2 are reported upon. A sintered polycrystalline UO2 sample was thermally etched to induce the formation of surface faceting features. Synchrotron Laue microdiffraction was used to obtain a precise crystallographic orientation map for the UO2 surface grains. Scanning electron microscopy (SEM) was utilized to collect the detailed information on the surface morphology of the sample. The surface faceting features were found to be highly dependent on the crystallographic orientation. In most cases, Triple-plane structures containing one {100} plane and two {111} planes were found to dominate the surface of UO2. The orientation-faceting relationship established in this study revealed a practical and efficient method of determining crystallographic orientation based on the surface features captured by SEM images. (C) 2016 Published by Elsevier B.V. C1 [Miao, Yinbin; Mo, Kun; Fortner, Jeffrey; Jamison, Laura; Xu, Ruqing; Yacout, Abdellatif M.] Argonne Natl Lab, Lemont, IL 60439 USA. [Yao, Tiankai; Lian, Jie] Rensselaer Polytech Inst, Troy, NY 12180 USA. RP Mo, K (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA.; Lian, J (reprint author), Rensselaer Polytech Inst, Troy, NY 12180 USA. EM kunmo@anl.gov; lianj@rpi.edu OI Jamison, Laura/0000-0003-2759-6310; Miao, Yinbin/0000-0002-3128-4275 FU U.S. Department of Energy (DOE)'s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program; U.S. DOE's Nuclear Energy University Program (NEUP) [DE-NE0008440]; DOE Office of Science by Argonne National Laboratory [DE-AC-02-06CH11357] FX This work was funded by the U.S. Department of Energy (DOE)'s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program and the U.S. DOE's Nuclear Energy University Program (NEUP) DE-NE0008440. This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the U.S. Department of Energy. NR 36 TC 1 Z9 1 U1 6 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 176 EP 184 DI 10.1016/j.jnucmat.2016.05.044 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500023 ER PT J AU Martinez, E Soisson, F Caro, A Uberuaga, BP AF Martinez, Enrique Soisson, Frederic Caro, Alfredo Uberuaga, Blas P. TI Atomistic modeling of the reordering process of gamma ' disordered particles in Ni-Al alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Segregation; Diffusion; Irradiation ID MONTE-CARLO-SIMULATION; MATERIAL INCONEL X-750; ION IRRADIATION; INTERMETALLIC COMPOUNDS; MOLECULAR-DYNAMICS; BEAM WINDOW; KINETICS; TEMPERATURE; DISSOLUTION; EVOLUTION AB Ni-based alloys are used in nuclear applications, including as a window material at isotope production facilities, withstanding high fluxes of different energetic particles like protons. Irradiation disorders the gamma' precipitates that in large extent confer the mechanical properties characterizing these materials. Upon disordering, the gamma' phase transforms into oversaturated gamma, degrading the materials properties. Experimentally it is observed that disordering might take place at fairly low irradiation doses. Once the particles are disordered, a competition between dissolution, due to strong concentration gradients in an oversaturated solid solution, and reordering appears. Here, we examine this competition in a model Ni-Al alloy under thermal conditions for different precipitates sizes and temperatures. We observe Al interdiffusion from the supersaturated particle to the matrix. Also, stochasticity appears as an important factor in to where precipitates locate. Stress relaxation seems to modify the precipitation process, with a stronger interface effect compared to rigid lattice simulations. (C) 2016 Elsevier B.V. All rights reserved. C1 [Martinez, Enrique; Caro, Alfredo; Uberuaga, Blas P.] Los Alamos Natl Lab, Div Mat Sci & Technol, MST-8, Los Alamos, NM 87545 USA. [Soisson, Frederic] Univ Paris Saclay, CEA, DEN Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. RP Martinez, E (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST-8, Los Alamos, NM 87545 USA. EM enriquem@lanl.gov OI Martinez Saez, Enrique/0000-0002-2690-2622 FU US Department of Energy (DOE) through the LANL/LDRD Program; U.S. DOE [DE-AC52-06NA25396] FX The authors gratefully acknowledge the support of the US Department of Energy (DOE) through the LANL/LDRD Program for this work. This research used resources provided by the LANL Institutional Computing Program. LANL, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under contract DE-AC52-06NA25396. NR 33 TC 0 Z9 0 U1 6 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 207 EP 214 DI 10.1016/j.jnucmat.2016.06.019 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500026 ER PT J AU Fadzil, SM Hrma, P Schweiger, MJ Riley, BJ AF Fadzil, Syazwani Mohd Hrma, Pavel Schweiger, Michael J. Riley, Brian J. TI Component effects on crystallization of RE-containing aluminoborosilicate glass SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Lanthanide borosilicate glass; Pyroprocessing; Liquidus temperature; Crystalline phases ID LEVEL WASTE GLASS; LIQUIDUS TEMPERATURE; PYROCHEMICAL PROCESS AB Lanthanide-aluminoborosilicate (LABS) glass is one option for immobilizing rare earth (RE) oxide fission products generated during reprocessing of pyroprocessed fuel. This glass system can accommodate a high loading of RE oxides and has excellent chemical durability. The present study describes efforts to model equilibrium crystallinity as a function of glass composition and temperature as well as liquidus temperature (T-L) as a function of glass composition. The experimental method for determining T-L was ASTM C1720-11. Typically, three crystalline phases were formed in each glass: Ce-borosilicate (Ce3B-Si2O10), mullite (Al10Si2O19), and corundum (Al2O3). Cerianite (CeO2) was a common minor crystalline phase and Nd-silicate (Nd2Si2O7) occurred in some of the glasses. In the composition region studied, T-L decreased as SiO2 and B2O3 fractions increased and strongly increased with increasing fractions of RE oxides; Al2O3 had a moderate effect on the T-L but, as expected, it strongly affected the precipitation of Al-containing crystals. (C) 2016 Elsevier B.V. All rights reserved. C1 [Fadzil, Syazwani Mohd; Hrma, Pavel] Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang 790784, South Korea. [Fadzil, Syazwani Mohd] Natl Univ Malaysia, Fac Sci & Technol, Sch Appl Phys, Bandar Baru Bangi 43650, Selangor, Malaysia. [Hrma, Pavel; Schweiger, Michael J.; Riley, Brian J.] Pacific Northwest Natl Lab, POB 999, Richland, WA USA. RP Fadzil, SM (reprint author), Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang 790784, South Korea. EM syazwanimf@ukm.edu.my OI Riley, Brian/0000-0002-7745-6730 FU Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office; U.S. Department of Energy [DE-AC05-76RL01830]; BK21 + program through National Research Foundation of Korea - Ministry of Education, Science and Technology FX The authors greatly appreciate B.R. Johnson and other staff members of Pacific Northwest National Laboratory (PNNL) with the financial support of the Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office under the direction of A. A. Kruger. PNNL is operated by Battelle for the U.S. Department of Energy under Contract Number DE-AC05-76RL01830. This work was also supported by the BK21 + program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology. NR 28 TC 0 Z9 0 U1 4 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 261 EP 267 DI 10.1016/j.jnucmat.2016.06.018 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500033 ER PT J AU Kim, YS Jeong, GY Sohn, DS Jamison, LM AF Kim, Yeon Soo Jeong, G. Y. Sohn, D. -S. Jamison, L. M. TI Pore growth in U-Mo/Al dispersion fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE U-Mo/Al dispersion fuel; Pore growth; Porosity; In-pile data; Modeling ID IRRADIATION BEHAVIOR; PARTICLE DISPERSION; ENHANCED DIFFUSION; AL MATRIX; MO FUEL; PRODUCT; ENERGIES; TENSION; SURFACE; ALLOY AB U-Mo/Al dispersion fuel is currently under development in the DOE's Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo; Jamison, L. M.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. [Jeong, G. Y.; Sohn, D. -S.] Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 689798, South Korea. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov OI Jeong, Gwan Yoon/0000-0002-3326-3718; Jamison, Laura/0000-0003-2759-6310 FU U.S. Department of Energy, National Nuclear Security Administration (NNSA), Office of Material Management and Minimization (NA-23) Reactor Conversion Program [DE-AC-02-06CH11357]; National Research Foundation of Korea (NRF) grant - Korean government (Ministry of Education, Science and Technology) [2011-0031771] FX This study used information gathered from three reduced-size plates from RERTR-4, -5, and -9 tests and two full-size plates from AFIP-1 test irradiated at the ATR. For the former three reduced-size plates, the authors acknowledge Drs. S. Hayes, D. Wachs and M. Meyer from INL and G. Hofman from ANL for the irradiation test designs, T. Wiencek from ANL and C. Clark from INL for the test plate fabrication, and late R. Strain from ANL and A. Robinson from INL for PIEs. For the latter full-size plates, Mr. A. Robinson and Dr. D. Wachs are recognized. The operations staff at the ATR is also acknowledged for these irradiation tests. The physics data available by Dr. G. Chang and Ms. M. Lillo are also appreciated. The authors wish to thank Drs. A. Leenaers and P. Lemoine for the FUTURE test PIE images available in the literature that were used to obtain data in Table 4. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration (NNSA), Office of Material Management and Minimization (NA-23) Reactor Conversion Program under Contract No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the US Department of Energy, and in part by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Education, Science and Technology) under contract number 2011-0031771. NR 48 TC 0 Z9 0 U1 5 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 275 EP 286 DI 10.1016/j.jnucmat.2016.06.029 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500035 ER PT J AU Imada, K Ishimaru, M Xue, HZ Zhang, YW Shannon, SC Weber, WJ AF Imada, Kenta Ishimaru, Manabu Xue, Haizhou Zhang, Yanwen Shannon, Steven C. Weber, William J. TI Amorphization resistance of nano-engineered SiC under heavy ion irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Nanostructured materials; Carbides; Amorphization; Scanning/transmission electron microscopy (STEM) ID NANOCRYSTALLINE SILICON-CARBIDE; RADIATION TOLERANCE; SICF/SIC COMPOSITES; NUCLEAR-WASTE; IMMOBILIZATION; SPECTROSCOPY; IMPLANTATION; TEMPERATURE; PLUTONIUM; DENSITY AB Silicon carbide (SiC) with a high-density of planar defects (hereafter, 'nano-engineered SiC') and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. It was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery. (C) 2016 Elsevier B.V. All rights reserved. C1 [Imada, Kenta; Ishimaru, Manabu] Kyushu Inst Technol, Dept Mat Sci & Engn, Kitakyushu, Fukuoka 8048550, Japan. [Xue, Haizhou; Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Shannon, Steven C.] North Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. RP Ishimaru, M (reprint author), Kyushu Inst Technol, Dept Mat Sci & Engn, Kitakyushu, Fukuoka 8048550, Japan. EM ishimaru@post.matsc.kyutech.ac.jp RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU Kazuchika Okura Memorial Foundation; Ministry of Education, Sports, Science, and Technology, Japan [16H04518]; U.S. Department of Energy, Office of Sciences, Basic Energy Sciences, Materials Sciences and Engineering Division; Nuclear Energy University Programs FX This work was supported in part by the Kazuchika Okura Memorial Foundation, Grant-in-Aid for Scientific Research (B) (Grant No. 16H04518) from the Ministry of Education, Sports, Science, and Technology, Japan (MI), by the U.S. Department of Energy, Office of Sciences, Basic Energy Sciences, Materials Sciences and Engineering Division (YZ and WJW), and Nuclear Energy University Programs (HX and SS). MI appreciates Mr. Shinsuke Inoue (Kyushu Institute of Technology) for supporting SRIM calculations. NR 31 TC 0 Z9 0 U1 9 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 310 EP 314 DI 10.1016/j.jnucmat.2016.06.031 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500039 ER PT J AU Pizzocri, D Rabiti, C Luzzi, L Barani, T Van Uffelen, P Pastore, G AF Pizzocri, D. Rabiti, C. Luzzi, L. Barani, T. Van Uffelen, P. Pastore, G. TI PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Diffusion; Nuclear fuel modelling; Intra-granular fission gas release; Numerical algorithms; Modal methods; FORMAS; URGAS; PolyPole ID UO2 FUEL; SPHERICAL GRAINS; DIFFUSIVE FLOW; XE DIFFUSION; IRRADIATION; BEHAVIOR; PRECIPITATION; MIGRATION; BOUNDARY; BUBBLES AB The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this paper, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, combined with polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of PolyPole-1 is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work. Published by Elsevier B.V. C1 [Pizzocri, D.; Luzzi, L.; Barani, T.] Politecn Milan, Dept Energy, Nucl Engn Div, Via Masa 34, I-20156 Milan, Italy. [Rabiti, C.; Pastore, G.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. [Van Uffelen, P.] European Commiss, Inst Transuranium Elements, Joint Res Ctr, POB 2340, D-76125 Karlsruhe, Germany. RP Pastore, G (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM giovanni.pastore@inl.gov OI Barani, Tommaso/0000-0002-6771-9461; Pastore, Giovanni/0000-0003-2812-506X; Luzzi, Lelio/0000-0002-9754-4535 FU DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program at Idaho National Laboratory (INL, USA); GENTLE Project at Institute for Transuranium Elements (JRC- ITU, Germany) [198236]; Doctoral Program in "Energy and Nuclear Science and Technology" at Politecnico di Milano (POLIMI, Italy); U.S. Government [DE-AC07-05ID14517] FX This work was funded by the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program at Idaho National Laboratory (INL, USA), the GENTLE Project 198236 at Institute for Transuranium Elements (JRC- ITU, Germany), and the Doctoral Program in "Energy and Nuclear Science and Technology" at Politecnico di Milano (POLIMI, Italy).; The submitted manuscript has been authored by a contractor of the U.S. Government under Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 37 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 333 EP 342 DI 10.1016/j.jnucmat.2016.06.028 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500042 ER PT J AU Burkes, DE Casella, AJ Casella, AM AF Burkes, Douglas E. Casella, Amanda J. Casella, Andrew M. TI Measurement of fission gas release from irradiated U-Mo dispersion fuel samples SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NUCLEAR-FUEL; PRODUCTS; ALLOYS AB The uranium-molybdenum (U-Mo) alloy dispersed in an Al-Si matrix has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. In this paper, two irradiated samples containing 53.9 vol% U-7wt% Mo fuel particles dispersed in an Al-2wt% Si matrix were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/ differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Measurements revealed three distinct fission gas release events for the samples from 400 to 700 degrees C, as well as a number of minor fission gas releases below and above this temperature range. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature with exceptional agreement. (C) 2016 Elsevier B.V. All rights reserved. C1 [Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.] Pacific Northwest Natl Lab, Nucl Engn & Anal Grp, POB 999,MSIN K8-34, Richland, WA 99352 USA. RP Burkes, DE (reprint author), Pacific Northwest Natl Lab, Nucl Engn & Anal Grp, POB 999,MSIN K8-34, Richland, WA 99352 USA. EM Douglas.Burkes@pnnl.gov FU National Nuclear Security Administration's Office of Material Management and Minimization Reactor Conversion Program [DE-AC05-76RL01830]; United States Government FX The authors would like to acknowledge Dr. Bruce McNamara for his review of the manuscript and helpful discussion. The authors would like to acknowledge Mr. Jason Schulthess, Mr. Adam Robinson, Dr. Barry Rabin, and Mrs. Susan Case from Idaho National Laboratory for the preparation and delivery of the irradiated fuel segment. Installation of equipment into hot cells and the operations conducted in hot cells is a large undertaking. The authors would like to acknowledge those at Pacific Northwest National Laboratory who were involved in the preparation of samples and performance of measurements, specifically Ms. Nicole Green, Mr. Jake Bohlke, Mr. Dustin Blundon, Dr. Edgar Buck, Mr. Eric Hanson, Mr. Kevin Heaton, Mr. Paul MacFarlan, Mr. Robert Orton, Mr. Bruce Slonecker, Ms. Franciska Steen, Mr. Randy Thornhill, and Mr. Patrick Valdez. Finally, the authors would like to acknowledge the sponsor, the National Nuclear Security Administration's Office of Material Management and Minimization Reactor Conversion Program, for the opportunity to conduct this work under contract DE-AC05-76RL01830.; This paper was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 29 TC 1 Z9 1 U1 3 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 365 EP 374 DI 10.1016/j.jnucmat.2016.05.039 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500044 ER PT J AU Piro, MHA Banfield, J Clarno, K Simunovic, S Besmann, TM Lewis, BJ Thompson, WT AF Piro, M. H. A. Banfield, J. Clarno, K. Simunovic, S. Besmann, T. M. Lewis, B. J. Thompson, W. T. TI Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel (vol 441, pg 240, 2013) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Correction C1 [Piro, M. H. A.; Besmann, T. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Banfield, J.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Clarno, K.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN USA. [Simunovic, S.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. [Lewis, B. J.; Thompson, W. T.] Royal Mil Coll Canada, Dept Chem & Chem Engn, Kingston, ON, Canada. [Piro, M. H. A.] Canadian Nucl Labs, Chalk River, ON, Canada. [Banfield, J.] Gen Elect Hitachi Nucl Energy, Wilmington, NC USA. [Besmann, T. M.] Univ South Carolina, Columbia, SC USA. RP Piro, MHA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA.; Piro, MHA (reprint author), Canadian Nucl Labs, Chalk River, ON, Canada. EM markus.piro@cnl.ca NR 4 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2016 VL 478 BP 375 EP 377 DI 10.1016/j.jnucmat.2016.06.030 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DT7CM UT WOS:000381644500045 ER PT J AU Sanjeewa, LD McGuire, MA Pellizzeri, TMS McMillen, CD Garlea, VO Willett, D Chumanov, G Kolis, JW AF Sanjeewa, Liurukara D. McGuire, Michael A. Pellizzeri, Tiffany M. Smith McMillen, Colin D. Garlea, V. Ovidiu Willett, Daniel Chumanov, George Kolis, Joseph W. TI Synthesis and characterization of new fluoride-containing manganese vanadates A(2)Mn(2)V(2)O(7)F(2) (A=Rb, Cs) and Mn2VO4F SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Hydrothermal; Vanadate; Manganese(II); Antiferromagnetism ID HYDROTHERMAL SYNTHESIS; CRYSTAL-STRUCTURE; MAGNETIC-PROPERTIES; METAL OXYFLUORIDE; BUILDING UNITS; GROUP MINERALS; FLUOROPHOSPHATE; CHEMISTRY; POLAR; LATTICES AB Large single crystals of A(2)Mn(2)V(2)O(7)F(2) (A =Rb, Cs) and Mn2VO4F were grown using a high-temperature (similar to 600 degrees C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO4F2 building blocks. The A(2)Mn(2)V(2)O(7)F2 series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb(2)Mn(2)V(2)O(7)F2: a=7.4389 (17) angstrom, b=11.574(3) angstrom, c=10.914(2) angstrom; Cs2Mn2V2O7F2: a=7.5615(15) angstrom, b= 11.745(2) angstrom, c= 11.127(2) angstrom). The structure is composed of zigzag chains of edge-sharing MnO4F2 units running along the a-axis, and interconnected through V2O7 pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn2+ indicated that Cs2Mn2V2O7F2 is antiferromagnetic with a Neel temperature, T-N= similar to 3 K and a Weiss constant, theta, of -11.7 (1) K. Raman and infrared spectra were also analyzed to identify the fundamental V-O vibrational modes in Cs2Mn2V2O7F2. Mn-2(VO4)F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) angstrom, b=6.8036(7) angstrom, c=10.1408(13) A and beta=116.16(3)degrees. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn2+. These interpenetrating chains are additionally connected through isolated VO4 tetrahedra to form the condensed structure. (C) 2016 Elsevier Inc. All rights reserved. C1 [Sanjeewa, Liurukara D.; Pellizzeri, Tiffany M. Smith; McMillen, Colin D.; Willett, Daniel; Chumanov, George; Kolis, Joseph W.] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Sanjeewa, Liurukara D.; Pellizzeri, Tiffany M. Smith; McMillen, Colin D.; Willett, Daniel; Chumanov, George; Kolis, Joseph W.] Clemson Univ, COMSET, Clemson, SC 29634 USA. [McGuire, Michael A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Garlea, V. Ovidiu] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Kolis, JW (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA.; Kolis, JW (reprint author), Clemson Univ, COMSET, Clemson, SC 29634 USA. EM kjoseph@clemson.edu RI McGuire, Michael/B-5453-2009 OI McGuire, Michael/0000-0003-1762-9406 FU National Science Foundation [DMR-1410727] FX The authors thank the National Science Foundation Grants #DMR-1410727 for financial support. NR 49 TC 1 Z9 1 U1 13 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD SEP PY 2016 VL 241 BP 30 EP 37 DI 10.1016/j.jssc.2016.05.008 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA DS4EJ UT WOS:000380733900005 ER PT J AU Heffernan, KM Ross, NL Spencer, EC Boatner, LA AF Heffernan, Karina M. Ross, Nancy L. Spencer, Elinor C. Boatner, Lynn A. TI The structural response of gadolinium phosphate to pressure SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article ID MONAZITE; SPECTRA AB Accurate elastic constants for gadolinium phosphate (GdPO4) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO4 determined under hydrostatic conditions, 128.1(8) GPa (K'=5.8(2)), is markedly different from that obtained with GdPO4 under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. High pressure Raman and diffraction analysis indicate that the PO4 tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO4 structure is facilitated by bending/ twisting of the Gd-O-P links that result in increased distortion in the GdO9 polyhedra. (C) 2016 Elsevier Inc. All rights reserved. C1 [Heffernan, Karina M.; Ross, Nancy L.; Spencer, Elinor C.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Boatner, Lynn A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ross, NL (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. EM nross@vt.edu FU National Science Foundation [EAR-1118691]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX N.L. R., K.M. H., and E.C. S. gratefully acknowledge support from the National Science Foundation (Grant No. EAR-1118691). K.M. H. and E.C. S. would also like to thank Drs. Carla Slebonick and Jing Zhou for their help and valuable insight on this project. Research at the Oak Ridge National Laboratory for one author (LAB) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 19 TC 2 Z9 2 U1 7 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD SEP PY 2016 VL 241 BP 180 EP 186 DI 10.1016/j.jssc.2016.06.009 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA DS4EJ UT WOS:000380733900025 ER PT J AU Tabackman, AA Frankson, R Marsan, ES Perry, K Cole, KE AF Tabackman, Alexa A. Frankson, Rochelle Marsan, Eric S. Perry, Kay Cole, Kathryn E. TI Structure of 'linkerless' hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Histone deacetylase 8; Histone deacetylase inhibitors (HDACi); Hydroxamic acids; AutoDock Vina ID HISTONE DEACETYLASE INHIBITORS; T-CELL LYMPHOMA; CRYSTAL-STRUCTURE; HUMAN HDAC8; DOCKING; CANCER; SUBSTRATE; SOFTWARE; BINDING; ROLES AB Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and nonhistone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza(R)), romidepsin (FK228, Istodax(R)), belinostat (Beleodaq(R)), and panobinostat (Farydak(R)). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98 angstrom resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition. (C) 2016 Elsevier Inc. All rights reserved. C1 [Tabackman, Alexa A.; Marsan, Eric S.; Cole, Kathryn E.] Christopher Newport Univ, Dept Mol Biol & Chem, 1 Ave Arts, Newport News, VA 23606 USA. [Frankson, Rochelle] Ithaca Coll, Dept Chem, 950 Danby Rd, Ithaca, NY 14850 USA. [Perry, Kay] Cornell Univ, Northeastern Collaborat Access Team NE CAT, Argonne Natl Lab, Bldg 436E,9700 South Cass Ave, Argonne, IL 60439 USA. [Perry, Kay] Cornell Univ, Dept Chem & Chem Biol, Argonne Natl Lab, Bldg 436E,9700 South Cass Ave, Argonne, IL 60439 USA. RP Cole, KE (reprint author), Christopher Newport Univ, Dept Mol Biol & Chem, 1 Ave Arts, Newport News, VA 23606 USA. EM kathryn.cole@cnu.edu FU National Institute of General Medical Sciences of the National Institutes of Health [P41 GM103403]; NIH-ORIP HEI grant [S10 RR029205]; US DOE [DE-AC02-06CH11357]; Ithaca College; Christopher Newport University FX This work is based upon research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by a grant from the National Institute of General Medical Sciences (P41 GM103403) of the National Institutes of Health. The Pilatus 6M detector on 24-ID-C beam line is funded by a NIH-ORIP HEI grant (S10 RR029205). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. KEC would like to thank Ithaca College and Christopher Newport University for funding. Undergraduate summer research was supported by the Dana Award (RF, Ithaca College) and the Summer Scholars Program (AT, Christopher Newport University). We would also like to thank Dr. Scott Ulrich for providing the inhibitors, and Dr. Daniel Dowling for helpful conversations. NR 31 TC 1 Z9 1 U1 8 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD SEP PY 2016 VL 195 IS 3 BP 373 EP 378 DI 10.1016/j.jsb.2016.06.023 PG 6 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA DT8WZ UT WOS:000381777700012 PM 27374062 ER PT J AU DebRoy, S Hiraga, N Imamura, M Hayes, CN Akamatsu, S Canini, L Perelson, AS Pohl, RT Persiani, S Uprichard, SL Tateno, C Dahari, H Chayama, K AF DebRoy, S. Hiraga, N. Imamura, M. Hayes, C. N. Akamatsu, S. Canini, L. Perelson, A. S. Pohl, R. T. Persiani, S. Uprichard, S. L. Tateno, C. Dahari, H. Chayama, K. TI Hepatitis C virus dynamics and cellular gene expression in uPA-SCID chimeric mice with humanized livers during intravenous silibinin monotherapy SO JOURNAL OF VIRAL HEPATITIS LA English DT Article DE anti-inflammatory; chimeric mice with humanized livers; gene expression; uPA-SCID; viral kinetic modelling ID TRANSFERRIN RECEPTOR 1; SERUM AMYLOID-A; ANTIVIRAL ACTIVITY; PROTEASE-INHIBITOR; HCV KINETICS; IN-VITRO; INFECTION; SILYMARIN; THERAPY; SOFOSBUVIR AB Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an extract of milk thistle (Silybum marianum) seeds that has exhibited hepatoprotective and antiviral effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination with ribavirin. To elucidate the incompletely understood mode of action of SIL against HCV, mathematical modelling of HCV kinetics and human hepatocyte gene expression studies were performed in uPA-SCID-chimeric mice with humanized livers. Chronically HCV-infected mice (n = 15) were treated for 14 days with daily intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and human albumin (hAlb) were measured frequently, and liver HCV RNA was analysed at days 3 and 14. Microarray analysis of human hepatocyte gene expression was performed at days 0, 3 and 14 of treatment. While hAlb remained constant, a biphasic viral decline in serum was observed consisting of a rapid 1st phase followed by a second slower phase (or plateau with the two lower SIL dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median epsilon = 77%). However, the rate of HCV-infected hepatocyte decline, , was dose-dependent. Intracellular HCV RNA levels correlated (r = 0.66, P = 0.01) with serum HCV RNA. Pathway analysis revealed increased anti-inflammatory and antiproliferative gene expression in human hepatocytes in SIL-treated mice. The results suggest that SIL could lead to a continuous second-phase viral decline, that is potentially viral clearance, in the absence of adaptive immune response along with increased anti-inflammatory and antiproliferative gene expression in human hepatocytes. C1 [DebRoy, S.; Canini, L.; Uprichard, S. L.; Dahari, H.] Loyola Univ, Med Ctr, Dept Med, Program Expt & Theoret Modeling,Div Hepatol, Maywood, IL 60153 USA. [DebRoy, S.] Univ South Carolina Beaufort, Dept Math & Computat Sci, Bluffton, SC USA. [Hiraga, N.; Imamura, M.; Hayes, C. N.; Akamatsu, S.; Chayama, K.] Hiroshima Univ, Inst Biomed & Hlth Sci, Dept Gastroenterol & Metab, Appl Life Sci, Hiroshima, Japan. [Canini, L.] Univ Edinburgh, Ctr Immun Infect & Evolut, Edinburgh, Midlothian, Scotland. [Perelson, A. S.] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM USA. [Pohl, R. T.] German Assoc Phytotherapy, Speyer, Germany. [Persiani, S.] Rottapharm Biotech SRL, Monza, MB, Italy. [Tateno, C.] PhoenixBio Co Ltd, Higashihiroshima, Japan. RP Chayama, K (reprint author), Hiroshima Univ, Inst Biomed & Hlth Sci, Dept Gastroenterol & Metab, Minami Ku, 1-2-3 Kasumi, Hiroshima, Hiroshima 7348551, Japan. EM chayama@hiroshima-u.ac.jp FU PhoenixBio Co. Ltd.; NIH [P20-GM103452, R01-AI028433, R01-AI011095, R01-AI078881]; U.S. Department of Energy [DE-AC52-06NA25396]; USCB research grant award; UK Biotechnology and Biological Sciences Research Council [1698: BB/L001330/1]; Research Program on Hepatitis from the Japan Agency for Medical Research and Development, AMED [15fk0210001h0002] FX Portions of this work were supported by PhoenixBio Co. Ltd., NIH grants P20-GM103452, R01-AI028433, R01-AI011095 and R01-AI078881 and performed under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396, USCB research grant award, and the UK Biotechnology and Biological Sciences Research Council - grant reference 1698: BB/L001330/1. SIL was provided by Rottapharm vertical bar Madaus Ltd. This research is partially supported by research funding from the Research Program on Hepatitis from the Japan Agency for Medical Research and Development, AMED (grant number: 15fk0210001h0002). NR 47 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1352-0504 EI 1365-2893 J9 J VIRAL HEPATITIS JI J. Viral Hepatitis PD SEP PY 2016 VL 23 IS 9 BP 708 EP 717 DI 10.1111/jvh.12551 PG 10 WC Gastroenterology & Hepatology; Infectious Diseases; Virology SC Gastroenterology & Hepatology; Infectious Diseases; Virology GA DS6NF UT WOS:000380898000006 PM 27272497 ER PT J AU Mondo, SJ Salvioli, A Bonfante, P Morton, JB Pawlowska, TE AF Mondo, Stephen J. Salvioli, Alessandra Bonfante, Paola Morton, Joseph B. Pawlowska, Teresa E. TI Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts of Fungi SO MOLECULAR BIOLOGY AND EVOLUTION LA English DT Article DE diversifying selection; effective population size; evolution rate; genetic drift; Glomeribacter gigasporarum; mutation rate; purifying selection; vertical transmission ID NONSYNONYMOUS NUCLEOTIDE SUBSTITUTIONS; CANDIDATUS GLOMERIBACTER GIGASPORARUM; BAYESIAN PHYLOGENETIC INFERENCE; DELETERIOUS MUTATIONS; POPULATION-SIZE; MOLECULAR EVOLUTION; DNA POLYMORPHISM; DELETIONAL BIAS; GENETIC DRIFT; SELECTION AB Bacterial endosymbionts are critical to the existence of many eukaryotes. Among them, vertically transmitted endobacteria are uniquely typified by reduced genomes and molecular evolution rate acceleration relative to free-living taxa. These patterns are attributable to genetic drift-dominated degenerative processes associated with reproductive dependence on the host. The degenerative evolution scenario is well supported in endobacteria with strict vertical transmission, such as essential mutualists of insects. In contrast, heritable endosymbionts that are nonessential to their hosts and engage occasionally in horizontal transmission are expected to display deviations from the degenerative evolution model. To explore evolution patterns in such nonessential endobacteria, we focused on Candidatus Glomeribacter gigasporarum ancient heritable mutualists of fungi. Using a collection of genomes, we estimated in Glomeribacter mutation rate at 2.03 X 10(-9) substitutions per site per year and effective population size at 1.44 X 10(8). Both fall within the range of values observed in free-living bacteria. To assess the ability of Glomeribacter to purge slightly deleterious mutations, we examined genome-wide d(N)/ d(S) values and distribution patterns. We found that these dN/ dS profiles cluster Glomeribacter with free-living bacteria as well as with other nonessential endosymbionts, while distinguishing it from essential heritable mutualists of insects. Finally, our evolutionary simulations revealed that the molecular evolution rate acceleration in Glomeribacter is caused by limited recombination in a largely clonal population rather than by increased fixation of slightly deleterious mutations. Based on these patterns, we propose that genome evolution in Glomeribacter is nondegenerative and exemplifies a departure from the model of degenerative evolution in heritable endosymbionts. C1 [Mondo, Stephen J.; Pawlowska, Teresa E.] Cornell Univ, Sch Integrat Plant Sci Plant Pathol & Plant Micro, Ithaca, NY 14853 USA. [Salvioli, Alessandra; Bonfante, Paola] Univ Turin, Dept Life Sci & Syst Biol, Turin, Italy. [Morton, Joseph B.] West Virginia Univ, Div Plant & Soil Sci, Morgantown, WV 26506 USA. [Mondo, Stephen J.] US DOE Joint Genome Inst, Walnut Creek, CA USA. RP Pawlowska, TE (reprint author), Cornell Univ, Sch Integrat Plant Sci Plant Pathol & Plant Micro, Ithaca, NY 14853 USA. EM tep8@cornell.edu FU National Science Foundation [DEB-0918880, CSBR-1349308]; University of Torino FX We thank R. Hernandez for advice on SDF_CODE, E. Angert, O. Lastovetsky, J. Russell, G. Turgeon and two anonymous reviewers for helpful comments. This study was supported by the National Science Foundation grant DEB-0918880 to T.E.P. and CSBR-1349308 to J.B.M. as well as the 60% project from the University of Torino to P.B. NR 103 TC 0 Z9 0 U1 9 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0737-4038 EI 1537-1719 J9 MOL BIOL EVOL JI Mol. Biol. Evol. PD SEP PY 2016 VL 33 IS 9 BP 2216 EP 2231 DI 10.1093/molbev/msw086 PG 16 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA DT7XU UT WOS:000381702500005 PM 27189571 ER PT J AU Adams, CJ Yu, JS Mao, JH Jen, KY Costes, SV Wade, M Shoemake, J Aina, OH Del Rosario, R Menchavez, PT Cardiff, RD Wahl, GM Balmain, A AF Adams, Cassandra J. Yu, Jennifer S. Mao, Jian-Hua Jen, Kuang-Yu Costes, Sylvain V. Wade, Mark Shoemake, Jocelyn Aina, Olulanu H. Del Rosario, Reyno Menchavez, Phuong Thuy Cardiff, Robert D. Wahl, Geoffrey M. Balmain, Allan TI The Trp53 delta proline (Trp53 Delta P) mouse exhibits increased genome instability and susceptibility to radiation-induced, but not spontaneous, tumor development SO MOLECULAR CARCINOGENESIS LA English DT Article DE Trp53; cancer radiation; genomic instability ID P53-DEFICIENT MICE; RICH REGION; DNA-DAMAGE; P53; SUPPRESSION; TUMORIGENESIS; APOPTOSIS; CANCER; DOMAIN; LYMPHOMAS AB The tumor suppressor TP53 can initiate a plethora of anti-proliferative effects to maintain genomic integrity under conditions of genotoxic stress. The N-terminal proline-rich domain (PRD) of TP53 is important in the regulation of TP53 activity and stability. A common polymorphism at codon 72 in this region has been associated with altered cancer risk in humans. The Trp53P mouse, which carries a germline homozygous deletion of a region of the PRD, does not develop spontaneous tumors in a mixed 129/Sv and C57BL/6 genetic background, but is highly susceptible to a broad range of tumor types following total body exposure to 4 Gy gamma () radiation. This contrasts with the tumor spectrum in Trp53 null (-/-) mice, which mainly develop thymic lymphomas and osteosarcomas. Analysis of genomic instability in tissues and cells from Trp53P mice demonstrated elevated basal levels of aneuploidy, but this is not sufficient to drive spontaneous tumorigenesis, which requires an additional DNA damage stimulus. Levels of genomic instability did not increase significantly in Trp53P mice following irradiation exposure, suggesting that other radiation effects including tissue inflammation, altered metabolism or autophagy, may play an important role. The Trp53P mouse is a novel model to dissect the mechanisms of tumor development induced by radiation exposure. (c) 2015 Wiley Periodicals, Inc. C1 [Adams, Cassandra J.; Del Rosario, Reyno; Menchavez, Phuong Thuy; Balmain, Allan] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, 1450 3rd St, San Francisco, CA 94158 USA. [Yu, Jennifer S.; Shoemake, Jocelyn] Cleveland Clin, Dept Radiat Oncol, Dept Stem Cell Biol, Main Campus, Cleveland, OH 44106 USA. [Mao, Jian-Hua; Costes, Sylvain V.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Jen, Kuang-Yu] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA. [Wade, Mark] Fdn Ist Italiano Tecnol IIT, Ctr Genom Sci IIT SEMM, Milan, Italy. [Aina, Olulanu H.; Cardiff, Robert D.] Univ Calif Davis, Dept Pathol & Lab Med, Primate Dr, CA USA. [Wahl, Geoffrey M.] Salk Inst Biol Studies, Gene Express Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA. RP Balmain, A (reprint author), Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, 1450 3rd St, San Francisco, CA 94158 USA. FU NASA Specialized Center for Research in Radiation Health Effects [NNX09AM52G, UO1 CA84244, CA141455]; Department of Energy Low Dose Radiation Research Program [DESC0003679]; Leukemia and Lymphoma Society [5409-13] FX Grant sponsor: NASA Specialized Center for Research in Radiation Health Effects; Grant numbers: NNX09AM52G; UO1 CA84244; CA141455; Grant sponsor: The Department of Energy Low Dose Radiation Research Program; Grant number: DESC0003679; Grant sponsor: The Leukemia and Lymphoma Society Fellowship; Grant number: 5409-13 NR 35 TC 0 Z9 0 U1 3 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-1987 EI 1098-2744 J9 MOL CARCINOGEN JI Mol. Carcinog. PD SEP PY 2016 VL 55 IS 9 BP 1387 EP 1396 DI 10.1002/mc.22377 PG 10 WC Biochemistry & Molecular Biology; Oncology SC Biochemistry & Molecular Biology; Oncology GA DS6LU UT WOS:000380894100009 PM 26310697 ER PT J AU Li, H Yang, XR Weng, BS Su, JQ Nie, SA Gilbert, JA Zhu, YG AF Li, Hu Yang, Xiaoru Weng, Bosen Su, Jianqiang Nie, San'an Gilbert, Jack A. Zhu, Yong-Guan TI The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE N loss; Anammox; Rhizosphere; Rice growth period; Root exudates; N-15-tracing ID METHANE-OXIDIZING BACTERIA; CANDIDATUS BROCADIA FULGIDA; CHINESE PADDY SOILS; ORYZA-SATIVA L.; ANAMMOX BACTERIA; ACTIVATED-SLUDGE; NITROGEN LOSS; DENITRIFICATION; DIVERSITY; COMMUNITY AB Anaerobic oxidation of ammonium (anammox) plays an important role in nitrogen (N) loss from agricultural systems. Recently, the rice rhizosphere was demonstrated to be a hotspot for anammox, yet the dynamics of anammox activity and the distribution of anammox bacteria in rhizosphere soil at different phenological stages of rice growth are still unknown. In this study, the activity, diversity and abundance of anammox bacteria in both rhizosphere and bulk soils were investigated over the entire rice growth season. From tillering to ripening stage, significantly higher anammox bacterial abundance was detected in rhizosphere soils compared to bulk soils. The rhizosphere soils also had significantly higher anammox rates at tillering and booting stages (0.71 and 0.32 nmol N g(-1) dry soil h(-1), respectively) compared to bulk soils. The anammox rate in rhizosphere soil was positively correlated to the concentrations of NOx- (total of nitrate and nitrite) and acetate. The abundance of anammox bacteria was significantly correlated with the concentration of succinate in rhizosphere soils. A total of five anammox genera of Brocadia, Kuenenia, Anammoxoglobus, Jettenia and Scalindua were detected, with Brocadia predominating in all examined samples. The distribution of anammox bacteria in rhizosphere and bulk soils varied with phenological stages. Statistical analysis indicated that C/N ratio, formate, citrate and ammonium were key factors influencing the composition of anammox bacteria. Variations in activity, abundance and distribution of anammox bacteria in rhizosphere were observed over the phenological progression, demonstrating that the root exudates might be influential for the anammox process. This study implies that future efforts in estimating the rate of anammox should consider the temporal variation during plant life cycles. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Li, Hu; Yang, Xiaoru; Weng, Bosen; Su, Jianqiang; Nie, San'an; Zhu, Yong-Guan] Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, Xiamen 361021, Peoples R China. [Zhu, Yong-Guan] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China. [Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Gilbert, Jack A.] Argonne Natl Lab, Biosci Div, Lemont, IL 60439 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. RP Zhu, YG (reprint author), Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, Xiamen 361021, Peoples R China. EM ygzhu@iue.ac.cn RI SPRP, XDB150200/N-7373-2016; Su, Jian Qiang/C-2388-2009; CAS, KLUEH/G-8978-2016; Zhu, Yong-Guan/A-1412-2009 OI Su, Jian Qiang/0000-0003-1875-249X; Zhu, Yong-Guan/0000-0003-3861-8482 FU Strategic Priority Research Program of Chinese Academy of Sciences [XDB15020302, XDB15020402]; Natural Science Foundation of China [41430858]; International Science & Technology Cooperation Program of China [2011DFB91710]; U.S. Dept. of Energy [DE-AC02-06CH11357] FX This study was financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB15020302, XDB15020402), the Natural Science Foundation of China (41430858), and the International Science & Technology Cooperation Program of China (2011DFB91710). We thank Dr. Juan Wang for her help in rice cultivation and Dr. Han Zhang for assistance in the equipment of Isotope Ratio Mass Spectrometer. This work was supported in part by the U.S. Dept. of Energy under Contract DE-AC02-06CH11357. NR 49 TC 0 Z9 0 U1 34 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD SEP PY 2016 VL 100 BP 59 EP 65 DI 10.1016/j.soilbio.2016.05.015 PG 7 WC Soil Science SC Agriculture GA DS2LD UT WOS:000380600100007 ER PT J AU Huh, U Cho, W Joy, DC AF Huh, U. Cho, W. Joy, D. C. TI Monte Carlo modeling of ion beam induced secondary electrons SO ULTRAMICROSCOPY LA English DT Article DE Monte Carlo; Secondary electron; Yield; Ion beam; Stopping power; Ion microscope ID MICROSCOPE; METROLOGY; EMISSION AB Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE 6) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10-100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. (C) 2016 Elsevier B.V. All rights reserved. C1 [Huh, U.; Joy, D. C.] Univ Tennessee, Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Cho, W.] Univ Tennessee, Elect & Comp Engn, Knoxville, TN 37996 USA. [Joy, D. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Huh, U (reprint author), Univ Tennessee, Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM uhuh@vols.utk.edu FU DS [R011082032]; Center of Excellence [R011310039] FX This work was partially supported by DS Account number R011082032 and Center of Excellence Account number R011310039 for the Center for Materials Processing at the University of Tennessee, Knoxville. NR 32 TC 0 Z9 0 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD SEP PY 2016 VL 168 BP 28 EP 33 DI 10.1016/j.ultramic.2016.05.010 PG 6 WC Microscopy SC Microscopy GA DS4MB UT WOS:000380754100004 PM 27337603 ER PT J AU Poudel, S Tokmina-Lukaszewska, M Colman, DR Refai, M Schut, GJ King, PW Maness, PC Adams, MWW Peters, JW Bothner, B Boyd, ES AF Poudel, Saroj Tokmina-Lukaszewska, Monika Colman, Daniel R. Refai, Mohammed Schut, Gerrit J. King, Paul W. Maness, Pin-Ching Adams, Michael W. W. Peters, John W. Bothner, Brian Boyd, Eric S. TI Unification of [FeFe]-hydrogenases into three structural and functional groups SO BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS LA English DT Article DE [FeFe]-hydrogenase; Hydrogen; Electron bifurcation; Post-translational modification; Regulation; Bioinformatics ID ALGA CHLAMYDOMONAS-REINHARDTII; SULFATE-REDUCING BACTERIA; THERMOTOGA-MARITIMA; MASS-SPECTROMETRY; IRON-HYDROGENASE; HISTIDINE-KINASE; ACTIVE-SITE; BIOCHEMICAL-CHARACTERIZATION; CLOSTRIDIUM-PASTEURIANUM; PROTEIN-PHOSPHORYLATION AB Background: [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H-2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H-2. Methods: To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatory proteins encoded in HydA gene neighborhoods. Results: HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggest that they are post-translationally modified by phosphorylation. Conclusions: These results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA. General significance: This classification scheme provides a framework for future biochemical and mutagenesis studies to elucidate the functional role of Hyd enzymes. (C) 2016 Elsevier B.V. All rights reserved. C1 [Poudel, Saroj; Colman, Daniel R.; Boyd, Eric S.] Montana State Univ, Dept Microbiol & Immunol, POB 173520, Bozeman, MT 59717 USA. [Tokmina-Lukaszewska, Monika; Refai, Mohammed; Peters, John W.; Bothner, Brian] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Schut, Gerrit J.; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [King, Paul W.; Maness, Pin-Ching] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Boyd, ES (reprint author), Montana State Univ, Dept Microbiol & Immunol, POB 173520, Bozeman, MT 59717 USA. EM saroz189@gmail.com; tokminalukas@gmail.com; daniel.colman@montana.edu; refai1982@gmail.com; gerti@uga.edu; Paul.King@nrel.gov; PinChing.Maness@nrel.gov; adams@bmb.uga.edu; john.peters@chemistry.montana.edu; bbothner@montana.edu; eboyd@montana.edu RI King, Paul/D-9979-2011; OI King, Paul/0000-0001-5039-654X; Peters, John/0000-0001-9117-9568 FU Biological Electron Transfer and Catalysis Energy Frontier Research Center - U.S. Department of Energy, Office of Science, and Basic Energy Sciences [DE-SC0012518]; Murdock Charitable Trust; National Institute of Health of the Centers of Biomedical Research Excellence program [5P20RR02437] FX This work was supported as part of the Biological Electron Transfer and Catalysis Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Basic Energy Sciences under Award # DE-SC0012518. The mass spectrometry facility at Montana State University receives funding from the Murdock Charitable Trust and National Institute of Health 5P20RR02437 of the Centers of Biomedical Research Excellence program. NR 88 TC 2 Z9 2 U1 11 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-4165 EI 1872-8006 J9 BBA-GEN SUBJECTS JI Biochim. Biophys. Acta-Gen. Subj. PD SEP PY 2016 VL 1860 IS 9 BP 1910 EP 1921 DI 10.1016/j.bbagen.2016.05.034 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DS2LQ UT WOS:000380601400010 PM 27241847 ER PT J AU Fraga, MB Delplanque, JP Yang, N Lavernia, EJ Monson, TC AF Fraga, Martin B. Delplanque, Jean-Pierre Yang, Nancy Lavernia, Enrique J. Monson, Todd C. TI High pressure FAST of nanocrystalline barium titanate SO CERAMICS INTERNATIONAL LA English DT Article DE Barium titanate; Sintering; Grain size; Spark plasma sintering ID ABNORMAL GRAIN-GROWTH; DIELECTRIC-PROPERTIES; BATIO3 CERAMICS; COMPUTER-SIMULATION; SIZE; FERROELECTRICS; DENSIFICATION; BEHAVIOR; CONSOLIDATION; ATMOSPHERE AB This work studies the microstructural evolution of nanocrystalline (< 1 mu m) barium titanate (BaTiO3), and presents high pressure in field-assisted sintering (FAST) as a robust methodology to obtain > 100 nm BaTiO3 compacts. Using FAST, two commercial similar to 50 nm powders were consolidated into compacts of varying densities and grain sizes. Microstructural inhomogeneities were investigated for each case, and an interpretation is developed using a modified Monte Carlo Potts (MCP) simulation. Two recurrent microstructural inhomogeneities are highlighted, heterogeneous grain growth and low-density regions, both ubiqutously present in all samples to varying degrees. In the worst cases, HGG presents an area coverage of 52%. Because HGG is sporadic but homogenous throughout a sample, the catalyst (e.g., the local segregation of species) must be, correspondingly, distributed in a homogenous manner. MCP demonstrates that in such a case, a large distance between nucleating abnormal grains is required otherwise abnormal grains prematurely impinge on each other, and their size is not distinguishable from that of normal grains. Compacts sintered with a pressure of 300 MPa and temperatures of 900 degrees C, were 99.5% dense and had a grain size of 90 +/- 24 nm. These are unprecedented results for commercial BaTiO3 powders or any starting powder of 50 nm particle size other authors have used 16 nm lab-produced powder to obtain similar results. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved. C1 [Fraga, Martin B.; Delplanque, Jean-Pierre] Univ Calif Davis, Davis, CA 95616 USA. [Yang, Nancy] Sandia Natl Labs, Livermore, CA USA. [Lavernia, Enrique J.] Univ Calif Irvine, Irvine, CA USA. [Monson, Todd C.] Sandia Natl Labs, Albuquerque, NM USA. RP Fraga, MB (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM mbfraga@ucdavis.edu OI Monson, Todd/0000-0002-9782-7084; Delplanque, Jean-Pierre/0000-0003-1774-1641 FU Air Force Research Laboratory/High Power Microwave Electromagnetic Microwave Division; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge the support of Sandia National Laboratories. The authors also wish to thank Dr. Susan Heidger of the Air Force Research Laboratory/High Power Microwave Electromagnetic Microwave Division for additional support of this work. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract no. DE-AC04-94AL85000. NR 50 TC 1 Z9 1 U1 17 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 EI 1873-3956 J9 CERAM INT JI Ceram. Int. PD SEP PY 2016 VL 42 IS 12 BP 13868 EP 13875 DI 10.1016/j.ceramint.2016.05.193 PG 8 WC Materials Science, Ceramics SC Materials Science GA DR7LT UT WOS:000380081900068 ER PT J AU Lin, F Leyffer, S Munson, T AF Lin, Fu Leyffer, Sven Munson, Todd TI A two-level approach to large mixed-integer programs with application to cogeneration in energy-efficient buildings SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS LA English DT Article DE Coarsened models; Distributed generation; Large-scale problems; Two-level approach; Multi-period planning; Resource and cost allocation; Two-stage mixed-integer programs ID DISTRIBUTED GENERATION SYSTEMS; NONLINEAR OPTIMIZATION; LAGRANGIAN-RELAXATION; SIMULATION PROGRAM; COLUMN GENERATION; LINEAR-PROGRAMS; OPTIMAL-DESIGN; BILEVEL; AGGREGATION; BOUNDS AB We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence provides an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. The coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers. C1 [Lin, Fu; Leyffer, Sven; Munson, Todd] Argonne Natl Lab, Math & Comp Sci Div, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Lin, F (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 South Cass Ave, Lemont, IL 60439 USA. EM fulin@mcs.anl.gov; leyffer@mcs.anl.gov; tmunson@mcs.anl.gov FU U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program [DE-AC02-06CH11357] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under contract number DE-AC02-06CH11357. We thank the reviewers for their helpful comments. Fu Lin thanks Dr. Ralph Muehleisen for useful discussions on EnergyPlus. NR 40 TC 0 Z9 0 U1 9 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0926-6003 EI 1573-2894 J9 COMPUT OPTIM APPL JI Comput. Optim. Appl. PD SEP PY 2016 VL 65 IS 1 BP 1 EP 46 DI 10.1007/s10589-016-9842-0 PG 46 WC Operations Research & Management Science; Mathematics, Applied SC Operations Research & Management Science; Mathematics GA DS0CF UT WOS:000380262200001 ER PT J AU Zhang, N Hu, ZG Springer, C Li, YN Shen, B AF Zhang, Ning Hu, Zhaoguang Springer, Cecilia Li, Yanning Shen, Bo TI A bi-level integrated generation-transmission planning model incorporating the impacts of demand response by operation simulation SO ENERGY CONVERSION AND MANAGEMENT LA English DT Article DE Unit commitment; Generation-transmission expansion planning; Bi-level planning model; Demand response; Peak load reduction ID POWER-GENERATION; ELECTRICITY MARKETS; UNIT COMMITMENT; SYSTEMS; COORDINATION; RESOURCE; OPTIMIZATION AB If all the resources in power supply side, transmission part, and power demand side are considered together, the optimal expansion scheme from the perspective of the whole system can be achieved. In this paper, generation expansion planning and transmission expansion planning are combined into one model. Moreover, the effects of demand response in reducing peak load are taken into account in the planning model, which can cut back the generation expansion capacity and transmission expansion capacity. Existing approaches to considering demand response for planning tend to overestimate the impacts of demand response on peak load reduction. These approaches usually focus on power reduction at the moment of peak load without considering the situations in which load demand at another moment may unexpectedly become the new peak load due to demand response. These situations are analyzed in this paper. Accordingly, a novel approach to incorporating demand response in a planning model is proposed. A modified unit commitment model with demand response is utilized. The planning model is thereby a bi-level model with interactions between generation-transmission expansion planning and operation simulation to reflect the actual effects of demand response and find the reasonably optimal planning result. (C) 2016 Elsevier Ltd. All rights, reserved. C1 [Zhang, Ning] Beijing Jiaotong Univ, Sch Elect Engn, Beijing 100044, Peoples R China. [Zhang, Ning; Hu, Zhaoguang] State Grid Corp China, State Grid Energy Res Inst, Beijing 102200, Peoples R China. [Springer, Cecilia; Shen, Bo] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. [Springer, Cecilia] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Li, Yanning] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China. RP Zhang, N (reprint author), Beijing Jiaotong Univ, Sch Elect Engn, Beijing 100044, Peoples R China. EM 12121580@bjtu.edu.cn NR 44 TC 1 Z9 1 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0196-8904 EI 1879-2227 J9 ENERG CONVERS MANAGE JI Energy Conv. Manag. PD SEP 1 PY 2016 VL 123 BP 84 EP 94 DI 10.1016/j.enconman.2016.06.020 PG 11 WC Thermodynamics; Energy & Fuels; Mechanics SC Thermodynamics; Energy & Fuels; Mechanics GA DS2LP UT WOS:000380601300008 ER PT J AU Jay, DA Borde, AB Diefenderfer, HL AF Jay, David A. Borde, Amy B. Diefenderfer, Heida L. TI Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: II. Water Level Models, Floodplain Wetland Inundation, and System Zones SO ESTUARIES AND COASTS LA English DT Article DE Environmental flows; Estuarine processes; Hydropower impacts; Non-stationary tides; Sum exceedance value; Tidal freshwater; Tidal river zonation; Tides; Wetlands; Water levels ID PLANT-SPECIES RICHNESS; HARMONIC-ANALYSIS; CLIMATE INFLUENCES; SALMONID HABITAT; LAWRENCE-RIVER; SALT MARSHES; FRESH-WATER; FLOW; VEGETATION; GRADIENTS AB Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetland hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones. C1 [Jay, David A.] Portland State Univ, Dept Civil & Environm Engn, POB 751, Portland, OR 97207 USA. [Borde, Amy B.; Diefenderfer, Heida L.] Pacific NW Natl Lab, Marine Sci Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA. RP Jay, DA (reprint author), Portland State Univ, Dept Civil & Environm Engn, POB 751, Portland, OR 97207 USA. EM djay@cecs.pdx.edu; amy.borde@pnnl.gov; heida.diefenderfer@pnnl.gov FU US Army Corps of Engineers Columbia River Fish Mitigation Program; PNNL by the Bonneville Power Administration; Lower Columbia Estuary Partnership; National Science Foundation [OCE-0929055] FX This work was supported by the US Army Corps of Engineers Columbia River Fish Mitigation Program. Funding for flood-plain water-level data collection by PNNL was also provided in part by the Bonneville Power Administration and Lower Columbia Estuary Partnership. Partial support for D. A. Jay was provided by the National Science Foundation, grant OCE-0929055. We thank V. Cullinan, R. Kaufmann, K. Leffler, C. McNeil, and S. Zimmerman for technical assistance. NR 80 TC 2 Z9 2 U1 12 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD SEP PY 2016 VL 39 IS 5 BP 1299 EP 1324 DI 10.1007/s12237-016-0082-4 PG 26 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA DS0EO UT WOS:000380268400001 ER PT J AU Nyhan, M Sobolevsky, S Kang, CG Robinson, P Corti, A Szell, M Streets, D Lu, ZF Britter, R Barrett, SRH Ratti, C AF Nyhan, Marguerite Sobolevsky, Stanislav Kang, Chaogui Robinson, Prudence Corti, Andrea Szell, Michael Streets, David Lu, Zifeng Britter, Rex Barrett, Steven R. H. Ratti, Carlo TI Predicting vehicular emissions in high spatial resolution using pervasively measured transportation data and microscopic emission's model SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air quality; Transportation; Emissions; Microscopic emissions model; Microscopic vehicle movement ID AIR-POLLUTION; LOS-ANGELES; VEHICLE; MORTALITY; CITIES; VARIABILITY; REDUCTION; EVOLUTION; NETWORKS; QUALITY AB Air pollution related to traffic emissions pose an especially significant problem in cities; this is due to its adverse impact on human health and well-being. Previous studies which have aimed to quantify emissions from the transportation sector have been limited by either simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air pollution emissions for Singapore. This novel approach enabled the quantification of instantaneous drive cycle parameters in high spatio-temporal resolution, which provided the basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible with previously used methods for estimating emissions. Relatively higher emissions areas were mainly concentrated in a few districts that were the Singapore Downtown Core area, to the north of the central urban region and to the east of it. Daily emissions quantified for the total motor vehicle population of Singapore were found to be comparable to another emissions dataset Results demonstrated that high resolution spatio-temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly localized areas of elevated acceleration and air pollution emissions in cities, and may become a complement to traditional emission estimates, especially in emerging cities and countries where reliable fine-grained urban air quality data is not easily available. This is the first study of its kind to investigate measured microscopic vehicle movement in tandem with microscopic emissions modeling for a substantial study domain. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Nyhan, Marguerite; Robinson, Prudence; Britter, Rex; Ratti, Carlo] MIT, SENSEable City Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Sobolevsky, Stanislav] NYU, Ctr Urban Sci & Progress, New York, NY USA. [Kang, Chaogui] Wuhan Univ, Wuhan, Hubei, Peoples R China. [Corti, Andrea] Politecn Milan, 32 Piazza Leonardo da Vinci, Milan, Italy. [Szell, Michael] Northeastern Univ, Dept Phys, Ctr Complex Network Res, Boston, MA 02115 USA. [Streets, David; Lu, Zifeng] NASA, Argonne Natl Lab, Lemont, IL USA. [Barrett, Steven R. H.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. RP Nyhan, M (reprint author), MIT, SENSEable City Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mnyhan@mit.edu OI Kang, Chaogui/0000-0002-0122-9419 FU MIT SENSEable City Lab Consortium; Singapore-MIT Alliance for Research & Technology program FX All the authors wish to thank the MIT SENSEable City Lab Consortium and the Singapore-MIT Alliance for Research & Technology program for supporting the research. M. Nyhan would like to thank Fulbright and the Irish Environmental Protection Agency. The authors would also like to acknowledge Dr. Luc Int. Panis for providing advice on some modeling aspects of the study. NR 68 TC 1 Z9 1 U1 30 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2016 VL 140 BP 352 EP 363 DI 10.1016/j.atmosenv.2016.06.018 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DR7MG UT WOS:000380083200031 ER PT J AU Kupwade-Patil, K Diallo, SO Hossain, DZ Islam, MR Allouche, EN AF Kupwade-Patil, Kunal Diallo, Souleymane O. Hossain, Dewan Zayid Islam, Md Rashedul Allouche, Erez N. TI Investigation of activation kinetics in geopolymer paste using quasielastic neutron scattering SO CONSTRUCTION AND BUILDING MATERIALS LA English DT Article DE Fly ash; Quasielastic neutron scattering (QENS); Geopolymer; Characterization; Gelation; Dissolution ID CALCIUM SILICATE HYDRATE; PORTLAND-CEMENT PASTES; TRICALCIUM SILICATE; FLY-ASH; TRANSLATIONAL DYNAMICS; GEL FORMATION; WATER; MICROSTRUCTURE; EVOLUTION; STATE AB Quasielastic neutron scattering (QENS) has been used to investigate the binding process of water molecules in pastes of calcium geopolymer prepared with low and high calcium fly ash contents, and at two different NaOH molarities, 10 and 14 M. The in situ measurements were carried at ambient and elevated curing temperatures (60 degrees C). By carefully monitoring the time evolution of the elastic peak intensity, we infer a gelation process, followed by polymerization and a hardening in the high calcium geopolymer paste at 60 degrees C, in agreement with previously proposed geopolymerization model. This behavior was neither observed at ambient temperature in both low and high calcium geopolymer cement paste, within the precision of the neutron instrument. Our study clearly shows that a minimal amount of heat is necessary to form gelation and polymerization during the activation process. The activation of geopolymer paste with high NaOH molarity involves more chemically bound water molecules than that at lower activator concentration. This work shows that the QENS technique can be effectively used to characterize the alkali-activation kinetics in certain geopolymer pastes, and that temperature and molarity of the activator play a vital role in controlling the gel mechanism. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kupwade-Patil, Kunal; Hossain, Dewan Zayid; Islam, Md Rashedul; Allouche, Erez N.] Louisiana Tech Univ, Dept Civil Engn, ACBL, Ruston, LA 71272 USA. [Diallo, Souleymane O.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN USA. RP Kupwade-Patil, K (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM kunalk@mit.edu FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; DOE-EPSCoR Grant [DE-FG02-08ER46528] FX This research at ORNL's Spallation Neutron Source (SNS) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Travel to Oak Ridge National Laboratory to carry out this work was supported by a Travel Fellowship, from, the DOE-EPSCoR Grant to the University of Tennessee, DE-FG02-08ER46528. This study was conducted when the first author of the paper was at Louisiana Tech University. We would like to thank Dr. Eugene Mamontov from Oak Ridge National Laboratory for fruitful discussions during the course of these experiments. The authors are also thankful to Dr. Claire White from Princeton University for reviewing the initial version of this manuscript and for her feedback. NR 44 TC 1 Z9 1 U1 3 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0950-0618 EI 1879-0526 J9 CONSTR BUILD MATER JI Constr. Build. Mater. PD SEP 1 PY 2016 VL 120 BP 181 EP 188 DI 10.1016/j.conbuildmat.2016.05.104 PG 8 WC Construction & Building Technology; Engineering, Civil; Materials Science, Multidisciplinary SC Construction & Building Technology; Engineering; Materials Science GA DR7MP UT WOS:000380084100020 ER PT J AU Ramezani, H Wang, Y Yablonovitch, E Zhang, X AF Ramezani, Hamidreza Wang, Yuan Yablonovitch, Eli Zhang, Xiang TI Unidirectional Perfect Absorber SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE critical coupling; exceptional point; metrology; Parity time symmetry; perfect absorber; spectral singularity; unidirectional perfect absorber ID PARITY-TIME SYMMETRY; EXCEPTIONAL POINT; ABSORPTION; LASER AB We show an interplay between Fano resonances and a judicious absorption mechanism leads to a unidirectional perfect absorber, which can be controlled in both direction and frequency. Critical coupling phenomenon created by interference, separates the left-and right-side of the system. At the same time, Fano resonance causes a divergence in the delay time of photons traveling through the loss part of the system, which results in full absorption of the photons from one side. Moreover, we depict that coincidence of the two unidirectional perfect absorber modes from opposite directions results in a perfect absorber mode, which is distinct from the CPA modes. Furthermore, we show that the unidirectional perfect absorber mode is at the same time a spectral singularity and an exceptional point, which makes this point ultrasensitive to any changes in the system. Our results open a direction for designing new type of absorbers, sensors, and switches. C1 [Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, Natl Sci Fdn, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Yablonovitch, Eli] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Yablonovitch, Eli] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, Natl Sci Fdn, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA.; Zhang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM ramezani@berkeley.edu; yuanwang@berkeley.edu; eliy@eecs.berkeley.edu; xiang@berkeley.edu RI Wang, Yuan/F-7211-2011 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05-CH11231]; U.S. Air Force Office of Scientific Research (AFOSR) MURI program [FA9550-12-1-0024] FX This work was primarily funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231. Calculation of the mode sensitivity was supported by U.S. Air Force Office of Scientific Research (AFOSR) MURI program (No. FA9550-12-1-0024). (Corresponding author: Xiang Zhang.) NR 43 TC 0 Z9 0 U1 15 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD SEP-OCT PY 2016 VL 22 IS 5 DI 10.1109/JSTQE.2016.2545644 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA DR5DW UT WOS:000379924200001 ER PT J AU Li, WT Ren, XT Huang, YW Yu, ZH Mi, ZY Tamura, N Li, XD Peng, F Wang, L AF Li, Wentao Ren, Xiangting Huang, Yanwei Yu, Zhenhai Mi, Zhongying Tamura, Nobumichi Li, Xiaodong Peng, Fang Wang, Lin TI Phase transformation and fluorescent enhancement of ErF3 at high pressure SO SOLID STATE COMMUNICATIONS LA English DT Article DE Rare-earth trifluorides; Structure and fluorescence; Phase transitions and enhancement of fluorescence; High pressure ID LAF3; TRANSITION; STRAIN; NANOPARTICLES; CRYSTALS; LASER; IONS AB Pressure-induced phase transformation and fluorescent properties of ErF3 were investigated here using in-situ synchrotron X-ray diffraction and photoluminescence up to 32.1 GPa at room temperature. Results showed that ErF3 underwent a reversible pressure-induced phase transition from the beta-YF3-type to the fluocerite LaF3-type at 9.8 GPa. The bulk moduli B-0 for low- and high-pressure phases were determined to be 130 and 208 GPa, respectively. Photoluminescencent studies showed that new emission lines belonging to the transition of H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2) appeared during phase transition, suggesting pressure-induced electronic band splitting. Remarkably, significant pressure-induced enhancement of photoluminescence was observed, which was attributed to lattice distortion of the material under high pressure. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Li, Wentao; Peng, Fang] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China. [Li, Wentao; Ren, Xiangting; Huang, Yanwei; Yu, Zhenhai; Mi, Zhongying; Wang, Lin] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China. [Tamura, Nobumichi] Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA. [Li, Xiaodong] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Wang, Lin] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Wang, Lin] Carnegie Inst Sci, High Pressure Synerget Consortium, Geophys Lab, Argonne, IL 60439 USA. RP Peng, F (reprint author), Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China.; Wang, L (reprint author), Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China. EM pengfang@scu.edu.cn; wanglin@hpstar.ac.cn FU National Natural Science Foundation of China, China Chinese Academy of Sciences Fund [U1332104]; NSAF [U1530402]; Chinese Academy of Sciences [KJCX2-SW-N03, KJCX2-SW-N20] FX This work was supported by the joint fund of the National Natural Science Foundation of China, China Chinese Academy of Sciences Fund (Grant no. U1332104) and NSAF (Grant no. U1530402). The high pressure XRD experiments were carried out at beamline 4W2 of the Beijing Synchrotron Radiation Facility (BSRF), which is supported by the Chinese Academy of Sciences (Grant no. KJCX2-SW-N03, KJCX2-SW-N20). NR 32 TC 0 Z9 0 U1 6 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD SEP PY 2016 VL 242 BP 30 EP 35 DI 10.1016/j.ssc.2016.05.014 PG 6 WC Physics, Condensed Matter SC Physics GA DR1UI UT WOS:000379690000007 ER PT J AU Brown, CS Zhang, HB AF Brown, C. S. Zhang, Hongbin TI Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE CASL; VERA-CS; Uncertainty quantification; Sensitivity analysis AB VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics code under development by the Conscirtium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis. A 2 x 2 fuel assembly model was developed and Simulated by VERA-CS, and uncertainty quantification and Sensitivity analysis were performed with fourteen uncertain. input parameters. The minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surface temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. Parameters used as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Brown, C. S.] North Carolina State Univ, Dept Nucl Engn, 2500 Stinson Dr, Raleigh, NC 27695 USA. [Zhang, Hongbin] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. RP Zhang, HB (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM csbrown3@ncsu.edu; Hongbin.Zhang@inl.gov FU Office of Nuclear Energy of the U.S. Department of Energy [DE-AC07-05ID14517]; U.S. Department of Energy [DE-AC07-05ID14517] FX This research made use of the resources of the High Performance Computing Center at Idaho National Laboratory, which is supported by the Office of Nuclear Energy of the U.S. Department of Energy under Contract No. DE-AC07-05ID14517. The authors would like to thank Andrew Godfrey and Mark Baird at ORNL as well as Vefa Kucukboyaci and Yixing Sung at Westinghouse for their assistance with VERA-CS. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 18 TC 1 Z9 1 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD SEP PY 2016 VL 95 BP 188 EP 201 DI 10.1016/j.anucene.2016.05.016 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DQ7EG UT WOS:000379369100021 ER PT J AU Bhagia, S Nunez, A Wyman, CE Kumar, R AF Bhagia, Samarthya Nunez, Angelica Wyman, Charles E. Kumar, Rajeev TI Robustness of two-step acid hydrolysis procedure for composition analysis of poplar SO BIORESOURCE TECHNOLOGY LA English DT Article DE Compositional analysis; Lignocellulosic biomass; Poplar; Sulfuric acid hydrolysis; Lignin-carbohydrate complex AB The NREL standard procedure for lignocellulosic biomass composition has two steps: primary hydrolysis in 72% wt sulfuric acid at 30 degrees C for 1 h followed by secondary hydrolysis of the slurry in 4 wt% acid at 121 degrees C for 1 h. Although pointed out in the NREL procedure, the impact of particle size on composition has never been shown. In addition, the effects of primary hydrolysis time and separation of solids prior to secondary hydrolysis on composition have never been shown. Using poplar, it was found that particle sizes less than 0.250 mm significantly lowered the glucan content and increased the Klason lignin but did not affect xylan, acetate, or acid soluble lignin contents. Composition was unaffected for primary hydrolysis time between 30 and 90 min. Moreover, separating solids prior to secondary hydrolysis had negligible effect on composition suggesting that lignin and polysaccharides are completely separated in the primary hydrolysis stage. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Bhagia, Samarthya; Nunez, Angelica; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, 900 Univ Ave, Riverside, CA 92521 USA. [Bhagia, Samarthya; Nunez, Angelica; Wyman, Charles E.; Kumar, Rajeev] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, 1084 Columbia Ave, Riverside, CA 92507 USA. [Bhagia, Samarthya; Wyman, Charles E.; Kumar, Rajeev] Oak Ridge Natl Lab, BESC, POB 2008 MS6341, Oak Ridge, TN 37831 USA. RP Wyman, CE (reprint author), Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, 1084 Columbia Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Bourns Coll Engn, 1084 Columbia Ave, Riverside, CA 92507 USA. EM cewyman@engr.ucr.edu FU Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory [DE-PS02-06ER64304]; UCR Hispanic Serving Institutions (HSI) Undergraduate Research Program through the U. S. Department of Education; Ford Motor Company FX This work was supported by the Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory (Contract DE-PS02-06ER64304). Stipend for undergraduate research was awarded by UCR Hispanic Serving Institutions (HSI) Undergraduate Research Program through the U. S. Department of Education. We thank Daniel Lee, Department of Chemical and Environmental Engineering at UCR for assistance in milling of poplar used in this study. We also acknowledge the Center for Environmental Research and Technology (CE-CERT) of the Bourns College of Engineering for providing the facilities and the Ford Motor Company for funding the Chair in Environmental Engineering that facilitates projects such as this one. NR 8 TC 2 Z9 2 U1 10 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD SEP PY 2016 VL 216 BP 1077 EP 1082 DI 10.1016/j.biortech.2016.04.138 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA DQ9UX UT WOS:000379555900133 PM 27282557 ER PT J AU Elrick-Barr, CE Smith, TF Preston, BL Thomsen, DC Baum, S AF Elrick-Barr, Carmen E. Smith, Timothy F. Preston, Benjamin L. Thomsen, Dana C. Baum, Scott TI How are coastal households responding to climate change? SO ENVIRONMENTAL SCIENCE & POLICY LA English DT Article DE Vulnerability; Resilience; Risk; Decision-making; Environmental hazards ID BUILDING ADAPTIVE CAPACITY; CHANGE ADAPTATION; RISK; RESPONSIBILITIES; AUSTRALIA; BEHAVIOR; VULNERABILITY; PERCEPTIONS; RESILIENCE; GOVERNANCE AB In Australia, shared responsibility is a concept advocated to promote collective climate change adaptation by multiple actors and institutions. However, a shared response is often promoted in the absence of information regarding actions currently taken; in particular, there is limited knowledge regarding action occurring at the household scale. To address this gap, we examine household actions taken to address climate change and associated hazards in two Australian coastal communities. Mixed methods research is conducted to answer three questions: (1) what actions are currently taken (mitigation, actions to lobby for change or adaptation to climate impacts)? (2) why are these actions taken (e.g. are they consistent with capacity, experience, perceptions of risk); and (3) what are the implications for adaptation? We find that households are predominantly mitigating greenhouse gas emissions and that impact orientated adaptive actions are limited. Coping strategies are considered sufficient to mange climate risks, proving a disincentive for additional adaptive action. Influencing factors differ, but generally, risk perception and climate change belief are associated with action. However, the likelihood of more action is a function of homeownership and a tendency to plan ahead. Addressing factors that support or constrain household adaptive decision-making and action, from the physical (e.g. homeownership) to.the social (e.g. skills in planning and a culture of adapting to change) will be critical in increasing household participation in adaptation. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Elrick-Barr, Carmen E.; Smith, Timothy F.; Thomsen, Dana C.] Univ Sunshine Coast, Sustainabil Res Ctr, 90 Sippy Downs Dr, Sippy Downs, Qld 4556, Australia. [Preston, Benjamin L.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Baum, Scott] Griffith Univ, Griffith Sch Environm, Nathan Campus,170 Kessels Rd, Nathan, Qld 4111, Australia. RP Elrick-Barr, CE (reprint author), Univ Sunshine Coast, Sustainabil Res Ctr, 90 Sippy Downs Dr, Sippy Downs, Qld 4556, Australia. EM celrick@usc.edu.au; tsmith5@usc.edu.au; prestonbl@ornl.gov; dthomsen@usc.edu.au; s.baum@griffith.edu.au OI Preston, Benjamin/0000-0002-7966-2386 FU Australian Research Council (ARC) through the project Community Vulnerability and Extreme Events: Development of a Typology of Coastal Settlement Vulnerability to Aid Adaptation Strategies' [DP1093583]; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Australian Research Council (ARC) through the project Community Vulnerability and Extreme Events: Development of a Typology of Coastal Settlement Vulnerability to Aid Adaptation Strategies' (DP1093583). This manuscript has been authored in part by UTBattelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 78 TC 0 Z9 0 U1 13 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1462-9011 EI 1873-6416 J9 ENVIRON SCI POLICY JI Environ. Sci. Policy PD SEP PY 2016 VL 63 BP 177 EP 186 DI 10.1016/j.envsci.2016.05.013 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA DR0ZJ UT WOS:000379635300019 ER PT J AU Blankenship, D Dobson, P Garg, S Ghassemi, A Kohl, T AF Blankenship, Douglas Dobson, Patrick Garg, Sabodh Ghassemi, Ahmad Kohl, Thomas TI SPECIAL ISSUE: Enhanced Geothermal Systems: State of the Art Preface SO GEOTHERMICS LA English DT Editorial Material C1 [Blankenship, Douglas] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Dobson, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Garg, Sabodh] Leidos Inc, San Diego, CA 92121 USA. [Ghassemi, Ahmad] Univ Oklahoma, Norman, OK 73019 USA. [Kohl, Thomas] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. RP Garg, S (reprint author), Leidos Inc, San Diego, CA 92121 USA. EM gargs@leidos.com RI Dobson, Patrick/D-8771-2015; Kohl, Thomas/M-5704-2013 OI Dobson, Patrick/0000-0001-5031-8592; NR 0 TC 0 Z9 0 U1 15 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD SEP PY 2016 VL 63 SI SI BP 1 EP 1 DI 10.1016/j.geothermics.2016.04.001 PG 1 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA DR0XT UT WOS:000379630900001 ER PT J AU Kelkar, S WoldeGabriel, G Rehfeldt, K AF Kelkar, Sharad WoldeGabriel, Giday Rehfeldt, Kenneth TI Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA SO GEOTHERMICS LA English DT Article DE EGS; HDR; Fenton Hill; Stimulation; Field test ID HYDRAULIC FRACTURING EXPERIMENTS; GEOTHERMAL-ENERGY; NEW-MEXICO; CRYSTALLINE ROCK; VALLES CALDERA; STRESS; RESERVOIRS; EXTRACTION; SYSTEMS; FLOW AB Interest in geothermal energy production has grown rapidly in recentyears due to the increasing demand for clean, renewable, domestic energy. Recent publications have suggested that geothermal energy from Enhanced Geothermal Systems could satisfy a large portion of the energy needs in the U.S. if the technology were implemented on a large scale. Pertinent to this goal are many of the lessons learned from the pioneering Hot Dry Rock project aimed at producing usable energy form the heat of the earth, conducted from 1970 to 1995 at Fenton Hill, New Mexico, USA. During this project, the Los Alamos National Laboratory created and tested two reservoirs at depths in the range of 2.8-3.5 km in crystalline rock formations underlying the Fenton Hill site. Thermal energies in the range of 3-10 MWt were produced demonstrating the technical feasibility of the concept. Many important lessons were learned regarding the creation, engineering and operation of such subsurface systems these lessons will prove valuable as the geothermal community moves towards the goal of realizing the immense potential of this ubiquitous renewable energy resource. The purpose of this paper is to provide a brief, easy to read overview of this pioneering project. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kelkar, Sharad; WoldeGabriel, Giday] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Rehfeldt, Kenneth] Navarro Res & Engn, Oak Ridge, TN USA. [Rehfeldt, Kenneth] Los Alamos Natl Lab, Los Alamos, NM USA. RP Kelkar, S (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. EM Kelkar@lanl.gov FU U.S. Department of Energy- Geothermal Technologies Program Office [DE-AC52-06NA25396] FX This work was supported in part by the U.S. Department of Energy- Geothermal Technologies Program Office under contract No.DE-AC52-06NA25396. The authors gratefully acknowledge many useful and knowledgeable discussions with Don Brown and Dave Duchane, who are retired members of the HDR staff. We acknowledge Don Brown further for a critical review of the manuscript. NR 73 TC 2 Z9 2 U1 7 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD SEP PY 2016 VL 63 SI SI BP 5 EP 14 DI 10.1016/j.geothermics.2015.08.008 PG 10 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA DR0XT UT WOS:000379630900003 ER PT J AU Garcia, J Hartline, C Walters, M Wright, M Rutqvist, J Dobson, PF Jeanne, P AF Garcia, Julio Hartline, Craig Walters, Mark Wright, Melinda Rutqvist, Jonny Dobson, Patrick F. Jeanne, Pierre TI The Northwest Geysers EGS Demonstration Project, California Part 1: Characterization and reservoir response to injection SO GEOTHERMICS LA English DT Article DE Enhanced Geothermal Systems; The Geysers; Induced seismicity; Reservoir stimulation; Shear zones ID MAGMATIC-HYDROTHERMAL SYSTEM; GEOTHERMAL-RESERVOIRS; FLUID INCLUSION; FIELD AB An Enhanced Geothermal System (EGS) Demonstration Project is currently underway in the Northwest Geysers. The project goal is to demonstrate the feasibility of stimulating a deep high-temperature reservoir (HTR) (up to 400 degrees C, 750 degrees F). Two previously abandoned wells, Prati State 31 (PS-31) and Prati 32 (P-32), were reopened and deepened to be used as an injection and production doublet to stimulate the HTR. The deepened portions of both wells have conductive temperature gradients of 10 degrees F/100 ft (182 degrees C/km), produce connate native fluids and magmatic gas, and the rocks were isotopically unexchanged by meteoric water. The ambient temperature meteoric water injected into these hot dry rocks has evidently created a permeability volume of several cubic kilometers as determined by seismic monitoring. Preliminary isotopic analyses of the injected and produced water indicate that 50-75% of the steam from the created EGS reservoir is injection-derived. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Garcia, Julio; Hartline, Craig; Walters, Mark; Wright, Melinda] Calpine Corp, Middletown, CA 95461 USA. [Rutqvist, Jonny; Dobson, Patrick F.; Jeanne, Pierre] LBNL, Berkeley, CA 94720 USA. RP Garcia, J (reprint author), Calpine Corp, Middletown, CA 95461 USA. EM julio.garcia@calpine.com RI Rutqvist, Jonny/F-4957-2015; Dobson, Patrick/D-8771-2015; OI Rutqvist, Jonny/0000-0002-7949-9785; Dobson, Patrick/0000-0001-5031-8592; Garcia, Julio/0000-0001-6917-4998; Walters, Mark/0000-0001-8458-4813 FU Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department of Energy under the U.S. Department of Energy [DE-FC36-08G018201, DE-AC02-05CH11231]; Calpine Corporation FX This work was conducted with funding by the Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department of Energy under the U.S. Department of Energy Contract No. DE-FC36-08G018201 and No. DE-AC02-05CH11231, and by Calpine Corporation. NR 40 TC 2 Z9 2 U1 8 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD SEP PY 2016 VL 63 SI SI BP 97 EP 119 DI 10.1016/j.geothermics.2015.08.003 PG 23 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA DR0XT UT WOS:000379630900009 ER PT J AU Rutqvist, J Jeanne, P Dobson, PF Garcia, J Hartline, C Hutchings, L Singh, A Vasco, DW Walters, M AF Rutqvist, Jonny Jeanne, Pierre Dobson, Patrick F. Garcia, Julio Hartline, Craig Hutchings, Lawrence Singh, Ankit Vasco, Donald W. Walters, Mark TI The Northwest Geysers EGS Demonstration Project, California - Part 2: Modeling and interpretation SO GEOTHERMICS LA English DT Article DE The Geysers; EGS; Stimulation; Coupled THM Modeling; Seismicity; Seismic tomography; Ground surface deformations ID ENHANCED GEOTHERMAL SYSTEM; INDUCED EARTHQUAKES; FLUID-FLOW; RESERVOIR; FIELD; ROCK; PERMEABILITY AB In this paper, we summarize the results of coupled thermal, hydraulic, and mechanical (THM) modeling in support of the Northwest Geysers EGS Demonstration Project, which aims at enhancing production from a known High Temperature Reservoir (HTR) (280-400 degrees C) located under the conventional (240 degrees C) geothermal steam reservoir. The THM modeling was conducted to investigate geomechanical effects of cold-water injection during the stimulation of the EGS, first to predict the extent of the stimulation zone for a given injection schedule, and then to conduct interpretive analyses of the actual stimulation. By using a calibrated THM model based on historic injection and microseismic data at a nearby well, we could reasonably predict the extent of the stimulation zone around the injection well, at least for the first few months of injection. However, observed microseismic evolution and pressure responses over the one-year stimulation-injection revealed more heterogeneous behavior as a result of more complex geology, including a network of shear zones. Therefore, for an interpretive analysis of the one-year stimulation campaign, we included two sets of vertical shear zones within the model; a set of more permeable NW striking shear zones and a set of less permeable NE-striking shear zones. Our modeling indicates that the microseismic events in this system are related to shear reactivation of pre-existing fractures, triggered by the combined effects of injection-induced cooling around the injection well and rapid (but small) changes in steam pressure as far as a kilometer from the injection well. Overall, the integrated monitoring and modeling of microseismicity, ground surface deformations, reservoir pressure, fluid chemical composition, and seismic tomography depict an EGS system hydraulically bounded by some of the NE-striking low permeability shear zones, with the more permeable NW-striking shear zone providing liquid flow paths for stimulation deep (several kilometers) down into the HTR. The modeling indicates that a significant mechanical degradation (damage) inferred from seismic tomography, and potential changes in fracture porosity inferred from cross-well pressure responses, are related to shear rupture in the stimulation zone driven by both pressure and cooling effects. (C) 2015 The Authors. Published by Elsevier Ltd. C1 [Rutqvist, Jonny; Jeanne, Pierre; Dobson, Patrick F.; Hutchings, Lawrence; Singh, Ankit; Vasco, Donald W.] LBNL, Berkeley, CA 94720 USA. [Garcia, Julio; Hartline, Craig; Walters, Mark] Calpine Corp, Middletown, CA 95461 USA. RP Rutqvist, J (reprint author), LBNL, Berkeley, CA 94720 USA. EM Jrutqvist@lbl.gov RI Rutqvist, Jonny/F-4957-2015; Dobson, Patrick/D-8771-2015; Vasco, Donald/G-3696-2015 OI Rutqvist, Jonny/0000-0002-7949-9785; Dobson, Patrick/0000-0001-5031-8592; Vasco, Donald/0000-0003-1210-8628 FU Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department of Energy under the U.S. Department of Energy [DE-AC02-05CH11231, DE-FC36-08GO18201]; Calpine Corporation FX This work was conducted with funding by the Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department of Energy under the U.S. Department of Energy Contract No. DE-AC02-05CH11231 and No. DE-FC36-08GO18201, and by Calpine Corporation. NR 44 TC 2 Z9 2 U1 14 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD SEP PY 2016 VL 63 SI SI BP 120 EP 138 DI 10.1016/j.geothermics.2015.08.002 PG 19 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA DR0XT UT WOS:000379630900010 ER PT J AU Benato, S Hickman, S Davatzes, NC Taron, J Spielman, P Elsworth, D Majer, EL Boyle, K AF Benato, Stefano Hickman, Stephen Davatzes, Nicholas C. Taron, Joshua Spielman, Paul Elsworth, Derek Majer, Ernest L. Boyle, Katie TI Conceptual model and numerical analysis of the Desert Peak EGS project: Reservoir response to the shallow medium flow-rate hydraulic stimulation phase SO GEOTHERMICS LA English DT Article DE Desert Peak; Enhanced geothermal systems; Reservoir stimulation modeling; Induced seismicity ID ENHANCED GEOTHERMAL SYSTEM; CALIFORNIA; GEYSERS; MICROSEISMICITY; PERMEABILITY; SEISMICITY; INJECTIONS; ROCKS AB A series of stimulation treatments were performed as part of the Engineered Geothermal System (EGS) experiment in the shallow open-hole section of Desert Peak well 27-15 (September 2010-November 2012). These injections at variable wellhead pressures, both below and above the magnitude of the least horizontal principal stress (S-hmin), produced injectivity gains consistent with hydraulically induced mechanical shear and tensile failure in the surrounding rock. A conceptual framework for the overall Desert Peak EGS experiment is developed and tested based on a synthesis of available structural and geological data. These data include down-hole fracture attributes, in situ stress conditions, pressure interference tests, geochemical tracer studies, and observed induced seismicity. Induced seismicity plays a key role in identifying the geometry of large-scale geological structures that could potentially serve as preferential flow paths during some of the stimulation phases. The numerical code FLAC3D is implemented to simulate the reservoir response to hydraulic stimulation and to investigate in situ conditions conducive to both tensile and shear failure. Results from the numerical analysis show that conditions for shear failure could have occurred along fractures associated with a large northeast-trending normal fault structure located similar to 400 m below the injection interval which coincides with the locations of most of the observed micro-seismicity. This structure may also provide a hydrologic connection between EGS well 27-15 and injection/production wells further to the south-southwest. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Benato, Stefano] Desert Res Inst, Div Hydrol Sci, Reno, NV 89512 USA. [Hickman, Stephen; Taron, Joshua] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Davatzes, Nicholas C.] Temple Univ, Philadelphia, PA 19122 USA. [Spielman, Paul] Ormat Nevada Inc, Reno, NV 89511 USA. [Elsworth, Derek] Penn State Univ, University Pk, PA 16802 USA. [Boyle, Katie] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Benato, S (reprint author), Desert Res Inst, Div Hydrol Sci, Reno, NV 89512 USA. EM stefano.benato@gmail.com FU Desert Research Institute through a DHS fund; Great Basin Center for Geothermal Energy under a Geothermal Technology Program (GTP) Faculty Seed Grant; Ormat Technologies, Inc.; Itasca Education Partnership program FX This work was supported by the Desert Research Institute through a DHS fund, by the Great Basin Center for Geothermal Energy under a Geothermal Technology Program (GTP) Faculty Seed Grant, by Ormat Technologies, Inc., and by the Itasca Education Partnership program. The first author wishes to acknowledge Prof. Jim Faulds, Prof. Greg Pohll and Dr. Jonny Rutqvist for their comments/feedback while reviewing the document. NR 54 TC 0 Z9 0 U1 16 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD SEP PY 2016 VL 63 SI SI BP 139 EP 156 DI 10.1016/j.geothermics.2015.06.008 PG 18 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA DR0XT UT WOS:000379630900011 ER PT J AU Yoo, J Estrada-Perez, CE Hassan, YA AF Yoo, Junsoo Estrada-Perez, Carlos E. Hassan, Yassin A. TI Experimental study on bubble dynamics and wall heat transfer arising from a single nucleation site at subcooled flow boiling conditions - Part 2: Data analysis on sliding bubble characteristics and associated wall heat transfer SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW LA English DT Article DE Subcooled flow boiling; Single nucleation site; Bubble sliding; Bubble coalescence; Sliding bubble velocity; Bubble size distribution; Boiling heat transfer ID DEPARTURE FREQUENCY; VERTICAL UPFLOW; NARROW CHANNEL; LOW-PRESSURES; SYSTEM; FLUX; VISUALIZATION; DIAMETER; VELOCITY; BEHAVIOR AB This second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubble characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. The results showed that sliding bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., u(r) < 0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. In particular, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Yoo, Junsoo] Idaho Natl Lab, 2525 North Fremont Ave,POB 3860, Idaho Falls, ID 83415 USA. [Estrada-Perez, Carlos E.; Hassan, Yassin A.] Texas A&M Univ, Dept Mech Engn, 100 MEOB, College Stn, TX 77843 USA. [Hassan, Yassin A.] Texas A&M Univ, Dept Nucl Engn, 253 Bizzell West, College Stn, TX 77843 USA. RP Yoo, J (reprint author), Idaho Natl Lab, 2525 North Fremont Ave,POB 3860, Idaho Falls, ID 83415 USA. EM kaks2000@gmail.com FU CASL (Consortium for Advanced Simulation of Light Water Reactors), an Energy Innovation Hub under U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by CASL (Consortium for Advanced Simulation of Light Water Reactors), an Energy Innovation Hub under U.S. Department of Energy Contract No. DE-AC05-00OR22725. The support is gratefully acknowledged. NR 43 TC 0 Z9 0 U1 13 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0301-9322 EI 1879-3533 J9 INT J MULTIPHAS FLOW JI Int. J. Multiph. Flow PD SEP PY 2016 VL 84 BP 292 EP 314 DI 10.1016/j.ijmultiphaseflow.2016.04.019 PG 23 WC Mechanics SC Mechanics GA DQ9XM UT WOS:000379562600024 ER PT J AU Mamontov, E AF Mamontov, Eugene TI A novel approach to neutron scattering instrumentation for probing multiscale dynamics in soft and biological matter SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE neutron scattering; dynamics; bio/soft matter ID WATER AB We present a concept and ray-tracing simulation of a mechanical device that will enable inelastic neutron scattering measurements where the data at energy transfers from a few mu eV to several hundred meV can be collected in a single, gapless spectrum. Besides covering 5 orders of magnitude on the energy (time) scale, the device provides data over 2 orders of magnitude on the scattering momentum (length) scale in a single measurement. Such capabilities are geared primarily toward soft and biological matter, where the broad dynamical features of relaxation origin largely overlap with vibration features, thus necessitating gapless spectral coverage over several orders of magnitude in time and space. Furthermore, neutron scattering experiments with such a device are performed with a fixed neutron final energy, which enables measurements, with neutron energy loss in the sample, at arbitrarily low temperatures over the same broad spectral range. This capability is also invaluable in biological and soft matter research, as the variable temperature dependence of different relaxation components allows their separation in the scattering spectra as a function of temperature. C1 [Mamontov, Eugene] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Mamontov, E (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. EM mamontove@ornl.gov RI Mamontov, Eugene/Q-1003-2015 OI Mamontov, Eugene/0000-0002-5684-2675 FU Laboratory Directed Research and Development Program [32112563]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; U.S. DOE [DE-AC05-00OR22725] FX This research was conducted with support from the Laboratory Directed Research and Development Program (project 32112563) and the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. Oak Ridge National Laboratory is managed by UTBattelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725. NR 18 TC 0 Z9 0 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 1 PY 2016 VL 28 IS 34 AR 345201 DI 10.1088/0953-8984/28/34/345201 PG 5 WC Physics, Condensed Matter SC Physics GA DQ9UU UT WOS:000379555600010 PM 27355223 ER PT J AU Caldwell, A Adli, E Amorim, L Apsimon, R Argyropoulos, T Assmann, R Bachmann, AM Batsch, E Bauche, J Olsen, VKB Bernardini, M Bingham, R Biskup, B Bohl, T Bracco, C Burrows, PN Burt, G Buttenschon, B Butterworth, A Cascella, M Chattopadhyay, S Chevallay, E Cipiccia, S Damerau, H Deacon, L Dirksen, R Doebert, S Dorda, U Eisen, E Farmer, J Fartoukh, S Fedosseev, V Feldbaumer, E Fiorito, R Fonseca, R Friebel, F Geschonke, G Goddard, B Gorn, AA Grulke, O Gschwendtner, E Hansen, J Hessler, C Hillenbrand, S Hofle, W Holloway, J Huang, C Huther, M Jaroszynski, D Jensen, L Jolly, S Joulaei, A Kasim, M Keeble, F Kersevan, R Kumar, N Li, Y Liu, S Lopes, N Lotov, KV Lu, W Machacek, J Mandry, S Martin, I Martorelli, R Martyanov, M Mazzoni, S Meddahi, M Merminga, L Mete, O Minakov, VA Mitchell, J Moody, J Muller, AS Najmudin, Z Noakes, TCQ Norreys, P Osterhoff, J Oz, E Pardons, A Pepitone, K Petrenko, A Plyushchev, G Pozimski, J Pukhov, A Reimann, O Rieger, K Roesler, S Ruhl, H Rusnak, T Salveter, E Savard, N Schmidt, J von der Schmitt, H Seryi, A Shaposhnikova, E Sheng, ZM Sherwood, R Silva, L Simon, F Soby, L Sosedkin, AP Spitsyn, RI Tajima, T Tarkeshian, R Timko, H Trines, R Tuckmantel, T Tuev, PV Turner, M Velotti, E Verzilov, V Vieira, J Vincke, H Wei, Y Welsch, CP Wing, M Xia, G Yakimenko, V Zhang, H Zimmermann, F AF Caldwell, A. Adli, E. Amorim, L. Apsimon, R. Argyropoulos, T. Assmann, R. Bachmann, A. -M. Batsch, E. Bauche, J. Olsen, V. K. Berglyd Bernardini, M. Bingham, R. Biskup, B. Bohl, T. Bracco, C. Burrows, P. N. Burt, G. Buttenschoen, B. Butterworth, A. Cascella, M. Chattopadhyay, S. Chevallay, E. Cipiccia, S. Damerau, H. Deacon, L. Dirksen, R. Doebert, S. Dorda, U. Eisen, E. Farmer, J. Fartoukh, S. Fedosseev, V. Feldbaumer, E. Fiorito, R. Fonseca, R. Friebel, F. Geschonke, G. Goddard, B. Gorn, A. A. Grulke, O. Gschwendtner, E. Hansen, J. Hessler, C. Hillenbrand, S. Hofle, W. Holloway, J. Huang, C. Huether, M. Jaroszynski, D. Jensen, L. Jolly, S. Joulaei, A. Kasim, M. Keeble, F. Kersevan, R. Kumar, N. Li, Y. Liu, S. Lopes, N. Lotov, K. V. Lu, W. Machacek, J. Mandry, S. Martin, I. Martorelli, R. Martyanov, M. Mazzoni, S. Meddahi, M. Merminga, L. Mete, O. Minakov, V. A. Mitchell, J. Moody, J. Mueller, A. -S. Najmudin, Z. Noakes, T. C. Q. Norreys, P. Osterhoff, J. Oez, E. Pardons, A. Pepitone, K. Petrenko, A. Plyushchev, G. Pozimski, J. Pukhov, A. Reimann, O. Rieger, K. Roesler, S. Ruhl, H. Rusnak, T. Salveter, E. Savard, N. Schmidt, J. von der Schmitt, H. Seryi, A. Shaposhnikova, E. Sheng, Z. M. Sherwood, R. Silva, L. Simon, F. Soby, L. Sosedkin, A. P. Spitsyn, R. I. Tajima, T. Tarkeshian, R. Timko, H. Trines, R. Tueckmantel, T. Tuev, P. V. Turner, M. Velotti, E. Verzilov, V. Vieira, J. Vincke, H. Wei, Y. Welsch, C. P. Wing, M. Xia, G. Yakimenko, V. Zhang, H. Zimmermann, F. TI Path to AWAKE: Evolution of the concept SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC) CY 2015 CL INFN, ITALY SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN HO INFN DE Plasma wakefield acceleration; Proton driver; Self-modulation instability ID PLASMA-WAKEFIELD ACCELERATION; WAKE-FIELD ACCELERATOR; IN-CELL CODE; ULTRARELATIVISTIC BEAM DYNAMICS; ELECTRON-BEAM; SIMULATION; BUNCHES; PHYSICS; PULSE; CERN AB This paper describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability - a key to an early realization of the concept. This is then followed by the historical development of the experimental design, where the critical issues that arose and their solutions are described. We conclude with the design of the experiment as it is being realized at CERN and some words on the future outlook. A summary of the AWAKE design and construction status as presented in this conference is given in Gschwendtner et al. [1]. (C) 2016 Published by Elsevier B.V. C1 [Noakes, T. C. Q.] STFC Daresbury Lab, ASTeC, Accelerator Sci & Technol Ctr, Warrington WA4 4AD, Cheshire, England. [Martin, I.] Aix Marseille Univ, IUSTI, CNRS, UMR 7343, Polytech Marseille, France. [Fiorito, R.; Gorn, A. A.; Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P.; Spitsyn, R. I.; Tuev, P. V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Argyropoulos, T.; Bauche, J.; Bernardini, M.; Biskup, B.; Bohl, T.; Bracco, C.; Butterworth, A.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Doebert, S.; Fartoukh, S.; Fedosseev, V.; Feldbaumer, E.; Friebel, F.; Geschonke, G.; Goddard, B.; Gschwendtner, E.; Hessler, C.; Hillenbrand, S.; Hofle, W.; Jensen, L.; Kersevan, R.; Mazzoni, S.; Meddahi, M.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Roesler, S.; Salveter, E.; von der Schmitt, H.; Shaposhnikova, E.; Soby, L.; Timko, H.; Turner, M.; Velotti, E.; Vincke, H.; Zhang, H.; Zimmermann, F.] CERN, Geneva, Switzerland. [Apsimon, R.; Burt, G.; Li, Y.; Mete, O.; Mitchell, J.; Wei, Y.; Welsch, C. P.; Xia, G.; Zhang, H.] Cockcroft Inst, Warrington WA4 4AD, Cheshire, England. [Biskup, B.] Czech Tech Univ, Zikova 1903-4, Prague 16636 6, Czech Republic. [Assmann, R.; Dorda, U.; Eisen, E.; Osterhoff, J.; Wing, M.] DESY, Notkestr 85, D-22607 Hamburg, Germany. [Chattopadhyay, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Farmer, J.; Martorelli, R.; Pukhov, A.] Univ Dusseldorf, Moorenstr 5, D-40225 Dusseldorf, Germany. [Amorim, L.; Fonseca, R.; Lopes, N.; Silva, L.; Vieira, J.] Univ Lisbon, Inst Super Tecn, GoLP Inst Plasmas & Fusao Nucl, Lisbon, Portugal. [Lopes, N.; Najmudin, Z.; Pozimski, J.] Imperial Coll London, Blackett Lab, London SW7 2BW, England. [Burrows, P. N.; Kasim, M.; Seryi, A.; Tueckmantel, T.] John Adams Inst Accelerator Sci, Oxford, England. [Caldwell, A.; Butterworth, A.; Joulaei, A.; Mueller, A. -S.; Pardons, A.; Petrenko, A.; Pukhov, A.; Reimann, O.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Apsimon, R.; Burt, G.; Mitchell, J.] Univ Lancaster, Lancaster LA1 4YR, England. [Huang, C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Ruhl, H.; Tajima, T.] Univ Munich, D-80539 Munich, Germany. [Kumar, N.] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. [Caldwell, A.; Bachmann, A. -M.; Batsch, E.; Huether, M.; Joulaei, A.; Machacek, J.; Martyanov, M.; Moody, J.; Oez, E.; Reimann, O.; Rieger, K.; Rusnak, T.; Savard, N.; von der Schmitt, H.; Simon, F.] Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany. [Buttenschoen, B.; Grulke, O.] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany. [Chattopadhyay, S.] Northern Illinois Univ, 1425 W Lincoln Hwy, De Kalb, IL 60115 USA. [Gorn, A. A.; Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P.; Spitsyn, R. I.; Tuev, P. V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Tarkeshian, R.] PSI, CH-5232 Villigen, Switzerland. [Sheng, Z. M.] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China. [Yakimenko, V.] SLAC Natl Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Sheng, Z. M.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Plyushchev, G.] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland. [Huether, M.; Rieger, K.] Tech Univ Munich, Arcisstr 21, D-80333 Munich, Germany. [Dirksen, R.; Liu, S.; Savard, N.; Verzilov, V.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Fiorito, R.; Lu, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Cascella, M.; Deacon, L.; Jolly, S.; Keeble, F.; Mandry, S.; Sherwood, R.; Wing, M.] UCL, Gower St, London WC1E 6BT, England. [Wei, Y.; Welsch, C. P.; Zhang, H.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Li, Y.; Mete, O.; Xia, G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Adli, E.; Olsen, V. K. Berglyd] Univ Oslo, N-0316 Oslo, Norway. [Burrows, P. N.; Holloway, J.; Kasim, M.; Norreys, P.; Seryi, A.] Univ Oxford, Oxford OX1 2JD, England. [Cipiccia, S.; Jaroszynski, D.; Sheng, Z. M.] Univ Strathclyde, 16 Richmond St, Glasgow G1 1XQ, Lanark, Scotland. [Savard, N.] Univ Victoria, 3800 Finnerty Rd, Victoria, BC, Canada. RP Caldwell, A (reprint author), Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany. RI Sheng, Zheng-Ming/H-5371-2012; Assmann, Ralph/L-8457-2016; Lopes, Nelson/C-6540-2009; Fonseca, Ricardo/B-7680-2009; pukhov, alexander/C-8082-2016; Petrenko, Alexey/R-6313-2016; Lotov, Konstantin/H-6217-2016; Fedosseev, Valentin/A-6240-2010; Cascella, Michele/B-6156-2013; Tuev, Petr/R-7929-2016; OI Huang, Chengkun/0000-0002-3176-8042; Amorim, Ligia/0000-0002-1445-0032; Lopes, Nelson/0000-0001-8355-4727; Fonseca, Ricardo/0000-0001-6342-6226; Petrenko, Alexey/0000-0002-7772-8206; Fedosseev, Valentin/0000-0001-8767-1445; Cascella, Michele/0000-0003-2091-2501; Biskup, Bartolomej/0000-0003-0833-3267; Farmer, John/0000-0002-6758-2127 NR 111 TC 5 Z9 5 U1 11 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2016 VL 829 BP 3 EP 16 DI 10.1016/j.nima.2015.12.050 PG 14 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DQ4AB UT WOS:000379144100002 ER PT J AU Lishilin, O Gross, M Brinkmann, R Engel, J Gruner, F Kos, G Krasilnikov, M de la Ossa, AM Mehrling, T Osterhoff, J Pathak, G Philipp, S Renier, Y Richter, D Schroeder, C Schutze, R Stephan, E AF Lishilin, O. Gross, M. Brinkmann, R. Engel, J. Gruener, F. Koss, G. Krasilnikov, M. de la Ossa, A. Martinez Mehrling, T. Osterhoff, J. Pathak, G. Philipp, S. Renier, Y. Richter, D. Schroeder, C. Schuetze, R. Stephan, E. TI First results of the plasma wakefield acceleration experiment at PITZ SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC) CY 2015 CL INFN, ITALY SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN HO INFN DE PWFA; Self-modulation instability; Heat pipe oven; Electron beam scattering AB The self-modulation instability of long particle beams was proposed as a new mechanism to produce driver beams for proton driven plasma wakefield acceleration (PWFA). The PWFA experiment at the Photo Injector Test facility at DESY, Zeuthen site (PITZ) was launched to experimentally demonstrate and study the self modulation of long electron beams in plasma. Key aspects for the experiment are the very flexible photocathode laser system, a plasma cell and well-developed beam diagnostics. In this contribution we report about the plasma cell design, preparatory experiments and the results of the first PWFA experiment at PITZ. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lishilin, O.; Gross, M.; Engel, J.; Koss, G.; Krasilnikov, M.; Pathak, G.; Philipp, S.; Renier, Y.; Schuetze, R.; Stephan, E.] DESY, Deutsch Elektronen Synchrotron, Zeuthen, Germany. [Brinkmann, R.; de la Ossa, A. Martinez; Mehrling, T.; Osterhoff, J.] DESY, Deutsch Elektronen Synchrotron, Hamburg, Germany. [Gruener, F.] Univ Hamburg, UHH, Hamburg, Germany. [Gruener, F.] Ctr Free Electron Laser Sci, CFEL, Hamburg, Germany. [Richter, D.] Helmholtz Zentrum Berlin, Berlin, Germany. [Schroeder, C.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Lishilin, O (reprint author), DESY, Deutsch Elektronen Synchrotron, Zeuthen, Germany. EM osip.lishilin@desy.de RI Gruner, Florian/M-1212-2016; OI Gruner, Florian/0000-0001-8382-9225; Schroeder, Carl/0000-0002-9610-0166; Mehrling, Timon J./0000-0002-1280-4642 NR 21 TC 0 Z9 0 U1 6 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2016 VL 829 BP 37 EP 42 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DQ4AB UT WOS:000379144100007 ER PT J AU Schroeder, CB Benedetti, C Esarey, E Leemans, WP AF Schroeder, C. B. Benedetti, C. Esarey, E. Leemans, W. P. TI Laser-plasma-based linear collider using hollow plasma channels SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC) CY 2015 CL INFN, ITALY SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN HO INFN DE Laser-plasma accelerator; Linear collider ID ELECTRON-ACCELERATORS AB A linear electron-positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators. (C) 2016 Elsevier B.V. All rights reserved. C1 [Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.] Lawrence Berkeley Natl Lab, BELLA Ctr, Berkeley, CA 94720 USA. RP Schroeder, CB (reprint author), Lawrence Berkeley Natl Lab, BELLA Ctr, Berkeley, CA 94720 USA. EM CBSchroeder@lbl.gov OI Schroeder, Carl/0000-0002-9610-0166 NR 21 TC 0 Z9 0 U1 9 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2016 VL 829 BP 113 EP 116 DI 10.1016/j.nima.2016.03.001 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DQ4AB UT WOS:000379144100022 ER PT J AU Zholents, A Gai, W Doran, S Lindberg, R Power, JG Strelnikov, N Sun, Y Trakhtenberg, E Vasserman, I Jing, C Kanareykin, A Li, Y Gao, Q Shchegolkov, DY Simakov, EI AF Zholents, A. Gai, W. Doran, S. Lindberg, R. Power, J. G. Strelnikov, N. Sun, Y. Trakhtenberg, E. Vasserman, I. Jing, C. Kanareykin, A. Li, Y. Gao, Q. Shchegolkov, D. Y. Simakov, E. I. TI A preliminary design of the collinear dielectric wakefield accelerator SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC) CY 2015 CL INFN, ITALY SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN HO INFN DE Wakefield; Dielectric; Beam breakup; BNS damping; Free-electron laser; Quadrupole wiggler AB A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from similar to 0.5 m long accelerator modules containing a vacuum chamber with dielectric lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.] ANL, Argonne, IL 60439 USA. [Jing, C.; Kanareykin, A.; Li, Y.] Euclid Techlabs LLC, Solon, OH 44139 USA. [Gao, Q.] Tsinghua Univ, Beijing, Peoples R China. [Shchegolkov, D. Y.; Simakov, E. I.] LANL, Los Alamos, NM 87545 USA. RP Zholents, A (reprint author), ANL, Argonne, IL 60439 USA. OI Shchegolkov, Dmitry/0000-0002-0721-3397; Simakov, Evgenya/0000-0002-7483-1152 NR 13 TC 2 Z9 2 U1 3 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2016 VL 829 BP 190 EP 193 DI 10.1016/j.nima.2016.02.003 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DQ4AB UT WOS:000379144100040 ER PT J AU Teryaev, VE Kazakov, SY Hirshfield, JL AF Teryaev, Vladimir E. Kazakov, Sergey Yu. Hirshfield, Jay L. TI Multi-beam linear accelerator EVT SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC) CY 2015 CL INFN, ITALY SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN HO INFN DE Linear accelerator; Two-beam accelerator; Electron gun; Drive beam; Accelerated beam; RF buncher AB A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications. Published by Elsevier B.V. C1 [Teryaev, Vladimir E.; Hirshfield, Jay L.] Omega P Inc, New Haven, CT 06510 USA. [Kazakov, Sergey Yu.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Hirshfield, Jay L.] Yale Univ, New Haven, CT 06511 USA. RP Teryaev, VE (reprint author), Omega P Inc, New Haven, CT 06510 USA. EM viadimir_teryaev@mail.ru NR 4 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2016 VL 829 BP 221 EP 223 DI 10.1016/j.nima.2016.03.066 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DQ4AB UT WOS:000379144100045 ER PT J AU Lotov, KV Vay, JL AF Lotov, K. V. Vay, J. -L. TI Summary of working group 6: Theory and simulations SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC) CY 2015 CL INFN, ITALY SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN HO INFN DE Theory and numerical simulations; Plasma based accelerators; Laser wakefield accelerator AB The paper briefly summarizes the contributions presented during the working group 6 sessions on theory and simulations. (C) 2016 Published by Elsevier B.V. C1 [Lotov, K. V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Lotov, K. V.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Vay, J. -L.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA USA. RP Lotov, KV (reprint author), Novosibirsk State Univ, Novosibirsk 630090, Russia.; Lotov, KV (reprint author), RAS, SB, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. EM K.V.Lotov@inp.nsk.su RI Lotov, Konstantin/H-6217-2016 NR 18 TC 0 Z9 0 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2016 VL 829 BP 348 EP 349 DI 10.1016/j.nima.2015.12.014 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DQ4AB UT WOS:000379144100071 ER PT J AU Vay, JL Lehe, R Vincenti, H Godfrey, BB Haber, I Lee, P AF Vay, J. -L. Lehe, R. Vincenti, H. Godfrey, B. B. Haber, I. Lee, P. TI Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC) CY 2015 CL INFN, ITALY SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN HO INFN DE Particle-in-cell; Particle accelerators; Plasma based accelerators; Laser wakefield accelerator; Plasma simulations; Relativistic plasmas ID NUMERICAL STABILITY; PARTICLE CODES; SIMULATIONS; ALGORITHM; INSTABILITIES AB Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers. (C) 2016 Published by Elsevier B.V. C1 [Vay, J. -L.; Lehe, R.; Godfrey, B. B.] LBNL, Berkeley, CA 94720 USA. [Vincenti, H.] CEA, Saclay, France. [Godfrey, B. B.; Haber, I.] Univ Maryland, College Pk, MD 20742 USA. [Lee, P.] Univ Paris Saclay, CNRS, LPGP, F-91405 Orsay, France. RP Vay, JL (reprint author), LBNL, Berkeley, CA 94720 USA. EM jlvay@lbl.gov OI Godfrey, Brendan/0000-0003-2311-7060 NR 36 TC 1 Z9 1 U1 7 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2016 VL 829 BP 353 EP 357 DI 10.1016/j.nima.2015.12.033 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DQ4AB UT WOS:000379144100073 ER PT J AU Lee, P Audet, TL Lehe, R Vay, JL Maynard, G Cros, B AF Lee, P. Audet, T. L. Lehe, R. Vay, J. -L. Maynard, G. Cros, B. TI Modeling laser-driven electron acceleration using WARP with Fourier decomposition SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC) CY 2015 CL INFN, ITALY SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN HO INFN DE LPA; PIC; WARP; Ionization-induced injection AB WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics. (C) 2015 Elsevier B.V. All rights reserved. C1 [Lee, P.; Audet, T. L.; Maynard, G.; Cros, B.] Univ Paris Saclay, Univ Paris 11, CNRS, LPGP, F-91405 Orsay, France. [Lehe, R.; Vay, J. -L.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lee, P (reprint author), Univ Paris Saclay, Univ Paris 11, CNRS, LPGP, F-91405 Orsay, France. EM patrick.lee@u-psud.fr OI Lee, Patrick/0000-0003-4931-1021 NR 7 TC 1 Z9 1 U1 5 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2016 VL 829 BP 358 EP 362 DI 10.1016/j.nima.2015.12.036 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DQ4AB UT WOS:000379144100074 ER PT J AU Pogorelsky, IV Babzien, M Ben-Zvi, I Skaritka, J Polyanskiy, MN AF Pogorelsky, Igor V. Babzien, Markus Ben-Zvi, Ilan Skaritka, John Polyanskiy, Mikhail N. TI BESTIA - The next generation ultra-fast CO2 laser for advanced accelerator research SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd Workshop on European Advanced Accelerator Concepts (EAAC) CY 2015 CL INFN, ITALY SP Amplitude, Ocem, RadiaBeam, EuroNNAc2 Network, EuCARD 2 Project, DESY, CERN HO INFN DE CO2 laser; Pulse compression; Strong field phenomena; Ion acceleration; Laser wake field ID PULSE AMPLIFICATION AB Over the last two decades, BNL's ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. Our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multiterawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.] Brookhaven Natl Lab, Accelerator Tests Facil, Upton, NY 11973 USA. RP Pogorelsky, IV (reprint author), Brookhaven Natl Lab, Accelerator Tests Facil, Upton, NY 11973 USA. EM igar@bni.gov NR 7 TC 3 Z9 3 U1 5 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2016 VL 829 BP 432 EP 437 DI 10.1016/j.nima.2015.11.126 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DQ4AB UT WOS:000379144100090 ER PT J AU Rainwater, BH Velisavljevic, N Park, C Sun, HB Waller, GH Tsoi, GM Vohra, YK Liu, ML AF Rainwater, Ben H. Velisavljevic, Nenad Park, Changyong Sun, Haibin Waller, Gordon H. Tsoi, Georgiy M. Vohra, Yogesh K. Liu, Meilin TI High pressure structural study of samarium doped CeO2 oxygen vacancy conductor - Insight into the dopant concentration relationship to the strain effect in thin film ionic conductors SO SOLID STATE IONICS LA English DT Article DE Solid state ionics; Nanoionics; Solid oxide fuel cells; Strain effect; Doped-ceria; Isothermal bulk modulus ID X-RAY-DIFFRACTION; SOLID ELECTROLYTES; ACTIVATION-ENERGY; TRANSPORT; SUPERLATTICES; TEMPERATURE; SIMULATION; MODULUS; OXIDES; MODEL AB The bulk modulus of nanocrystalline, fluorite-structured samarium doped ceria, Sm0.2Ce0.8O1.9, has been investigated using synchrotron-based high-pressure X-ray diffraction technique. Experiments were carried out under both quasi-hydrostatic condition with silicon oil pressure transmitting medium (PTM) and nonhydrostatic conditions without PTM. The high pressure structural results indicate that the highly defected ionic conductor is stable up to 20 GPa and has a lower bulk modulus than what has been reported for undoped-CeO2. The isothermal bulk modulus of Sm0.2Ce0.8O1.9 is similar to 150-190 GPa compared to similar to 210-220 GPa for CeO2. The collected data experimentally verifies the effect of Sm3+ dopant and oxygen vacancy defect formation on bulk modulus in doped CeO2. The effect of modulus on misfit dislocation formation and dopant ion segregation is discussed in relation to a fundamental understanding of the strain effect in this important family of fast ionic conductors, with potential application as oxygen vacancy conducting solid state electrolytes. (C) 2016 Elsevier B.V. All rights reserved. C1 [Rainwater, Ben H.; Sun, Haibin; Waller, Gordon H.; Liu, Meilin] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr for Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA. [Velisavljevic, Nenad] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Park, Changyong] Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Tsoi, Georgiy M.; Vohra, Yogesh K.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. RP Rainwater, BH (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Ctr for Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA. RI Liu, Meilin/E-5782-2010; Park, Changyong/A-8544-2008 OI Liu, Meilin/0000-0002-6188-2372; Park, Changyong/0000-0002-3363-5788 FU National Science Foundation [DGE-1148903, DMR-1410320]; Department of Energy ARPA-E REBELS Program [DE-AR0000502]; Los Alamos National Laboratory (LANL) [DE-AC52-06NA25396]; DOE-NNSA [DE-NA0001974, DE-NA0002014]; DOE-BES [DE-FG02-99ER45775]; NSF; US DOE [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation under Grant Nos. DGE-1148903 and DMR-1410320, Department of Energy ARPA-E REBELS Program under award number DE-AR0000502, and Los Alamos National Laboratory (LANL) operated by LANS, LLC for the DOE-NNSA under Contract No. DE-AC52-06NA25396. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. YKV would like to acknowledge support from the DOE-NNSA under Award No. DE-NA0002014. NR 36 TC 0 Z9 0 U1 17 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD SEP PY 2016 VL 292 BP 59 EP 65 DI 10.1016/j.ssi.2016.05.010 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DR0YP UT WOS:000379633100010 ER PT J AU Mao, J Ma, MZ Liu, PP Hu, JH Shao, GS Battaglia, V Dai, KH Liu, G AF Mao, Jing Ma, Mengze Liu, Panpan Hu, Junhua Shao, Guosheng Battaglia, Vince Dai, Kehua Liu, Gao TI The effect of cobalt doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material SO SOLID STATE IONICS LA English DT Article DE High-voltage spinel; Lithium nickel manganese oxide; Lithium chemical diffusion coefficient; Cycling performance; Rate performance ID LITHIUM-ION BATTERIES; 55 DEGREES-C; RATE CAPABILITY; LICR0.2NI0.4MN1.4O4 SPINEL; PARTICLE-SIZE; LIMN1.5NI0.5O4; TEMPERATURE; FE; ELECTRODE; PROGRESS AB To reveal the effects of Co-doping on the electrochemical performance of micro-sized LiNi0.5Mn1.5O4 (LNMO), undoped LNMO and Co-doped LiCo0.1Ni0.45Mn1.45O4 (LCoNMO) are synthesized via a PVP-combustion method and calcined at 1000 degrees C for 6 h. SEM and XRD analyses suggest that Co-doping decreases the particle size and the Li2Ni1-zO2 impurity at the calcination temperature of 1000 degrees C. LCoNMO has much better rate capability while its specific capacity at C/5 is 10% lower than that of LNMO. At 15 C rate, their specific capacities are closed, and the LCoNMO delivers 86.2% capacity relative to C/5, and this value for LNMO is only 77.0%. The D-Li + values determined by potential intermittent titration technique (PITT) test of LCoNMO are 1-2 times higher than that of LNMO in most SOC region. The LCoNMO shows very excellent cycling performance, which is the best value compared with literatures. After 1000 cycles, the LCoNMO still delivers 94.1% capacity. Moreover, its coulombic efficiency and energy efficiency keep at 99.84% and over 973% during 1 C. cycling, respectively. (C) 2015 Published by Elsevier B.V. C1 [Mao, Jing; Ma, Mengze; Liu, Panpan; Hu, Junhua; Shao, Guosheng] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China. [Mao, Jing; Ma, Mengze; Liu, Panpan; Hu, Junhua; Shao, Guosheng] Zhengzhou Univ, Int Joint Res Lab Low Carbon Environm Mat Henan P, Zhengzhou 450002, Peoples R China. [Mao, Jing; Battaglia, Vince; Dai, Kehua; Liu, Gao] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resource Div, Energy Technol Area, Berkeley, CA 94720 USA. [Dai, Kehua] Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China. RP Liu, G (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resource Div, Energy Technol Area, Berkeley, CA 94720 USA.; Dai, KH (reprint author), Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China. EM daikh@smm.neu.edu.cn; gliu@lbl.gov RI Shao, Guosheng/C-2143-2016 OI Shao, Guosheng/0000-0003-1498-7929 FU National Natural Science Foundation of China [51204038, U1504521]; Fundamental Research Funds for the Central. Universities of China [N110802002, L1502004]; Energy Efficiency, Vehicle Technologies Office of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Natural Science Foundation of China (51204038, U1504521) and the Fundamental Research Funds for the Central. Universities of China (N110802002, L1502004). This work was also supported by the Assistant Secretary for Energy Efficiency, Vehicle Technologies Office of the U.S. Department of Energy, under the Advanced Battery Materials Research (BMR) Program and Applied Battery Research (ABR) Program under contract No. DE-AC02-05CH11231. NR 45 TC 1 Z9 1 U1 28 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD SEP PY 2016 VL 292 BP 70 EP 74 DI 10.1016/j.ssi.2016.05.008 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DR0YP UT WOS:000379633100012 ER PT J AU Sati, M Lindstrom, P Rossignac, J AF Sati, Mukul Lindstrom, Peter Rossignac, Jarek TI eBits: Compact stream of mesh refinements for remote visualization SO COMPUTER-AIDED DESIGN LA English DT Article; Proceedings Paper CT Symposium on Solid and Physical Modelling (SPM) CY JUN 20-24, 2016 CL Berlin, GERMANY DE Triangle mesh compression; Remote visualization; Level of detail; Selective transmission; Local refinement; Triangle collapse ID TRIANGLE MESHES; POLYGONAL MODELS; COMPRESSION; EDGEBREAKER AB We focus on applications where a remote client needs to visualize or process a complex, manifold triangle mesh, M, but only in a relatively small, user controlled, Region of Interest (RoI) at a time. The client first downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse. On each client initiated RoI modification request, the server pushes to the client a selected subset of these VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the RoI is always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using less than 2.5 bits per new full resolution RoI triangle when the RoI has more than 2000 vertices to transmit the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the RoI by small increments). The effectiveness of eBits results from several novel ideas and novel variations of previous solutions. We represent the VERs using persistent labels so that they can be applied in different orders within a given LoD. The server maintains a shadow copy of the client's mesh. To avoid sending IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact encoding of its death tag the LoD at which it will be expanded if it lies in the RoI or transmit vertex masks for the RoI and its neighboring vertices. We also propose a three-step simplification that reduces the overall transmission cost by increasing both the simplification effectiveness and the regularity of the valences in the resulting meshes. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Sati, Mukul; Rossignac, Jarek] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA. [Lindstrom, Peter] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Sati, M (reprint author), Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA. EM mukul@gatech.edu; pl@llnl.gov; jarek@cc.gatech.edu OI Lindstrom, Peter/0000-0003-3817-4199 NR 31 TC 0 Z9 0 U1 3 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0010-4485 EI 1879-2685 J9 COMPUT AIDED DESIGN JI Comput.-Aided Des. PD SEP PY 2016 VL 78 SI SI BP 168 EP 178 DI 10.1016/j.cad.2016.05.016 PG 11 WC Computer Science, Software Engineering SC Computer Science GA DQ3JN UT WOS:000379098700017 ER PT J AU Chatterjee, K Venkataraman, A Garbaciak, T Rotella, J Sangid, MD Beaudoin, AJ Kenesei, P Park, JS Pilchak, AL AF Chatterjee, K. Venkataraman, A. Garbaciak, T. Rotella, J. Sangid, M. D. Beaudoin, A. J. Kenesei, P. Park, J-S. Pilchak, A. L. TI Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM) SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE High energy diffraction microscopy; Ti-7Al alloy; Stress gradient; Stress triaxiality; Slip tendency ID X-RAY-DIFFRACTION; TI-6AL-4V TITANIUM-ALLOY; TI-AL ALLOYS; ELASTIC-CONSTANTS; CRYSTAL PLASTICITY; INDIVIDUAL GRAINS; FRACTURE LOCUS; STRAIN TENSOR; SINGLE-GRAIN; CREEP AB In-situ high energy diffraction microscopy (HEDM) experiments are carried out to analyze the state of combined bending and tension in a Ti-7Al alloy under room temperature creep. Grain-level elastic strain tensors are evaluated from HEDM data. Atomistic calculations are used to predict elastic constants of Ti-7Al, to be used in determination of stress from strain. The stress gradient and residual stresses are successfully determined, which allows the demarcation between macroqmicro-level residual stresses. A cluster of three neighboring grains are identified that highlight the variation of mean and effective stress between grains. Crystallographic orientations and slip characteristics are analyzed for the selected grains. It is inferred that the interfaces between loaded grains with markedly different stress triaxiality and slip tendency are potential spots for material damage. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Chatterjee, K.; Garbaciak, T.; Beaudoin, A. J.] Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA. [Venkataraman, A.; Rotella, J.; Sangid, M. D.] Purdue Univ, Sch Aeronaut & Astronaut Engn, 701 W Stadium Ave, W Lafayette, IN 47907 USA. [Kenesei, P.; Park, J-S.] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Lemont, IL 60439 USA. [Pilchak, A. L.] US Air Force, Res Lab, Mat & Mfg Directorate AFRL RXCM, Wright Patterson AFB, OH 45433 USA. RP Beaudoin, AJ (reprint author), Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA. EM abeaudoi@illinois.edu FU Air Force Office of Scientific Research [FA9550-14-1-0369, FA9550-14-1-0284]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX A. Beaudoin and K. Chatterjee are supported by the Air Force Office of Scientific Research under Contract No. FA9550-14-1-0369. M. D. Sangid, A. Venkataraman, and J. Rotella acknowledge support from the Air Force Office of Scientific Research under Contract No. FA9550-14-1-0284. The use of Advance Photon Source is granted by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. We thank Drs. Paul A. Shade, Todd J. Turner, Michael Mills, and David Rugg for interesting conversations. NR 80 TC 1 Z9 1 U1 16 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 EI 1879-2146 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD SEP PY 2016 VL 94-95 BP 35 EP 49 DI 10.1016/j.ijsolstr.2016.05.010 PG 15 WC Mechanics SC Mechanics GA DQ5VE UT WOS:000379272500003 ER PT J AU Muransky, O Hamelin, CJ Hosseinzadeh, F Prime, MB AF Muransky, O. Hamelin, C. J. Hosseinzadeh, F. Prime, M. B. TI Mitigating cutting-induced plasticity in the contour method. Part 2: Numerical analysis SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Residual stress; Contour method; Finite element modelling ID RESIDUAL-STRESS MEASUREMENT; FIELDS AB Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile from an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. This cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Muransky, O.; Hamelin, C. J.] ANSTO, Inst Mat Engn, Lucas Heights, NSW, Australia. [Hosseinzadeh, F.] Open Univ, Mat Engn, Milton Keynes MK7 7AA, Bucks, England. [Prime, M. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Muransky, O (reprint author), ANSTO, Inst Mat Engn, Lucas Heights, NSW, Australia. EM ondrej.muransky@ansto.gov.au OI Prime, Michael/0000-0002-4098-5620 FU NeT programme FX Residual stress measurements and weld simulations produced under the auspices of the NeT programme via Task Group 4 have significantly advanced best-practice guidelines for treatment of WRS and post-weld plastic strain, adding considerable value to the present work. The authors are also grateful for insightful discussions regarding computational weld mechanics with Prof. M.C. Smith (University of Manchester) and Dr. P.J. Bendeich (ANSTO). NR 26 TC 2 Z9 2 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 EI 1879-2146 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD SEP PY 2016 VL 94-95 BP 254 EP 262 DI 10.1016/j.ijsolstr.2015.12.033 PG 9 WC Mechanics SC Mechanics GA DQ5VE UT WOS:000379272500020 ER PT J AU Chen, YC Manna, S Narayanan, B Wang, ZW Reimanis, IE Ciobanu, CV AF Chen, Yachao Manna, Sukriti Narayanan, Badri Wang, Zhongwu Reimanis, Ivar E. Ciobanu, Cristian V. TI Pressure-induced phase transformation in beta-eucryptite: An X-ray diffraction and density functional theory study SO SCRIPTA MATERIALIA LA English DT Article DE Density functional theory; XRD; Eucryptite; Ceramics ID TOTAL-ENERGY CALCULATIONS; EARTHS LOWER MANTLE; WAVE BASIS-SET; THERMAL-EXPANSION; IONIC-CONDUCTIVITY; CATHODE MATERIALS; LI-DIFFUSION; HIGH-QUARTZ; LIALSIO4; RUBY AB Certain alumino-silicates display exotic properties enabled by their framework structure made of corner-sharing tetrahedral rigid units. Using in situ diamond-anvil cell x-ray diffraction (XRD), we study the pressure-induced transformation of beta eucryptite, a prototypical alumino-silicate that undergoes a phase transformation at moderate pressures. The atomic structure and symmetry group of the new pressure-stabilized phase has not yet been reported. Based on density functional theory studies and Rietveld analysis of XRD patterns, we find that the new phase belongs to the Pna2(1) space group and report its atomic structure. Furthermore, we discover two other possible pressure-stabilized polymorphs, P1c1 and Pca2(1). (C) 2016 Elsevier Ltd. All rights reserved. C1 [Chen, Yachao; Narayanan, Badri; Reimanis, Ivar E.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Manna, Sukriti; Ciobanu, Cristian V.] Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA. [Wang, Zhongwu] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. [Narayanan, Badri] Argonne Natl Lab, Nanosci & Technol Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Reimanis, IE (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA.; Ciobanu, CV (reprint author), Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA. EM reimanis@mines.edu; cciobanu@mines.edu RI Ciobanu, Cristian/B-3580-2009 FU U.S. Department of Energy's Office of Basic Energy Sciences [DE-FG02-07ER46397]; NSF; NIH/NIGMS via NSF [DMR-1332208] FX We gratefully acknowledge the support of U.S. Department of Energy's Office of Basic Energy Sciences through grant no. DE-FG02-07ER46397. CHESS is supported by the NSF and NIH/NIGMS via NSF award DMR-1332208. NR 42 TC 0 Z9 0 U1 6 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD SEP PY 2016 VL 122 BP 64 EP 67 DI 10.1016/j.scriptamat.2016.05.005 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA DQ1KG UT WOS:000378959300015 ER PT J AU McBriarty, ME Ellis, DE AF McBriarty, Martin E. Ellis, Donald E. TI Cation synergies affect ammonia adsorption over VOX and (V,W)O-X dispersed on alpha-Al2O3 (0001) and alpha-Fe2O3 (0001) SO SURFACE SCIENCE LA English DT Article DE Nitric oxide reduction; Vanadium oxide; Oxide support; Ammonia adsorption; Electronic structure; Density functional theory ID SELECTIVE CATALYTIC-REDUCTION; VANADIUM-OXIDE CATALYSTS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; BOND-VALENCE PARAMETERS; ATOMIC-SCALE VIEW; WAVE BASIS-SET; NITRIC-OXIDE; SCR REACTION; MECHANISTIC ASPECTS AB The catalytic behavior of oxide-supported metal oxide species depends on the nature of the support and the presence of co-catalysts. We use density functional theory (DFT) to explore the relationship between the structure and chemical behavior of vanadium oxide in light of its industrial use for the selective catalytic reduction of nitric oxide with ammonia (NO-SCR). The relative stabilities of dispersed VOX monomers, dimers, and long-chain oligomers on two model oxide support surfaces with similar structure but drastically different chemical behavior, alpha-Al2O3 (0001) and alpha-Fe2O3 (0001), are determined. The effect of added tungsten, known to promote NO-SCR, is also investigated on the relatively inert alpha-Al2O3 (0001) support. We find that the adsorption behavior of NH3, representing the first step of the NO-SCR reaction, depends strongly on the VOX local structure. Protonation of NH3 to NH4+ over surface hydroxyls is energetically favorable over VOX-WOX dimers and VOX oligomers, which are stabilized by the reducible alpha-Fe2O3 (0001) support. (C) 2016 Elsevier B.V. All rights reserved. C1 [McBriarty, Martin E.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Ellis, Donald E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Ellis, Donald E.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP McBriarty, ME (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA. EM mcbriarty@u.northwestern.edu OI McBriarty, Martin/0000-0002-7802-3267 FU National Science Foundation [DGE-0824162]; Institute for Catalysis in Energy Processes (U.S. Department of Energy (DOE)) [DE-FG02-03ER15457] FX M.E.M. was supported by a National Science Foundation Graduate Research Fellowship under Grant DGE-0824162. M.E.M. and D.E.E. were supported in part by the Institute for Catalysis in Energy Processes (U.S. Department of Energy (DOE) under Contract DE-FG02-03ER15457). Computational equipment support was provided by the Initiative for Sustainability and Energy at Northwestern University. Atomic structure and charge density plots were made using VESTA software [73]. NR 73 TC 0 Z9 0 U1 20 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD SEP PY 2016 VL 651 BP 41 EP 50 DI 10.1016/j.susc.2016.03.015 PG 10 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DQ3MD UT WOS:000379105500007 ER PT J AU Eren, B Zherebetskyy, D Hao, YB Patera, LL Wang, LW Somorjai, GA Salmeron, M AF Eren, Baran Zherebetskyy, Danylo Hao, Yibo Patera, Laerte L. Wang, Lin-Wang Somorjai, Gabor A. Salmeron, Miquel TI One-dimensional nanoclustering of the Cu(100) surface under CO gas in the mbar pressure range SO SURFACE SCIENCE LA English DT Article DE Cu(100); Carbon monoxide; Nanoclustering; HPSTM; DFT ID SCANNING TUNNELING MICROSCOPE; RAY PHOTOELECTRON-SPECTROSCOPY; METHANOL SYNTHESIS; COPPER SURFACES; ADSORPTION; CATALYST; CHEMISTRY; OXIDATION; COVERAGE; CU(110) AB The bulk terminated Cu(100) surface becomes unstable in the presence of CO at room temperature when the pressure reaches the mbar range. Scanning tunneling microscopy images show that above 0.25 mbar the surface forms nanoclusters with CO attached to peripheral Cu atoms. At 20 mbar and above 3-atom wide one-dimensional nanoclusters parallel to < 001 > directions cover the surface, with CO on every Cu atom, increasing in density up to 115 mbar. Density functional theory explains the findings as a result of the detachment of Cu atoms from step edges caused by the stronger binding of CO relative to that on flat terraces. (C) 2016 Elsevier B.V. All rights reserved. C1 [Eren, Baran; Zherebetskyy, Danylo; Hao, Yibo; Patera, Laerte L.; Wang, Lin-Wang; Somorjai, Gabor A.; Salmeron, Miquel] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Zherebetskyy, Danylo] Nanosys Inc, Milpitas, CA 95035 USA. [Patera, Laerte L.] CNR IOM, Lab TASC, Str Statale 14,Km 163-5, I-34149 Trieste, Italy. [Patera, Laerte L.] Univ Trieste, Dept Phys, Via A Valerio 2, I-34127 Trieste, Italy. [Patera, Laerte L.] Univ Trieste, CENMAT, Via A Valerio 2, I-34127 Trieste, Italy. [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Salmeron, M (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Eren, Baran/A-9644-2013; OI Patera, Laerte/0000-0002-6214-5681 FU Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) through the Chemical and Mechanical Properties of Surfaces, Interfaces [DE-AC02-05CH11231, FWP KC3101]; "Organic/Inorganic Nanocomposite Materials" program; Office of Science of the U.S. DOE; Innovative and Novel Computational Impact on Theory and Experiment (INCITE) project FX This work was supported by the Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) under contract no. DE-AC02-05CH11231, through the Chemical and Mechanical Properties of Surfaces, Interfaces (FWP KC3101). The calculations by D.Z. and L.-W.W. were supported by the "Organic/Inorganic Nanocomposite Materials" program. It used resources of the National Energy Research Scientific Computing Center which is supported by the Office of Science of the U.S. DOE. The computation also used the resources of Oak Ridge Leadership Computing Facility (OLCF) with the computational time allocated by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) project. NR 33 TC 3 Z9 3 U1 15 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD SEP PY 2016 VL 651 BP 210 EP 214 DI 10.1016/j.susc.2016.04.016 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DQ3MD UT WOS:000379105500029 ER PT J AU Cho, H AF Cho, Herman TI Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins SO ATOMIC DATA AND NUCLEAR DATA TABLES LA English DT Article DE NQR spectroscopy; Nuclear quadrupole moments; Electric field gradient; Electronic structure ID MAGNETIC-RESONANCE; SPECTRA; SOLIDS; CHEMISTRY; MOMENTS; ORBIT; NMR AB Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. (C) 2016 Elsevier Inc. All rights reserved. C1 [Cho, Herman] Pacific NW Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. RP Cho, H (reprint author), Pacific NW Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. EM hm.cho@pnnl.gov FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry program FX This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry program. NR 27 TC 0 Z9 0 U1 8 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0092-640X EI 1090-2090 J9 ATOM DATA NUCL DATA JI Atom. Data Nucl. Data Tables PD SEP-NOV PY 2016 VL 111 BP 29 EP 40 DI 10.1016/j.adt.2016.02.003 PG 12 WC Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA DP7DQ UT WOS:000378659800002 ER PT J AU Chen, HL Meng, LY Chen, SH Jiao, Y Liu, YM AF Chen, Hailong Meng, Lingyi Chen, Shaohua Jiao, Yang Liu, Yongming TI Numerical investigation of microstructure effect on mechanical properties of bi-continuous and particulate reinforced composite materials SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Voxel-based analysis; Microstructure; Homogenization; Fracture; Composites ID PORE-SPACE RECONSTRUCTION; MULTIPLE-POINT STATISTICS; METAL-MATRIX COMPOSITES; HETEROGENEOUS MATERIALS; FRACTURE SIMULATION; 2D; ALGORITHM; MODELS; MEDIA AB In this paper, numerical simulations are proposed to investigate mechanical properties of bi-continuous and particulate reinforced composite materials using a non-local voxel-based discrete computational model. Special focus of this article is the effect of 3D microstructure and its heterogeneity on elastic deformation and fracture behaviors. First, a review on model formulation is presented. Model parameters are derived in terms of material constants using the concept of energy equivalency. Interface representation and numerical homogenization scheme are discussed. Following this, numerical investigations on the effects of interface properties and inclusion characteristics, i.e. the volume fraction and material constants, on homogenized elastic constants and fracture behaviors of statistically isotropic bi-phase composites are performed. The effective elastic constants predicted by the proposed model agree well with analytical results. Fracture simulation demonstrates good capability of the proposed model for the microstructure-sensitive failure analysis. Conclusions and future work are drawn based on the proposed study. (C) 2016 Elsevier B.V. All rights reserved. C1 [Chen, Hailong; Chen, Shaohua; Jiao, Yang; Liu, Yongming] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Meng, Lingyi] S China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510641, Guangdong, Peoples R China. [Chen, Hailong] Idaho Natl Lab, Fuels Modeling & Simulat, Idaho Falls, ID 83402 USA. RP Liu, YM (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. EM Yongming.Liu@asu.edu RI Chen, Hailong/C-7197-2017 OI Chen, Hailong/0000-0002-6564-7230 FU DARPA [N66001-14-1-4036] FX This work is partially supported by DARPA under Grant No. N66001-14-1-4036. NR 39 TC 1 Z9 1 U1 7 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD SEP PY 2016 VL 122 BP 288 EP 294 DI 10.1016/j.commatsci.2016.05.037 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA DP5DT UT WOS:000378516900031 ER PT J AU Ren, BY Zhong, DK Sun, YG Zhao, XH Zhang, QJ Liu, Y Jurow, M Sun, ML Zhang, ZS Zhao, Y AF Ren, Bao-Yi Zhong, Dao-Kun Sun, Ya-Guang Zhao, Xiang-Hua Zhang, Qi-Jian Liu, Yi Jurow, Matthew Sun, Ming-Li Zhang, Zhen-Song Zhao, Yi TI Quinolyl functionalized spiro[fluorene-9,9 '-xanthene] host materials with bipolar characteristics for green and red phosphorescent organic light-emitting diodes SO ORGANIC ELECTRONICS LA English DT Article DE PhOLEDs; Host materials; Spiro[fluorene-9,9 '-xanthene]; Quinoline; Substitution effect ID ACTIVATED DELAYED FLUORESCENCE; RIGID-ROD POLYQUINOLINES; HOLE-TRANSPORT MATERIAL; PEROVSKITE SOLAR-CELLS; HIGHLY EFFICIENT RED; INTERMOLECULAR PI-PI; ELECTROLUMINESCENT DEVICES; PHOSPHINE OXIDE; ELECTROPHOSPHORESCENT DEVICES; UNIVERSAL HOST AB Spiro[fluorene-9,9'-xanthene] (SFX) bipolar hosts bearing one, two and three quinolyl substituents, namely SFX-bPy, SFX-DbPy and SFX-TbPy, were designed and synthesized for phosphorescent organic light emitting diodes (PhOLEDs). The successive substitution of quinoline at 20, 2 and 70 positions of SFX results in reduced LUMO energy levels while leaving the HOMO energy levels nearly intact. The impact of quinoline substitution in these SFX-based hosts on PhOLED performance was investigated in detail through green and red model devices. For the green emitting devices, the device based on SFX-bPy host showed better performance (23.6 cd A(-1), 23.4 lm W-1, 6.3%) due to high triplet energy level (T-1) and balanced carriers-transporting ability. In contrast, for the red PhOLED devices, the device hosted by SFX-DbPy displayed higher performance (15.8 cd A(-1), 16.0 lm W-1, 9.1%), attributable to the well matched T-1 and separated frontier molecular orbitals. This work thus sheds light on the rational design of SFX-based bipolar hosts for more efficient PhOLEDs. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ren, Bao-Yi; Zhong, Dao-Kun; Sun, Ya-Guang] Shenyang Univ Chem Technol, Coll Appl Chem, Key Lab Inorgan Mol Based Chem Liaoning Prov, Shenyang 110142, Peoples R China. [Zhao, Xiang-Hua] Xinyang Normal Univ, Coll Chem & Chem Engn, Xinyang 464000, Peoples R China. [Zhang, Qi-Jian; Liu, Yi; Jurow, Matthew] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, One Cyclotron Rd, Berkeley, CA 94720 USA. [Sun, Ming-Li] Northeast Forestry Univ, Coll Sci, Dept Chem, Harbin 150040, Peoples R China. [Zhang, Zhen-Song; Zhao, Yi] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China. RP Zhao, XH (reprint author), Xinyang Normal Univ, Coll Chem & Chem Engn, Xinyang 464000, Peoples R China.; Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, One Cyclotron Rd, Berkeley, CA 94720 USA.; Sun, ML (reprint author), Northeast Forestry Univ, Coll Sci, Dept Chem, Harbin 150040, Peoples R China. EM 4773zxh@163.com; yliu@lbl.gov; sml98@163.com RI Liu, yi/A-3384-2008; OI Liu, yi/0000-0002-3954-6102; Sun, Yaguang/0000-0001-5850-0938 FU National Natural Scince Foundation of China [61405170]; Molecular Foundry, through Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Students Sustentation Fund of Xinyang Normal University [2014-DXS-136] FX We express our sincere gratitude to the Doctoral Research Foundation of Liaoning Province (20131091), National Natural Scince Foundation of China (grant no. 61405170) and Students Sustentation Fund of Xinyang Normal University (No. 2014-DXS-136). Y. L. acknowledges the support from the Molecular Foundry, a user facility supported through the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 57 TC 0 Z9 0 U1 30 U2 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 EI 1878-5530 J9 ORG ELECTRON JI Org. Electron. PD SEP PY 2016 VL 36 BP 140 EP 147 DI 10.1016/j.orgel.2016.06.006 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DP5NO UT WOS:000378544500019 ER PT J AU Horowitz, KAW Fu, R Woodhouse, M AF Horowitz, Kelsey A. W. Fu, Ran Woodhouse, Michael TI An analysis of glass-glass CIGS manufacturing costs SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE CIGS; Photovoltaic; Co-evaporation; Selenization; Manufacturing cost analysis; LCOE ID CU(IN,GA)SE-2 SOLAR-CELLS; THICKNESS AB This article examines current cost drivers and potential avenues to reduced cost for monolithic, glass glass Cu(In,Ga)(Se,S)(2) (CIGS) modules by constructing a comprehensive bottom-up cost model. For a reference case where sputtering plus batch sulfurization after selenization (SAS) is employed, we compute a manufacturing cost of $69/m(2) if the modules are made in the United States at a 1 GW/year production volume. At 14% module efficiency, this corresponds to a manufacturing cost of $0.49/W-DC and a minimum sustainable price (MSP) of $0.67/W-DC. We estimate that MSP could vary within 20% of this value given the range of quoted input prices, and existing variations in module design, manufacturing processes, and manufacturing location. Potential for reduction in manufacturing costs to below $0.40/W-DC may be possible if average production module efficiencies can be increased above 17% without increasing $/m(2) costs; even lower costs could be achieved if $/m(2) costs could be reduced, particularly via innovations in the CIGS deposition process or balance-of-module elements. We present the impact on cost of regional factors, CIGS deposition method, device design, and price fluctuations. One metric of competitiveness-levelized cost of energy (LCOE) - is also assessed for several U.S. locations and compared to that of standard multi-crystalline silicon (m(c-Si)) and cadmium telluride (CdTe). (C) 2016 Elsevier B.V. All rights reserved. C1 [Horowitz, Kelsey A. W.; Fu, Ran; Woodhouse, Michael] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Horowitz, KAW (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Kelsey.Horowitz@nrel.gov FU Solar Energy Technologies Office of the U.S. Department of Energy [DE-AC36-08GO28308] FX The authors thank the Solar Energy Technologies Office of the U.S. Department of Energy for funding this work through Contract no. DE-AC36-08GO28308. We thank Lorelle Mansfield, Kannan Ramanathan, Miguel Contreras, Karlynn Cory, and Donald Chung for insightful discussion. Finally, we would like to acknowledge the significant contribution from all our industry collaborators, who provided data and feedback that made this study possible. NR 29 TC 1 Z9 1 U1 21 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD SEP PY 2016 VL 154 BP 1 EP 10 DI 10.1016/j.solmat.2016.04.029 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DP5WT UT WOS:000378569600001 ER PT J AU O'Brien, TA Kashinath, K Cavanaugh, NR Collins, WD O'Brien, JP AF O'Brien, Travis A. Kashinath, Karthik Cavanaugh, Nicholas R. Collins, William D. O'Brien, John P. TI A fast and objective multidimensional kernel density estimation method: fastKDE SO COMPUTATIONAL STATISTICS & DATA ANALYSIS LA English DT Article DE Empirical characteristic function; ECF; Kernel density estimation; Histogram; Nonuniform FFT; NuFFT; Multidimensional; KDE AB Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the ROE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchia and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10(5) samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior. (C) 2016 The Authors and Lawrence Berkeley National Laboratory. Published by Elsevier B.V. This is an open access article under the CC BY license. C1 [O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.; Collins, William D.; O'Brien, John P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [O'Brien, Travis A.] Univ Calif Davis, Davis, CA 95616 USA. [Collins, William D.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [O'Brien, John P.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. RP O'Brien, TA (reprint author), 1 Cyclotron Rd,MS74R-316C, Berkeley, CA USA. EM TAOBrien@lbl.gov RI Collins, William/J-3147-2014; O'Brien, Travis/M-5250-2013; Kashinath, Karthik/B-2265-2015; OI Collins, William/0000-0002-4463-9848; O'Brien, Travis/0000-0002-6643-1175; Kashinath, Karthik/0000-0002-9311-5215; Cavanaugh, Nicholas/0000-0002-7638-4501 FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy Regional and Global Climate Modeling Program (RGCM) [ESD13052]; National Energy Research Scientific Computing Center (NERSC) [m1949, m1517]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank two anonymous reviewers whose comments greatly helped improve the quality of the manuscript. The authors would also like to thank Dr. Chris Paciorek of UCB for helpful comments in the framing of the manuscript. This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy Regional and Global Climate Modeling Program (RGCM) (ESD13052) and used resources of the National Energy Research Scientific Computing Center (NERSC) (m1949 and m1517), also supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 1 Z9 1 U1 3 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-9473 EI 1872-7352 J9 COMPUT STAT DATA AN JI Comput. Stat. Data Anal. PD SEP PY 2016 VL 101 BP 148 EP 160 DI 10.1016/j.csda.2016.02.014 PG 13 WC Computer Science, Interdisciplinary Applications; Statistics & Probability SC Computer Science; Mathematics GA DP4CY UT WOS:000378444200012 ER PT J AU Linley, TJ Krogstad, EJ Nims, MK Langshaw, RB AF Linley, Timothy J. Krogstad, Eirik J. Nims, Megan K. Langshaw, Russell B. TI Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington SO FISHERIES RESEARCH LA English DT Article DE Fin ray geochemistry ID INDUCTIVELY-COUPLED PLASMA; SPOT LEIOSTOMUS-XANTHURUS; WESTSLOPE CUTTHROAT TROUT; STABLE-ISOTOPE ANALYSIS; UPPER COLUMBIA-RIVER; OTOLITH CHEMISTRY; LIFE-HISTORY; WATER CHEMISTRY; FRESH-WATER; RAINBOW-TROUT AB Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collected from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and Sr-87/Sr-86 by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and Sr-87/Sr-86 were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and Sr-87/Sr-86 ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and Sr-87/Sr-86 correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance. (C) 2016 Elsevier B.V. All rights reserved. C1 [Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.] Pacific NW Natl Lab, Earth Syst Sci Div, Richland, WA USA. [Langshaw, Russell B.] Publ Util Dist Grant Cty 2, Washington, DC USA. [Langshaw, Russell B.] Ecosyst Insights, Mesa, AZ USA. RP Linley, TJ (reprint author), Pacific NW Natl Lab, Earth Syst Sci Div, Richland, WA USA. EM Timothy.Linley@pnnl.gov; Russell@ecoinsights.us FU Priest Rapids Coordinating Committee (PRCC) No-Net Impact Fund FX We thank Liz Alexander and Matt Newburn of the Environmental and Molecular Sciences Laboratory (EMSL) for their support and assistance with the ICP-MS analyses, Valerie Cullinan (PNNL) for statistical help, and the Washington Department of Fish and Wildlife (Andrew Murdoch, Mike Hughes) and the NOAA Northwest Fisheries Science Center (Mike Ford, Sharon Howard) for providing the fin-ray samples. Additional thanks to Jill Janak and Kathleen Carter from PNNL for their help in preparing the manuscript, and for the constructive comments from two anonymous reviewers. Funding for this study was provided by the Priest Rapids Coordinating Committee (PRCC) No-Net Impact Fund. The PRCC includes representatives NOAA Fisheries, U.S. Fish & Wildlife Service, Washington Department of Fish & Wildlife, Colville Confederated Tribes, Yakama Nation, Confederated Tribes of the Umatilla Reservation and Grant County Public Utility District. NR 99 TC 0 Z9 0 U1 5 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD SEP PY 2016 VL 181 BP 234 EP 246 DI 10.1016/j.fishres.2016.04.004 PG 13 WC Fisheries SC Fisheries GA DP0LS UT WOS:000378181900023 ER PT J AU Guo, XY Hu, B Wei, CD Sun, JG Jung, YG Li, L Knapp, J Zhang, J AF Guo, Xingye Hu, Bin Wei, Changdong Sun, Jiangang Jung, Yeon-Gil Li, Li Knapp, James Zhang, Jing TI Image-based multi-scale simulation and experimental validation of thermal conductivity of lanthanum zirconate SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Lanthanum zirconate; Thermal conductivity; Molecular dynamics; Finite element; Microstructure; Imaging; Flash laser technique; Pulsed thermal imaging-multilayer analysis ID NONEQUILIBRIUM MOLECULAR-DYNAMICS; BARRIER COATINGS; PORES AB Lanthanum zirconate (La2Zr2O7) is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high-temperature phase stability. In this work, a novel image-based multi-scale simulation framework combining molecular dynamics (MD) and finite element (FE) calculations is proposed to study the thermal conductivity of La2Zr2O7 coatings. Since there is no experimental data of single crystal La2Zr2O7 thermal conductivity, a reverse non-equilibrium molecular dynamics (reverse NEMD) approach is first employed to compute the temperature-dependent thermal conductivity of single crystal La2Zr2O7. The single crystal data is then passed to a FE model which takes into account of realistic thermal barrier coating microstructures. The predicted thermal conductivities from the FE model are in good agreement with experimental validations using both flash laser technique and pulsed thermal imaging-multilayer analysis. The framework proposed in this work provides a powerful tool for future design of advanced coating systems. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Guo, Xingye; Zhang, Jing] Indiana Univ Purdue Univ, Dept Mech Engn, Indianapolis, IN 46202 USA. [Hu, Bin] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Wei, Changdong] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA. [Sun, Jiangang] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Jung, Yeon-Gil] Changwon Natl Univ, Sch Nano & Adv Mat Engn, Chang Won 641773, Gyeongnam, South Korea. [Li, Li; Knapp, James] Praxair Surface Technol, Indianapolis, IN 46222 USA. RP Zhang, J (reprint author), Indiana Univ Purdue Univ, Dept Mech Engn, Indianapolis, IN 46202 USA. EM jz29@iupui.edu OI Zhang, Jing/0000-0002-8200-5117 FU U.S. Department of Energy [DE-FE0008868]; Indiana University Research Support Funds Grant (RSFG); International Research Development Fund (IRDF); National Research Foundation of Korea (NRF) grant - Korean Government (MEST) [2011-0030058]; Changwon National University; U.S. Department of Energy, Office of Fossil Energy, Crosscutting Research Program; Novel Functionally Graded Thermal Barrier Coatings in Coal-fired Power Plant Turbines FX J.Z. acknowledges the financial support provided by the U.S. Department of Energy (Award Number: DE-FE0008868; Project Title: Novel Functionally Graded Thermal Barrier Coatings in Coal-fired Power Plant Turbines; Program Manager: Richard Dunst) and Indiana University Research Support Funds Grant (RSFG) and International Research Development Fund (IRDF). Y.J. acknowledges the financial support provided by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MEST) (2011-0030058), and by Changwon National University in 2015-2016. J.S. acknowledges the support provided by the U.S. Department of Energy, Office of Fossil Energy, Crosscutting Research Program. NR 31 TC 1 Z9 1 U1 9 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD SEP PY 2016 VL 100 BP 34 EP 38 DI 10.1016/j.ijheatmasstransfer.2016.04.067 PG 5 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA DP2ZI UT WOS:000378361700004 ER PT J AU Forsberg, U Rudolph, D Andersson, LL Di Nitto, A Dullmann, CE Fahlander, C Gates, JM Golubev, P Gregorich, KE Gross, CJ Herzberg, RD Hessberger, FP Khuyagbaatar, J Kratz, JV Rykaczewski, K Sarmiento, LG Schadel, M Yakushev, A Aberg, S Ackermann, D Block, M Brand, H Carlsson, BG Cox, D Derkx, X Dobaczewski, J Eberhardt, K Even, J Gerl, J Jager, E Kindler, B Krier, J Kojouharov, I Kurz, N Lommel, B Mistry, A Mokry, C Nazarewicz, W Nitsche, H Omtvedt, JP Papadakis, P Ragnarsson, I Runke, J Schaffner, H Schausten, B Shi, Y Thorle-Pospiech, P Torres, T Traut, T Trautmann, N Tuerler, A Ward, A Ward, DE Wiehl, N AF Forsberg, U. Rudolph, D. Andersson, L. -L. Di Nitto, A. Duellmann, Ch. E. Fahlander, C. Gates, J. M. Golubev, P. Gregorich, K. E. Gross, C. J. Herzberg, R. -D. Hessberger, F. P. Khuyagbaatar, J. Kratz, J. V. Rykaczewski, K. Sarmiento, L. G. Schaedel, M. Yakushev, A. Aberg, S. Ackermann, D. Block, M. Brand, H. Carlsson, B. G. Cox, D. Derkx, X. Dobaczewski, J. Eberhardt, K. Even, J. Gerl, J. Jaeger, E. Kindler, B. Krier, J. Kojouharov, I. Kurz, N. Lommel, B. Mistry, A. Mokry, C. Nazarewicz, W. Nitsche, H. Omtvedt, J. P. Papadakis, P. Ragnarsson, I. Runke, J. Schaffner, H. Schausten, B. Shi, Yue Thoerle-Pospiech, P. Torres, T. Traut, T. Trautmann, N. Tuerler, A. Ward, A. Ward, D. E. Wiehl, N. TI Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48+Am-243 SO NUCLEAR PHYSICS A LA English DT Article DE Superheavy elements; Element 115; Uup; alpha decay; Spontaneous fission ID 115 DECAY CHAINS; SUPERHEAVY ELEMENTS; HEAVIEST ELEMENTS; NUCLEI; TASCA; HEAVY; SPECTROSCOPY; SIMULATION; SEPARATOR; CHEMISTRY AB Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated alpha-decay chains associated With the production of element Z = 115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel (289)115 due to the fact that these recoil-alpha-alpha-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil-alpha-alpha-fission decay chains, as well as some of the recoil-alpha-alpha-fission and recoil-alpha-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel (288)115. (C) 2016 Elsevier B.V. All rights reserved. C1 [Forsberg, U.; Rudolph, D.; Fahlander, C.; Golubev, P.; Sarmiento, L. G.; Aberg, S.; Carlsson, B. G.; Ragnarsson, I.; Ward, D. E.] Lund Univ, S-22100 Lund, Sweden. [Andersson, L. -L.; Duellmann, Ch. E.; Hessberger, F. P.; Khuyagbaatar, J.; Block, M.; Derkx, X.; Eberhardt, K.; Even, J.; Mistry, A.; Mokry, C.; Thoerle-Pospiech, P.; Wiehl, N.] Helmholtz Inst Mainz, D-55099 Mainz, Germany. [Di Nitto, A.; Duellmann, Ch. E.; Kratz, J. V.; Block, M.; Derkx, X.; Eberhardt, K.; Mokry, C.; Thoerle-Pospiech, P.; Traut, T.; Trautmann, N.; Wiehl, N.] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany. [Duellmann, Ch. E.; Hessberger, F. P.; Schaedel, M.; Yakushev, A.; Ackermann, D.; Block, M.; Brand, H.; Gerl, J.; Jaeger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Runke, J.; Schaffner, H.; Schausten, B.; Torres, T.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Gates, J. M.; Gregorich, K. E.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gross, C. J.; Rykaczewski, K.; Nazarewicz, W.; Shi, Yue] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Herzberg, R. -D.; Cox, D.; Mistry, A.; Papadakis, P.; Ward, A.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Schaedel, M.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Nazarewicz, W.; Shi, Yue] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Nazarewicz, W.; Shi, Yue] Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA. [Omtvedt, J. P.] Univ Oslo, N-0315 Oslo, Norway. [Tuerler, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Tuerler, A.] Univ Bern, CH-5232 Villigen, Switzerland. [Even, J.] Univ Groningen, KVI Ctr Adv Radiat Technol, NL-9747 AA Groningen, Netherlands. [Papadakis, P.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. RP Forsberg, U (reprint author), Lund Univ, S-22100 Lund, Sweden. EM ulrika.forsberg@nuclear.lu.se RI Block, Michael/I-2782-2015; Even, Julia/K-1186-2016; Rudolph, Dirk/D-4259-2009; Turler, Andreas/D-3913-2014 OI Block, Michael/0000-0001-9282-8347; Even, Julia/0000-0002-6314-9094; Rudolph, Dirk/0000-0003-1199-3055; Turler, Andreas/0000-0002-4274-1056 FU European Community FP7 - Capacities ENSAR [262010]; Royal Physiographic Society in Lund; Euroball Owners Committee; Swedish Research Council; German BMBF; U.S. Department of Energy, Office of Science (Stewardship Science Academic Alliances program) [DOE-DE-NA0002574]; UK Science and Technology Facilities Council; U.S. Department of Energy, Office of Science (NUCLEI SciDAC-3 Collaboration) [DE-SC0008511] FX The authors would like to thank the ion-source and the accelerator staff at GSI. This work is supported by the European Community FP7 - Capacities ENSAR No. 262010, the Royal Physiographic Society in Lund, the Euroball Owners Committee, the Swedish Research Council, the German BMBF, the U.S. Department of Energy, Office of Science, under Award Numbers DOE-DE-NA0002574 (the Stewardship Science Academic Alliances program) and DE-SC0008511 (NUCLEI SciDAC-3 Collaboration), and the UK Science and Technology Facilities Council. NR 56 TC 10 Z9 10 U1 9 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP PY 2016 VL 953 BP 117 EP 138 DI 10.1016/j.nuclphysa.2016.04.025 PG 22 WC Physics, Nuclear SC Physics GA DP4IX UT WOS:000378460700007 ER PT J AU Zhao, L Shaffer, F Robinson, B King, T D'Ambrose, C Pan, Z Gao, F Miller, RS Conmy, RN Boufadel, MC AF Zhao, Lin Shaffer, Franklin Robinson, Brian King, Thomas D'Ambrose, Christopher Pan, Zhong Gao, Feng Miller, Richard S. Conmy, Robyn N. Boufadel, Michel C. TI Underwater oil jet: Hydrodynamics and droplet size distribution SO CHEMICAL ENGINEERING JOURNAL LA English DT Article DE Subsurface oil release; Oil spill; Large scale experiment; Plume trajectory; Droplet size distribution; Ohmsett wave tank ID WATER-HORIZON OIL; GAS BLOWOUTS; BUOYANT JETS; SUBSEA OIL; CRUDE-OIL; FLOW-RATE; MODEL; BREAKUP; SIMULATION; ATOMIZATION AB We conducted a large scale experiment of underwater oil release of 6.3 L/s through a 25.4 mm (one inch) horizontal pipe. Detailed measurements of plume trajectory, velocity, oil droplet size distribution, and oil holdup were obtained. The obtained experimental data were used for the validation of the models JETLAG and VDROP-J. Key findings include: (1) formation of two plumes, one due to momentum and subsequently plume buoyancy, and another due mostly to the buoyancy of individual oil droplets that separate upward from the first plume; (2) modeling results indicated that the traditional miscible plume models matched the momentum and buoyancy plume, but were not able to simulate the upward motion plume induced by individual oil droplets; (3) high resolution images in the jet primary breakup region showed the formation of ligaments and drops in a process known as "primary breakup". These threads re-entered the plume to re-break in a process known as "secondary breakup"; (4) the plume velocity was highly heterogeneous with regions of high velocity surrounded by stagnant regions for various durations. The results from this study revealed that the primary breakup is a key factor for quantifying the droplet size distribution which plays a crucial role in determining the ultimate fate and transport of the released oil in the marine environment. The observed spatial heterogeneity in the oil plume implies that the effectiveness of applied dispersants may vary greatly when applying directly in the discharged oil flow. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zhao, Lin; D'Ambrose, Christopher; Pan, Zhong; Gao, Feng; Boufadel, Michel C.] New Jersey Inst Technol, Dept Civil & Environm Engn, Ctr Nat Resources Dev & Protect, Newark, NJ 07102 USA. [Shaffer, Franklin] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Robinson, Brian; King, Thomas] Bedford Inst Oceanog, Dept Fisheries & Oceans, Dartmouth, NS, Canada. [Miller, Richard S.] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA. [Conmy, Robyn N.] US EPA, Natl Risk Management Res Lab, Off Res & Dev, Cincinnati, OH 45268 USA. RP Boufadel, MC (reprint author), New Jersey Inst Technol, Dept Civil & Environm Engn, Ctr Nat Resources Dev & Protect, Newark, NJ 07102 USA. EM boufadel@gmail.com FU Bureau of Safety and Environmental Enforcement [1027]; Department of Fisheries and Ocean Canada (DFO) [F5211-130060]; Gulf of Mexico Research Initiative through the Consortium DROPPS II FX This research was made possible through funding from the Bureau of Safety and Environmental Enforcement, Project # 1027 (2014); the Department of Fisheries and Ocean Canada (DFO), Contract No. F5211-130060; and the Gulf of Mexico Research Initiative through the Consortium DROPPS II. Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (doi:10.7266/N7D798DN). However, no endorsement of these sponsors is implied. NR 35 TC 1 Z9 1 U1 14 U2 58 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1385-8947 EI 1873-3212 J9 CHEM ENG J JI Chem. Eng. J. PD SEP 1 PY 2016 VL 299 BP 292 EP 303 DI 10.1016/j.cej.2016.04.061 PG 12 WC Engineering, Environmental; Engineering, Chemical SC Engineering GA DO5ON UT WOS:000377832500035 ER PT J AU Movshovitz, N Nimmo, F Korycansky, DG Asphaug, E Owen, JM AF Movshovitz, N. Nimmo, F. Korycansky, D. G. Asphaug, E. Owen, J. M. TI Impact disruption of gravity-dominated bodies: New simulation data and scaling SO ICARUS LA English DT Article DE Collisional physics; Planetesimals; Planetary formation ID LATE HEAVY BOMBARDMENT; OUTER SOLAR-SYSTEM; CATASTROPHIC DISRUPTION; NUMERICAL SIMULATIONS; CRATERING RATES; POSSIBLE ORIGIN; GIANT PLANETS; LATE-STAGE; COLLISIONS; SATELLITES AB We present results from a suite of 169 hydrocode simulations of collisions between planetary bodies with radii from 100 to 1000 km. The simulation data are used to derive a simple scaling law for the threshold for catastrophic disruption, defined as a collision that leads to half the total colliding mass escaping the system post impact For a target radius 100 <= R-T <= 1000km and a mass M-T and a projectile radius r(p) <= R-T and mass m(p) we find that a head-on impact with velocity magnitude v is catastrophic if the kinetic energy of the system in the center of mass frame, K = 0.5M(T)m(p)v(2)/(M-T + m(p)), exceeds a threshold value K* that is a few times U = (3/5)GM(T)(2)/R-T (3/5)Gm(p)(2)/r(p) GM(T)m(p)(R-T r(p)), the gravitational binding energy of the system at the moment of impact; G is the gravitational constant. In all head-on collision runs we find K* = (5.5 +/- 2.9)U. Oblique impacts are catastrophic when the fraction of kinetic energy contained in the volume of the projectile intersecting the target during impact exceeds similar to 2K* for 30 degrees impacts and similar to 3.5K* for 45 degrees impacts. We compare predictions made with this scaling to those made with existing scaling laws in the literature extrapolated from numerical studies on smaller targets. We find significant divergence between predictions where in general our results suggest a lower threshold for disruption except for highly oblique impacts with r(p) << R-T. This has implications for the efficiency of collisional grinding in the asteroid belt (Morbidelli et al., [2009] Icarus, 204, 558-573), Kuiper belt (Greenstreet et al., [2015] Icarus, 258, 267-288), and early Solar System accretion (Chambers [2013], Icarus, 224, 43-56). (C) 2016 Elsevier Inc. All rights reserved. C1 [Movshovitz, N.; Nimmo, F.; Korycansky, D. G.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Asphaug, E.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Owen, J. M.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Movshovitz, N (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM nmovshov@ucsc.edu OI Movshovitz, Naor/0000-0001-5583-0042 FU NASA PGG grant [NNX13AR66G]; NASA Origins grant [NNX11AK60G-002] FX We wish to thank our funding sources for this project. Research by N.M., D.G.K., and E.A. was supported by NASA PG&G grant NNX13AR66G. Research by F.N. was supported by NASA Origins grant NNX11AK60G-002. NR 41 TC 1 Z9 1 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD SEP 1 PY 2016 VL 275 BP 85 EP 96 DI 10.1016/j.icarus.2016.04.018 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO8FB UT WOS:000378016900006 ER PT J AU Nettelmann, N Wang, K Fortney, JJ Hamel, S Yellamilli, S Bethkenhagen, M Redmer, R AF Nettelmann, N. Wang, K. Fortney, J. J. Hamel, S. Yellamilli, S. Bethkenhagen, M. Redmer, R. TI Uranus evolution models with simple thermal boundary layers SO ICARUS LA English DT Article DE Uranus; Neptune; Planetary Evolution ID GIANT PLANETS; INTERIOR MODELS; ENERGY-BALANCE; NEPTUNE; JUPITER; ATMOSPHERES; CONVECTION; SATURN; WATER; MASS AB The strikingly low luminosity of Uranus (T-eff similar or equal to T-eq) constitutes a long-standing challenge to our understanding of Ice Giant planets. Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. Proceeding step by step, we confirm that adiabatic models yield cooling times that are too long, even when uncertainties in the ice:rock ratio (I:R) are taken into account. We then argue that the transition between the ice/rock-rich interior and the HA-le-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary and adjust it to reproduce the low luminosity. Due to this thermal boundary, the deep interior of the Uranus models are up to 2-3 warmer than adiabatic models, necessitating the presence of rocks in the deep interior with a possible I:R of 1 x solar. Finally, we allow for an equilibrium evolution (T-eff similar or equal to T-eq) that begun prior to the present day, which would therefore no longer require the current era to be a "special time" in Uranus' evolution. In this scenario, the thermal boundary leads to more rapid cooling of the outer envelope. When T-eff similar or equal to T-eq is reached, a shallow, subadiabatic zone in the atmosphere begins to develop. Its depth is adjusted to meet the luminosity constraint. This work provides a simple foundation for future Ice Giant structure and evolution models, that can be improved by properly treating the heat and particle fluxes in the diffusive zones. (C) 2016 Elsevier Inc. All rights reserved. C1 [Nettelmann, N.; Fortney, J. J.] Univ Rostock, Inst Phys, Albert Einstein Str 23, D-18051 Rostock, Germany. [Hamel, S.; Bethkenhagen, M.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Nettelmann, N.; Bethkenhagen, M.; Redmer, R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA. [Wang, K.] Castilleja High Sch, Palo Alto, CA USA. [Yellamilli, S.] Saratoga High Sch, Saratoga, CA USA. [Yellamilli, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Wang, K.; Yellamilli, S.] UCSC 2014, Sci Internship Program, Santa Cruz, CA USA. RP Nettelmann, N (reprint author), Univ Rostock, Inst Phys, Albert Einstein Str 23, D-18051 Rostock, Germany. EM nadine.nettelmann@uni-rostock.de OI Yellamilli, Shivaram/0000-0001-9209-4830 FU NASA [NNH12AU441, NNX11AJ40G-001]; German Science Foundation (DFG) [SFB 652]; NSF [AST-1010017] FX We thank the two anonymous referees for constructive comments. NN thanks R. Helled and M. Podolak for interesting conversations, and participants of the Workshop on Ice Giant Planets 2014 in Laurel, MD, for fruitful discussions. We gratefully acknowledge the funding support from NASA under Contract No. NNH12AU441. MB and RR acknowledge support from the German Science Foundation (DFG) via SFB 652 and the computation time provided by the North-German Supercomputing Alliance (HLRN) and the ITMZ of the University of Rostock. JJF acknowledges support from NSF grant AST-1010017 and NASA grant NNX11AJ40G-001. NR 60 TC 0 Z9 0 U1 6 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD SEP 1 PY 2016 VL 275 BP 107 EP 116 DI 10.1016/j.icarus.2016.04.008 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO8FB UT WOS:000378016900008 ER PT J AU Makarova, OV Adams, DL Divan, R Rosenmann, D Zhu, PX Li, SH Amstutz, P Tang, CM AF Makarova, Olga V. Adams, Daniel L. Divan, Ralu Rosenmann, Daniel Zhu, Peixuan Li, Shuhong Amstutz, Platte Tang, Cha-Mei TI Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells SO MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS LA English DT Article DE Tumor cell culture; Structured culture; RIE treated polymer; Nanostructure; Surface topography ID TUMOR-CELLS; ALUMINUM-OXIDE; PRECISION MICROFILTERS; EFFICIENT CAPTURE; ANODIC ALUMINA; FABRICATION; CARCINOMA; ARRAYS; DEVICE; MICRO AB There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nano scale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Makarova, Olga V.] Creatv MicroTech Inc, 2242 West Harrison St, Chicago, IL 60612 USA. [Adams, Daniel L.] Create MicroTech Inc, 1 Deer Pk Dr, Monmouth Jct, NJ 08852 USA. [Divan, Ralu; Rosenmann, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei] Create MicroTech Inc, 11609 Lake Potomac Dr, Potomac, MD 20854 USA. RP Adams, DL (reprint author), Create MicroTech Inc, 1 Deer Pk Dr, Monmouth Jct, NJ 08852 USA. EM dan@creatvmicrotech.com FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Maryland TEDCO under MTTCF Phase I award FX Use of the Center for Nanoscale Materials, an Office of Science user Facility, Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research was funded in part by Maryland TEDCO under MTTCF Phase I award. NR 35 TC 1 Z9 1 U1 15 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0928-4931 EI 1873-0191 J9 MAT SCI ENG C-MATER JI Mater. Sci. Eng. C-Mater. Biol. Appl. PD SEP 1 PY 2016 VL 66 BP 193 EP 198 DI 10.1016/j.msec.2016.04.075 PG 6 WC Materials Science, Biomaterials SC Materials Science GA DO4FK UT WOS:000377737000023 PM 27207054 ER PT J AU Knox, AS Paller, MH Milliken, CE Redder, TM Wolfe, JR Seaman, J AF Knox, Anna Sophia Paller, Michael H. Milliken, Charles E. Redder, Todd M. Wolfe, John R. Seaman, John TI Environmental impact of ongoing sources of metal contamination on remediated sediments SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Metals; Passive caps; Active caps; Remediated sediment; Bioavailability; Re-contamination ID SEQUESTERING AGENTS; AQUEOUS-SOLUTION; BIOAVAILABILITY AB A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. (c) 2016 Elsevier B.V. All rights reserved. C1 [Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Redder, Todd M.; Wolfe, John R.] LimnoTech, Ann Arbor, MI 48108 USA. [Seaman, John] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Knox, AS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM anna.knox@srn.doe.gov; michael.paller@srnl.doe.gov; charles.milliken@srnl.doe.gov; tredder@limno.com; jwolfe@limno.com; seaman@srel.uga.edu FU DoD Strategic Environmental Research and Development Program (SERDP) [ER 2427]; U.S. Department of Energy [DE-AC09-798861048] FX This work was sponsored by the DoD Strategic Environmental Research and Development Program (SERDP) under project ER 2427. The SRNL is operated by Savannah River Nuclear Solutions, LLC for the U.S. Department of Energy under Contract DE-AC09-798861048. NR 33 TC 2 Z9 2 U1 16 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 1 PY 2016 VL 563 BP 108 EP 117 DI 10.1016/j.scitotenv.2016.04.050 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA DO4ZG UT WOS:000377792800012 PM 27135572 ER PT J AU Kenwell, A Navarre-Sitchler, A Prugue, R Spear, JR Hering, AS Maxwell, RM Carroll, RH Williams, KH AF Kenwell, Amy Navarre-Sitchler, Alexis Prugue, Rodrigo Spear, John R. Hering, Amanda S. Maxwell, Reed M. Carroll, RosemaryW. H. Williams, Kenneth H. TI Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Microbial DNA; Extractable metals; Floodplain geochemistry ID LARGE RIVER FLOODPLAIN; REACTIVE TRANSPORT; DENITRIFYING BACTERIA; ORGANIC-CARBON; RIPARIAN ZONE; FIELD-SCALE; DENITRIFICATION; PCR; HETEROGENEITY; TRANSFORMATIONS AB A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial "hotspots") in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kenwell, Amy; Navarre-Sitchler, Alexis; Prugue, Rodrigo; Maxwell, Reed M.] Colorado Sch Mines, Hydrol Sci & Engn Program, 1500 Illinois St, Golden, CO 80401 USA. [Spear, John R.] Colorado Sch Mines, Dept Civil & Environm Engn, 1500 Illinois St, Golden, CO 80401 USA. [Hering, Amanda S.] Colorado Sch Mines, Dept Appl Math & Stat, 1500 Illinois St, Golden, CO 80401 USA. [Carroll, RosemaryW. H.] Desert Res Inst, Div Hydrol Sci, 2215 Raggio Pkwy, Reno, NV 89512 USA. [Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Navarre-Sitchler, A (reprint author), Colorado Sch Mines, Hydrol Sci & Engn Program, 1500 Illinois St, Golden, CO 80401 USA. EM asitchle@mines.edu RI Navarre-Sitchler, Alexis/J-3389-2014; Williams, Kenneth/O-5181-2014 OI Williams, Kenneth/0000-0002-3568-1155 FU Subsurface Science Scientific Focus Area at Lawrence Berkeley National Laboratory - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-737 AC02-05CH11231]; Natural Sciences and Engineering Research Council of Canada (NSERC); Marathon Oil Corporation FX This material is based upon work supported as part of the Subsurface Science Scientific Focus Area at Lawrence Berkeley National Laboratory funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-737 AC02-05CH11231. A. Kenwell was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and R. Prugue was supported by the Marathon Oil Corporation through student fellowships. We thank four anonymous reviewers whose comments greatly improved the manuscript. NR 38 TC 0 Z9 0 U1 17 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 1 PY 2016 VL 563 BP 386 EP 395 DI 10.1016/j.scitotenv.2016.04.014 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA DO4ZG UT WOS:000377792800041 PM 27145490 ER PT J AU Shin, Y Liu, W Schwenzer, B Manandhar, S Chase-Woods, D Engelhard, MH Devanathan, R Fifield, LS Bennett, WD Ginovska, B Gotthold, DW AF Shin, Yongsoon Liu, Wei Schwenzer, Birgit Manandhar, Sandeep Chase-Woods, Dylan Engelhard, Mark H. Devanathan, Ram Fifield, Leonard S. Bennett, Wendy D. Ginovska, Bojana Gotthold, David W. TI Graphene oxide membranes with high permeability and selectivity for dehumidification of air SO CARBON LA English DT Article ID POLY(BUTYLENE TEREPHTHALATE); BLOCK-COPOLYMERS; GAS SEPARATION; WATER-VAPOR; ENERGY; PERMEATION; BEHAVIOR; SYSTEM; SHEETS AB Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of freestanding GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N-2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 10(5) Barrer and a water vapor permeance of 1.01 x 10(-5) mol/m(2)sPa, while the nitrogen permeability was below the system's detection limit, yielding a selectivity >10(4) in 80% relative humidity (RH) air at 30.8 degrees C. The results show great potential for a range of energy conversion and environmental applications. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Shin, Yongsoon; Schwenzer, Birgit; Ginovska, Bojana] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Liu, Wei; Chase-Woods, Dylan; Devanathan, Ram; Fifield, Leonard S.; Bennett, Wendy D.; Gotthold, David W.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Manandhar, Sandeep; Engelhard, Mark H.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Manandhar, Sandeep] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Chase-Woods, Dylan] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Gotthold, DW (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM david.gotthold@pnnl.gov OI Devanathan, Ram/0000-0001-8125-4237; Manandhar, Sandeep/0000-0001-8613-5317 FU DOE's Office of Biological and Environmental Research (BER) at PNNL FX The research described in this paper is part of the Materials Synthesis, Simulation, and across the Scale (MS3) Initiative at Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory Directed Research and Development Program at PNNL, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. A portion of the research was performed using the Environmental Molecular Sciences Laboratory (EMSL) (http://www.emsl.pnl.gov; user proposal #48749), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (BER) and located at PNNL. NR 30 TC 2 Z9 2 U1 18 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD SEP PY 2016 VL 106 BP 164 EP 170 DI 10.1016/j.carbon.2016.05.023 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DO1NI UT WOS:000377544900020 ER PT J AU Melaet, G Ralston, WT Liu, WC Somorjai, GA AF Melaet, Gerome Ralston, Walter T. Liu, Wen-Chi Somorjai, Gabor A. TI Product distribution change in the early stages of carbon monoxide hydrogenation over cobalt magnesium Fischer-Tropsch catalyst SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 249th ACS National Meeting and Exposition CY MAR 22-26, 2015 CL Denver, CO DE Fischer-Tropsch synthesis; CO hydrogenation; Cobalt; Transient experiments; Time-resolved; Temporal analysis of products ID PARTICLE-SIZE; TRANSIENT KINETICS; CO HYDROGENATION; SYNTHESIS GAS AB The catalytic hydrogenation of carbon monoxide, known as the Fischer-Tropsch process, is a technologically important, complex multipath reaction which produces long chain hydrocarbons. In order to access the initial kinetics and the mechanism, we developed a reactor that provides information under non-steady state conditions. We tested a CoMgO catalyst and monitored the initial product formation within 2 s of exposure to CO as well as the time dependence of high molecular weight products (in a 60 s window) and found drastic changes in the product selectivity. The probability for forming branched isomers (C-4 and C-5) peaks in the first 25 s, and within that time frame no unsaturated products were detected. The subsequent decline (at 35 to 40 s) of branched isomers coincides with the detection of olefins (from C-2 to C-5) and the change in carbon coverage at the surface of the catalyst. This indicates a change in the reaction pathway. (C) 2016 Elsevier B.V. All rights reserved. C1 [Melaet, Gerome; Ralston, Walter T.; Liu, Wen-Chi; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ralston, Walter T.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Melaet, Gerome; Liu, Wen-Chi; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM Somorjai@berkeley.edu OI Liu, Wen-Chi/0000-0002-0810-9014 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231] FX The present paper was submitted in honor of Dr. Jens Rostrup-Nielsen. The authors want to thank the Molecular Foundry of the Lawrence National Laboratory for the help in the SEM and EDS (Proposal #3806). This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Contract DE-AC02-05CH11231 NR 18 TC 0 Z9 0 U1 13 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD SEP 1 PY 2016 VL 272 BP 69 EP 73 DI 10.1016/j.cattod.2016.03.027 PG 5 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA DN9GA UT WOS:000377386300011 ER PT J AU Dorier, M Yildiz, O Ibrahim, S Orgerie, AC Antoniu, G AF Dorier, Matthieu Yildiz, Orcun Ibrahim, Shadi Orgerie, Anne-Cecile Antoniu, Gabriel TI On the energy footprint of I/O management in Exascale HPC systems SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE LA English DT Article DE Exascale computing; Energy; I/O; Dedicated cores; Dedicated nodes; Damaris AB The advent of unprecedentedly scalable yet energy hungry Exascale supercomputers poses a major challenge in sustaining a high performance-per-watt ratio. With I/O management acquiring a crucial role in supporting scientific simulations, various I/O management approaches have been proposed to achieve high performance and scalability. However, the details of how these approaches affect energy consumption have not been studied yet. Therefore, this paper aims to explore how much energy a supercomputer consumes while running scientific simulations when adopting various I/O management approaches. In particular, we closely examine three radically different I/O schemes including time partitioning, dedicated cores, and dedicated nodes. To do so, we implement the three approaches within the Damaris I/O middleware and perform extensive experiments with one of the target HPC applications of the Blue Waters sustained-petaflop supercomputer project: the CM1 atmospheric model. Our experimental results obtained on the French Grid'5000 platform highlight the differences among these three approaches and illustrate in which way various configurations of the application and of the system can impact performance and energy consumption. Moreover, we propose and validate a mathematical model that estimates the energy consumption of a HPC simulation under different I/O approaches. Our proposed model gives hints to pre-select the most energy-efficient I/O approach for a particular simulation on a particular HPC system and therefore provides a step towards energy-efficient HPC simulations in Exascale systems. To the best of our knowledge, our work provides the first in-depth look into the energy-performance tradeoffs of I/O management approaches. (C) 2016 Elsevier B.V. All rights reserved. C1 [Dorier, Matthieu] ENS Rennes, IRISA, Rennes, France. [Dorier, Matthieu] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Yildiz, Orcun; Ibrahim, Shadi; Antoniu, Gabriel] Inria Rennes Bretagne Atlantique, Rennes, France. [Orgerie, Anne-Cecile] CNRS, IRISA, Rennes, France. RP Ibrahim, S (reprint author), Inria Rennes Bretagne Atlantique, Rennes, France. EM shadi.ibrahim@inria.fr OI Dorier, Matthieu/0000-0001-9293-2021 NR 36 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD SEP PY 2016 VL 62 BP 17 EP 28 DI 10.1016/j.future.2016.03.002 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA DN8FZ UT WOS:000377315900002 ER PT J AU Margolin, LG AF Margolin, L. G. TI A strain space framework for numerical hyperplasticity SO MATHEMATICS AND COMPUTERS IN SIMULATION LA English DT Article DE Numerical plasticity; Hyperplasticity; Wilkins' method ID EULERIAN COMPUTING METHOD; PLASTICITY THEORY; HYPO-ELASTICITY; FLOW SPEEDS; ENERGY AB Numerical simulations of high strain rate plastic flow have historically been built in a hypoelastic framework and use radial return (Wilkins' method) as the solution algorithm. We show how each of these choices can lead to inaccurate and possibly nonconvergent results. We describe an alternative solution procedure based on a simple multiple time scale perturbation theory that is stable, accurate, computationally efficient and simple to implement. Further extension of these results then leads to a strain space formulation that has additional computational advantages. We illustrate our development with numerical experiments. This paper is dedicated to my friend and colleague Christo Christov on the occasion of his 60th birthday, in recognition of his many important and creative contributions to the formulation of continuum mechanics. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved. C1 [Margolin, L. G.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Margolin, LG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM len@lanl.gov NR 23 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4754 EI 1872-7166 J9 MATH COMPUT SIMULAT JI Math. Comput. Simul. PD SEP PY 2016 VL 127 SI SI BP 178 EP 188 DI 10.1016/j.matcom.2012.06.016 PG 11 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA DM7BT UT WOS:000376508600013 ER PT J AU Chong, XY Kim, KJ Li, EW Zhang, YJ Ohodnicki, PR Chang, CH Wang, AX AF Chong, Xinyuan Kim, Ki-Joong Li, Erwen Zhang, Yujing Ohodnicki, Paul R. Chang, Chih-Hung Wang, Alan X. TI Near-infrared absorption gas sensing with metal-organic framework on optical fibers SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Infrared absorption; Fiber-optic sensors; Metal-organic; Framework; Gas sensors ID DRUG-DELIVERY; HYDROGEN STORAGE; WATER-VAPOR; CO2; ADSORPTION; SEPARATION; SUBSTRATE; CATALYSIS; MIXTURES; REMOVAL AB Despite significant advantages in terms of portability and cost, near-infrared (NIR) gas sensing still remains a great challenge due to its relatively weak overtone absorption from the fundamental vibrational bond absorption at the mid-IR frequency. In this paper, we demonstrated ultra-sensitive NIR gas sensing for carbon dioxide (CO2) at 1.57 mu m wavelength through nanoporous Cu-BTC (BTC = benzene-1,3,5-tricarboxylate) metal-organic framework (MOF) coated single-mode optical fiber. For the first time, we obtained high-resolution NIR spectroscopy of CO2 sorbed in MOF without seeing any rotational side band, indicating that the tightly confined gas molecules in the MOF pores do not have any freedom of rotation. Real-time measurement of the mixed gas flow of CO2 and Ar showed different response time depending on the concentration of CO2, which is attributed to the complex sorption mechanism of CO2 in Cu-BTC MOF. Most importantly, we realized ultra-low detection limit of CO2 (<20 ppm) with only 5 cm long Cu-BTC MOF thin film coated on single-mode optical fibers. (C) 2016 Elsevier B.V. All rights reserved. C1 [Chong, Xinyuan; Li, Erwen; Wang, Alan X.] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. [Kim, Ki-Joong; Zhang, Yujing; Chang, Chih-Hung] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. [Ohodnicki, Paul R.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Ohodnicki, Paul R.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. RP Wang, AX (reprint author), Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. EM wang@eecs.oregonstate.edu FU National Energy Technology Laboratory's (NETL) [DE-FE0004000]; National Science Foundation [1449383]; Graduate Student Fellowship from NETL FX This technical effort was performed in support of the National Energy Technology Laboratory's (NETL) research under the RES contract DE-FE0004000 and the National Science Foundation under grant No. 1449383. Xinyuan Chong and Yujing Zhang are sponsored by the Graduate Student Fellowship from NETL. NR 50 TC 1 Z9 1 U1 57 U2 158 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD SEP PY 2016 VL 232 BP 43 EP 51 DI 10.1016/j.snb.2016.03.135 PG 9 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA DL2RO UT WOS:000375483000006 ER PT J AU Wang, PB Lu, XN Yang, X Wang, W Xu, DG AF Wang, Panbao Lu, Xiaonan Yang, Xu Wang, Wei Xu, Dianguo TI An Improved Distributed Secondary Control Method for DC Microgrids With Enhanced Dynamic Current Sharing Performance SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE Current sharing; dc microgrid (MG); droop control; low-bandwidth communication (LBC); secondary control ID ADAPTIVE DROOP CONTROL; HIERARCHICAL CONTROL; CONTROL STRATEGY; DECENTRALIZED CONTROL; VOLTAGE; MANAGEMENT; SYSTEMS; COMMUNICATION; CONVERTERS; DESIGN AB This paper proposes an improved distributed secondary control scheme for dc microgrids (MGs), aiming at overcoming the drawbacks of conventional droop control method. The proposed secondary control scheme can remove the dc voltage deviation and improve the current sharing accuracy by using voltage-shifting and slope-adjusting approaches simultaneously. Meanwhile, the average value of droop coefficients is calculated, and then it is controlled by an additional controller included in the distributed secondary control layer to ensure that each droop coefficient converges at a reasonable value. Hence, by adjusting the droop coefficient, each participating converter has equal output impedance, and the accurate proportional load current sharing can be achieved with different line resistances. Furthermore, the current sharing performance in steady and transient states can be enhanced by using the proposed method. The effectiveness of the proposed method is verified by detailed experimental tests based on a 3 x 1 kW prototype with three interface converters. C1 [Wang, Panbao; Yang, Xu; Wang, Wei; Xu, Dianguo] Harbin Inst Technol, Dept Elect Engn, Harbin 150001, Peoples R China. [Lu, Xiaonan] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Wang, PB; Yang, X; Wang, W; Xu, DG (reprint author), Harbin Inst Technol, Dept Elect Engn, Harbin 150001, Peoples R China.; Lu, XN (reprint author), Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. EM wangpanbao@hit.edu.cn; primerxu@aol.com; xiaonan.lu@anl.gov; wangwei602@hit.edu.cn; xudiang@hit.edu.cn FU National Nature Science Foundation of China [51477033] FX This work was supported by the National Nature Science Foundation of China ( 51477033). Recommended for publication by Associate Editor S. Mazumder. NR 39 TC 3 Z9 4 U1 8 U2 40 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8993 EI 1941-0107 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD SEP PY 2016 VL 31 IS 9 BP 6658 EP 6673 DI 10.1109/TPEL.2015.2499310 PG 16 WC Engineering, Electrical & Electronic SC Engineering GA DH9FM UT WOS:000373101800056 ER PT J AU Cuevas-Maraver, J Kevrekidis, PG Saxena, A Cooper, F Khare, A Comech, A Bender, CM AF Cuevas-Maraver, Jesus Kevrekidis, Panayotis G. Saxena, Avadh Cooper, Fred Khare, Avinash Comech, Andrew Bender, Carl M. TI Solitary Waves of a PT-Symmetric Nonlinear Dirac Equation SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Nonlinear dynamical systems; nonlinear differential equations; bifurcation ID FIELD-THEORIES; LINEAR INSTABILITY; STABILITY; ENERGY AB In this study we consider we consider a prototypical example of a PT-symmetric Dirac model. We discuss the underlying linear limit of the model and identify the threshold of the PT-phase transition in an analytical form. We then focus on the examination of the nonlinear model. We consider the continuation in the PT-symmetric model of the solutions of the corresponding Hamiltonianmodel and find that the solutions can be continued robustly as stable ones all the way up to thePT-transition threshold. In the latter, they degenerate into linearwaves. We also examine the dynamics of the model. Given the stability of the waveforms in the PT-exact phase, we consider them as initial conditions for parameters outside of that phase. We find that both oscillatory dynamics and exponential growth may arise, depending on the size of the corresponding " quench". The former can be characterized by an interesting form of bifrequency solutions that have been predicted on the basis of the SU(1, 1) symmetry. Finally, we explore some special, analytically tractable, but not PT-symmetric solutions in the massless limit of the model. C1 [Cuevas-Maraver, Jesus] Univ Seville, Dept Fis Aplicada 1, Nonlinear Phys Grp, Escuela Politecn Super, Seville 41011, Spain. [Cuevas-Maraver, Jesus] Univ Seville, Inst Matemat, IMUS, E-41012 Seville, Spain. [Kevrekidis, Panayotis G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Kevrekidis, Panayotis G.; Saxena, Avadh; Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Kevrekidis, Panayotis G.; Saxena, Avadh; Cooper, Fred] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Khare, Avinash] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India. [Comech, Andrew] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA. [Comech, Andrew] Inst Informat Transmiss Problems, Moscow 127994, Russia. [Bender, Carl M.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. RP Cuevas-Maraver, J (reprint author), Univ Seville, Dept Fis Aplicada 1, Nonlinear Phys Grp, Escuela Politecn Super, Seville 41011, Spain. EM jcuevas@us.es; kevrekid@math.umass.edu; avadh@lanl.gov; fredcath@earthlink.net; khare@physics.unipune.ac.in; comech@math.tamu.edu; cmb@wuphys.wustl.edu RI Cuevas-Maraver, Jesus/A-1255-2008 OI Cuevas-Maraver, Jesus/0000-0002-7162-5759 FU Indian National Science Academy (INSA); Center for Non Linear Studies; Los Alamos National Laboratory FX A. Khare wishes to thank Indian National Science Academy (INSA) for the award of INSA Senior Scientist Position. P.G. Kevrekidis gratefully acknowledges the hospitality and support of the Center for Non Linear Studies and the Los Alamos National Laboratory. NR 47 TC 1 Z9 1 U1 2 U2 64 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD SEP-OCT PY 2016 VL 22 IS 5 AR 5000109 DI 10.1109/JSTQE.2015.2485607 PG 9 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA CY8OE UT WOS:000366667400001 ER PT J AU Favaro, M Jeong, B Ross, PN Yano, J Hussain, Z Liu, Z Crumlin, EJ AF Favaro, Marco Jeong, Beomgyun Ross, Philip N. Yano, Junko Hussain, Zahid Liu, Zhi Crumlin, Ethan J. TI Unravelling the electrochemical double layer by direct probing of the solid/liquid interface SO NATURE COMMUNICATIONS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; ELECTRICAL DOUBLE-LAYER; WATER-MOLECULES; ABSORPTION SPECTROSCOPY; OXYGEN REDUCTION; LIQUID INTERFACE; SURFACE SCIENCE; STERN LAYER; ELECTRODES; ELECTROCATALYSIS AB The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. C1 [Favaro, Marco; Jeong, Beomgyun; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.] Lawrence Berkeley Natl Lab, Adv Light Source, One Cyclotron Rd, Berkeley, CA 94720 USA. [Favaro, Marco; Yano, Junko] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, One Cyclotron Rd, Berkeley, CA 94720 USA. [Favaro, Marco] Lawrence Berkeley Natl Lab, Div Chem Sci, One Cyclotron Rd, Berkeley, CA 94720 USA. [Jeong, Beomgyun] Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Ertl Ctr Electrochem & Catalysis, Gwangju 500712, South Korea. [Jeong, Beomgyun] Gwangju Inst Sci & Technol, Ctr Adv Xray Sci, Gwangju 500712, South Korea. [Ross, Philip N.] Lawrence Berkeley Natl Lab, Div Mat Sci, One Cyclotron Rd, Berkeley, CA 94720 USA. [Yano, Junko] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, One Cyclotron Rd, Berkeley, CA 94720 USA. [Liu, Zhi] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Liu, Zhi] ShanghaiTech Univ, Sch Phys Sci & Technol, Div Photon Sci & Condensed Matter Phys, Shanghai 200031, Peoples R China. [Crumlin, Ethan J.] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, One Cyclotron Rd, Berkeley, CA 94720 USA. RP Liu, Z; Crumlin, EJ (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, One Cyclotron Rd, Berkeley, CA 94720 USA.; Liu, Z (reprint author), Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China.; Liu, Z (reprint author), ShanghaiTech Univ, Sch Phys Sci & Technol, Div Photon Sci & Condensed Matter Phys, Shanghai 200031, Peoples R China.; Crumlin, EJ (reprint author), Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, One Cyclotron Rd, Berkeley, CA 94720 USA. EM zliu2@mail.sim.ac.cn; ejcrumlin@lbl.gov RI Liu, Zhi/B-3642-2009; OI Liu, Zhi/0000-0002-8973-6561; Favaro, Marco/0000-0002-3502-8332 FU Office of Science, Office of Basic Energy Science (BES), of the U.S. Department of Energy (DOE) [DE-SC0004993]; Joint Center for Energy Storage Research (JCESR), DOE Energy Innovation Hubs; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Natural Science Foundation of China [11227902]; CAS-Shanghai Science Research Center [CAS-SSRC-YH-2015-01] FX This work was supported through the Office of Science, Office of Basic Energy Science (BES), of the U.S. Department of Energy (DOE) under award no. DE-SC0004993 to the Joint Center for Artificial Photosynthesis (JCAP) and as part of the Joint Center for Energy Storage Research (JCESR), DOE Energy Innovation Hubs.; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.; Z.L. thanks the support from National Natural Science Foundation of China under Contract No. 11227902. This work was also partially supported by CAS-Shanghai Science Research Center, Grant No.: CAS-SSRC-YH-2015-01. NR 55 TC 3 Z9 3 U1 22 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG 31 PY 2016 VL 7 AR 12695 DI 10.1038/ncomms12695 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH6KI UT WOS:000391881500001 PM 27576762 ER PT J AU Stone, G Ophus, C Birol, T Ciston, J Lee, CH Wang, K Fennie, CJ Schlom, DG Alem, N Gopalan, V AF Stone, Greg Ophus, Colin Birol, Turan Ciston, Jim Lee, Che-Hui Wang, Ke Fennie, Craig J. Schlom, Darrell G. Alem, Nasim Gopalan, Venkatraman TI Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide SO NATURE COMMUNICATIONS LA English DT Article ID BILBAO CRYSTALLOGRAPHIC SERVER; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; GIANT MAGNETORESISTANCE; COMPLEX OXIDES; BASIS-SET; PEROVSKITES; INTERFACES; CHEMISTRY; HETEROSTRUCTURES AB Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), A(n+1)BnO(3n+1), thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Angstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. C1 [Stone, Greg; Lee, Che-Hui; Alem, Nasim; Gopalan, Venkatraman] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Stone, Greg; Lee, Che-Hui; Alem, Nasim; Gopalan, Venkatraman] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Ophus, Colin; Ciston, Jim] Lawrence Berkeley Natl Lab, Natl Ctr Elect Microscopy Mol Foundry, Berkeley, CA 94720 USA. [Birol, Turan] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Lee, Che-Hui; Schlom, Darrell G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Wang, Ke] Penn State Univ, Mat Res Inst, Mat Characterizat Lab, University Pk, PA 16802 USA. [Fennie, Craig J.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Schlom, Darrell G.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP Gopalan, V (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.; Gopalan, V (reprint author), Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. EM vgopalan@psu.edu RI Birol, Turan/D-1948-2012 OI Birol, Turan/0000-0001-5174-3320 FU Center for Nanoscale Science, a National Science Foundation center [DMR-1420620]; NSF [DMR-1210588, DMR-1056441]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Rutgers Center for Materials Theory FX G.S., C.-H.L., D.G.S., V.G. and N.A. were primarily supported by the Center for Nanoscale Science, a National Science Foundation center through Grant number DMR-1420620. G.S. and V.G. also received partial support from NSF Grant number DMR-1210588. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. T.B. was supported by the Rutgers Center for Materials Theory. C.J.F. acknowledges support from the NSF Grant number DMR-1056441. We would like to thank Marissa Libbee for her helpful guidance preparing TEM samples. We would also like to thank Roman Engel-Herbert for useful discussions and Haiying Wang with sample prep. NR 47 TC 0 Z9 0 U1 14 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG 31 PY 2016 VL 7 AR 12572 DI 10.1038/ncomms12572 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH6GD UT WOS:000391870000001 PM 27578622 ER PT J AU Yang, Y Yang, MJ Zhu, K Johnson, JC Berry, JJ van de Lagemaat, J Beard, MC AF Yang, Ye Yang, Mengjin Zhu, Kai Johnson, Justin C. Berry, Joseph J. van de lagemaat, Jao Beard, Matthew C. TI Large polarization-dependent exciton optical Stark effect in lead iodide perovskites SO NATURE COMMUNICATIONS LA English DT Article ID SEMICONDUCTOR-LASER; QUANTUM-DOT; SPIN AB A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics. C1 [Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de lagemaat, Jao; Beard, Matthew C.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. RP Yang, Y; Beard, MC (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. EM ye.yang@nrel.gov; matt.beard@nrel.gov OI BEARD, MATTHEW/0000-0002-2711-1355; Yang, Mengjin/0000-0003-2019-4298 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through the Solar Photochemistry programme [DE-AC36-08GO28308]; US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through the Solar Photochemistry programme under contract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado. Perovskite films were supplied from the Hybrid Perovskite Solar Cell program of the National Center for Photovoltaics funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. NR 33 TC 1 Z9 1 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG 31 PY 2016 VL 7 AR 12613 DI 10.1038/ncomms12613 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH6GW UT WOS:000391872000001 PM 27577007 ER PT J AU Zhang, WG Mao, JH Zhu, W Jain, AK Liu, K Brown, JB Karpen, GH AF Zhang, Weiguo Mao, Jian-Hua Zhu, Wei Jain, Anshu K. Liu, Ke Brown, James B. Karpen, Gary H. TI Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy SO NATURE COMMUNICATIONS LA English DT Article ID CELL LUNG-CANCER; CENP-A; BREAST-CANCER; CHROMOSOMAL INSTABILITY; ADJUVANT CHEMOTHERAPY; GENOMIC INSTABILITY; MITOTIC CHECKPOINT; DRUG-SENSITIVITY; DNA-DAMAGE; ANEUPLOIDY AB Chromosomal instability (CIN) is a hallmark of cancer that contributes to tumour heterogeneity and other malignant properties. Aberrant centromere and kinetochore function causes CIN through chromosome missegregation, leading to aneuploidy, rearrangements and micronucleus formation. Here we develop a Centromere and kinetochore gene Expression Score (CES) signature that quantifies the centromere and kinetochore gene misexpression in cancers. High CES values correlate with increased levels of genomic instability and several specific adverse tumour properties, and prognosticate poor patient survival for breast and lung cancers, especially early-stage tumours. They also signify high levels of genomic instability that sensitize cancer cells to additional genotoxicity. Thus, the CES signature forecasts patient response to adjuvant chemotherapy or radiotherapy. Our results demonstrate the prognostic and predictive power of the CES, suggest a role for centromere misregulation in cancer progression, and support the idea that tumours with extremely high CIN are less tolerant to specific genotoxic therapies. C1 [Zhang, Weiguo; Mao, Jian-Hua; Karpen, Gary H.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, One Cyclotron Rd,Mailstop 977, Berkeley, CA 94720 USA. [Zhang, Weiguo; Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Zhu, Wei] Cellular Biomed Grp Inc, Dept Translat Bioinformat, Level 5,Bldg 1,333 Guiping Rd, Shanghai 200233, Peoples R China. [Jain, Anshu K.] Yale Univ, Dept Therapeut Radiol, Yale Sch Med, New Haven, CT 06510 USA. [Jain, Anshu K.] Ashland Bellefonte Canc Ctr, 122 St Christopher Dr, Ashland, KY 41101 USA. [Liu, Ke; Brown, James B.] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, One Cyclotron Rd,Mailstop 977, Berkeley, CA 94720 USA. [Liu, Ke; Brown, James B.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Brown, James B.] Univ Birmingham, Dept Environm Bioinformat, Birmingham B15 2TT, W Midlands, England. RP Karpen, GH (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, One Cyclotron Rd,Mailstop 977, Berkeley, CA 94720 USA.; Karpen, GH (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Zhu, W (reprint author), Cellular Biomed Grp Inc, Dept Translat Bioinformat, Level 5,Bldg 1,333 Guiping Rd, Shanghai 200233, Peoples R China. EM wzhang2@lbl.gov; ghkarpen@lbl.gov FU NIH [R01 GM066272, GM119011, CA116481] FX We are grateful to members of the Karpen lab and Dr Hao Tang for critical reading of the manuscript, Ms Hannah K. Connolly from the UCSF breast cancer SPORE for her enthusiastic support and Mr Kevin Peet for editorial assistance. We thank Dr Joe Gray for the breast cancer data set with radiotherapy information, Drs Hao Tang and Yang Xie for normalized GSE42127 data set, Dr K.J. Gao for neo-therapy data associated with GSE20685, and Dr Balazs Gyorffy for technical assistance on K-M Plotter database. We thank TCGA, Broad Institute, Cancer Genome Project at Sanger Institute and K-M Plotter for maintaining critical public databases and services. We apologize to numerous colleagues in the centromere and kinetochore field for being unable to cite many important papers due to space limitations. This work was supported by NIH grants R01 GM066272 and GM119011 (G.H.K.) and CA116481 (J.-H.M.). NR 80 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG 31 PY 2016 VL 7 AR 12619 DI 10.1038/ncomms12619 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH6GY UT WOS:000391872200001 PM 27577169 ER PT J AU Gallis, MA Koehler, TP Torczynski, JR Plimpton, SJ AF Gallis, M. A. Koehler, T. P. Torczynski, J. R. Plimpton, S. J. TI Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability SO PHYSICAL REVIEW FLUIDS LA English DT Article ID GAS-FLOWS; FLUIDS; TRANSITION; TURBULENCE; FUSION; GAIN AB The Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters the self-similar regime, in agreement with experimental observations. For the conditions simulated, diffusion can influence the initial instability growth significantly. C1 [Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. [Plimpton, S. J.] Sandia Natl Labs, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA. RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM magalli@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank Dr. D. J. Rader and Dr. S. N. Kempka of Sandia National Laboratories and Professor D. I. Pullin of the California Institute of Technology for many useful discussions and suggestions. SPARTA is an open-source DSMC code available from Ref. [44]. NR 50 TC 2 Z9 2 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-990X J9 PHYS REV FLUIDS JI Phys. Rev. Fluids PD AUG 31 PY 2016 VL 1 IS 4 AR 043403 DI 10.1103/PhysRevFluids.1.043403 PG 20 WC Physics, Fluids & Plasmas SC Physics GA EF3IL UT WOS:000390217900001 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethani, A Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bisanz, T Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dolejsi, J Dolezal, Z Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudder, AC Duffield, EM Duflot, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gasnikova, K Gatti, C Gaudiello, A Gaudio, G Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, K Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanisch, S Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, D Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Herget, V Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, S Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kaji, T Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kilby, CR Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koehler, NM Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, B Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, C Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, A Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Savic, N Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, L Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjlin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strhmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, M Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tu, Y Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Ferrer, JAV Van Denwollenberg, W Van der Deijl, PC van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I Van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veeraraghavan, V Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M Von der Schmitt, H Von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M-S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Navarro, L. Barranco Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethani, A. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bisanz, T. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buscher, D. Buscher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Lopez, S. Calvente Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dolejsi, J. Dolezal, Z. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudder, A. Chr. Duffield, E. M. Duflot, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gasnikova, K. Gatti, C. Gaudiello, A. Gaudio, G. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanisch, S. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Herget, V. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, S. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kaji, T. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kilby, C. R. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koehler, N. M. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, B. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, C. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Zu Theenhausen, H. Meyer Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Monig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Rodriguez, L. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Perez, A. Rodriguez Rodriguez, D. Rodriguez Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Savic, N. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, L. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjlin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Strhmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, M. Tanaka, R. Tanaka, S. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torr Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tu, Y. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Ferrer, J. A. Valls Van denWollenberg, W. Van der Deijl, P. C. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. Van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veeraraghavan, V. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. Von der Schmitt, H. Von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zwalinski, L. CA ATLAS Collaboration TI Measurement of exclusive gamma gamma -> W+W- production and search for exclusive Higgs boson production in pp collisions at root s=8 TeV using the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID 2-PHOTON PROCESSES; LHC; PHYSICS AB Searches for exclusively produced W boson pairs in the process pp(gamma gamma) -> pW(+) W- p and an exclusively produced Higgs boson in the process pp(gg) -> pHp have been performed using e(+/-) mu(-/+) final states. These measurements use 20.2 fb(-1) of pp collisions collected by the ATLAS experiment at a center-of-mass energy root s = 8 TeV at the LHC. Exclusive production of W+ W- consistent with the Standard Model prediction is found with 3.0 sigma significance. The exclusive W+ W- production cross section is determined to be sigma(gamma gamma -> W+ W- -> e(+/-) mu(-/+) X) = 6.9 +/- 2.2(stat) +/- 1.4(sys) fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95% confidence level as -1.7 x 10(-6) < a(0)(W) / Lambda(2) < 1.7 x 10(-6) GeV-2 and -6.4 x 10(-6) < a(C)(W) / Lambda(2) < 6.3 x 10(-6) GeV-2. A 95% confidence-level upper limit on the total production cross section for an exclusive Higgs boson is set to 1.2 pb. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Aloisio, A.; Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Aloisio, A.; Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Aloisio, A.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rizzi, C.; Perez, A. Rodriguez; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Aloisio, A.; Alonso, A.; Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Navarro, J. E. Garcia; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aloisio, A.; Alonso, A.; Amadio, B. T.; Amorim, A.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Navarro, J. E. Garcia; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Aloisio, A.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys Engn, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Sidoti, A.; Ucchielli, G.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Aloisio, A.; Alonso, A.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Aloisio, A.; Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; Von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Phy Inst, Bonn, Germany. [Ahlen, S. P.; Aloisio, A.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Goblirsch-Kolb, M.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes; Peralva, B. S.] Fed Univ Juiz De Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stucci, S. A.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Aloisio, A.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backhaus, M.; Barak, L.; Barisits, M-S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hanisch, S.; Hawkings, R. J.; Helary, L.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; Van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Aloisio, A.; Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Aloisio, A.; Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Li, C.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Aloisio, A.; Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, PKU CHEP, Shanghai, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Aloisio, A.; Boumediene, D.; Busato, E.; Calvet, D.; Chomont, A. R.; Donini, J.; Gris, Ph.; Pallin, D.; Santoni, C.; Simon, D.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Frascati, Italy. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Aloisio, A.; Alonso, A.; Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Aloisio, A.; Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Gossling, C.; Homann, M.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Aloisio, A.; Alonso, A.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Pino, S. A. Olivares; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruhr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, High Energy Phys Inst, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Bisanz, T.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Aloisio, A.; Berlendis, S.; Bethani, A.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Aloisio, A.; Alonso, A.; Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Aloisio, A.; Alonso, A.; Amako, K.; Amorim, A.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Aloisio, A.; Alonso, A.; Amorim, A.; Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Aloisio, A.; Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Lopez, S. Calvente; Cueto, A.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Caputo, R.; Cuth, J.; Dudder, A. Chr.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Aloisio, A.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Aloisio, A.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Aloisio, A.; Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Koehler, N. M.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; Terzo, S.; Von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aloisio, A.; Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van denWollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; Van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van denWollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; Van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France. [Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Aloisio, A.; Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Brendlinger, K.; Haney, B.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Reichert, J.; Thomson, E.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] Kurchatov Inst, Natl Res Ctr, BP Konstantinov Petersburg Nucl Phys Inst, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Andreazza, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Aloisio, A.; Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Staroba, P.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Vaniachine, A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys Protvino, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Vanadia, M.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torr; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Aloisio, A.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjlin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Aloisio, A.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjlin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Aloisio, A.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Soffer, A.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Aloisio, A.; Alonso, A.; Amorim, A.; Andreazza, A.; Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Mori, T.; Morinaga, M.; Nakamura, T.; Nobe, T.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Pinamonti, M.; Serkin, L.; Shaw, K.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Aloisio, A.; Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Aloisio, A.; Alonso, A.; Piqueras, D. Alvarez; Amorim, A.; Andreazza, A.; Angerami, A.; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Aloisio, A.; Alonso, A.; Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Ferrer, A.; Fuster, J.; Garcia, C.; Higon-Rodriguez, E.; Lacasta, C.; Mamuzic, J.; Melini, D.; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Valero, A.; Ferrer, J. A. Valls] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Aloisio, A.; Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Aloisio, A.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; LeBlanc, M.; Lefebvre, M.; Pearce, J.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Aloisio, A.; Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Herget, V.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strhmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wrzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Ellinghaus, F.; Ernis, G.; Gilles, G.; Hirschbuehl, D.; Riegel, C. J.; Tepel, F.; Zeitnitz, C.] Berg Univ Wuppertal, Fak Math & Nat Wissensch, Fachgrp Phys, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Ideal, E.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Lin, S. C.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Dept Fis & Astron, Fac Ciencias, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Ottawa, ON, Canada. [Ducu, O. A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] Georgian Tech Univ GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy INRNE, Sofia, Bulgaria. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Song, H. Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Zhang, R.] CNRS IN2P3, Marseille, France. RI Chekulaev, Sergey/O-1145-2015; Lazzaroni, Massimo/N-3675-2015; Prokoshin, Fedor/E-2795-2012; Warburton, Andreas/N-8028-2013; Owen, Mark/Q-8268-2016; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Ventura, Andrea/A-9544-2015; Mashinistov, Ruslan/M-8356-2015; Gutierrez, Phillip/C-1161-2011; White, Ryan/E-2979-2015; Kantserov, Vadim/M-9761-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Mitsou, Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015; Zhukov, Konstantin/M-6027-2015; Snesarev, Andrey/H-5090-2013; Solodkov, Alexander/B-8623-2017; Tikhomirov, Vladimir/M-6194-2015; Doyle, Anthony/C-5889-2009; Zaitsev, Alexandre/B-8989-2017; Carli, Ina/C-2189-2017; Guo, Jun/O-5202-2015; Villa, Mauro/C-9883-2009; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015 OI Lazzaroni, Massimo/0000-0002-4094-1273; Prokoshin, Fedor/0000-0001-6389-5399; Warburton, Andreas/0000-0002-2298-7315; Owen, Mark/0000-0001-6820-0488; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Ventura, Andrea/0000-0002-3368-3413; Mashinistov, Ruslan/0000-0001-7925-4676; White, Ryan/0000-0003-3589-5900; Kantserov, Vadim/0000-0001-8255-416X; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645; Solodkov, Alexander/0000-0002-2737-8674; Tikhomirov, Vladimir/0000-0002-9634-0581; Doyle, Anthony/0000-0001-6322-6195; Zaitsev, Alexandre/0000-0002-4961-8368; Carli, Ina/0000-0002-0411-1141; Guo, Jun/0000-0001-8125-9433; Villa, Mauro/0000-0002-9181-8048; Peleganchuk, Sergey/0000-0003-0907-7592; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, USA; NSF, USA; BCKDF; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissement d'Avenir Labex, France; Investissement d'Avenir Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [74]. NR 73 TC 2 Z9 2 U1 26 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 31 PY 2016 VL 94 IS 3 AR 032011 DI 10.1103/PhysRevD.94.032011 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DV6LH UT WOS:000383046500001 ER PT J AU Artamonov, AV Bassalleck, B Bhuyan, B Blackmore, EW Bryman, DA Chen, S Chiang, IH Christidi, IA Cooper, PS Diwan, MV Frank, JS Fujiwara, T Hu, J Ives, J Izmaylov, AO Jaffe, DE Kabe, S Kettell, SH Khabibullin, MM Khotjantsev, AN Kitching, P Kobayashi, M Komatsubara, TK Konaka, A Kudenko, YG Landsberg, LG Lewis, B Li, KK Littenberg, LS Macdonald, JA Mildenberger, J Mineev, OV Miyajima, M Mizouchi, K Muramatsu, N Nakano, T Nomachi, M Nomura, T Numao, T Obraztsov, VF Omata, K Patalakha, DI Poutissou, R Redlinger, G Sato, T Sekiguchi, T Shaikhiev, AT Shinkawa, T Strand, RC Sugimoto, S Tamagawa, Y Tschirhart, R Tsunemi, T Vavilov, DV Viren, B Wang, Z Wei, HY Yershov, NV Yoshimura, Y Yoshioka, T AF Artamonov, A. V. Bassalleck, B. Bhuyan, B. Blackmore, E. W. Bryman, D. A. Chen, S. Chiang, I-H. Christidi, I. -A. Cooper, P. S. Diwan, M. V. Frank, J. S. Fujiwara, T. Hu, J. Ives, J. Izmaylov, A. O. Jaffe, D. E. Kabe, S. Kettell, S. H. Khabibullin, M. M. Khotjantsev, A. N. Kitching, P. Kobayashi, M. Komatsubara, T. K. Konaka, A. Kudenko, Yu. G. Landsberg, L. G. Lewis, B. Li, K. K. Littenberg, L. S. Macdonald, J. A. Mildenberger, J. Mineev, O. V. Miyajima, M. Mizouchi, K. Muramatsu, N. Nakano, T. Nomachi, M. Nomura, T. Numao, T. Obraztsov, V. F. Omata, K. Patalakha, D. I. Poutissou, R. Redlinger, G. Sato, T. Sekiguchi, T. Shaikhiev, A. T. Shinkawa, T. Strand, R. C. Sugimoto, S. Tamagawa, Y. Tschirhart, R. Tsunemi, T. Vavilov, D. V. Viren, B. Wang, Zhe Wei, Hanyu Yershov, N. V. Yoshimura, Y. Yoshioka, T. CA E949 Collaboration TI Search for the rare decay K+ -> mu(+) nu(nu)over-bar nu SO PHYSICAL REVIEW D LA English DT Article AB Evidence of the K+ -> mu(+) nu(nu) over bar nu decay was searched for using E949 ( Brookhaven National Laboratory, USA) experimental data with an exposure of 1.70 x 10(12) stopped kaons. The data sample is dominated by the background process K+ -> mu(+) nu(mu)gamma. An upper limit on the decay rate Gamma(K+ -> mu(+) nu(nu) over bar nu) < 2.4 x 10(-6)Gamma(K+ -> all) at 90% confidence level was set assuming the standard model muon spectrum. The data are presented in such a way as to allow calculation of rates for any assumed mu(+) spectrum. C1 [Artamonov, A. V.; Landsberg, L. G.; Obraztsov, V. F.; Patalakha, D. I.; Vavilov, D. V.] Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. [Bassalleck, B.; Lewis, B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Bhuyan, B.; Chiang, I-H.; Diwan, M. V.; Frank, J. S.; Jaffe, D. E.; Kettell, S. H.; Li, K. K.; Littenberg, L. S.; Redlinger, G.; Strand, R. C.; Viren, B.; Wang, Zhe] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blackmore, E. W.; Chen, S.; Hu, J.; Konaka, A.; Macdonald, J. A.; Mildenberger, J.; Numao, T.; Poutissou, R.; Vavilov, D. V.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Bryman, D. A.; Ives, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Chen, S.; Wang, Zhe; Wei, Hanyu] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Christidi, I. -A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Cooper, P. S.; Tschirhart, R.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Fujiwara, T.; Mizouchi, K.; Nomura, T.; Tsunemi, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Izmaylov, A. O.; Khabibullin, M. M.; Khotjantsev, A. N.; Kudenko, Yu. G.; Mineev, O. V.; Shaikhiev, A. T.; Yershov, N. V.] RAS, Inst Nucl Res, 60 October Revolut Prospect 7a, Moscow 117312, Russia. [Kabe, S.; Kobayashi, M.; Komatsubara, T. K.; Nomura, T.; Omata, K.; Sato, T.; Sekiguchi, T.; Sugimoto, S.; Tsunemi, T.; Yoshimura, Y.; Yoshioka, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Kitching, P.] Univ Alberta, Ctr Subat Res, Edmonton, AB T6G 2N5, Canada. [Kudenko, Yu. G.] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Kudenko, Yu. G.] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow 115409, Russia. [Miyajima, M.; Tamagawa, Y.] Univ Fukui, Dept Appl Phys, 3-9-1 Bunkyo, Fukui, Fukui 9108507, Japan. [Muramatsu, N.; Nakano, T.] Osaka Univ, Nucl Phys Res Ctr, 10-1 Mihogaoka, Osaka 5670047, Japan. [Nomachi, M.] Osaka Univ, Lab Nucl Studies, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan. [Shinkawa, T.] Natl Def Acad, Dept Appl Phys, Yokosuka, Kanagawa 2398686, Japan. [Christidi, I. -A.] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India. [Frank, J. S.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece. [Kabe, S.; Landsberg, L. G.; Macdonald, J. A.; Sugimoto, S.] 1 Nathan Hale Dr, Setauket, NY 11733 USA. [Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Taihaku Ku, Sendai, Miyagi 9820826, Japan. [Yoshioka, T.] Kyushu Univ, Dept Phys, Higashi Ku, Fukuoka 8128581, Japan. RP Artamonov, AV (reprint author), Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. RI Wei, Hanyu/D-7291-2017 OI Wei, Hanyu/0000-0003-1973-4912 FU Russian Science Foundation [14-12-00560]; U.S. Department of Energy; Ministry of Education, Culture, Sports, Science and Technology of Japan through the Japan-U.S. Cooperative Research Program in High Energy Physics; Natural Sciences and Engineering Research Council [157985]; National Research Council of Canada; National Natural Science Foundation of China; Tsinghua University Initiative Scientific Research Program FX This research was supported in part by Grant #14-12-00560 of the Russian Science Foundation, the U.S. Department of Energy, the Ministry of Education, Culture, Sports, Science and Technology of Japan through the Japan-U.S. Cooperative Research Program in High Energy Physics and under Grant-in-Aids for Scientific Research, the Natural Sciences and Engineering Research Council (Grant no. 157985) and the National Research Council of Canada, National Natural Science Foundation of China, and the Tsinghua University Initiative Scientific Research Program. NR 9 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 31 PY 2016 VL 94 IS 3 AR 032012 DI 10.1103/PhysRevD.94.032012 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DV6LH UT WOS:000383046500002 ER PT J AU Love, CN Winzeler, ME Beasley, R Scott, DE Nunziata, SO Lance, SL AF Love, Cara N. Winzeler, Megan E. Beasley, Rochelle Scott, David E. Nunziata, Schyler O. Lance, Stacey L. TI Patterns of amphibian infection prevalence across wetlands on the Savannah River Site, South Carolina, USA SO DISEASES OF AQUATIC ORGANISMS LA English DT Article DE Batrachochytrium; Chytrid; Metals; Ranavirus; Wetland ID AMBYSTOMA-TIGRINUM VIRUS; BATRACHOCHYTRIUM-DENDROBATIDIS; POPULATION DECLINES; CHYTRID FUNGUS; WIDESPREAD OCCURRENCE; DISEASE DYNAMICS; BUFO-TERRESTRIS; RANAVIRUS; CHYTRIDIOMYCOSIS; MORTALITY AB Amphibian diseases, such as chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) and ranaviral disease caused by ranaviruses, are often linked to global amphibian population declines, yet the ecological dynamics of both pathogens are poorly understood. The goal of our study was to determine the baseline prevalence, pathogen loads, and co-infection rate of Bd and ranavirus across the Savannah River Site (SRS) in South Carolina, USA, a region with rich amphibian diversity and a history of amphibian-based research. We tested over 1000 individuals, encompassing 21 amphibian species from 11 wetlands for both Bd and ranavirus. The prevalence of Bd across individuals was 9.7%. Using wetland means, the mean (+/- SE) Bd prevalence was 7.9 +/- 2.9%. Among toad species, Anaxyrus terrestris had 95 and 380% greater odds of being infected with Bd than Scaphiopus holbrookii and Gastrophryne carolinensis, respectively. Odds of Bd infection in adult A. terrestris and Lithobates sphenocephalus were 75 to 77% greater in metal-contaminated sites. The prevalence of ranavirus infections across all individuals was 37.4%. Mean wetland ranavirus prevalence was 29.8 +/- 8.8% and was higher in post-metamorphic individuals than in aquatic larvae. Ambystoma tigrinum had 83 to 85% higher odds of ranavirus infection than A. opacum and A. talpoideum. We detected a 4.8% co-infection rate, with individuals positive for ranavirus having a 5% higher occurrence of Bd. In adult Anaxyrus terrestris, odds of Bd infection were 13% higher in ranavirus-positive animals and odds of co-infection were 23% higher in contaminated wetlands. Overall, we found the pathogen prevalence varied by wetland, species, and life stage. C1 [Love, Cara N.; Winzeler, Megan E.; Beasley, Rochelle; Scott, David E.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Love, Cara N.; Winzeler, Megan E.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Nunziata, Schyler O.] Univ Kentucky, Dept Biol Sci, Lexington, KY 40506 USA. RP Lance, SL (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM lance@srel.uga.edu OI Winzeler, Megan/0000-0002-0361-1582 FU US Department of Energy [DE-FC09-07SR22506]; DOE National Nuclear Security Administration FX We thank C. Muletz and N. McInerney for providing the Bd standards, P. Johnson for providing the oligo sequence for the ranavirus standard, and J. Hoverman and S. Kimble for assistance with optimizing the ranavirus qPCR. A. L. Bryan and D. Soteropolous provided field and laboratory assistance, and R. W. Flynn, C. Rumrill, S. Weir, A. Coleman, J. O'Bryhim and 2 anonymous reviewers provided valuable comments on earlier versions of the manuscript. This research was partially supported by US Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation, and was also made possible by the status of the SRS as a National Environmental Research Park (NERP), as well as the protection of research wetlands in the SRS Set-Aside Program. Project funding was provided by the DOE National Nuclear Security Administration. Animals were collected under SCDNR permit #G-09-03 following IACUC procedures (AUP A2009 10-175-Y2-A0) from the University of Georgia. NR 70 TC 0 Z9 0 U1 13 U2 14 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0177-5103 EI 1616-1580 J9 DIS AQUAT ORGAN JI Dis. Aquat. Org. PD AUG 31 PY 2016 VL 121 IS 1 BP 1 EP 14 DI 10.3354/dao03039 PG 14 WC Fisheries; Veterinary Sciences SC Fisheries; Veterinary Sciences GA DX2ZV UT WOS:000384243300001 PM 27596855 ER PT J AU Tran, AP Dafflon, B Hubbard, SS Kowalsky, MB Long, P Tokunaga, TK Williams, KH AF Anh Phuong Tran Dafflon, Baptiste Hubbard, Susan S. Kowalsky, Michael B. Long, Philip Tokunaga, Tetsu K. Williams, Kenneth H. TI Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID ELECTRICAL-RESISTIVITY TOMOGRAPHY; DATA INCORPORATING TOPOGRAPHY; GROUND-PENETRATING RADAR; DC RESISTIVITY; SOIL-MOISTURE; TIME-LAPSE; HYDROGEOPHYSICAL INVERSION; HYDRAULIC-PROPERTIES; TEMPERATURE; CONDUCTIVITY AB Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme - which is based on a nonisothermal, multiphase hydrological model - provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics. C1 [Anh Phuong Tran; Dafflon, Baptiste; Hubbard, Susan S.; Kowalsky, Michael B.; Long, Philip; Tokunaga, Tetsu K.; Williams, Kenneth H.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Div, Earth & Environm Sci Area, Berkeley, CA 94720 USA. RP Tran, AP (reprint author), Lawrence Berkeley Natl Lab, Climate & Ecosyst Div, Earth & Environm Sci Area, Berkeley, CA 94720 USA. EM aptran@lbl.gov RI Hubbard, Susan/E-9508-2010; Long, Philip/F-5728-2013; Tokunaga, Tetsu/H-2790-2014; Williams, Kenneth/O-5181-2014; Dafflon, Baptiste/G-2441-2015; Tran, Anh Phuong/G-1911-2015 OI Long, Philip/0000-0003-4152-5682; Tokunaga, Tetsu/0000-0003-0861-6128; Williams, Kenneth/0000-0002-3568-1155; Tran, Anh Phuong/0000-0002-7703-6621 FU Sub-surface Science Scientific Focus Area - US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material is based upon work supported as part of the Sub-surface Science Scientific Focus Area funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under award number DE-AC02-05CH11231. The authors would like to thank Stefan Finsterle for providing iTOUGH2 codes and support, and Thomas Gunther for providing the BERT codes. NR 54 TC 0 Z9 0 U1 7 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PD AUG 31 PY 2016 VL 20 IS 8 BP 3477 EP 3491 DI 10.5194/hess-20-3477-2016 PG 15 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA DW8GM UT WOS:000383892900001 ER PT J AU Fu, SF Zhu, CZ Song, JH Engelhard, M Xia, HB Du, D Lin, YH AF Fu, Shaofang Zhu, Chengzhou Song, Junhua Engelhard, Mark Xia, Haibing Du, Dan Lin, Yuehe TI PdCuPt Nanocrystals with Multibranches for Enzyme-Free Glucose Detection SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE branched nanocrystals; alloys; galvanic replacement reaction; enzyme-free biosensors; glucose detection ID ELECTROCHEMICAL SYNTHESIS; ONE-STEP; GRAPHENE; SENSORS; NANOSTRUCTURES; NANOWIRES; PLATINUM; ELECTROOXIDATION; NANOCOMPOSITES; NANOPARTICLES AB By carefully controlling the synthesis condition, branched PtCu bimetallic templates were synthesized in aqueous solution. After the galvanic replacement reaction between PtCu templates and the Pt precursors, PdCuPt trimetallic nanocrystals with branched structures were obtained. Owing to the open structure and the optimized composition, the electrochemical experimental results reveal that the PdCuPt trimetallic nanocrystals possess high electrocatalytic activity, selectivity and stability for the oxidation of glucose in alkaline solution. In detail, a detection limit of 1.29 mu M and a sensitivity of 378 mu A/mM/cm(2) are achieved. The good electrocatalytic performance should be attributed to the unique branched nanostructure as well as the synergistic effect among metals. The superior catalytic properties suggest that these nanocrystals are promising for enzyme-free detection of glucose. C1 [Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Du, Dan; Lin, Yuehe] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Engelhard, Mark; Lin, Yuehe] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Xia, Haibing] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. RP Lin, YH (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.; Lin, YH (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM yuehe.lin@wsu.edu RI Zhu, Chengzhou/M-3566-2014; Xia, Haibing/A-8711-2008; FU, SHAOFANG/D-2328-2016 OI Xia, Haibing/0000-0003-2262-7958; FU, SHAOFANG/0000-0002-7871-6573 FU Washington State University, USA FX This work was supported by a start-up funding of Washington State University, USA. NR 32 TC 1 Z9 1 U1 24 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG 31 PY 2016 VL 8 IS 34 BP 22196 EP 22200 DI 10.1021/acsami.6b06158 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DU9CP UT WOS:000382514100042 PM 27494365 ER PT J AU Wu, XH Xu, GL Zhong, GM Gong, ZL McDonald, MJ Zheng, SY Fu, RQ Chen, ZH Amine, K Yang, Y AF Wu, Xuehang Xu, Gui-Liang Zhong, Guiming Gong, Zhengliang McDonald, Matthew J. Zheng, Shiyao Fu, Riqiang Chen, Zonghai Amine, Khalil Yang, Yong TI Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE sodium ion battery; cathode material; Zn doping sodium nickel manganese oxide; structural transition ID ELECTROCHEMICAL PROPERTIES; POSITIVE ELECTRODE; RATE PERFORMANCE; NA BATTERIES; LITHIUM; STABILITY; SUBSTITUTION; CAPACITY; STORAGE AB P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for :,applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ X-ray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SS-NMR) techniques was carried out to gain a deep insight into the :structural evolution of P-2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) :during cycling. In situ HEXRD and ex situ TEM. measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni4+/Ni3+/Ni2+ redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers. C1 [Wu, Xuehang; Zhong, Guiming; McDonald, Matthew J.; Zheng, Shiyao; Yang, Yong] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China. [Wu, Xuehang; Zhong, Guiming; McDonald, Matthew J.; Zheng, Shiyao; Yang, Yong] Xiamen Univ, Dept Chem, Xiamen 361005, Fujian, Peoples R China. [Gong, Zhengliang; Yang, Yong] Xiamen Univ, Sch Energy Res, Xiamen 361005, Peoples R China. [Xu, Gui-Liang; Chen, Zonghai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. [Wu, Xuehang] Guangxi Univ, Collaborat Innovat Ctr Renewable Energy Mat, Nanning 530004, Guangxi, Peoples R China. [Fu, Riqiang] Natl High Magnet Field Lab, 1800 East Paul Dirac Dr, Tallahassee, FL 32310 USA. RP Yang, Y (reprint author), Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China.; Yang, Y (reprint author), Xiamen Univ, Dept Chem, Xiamen 361005, Fujian, Peoples R China.; Yang, Y (reprint author), Xiamen Univ, Sch Energy Res, Xiamen 361005, Peoples R China. EM yyang@xmu.edu.cn RI Chen, Zhong/G-4601-2010; Yang, Yong/G-4650-2010; XU, GUILIANG/F-3804-2017 FU National Natural Science Foundation of China [21233004, 21473148, 21428303]; National Basic Research Program of China (973 program) [2011CB935903] FX The authors acknowledge financial support of their research from the National Natural Science Foundation of China (Grant Nos. 21233004, 21473148, and 21428303) and the National Basic Research Program of China (973 program, Grant No. 2011CB935903). We sincerely acknowledge Dr. W. Wen and other staff of the XAFS beamline of Shanghai Synchrotron Radiation Facility for their support. R.F. is also indebted to the support for being a PCOSS fellow by the State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, China. NR 39 TC 4 Z9 4 U1 65 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG 31 PY 2016 VL 8 IS 34 BP 22227 EP 22237 DI 10.1021/acsami.6b06701 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DU9CP UT WOS:000382514100046 PM 27494351 ER PT J AU Steinmann, V Chakraborty, R Rekemeyer, PH Hartman, K Brandt, RE Polizzotti, A Yang, CX Moriarty, T Gradecak, S Gordon, RG Buonassisi, T AF Steinmann, Vera Chakraborty, Rupak Rekemeyer, Paul H. Hartman, Katy Brandt, Riley E. Polizzotti, Alex Yang, Chuanxi Moriarty, Tom Gradecak, Silvija Gordon, Roy G. Buonassisi, Tonio TI A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE thin-films; photovoltaics; novel absorber materials; tin sulfide; device shunting; performance reliability ID DEFECT-TOLERANT SEMICONDUCTORS; ATOMIC LAYER DEPOSITION; PHOTOVOLTAIC-DEVICE; ENERGY CONVERSION AB As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing "false-negative" results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 degrees C) to stimulate grain growth, followed by a much thinner, low-temperature (200 degrees C) absorber deposition. At a lower process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5X superior shunt resistance R-sh with smaller standard error sigma(Rsh). Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility. C1 [Steinmann, Vera; Chakraborty, Rupak; Hartman, Katy; Brandt, Riley E.; Polizzotti, Alex; Buonassisi, Tonio] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Rekemeyer, Paul H.; Gradecak, Silvija] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Yang, Chuanxi; Gordon, Roy G.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Moriarty, Tom] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Steinmann, V (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA. EM vsteinma@mit.edu; buonassisi@mit.edu OI Rekemeyer, Paul/0000-0002-5901-9027 FU TOTAL SA grant; Engineering Research Center Program of the National Science Foundation; Office of Energy Efficiency and Renewable Energy of the Department of Energy under NSF [EEC-1041895]; U.S. Department of Energy through SunShot Initiative [DE-EE0005329]; Alexander von Humboldt foundation; MITei/TOTAL Energy fellowship; NSF GRFP; NSF [DMR-08-19762, ECS-0335765]; Center for Nanoscale Systems at Harvard University FX The authors thank K. Emery from the cell certification team at the National Renewable Energy Laboratory for his assistance with current density voltage measurements, M. L. Castillo for her help with substrate preparation, and J. R Poindexter and R.L.Z. Hoye for fruitful scientific discussions. This work was supported by a TOTAL SA grant, by the Engineering Research Center Program of the National Science Foundation, by the Office of Energy Efficiency and Renewable Energy of the Department of Energy under NSF Cooperative Agreement No. EEC-1041895, and by the U.S. Department of Energy through the SunShot Initiative under contract DE-EE0005329. V.S., R.C., R.E.B., and A.P. acknowledge the support of the Alexander von Humboldt foundation, a MITei/TOTAL Energy fellowship, and two NSF GRFP fellowships, respectively. This work made use of the Center for Materials Science and Engineering at MIT which is supported by the NSF under award DMR-08-19762, and the Center for Nanoscale Systems at Harvard University which is supported by NSF under award ECS-0335765. NR 29 TC 0 Z9 0 U1 9 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG 31 PY 2016 VL 8 IS 34 BP 22664 EP 22670 DI 10.1021/acsami.6b07198 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DU9CP UT WOS:000382514100098 PM 27494110 ER PT J AU Woods, TA Mendez, HM Ortega, S Shi, XR Marx, D Bai, JF Moxley, RA Nagaraja, TG Graves, SW Deshpande, A AF Woods, Travis A. Mendez, Heather M. Ortega, Sandy Shi, Xiaorong Marx, David Bai, Jianfa Moxley, Rodney A. Nagaraja, T. G. Graves, Steven W. Deshpande, Alina TI Development of 11-Plex MOL-PCR Assay for the Rapid Screening of Samples for Shiga Toxin-Producing Escherichia coil SO FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY LA English DT Article DE STEC; MOL-PCR; multiplex PCR; Shiga toxin; EHEC ID MAJOR VIRULENCE FACTORS; MULTIPLEX PCR; CATTLE FECES; COLI INFECTIONS; O157 SEROGROUPS; UNITED-STATES; GENES; O145; O111; O103 AB Strains of Shiga toxin-producing Escherichia coli (STEC) are a serious threat to the health, with approximately half of the STEC related food-borne illnesses attributable to contaminated beef. We developed an assay that was able to screen samples for several important STEC associated serogroups (O26, O45, O103, O104, O111, O121, O145, O157) and three major virulence factors (eae, stx(1), stx(2)) in a rapid and multiplexed format using the Multiplex oligonucleotide ligation-PCR (MOL-PCR) assay chemistry. This assay detected unique STEC DNA signatures and is meant to be used on samples from various sources related to beef production, providing a multiplex and high-throughput complement to the multiplex PCR assays currently in use. Multiplex oligonucleotide ligation-PCR (MOL-PCR) is a nucleic acid-based assay chemistry that relies on flow cytometry/image cytometry and multiplex microsphere arrays for the detection of nucleic acid-based signatures present in target agents. The STEC MOL-PCR assay provided greater than 90% analytical specificity across all sequence markers designed when tested against panels of DNA samples that represent different STEC serogroups and toxin gene profiles. This paper describes the development of the 11-plex assay and the results of its validation. This highly multiplexed, but more importantly dynamic and adaptable screening assay allows inclusion of additional signatures as they are identified in relation to public health. As the impact of STEC associated illness on public health is explored additional information on classification will be needed on single samples; thus, this assay can serve as the backbone for a complex screening system. C1 [Woods, Travis A.; Mendez, Heather M.; Graves, Steven W.] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [Mendez, Heather M.] New Mexico Consortium, Los Alamos, NM USA. [Ortega, Sandy] Univ Rochester, Translat Biomed Sci, Rochester, NY USA. [Shi, Xiaorong; Bai, Jianfa; Nagaraja, T. G.] Kansas State Univ, Coll Vet Med, Dept Diagnost Med Pathobiol, Manhattan, KS 66506 USA. [Marx, David] Univ Nebraska Lincoln, Dept Stat, Lincoln, NE USA. [Moxley, Rodney A.] Univ Nebraska Lincoln, Sch Vet Med & Biomed Sci, Lincoln, NE USA. [Deshpande, Alina] Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA. RP Deshpande, A (reprint author), Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA. EM deshpande_a@lanl.gov FU U.S. Department of Agriculture (USDA), National Institute of Food and Agriculture [2012-68003-30155] FX This material is based on work that is supported by the U.S. Department of Agriculture (USDA), National Institute of Food and Agriculture under award 2012-68003-30155. NR 35 TC 0 Z9 0 U1 2 U2 2 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 2235-2988 J9 FRONT CELL INFECT MI JI Front. Cell. Infect. Microbiol. PD AUG 31 PY 2016 VL 6 AR 92 DI 10.3389/fcimb.2016.00092 PG 12 WC Immunology; Microbiology SC Immunology; Microbiology GA DU5VY UT WOS:000382282700001 PM 27630828 ER PT J AU Azad, A Rajwa, B Pothen, A AF Azad, Ariful Rajwa, Bartek Pothen, Alex TI Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of Flow Cytometry Samples SO FRONTIERS IN ONCOLOGY LA English DT Article DE flow cytometry; clusters; meta-clusters; template; matching; classification ID ACUTE MYELOID-LEUKEMIA; CELL-POPULATIONS; EXPRESSION; PROGNOSIS; IDENTIFICATION; COMPENSATION; DISTANCE; DISPLAY AB We describe algorithms for discovering immunophenotypes from large collections of flow cytometry samples and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters), a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class) that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples while ignoring noise and small sample-specific variations. We have applied the template-based scheme to analyze several datasets, including one representing a healthy immune system and one of acute myeloid leukemia (AML) samples. The last task is challenging due to the phenotypic heterogeneity of the several subtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML and were able to distinguish acute promyelocytic leukemia (APL) samples with the markers provided. Clinically, this is helpful since APL has a different treatment regimen from other subtypes of AML. Core algorithms used in our data analysis are available in the flowMatch package at www.bioconductor.org. It has been downloaded nearly 6,000 times since 2014. C1 [Azad, Ariful] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA USA. [Rajwa, Bartek] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA. [Pothen, Alex] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA. RP Pothen, A (reprint author), Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA. EM apothen@purdue.edu RI Rajwa, Bartek/B-3169-2009 OI Rajwa, Bartek/0000-0001-7540-8236 FU NIBIB NIH HHS [R21 EB015707] NR 60 TC 0 Z9 0 U1 1 U2 1 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 2234-943X J9 FRONT ONCOL JI Front. Oncol. PD AUG 31 PY 2016 VL 6 AR 188 DI 10.3389/fonc.2016.00188 PG 20 WC Oncology SC Oncology GA DU5XI UT WOS:000382286600001 PM 27630823 ER PT J AU Park, W Park, SJ Cho, S Shin, H Jung, YS Lee, B Na, K Kim, DH AF Park, Wooram Park, Sin-Jung Cho, Soojeong Shin, Heejun Jung, Young-Seok Lee, Byeongdu Na, Kun Kim, Dong-Hyun TI Intermolecular Structural Change for Thermoswitchable Polymeric Photosensitizer SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AQUEOUS METHYLCELLULOSE SOLUTIONS; PHOTODYNAMIC THERAPY; SINGLET OXYGEN; FIBRILLAR STRUCTURE; GOLD NANORODS; CANCER; HYDROXYPROPYLCELLULOSE; WATER; NANOPARTICLES; PHEOPHORBIDE AB We developed a thermoswitchable polymeric photosensitizer (T-PPS) by conjugating PS (Pheophorbide-a, PPb-a) to a. temperature-responsive polymer backbone of biacoinpatible hydroxypropyl cellulose. Self-quenched PS molecules linked in close proximity by pi-pi stacking in T-PPS were easily transited to an active monomeric state by the temperature-induced phase transition of polymer backbones. The temperature: responsive intermolecular interaction changes of PS Molecules in T-PPS were demonstrated in synchrotron small-angle X-ray scattering and UV-vis spectrophotometer analysis. The T-PPS allowed switchable activation and synergistically enhanced cancer cell killing effect at the hyperthermia temperature (45 degrees C). Our developed T-PPS has the considerable potential not only as a new class of photomedicine in clinics but also as a biosensor based on temperature responsiveness. C1 [Park, Wooram; Cho, Soojeong; Kim, Dong-Hyun] Northwestern Univ, Dept Radiol, Feinberg Sch Med, Chicago, IL 60611 USA. [Kim, Dong-Hyun] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA. [Park, Sin-Jung; Shin, Heejun; Jung, Young-Seok; Na, Kun] Catholic Univ Korea, Dept Biotechnol, Ctr Photomed, Bucheon Si 14662, Gyeonggi Do, South Korea. [Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Park, Sin-Jung] Univ Illinois, Coll Pharm, Dept Biopharmaceut Sci, Chicago, IL 60612 USA. RP Kim, DH (reprint author), Northwestern Univ, Dept Radiol, Feinberg Sch Med, Chicago, IL 60611 USA.; Kim, DH (reprint author), Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA.; Na, K (reprint author), Catholic Univ Korea, Dept Biotechnol, Ctr Photomed, Bucheon Si 14662, Gyeonggi Do, South Korea.; Lee, B (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM blee@aps.anl.gov; kna6997@catholic.ac.kr; dhkim@northwestern.edu OI Kim, Dong-Hyun/0000-0001-6815-3319 FU NCI [R01CA141047, R21CA173491, R21EB017986, R21CA185274]; NIBIB; Basic Research Laboratory (BRL) Program through the National Research Foundation of Korea (NRF) - Korean government (MSIP) [2015R1A4A1042350]; MICCoM as part of the Computational Materials Sciences Program - U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported by four grants R01CA141047, R21CA173491, R21EB017986, and R21CA185274 from the NCI and NIBIB. This research was also supported by the Basic Research Laboratory (BRL) Program (no. 2015R1A4A1042350), through the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP). B.L. was supported by MICCoM as part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This work used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. NR 44 TC 1 Z9 1 U1 30 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2016 VL 138 IS 34 BP 10734 EP 10737 DI 10.1021/jacs.6b04875 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DU9CH UT WOS:000382513300005 PM 27535204 ER PT J AU Zhao, YB Lee, SY Becknell, N Yaghi, OM Angell, CA AF Zhao, Yingbo Lee, Seung-Yul Becknell, Nigel Yaghi, Omar M. Angell, C. Austen TI Nanoporous Transparent MOF Glasses with Accessible Internal Surface SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL-ORGANIC FRAMEWORKS; FORMING LIQUIDS; PHASE-TRANSITION; AMORPHOUS ICE; COORDINATION; TEMPERATURE; SOLIDS; NETWORKS; CRYSTALS; STATE AB While glassy materials can be made from virtually every class of liquid (metallic, molecular, covalent, and ionic), to date, formation of glasses in which structural units impart porosity on the nanoscopic level remains Undeveloped. In view of the well-established porosity of metal organic frameworks (MOFs) and the flexibility of 'their design, we have sought to combine their formation principles with the general versatility of glassy materials. Although the preparation of glassy MOFs can be achieved by amorphization 'of crystalline frameworks, transparent glassy MOFs exhibiting permanent porosity accessible to gases are yet to be reported. Here, we present a generalizable chemical strategy for making such MOF glasses by assembly from viscous solutions of metal node and organic strut and subsequent evaporation of a plasticizer modulator solvent. This process yields glasses With 300 m(2)/g internal surface area (obtained' from N-2 adsorption isotherms) and a 2 nm pore pore separation. On a volumetric basis, this porosity (0.33 cm(3)/cm(3)) is 3 times that of the early MOFs (0.11 cm(3)/cm(3) for MOF-2) and within range of the most porous MOFs known (0.60 cm(3)/cm(3) for MOF-5). We believe the porosity originates from a 3D covalent network as evidenced by the disappearance-of the glass transition signature as the solvent is removed and the highly cross-linked nanostructure builds up. Our work represents an important step forward in translating the versatility and porosity of MOFs to glassy materials. C1 [Zhao, Yingbo; Becknell, Nigel; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Zhao, Yingbo; Becknell, Nigel; Yaghi, Omar M.] Kavli Energy NanoSci Inst Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lee, Seung-Yul; Angell, C. Austen] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA. [Yaghi, Omar M.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. RP Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), Kavli Energy NanoSci Inst Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Angell, CA (reprint author), Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA.; Yaghi, OM (reprint author), King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. EM yaghi@berkeley.edu; caa@asu.edu OI Yaghi, Omar/0000-0002-5611-3325; Becknell, Nigel/0000-0001-7857-6841 FU Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02- 05CH11231]; U.S. Department of Energy [DE-AC02-05CH11231, 6920968]; BASF SE (Ludwigshafen, Germany); King Abdulaziz City for Science and Technology (Riyadh, Saudi Arabia); Suzhou Industrial Park fellowship FX This work made use of facilities at the Molecular Foundry and Advanced Light Source BL 10.3.2. The Advanced Light Source and Molecular Foundry are supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02- 05CH11231. We acknowledge Mr. N. Kornienko for help on the MOF thin film preparation, Dr. Y. Ma and Prof. O. Terasaki for discussions on TEM, Dr. J. Guo and Dr. X. Feng for help and discussion of the EXAFS study, Dr. H. Furukawa for help on the density measurement, and Mr. J. Yang for help and discussion on nitrogen isotherm measurements. S.-Y.L. and C.A.A. acknowledge support of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 6920968, under the Batteries for Advanced Transportation Technologies Program. Partial financial support for aspects of the synthesis and porosity measurements is provided to O.M.Y. by BASF SE (Ludwigshafen, Germany) and King Abdulaziz City for Science and Technology (Riyadh, Saudi Arabia). Y.Z. acknowledges support of the Suzhou Industrial Park fellowship. NR 40 TC 1 Z9 1 U1 77 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2016 VL 138 IS 34 BP 10818 EP 10821 DI 10.1021/jacs.6b07078 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DU9CH UT WOS:000382513300026 PM 27539546 ER PT J AU Catarineu, NR Schoedel, A Urban, P Morla, MB Trickett, CA Yaghi, OM AF Catarineu, Noelle R. Schoedel, Alexander Urban, Philipp Morla, Maureen B. Trickett, Christopher A. Yaghi, Omar M. TI Two Principles of Reticular Chemistry Uncovered in a Metal Organic Framework of Heterotritopic Linkers and Infinite Secondary Building Units SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FUNCTIONAL-GROUPS; POROUS CRYSTALS; COORDINATION; POLYMERS AB Structural diversity of metal organic frameworks (MOFs) has been largely limited to linkers with at most two different types of coordinating groups. MOFs constructed from linkers with three or more nonidentical coordinating groups have not been explored. Here, we report a robust and porous crystalline MOF, Zo(3)(PBSP)(2) or MOF-910, constructed from a novel linker PBSP(phenylyne-1-benzoate, 3-benzosemiquinonate, 5-oxidopyridine) bearing three distinct types of coordinative functionality. The MOF adopts a complex and previously unreported topology termed tto. Our study suggests that simple, symmetric linkers are not a necessity for formation of crystalline extended structures and that new, more complex topologies are attainable with irregular, heterotopic linkers. This work illustrates two principles of reticular chemistry: first, selectivity for helical over straight rod secondary building units (SBUs) is achievable with polyheterotopic linkers, and second, the pitch of the resulting helical SBUs may be fine-tuned based on the metrics of the polyheterotopic linker. C1 [Catarineu, Noelle R.; Schoedel, Alexander; Urban, Philipp; Morla, Maureen B.; Trickett, Christopher A.; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Div Mat Sci, Lawrence Berkeley Natl Lab,Kavli Energy NanoSci I, Berkeley, CA 94720 USA. [Yaghi, Omar M.] King Fahd Univ Petr & Minerals, Dhahran 34464, Saudi Arabia. RP Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Div Mat Sci, Lawrence Berkeley Natl Lab,Kavli Energy NanoSci I, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), King Fahd Univ Petr & Minerals, Dhahran 34464, Saudi Arabia. EM yaghi@berkeley.edu RI Schoedel, Alexander/B-3971-2013; OI Schoedel, Alexander/0000-0001-6548-9300; Yaghi, Omar/0000-0002-5611-3325 FU BASF SE (Ludwigshafen, Germany); NSF; UC Berkeley Graduate Division; German Research Foundation (DFG) [PU 286/1-1, SCHO 1639/1-1]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support for this work was provided by BASF SE (Ludwigshafen, Germany). N.R.C. thanks the NSF for a Graduate Research Fellowship and the UC Berkeley Graduate Division for a Chancellor's Fellowship. A.S. and P.U. acknowledge the German Research Foundation (DFG, PU 286/1-1 and SCHO 1639/1-1) for financial support. We thank Wenjia Ma and Elena Lopez-Maya for technical assistance with MOF synthesis, Drs. Adam Duong, Michael O'Keeffe, and Hans-Beat Burgi for useful discussions, Dr. Ruchira Chatterjee for assistance with EPR measurements, and Drs. Kevin J. Gagnon and Simon J. Teat for help collecting single-crystal XRD data at Beamline 11.3.1 of the Advanced Light Source at Lawrence Berkeley National Lab, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 5 Z9 5 U1 50 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2016 VL 138 IS 34 BP 10826 EP 10829 DI 10.1021/jacs.6b07267 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DU9CH UT WOS:000382513300028 PM 27517606 ER PT J AU Mostofian, B Cai, CM Smith, MD Petridis, L Cheng, XL Wyman, CE Smith, JC AF Mostofian, Barmak Cai, Charles M. Smith, Micholas Dean Petridis, Loukas Cheng, Xiaolin Wyman, Charles E. Smith, Jeremy C. TI Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PARTICLE MESH EWALD; LIGNOCELLULOSIC BIOMASS; CELLULOSE MICROFIBRILS; MOLECULAR-DYNAMICS; IONIC LIQUIDS; TETRAHYDROFURAN-WATER; CRYSTALLINE CELLULOSE; SOLVATION STRUCTURES; ETHANOL-PRODUCTION; BIOGAS PRODUCTION AB Pretreatment facilitates more complete deconstruction of plant biomass to enable more economic production of lignocellulosic biofuels and byproducts. Various co-solvent pretreatments have demonstrated advantages relative to aqueous-only methods by enhancing lignin removal to allow unfettered access to cellulose. However, there is a limited mechanistic understanding of the interactions between the co-solvents and cellulose that impedes further improvement of such pretreatment methods. Recently, tetrahydrofuran (THF) has been identified as a highly effective co-solvent for the pretreatment and fractionation of biomass. To elucidate the mechanism of the THF water interactions with cellulose, we pair simulation and experimental data demonstrating that enhanced solubilization of cellulose can be achieved by the THF water co-solvent system at equivolume mixtures and moderate temperatures (<445 K). The simulations show that THF and water spontaneously phase separate on the local surface of a cellulose fiber, owing to hydrogen bonding of water molecules with the hydrophilic cellulose faces and stacking of THF molecules on the hydrophobic faces. Furthermore, a single fully solvated cellulose chain is shown to be preferentially bound by water molecules in the THF water mixture. In light of these findings, co-solvent reactions were performed on microcrystalline cellulose and maple wood to show thatTHF significantly enhanced cellulose deconstruction and lignocellulose solubilization at simulation conditions, enabling a highly versatile and efficient biomass pretreatment and fractionation method. C1 [Mostofian, Barmak; Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA. [Mostofian, Barmak] Oak Ridge Natl Lab, Joint Inst Biol Sci, Oak Ridge, TN 37830 USA. [Mostofian, Barmak; Cai, Charles M.; Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Wyman, Charles E.; Smith, Jeremy C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA. [Cai, Charles M.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, Riverside, CA 92507 USA. [Cai, Charles M.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Smith, JC (reprint author), Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA.; Smith, JC (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA.; Smith, JC (reprint author), Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. EM smithjc@ornl.gov RI Petridis, Loukas/B-3457-2009; smith, jeremy/B-7287-2012; OI Petridis, Loukas/0000-0001-8569-060X; smith, jeremy/0000-0002-2978-3227; Smith, Micholas/0000-0002-0777-7539 FU BioEnergy Science Center, a U.S. Department of Energy (DOE) Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science; INCITE - DOE Office of Science [DE-AC05-00OR22725]; U.S. DOE [DE-AC05-00OR22725]; Department of Energy FX The authors thank Yunqiao Pu from the Oak Ridge National Laboratory for helpful discussions regarding the CELF pretreatment method. This research was funded by the BioEnergy Science Center, a U.S. Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory under an INCITE award, which is supported by the DOE Office of Science under Contract no. DE-AC05-00OR22725. This manuscript has been authored by UT Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. DOE. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.goy/downloads/doe-public-access-plan). NR 67 TC 0 Z9 0 U1 32 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2016 VL 138 IS 34 BP 10869 EP 10878 DI 10.1021/jacs.6b03285 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA DU9CH UT WOS:000382513300036 PM 27482599 ER PT J AU Rudolf, JD Dong, LB Cao, HN Hatzos-Skintges, C Osipiuk, J Endres, M Chang, CY Ma, M Babnigg, G Joachimiak, A Phillips, GN Shen, B AF Rudolf, Jeffrey D. Dong, Liao-Bin Cao, Hongnan Hatzos-Skintges, Catherine Osipiuk, Jerzy Endres, Michael Chang, Chin-Yuan Ma, Ming Babnigg, Gyorgy Joachimiak, Andrzej Phillips, George N., Jr. Shen, Ben TI Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TERPENE SYNTHASES; OXIDOSQUALENE CYCLASE; FARNESYL DIPHOSPHATE; FUNCTIONAL-ANALYSIS; CRYSTAL-STRUCTURE; ABIES-GRANDIS; BIOSYNTHESIS; BIOLOGY; SQUALENE; CLONING AB Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs. C1 [Rudolf, Jeffrey D.; Dong, Liao-Bin; Chang, Chin-Yuan; Ma, Ming; Shen, Ben] Scripps Res Inst, Dept Chem, Jupiter, FL 33458 USA. [Cao, Hongnan; Phillips, George N., Jr.] Rice Univ, Dept Biosci, Houston, TX 77005 USA. [Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, 9700 S Cass Ave, Argonne, IL 60439 USA. [Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Shen, Ben] Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL 33458 USA. [Shen, Ben] Scripps Res Inst, Nat Prod Lib Initiat, Jupiter, FL 33458 USA. RP Shen, B (reprint author), Scripps Res Inst, Dept Chem, Jupiter, FL 33458 USA.; Shen, B (reprint author), Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL 33458 USA.; Shen, B (reprint author), Scripps Res Inst, Nat Prod Lib Initiat, Jupiter, FL 33458 USA. EM shenb@scripps.edu FU National Institute of General Medical Sciences Protein Structure Initiative [GM094585, GM098248]; National Institutes of Health [GM109456, GM114353]; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX We thank Prof. C. Dale Poulter at the University of Utah for the generous gift of GGSPP. This work is supported in part by the National Institute of General Medical Sciences Protein Structure Initiative Grants GM094585 (AJ) and GM098248 (G.N.P.), and National Institutes of Health Grants GM109456 (G.N.P.) and GM114353 (BS). The use of Structural Biology Center beamlines at the Advanced Photon Source was supported by U.S. Department of Energy, Office of Biological and Environmental Research grant DE-AC02-06CH11357 (AJ). NR 59 TC 3 Z9 3 U1 11 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2016 VL 138 IS 34 BP 10905 EP 10915 DI 10.1021/jacs.6b04317 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA DU9CH UT WOS:000382513300040 PM 27490479 ER PT J AU de Oteyza, DG Paz, AP Chen, YC Pedramrazi, Z Riss, A Wickenburg, S Tsai, HZ Fischer, FR Crommie, MF Rubio, A AF de Oteyza, Dimas G. Perez Paz, Alejandro Chen, Yen-Chia Pedramrazi, Zahra Riss, Alexander Wickenburg, Sebastian Tsai, Hsin-Zon Fischer, Felix R. Crommie, Michael F. Rubio, Angel TI Noncovalent Dimerization after Enediyne Cyclization on Au(111) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BERGMAN CYCLIZATION; SURFACE; POLYPHENYLENE; THERMOLYSIS; DERIVATIVES; CHEMISTRY; BENZYNE AB We investigate the thermally induced cyclization of 1,2-bis(2-phenylethynyl)benzene on Au(111) using scanning tunneling microscopy and computer simulations. Cyclization of sterically hindered enediynes is known to proceed via two competing mechanisms in solution: a classic C-1-C-6 (Bergman) or a C-1-C-5 cyclization pathway. On Au(111), we find that the C-1-C-5 cyclization is suppressed and that the C-1-C-6 cyclization yields a highly strained bicyclic olefin whose surface chemistry was hitherto unknown. The C-1-C-6 product self assembles into discrete noncovalently bound dimers on the surface. The reaction mechanism and driving forces behind noncovalent association are discussed in light of density functional theory calculations. C1 [de Oteyza, Dimas G.] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain. [de Oteyza, Dimas G.] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain. [Perez Paz, Alejandro; Rubio, Angel] Univ Basque Country, CFM CSIC UPV EHU MPC, Nanobio Spect Grp, San Sebastian 20018, Spain. [Perez Paz, Alejandro; Rubio, Angel] Univ Basque Country, CFM CSIC UPV EHU MPC, ETSF, San Sebastian 20018, Spain. [Chen, Yen-Chia; Pedramrazi, Zahra; Riss, Alexander; Wickenburg, Sebastian; Tsai, Hsin-Zon; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fischer, Felix R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Fischer, Felix R.; Crommie, Michael F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fischer, Felix R.; Crommie, Michael F.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Fischer, Felix R.; Crommie, Michael F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rubio, Angel] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany. [Rubio, Angel] Ctr Free Electron Laser Sci CFEL, Luruper Chaussee 149, D-22761 Hamburg, Germany. RP de Oteyza, DG (reprint author), Donostia Int Phys Ctr, E-20018 San Sebastian, Spain.; de Oteyza, DG (reprint author), Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain. EM d_oteyza@ehu.eus RI de Oteyza, Dimas/H-5955-2013; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Rubio, Angel/A-5507-2008; CSIC-UPV/EHU, CFM/F-4867-2012 OI de Oteyza, Dimas/0000-0001-8060-6819; Rubio, Angel/0000-0003-2060-3151; FU U.S. Department of Energy Office of Basic Energy Sciences Nanomachine Program [DE-AC02-05CH11231]; Office of Naval Research BRC Program; European Research Council [ERC-2010-AdG-267374-DYNamo, ERC-2014-STG-635919-SURFINK]; Grupos Consolidados UPV/EHU del Gobiemo Vasco [IT-578-13]; Ayuda para la Especializacion de Personal Investigador del Vicerrectorado de Investigation de la UPV/EHU; Spanish "Juan de la Cierva-incorporacion" program [IJCI-2014-20147]; [FIS2013-46159-C3-1-P] FX Research was supported by the U.S. Department of Energy Office of Basic Energy Sciences Nanomachine Program under Contract No. DE-AC02-05CH11231 (STM imaging), by the Office of Naval Research BRC Program (molecular synthesis), by the European Research Council Grants ERC-2010-AdG-267374-DYNamo and ERC-2014-STG-635919-SURFINK (computational resources and surface analysis, respectively), by Spanish Grant No. FIS2013-46159-C3-1-P (simulated reaction landscape), and by Grupos Consolidados UPV/EHU del Gobiemo Vasco No. IT-578-13 (simulated dimer binding energy). A.P.P. acknowledges postdoctoral fellowship support from "Ayuda para la Especializacion de Personal Investigador del Vicerrectorado de Investigation de la UPV/EHU-2013" and from the Spanish "Juan de la Cierva-incorporacion" program (IJCI-2014-20147). E. Goiri is acknowledged for help and discussion on the statistical analysis of interparticle distances. NR 25 TC 2 Z9 2 U1 22 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2016 VL 138 IS 34 BP 10963 EP 10967 DI 10.1021/jacs.6b05203 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DU9CH UT WOS:000382513300046 PM 27490459 ER PT J AU Hadt, RG Hayes, D Brodsky, CN Ullmann, AM Casa, DM Upton, MH Nocera, DG Chen, LX AF Hadt, Ryan G. Hayes, Dugan Brodsky, Casey N. Ullmann, Andrew M. Casa, Diego M. Upton, Mary H. Nocera, Daniel G. Chen, Lin X. TI X-ray Spectroscopic Characterization of Co(IV) and Metal-Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID WATER OXIDATION CATALYSTS; COBALT(III)-OXO CUBANE CLUSTERS; DIFFERENTIAL ORBITAL COVALENCY; MIXED-VALENCE; ABSORPTION-SPECTROSCOPY; EVOLVING CATALYST; L-EDGE; ELECTROCHEMICAL PROPERTIES; MAGNETIC-PROPERTIES; METHANE OXIDATION AB The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary Xray spectroscopies coupled to DFT calculations to study Co(III)(4)O-4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (K beta RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the tag-based redox-active molecular orbital. K beta RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal metal coupling across Co4O4. Guided by the data, calculations show that electron hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E-0 over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal metal and antibonding interactions across the cluster. C1 [Hadt, Ryan G.; Hayes, Dugan; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Casa, Diego M.; Upton, Mary H.] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Chen, Lin X.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Brodsky, Casey N.; Ullmann, Andrew M.; Nocera, Daniel G.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. RP Chen, LX (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA.; Chen, LX (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Nocera, DG (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. EM dnocera@fas.harvard.edu; lchen@anl.gov FU Division of Chemical Sciences, Biosciences, Office of Basic Energy Science (OBES), DOE [DE-AC02-06CH11357]; U.S. DOE Office of Science [DE-SC0009758]; Joseph J. Katz Postdoctoral Fellowship at Argonne National Laboratory (ANL); National Science Foundation's Graduate Research Fellowship FX Work at ANL was supported by funding from the Division of Chemical Sciences, Biosciences, Office of Basic Energy Science (OBES), DOE through Grant DE-AC02-06CH11357. Synchrotron facilities were provided by the Advanced Photon Source (APS) and Advanced Light Source (ALS) operated by DOE BES. Work at Harvard was performed under a grant from the U.S. DOE Office of Science (DE-SC0009758). D.H. is supported by the Joseph J. Katz Postdoctoral Fellowship at Argonne National Laboratory (ANL). C.N.B. acknowledges the National Science Foundation's Graduate Research Fellowship. We acknowledge Sungsik Lee for assistance in making Co K-edge measurements and Robert Schoenlein and Amy Cordones-Hahn for assistance in making Co L-edge measurements. We acknowledge Edward Solomon, Michael Mara, Thomas Kroll, and Bryce Anderson for helpful discussions. We gratefully acknowledge the computing resources provided on Blues and Fusion, both high-performance computing clusters operated by the Laboratory Computing Resource Center at ANL. NR 112 TC 4 Z9 4 U1 76 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2016 VL 138 IS 34 BP 11017 EP 11030 DI 10.1021/jacs.6b04663 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA DU9CH UT WOS:000382513300053 PM 27515121 ER PT J AU Winiarski, MJ Wiendlocha, B Golab, S Kushwaha, SK Wisniewski, P Kaczorowski, D Thompson, JD Cava, RJ Klimczuk, T AF Winiarski, M. J. Wiendlocha, B. Golab, S. Kushwaha, S. K. Wisniewski, P. Kaczorowski, D. Thompson, J. D. Cava, R. J. Klimczuk, T. TI Superconductivity in CaBi2 SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID TRANSITION-TEMPERATURE; TOPOLOGICAL INSULATORS; CRYSTAL-STRUCTURE; YBSB2; SR AB Superconductivity is observed with critical temperature T-c = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) angstrom, b = 17.081(2) angstrom and c = 4.611(1) angstrom. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at T-c is Delta C/gamma T-c = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient gamma = 4.1 mJ mol(-1) K-2 and the Debye temperature Theta(D) = 157 K. The electron-phonon coupling strength is lambda(el-ph) = 0.59, and the thermodynamic critical field H-c is low, between 111 and 124 Oe CaBi2 is a moderate coupling type-I superconductor. Results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin-orbit coupling and electronic property anisotropy. We find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material. C1 [Winiarski, M. J.; Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland. [Wiendlocha, B.; Golab, S.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Aleja Mickiewicza 30, PL-30059 Krakow, Poland. [Kushwaha, S. K.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Wisniewski, P.; Kaczorowski, D.] Polish Acad Sci, Inst Low Temp & Struct Res, PNr 1410, PL-50950 Wroclaw, Poland. [Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Winiarski, MJ; Klimczuk, T (reprint author), Gdansk Univ Technol, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland. EM mwiniarski@mif.pg.gda.pl; tomasz.klimczuk@pg.gda.pl RI Wisniewski, Piotr/C-8952-2011; Winiarski, Michal/G-6243-2016; Wiendlocha, Bartlomiej/G-4121-2011; Kushwaha, Satya/B-8287-2017 OI Wisniewski, Piotr/0000-0002-6741-2793; Winiarski, Michal/0000-0001-9083-8066; Wiendlocha, Bartlomiej/0000-0001-9536-7216; Kushwaha, Satya/0000-0002-3169-969X FU National Science Centre (Poland) [DEC-2012/07/E/ST3/00584]; Polish Ministry of Science and Higher Education; Department of Energy Division of Basic Energy Sciences [DE-FG02-98ER45706]; Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX The research performed at the Gdansk University of Technology was supported by the National Science Centre (Poland) grant (DEC-2012/07/E/ST3/00584). B. W. was partially supported by the Polish Ministry of Science and Higher Education. The research at Princeton was supported by the Department of Energy Division of Basic Energy Sciences, Grant DE-FG02-98ER45706. Work at Los Alamos was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 42 TC 0 Z9 0 U1 23 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD AUG 31 PY 2016 VL 18 IS 31 BP 21737 EP 21745 DI 10.1039/c6cp02856j PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DT3YV UT WOS:000381418000083 PM 27435423 ER PT J AU Kundu, J Pascal, T Prendergast, D Whitelam, S AF Kundu, Joyjit Pascal, Tod Prendergast, David Whitelam, Stephen TI Selective gas capture via kinetic trapping SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID METAL-ORGANIC FRAMEWORKS; POSTCOMBUSTION CARBON CAPTURE; MOLECULAR SIMULATION; SWING ADSORPTION; DIOXIDE CAPTURE; CO2 ADSORPTION; HIGH-CAPACITY; SEPARATION; SITES; DIFFUSION AB Conventional approaches to the capture of CO2 by metal-organic frameworks focus on equilibrium conditions, and frameworks that contain little CO2 in equilibrium are often rejected as carbon-capture materials. Here we use a statistical mechanical model, parameterized by quantum mechanical data, to suggest that metal-organic frameworks can be used to separate CO2 from a typical flue gas mixture when used under nonequilibrium conditions. The origin of this selectivity is an emergent gas-separation mechanism that results from the acquisition by different gas types of different mobilities within a crowded framework. The resulting distribution of gas types within the framework is in general spatially and dynamically heterogeneous. Our results suggest that relaxing the requirement of equilibrium can substantially increase the parameter space of conditions and materials for which selective gas capture can be effected. C1 [Kundu, Joyjit; Pascal, Tod; Prendergast, David; Whitelam, Stephen] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Kundu, J; Whitelam, S (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM jkundu@lbl.gov; swhitelam@lbl.gov FU Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001015]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy; Batteries for Advanced Transportation Technologies program [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Pieremanuele Canepa and Rebecca Siegelman for discussions, and Rebecca Siegelman and Jeff Martell for comments on the manuscript. JK was supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award number DE-SC0001015. DP and SW were partially supported by the same Center, and by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy. TP acknowledges support from the Batteries for Advanced Transportation Technologies program, administered by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract DE-AC02-05CH11231. This work was done as part of a User Project at the Molecular Foundry at Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The simulations were performed at the compute cluster Vulcan, managed by the High Performance Computing Services Group, at Lawrence Berkeley National Laboratory. NR 43 TC 1 Z9 1 U1 12 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD AUG 31 PY 2016 VL 18 IS 31 BP 21760 EP 21766 DI 10.1039/c6cp03940e PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DT3YV UT WOS:000381418000085 PM 27435033 ER PT J AU Dubuis, G Yacoby, Y Zhou, H He, X Bollinger, AT Pavuna, D Pindak, R Bozovic, I AF Dubuis, Guy Yacoby, Yizhak Zhou, Hua He, Xi Bollinger, Anthony T. Pavuna, Davor Pindak, Ron Bozovic, Ivan TI Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating SO SCIENTIFIC REPORTS LA English DT Article ID INTERFACE SUPERCONDUCTIVITY; INSULATOR-TRANSITION; SURFACE; OXIDES AB We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms. C1 [Dubuis, Guy] Victoria Univ Wellington, Robinson Res Inst, MacDiarmid Inst Adv Mat & Nanotechnol, Lower Hutt 5046, New Zealand. [Dubuis, Guy; Bollinger, Anthony T.; Bozovic, Ivan] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Dubuis, Guy; Pavuna, Davor] Ecole Polytech Fed Lausanne, LPMC, CH-1015 Lausanne, Switzerland. [Yacoby, Yizhak] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Zhou, Hua] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [He, Xi; Bozovic, Ivan] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. [Pindak, Ron] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Pindak, R (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM pindak@bnl.gov RI Dubuis, Guy/A-6849-2012 OI Dubuis, Guy/0000-0002-8199-4953 FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Israel Science Foundation under ISF-Grant [1005/11]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704]; Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4410] FX This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. H.Z. was supported by the same contract; Y.Y. by the Israel Science Foundation under ISF-Grant No. 1005/11; R.P. by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704; G.D. and D.P. by the Laboratory for Physics of Complex Matter (EPFL) and the Swiss National Science Foundation, I.B. and A.T.B. by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. X.H. by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4410. NR 34 TC 1 Z9 1 U1 13 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 31 PY 2016 VL 6 AR 32378 DI 10.1038/srep32378 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU5HG UT WOS:000382242200001 PM 27578237 ER PT J AU Bennett, JG AF Bennett, Joel G. TI A Representative volume model for a CNT composite material SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE solids; micromechanics; composites; damage; constitutive equations ID MICROMECHANICAL ANALYSIS; ELASTIC PROPERTIES AB The concept of a Representative Volume Model' is used in combination with Equivalent Mechanical Strain' or Aboudi's Average Strain' theorem to illustrate how a carbon nanotube reinforced composite material constitutive law for a nano-composite material can be implemented into a finite element program for modeling structural applications. Current methods of modeling each individual composite layer to build up an element composed of carbon nanotube reinforced composite material may not be the best approach for modeling structural applications of this composite. The approach presented here is based upon presentations given at the National Science Foundation-Civil and Mechanical Systems division workshop at John Hopkins University in 2004, which is referred to in this paper as the Williams-Baxter approach. This approach is also used to demonstrate that damage modeling can be included as was suggested in this workshop. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Bennett, Joel G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM joelnjackie@gmail.com NR 16 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD AUG 31 PY 2016 VL 107 IS 9 BP 723 EP 732 DI 10.1002/nme.5182 PG 10 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA DS6MB UT WOS:000380894800001 ER PT J AU Shen, CF Ge, MY Luo, LL Fang, X Liu, YH Zhang, AY Rong, JP Wang, CM Zhou, CW AF Shen, Chenfei Ge, Mingyuan Luo, Langli Fang, Xin Liu, Yihang Zhang, Anyi Rong, Jiepeng Wang, Chongmin Zhou, Chongwu TI In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures SO SCIENTIFIC REPORTS LA English DT Article ID SIZE-DEPENDENT FRACTURE; LITHIUM BATTERY ANODES; LONG CYCLE LIFE; ELECTROCHEMICAL LITHIATION; PHASE-TRANSITION; ION BATTERIES; HIGH-CAPACITY; NANOWIRES; NANOPARTICLES; ELECTRODES AB In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 mu m, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. C1 [Shen, Chenfei; Ge, Mingyuan; Fang, Xin; Zhang, Anyi; Rong, Jiepeng; Zhou, Chongwu] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. [Ge, Mingyuan] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Luo, Langli; Wang, Chongmin] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Liu, Yihang; Zhou, Chongwu] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA. RP Zhou, CW (reprint author), Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA.; Zhou, CW (reprint author), Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA. EM chongwuz@usc.edu RI Shen, Chenfei/A-2471-2016; Luo, Langli/B-5239-2013; Zhou, Chongwu/F-7483-2010; OI Shen, Chenfei/0000-0001-8635-3429; Luo, Langli/0000-0002-6311-051X FU Brookhaven National Laboratory - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Batteries for Advanced Battery Materials Research (BMR) [DE-AC02-05CH11231, 6951379]; DOE's Office of Biological and Environmental Research FX A portion of the TEM images used in this article were generated at the Center for Electron Microscopy and Microanalysis, University of Southern California. M.G. finished the research reported in this paper at University of Southern California, and contributed to discussions after he joined Brookhaven National Laboratory. M.G. acknowledged the support of Brookhaven National Laboratory, which was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. C.W. was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 6951379 under the Batteries for Advanced Battery Materials Research (BMR). The in situ TEM work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. NR 37 TC 0 Z9 0 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 30 PY 2016 VL 6 AR 31334 DI 10.1038/srep31334 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH7QI UT WOS:000391967200001 PM 27571919 ER PT J AU Chen, D Liu, ZQ Fast, J Ban, JM AF Chen, Dan Liu, Zhiquan Fast, Jerome Ban, Junmei TI Simulations of sulfate-nitrate-ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID HETEROGENEOUS CHEMISTRY; FORMATION MECHANISM; NITROGEN-DIOXIDE; MODELING SYSTEM; SULFUR-DIOXIDE; REGIONAL HAZE; EAST-ASIA; WRF-CHEM; NO X; EMISSIONS AB Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 mu g m(-3) occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 mu g m(-3)), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous/aqueous reactions. As the parameterizations of those heterogeneous reactions are not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3- to-HNO3 reaction rates that depend on relative humidity were applied, which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory were likely important factors contributing to those peak PM2.5 concentrations. C1 [Chen, Dan; Liu, Zhiquan; Ban, Junmei] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Fast, Jerome] Pacific Northwest Natl Lab, Richland, WA USA. RP Chen, D; Liu, ZQ (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM dchen@ucar.edu; liuz@ucar.edu RI Chen, Dan/R-4486-2016 FU IBM Research China; National Science Foundation; U.S. Department of Energy's Atmospheric System Research (ASR) program [KP17010000/57131] FX This work was partially funded by IBM Research China. NCAR is sponsored by the National Science Foundation. Jerome Fast was supported by the U.S. Department of Energy's Atmospheric System Research (ASR) program (KP17010000/57131). The authors thank Lin Zhang at Peking University for his great help on the application of aqueous reactions in the model. We also thank Daven Henze, Douglas Lowe, and Ravan Ahmadov for their helpful discussions. We are grateful to the referees for their helpful comments. NR 57 TC 0 Z9 1 U1 39 U2 39 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD AUG 30 PY 2016 VL 16 IS 16 BP 10707 EP 10724 DI 10.5194/acp-16-10707-2016 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DW6EZ UT WOS:000383743600001 ER PT J AU Eilenberg, H Weiner, I Ben-Zvi, O Pundak, C Marmari, A Liran, O Wecker, MS Milrad, Y Yacoby, I AF Eilenberg, Haviva Weiner, Iddo Ben-Zvi, Oren Pundak, Carmel Marmari, Abigail Liran, Oded Wecker, Matt S. Milrad, Yuval Yacoby, Iftach TI The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE H-2 production; Ferredoxin; Hydrogenase; Oxygen sensitivity; Fusion enzyme; Chlamydomonas reinhardtii ID ALGA CHLAMYDOMONAS-REINHARDTII; H-2 PRODUCTION; PHOTOPRODUCTION; EXPRESSION; CELLS; IDENTIFICATION; BIOSENSOR; SYSTEM; GENE; FNR AB Background: Hydrogen photo-production in green algae, catalyzed by the enzyme [FeFe]-hydrogenase (HydA), is considered a promising source of renewable clean energy. Yet, a significant increase in hydrogen production efficiency is necessary for industrial scale-up. We have previously shown that a major challenge to be resolved is the inferior competitiveness of HydA with NADPH production, catalyzed by ferredoxin-NADP7(+)-reductase (FNR). In this work, we explored the in vivo hydrogen production efficiency of Fd-HydA, where the electron donor ferredoxin (Fd) is fused to HydA and expressed in the model organism Chlamydomonas reinhardtii. Results: We show that once the Fd-HydA fusion gene is expressed in micro-algal cells of C. reinhardtii, the fusion enzyme is able to intercept photosynthetic electrons and use them for efficient hydrogen production, thus supporting the previous observations made in vitro. We found that Fd-HydA has a similar to 4.5-fold greater photosynthetic hydrogen production rate standardized for hydrogenase amount (PHPRH) than that of the native HydA in vivo. Furthermore, we provide evidence suggesting that the fusion protein is more resistant to oxygen than the native HydA. Conclusions: The in vivo photosynthetic activity of the Fd-HydA enzyme surpasses that of the native HydA and shows higher oxygen tolerance. Therefore, our results provide a solid platform for further engineering efforts towards efficient hydrogen production in microalgae through the expression of synthetic enzymes. C1 [Eilenberg, Haviva; Weiner, Iddo; Ben-Zvi, Oren; Pundak, Carmel; Marmari, Abigail; Liran, Oded; Milrad, Yuval; Yacoby, Iftach] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Mol Biol & Ecol Plants, IL-69978 Tel Aviv, Israel. [Wecker, Matt S.] GeneBiologics LLC, Boulder, CO 80303 USA. [Wecker, Matt S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yacoby, I (reprint author), Tel Aviv Univ, George S Wise Fac Life Sci, Dept Mol Biol & Ecol Plants, IL-69978 Tel Aviv, Israel. EM iftachy@tau.ac.il FU KAMIN, the Ministry of Economics State of Israel [3798] FX This research was funded by KAMIN, Contract Number: 3798, the Ministry of Economics State of Israel. NR 31 TC 0 Z9 0 U1 13 U2 13 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD AUG 30 PY 2016 VL 9 AR 182 DI 10.1186/s13068-016-0601-3 PG 10 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DV6BP UT WOS:000383016000004 PM 27582874 ER PT J AU Tang, AH Wang, G AF Tang, A. H. Wang, G. TI Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions SO PHYSICAL REVIEW C LA English DT Article ID PAIR PRODUCTION AB The electromagnetic (EM) field pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system and causes photons emitted in upper and lower hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, owing to the global vorticity, is also possible. In this paper, we lay out a procedure to measure the variation of the circular polarization with respect to the reaction plane in relativistic heavy-ion collisions for massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper and lower hemispheres to identify and quantify such effects. C1 [Tang, A. H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wang, G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Tang, AH (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU U.S. Department of Energy [DE-AC02-98CH10886, DE-FG02-89ER40531, DE-FG02-88ER40424] FX We would like to thank D. Kharzeev, M. Lisa, Y. Yin, and Y. Zhang for fruitful discussions. We thank Y. Yin and Y. Zhang for reading the manuscript and providing comments. A.T. was supported by the U.S. Department of Energy under Grants No. DE-AC02-98CH10886 and No. DE-FG02-89ER40531. G.W. was supported by the U.S. Department of Energy under Grant No. DE-FG02-88ER40424. NR 21 TC 1 Z9 1 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG 30 PY 2016 VL 94 IS 2 AR 024920 DI 10.1103/PhysRevC.94.024920 PG 5 WC Physics, Nuclear SC Physics GA DU4IU UT WOS:000382177100008 ER PT J AU Bonnett, C Troxel, MA Hartley, W Amara, A Leistedt, B Becker, MR Bernstein, GM Bridle, SL Bruderer, C Busha, MT Kind, MC Childress, MJ Castander, FJ Chang, C Crocce, M Davis, TM Eifler, TF Frieman, J Gangkofner, C Gaztanaga, E Glazebrook, K Gruen, D Kacprzak, T King, A Kwan, J Lahav, O Lewis, G Lidman, C Lin, H MacCrann, N Miquel, R O'Neill, CR Palmese, A Peiris, HV Refregier, A Rozo, E Rykoff, ES Sadeh, I Sanchez, C Sheldon, E Uddin, S Wechsler, RH Zuntz, J Abbott, T Abdalla, FB Allam, S Armstrong, R Banerji, M Bauer, AH Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Carretero, J Cunha, CE D'Andrea, CB da Costa, LN DePoy, DL Desai, S Diehl, HT Dietrich, JP Doel, P Neto, AF Fernandez, E Flaugher, B Fosalba, P Gerdes, DW Gruendl, RA Honscheid, K Jain, B James, DJ Jarvis, M Kim, AG Kuehn, K Kuropatkin, N Li, TS Lima, M Maia, MAG March, M Marshall, JL Martini, P Melchior, P Miller, CJ Neilsen, E Nichol, RC Nord, B Ogando, R Plazas, AA Reil, K Romer, AK Roodman, A Sako, M Sanchez, E Santiago, B Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Vikram, V Walker, AR AF Bonnett, C. Troxel, M. A. Hartley, W. Amara, A. Leistedt, B. Becker, M. R. Bernstein, G. M. Bridle, S. L. Bruderer, C. Busha, M. T. Kind, M. Carrasco Childress, M. J. Castander, F. J. Chang, C. Crocce, M. Davis, T. M. Eifler, T. F. Frieman, J. Gangkofner, C. Gaztanaga, E. Glazebrook, K. Gruen, D. Kacprzak, T. King, A. Kwan, J. Lahav, O. Lewis, G. Lidman, C. Lin, H. MacCrann, N. Miquel, R. O'Neill, C. R. Palmese, A. Peiris, H. V. Refregier, A. Rozo, E. Rykoff, E. S. Sadeh, I. Sanchez, C. Sheldon, E. Uddin, S. Wechsler, R. H. Zuntz, J. Abbott, T. Abdalla, F. B. Allam, S. Armstrong, R. Banerji, M. Bauer, A. H. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Carretero, J. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. DePoy, D. L. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Fausti Neto, A. Fernandez, E. Flaugher, B. Fosalba, P. Gerdes, D. W. Gruendl, R. A. Honscheid, K. Jain, B. James, D. J. Jarvis, M. Kim, A. G. Kuehn, K. Kuropatkin, N. Li, T. S. Lima, M. Maia, M. A. G. March, M. Marshall, J. L. Martini, P. Melchior, P. Miller, C. J. Neilsen, E. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Roodman, A. Sako, M. Sanchez, E. Santiago, B. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Vikram, V. Walker, A. R. CA Dark Energy Survey Collaboration TI Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing SO PHYSICAL REVIEW D LA English DT Article ID STAR-FORMING GALAXIES; LARGE-SCALE STRUCTURE; PHOTO-Z PERFORMANCE; VLT DEEP SURVEY; PHOTOMETRIC REDSHIFTS; DATA RELEASE; PRECISION COSMOLOGY; SURVEY REQUIREMENTS; SHAPE MEASUREMENT; NEURAL-NETWORKS AB We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model-or machine learning-based photometric redshift methods-ANNZ2, BPZ calibrated against BCC-Ufig simulations, SKYNET, and TPZ-are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z's. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 +/- 0.01 over the range 0.3 < z < 1.3, we construct three tomographic bins with means of z = {0.45; 0.67; 1.00}. These bins each have systematic uncertainties delta z <= 0.05 in the mean of the fiducial SKYNET photo-z (dz). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of sigma(8) of approximately 3%. This shift is within the one sigma statistical errors on sigma(8) for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Sigma(crit), finding levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis. C1 [Bonnett, C.; Miquel, R.; Sanchez, C.; Carretero, J.; Fernandez, E.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Troxel, M. A.; Bridle, S. L.; MacCrann, N.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Hartley, W.; Amara, A.; Bruderer, C.; Chang, C.; Kacprzak, T.; Refregier, A.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Leistedt, B.; Lahav, O.; Palmese, A.; Peiris, H. V.; Sadeh, I.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Becker, M. R.; Busha, M. T.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Becker, M. R.; Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Cunha, C. E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Bernstein, G. M.; Eifler, T. F.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [King, A.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Castander, F. J.; Crocce, M.; Gaztanaga, E.; Bauer, A. H.; Carretero, J.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain. [Eifler, T. F.; Abdalla, F. B.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Frieman, J.; Lin, H.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Flaugher, B.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kwan, J.; Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Lidman, C.; Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Glazebrook, K.; Uddin, S.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Banerji, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Bertin, E.] Inst Astrophys, CNRS, UMR 7095, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] Lab Interinst Eastron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.] Univ Munich, Dept Phys, Scheinerstr 1, D-81679 Munich, Germany. [Gangkofner, C.; Sheldon, E.; Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Gruen, D.; Dietrich, J. P.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. [Gerdes, D. W.; Miller, C. J.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Honscheid, K.; Martini, P.; Melchior, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kim, A. G.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.] CIEMAT, Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Lewis, G.] South East Phys Network, SEPnet, Southampton, Hants, England. [Davis, T. M.; O'Neill, C. R.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Childress, M. J.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Gangkofner, C.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. RP Bonnett, C (reprint author), Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. RI Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010; Davis, Tamara/A-4280-2008; Gaztanaga, Enrique/L-4894-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Davis, Tamara/0000-0002-4213-8783; Gaztanaga, Enrique/0000-0001-9632-0815; Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658 FU European Research Council [240672]; DFG Cluster of Excellence Origin and Structure of the Universe; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; ERDF funds from the European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory, Stanford University; University of Sussex; Texas AM University; Australian Astronomical Observatory [A/2013B/012]; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; Swiss National Science Foundation [200021_14944, 200021_143906]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Pennsylvania State University; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; ESO Telescopes at the La Silla Paranal Observatory [179.A-2004, 177.A-3016] FX We are grateful for the extraordinary contributions of our CTIO colleagues and the DECam Construction, Commissioning and Science Verification teams in achieving the excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management group. M. T., S. B., N. M., and J. Z. acknowledge support from the European Research Council in the form of a Starting Grant with number 240672. D. G. acknowledges the support by the DFG Cluster of Excellence Origin and Structure of the Universe. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. C. G. acknowledges the support by the DFG Cluster of Excellence Origin and Structure of the Universe. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. Based in part on observations taken at the Australian Astronomical Observatory under program A/2013B/012. Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. This work was supported in part by grants 200021_14944 and 200021_143906 from the Swiss National Science Foundation. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science.; r The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 179.A-2004. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 177.A-3016. This paper is Fermilab publication FERMILAB-PUB-15-306 and DES publication DES2015-0060. This paper has gone through internal review by the DES Collaboration. NR 95 TC 10 Z9 10 U1 4 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 30 PY 2016 VL 94 IS 4 AR 042005 DI 10.1103/PhysRevD.94.042005 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DU4IW UT WOS:000382177300001 ER PT J AU Isley, SC Stern, PC Carmichael, SP Joseph, KM Arent, DJ AF Isley, Steven C. Stern, Paul C. Carmichael, Scott P. Joseph, Karun M. Arent, Douglas J. TI Online purchasing creates opportunities to lower the life cycle carbon footprints of consumer products SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE carbon footprint; online experiments; carbon offset; ecolabels ID ENERGY-CONSUMPTION; EMISSIONS AB A major barrier to transitions to environmental sustainability is that consumers lack information about the full environmental footprints of their purchases. Sellers' incentives do not support reducing the footprints unless customers have such information and are willing to act on it. We explore the potential of modern information technology to lower this barrier by enabling firms to inform customers of products' environmental footprints at the point of purchase and easily offset consumers' contributions through bundled purchases of carbon offsets. Using online stated choice experiments, we evaluated the effectiveness of several inexpensive features that firms in four industries could implement with existing online user interfaces for consumers. These examples illustrate the potential for firms to lower their overall carbon footprints while improving customer satisfaction by lowering the "soft costs" to consumers of proenvironmental choices. Opportunities such as these likely exist wherever firms possess environmentally relevant data not accessible to consumers or when transaction costs make proenvironmental action difficult. C1 [Isley, Steven C.; Carmichael, Scott P.; Joseph, Karun M.; Arent, Douglas J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Stern, Paul C.] Natl Acad Sci Engn & Med, Board Environm Change & Soc, Div Behav & Social Sci & Educ, Washington, DC 20001 USA. [Stern, Paul C.] Norwegian Univ Sci & Technol, Dept Psychol, N-7491 Trondheim, Norway. RP Isley, SC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Steven.Isley@nrel.gov NR 44 TC 0 Z9 0 U1 11 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 30 PY 2016 VL 113 IS 35 BP 9780 EP 9785 DI 10.1073/pnas.1522211113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DV7BL UT WOS:000383090700047 PM 27528670 ER PT J AU Riley, R Haridas, S Wolfe, KH Lopes, MR Hittinger, CT Goker, M Salamov, AA Wisecaver, JH Long, TM Calvey, CH Aerts, AL Barry, KW Choi, C Clum, A Coughlan, AY Deshpande, S Douglass, AP Hanson, SJ Klenk, HP LaButti, KM Lapidus, A Lindquist, EA Lipzen, AM Meier-Kolthoff, JP Ohm, RA Otillar, RP Pangilinan, JL Peng, Y Rokas, A Rosa, CA Scheuner, C Sibirny, AA Slot, JC Stielow, JB Sun, H Kurtzman, CP Blackwell, M Grigoriev, IV Jeffries, TW AF Riley, Robert Haridas, Sajeet Wolfe, Kenneth H. Lopes, Mariana R. Hittinger, Chris Todd Goeker, Markus Salamov, Asaf A. Wisecaver, Jennifer H. Long, Tanya M. Calvey, Christopher H. Aerts, Andrea L. Barry, Kerrie W. Choi, Cindy Clum, Alicia Coughlan, Aisling Y. Deshpande, Shweta Douglass, Alexander P. Hanson, Sara J. Klenk, Hans-Peter LaButti, Kurt M. Lapidus, Alla Lindquist, Erika A. Lipzen, Anna M. Meier-Kolthoff, Jan P. Ohm, Robin A. Otillar, Robert P. Pangilinan, Jasmyn L. Peng, Yi Rokas, Antonis Rosa, Carlos A. Scheuner, Carmen Sibirny, Andriy A. Slot, Jason C. Stielow, J. Benjamin Sun, Hui Kurtzman, Cletus P. Blackwell, Meredith Grigoriev, Igor V. Jeffries, Thomas W. TI Comparative genomics of biotechnologically important yeasts SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE genomics; bioenergy; biotechnological yeasts; genetic code; microbiology ID HORIZONTAL GENE-TRANSFER; SACCHAROMYCES-CEREVISIAE; PICHIA-STIPITIS; EVOLUTION; CODE; SEQUENCE; MECHANISM; PATHWAY; COMPLEX; ORIGIN AB Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Ourwell-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as L-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. C1 [Riley, Robert; Haridas, Sajeet; Salamov, Asaf A.; Aerts, Andrea L.; Barry, Kerrie W.; Choi, Cindy; Clum, Alicia; Deshpande, Shweta; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lipzen, Anna M.; Ohm, Robin A.; Otillar, Robert P.; Pangilinan, Jasmyn L.; Peng, Yi; Sun, Hui; Grigoriev, Igor V.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Wolfe, Kenneth H.; Coughlan, Aisling Y.; Douglass, Alexander P.; Hanson, Sara J.] Univ Coll Dublin, Sch Med, Conway Inst, Dublin 4, Ireland. [Lopes, Mariana R.; Hittinger, Chris Todd] Univ Wisconsin, Genet Biotechnol Ctr, Lab Genet, Madison, WI 53706 USA. [Lopes, Mariana R.; Rosa, Carlos A.] Univ Fed Minas Gerais, Inst Ciencias Biol, Dept Microbiol, BR-31270901 Belo Horizonte, MG, Brazil. [Hittinger, Chris Todd] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA. [Goeker, Markus; Klenk, Hans-Peter; Meier-Kolthoff, Jan P.; Scheuner, Carmen; Stielow, J. Benjamin] Leibniz Inst, Deutsch Sammlung Mikroorganismen & Zellkulturen, D-38124 Braunschweig, Germany. [Wisecaver, Jennifer H.; Rokas, Antonis] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37235 USA. [Long, Tanya M.; Jeffries, Thomas W.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Long, Tanya M.] USDA, Forest Prod Lab, Madison, WI 53726 USA. [Calvey, Christopher H.] Xylome Corp, Madison, WI 53719 USA. [Klenk, Hans-Peter] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Sibirny, Andriy A.] Natl Acad Sci Ukraine, Inst Cell Biol, Dept Mol Genet & Biotechnol, UA-79005 Lvov, Ukraine. [Sibirny, Andriy A.] Univ Rzeszow, Dept Biotechnol & Microbiol, PL-35601 Rzeszow, Poland. [Slot, Jason C.] Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA. [Stielow, J. Benjamin] Royal Netherlands Acad Arts & Sci, Cent Bur Schimmelcultures Fungal Biodivers Ctr, NL-3508 AD Utrecht, Netherlands. [Kurtzman, Cletus P.] ARS, Natl Ctr Agr Utilizat Res, USDA, Peoria, IL 61604 USA. [Blackwell, Meredith] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. [Blackwell, Meredith] Univ South Carolina, Dept Biol Sci, Columbia, SC 29208 USA. [Lapidus, Alla] St Petersburg State Univ, Ctr Algorithm Biotechnol, St Petersburg 199004, Russia. [Ohm, Robin A.] Univ Utrecht, Dept Biol, Microbiol, NL-3508 Utrecht, Netherlands. RP Grigoriev, IV (reprint author), Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA.; Jeffries, TW (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. EM IVGrigoriev@lbl.gov; twjeffri@wisc.edu RI Ohm, Robin/I-6689-2016; Lapidus, Alla/I-4348-2013; OI Lapidus, Alla/0000-0003-0427-8731; Calvey, Christopher/0000-0002-7330-4983; Meier-Kolthoff, Jan Philipp/0000-0001-9105-9814; Wolfe, Kenneth/0000-0003-4992-4979 FU Office of Science of the US DOE [DE-AC02-05CH11231]; National Science Foundation [DEB-1442148, DEB-0072741, 0417180]; DOE Great Lakes Bioenergy Research Center; DOE Office of Science Grant [BER DE-FC02-07ER64494]; US Department of Agriculture (USDA) National Institute of Food and Agriculture Hatch Project [1003258]; European Research Council Grant [268893]; Science Foundation Ireland Grant [13/IA/1910]; Wellcome Trust; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior [7371/13-6]; Pew Charitable Trusts; Alexander von Humboldt Foundation; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq; DOE Great Lakes Bioenergy Research Center DOE Office of Science Grant [BER DE-FC02-07ER64494]; USDA, Forest Products Laboratory FX We thank Marco A. Soares for computational advice. K.H.W. thanks G. Cagney, E. Dillon, and K. Wynne (University College Dublin Conway Institute Proteomics Core Facility) for help with MS. M.B. thanks Drs. S. O. Suh, H. Urbina, and N. H. Nguyen and numerous Louisiana State University undergraduates for their assistance. The work conducted by the US Department of Energy (DOE) Joint Genome Institute, a DOE Office of Science User Facility, is supported by Office of Science of the US DOE Contract DE-AC02-05CH11231. This material is based on work supported by National Science Foundation Grant DEB-1442148 (to C.T.H. and C.P.K.) and supported in part by DOE Great Lakes Bioenergy Research Center, DOE Office of Science Grant BER DE-FC02-07ER64494, and US Department of Agriculture (USDA) National Institute of Food and Agriculture Hatch Project 1003258. K.H.W. acknowledges European Research Council Grant 268893, Science Foundation Ireland Grant 13/IA/1910, and the Wellcome Trust. M.R.L. acknowledges a fellowship from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (process no. 7371/13-6). C.T.H. is a Pew Scholar in the Biomedical Sciences and an Alfred Toepfer Faculty Fellow, which are supported by the Pew Charitable Trusts and the Alexander von Humboldt Foundation, respectively. C.A.R. acknowledges support from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq. Funding from National Science Foundation Grants DEB-0072741 (to M.B.) and 0417180 (to M.B.) supported discovery and study of many new yeast strains that contributed to this study. T.W.J. acknowledges DOE Great Lakes Bioenergy Research Center DOE Office of Science Grant BER DE-FC02-07ER64494 and the USDA, Forest Products Laboratory for financial support. NR 47 TC 7 Z9 7 U1 13 U2 15 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 30 PY 2016 VL 113 IS 35 BP 9882 EP 9887 DI 10.1073/pnas.1603941113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DV7BL UT WOS:000383090700064 PM 27535936 ER PT J AU Hanaor, DAH Hu, L Kan, WH Proust, G Foley, M Karaman, I Radovic, M AF Hanaor, D. A. H. Hu, L. Kan, W. H. Proust, G. Foley, M. Karaman, I. Radovic, M. TI Compressive performance and crack propagation in Al alloy/Ti2AlC composites SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE MAX phase; Ti2AlC; XRM Tomography, Crack propagation ID CARBIDE-ALUMINUM COMPOSITES; MECHANICAL-PROPERTIES; MATRIX COMPOSITES; CRYSTAL-STRUCTURE; POROUS TI2ALC; STRESS-STRAIN; MAX PHASES; TEMPERATURE; BEHAVIOR; TI3SIC2 AB Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While "the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites. (C) 2016 Elsevier B.V. All rights reserved. C1 [Hanaor, D. A. H.; Kan, W. H.; Proust, G.] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia. [Karaman, I.; Radovic, M.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Foley, M.] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia. [Hu, L.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Hanaor, DAH (reprint author), Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia. EM dorian.hanaor@sydney.edu.au FU U.S. Air Force Office of Scientific Research, MURI Program [FA9550-09-1-0686]; US National Science Foundation [NSF-1233792]; International Program Development Fund, at the University of Sydney; DVC Research/International Research Collaboration Award, at the University of Sydney FX We acknowledge access to XRM facilities of the Australian Microscopy & Microanalysis Research Facility at the Australian Centre for Microscopy & Microanalysis at the University of Sydney. This work was further supported by the U.S. Air Force Office of Scientific Research, MURI Program (FA9550-09-1-0686) and US National Science Foundation (NSF-1233792) to Texas A&M University. The authors would like to thank the program manager Dr. David Stargel for his support. In addition, the authors are also grateful for the support of the International Program Development Fund and DVC Research/International Research Collaboration Award, at the University of Sydney. NR 47 TC 2 Z9 2 U1 4 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD AUG 30 PY 2016 VL 672 BP 247 EP 256 DI 10.1016/j.msea.2016.06.073 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA DU1EZ UT WOS:000381952300028 ER PT J AU Maezawa, Y Petreczky, P AF Maezawa, Y. Petreczky, P. TI Quark masses and strong coupling constant in 2+1 flavor QCD SO PHYSICAL REVIEW D LA English DT Article AB We present a determination of the strange, charm, and bottom quark masses as well as the strong coupling constant in 2 + 1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be m(c)/m(s) = 11.877(91) and m(b)/m(c) = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: alpha(s)(mu = m(c)) = 0.3697(85) and m(c)(mu = m(c)) = 1.267(12) GeV. Our result for as corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value alpha(s)(mu = M-Z, n(f) = 5) = 0.11622(84). C1 [Maezawa, Y.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068317, Japan. [Petreczky, P.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Maezawa, Y (reprint author), Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068317, Japan. FU U.S. Department of Energy [DE-SC0012704] FX This work was supported by U.S. Department of Energy under Contract No. DE-SC0012704. The calculations have been carried out on USQCD clusters in Jlab. We thank Christian Hoebling for useful discussions on the form of continuum extrapolations. NR 42 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 30 PY 2016 VL 94 IS 3 AR 034507 DI 10.1103/PhysRevD.94.034507 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DU4IV UT WOS:000382177200003 ER PT J AU Mantysaari, H Schenke, B AF Mantysaari, Heikki Schenke, Bjorn TI Revealing proton shape fluctuations with incoherent diffraction at high energy SO PHYSICAL REVIEW D LA English DT Article ID LARGE MOMENTUM-TRANSFER; PB-PB COLLISIONS; VECTOR-MESONS; J/PSI MESONS; SMALL-X; EXCLUSIVE ELECTROPRODUCTION; ELASTIC ELECTROPRODUCTION; PARTON DISTRIBUTIONS; ROOT-S(NN)=2.76 TEV; QCD ANALYSIS AB The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J/psi mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For. meson production, we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of geometric fluctuations. C1 [Mantysaari, Heikki; Schenke, Bjorn] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Mantysaari, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU DOE [DE-SC0012704]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank E. Aschenauer, T. Lappi, S. Schlichting, M. Strikman, T. Ullrich, and R. Venugopalan for discussions. This work was supported under DOE Contract No. DE-SC0012704. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. B. P. S. acknowledges a DOE Office of Science Early Career Award. NR 112 TC 1 Z9 1 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 30 PY 2016 VL 94 IS 3 AR 034042 DI 10.1103/PhysRevD.94.034042 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DU4IV UT WOS:000382177200002 ER PT J AU Morrow, R Taylor, AE Singh, DJ Xiong, J Rodan, S Wolter, AUB Wurmehl, S Buchner, B Stone, MB Kolesnikov, AI Aczel, AA Christianson, AD Woodward, PM AF Morrow, Ryan Taylor, Alice E. Singh, D. J. Xiong, Jie Rodan, Steven Wolter, A. U. B. Wurmehl, Sabine Buechner, Bernd Stone, M. B. Kolesnikov, A. I. Aczel, Adam A. Christianson, A. D. Woodward, Patrick M. TI Spin-orbit coupling control of anisotropy, ground state and frustration in 5d(2) Sr2MgOsO6 SO SCIENTIFIC REPORTS LA English DT Article ID DOUBLE PEROVSKITES; MAGNETIC-PROPERTIES; CRYSTAL-GROWTH; TRANSITION; OSMIUM AB The influence of spin-orbit coupling (SOC) on the physical properties of the 5d(2) system Sr2MgOsO6 is probed via a combination of magnetometry, specific heat measurements, elastic and inelastic neutron scattering, and density functional theory calculations. Although a significant degree of frustration is expected, we find that Sr2MgOsO6 orders in a type I antiferromagnetic structure at the remarkably high temperature of 108 K. The measurements presented allow for the first accurate quantification of the size of the magnetic moment in a 5d(2) system of 0.60(2) mu(beta)-a significantly reduced moment from the expected value for such a system. Furthermore, significant anisotropy is identified via a spin excitation gap, and we confirm by first principles calculations that SOC not only provides the magnetocrystalline anisotropy, but also plays a crucial role in determining both the ground state magnetic order and the size of the local moment in this compound. Through comparison to Sr2ScOsO6, it is demonstrated that SOC-induced anisotropy has the ability to relieve frustration in 5d(2) systems relative to their 5d(3) counterparts, providing an explanation of the high TN found in Sr2MgOsO6. C1 [Morrow, Ryan; Xiong, Jie; Woodward, Patrick M.] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. [Taylor, Alice E.; Stone, M. B.; Aczel, Adam A.; Christianson, A. D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Singh, D. J.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Rodan, Steven; Wolter, A. U. B.; Wurmehl, Sabine; Buechner, Bernd] Leibniz Inst Solid State & Mat Res Dresden IFW, D-01171 Dresden, Germany. [Wurmehl, Sabine; Buechner, Bernd] Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Christianson, A. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Morrow, R (reprint author), Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. EM r.c.morrow@ifw-dresden.de RI Stone, Matthew/G-3275-2011; christianson, andrew/A-3277-2016; Wurmehl, Sabine/A-5872-2009 OI Stone, Matthew/0000-0001-7884-9715; christianson, andrew/0000-0003-3369-5884; FU Center for Emergent Materials an NSF Materials Research Science and Engineering Center [DMR-1420451]; Deutsche Forschungsgemeinschaft DFG [WU595/5-1]; National Science Foundation [DMR-1107637]; DFG [WU 595/3-3, SFB 1143]; US Department of Energy, Office of Science, Basic Energy Sciences (BES), Scientific User Facilities Division; Department of Energy S3TEC Energy Frontier Research Center [DE-SC0001299/DE-FG02-09ER46577]; U.S. Department of Energy [DE-AC05-000R22725] FX Support for this research was provided by the Center for Emergent Materials an NSF Materials Research Science and Engineering Center (DMR-1420451), and in the framework of the materials world network (Deutsche Forschungsgemeinschaft DFG project no. WU595/5-1 and National Science Foundation (DMR-1107637)). S. Wurmehl gratefully acknowledges funding by DFG in project WU 595/3-3 (Emmy Noether program) and by DFG in SFB 1143. Research using Oak Ridge National Laboratory's Spallation Neutron Source and High Flux Isotope Reactor facilities was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences (BES), Scientific User Facilities Division. Work at the University of Missouri (DJS) was funded through the Department of Energy S3TEC Energy Frontier Research Center, award DE-SC0001299/DE-FG02-09ER46577. The authors would like to acknowledge S. Calder and M. D. Lumsden for helpful discussions, and the authors also thankfully acknowledge Ashfia Huq for experimental assistance with POWGEN data collection. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-000R22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic-access-plan). NR 53 TC 1 Z9 1 U1 19 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 30 PY 2016 VL 6 AR 32462 DI 10.1038/srep32462 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU4CI UT WOS:000382159000001 PM 27571715 ER PT J AU Yuan, ZL Druzhinina, IS Labbe, J Redman, R Qin, Y Rodriguez, R Zhang, CL Tuskan, GA Lin, FC AF Yuan, Zhilin Druzhinina, Irina S. Labbe, Jessy Redman, Regina Qin, Yuan Rodriguez, Russell Zhang, Chulong Tuskan, Gerald A. Lin, Fucheng TI Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity SO SCIENTIFIC REPORTS LA English DT Article ID 16S RIBOSOMAL-RNA; PSEUDOMONAS-FLUORESCENS WCS365; COMPETITIVE ROOT COLONIZATION; BACTERIAL COMMUNITIES; FUNGAL ASSEMBLAGES; STRESS TOLERANCE; HIGH-THROUGHPUT; RHIZOSPHERE; DIVERSITY; EVOLUTION AB Root microbiota is a crucial determinant of plant productivity and stress tolerance. Here, we hypothesize that the superior halo-tolerance of seepweed Suaeda salsa is tightly linked to a specialized belowground microbiome. To test this hypothesis, we performed a phylogenetic trait-based framework analysis based on bacterial 16S rRNA gene and fungal nuclear rRNA internal transcribed spacer profiling. Data showed that the dominant alpha-proteobacteria and gamma-proteobacteria communities in bulk soil and root endosphere tend to be phylogenetically clustered and at the same time exhibit phylogenetic over-dispersion in rhizosphere. Likewise, the dominant fungal genera occurred at high phylogenetic redundancy. Interestingly, we found the genomes of rhizospheric and endophytic bacteria associated with S. salsa to be enriched in genes contributing to salt stress acclimatization, nutrient solubilization and competitive root colonization. A wide diversity of rhizobacteria with similarity to known halotolerant taxa further supported this interpretation. These findings suggest that an ecological patterned root-microbial interaction strategy has been adopted in S. salsa system to confront soil salinity. We also demonstrated that the potential core microbiome members improve non-host plants growth and salt tolerance. This work provides a platform to improve plant fitness with halophytes-microbial associates and novel insights into the functions of plant microbiome under salinity. C1 [Yuan, Zhilin; Qin, Yuan] Chinese Acad Forestry, Inst Subtrop Forestry, Hangzhou, Zhejiang, Peoples R China. [Druzhinina, Irina S.] TU Wien, Inst Chem Engn, Res Area Biochem Technol, Vienna, Austria. [Labbe, Jessy; Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Redman, Regina; Rodriguez, Russell] Adapt Symbiot Technol, Seattle, WA USA. [Rodriguez, Russell] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Zhang, Chulong; Lin, Fucheng] Zhejiang Univ, Inst Biotechnol, State Key Lab Rice Biol, Hangzhou, Zhejiang, Peoples R China. RP Yuan, ZL (reprint author), Chinese Acad Forestry, Inst Subtrop Forestry, Hangzhou, Zhejiang, Peoples R China.; Labbe, J (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM yuanzl@caf.ac.cn; labbejj@ornl.gov RI Tuskan, Gerald/A-6225-2011; Labbe, Jessy/G-9532-2011 OI Tuskan, Gerald/0000-0003-0106-1289; Labbe, Jessy/0000-0003-0368-2054 FU Non-Profit Sector Special Research Fund of the Chinese Academy of Forestry [RISF2013005]; National Natural Science Foundation of China [31370704]; Austrian Science Fund (FWF) [P 25745]; Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research; Plant-Microbe Interfaces Scientific Focus Area; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported financially by the Non-Profit Sector Special Research Fund of the Chinese Academy of Forestry (RISF2013005) and the National Natural Science Foundation of China (No. 31370704). ISD was supported by the Austrian Science Fund (FWF): project number P 25745. JL was supported by the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Plant-Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We would like to extend our sincerest thanks and great appreciation to Prof. Jeff Dangl, the University of North Carolina at Chapel Hill for his useful suggestions and technical assistance. NR 79 TC 3 Z9 3 U1 15 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 30 PY 2016 VL 6 AR 32467 DI 10.1038/srep32467 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU4CL UT WOS:000382159400001 PM 27572178 ER PT J AU Su, X Lin, CK Wang, XP Maroni, VA Ren, Y Johnson, CS Lu, WQ AF Su, Xin Lin, Chikai Wang, Xiaoping Maroni, Victor A. Ren, Yang Johnson, Christopher S. Lu, Wenquan TI A new strategy to mitigate the initial capacity loss of lithium ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Hard carbon; Initial capacity loss; Li5FeO4 (LFO); Lithium source additive; Lithium ion battery ID ELECTROCHEMICAL-BEHAVIOR; SILICON MONOXIDE; ANODE CELL; NANOSTRUCTURES AB Hard carbon (non-graphitizable) and related materials, like tin, tin oxide, silicon, and silicon oxide, have a high theoretical lithium delivery capacity (>550 mAh/g depending on their structural and chemical properties) but unfortunately they also exhibit a large initial capacity loss (ICL) that overrides the true reversible capacity in a full cell. Overcoming the large ICL of hard carbon in a full-cell lithium-ion battery (LIB) necessitates a new strategy wherein a sacrificial lithium source additive, such as, Li5FeO4 (LFO), is inserted on the cathode side. Full batteries using hard carbon coupled with LFO-LiCoO2 (LCO) are currently under development at our laboratory. We find that the reversible capacity of a cathode containing LFO can be increased by 14%. Furthermore, the cycle performance of full cells with LFO additive is improved from <90% to >95%. We show that the LFO additive not only can address the irreversible capacity loss of the anode, but can also provide the additional lithium ion source required to mitigate the lithium loss caused by side reactions. In addition, we have explored the possibility to achieve higher capacity with hard carbon, whereby the energy density of full cells can be increased from ca. 300 Wh/kg to >400 Wh/kg. (C) 2016 Elsevier B.V. All rights reserved. C1 [Su, Xin; Lin, Chikai; Wang, Xiaoping; Maroni, Victor A.; Johnson, Christopher S.; Lu, Wenquan] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. [Ren, Yang] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Lu, WQ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM suxin81@gmail.com; chikai.moses.lin@gmail.com; xiaoping.wang@anl.gov; maroni@anl.gov; ren@aps.anl.gov; cjohnson@anl.gov; luw@anl.gov FU U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX We gratefully acknowledge support from the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office. Part of this work was performed at the Electron Microscopy Center for Materials Research, the Center for Nanoscale Materials, and the Advanced Photon Source, all of which are facilities of the Office of Science (SC) located at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357. NR 15 TC 1 Z9 1 U1 36 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD AUG 30 PY 2016 VL 324 BP 150 EP 157 DI 10.1016/j.jpowsour.2016.05.063 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DR7JU UT WOS:000380076700019 ER PT J AU Brooks, KP Bowden, ME Karkamkar, AJ Houghton, AY Autrey, ST AF Brooks, Kriston P. Bowden, Mark E. Karkamkar, Abhijeet J. Houghton, Adrian Y. Autrey, S. Thomas TI Coupling of exothermic and endothermic hydrogen storage materials SO JOURNAL OF POWER SOURCES LA English DT Article DE Chemical hydrogen storage; Fuel cell; Reaction coupling; Kinetic modeling ID AMMONIA-BORANE; CATALYTIC HYDROLYSIS; REGENERATION; BOROHYDRIDE; RELEASE; METHANOLYSIS; GENERATION; FUEL; H-2 AB Chemical hydrogen storage (CHS) materials are a high-storage-density alternative to the gaseous compressed hydrogen currently used to provide hydrogen for fuel cell vehicles. One of the challenges of CHS materials is addressing the energy barriers required to break the chemical bonds and release the hydrogen. Coupling CHS reactions that are endothermic and exothermic during dehydrogenation can improve onboard energy efficiency and thermal control for the system, making such materials viable. Acceptable coupling between reactions requires both thermodynamic and kinetic considerations. In this work, models were developed to predict the reaction enthalpy and rate required to achieve high conversions for both reactions based on experimental measurements. Modeling results show that the coupling efficiency of exothermic and endothermic reactions is more sensitive to the ratio of the exothermic and endothermic enthalpies than to the ratio of the rates of the two steps. Modeling results also show that a slower endothermic step rate is desirable to permit sufficient heating of the reactor by the exothermic step. We look at two examples of a sequential and parallel reaction scheme and provide some of the first published insight into the required temperature range to maximize the hydrogen release from 1,2-BN cyclohexane and indoline. (C) 2016 Published by Elsevier B.V. C1 [Brooks, Kriston P.; Bowden, Mark E.; Karkamkar, Abhijeet J.; Houghton, Adrian Y.; Autrey, S. Thomas] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Brooks, KP (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM Kriston.brooks@pnnl.gov; Mark.bowden@pnnl.gov; Abhi.Karhamkar@pnnl.gov; Adrian.houghton@pnnl.gov; Tom.autrey@pnnl.gov FU U.S. Department of Energy; Department of Energy [DE-AC05-76RLO1830] FX This work was done at PNNL and sponsored by the U.S. Department of Energy. Special thanks to Dr. Shih-Yuan Liu (Boston College) for providing the CBN materials and directing this project. The authors would also like to thank Ned Stetson and Grace Ordaz for their outstanding support. Battelle operates PNNL for the Department of Energy under contract DE-AC05-76RLO1830. NR 33 TC 0 Z9 0 U1 14 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD AUG 30 PY 2016 VL 324 BP 170 EP 178 DI 10.1016/j.jpowsour.2016.05.067 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DR7JU UT WOS:000380076700021 ER PT J AU Wang, ZY Lee, JZ Xin, HLL Han, LL Grillon, N Guy-Bouyssou, D Bouyssou, E Proust, M Meng, YS AF Wang, Ziying Lee, Jungwoo Z. Xin, Huolin L. Han, Lili Grillon, Nathanael Guy-Bouyssou, Delphine Bouyssou, Emilien Proust, Marina Meng, Ying Shirley TI Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion battery; Thin-film battery; Interfacial phenomena; Interface resistance; Solid electrolyte ID RECHARGEABLE LITHIUM BATTERIES; LI-ION BATTERIES; OXIDES; 1ST-PRINCIPLES; INTERCALATION; STABILITY AB All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte electrode interfaces will be critical to improve performance. In this study, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grew in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 degrees C. The stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wang, Ziying; Lee, Jungwoo Z.; Meng, Ying Shirley] Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Xin, Huolin L.; Han, Lili] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Grillon, Nathanael; Guy-Bouyssou, Delphine; Bouyssou, Emilien; Proust, Marina] STMicroelectronics, CS 97155, F-37071 Tours 2, France. RP Meng, YS (reprint author), Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM shmeng@ucsd.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0002357]; STMicroelectronics; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX We would also like to acknowledge the funding for the characterization of all-solid-state battery by the U.S. Department of Energy, Office of Basic Energy Sciences, under award number DE-SC0002357. The authors acknowledge the partial funding support and sample fabrication from STMicroelectronics. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 23 TC 0 Z9 0 U1 63 U2 99 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD AUG 30 PY 2016 VL 324 BP 342 EP 348 DI 10.1016/j.jpowsour.2016.05.098 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DR7JU UT WOS:000380076700041 ER PT J AU Reshetenko, T Serov, A Artyushkova, K Matanovic, I Stariha, S Atanassov, P AF Reshetenko, Tatyana Serov, Alexey Artyushkova, Kateryna Matanovic, Ivana Stariha, Sarah Atanassov, Plamen TI Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants SO JOURNAL OF POWER SOURCES LA English DT Article DE Non-platinum group metals catalysts; PEMFC; Airborne contaminants; Segmented cell; XPS; DFT ID OXYGEN REDUCTION REACTION; DENSITY-FUNCTIONAL THEORY; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; BRILLOUIN-ZONE INTEGRATIONS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; CARBON-MONOXIDE; PEMFC PERFORMANCE; NITROGEN-OXIDES AB The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-N-x sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O-2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed. (C) 2016 Elsevier B.V. All rights reserved. C1 [Reshetenko, Tatyana] Univ Hawaii, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA. [Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Stariha, Sarah; Atanassov, Plamen] Univ New Mexico, Dept Chem & Biol Engn, UNM Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reshetenko, T (reprint author), Univ Hawaii, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA. EM tatyanar@hawaii.edu FU Office of Biological and Environmental Research of the Department of Energy located at Pacific Northwest National Laboratory [48823]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2015-027]; DOE-EERE Fuel Cell Technology Program [FC132]; Office of Naval Research [N00014-11-1-0391] FX Computational work was performed using the computational resources of EMSL, a national scientific user facility sponsored by the Office of Biological and Environmental Research of the Department of Energy located at Pacific Northwest National Laboratory (award number 48823); NERSC, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; and CNMS, sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (award CNMS2015-027). This work was supported in part by the DOE-EERE Fuel Cell Technology Program FC132 (subcontract to Northeastern University, with PI Sanjeev Mukerjee). T. Reshetenko is grateful for the funding from the Office of Naval Research (N00014-11-1-0391) and the Hawaiian Electric Company for their ongoing support of the Hawaii Sustainable Energy Research Facility. This paper has been designated LA-UR-15-29303. NR 92 TC 4 Z9 4 U1 26 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD AUG 30 PY 2016 VL 324 BP 556 EP 571 DI 10.1016/j.jpowsour.2016.05.090 PG 16 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DR7JU UT WOS:000380076700064 ER PT J AU Bzdak, A Koch, V Liao, JF AF Bzdak, Adam Koch, Volker Liao, Jinfeng TI Particle correlations and the chiral magnetic effect SO EUROPEAN PHYSICAL JOURNAL A LA English DT Review ID HEAVY-ION COLLISIONS; VIOLATION; TRANSPORT AB In this contribution we will discuss current measurements of particle correlations and their implication for possible local parity violation in heavy-ion collisions. C1 [Bzdak, Adam] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Koch, Volker] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. RP Bzdak, A (reprint author), AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. EM bzdak@fis.agh.edu.pl; vkoch@lbl.gov; liaoji@indiana.edu FU Ministry of Science and Higher Education (MNiSW); Foundation for Polish Science; National Science Centre (Narodowe Centrum Nauki) [DEC-2014/15/B/ST2/00175]; Office of Basic Energy Sciences, Division of Nuclear Sciences, of the U.S. Department of Energy [DE-AC03-76SF00098]; DOE [DE-AC02-98CH10886]; NSF [PHY-1352368]; RIKEN BNL Research Center; [DEC-2013/09/B/ST2/00497] FX AB was supported by the Ministry of Science and Higher Education (MNiSW), by funding from the Foundation for Polish Science, and by the National Science Centre (Narodowe Centrum Nauki), Grant No. DEC-2014/15/B/ST2/00175, and in part by DEC-2013/09/B/ST2/00497. VK was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, and by the Office of Basic Energy Sciences, Division of Nuclear Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 and DOE Contract No. DE-AC02-98CH10886. JL was partly supported by the NSF (Grant No. PHY-1352368) and by the RIKEN BNL Research Center. NR 28 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD AUG 29 PY 2016 VL 52 IS 8 AR 265 DI 10.1140/epja/i2016-16265-0 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DZ7FC UT WOS:000386029300001 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Older, AAAF Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, N Alexa, C Alexander, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Amor Dos Santo, SP Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Fi, FA Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barranco Navarro, L Barreiro, F Da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Brunt, B Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Castillo Gimenez, V Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerda Alberich, L Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E Cherkaoui El Moursli, R Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Gon, R Da Costa, JGPF Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Sevan, BPK Kersten, S Keyes, RA Khalil-Zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, V Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AP Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Denis, RDS Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ueno, R Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Older, A. A. A. Ff Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Fi, F. Anghinol Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barranco Navarro, L. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerda Alberich, L. Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Fernandez Perez, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Garay Walls, F. M. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Gon, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gongadze, A. Gonzalez de la Hoz, S. Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Sevan, B. P. Ker Kersten, S. Keyes, R. A. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Machado Miguens, J. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Zu Theenhausen, H. Meyer Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Moenig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Oleiro Seabra, L. F. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero Y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Denis, R. D. St. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T.